

SCHOOL OF ELECTRICAL AND ELECTRONICS

Minutes of Board of Studies Meeting held on 28thNOVEMBER 2020

(Virtual Meeting conducted on Zoom Platform (Time: 10.30 a.m. to 12 noon)

- Dr.N.M.Nandhitha, Prof. & Dean School of Electrical and Electronics started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting (28.11.2020, 10.00 a.m. to 12.00 noon)
- Dr.T.Ravi, Head, Dept. of Electronics and Communication Engineering informed the board that core competencies are identified from the feedback obtained from the students, faculty, Alumni and employers.
- Dr.P.Kavipriya proposed to remove the following topics in Electronic Circuits I (3rd Semester) course: 'Approximate Model- Analysis of CE, CC and CB amplifiers using Approximate model equivalent circuits to obtain gain, input impedance and output impedance'. Dr.M.D.Selvaraj, Associate Professor, IIITDM accepted the changes and suggested to include Frequency response of the Differential amplifier in unit V instead of power supply and amplifiers.
- Dr.S.Lakshmi suggested to introduce 'Antenna for 5G application and Software Tools for Antenna Design and Analysis' in the course Antenna and Wave Propagation. Dr.N.Sivakumaran, Prof.,NIT, Trichy accepted the inclusion and also suggested to introduce simulation through HFSS in the class.
- Dr.M.Sumathi suggested to include the topics Li-Fi in the course Optical Communications. Dr.N.Shivakumaran accepted and suggested to remove WDM, SONET/SDH, ATM,IP over WDM.
- Dr.Sugadev presented the syllabus revision for 'Embedded Processors'.Board accepted the change and Mr.J.Visweswaran suggested to include System on Chip concept in the syllabus.
- Syllabus revision proposed in 'High Performance Computing' by Dr.Dr.S.Poorna Pushpa Kala was accepted by Dr.M.D.Selvaraj.
- Dr.S.Barani suggested to remove 'Basics of Spark-Programming in Scala'for the course 'Real Time Data Analytics'. Mr.J.Visweswaran accepted the changes and

suggested to include function programming in Scala. Dr.N.Sivakumaran suggested to include Case studies on influx and Grafana.

- Having discussed the revisions in the existing courses, faculty then presented the syllabus for the new courses. Dr.P.Chitra presented the syllabus for Digital Image Processing for Real Time Applications and Deep Learning Neural Networks. Dr.M.D.Selvaraj accepted the syllabus for both the courses.
- Dr.M.Sugadev presented the syllabus for 5G communication. Dr.N.Sivakumaran suggested to include mmWave communication in the syllabus.
- Dr,S.Poornapushpakala presented the syllabus for Machine Learning using Python. Mr.Visweswaran suggested that Least Squares Optimization, Collaborative Filtering and related topics can be included.
- Dr.S.Barani presented the syllabus for IoT for Real time Applications. Dr.N.Sivakumaran accepted the syllabus and he suggested that students can be made to do miniprojects in this course.
- Dr.M.Sugadev presented the syllabus for Drone Electronics. Syllabus was accepted by the board and Dr.M.D.Selvaraj suggested that this course can be offered to all branches of Engineering.
- Dr.P.Kavipriya presented the syllabus for Industrial Internet of Things. Mr.Visweeswaran suggested that Middleware Software protocol can be included.
- Dr.S.lakshmi presented the syllabus for eHealth and Dr.N.Sivakumaran suggested that mobile application development for biomedical applications can be included as part of the syllabus.
- Dr.N.M.Nandhitha informed the Board that part of the syllabus in SEC1320 Embedded Systems will be delivered by the industry expert so as to make the students understand the applications of embedded systems in industries. Mr.J.Visweswaran appreciated the initiative and suggested that at least one course in each semester can be identified for partial delivery of syllabus by expert from industry.

SL	COURSE	COURSE NAME	DELETED TOPICS	ADDED TOPICS
NO	CODE			
1	SECA1307	ELECTRONIC	UNIT 5	UNIT 5
		CIRCUITS I	Linear mode power supply - Rectifiers - Half-Wave	Current sources for biasing -
			Rectifier - Full-Wave Rectifier	Current steering circuits –
			- Filters-L,C, LC, CLC Filter-	Current mirror with improved
			Regulators -Zener Diode regulator- Linear series,	performance (Cascode mirror,
			shunt voltage Regulators -	Wilson, Widlar). Large and
			Switched mode power supply	<mark>small signal operation of</mark>
			(SMPS) – Large Signa Amplifiers – Class A, Class B,	Differential pair circuit
			Class C, Class D- Distortion	Differential pair with active load

Table 1. Revision Carried out in the courses

2 SECA1505 ANTENNA AND WAVE PROGRAGATION UNIT 5 UNIT 5 2 SECA1505 ANTENNA AND WAVE PROGRAGATION UNIT 5 Concepts and Benefit Smart antennas - weight beamfor Adaptive beamforming Design of Planar antennas for Beamfor antennas for Beamfor antennas for Beamfor pettern Measurement Measurement of radiation efficiency- lincidence measurements - between oblique and vertical incidence transmission System Issues – antenna noise. UNIT 5 3 SEC1407 OPTICAL COMMUNICATIONS UNIT 5 Applications-Military UNIT 5 Applications-Military	
2 PROGRAGATION Anechoic Chamber-Radiation Pattern Measurement-Beamwidth and Directivity Measurement- Impedance Measurement of radiation efficiency- lonospheric measurements - Vertical incidence measurements - Vertical incidence measurements - Vertical incidence measurements - Vertical incidence transmission - techniques for Planar and Role of Smart Antenna Green Communications System Issues – antenna noise. Concepts and Benefit Smart antennas - weight beamfor Adaptive beamforming Design of Planar antennas for Beamfor applications – techniques for Planar and Role of Smart Antenna Green Communications SG wireless communications 	
3 SEC1407 OPTICAL UNIT 5 UNIT 3 COMMUNICATIONS Applications Military Vertical cavity su	Fixed ming- g – array rming Feed rays - as in and tions –
cavity enhancement UNIT 5 Optical OFDM, High-s Light-Waveguides, Reconfigurable of add/drop multiplexer, Fidelity (Li-Fi) Technol Introduction, wo principle, Comparison of and Wi-Fi, Li-Fi netw Applications.Case s Evaluation of building a Optic network	ptical Light- ology- orking f Li-Fi vorks,
4 SECA3019 EMBEDDED PROCESSORS UNIT 5 Introduction - fixed and floating point -Core architecture of ADSP218X- Arithmetic Logic Unit (ALU) - Multiplier and Accumulator (MAC) Unit- Barrel Shifter- Data Address Generator (DAG)- Program Sequencer- Functional Diagram of TMS320C54XX. UNIT 5 Introduction to ARM CO series, improvement classical series advantages for emb system design. CORT CORTEX M, CORTE processors series, ve features and applic need of operating system developing core applications in emb	over and bedded EX A, EX R arsions, ations, tem in bedded mware Cortex, based
5 SECA7020 HIGH PERFORMANCE COMPUTING UNIT 4 UNIT 4 5 SECA7020 HIGH PERFORMANCE COMPUTING Intrusion Detection and Prevention, Intrusion Risks, Security Policy, Monitoring and Reporting of Traffics, Traffic Shaping, Investigating and Verifying Detected Intrusions Scheduling Parallel Jo Clusters, Parallel Progra	mming High

				Reporting and Documenting Intrusions, UNIT-5 Define the Types of Intrusion Prevention Systems, Intrusion Prevention System Basics, and Limitations of Intrusion Prevention System, Spoof Prevention, Denial of Service (DoS), and Quality of Service (QoS) Policy, Web Application Firewall, Packet Signature and Analysis.	languages, Dependence Analysis of Data arrays UNIT-5 Quantum computing and its issues
6	SECA7023	REAL TIME ANALYTICS	DATA	UNIT 1 Basics of Spark-Programming in Scala	UNIT 1 Expressions-Functions – Classes- File I/O – Exceptions – Combining UNIT-2 Distributed Storage- Parallelism, Regression. Classification and Clustering with Spark UNIT-4 Kafka Architecture and Components, Kafka Cluster, Kafka Producer, Kafka Consumer

- Dr.Lalithakumari.S, suggested few modifications in the course 'Industrial Unit Operations'. She proposed the inclusion of topics leaching and extraction. It has been accepted by Dr.Sivakumaran, and he suggested to include the same along with mixing and separation unit operations. Dr. D.Marshiana suggested that 'Humidification, de-humidification' can be added. Dr. Sivakumaran agreed for the inclusion.
- Dr.Lalithakumari presented the syllabus for an elective course 'Optimal Control Systems'. Dr.Sivakumaran accepted the syllabus change suggested that students may be asked to do mini projects in this course.

COURSE CODE	COURSE NAME	DELETED TOPICS	INCLUDED TOPICS
SEIA1402	Industrial Unit Operations		Unit-4 Humidification, De-humidification Unit-2 Leaching and extraction

- Dr.V.Sivachidambaranathan, Prof.& Head, Dept. of Electrical and Electronics Engineering requested the board to shift the course "Applied Thermodynamics" to elective. Dr.M.D.Selvaraj accepted the suggestions.
- Dr.A.Ramesh babu and Dr.S.D.Sundar Singh Jebaseelanputforth the syllabus of the new courses, 'Modern Power Converters' and 'Distributed Generation and Microgridss' for the approval of the board. Dr N Sivakumaran approved the Syllabus for these new courses.
- BoS members are happy that the new and the revised courses enhance employability/ Entrepreneurship/Skills of the students.

EXTERNAL MEMBERS:

- 1. Dr.N.Sivakumaran
- 2. Dr.M.D.Selvaraj
- 3. Mr.J.Visweswaran

INTERNAL MEMBERS:

- 1. Dr.N.M.Nandhitha
- 2. Dr.T.Ravi
- 3. Dr.P.Chitra
- 4. Dr.S.Barani
- 5. Dr.S.Poornapushpakala.
- 6. Dr.M.Sumathi
- 7. Dr.S.Lakshmi
- 8. Dr.P.Kavipriya
- 9. Dr M Sugadev
- 10. Dr .E.Anna Devi
- 11. Ms.S.Yogalakshmi
- 12. Dr.LalithaKumari.S
- 13. Dr.Pandian.R
- 14. Dr.Marshiana.D
- 15. Dr.V.Sivachidambaranathan
- 16. Dr.D.Susitra
- 17. Dr.R.Vanitha
- 18. Mrs.D.Ramya
- 19. Mrs.P.Sivagami

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NEW COURSES

SL.NO	COURSE CODE	COURSE NAME
1.	SEC1628	DIGITAL IMAGE PROCESSING FOR REAL TIME
		APPLICATION
2.	SECA3020	5G COMMUNICATIONS
3.	SEC1630	MACHINE LEARNING TECHNIQUES
4.	SEC1629	IOT FOR REAL TIME APPLICATIONS
5.	SECA4003	DRONE ELECTRONICS
6.	SECA4002	DEEP LEARNING NEURAL NETWORKS
7.	SECA4005	INDUSTRIAL INTERNET OF THINGS
8.	SECA4004	eHEALTH
9.	S13ADPROJ	DESIGN THINKING

SEC1628	DIGITAL IMAGE PROCESSING REAL TIME APPLICATION	FOR	- T	Ρ	Credits	Total marks		
					3	100		
Pre requisi	Pre requisite: NIL Co Requisite: NIL							
Course (Objectives							
	o explore the fundamental concepts of Image Proce	-						
	b become conversant with various Image Enhancen	•						
	o study and understand various Morphological and s		s and	tech	nniques			
	o analysis the pattern classifier techniques for image	_						
• To	o design Artificial Intelligence (AI) based image clas	sification and object d	etecti	on s	ystems			
UNIT	CONTENTS	\$				HOURS		
Ι	DIGITAL IMAGE FUNDAMENTALS					9		
	Image acquisition and storage; Basic Relations							
	Vision Models; Colour Vision Models; Colour F							
	resizing; Image noise- additive and multiplicative noises; Image quality indicators							
	(Quality Metrics)- PSNR, SSIM, VIF, accuracy, Correlation. Case study: Develop a software program to measure the quality of the given image.							
	IMAGE ENHANCEMENT	ven mage.				9		
	Introduction; Point Processing - Image Negative Transformations, Piecewise-Linear Transform Operations - Image Subtraction, Image Averagin Equalization, Histogram Matching; Spatial Smoothing Frequency Domain Filters - Ideal Gaussian Low Pass; Sharpening Frequency Butterworth High Pass, Gaussian High Transform(DWT), Case study: Develop a program	nation Functions; ng; Histogram Proces filtering - Smoothir Low Pass, Butterw Domain Filters - Id Pass; Image denois	Arith sing · ig, S orth eal bising	meti His Sharı Low High - V	c/Logic togram pening; Pass, Pass, Vavelet			
III	MORPHOLOGICAL PROCESSING & SEGMEN Morphological Image Processing - Logic Operat and Erosion; Opening and Closing; Basic M Extraction, Region Filling, Thickening, Thinning Discontinuities; Edge Linking; Boundary Det Adaptive; Region based Segmentation, Cas segmentation of an objects from the background another.	ions involving Binary lorphological Algorith ; Image Segmentatio ection; Thresholding se study: Develop	ms - n - E - (a pi	Bo Detect Globa rogra	oundary ction of al and am for	9		
IV	PATTERN CLASSIFIER					9		
	Overview of Pattern recognition - Discriminar	t functions - Super-	/ised	lear	ning –			

	Parametric estimation – Maximum Likelihood Estimation – Bayesian parameter Estimation– Problems with Bayes approach– Pattern classification by distance functions –Minimum distance pattern classifier, Template matching - probabilistic approach- K-nearnest neighbour (KNN), Path Forest- Fuzzy logic – Fuzzy Pattern Classifiers, Case study: Fuzzy clustering algorithm.	
V	AI IN IMAGE PROCESSING Design and execute image classification, object recognition, object detection and object localization systems using machine learning, deep learning and transfer learning techniques.	9

Course Outcomes

On completion of the course, the student will be able to

CO1- Apply Suitable Mathematical Concepts For The Measurement Of Quality In Digital Images

CO2-Analyze The Performance Of Spatial And Frequency Domain Filters In Image Enhancement

CO3-Analyze Various Morphological Image Processing And Segmentation Techniques

CO4-Identify Suitable Pattern Classifier For Object Classification Problems

CO5-Implement Ai Based Image Classification And Object Detection Systems

CO6-Solve Real World Problems Using AI

- 1. Rafael C. Gonzalez, Richard E. Woods," Digital Image Processing", Pearson , Second Edition, 2004
- 2. Anil K. Jain, "Fundamentals of Digital Image Processin", Pearson 2002
- 3. Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John Wiley & Sons Inc., New York, 1992
- 4. R.O.Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2001
- 5. Himanshu Singh. "Practical Machine Learning and Image Processing", Apress, 2019
- 6. François Chollet "Deep Learning with Python", Manning Publications Co., NY, 2018
- 7. Phil Kim. "MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017
- 8. Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images
- 9. Valentina Zharkova, Lakhmi C. Jain, "Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images", Springer, 2007

SECA30	20				5	G	CON	MM	UN	ICA	TIC	NS			L 3	T	P	C 3	redits	ma	otal arks
3 0 3 Pre requisite: Nil Co Requisite: Nil										10	0										
Course O	bjectives	s																			
	• To le	ear	n ab	out	wire	less	mo	bile	cor	າກເ	inica	ation s	stanc	lards	s and	CO-6	exist	enc	e of 40	6 and	d 5G.
	• To le	ear	n 50	3 net	wor	k ar	chite	ectu	ure, (com	pon	ents,	featu	ures	and t	heir	ben	efits	i.		
	 To le wirele 					cces	ss m	neth	ods	s, mo	odula	ation	and	spe	ctrum	sen	sing	tec	hnique	s us	ed in 5G
	 To u Netw 					/anc	ed	wire	eless	s cc	nce	pts s	uch	as N	lassiv	ve N	/IMC), V	'irtualiz	ed F	RAN and
	To le	ear	n ab	out r	mm	Wav	e co	omn					ns ar	nd its	use	case	es.				
UNIT									С	ON	TEN	ITS									HOURS
I	INTRODUCTION TO 5G 3G and 4G(LTE) overview- Introduction to 5G – Use Cases - Evolving LTE to 5G Capability- 5G NR and 5G core network (5GCN) - 5G Standardization - 3GPP and IMT2020 - Spectrum for 5G – 5G deployment - Options, Challenges and Applications.										9										
II	5G CH OFDM Multiple Filtered (SCMA	l a lex d (and ing OFD	OF (GFI M -I	DM DM) Filte	A –) – er ba	- M Noi ank	/IM(n-Or mul	O (rtho Itica	OFE gon arrie	al N ⁻ (Fl	/lultipl 3MC)	le A - Sp	cces	s (N	OM/	4) -	Un	iversal		9
III	RADIO ACCESS NETWORK FOR 5G NR 5G NR requirements - 5G Core Network Architecture - Radio-Access Network (RAN)- Radio Protocol Architecture -User Plane Protocols-Radio Link Control - Medium-Access Control – Physical Layer functions -Control Plane Protocols - Network Slicing- RAN virtualization-Spectrum Management in 5G.										9										
IV	CHANI Channe NR - P Uplink	nel Phy	Hier /sica	arch al La	ny ir iyer	n 5G Dat	S NF a C	₹ – than	Log	s in	5G	NR -	Dow	/nlin	k Phy	/sica					9
V	ENABI Device		-	-	-		-	-	-		on	- 50	G fo	r N	lassiv	ve N	/lach	nine	Туре		9

Communication and Massive IoT- V2X Communication - Full Duplex and Green	
Communication - mmWave Communications -Massive MIMO and Beamforming	
Techniques.	

Course Outcomes:

On Completion of the course, the student should be able to

- CO1 Distinguish major mobile communication standards such as 3G, 4G and 5G
- CO2 Analyze various modulation and multiplexing techniques like OFDM, NOMA etc.
- CO3 Design system level architecture of 5G communication systems.
- CO4 Analyze spectrum sensing and sharing techniques in 5G systems.
- CO5 Assess the potential of mmWave spectrum for 5G applications.

CO6 - Apply the concepts of green communications in real life applications.

- 1. Saad Z. Asif, "5G Mobile Communications Concepts and Technologies, CRC Press, 1st Edition, 2019.
- Erik Dahlman, Stefan Parkvall, Johan Skold "5G NR: The Next Generation Wireless Access Technology", Academic Press, 1st Edition, 2018.
- 3. Jonathan Rodriguez, "Fundamentals 5G Mobile Networks", John Wiley & Sons, 1st Edition, 2015.
- 4. Long Zhao, Hui Zhao, Kan Zheng, Wei Xiang, "Massive MIMO in 5G Networks: Selected Applications", Springer, 1st Edition, 2018.
- Robert W. Heath Jr., Angel Lozano, "Foundations of MIMO Communication", Cambridge University Press, 1st Edition, 2019.
- R. Vannithamby and S. Talwar, "Towards 5G: Applications, Requirements and Candidate Technologies", John Willey & Sons, 1st Edition, 2017.

SEC1630	MACHINE LEARNING TEC	HNIQUES	L	T	Ρ	Credits	Total marks		
			2	0		3	100		
Pre Requisite: NIL Co Requisite: NIL									
Course Ob	jectives								
• To F	Recognize Different Key Paradigms For	Machine Learnii	ng C	Conc	epts	5			
• To F	amiliarize With Various Classifiers Used	d For Machine L	ear	ning					
• Tol	Inderstand And Differentiate Among Va	rious Supervised	d Le	arni	ng C	Concepts			
• To I	Become Familiarize With Data Reduction	n And Feature E	xtra	ctior	n Me	ethods			
• To /	Apply Suitable Machine Learning Algorit	nms For Simple	Eng	jinee	ering	Problems			
UNIT	CONTE	NTS					HOURS		
I	INTRODUCTION TO MACHINE LEAR Machine Learning vs Statistical M Learning, Supervised vs Unsupervis Classification, Unsupervised Learnin suitable for Machine Learning.	odelling, Applic ed Learning, S	Supe	ervis	ed	Learning	9		
	CLASSIFIERS Classification, K- nearest neighbou Decision Tree, building a Tree, Rand Forest, Pros and Cons of Random Fo Using Naiver Bayes	dom Forests -	Wor	king	of	Random	9		
	SUPERVISED LEARNING Regression, Types of Regression mod Types of ML Algorithm, Linear Regr Non-linear Regression, Model evaluation	ession, Multiple					9		
IV	K-MEANS CLUSTERING Working of K-Means Clustering Algorith Applications of K-Means Clustering Steps to Perform Agglomerative Dendrograms Agglomerative Hieran Clustering.	Algorithm, Hie Hierarchical C	rarc Clust	hica terin	IC g,	lustering,	9		

V	DIMENSIONALITY REDUCTIONS & COLLABORATIVE FILTERING	9
	Dimensionality Reduction, Feature Extraction & Selection, Linear	
	Discriminant Analysis, Principal Component Analysis, Factor Analysis,	
	Independent Component Analysis, Locally Linear Embedding, Least	
	Squares Optimization, Collaborative Filtering & Its Challenges.	

Course Outcomes

On completion of the course, student should be able to

- CO 1 Classify supervised and unsupervised learning
- CO 2 Apply appropriate machine learning strategies for any given problem
- CO 3 Recommend supervised and unsupervised learning algorithms for any given problem
- CO 4 Apply the Bayesian concepts to machine learning
- CO 5 Evaluate existing machine learning algorithms
- CO 6 Develop an appropriate machine learning approach for Real World Problems

- 1. Chris Albon : Machine Learning with Python Cookbook , O"Reilly Media, Inc.2018
- 2. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014
- 3. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education
- 4. Machine Learning: The art and Science of algorithms that make sense of data, Peter Flach, Cambridge University Press, 2012
- 5. EthemAlpaydın, Introduction to machine learning, second edition, MIT press.
- 6. T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer Series , 2nd edition
- 7. Sebastian Raschka, "Python Machine Learning", Second Edition. Packt Publication

SEC1629	IOT FOR REAL TIME APPLI	IOT FOR REAL TIME APPLICATIONS											
		2 0 2 3											
Pre requisite: NIL Co Requisite: NIL													
Course Ob	jectives												
 To design products related to IoT based Health care applications 													
To design IoT enable smart cities considering various energy harvesting techn													
•	 To develop IoT based system for support 	porting farmers and	d ag	ricul	ture								
•	 To develop IoT based system for indu 	strial automation											
•	 To analyze various IoT based system 	considering societ	al b	enef	fits								
•	To develop an IoT based wearable	device for measur	ing	phy	siolo	gical para	meters and						
physical movements													
UNIT	CONTENTS												
I IoT FOR HEALTHCARE Architecture of IoT for Healthcare, IoT based Health Monitoring System using Arduino, Smart continuous glucose monitoring (CGM) and insulin pens, Remote Patient Monitoring- IoT Heart Rate Monitoring, remote monitoring of physiological parameters, ECG, EEG, Diabetics and BP.													
II IOT ENABLED SMART CITIES Energy Consumption Monitoring, Smart Energy meters to minimize power consumptions, Smart home powered by IoT, Smart Grid and Solar Energy Harvesting, Intelligent Parking System													
111	IoT FOR SMART AGRICULTURE Animal Intrusion detection in farms, soil Pest monitoring and control, Lives Greenhouse Environment Monitoring ar	tock monitoring			·		9						

IV	IoT BASED INDUSTRIAL AUTOMATION IoT based gas leakage monitoring system, Temperature and liquid level monitoring in boilers, Fire detection system, wireless video surveillance robot, Automatic Solar Tracker	9
V	IoT FOR SOCIETY Medical Waste Management, Weather update system with IoT, Women security system, GPS Smart Sole, wearable glove to enable sign to speech conversation, IoT based air pollution meter	9

Course Outcomes

On completion of the course, the student should be able to

- CO1 Design remote data sensing and aggregation system for health care
- CO2 Develop energy efficient IoT systems for smart cities
- CO3 Design Precision agricultural systems
- CO4 Develop smart automation system for Industries
- CO5 Investigate various IoT based innovative systems for societal benefits
- CO6 Develop multipurpose wearable devices

- 1. Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1st edition, CRC Press, ISBN-10: 1138316849
- 2. Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt Publishing.
- 3. Krishna P. Venkata, Sasikumar Gurumoorthy, Mohammad S.Obaidat, Internet of Things and Personalized Healthcare Systems , Springer-2019.
- 4. Pattnaik, Prasant Kumar, Mohanty, Suneeta, Mohanty, Satarupa, Smart Healthcare Analytics in IoT Enabled Environment, Springer-2020.
- 5. Avijit Mathur, Thomas Newe, Walid Elgenaidi, Muzaffar Rao, Elfed Lewis and Daniel Toal, Medical IoT systems: architecture and security by Wearable Sensors, 2017.
- Verónica Saiz-Rubio , Francisco Rovira-Mas ,From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management, Agronomy 2020, 10, 207; doi:10.3390/ agronomy 10020207

SECA4003	DRONE ELECTRONICS		L	T	P	Credits	Total marks
Pre Requisi	3 1 0 3 Pre Requisite: NIL Co Requisite: NIL			100			
Course O							
•	To Introduce The Concepts Of Applying	ng Aerodynamics	То	Droi	ne D	esign	
•	To Familiarize The Student's Ability T	o Analyze The Co	once	epts	Of E	Drone	
•	To Understand The Basic Operation (Of Various Senso	rs Ir	n Dro	one	Applicatior	ו
•	To Design Drone For The Mission Co	ntrol Application					
UNIT	CONT	ENTS					HOURS
Ι	INTRODUCTION TO DRONE Definition of drones, History of drones, Classification of drones based on structure- Fixed wing structure, Lighter than air systems and Rotary-wing aircraft, Application of drones, Parts of Drone system, System design, Mechanical design, hardware design, software architecture, Logistic and Operations Management.				9		
II	DYNAMICS AND STABILITY Forces of flight, Principal axes and rotation of aerial systems - Longitudinal axis, Lateral(transverse) axis and Perpendicular axis, Equilibrium, Stability - Stable system, Unstable system and Neutrally stable system, Control – Roll, Pitch, Yaw and Throttle.				9		
III	SENSORS IN DRONE Sensors – Accelerometer, Barometer, Gyro Sensor, Magnetometer, Distance sensors, Time of Flight (ToF) Sensors, Thermal sensors, Chemical Sensors and thermal sensors. Sensor Testing – Test Philosophies and methodologies, Test equipment, Performance testing of sensors				9		

IV	GLIDING DRONES	9
	Glider, Lift, Drag, Airfoil and its type, Incident and decalage angle, Three axis motion (roll, pitch, and yaw), Thrust, Aspect ratio and glide ratio, Glide or dive and descent, gliding angle, Climb, Center of pressure, Pitching moment, Load factor, Angle of attack, Build our own glider drone.	
V	DRONES FOR MISSION CONTROL APPLICATION ESP8266, Downloading and installing APM Planner or Mission Planner, Configuring the quadcopter - Frame type selection, Compass calibration, Access calibration, Radio calibration, Flight mode calibration and Failsafe calibration, Surveying with a drone, tweaks with the Flight Plan screen. Future of Drone Systems	9

COURSE OUTCOMES

- On completion of the course, student will be able to
- CO1 Apply the mathematical/engineering concepts in building drones
- CO2 –Analyze the mathematical relation between force, equilibrium, stability and the movement of drones
 - CO3 Select appropriate sensors and actuators for specific applications
 - CO4 Design gliding drones for real world applications
 - CO5 Appraise the performance of subunits in drones
 - CO6 Design a drone for mission control application.

- 1. Syed Omar Faruk Towaha, "Building Smart Drones with ESP8266 and Arduino: Build exciting drones by leveraging the capabilities of Arduino and ESP8266" Packt Publishing, 2018
- 2. Aaron Asadi, "Drones The Complete Manual. The essential handbook for drone enthusiasts", Imagine Publishing Limited, 2016
- 3. Neeraj Kumar Singh, Porselvan Muthukrishnan, Satyanarayana Sanpini, "Industrial System Engineering for Drones: A Guide with Best Practices for Designing", Apress, 2019
- 4. Felipe Gonzalez Toro, Antonios Tsourdos, "UAV or Drones for Remote Sensing Applications"2018.
- 5. K R Krishna, "Agricultural Drones: A Peaceful Pursuit", Apple Academic Press; CRC Press, 2018

SECA4002	DEEP LEARNING NEURAL N	TWORKS	L	T	P	Credits	Total marks
Due ve avuicite	- Excise arise Mathematica II		3	0	0	3	100
Pre requisite	: Engineering Mathematics II			Req	uisi	te: NIL	
Course Obje							
	present the mathematical, statistical	and computation	al	chall	leng	es of buil	ding neural
	vorks						
	tudy the concepts of deep learning						
	ntroduce dimensionality reduction tech						liantinun
	nable the students to know deep learn		sup	port	rea	I-time app	lications
• I0e	xamine the case studies of deep learn	ing techniques					
UNIT	CON	CONTENTS HOL					HOURS
I	INTRODUCTION TO DEEP LEARNIN Introduction to machine learning- Lin logistic regression)- Intro to Neural Neural Training a network: loss functions, ba descent- Neural networks as universa	near models (SVI ets: What a shallo ck propagation ar	wn nds	etwo toch	ork c	omputes-	9
II	II DEEP NETWORKS History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning				9		
111	DIMENTIONALITY REDUCTION Linear (PCA, LDA) and manifolds, dimensionality reduction in networks - – AlexNet, VGG, Inception, Rest initialization, batch normalization, hype	Introduction to Co Net - Training a	onvr a C	net - Conv	Arcl	nitectures	9

IV	OPTIMIZATION AND GENERALIZATION Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience	9
V	APPLICATIONS OF DEEP LEARNING Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions	9

Course Outcomes

On completion of the course, the student will be able to

- CO1 Select suitable model parameters for different machine learning techniques
- CO2 Evaluate the performance of existing deep learning models for various applications
- CO3 Realign high dimensional data using reduction techniques

 $\rm CO4$ – Analyze the performance of various optimization and generalization techniques in deep learning

- CO5 Modify the existing architectures for domain specific applications
- CO6 Develop a real time application using deep learning neural networks

- 1. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.
- 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.
- 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.
- 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

SECA4005	INDUSTRIAL INTERNET OF T	HINGS	L	Т	Ρ	Credits	Total Marks
			3	0	0	3	100
Pre requisit	e: NIL		Col	Req	uisi	te: NIL	
Course Obje	ectives						
	 To focus on basics of Industrial Intern 	et					
	 To modify the various existing industr 	ial systems					
	 To get an idea about IIoT Architecture 	•					
	 To acquire the knowledge about vario 		000	ls			
.	 To extract the backend Middleware P 						
UNIT	CONTE	NTS					HOURS
I	INTRODUCTION TO INDUSTRIAL INT	ERNET					9
	Innovation and IIoT – Intelligent Devices – Industrial Internet – Health care –						
	Oil and Gas Industry – Smart Office – Logistics – IoT Innovations in Retail.						
	TECHNICAL AND BUSINESS INNOVA	TORS OF INDU	STF	RIAL	INT	ERNET	9
	Miniaturization – Cyber Physical System	ıs – Wireless tecl	hno	loav	– IF	P Mobility	
	- Network Functionality Virtualization						
	Analytics – M2M Learning and Artificial I		Ŭ		0		
		.					0
III		autonia Errar	1	ام	\/:		9
	Industrial Internet Architecture Fram					•	
	Operational Domain, Information Dom	••					
	Domain – Implementation View point –	Architectural 10	pol	ogy	- 1	niee ner	
	Topology – Data Management.						

IV	INDUSTRIAL INTERNET SYSTEMS Introduction-Proximity Network Protocols – WSN Edge Node – Legacy Industrial Protocols –RS232 Serial Communications, 40-20ma Current Loop, Field Bus Technologies – Modern Communication Protocols – Industrial Ethernet – Industrial Gateways.	9
V	MIIDDLEWARE TRANSPORT PROTOCOL TCP/IP, UDP, RTP, CoAP –Middleware Software patterns –Software Design patterns – Application Programming Interface (API) – CAN Protocol-Web Services – Middleware IIoT – Securing the IIoT- Identity Access Management.	9

Course Outcomes

On completion of the course, the student should be able to

- CO1 –Enhance the company's performance using IoT
- CO2 –Demonstrate the different styles of technical and business innovators
- CO3 Examine various IIoT Architectures related to data management system
- CO4 –Organize the design of Industrial Internet Systems
- CO5 –Select various Software design patterns using API
- CO6 Construct a Middleware software system related to proximity edge networks.

Text/Reference Books

- 1. S. Misra, A. Mukherjee, and A. Roy, Introduction to IoT. Cambridge University Press, 2020
- 2. S. Misra, C. Roy, and A. Mukherjee, Introduction to Industrial Internet of Things and Industry 4.0. CRC Press.2020
- Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Development Copyrights ,2014
- 4. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015

SECA4004	eHealth	L	Τ	Ρ	Credits	Total marks	
		3	1	0	3	100	
Pre requisite: NIL Co Requisite: NIL							
Course Ob	ojectives						
•	To introduce the concepts of eHealth						
 To h syste 	ave an in-depth knowledge on medical data ems	a analytics and w	eara	able	devices us	ed in eHealth	
• •	To assess the advantages of eHealth						
	To explore the usage of AI in eHealth						
	To design and develop applications for eHea	alth					
UNIT	CONTENTS				HOURS		
	INTRODUCTION TO eHealth					9	
	Overview and introduction to eHealth	and flow of hea	alth	info	rmation-		
	International regulations in eHealth-Advantages, Challenges and future of						
	eHealth.						
	MEDICAL DATA ANALYTICS AND WEA	RABLE DEVICES	3			9	
	Health care data and Electronic Health	Records (EHR)	eveta	ame.	Medical		
	data bases –Wearable devices-Data c						
	Clinical use of personal health data- Big d						
	DIGITAL HEALTH					9	
	Introduction to health care digital trans	sformation- Digit	al h	ealtl	n: Tools,		
	Strategies of digital health-Technologies	in digital health-l	mple	emer	ntation of		
	Digital health- Advantages and challenges	of Digital health.					
IV	ARTIFICIAL INTELLIGENCE IN eHealth					9	

Course Outcomes

	History of AI in health care-Impacts and Aspects of AI in health care- Current research in AI in eHealth-Regulations and Ethical concerns in using AI in eHealth.	
V	APPLICATION DEVELOPMENT FOR eHEALTH Introduction to Android, Creating Android Activities, Android User interface design, Access Wi-fi and Bluetooth with mobile applications-Web based App for eHealth applications.	9

Maximum Hours: 45

- On Completion Of The Course, Student Should Be Able To
- Co1 Articulate Ehealth And Its Regulations
- Co2 Explore Medical Data Analytics And Records
- Co3 Appraise Digital Transformation In The Field Of Medicine
- Co4 Analyse Ai In Health Care Systems
- Co5 Design System Level Architecture For Health Information Systems
- Co6 Deploy Android Application On Devices

- 1. Shortliffe, Edward H and Cimino James J. Biomedical Informatics, Computer Applications in Health Care and Biomedicine, Springer-Verlag London 2014.
- 2. Lavis, JN (ed). Ontario's Health System: Key Insights for Engaged Citizens, Professionals and Policymakers. 2016.
- 3. Hoyt RE, Yoshihashi A, Bailey N. Health informatics: Practical guide for healthcare and information technology professionals. Lulu Press. 2014 Seventh edition.
- 4. Gaddi A, Capello F, Manca M. eHealth, Care and Quality of Life. 2014 electronic library holding in the Health Science Library