

SCHOOL OF ELECTRICAL AND ELECTRONICS

Minutes of Board of Studies Meeting held on 28thNOVEMBER 2020

(Virtual Meeting conducted on Zoom Platform (Time: 10.30 a.m. to 12 noon)

- Dr.N.M.Nandhitha, Prof. & Dean School of Electrical and Electronics started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting (28.11.2020, 10.00 a.m. to 12.00 noon)
- Dr.T.Ravi, Head, Dept. of Electronics and Communication Engineering informed the board that core competencies are identified from the feedback obtained from the students, faculty, Alumni and employers.
- Dr.P.Kavipriya proposed to remove the following topics in Electronic Circuits I (3rd Semester) course: 'Approximate Model- Analysis of CE, CC and CB amplifiers using Approximate model equivalent circuits to obtain gain, input impedance and output impedance'. Dr.M.D.Selvaraj, Associate Professor, IIITDM accepted the changes and suggested to include Frequency response of the Differential amplifier in unit V instead of power supply and amplifiers.
- Dr.S.Lakshmi suggested to introduce 'Antenna for 5G application and Software Tools for Antenna Design and Analysis' in the course Antenna and Wave Propagation. Dr.N.Sivakumaran, Prof.,NIT, Trichy accepted the inclusion and also suggested to introduce simulation through HFSS in the class.
- Dr.M.Sumathi suggested to include the topics Li-Fi in the course Optical Communications. Dr.N.Shivakumaran accepted and suggested to remove WDM, SONET/SDH, ATM,IP over WDM.
- Dr.Sugadev presented the syllabus revision for 'Embedded Processors'.Board accepted the change and Mr.J.Visweswaran suggested to include System on Chip concept in the syllabus.
- Syllabus revision proposed in 'High Performance Computing' by Dr.Dr.S.Poorna Pushpa Kala was accepted by Dr.M.D.Selvaraj.
- Dr.S.Barani suggested to remove 'Basics of Spark-Programming in Scala'for the course 'Real Time Data Analytics'. Mr.J.Visweswaran accepted the changes and

suggested to include function programming in Scala. Dr.N.Sivakumaran suggested to include Case studies on influx and Grafana.

- Having discussed the revisions in the existing courses, faculty then presented the syllabus for the new courses. Dr.P.Chitra presented the syllabus for Digital Image Processing for Real Time Applications and Deep Learning Neural Networks. Dr.M.D.Selvaraj accepted the syllabus for both the courses.
- Dr.M.Sugadev presented the syllabus for 5G communication. Dr.N.Sivakumaran suggested to include mmWave communication in the syllabus.
- Dr,S.Poornapushpakala presented the syllabus for Machine Learning using Python. Mr.Visweswaran suggested that Least Squares Optimization, Collaborative Filtering and related topics can be included.
- Dr.S.Barani presented the syllabus for IoT for Real time Applications. Dr.N.Sivakumaran accepted the syllabus and he suggested that students can be made to do miniprojects in this course.
- Dr.M.Sugadev presented the syllabus for Drone Electronics. Syllabus was accepted by the board and Dr.M.D.Selvaraj suggested that this course can be offered to all branches of Engineering.
- Dr.P.Kavipriya presented the syllabus for Industrial Internet of Things. Mr.Visweeswaran suggested that Middleware Software protocol can be included.
- Dr.S.lakshmi presented the syllabus for eHealth and Dr.N.Sivakumaran suggested that mobile application development for biomedical applications can be included as part of the syllabus.
- Dr.N.M.Nandhitha informed the Board that part of the syllabus in SEC1320 Embedded Systems will be delivered by the industry expert so as to make the students understand the applications of embedded systems in industries. Mr.J.Visweswaran appreciated the initiative and suggested that at least one course in each semester can be identified for partial delivery of syllabus by expert from industry.

SL	COURSE	COURSE NAME	DELETED TOPICS	ADDED TOPICS
NO	CODE			
1	SECA1307	ELECTRONIC	UNIT 5	UNIT 5
		CIRCUITS I	Linear mode power supply - Rectifiers - Half-Wave Rectifier - Full-Wave Rectifier - Filters-L,C, LC, CLC Filter- Regulators -Zener Diode regulator- Linear series, shunt voltage Regulators - Switched mode power supply (SMPS) – Large Signa Amplifiers - Class A, Class B, Class C, Class D- Distortion	Current sources for biasing – Current steering circuits – Current mirror with improved performance (Cascode mirror, Wilson, Widlar). Large and small signal operation of Differential pair circuit Differential pair with active load

Table 1. Revision Carried out in the courses

			in power amplifiers	
2	SECA1505	ANTENNA AND WAVE PROGRAGATION	UNIT 5 Anechoic Chamber-Radiation Pattern Measurement-Gain measurement-Beamwidth and Directivity Measurement Impedance Measurement - Measurement of radiation efficiency- lonospheric measurements - Vertical incidence measurements of the ionosphere - Relation between oblique and vertical incidence transmission - System Issues – antenna noise.	UNIT 5 Concepts and Benefits of Smart antennas - Fixed weight beamforming- Adaptive beamforming - Design of Planar array antennas for Beamforming applications - Feed techniques for Planar arrays - Role of Smart Antennas in Green Communications and 5G wireless communications - Software Tools for Antenna Design and Applysic
3	SEC1407	OPTICAL COMMUNICATIONS	UNIT 5 Applications- Military	Design and Analysis UNIT 3 Vertical cavity surface emitting laser,Resonant cavity enhancement UNIT 5 Optical OFDM, High-speed Light-Waveguides, Reconfigurable optical add/drop multiplexer, Light- Fidelity (Li-Fi) Technology- Introduction, working principle, Comparison of Li-Fi and Wi-Fi, Li-Fi networks, Applications.Case study: Evaluation of building a Fiber Optic network
4	SECA3019	EMBEDDED PROCESSORS	UNIT 5 Introduction - fixed and floating point -Core architecture of ADSP218X- Arithmetic Logic Unit (ALU) - Multiplier and Accumulator (MAC) Unit- Barrel Shifter- Data Address Generator (DAG)- Program Sequencer- Functional Diagram of TMS320C54XX	UNIT 5 Introduction to ARM CORTEX series, improvement over classical series and advantages for embedded system design. CORTEX A, CORTEX M, CORTEX A, CORTEX M, CORTEX R processors series, versions, features and applications, need of operating system in developing complex applications in embedded system, Firmware development for ARM Cortex, Survey of CORTEX M3 based controllers, its features and comparison
5	SECA7020	HIGH PERFORMANCE COMPUTING	UNIT 4 Intrusion Detection and Prevention, Intrusion Risks, Security Policy, Monitoring and Reporting of Traffics, Traffic Shaping, Investigating and Verifying Detected Intrusions,	UNIT 4 Scheduling Parallel Jobs on Clusters, Parallel Programming Models, Parallel and High Performance programming

				Reporting and Documenting Intrusions. UNIT- 5 Define the Types of Intrusion Prevention Systems, Intrusion Prevention System Basics, and Limitations of Intrusion Prevention System, Spoof Prevention, Denial of Service (DoS), and Quality of Service (QoS) Policy, Web Application Firewall, Packet Signature and Analysis.	languages, Dependence Analysis of Data arrays UNIT- 5 Quantum computing and its issues
6	SECA7023	REAL TIME ANALYTICS	DATA	UNIT 1 Basics of Spark-Programming in Scala	UNIT 1 Expressions-Functions – Classes- File I/O – Exceptions – Combining UNIT-2 Distributed Storage- Parallelism, Regression. Classification and Clustering with Spark UNIT-4 Kafka Architecture and Components, Kafka Cluster, Kafka Producer, Kafka Consumer

- Dr.Lalithakumari.S, suggested few modifications in the course 'Industrial Unit Operations'. She proposed the inclusion of topics leaching and extraction. It has been accepted by Dr.Sivakumaran, and he suggested to include the same along with mixing and separation unit operations. Dr. D.Marshiana suggested that 'Humidification, de-humidification' can be added. Dr. Sivakumaran agreed for the inclusion.
- Dr.Lalithakumari presented the syllabus for an elective course 'Optimal Control Systems'. Dr.Sivakumaran accepted the syllabus change suggested that students may be asked to do mini projects in this course.

COURSE	COURSE NAME	DELETED	INCLUDED
CODE		TOPICS	TOPICS
SEIA1402	Industrial Unit Operations		Unit-4 Humidification, De-humidification Unit-2 Leaching and extraction

- Dr.V.Sivachidambaranathan, Prof.&Head, Dept.ofElectricalandElectronicsEngineerin grequested the board to shift the course "Applied Thermodynamics" to elective. Dr.M.D.Selvaraj accepted the suggestions.
- · Dr.A.Ramesh babu and Dr.S.D.Sundar Singh Jebaseelanputforth the syllabus of the new courses, 'Modern Power Converters' and Distributed Generation and Microgridss' for the approval of the board. Dr N Sivakumaran approved the Syllabus for these new courses.
- BoS members are happy that the new and the revised courses enhance employability/ Entrepreneurship/Skills of the students.

EXTERNAL MEMBERS:

- 1. Dr.N.Sivakumaran
- 2. Dr.M.D.Selvaraj
- 3. Mr.J.Visweswaran

INTERNAL MEMBERS:

- 1. Dr.N.M.Nandhitha
- 2. Dr.T.Ravi
- 3. Dr.P.Chitra
- 4. Dr.S.Barani
- 5. Dr.S.Poornapushpakala.
- 6. Dr.M.Sumathi
- 7. Dr.S.Lakshmi
- 8. Dr.P.Kavipriya
- 9. Dr M Sugadev 🔨
- 10. Dr .E.Anna Devi
- 11. Ms.S.Yogalakshmi 🔱
- 12. Dr.LalithaKumari.S
- 13. Dr.Pandian.R
- 14. Dr.Marshiana.D
- 15. Dr.V.Sivachidambaranathan 🖇
- 16. Dr.D. Susitra Sent
- 17. Dr.R. Vanitha

- 18. Mrs.D.Ramya D. Ramyo 19. Mrs.P.Sivagami D. Suragami

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SYLLABUS REVISION

SL.NO	COURSE CODE	COURSENAME
1	SECA1307	ELECTRONIC CIRCUITS I
2	SECA1505	ANTENNA AND WAVEPROGRAGATION
3	SEC1407	OPTICALCOMMUNICATIONS
4	SECA3019	EMBEDDEDPROCESSORS

	SEC 44202		L	Т	Ρ	Credits	TotaMarks
	SECATSUZ	ECA1302 ELECTRONIC CIRCUITS - I	3	*	0	3	1
PA	PER PATTERN						

UNIT 5 POWER SUPPLIES AND POWER AMPLIFIERS 9 Hrs.

Linear mode power supply - Rectifiers - Half-Wave Rectifier - Full-Wave Rectifier - Filters-L,C, LC, CLC Filter- Regulators -Zener Diode regulator- Linear series, shunt voltage Regulators - Switched mode power supply (SMPS) – Large Signa Amplifiers – Class A, Class B, Class C, Class D- Distortion in power amplifiers.

Max. 45 Hrs.

1

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 - Acquire knowledge of simple BJT circuits design and implement circuits with transistor biasing design.

CO2 - Draw the equivalent circuits of BJT and FET.

CO3 - Understand the working principles, Frequency response characteristics of BJT and FET.

CO4 - Compare the frequency response characteristics of BJT and FET amplifiers.

Т

CO5 - Design and troubleshoot simple power supplies and Analyse the performance parameters of power supplies.

CO6 - Understand and identify the performance level in power amplifiers and checking its distortion levels.

Max. Marks:

20 Marks 80 Marks

PART A: 10 Questions of 2marks each-No choice TION PART B: 2 Questions from each unit of internal choice; each carrying 16 marks Color red indicates the deleted portion. Color yellow indicates the added portion

Denartment of Flectronics and Communication Engi

SECA1307	, ELECTRONICCIRCUIT	S-I	L	Т	Ρ	Credit s	Totalmark s
(Revised 3 (3	100
Prerequis	site:ElectronDevices	Co La		equ	isit	e:Electro	onicCircuitsI
CourseO	bjectives						
	 Tounderstandthemethodofbiasingtr Toacquiretheknowledgeofequivaler Tounderstandthefrequencyrespons Toprovidefoundationandconfidence nalysisofpowersuppliesandpowerar 	ntcircuits. eofamplifie etothestuder mplifiers.	nts		oub	leshoota	ndfaulta
	Todevelopcurrentmirrorsanddiffere	ntialoperatio	ons	5.			
UNI T	CONTEI S	NT					HOUR S
	BiasingofBJTandFET BJT- Need for biasing – Various biasing methods of BJT- Bias Circuit Design- DCLoad Line – DC analysis of Transistor circuits- AC Load Line- AC analysis of Transistor Circuits- Quiescent Point – Thermal stability - Stability factors - Biasing of JFET- Various biasing methods of JFET-JFETBias Circuit Design-MOSFET Biasing-Twoport network.						
11	EQUIVALENTMODELSOFBJTANDFETAMPLIFIERS Hybrid model- Analysis of CE, CC and CB amplifiers using Hybrid equivalent circuitsto obtain gain, input impedance and output impedanceSmall Signal Amplifiers –Analysis of CE, CC and CB amplifiers using small signal equivalent circuits to obtaingain, input impedance and output impedance. Small Signal equivalent circuit of FETand MOSFET - Analysis of CS, CD and CG JFET amplifiers using small signalequivalentcircuits- AnalysisofCS,CDandCGMOSFETamplifiersusingsmall signalequivalentcircuits				ut B ut of s		
III	MULTISTAGE AMPLIFIERS AND F BJT AND FETAMPLIFIERS Multistage Amplifiers- Methods Transformer Coupled –Direct Co frequency response – Miller effect- Fr amplifiers with circuit capacitors – LowandHighfrequencyanalysisofCE,	of Couplin oupled An requencyres BJT frequ	ig- npli spc	R ifier	C ˈs- ə of	Coupleo Amplifie transisto	l- er or

Color red indicates the deleted portion. Color yellow indicates the added portion

	FrequencyresponseofFET -Low	
	andHigh frequencyanalysisofCS,CG,CDJFET&MOSFET.	
IV	POWERSUPPLIESANDPOWERAMPLIFIERS Linear mode power supply - Rectifiers - Half-Wave Rectifier - Full- Wave Rectifier -Filters-L, C, LC, CLC Filter- Regulators - Zener Diode regulator- Linear series, shuntvoltageRegulators-Switched modepowersupply(SMPS) –Large SignalAmplifiers –ClassA,ClassB,ClassC,ClassD-Distortioninpoweramplifiers.	9

<u>DenartmentofFlectronicsandCommunicationEngi</u>

Denartment of Flectronics and Communication Engi

V	CURRENTMIRRORSANDDIFFERENTIALAMPLIFIERS	
	Current sources for biasing - Current steering circuits - Current	
	mirror with improvedperformance (Cascode mirror, Wilson, Widlar).	
	Large and small signal operation of Differential pair circuit Differential	
	pair with active load - Frequency response of theDifferentialamplifier	

MaximumHours:45

CourseOutcomes

Oncompletionofthecourse, the student should be ablet

oCO1-DesignbiasingcircuitsforBJTandFET.

CO2–AnalyzeBJTandFETamplifiersusingequivalentcircuitmodels.

CO3-

 $\label{eq:constraint} Evaluate frequency response of BJT and FET amplifiers in different configurations.$

CO4–DesignmultistageamplifiersusingBJT

CO5-

Analyzetheperformanceofpowersuppliesandpoweramplifiers.C

O6–Designcurrentmirrorsanddifferentialamplifiers

TEXT/REFERENCEBOOKS

- 1. MillmanJandHalkiasC., "IntegratedElectronics", TMH, 2ndEdition, 2017.
- S.Salivahanan,N.SureshKumar andA.Vallavaraj,"ElectronicDevicesandCircuits",TMH,2nd Edition,2017.
- 3. AdelS.SedraandKennethC.Smith, "MicroelectronicCircuits", OxfordUniversityPress ,SixthEdition, 2009.
- 4. BehzadRazavi, "FundamentalsofMicroelectronics", 1stedition, wileypublication, 2008.
- 5. Donald.A.Neamen, "ElectronicCircuitsAnalysisandDesign", McGrawHillEducation (I ndia) PrivateLtd., 3rdEdition, 2010.
- 6. RobertL.BoylestadandLouisNasheresky,"ElectronicDevicesandCircuitTheory",Pe arsonEducation,11thEdition,2013.
- 7. Floyd, "ElectronicDevices", PearsonEducation, 9thEdition, 2012.

Denartment of Flectronics and Communication Engi

0004504	ANTENNAS AND WAVE PROPAGATION	L	т	Ρ	Credits	TotaMarks
SECA1504		3	*	0	3	1

COURSE OBJECTIVES

- > To learn the basic antenna parameters.
- > To understand the radiation mechanism from the dipole antennas.
- > To explore the various antenna arrays and calculate the maxima, minima and half power directions.
- > To discuss the characteristics of travelling wave radiators and high frequency antennas.
- > To study antenna measurements techniques.

UNIT 1 ANTENNA FUNDAMENTALS AND WIRE ANTENNAS 9 Hrs.

Basic Antenna elements-properties of antenna-Isotropic radiator- Antenna parameters(definition only): Radiation Intensity, Radiation pattern, Gain and Directivity, FBR, Effective Length, Effective Aperture, Radiation Resistance, Antenna Terminal(self and mutual) Impedance, Polarization, Beam width, Bandwidth, Antenna temperature, Friis transmission formula. WireAntennas: Retarded Potentials, Short Electric Dipole, Radiation from an alternating current element, Half wave Dipole, quarter wave monopole - Fields, Power radiated and Radiation Resistance.

UNIT 2 ANTENNA ARRAYS 9 Hrs.

Types of arrays - Broad side, End fire, Collinear, Parasitic arrays.-Arrays of two point sources. N element of uniform lineararrays –Array of N elements with equal spacing and currents equal in magnitude and spacing (broad side array)- Array of Nelements with equal spacing and currents equal in magnitude but with progressive phase shift(end fire array)-Hansenwoodyard array -Pattern Multiplication - Binomial arrays.

UNIT 3 TRAVELLING WAVE AND BROADBAND ANTENNAS 9 Hrs.

Effect of ground on ungrounded antenna-Methods of excitation-Travelling wave radiators: basic concepts, Long wireantennas-field strength calculations and patterns- V-antennas, Rhombic Antennas, Small Loop antennas- Concept of shortmagnetic dipole, Helical Antennas, Folded Dipole Yagi-Uda Arrays, Log periodic antennas. Reflector Antennas: Huygens'principle-Flat Sheet and Corner Reflectors, Paraboloidal Reflectors, Cassegrain Feeds. Slot antennas-Babinets principle,Horn antennas, Lens antennas, Microstrip antennas.

UNIT 4 PROPOGATION 9 Hrs.

Factors involved in the propagation of Radio Waves- Ground wave propogation, Structure of lonosphere and its effects onradio waves- Refraction and Reflection of sky wave by the ionosphere, Ray paths-Measures of lonosphere propagation:critical frequency, skip distance, virtual height, Maximum usable frequency, Fading of signals: Selective fading – Diversityreception, Space wave propagation-Considerations in space wave propagation, Atmospheric effects in space wavepropagation, Super Refraction - Duct Wave Propagation.

UNIT 5 ANTENNA MEASUREMENT 9 Hrs.

Anechoic Chamber-Radiation Pattern Measurement-Gain measurement-Beamwidth and Directivity Measurement-Impedance Measurement - Measurement of radiation efficiency- Ionospheric measurements - Vertical incidence measurements of the ionosphere - Relation between oblique and

<u>DepartmentofFlectronicsandCommunicationFngi</u>

vertical incidence transmission - System Issues – antennanoise.

Max. 45 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 - Define the antenna basic parameters.

- CO2 Explain the radiation mechanism from the dipole elements.
- CO3 Classify antenna arrays and infer their significance.
- CO4 Analyze the characteristics of low and high frequency antennas.

CO5 - Compare the properties and measures of various radio wave propagation.

CO6 - Perform antenna measurements and analyze the parameters and develop the basic skills for designing practicalantennas.

TEXT / REFERENCE BOOK

- 1. K.D.Prasad, "Antennas and Wave Propagation", 3rd Edition, Satya Prakasan, New Delhi,2003.
- 2. R.L. Yadava, "Antennas and Wave Propagation", 2nd Edition, PHI Learning Private Limited, New Delhi,2011.
- 3. Balanis, C.A., "Antenna Theory and Design", 4th Edition, John Wiley and Sons, 2016.
- 4. Jordan, E.C. and Balmain, K.G., "Electromagnetic Waves and Radiating Systems", 2nd Edition, Prentice Hall of India,2006.
- 5. Collin, R.E., "Antennas and Radio Wave Propagation", McGraw Hill, 1985.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100 Exam Duration: 3 Hrs.

PART A: 10 Questions of 2 marks each - No choice 20 Marks

PART B: 2 Questions from each unit of internal choice; each carrying 16 marks 80 Marks

Denartment of Flectronics and Communication Engi

Denartment of Flectronics and Communication Engin

13

SECA15 (revised					Credits	marks
Drorogen	isita ElectromognoticTheory	Doguiaita	2 0	2	3	100
•		Requisite				
Course	Objectives					
	Tounderstandtheradiationmechanismofo aspects.			their	paramete	rsanddesigr
	Tolearnaboutantennaarraysandtheirradi	•				
	Tolearnabouttravellingwaveandbroadba					
	Tounderstandelectromagneticwaveproparsofatmosphere.	agationovero	groun	dano	dthroughd	ifferentlaye
	I TolearnaboutSmartAntennas					
UNIT	CONTENTS					HOURS
I	ANTENNA FUNDAMENTALSAND WIR	EANTENN	AS			9
	Antenna Radiation Mechanism - I	sotropic r	adiat	or-	Antenna	a
	parameters : RadiationIntensity, Radiation	ו pattern, G	ain a	nd [Directivity	,
	FBR, Effective Length, RadiationResis	tance, Ant	enna	Im	pedance	,
	Polarization, Beam width, Bandwidth,		•			
	transmission formula. Retarded Poten	ial - Wire	Ant	enn	as: Shor	t
	ElectricDipole,Radiationfromanalternating	gcurrentele	ment	,Hal	f-	
	waveDipole,					
	quarterwavemonopole-Fields,Powerradia	itedandRac	liatio	nRe	sistance.	
II	ANTENNAARRAYS					9
	Types of arrays - Broad side, End fire,	Collinear,	Para	sitic	arrays.	-
	Arrays of two pointsources - N-element o	f uniform lir	near a	array	/s – Arrag	y
	of N elements with equal spacingand cur	rents equal	l in m	agn	itude and	t l
	spacing (broad side arra	y)- Arı	ray		of N	1
	elementswithequalspacingandcurrentsec	ual	in	mag	Initudebu	t
	withprogressivephaseshift					
	(endfirearray)-Hansen-Woodyardarray-P	attern		Mu	Itiplicatio	n-
	Binomialarrays.					
III	TRAVELLINGWAVEANDBROADBAND	ANTENNA	S			9
	Travelling wave radiators: basic concept	s, Long wir	re an	tenr	nas - fielo	b
	strengthcalculations and patterns - V-a					
	Small Loop antennas-Concept of sho	ort magnet	ic di	pole	e, Helica	d
	Antennas, Folded Dipole Yagi-Uda Ar	rays,Log p	eriod	lic a	antennas	5.
	Reflector Antennas: Huygens' prin	ciple - I	-lat	Sh	eet and	k k
	CornerReflectors,ParaboloidReflectors,C	assegrainF	eeds	.Slc	otantenna	l
	s-Babinet's					

Color red indicates the deleted portion. Color yellow indicates the added portion

	Department of Flectronics and Communication Engin principle, Hornantennas, Lensantennas, Microstripantennas.	
IV	WAVEPROPOGATION Factors involved in the propagation of Radio Waves - Ground wave propagation,Structureoflonosphereanditseffectsonradiowaves- RefractionandReflectionofskywave by the ionosphere, Ray paths- Measures of Ionosphere propagation: criticalfrequency, skip distance, virtual height, Maximum usable frequency, Fading of signals:Selectivefading-Diversityreception,Spacewavepropagation- Considerationsin	9

artmontofElactronicsandCommunicationEngi р.

Denartment of Flectronics and Communication Engin

	spacewavepropagation,Atmosphericeffectsinspacewavepropagation,S							
	uper							
	Refraction-DuctWavePropagation.							
V	SMARTANTENNAS	9						
	Concepts and Benefits of Smart antennas - Fixed weight beamforming-							
	Adaptivebeamforming – Design of Planar array antennas for							
	Beamforming applications – FeedtechniquesforPlanararrays-							
	RoleofSmartAntennasinGreenCommunicationsand							
	5Gwirelesscommunications-							
	SoftwareToolsforAntennaDesignandAnalysis							

MaximumHours:45

CourseOutcomes

Oncompletionofthecourse, studentshould be able to

CO1-

Designlinearwireantennasforgivenspecifications.

CO2-Designlinearandnon-

linearantennaarraysforgivenbeamwidthandgain.CO3-

Analyzetheperformanceof ApertureandReflectorAntennas

CO4-Designmicrostripantennasforgivenspecifications.

CO5-

 $\label{eq:constraint} Analyse the problems associated with radio wave propagation in the atmosphere C$

O6-Designplanarantennaarraysforbeamformingapplications.

TEXT/REFERENCEBOOKS

1. JohnD.Kraus,RonaldJMarhefkaandAhmadS.Khan,"AntennasandWavePropagatio n",5th

Edition,McGrawHill,2017.

- 2. Balanis, C.A., "AntennaTheoryandDesign", 4thEdition, JohnWileyandSons, 2016.
- 3. MohammadAbdulMatin, "Wideband, MultibandandSmartAntennaSystems, 1stEdition, Springer, 2021.
- 4. R.L. Yadava, "Antennas and Wave Propagation", 2ndEdition, PHI Learning Private Limited, NewDelhi,2011.
- 5. Jordan, E. CandBalmain K. G, "Electromagnetic Waves and Radiating Systems", 2nd Edition, Prentice HallofIndia, 2006.
- 6. K.D.PrasadandSatyaPrakasan, "AntennasandWavePropagation", 3rdEdition, Techl ndia, NewDelhi, 2003.

Color red indicates the deleted portion. Color yellow indicates the added portion

SEC1403	OPTICALCOMMUNICATIONS	L	Т	Ρ	Credits	TotalMarks
	(ForECEandETCE)	3	0	0	3	100

COURSEOBJECTIVES

То

introduce the principle of light propagation through optical fibers. To understand signal distortion mechanisms in the fiber.

Tointroduceopticaltransmittersandreceiversforfiber/freespacelinksandthefiberopticcouplers,connectorsinvolved. TointroduceopticalnetworkconceptsandcomponentsinvolvedanditsApplications.

UNIT1 INTRODUCTIONTOOPTICALFIBERS

Basicsofopticalcommunicationsystem, lightpropagation in optical fibers, Optical spectral bands, Advantagesofoptical fiber communication over other communication systems, Ray theory and mode theory. Total internal reflection, Acceptance angle, Numerical aperture, phase and group velocity, cutoff wavelength & group delay. Different typesofop tical fibers, refractive index profiles & mode transmission.

UNIT2 TRANSMISSIONCHARACTERISTICSANDOPTICALAMPLIFIERS

Characteristicsofopticalfibers:Attenuationduetoabsorption,scattering&bending,coreandcladdingloses,SignalDistortion in optical fibers: Intra modal Dispersion: Material & Waveguide dispersion; Intermodal dispersion: MMSI,MMGI &modalnoise.

Optical Amplifiers: Basic concepts, Erbium-Doped Fiber Amplifier, Raman amplifier -principles of operation, amplifiernoise, signal tonoiseratio, gain, gain bandwidth, intermodulation effects and wavelength range of operation.

UNIT3 OPTICALTRANSMITTERSANDRECEIVERS

FiberopticTransmittermodule.Opticalsources-LEDs,LASERdiodes-Principlesofoperation:conceptsoflinewidth, phase noise, Optical detectors- P-I-N, Avalanche photodiodes : Principles of operation: concepts of responsivity,sensitivityandquantumefficiency,noiseindetection.FiberopticReceiver module.

UNIT4 COUPLERS,CONNECTORSANDOPTICALLINK

Couplers: 2x2 coupler, Tap coupler, star coupler, Connectors: Cylindrical ferrule, Biconical Ferrule, Doubleeccentric, Splices: Fusion splices, Mechanical splices, Multiple splices. Design considerations in optical links, Point topoint Links: Link Power budget, Rise Time budget, Analog Links: CNR, Multichannel transmissiontechniques-MultichannelFrequencyModulation,Subcarriermultiplexing.

UNIT5 OPTICALNETWORKINGPRINCIPLESANDAPPLICATIONS.

FDDI,WDM,SONET/SDH,ATM,IPoverWDM,OpticalLANStandards-IEEE802.3,Applications-Military

TEXT/REFERENCEBOOKS

- 1. GerdKaiser, "OpticalFiberCommunications", 4thedition, Sixthreprint, TataMcGrawHill, NewDelhi, 2009.
- 2. John M.Senior,"OpticalFiberCommunications-PrinciplesAndPractice", ThirdEdition, PearsonEducation, 2010.
- **3.** GerdKeiser, "OpticalcommunicationsEssentials", SpecialIndianEdition, TataMcGrawHill, NewDelhi, 2008.
- 4. GovindP.Agrawal, "Fiber-OpticCommunicationSystems", ThirdEdition, JohnWiley&Sons, 2004.
- 5. RajivRamasamy&KumarN.Sivarajan, "OpticalNetworks-APracticalPerspective", 2Ed, MorganKauffman2002.

ENDSEMESTEREXAM QUESTIONPAPERPATTERN

Max.Marks:100

PARTA:10Questionsof2markseach-Nochoice PARTB:2Questionsfromeachunitofinternalchoice,eachcarrying16marks

B.E./B.TechREGULAR	
2015	

61

REGULATIONS

20Marks

80Marks

ExamDuration:3Hrs.

9Hrs.

9Hrs.

Max.45Hours

9Hrs.

9Hrs.

9Hrs.

SEC1407 (Revised	OPTICAL COMMUNICATIONS		L	Т	Ρ	Credit s	Total marks	
) Dra raguia	ián NII	3	0	0	<u>3</u>	100		
Pre requis		U U	0 K	equ	ISILE	e: NIL		
Course Ob	-							
	introduce the principles of light propagatio		ers.					
	understand signal distortion mechanisms introduce optical transmitters and receivers		e lin	ks a	nd tl	ne fiber or	tic couplers	
	nnectors involved.							
• To	introduce optical network concepts and co	omponents involved a	and	its a	appli	cations.		
UNIT	CONT	ENTS					HOURS	
		_						
I	INTRODUCTION TO OPTICAL FIBERS			ممالة		Ontion	9	
	Basics of optical communication system,		•			•		
	spectral bands, Advantages of opti							
	communication systems, Ray theory and mode theory. Total internal reflection, Acceptance angle, Numerical aperture, phase and group velocity, cutoff							
	wavelength & group delay. Different types of optical fibers, refractive index profiles							
	& mode transmission.							
	TRANSMISSION CHARACTERISTICS AND OPTICAL AMPLIFIERS							
	Characteristics of optical fibers: Attenu				-	tterina &	9	
	bending, core and cladding loses, Signal Distortion in optical fibers: Intra modal							
	Dispersion: Material & Waveguide dispers	sion; Intermodal disp	ersi	on:	MMS	SI, MMGI		
	& modal noise. Optical Amplifiers: Basic	concepts, Erbium-D	ope	d Fi	ber /	Amplifier,		
	Raman amplifier -principles of operation, amplifier noise, signal to noise ratio, gain,							
	gain bandwidth, intermodulation effects and wavelength range of operation.							
	OPTICAL TRANSMITTERS AND RECE	IVERS					9	
	Fiber optic Transmitter module. Optical s	ources- LEDs, LASE	ER d	liode	es- F	Principles		
	of operation: concepts of line width, pha	•				Ŭ		
	laser. Optical detectors-P-I-N, Avala	•						
	enhancement ,Photodetector : Principles	•	•					
N /	sensitivity and quantum efficiency, noise	•	otic F	Kece	eivei	module.		
IV	COUPLERS, CONNECTORS AND OPT				ما بيا م	. formula	9	
	Couplers: 2x2 coupler, Tap coupler, star	• •				•		
	Biconical Ferrule, Double eccentric, Spli	•				•		
	Multiple splices. Design considerations in optical links, Point to point Links: Link Power budget, Rise Time budget, Analog Links: CNR, Multichannel transmission							
	techniques-Multichannel Frequency Modulation, Subcarrier multiplexing.							
V	OPTICAL NETWORKS, COMPONENTS			-	y.		9	
•	Optical LAN Standards-IEEE802.3,				peed	Light-	Ĵ	
	Waveguides, Reconfigurable optical ad			· ·		U		

Technology-Introduction, working principle, Comparison of Li-Fi and Wi-Fi, Li-Fi networks, Applications.Case study: Evaluation of building a Fiber Optic network

Maximum Hours: 45

Course Outcomes

On completion of the course, the student should be able to

CO1-Apply the mathematical concepts to compare different types of optical fibers, modes and configuration

- CO2-Analyze the transmission characteristics of optical fibers
- CO3-Examine the optical sources and detectors for use in optical communication system

CO4-Construct launching and coupling of optical fibers

- CO5-Design high speed optical communication networks
- CO6-Design wireless communication system using Li-Fi

TEXT / REFERENCE BOOKS

- 1. Gerd Kaiser, "Optical Fiber Communications", 4th edition, Sixth reprint, Tata Mc Graw Hill, New Delhi,2009.
- 2. John M. Senior, "Optical Fiber Communications- Principles And Practice", Third Edition, Pearson Education, 2010.
- 3. Govind P. Agrawal, "Fiber-Optic Communication Systems", Third Edition, John Wiley & Sons, 2004.
- 4. Rajiv Ramasamy & Kumar N. Sivarajan, "Optical Networks A Practical Perspective", 2 Ed, Morgan Kauffman 2002.
- 5. Svilen Dimitrov & Harald Haas, " Principles of LED Light Communications: Towards Networked Li-Fi, Cambridge University Press, 2015

SEC 1 2002	EMBEDDEDPROCESSORS	L	Т	Ρ	Credits	TotalMarks	
SECASUUS	EMBEDDEDFROCESSORS	3	0	0	3	100	ĺ

COURSEOBJECTIVES

- > TounderstandthearchitectureofPIC,ARMandDSPprocessor.
- TofamiliarisethestudentsinwritingassemblyprogrammingandinterfacingwithPeripheralsusingPICMicroc ontroller.
- > TounderstandthedifferencebetweenMicrocontrollerandDSPprocessor.

INTRODUCTIONTOPICMICROCONTROLLERS UNIT1

Introduction to PIC - CompareVon Neumann architecture and Harvard architecture, RISC Vs CISC --ArchitectureofPIC16F8XX-PinConfiguration-Addressingmodes-Instructionset-Features PIC of SimplePrograms.

UNIT2 PICONCHIPPERIPHERALS

Memory-CoreSFR-Interrupts-I/OPorts-Timers-CCPmodules-CaptureMode-CompareMode-PWMMode-Serialcommunicationmodule-USART-SPlinterface-I2CinterfaceAnalogComparator,ADC.

UNIT3 APPLICATIONSUSINGPIC

ProgrammingLanguages-Compilers-Assemblers-Directives-MPLABIDE-Interfacing-Switches&Pushbuttons-LEDs -sevensegmentdisplays-LCD-KeypadInterfacing,Timerapplications-

CasestudyTemperaturemonitoringSystem-CasestudyDigitalClock.

UNIT4 ARMPROCESSOR

ArchitectureofARMController-Registers, Pipelineorganization3stage&5stage, Thumbmodeofoperation-D/AandA/D converter, sensors, actuators and their interfacing - Case study- Temperature sensing, Light sensing, Introduction toInternetofThings,smarthomeconcepts.

UNIT5 DSPPROCESSORS

Introduction - fixed and floating point -Core architecture of ADSP218X- Arithmetic Logic Unit (ALU) -Multiplier and Accumulator (MAC) Unit- Barrel Shifter-Data Address Generator (DAG)- Program Sequencer- Functional Diagram of TMS320C54XX.

COURSEOUTCOME

Oncompletionofthecourse, studentwillbeableto

CO1-UnderstandingarchitectureandfunctionofPICmicrocontrollers.

CO2-ExplainthediscussionofonchipperipheralsofPICmicrocontrollers.

CO3-DoassemblyandCprogramexercisewithvariousI/Omodules.

CO4-UnderstandthearchitectureofARM.

CO5-

UnderstandtheneedofDSPprocessorforsignalprocessingapplicationsanditsarchitecture.CO 6-Designreal-timeapplicationusingPICMicrocontroller.

TEXT/REFERENCEBOOKS

- 1. DannyCausey,RolinMcKinlay,MuhammadAliMazidi,"PICMicrocontrollerandEmbeddedSystems:Usingassembl yandCforPIC18",1stEdition,MicroDigitalEdition;2ndEdition,2016.
- 2. AndrewSloss, DominicSymes, ChrisWright, "ARMSystemDeveloper'sGuide: Designing and OptimizingSystemSof tware", Elsevier, 1stEdition, 2004.
- 3. F.VahidandT.Givargis, "EmbeddedSystemDesign:AUnifiedHardware/SoftwareIntroduction", WileyIndiaPvt.Ltd., 2002.
- 4. BVenkataramaniMBhaskar, "DigitalSignalprocessorsArchitecture, ProgrammingandApplications", TataMcGraw Hill,2ndEdition,2002.

Color red indicates the deleted portion. Color yellow indicates the added portion

9Hrs.

9Hrs.

9Hrs.

9Hrs.

9Hrs.

Max:45Hrs.

SCHOOLOFELECTRICALANDELECTRONICS

USEFULLINKS

- 1. https://www.mikroe.com/ebooks/pic-microcontrollers-programming-in-c
- 2. www.analog.com.
- 3. www.ti.com.
- 4. www.dspguide.com.
- 5. https://swayam.gov.in/courses/5424-jan-2019-embedded-system-design-with-arm

ENDSEMESTEREXAMINATIONQUESTIONPAPERPATTERN

Sathyabama Institute of Science and Technology

Department of Electronics and Communication Engineering

SECA30)19	EMBEDDED PROCESSORS		L	T	P	Credits	Total marks	
				3	0	0	3	100	
	Pre requisite: Nil Co Requisite: Nil								
Course O	-								
•		analyze the features of various embedd	ed processors						
•		analyze the On-chip peripherals							
•	To develop ARM processor-based applications								
•	To design innovative applications by interfacing the processors with real world								
•		analyze various ARM cortex processors							
•		e develop firmware for ARM cortex proces	SSORS						
UNIT		CONTE	NTS					HOUF	
Ι	Intro Harv Arch Proc SOC	vard architecture, RISC Vs CISC – Systematic architecture, An approach for SOC Design cessor Selection for SOC, Basic concept cexternal memory, Internal Memory, nory System, Models of Simple Process	ors- Compare Von Neumann architecture and C - System on Chip (SoC)-Introduction to SoC Design, System Architecture and Complexity. concepts in Processor Architecture, Overview of mory, Scratchpads and Cache memory, SOC Processor – memory interaction, SOC Standard					C y. of C	
II	Men CCF mod	P modules - Capture Mode - Compare M						on	
III	Arch Thu inter	I PROCESSOR nitecture of ARM Controller – Registers, mb mode of operation - D/A and A/D facing – Case study- Digital clock, oduction to Internet of Things, smart hom	converter, sen Temperature	sor	s, a	ctua	tors and the	eir	
IV	Inter inter	AL WORLD INTERFACING USING ARM facing the peripherals to LPC2148: GSM rrupt (VIC), EEPROM using I2C, SD ca eform generation.	and GPS using				•	•	
V	Intro adva proc deve	A CORTEX PROCESSORS oduction to ARM CORTEX series, in antages for embedded system design, cessors series, versions, features and a eloping complex applications in embedde tex, Survey of CORTEX M3 based contro	CORTEX A, C pplications, nee d system, Firmw	COF ed o vare	(TE) of op dev	K M erat elop	, CORTEX ing system ment for AR	<mark>R</mark> in	

Department of Electronics and Communication Engineering

Course Outcomes

- On completion of the course, the student will be able to
- CO1-Analyze the architectures of different Embedded Processors
- CO2-Identify an appropriate on chip peripherals for serial and parallel communication
- CO3-Examine the functions of ARM processors
- CO4-Develop real time applications using ARM processors
- CO5-Develop a firmware for embedded applications
- CO6-Develop innovative products using Embedded processors

TEXT / REFERENCE BOOKS

- 1. F. Vahid and T. Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", Wiley India Pvt. Ltd., 2002.
- 2. Michael J. Flynn and Wayne Luk, "Computer System Design System-on-Chip", Wiley India Pvt. Ltd.
- 3. Steve Furber, "ARM System on Chip Architecture ", 2nd Edition, 2000, Addison Wesley Professional.
- 4. S. Pascricha and N. Dutt, Morgan Kaufmann, On-Chip Communication Architectures, System on Chip Interconnect, -Elsevier Publishers 2008
- 5. Mark Fisher, "ARM Cortex M4 Cookbook", Packt Publishing, 2016.
- Lyla B. Das, "Architecture, Programming and Interfacing of Low-power Processors ARM 7, Cortex-M", Cengage, 1st Edition, 2017.
- 7. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", Newness, 2nd Edition, 2009