

(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

Department of Electrical and Electronics

Number of programmes where syllabus revision was carried out

SL. NO.	COURSE CODE	COURSE OFFERED
1		PRINCIPLES OF EMBEDDED SYSTEM DESIGN
2	: SECA2703	EMBEDDED AND DSP LAB

SECA1706	PRINCIPLES OF EMBEDDED SYSTEM DESIGN	L	T	Р	Credits	Total Marks
		3	0	0	3	100

COURSE OBJECTIVES:

▶8 bit RISC microcontroller.

≻ARDUINO

➤ ARM Processor

➤ Real time operating system.

UNIT 1 RISC EMBEDDED CONTROLLER

9 Hrs.

Comparison of CISC and RISC controllers - PIC 16F877 architecture - Memory organization - Addressing modes - Assembly language instructions.

UNIT 2 ARDUINO 9 Hrs.

Introduction to ARDUINO, Architecture, overview of its I/O Ports, Serial Ports, PWM, ADC, Interfacing with different type of Sensors and Communication modules, Hardware timers, watchdogs and interrupt handling in Arduino. Controlling embedded system based devices using Arduino.

UNIT 3 ARM PROCESSOR BASED SoC and SoM

9 Hrs.

Overview of ARM 7 Architecture- Overview of Intel ARM based hard processor System on Chip (SoC) with an on chip FPGA - Overview of System on Module (SoM) using ARM based SoC.

UNIT 4 EMBEDDED NETWORKING

9

Hrs.

Embedded networking -RS 232 - RS485 - Inter-Integrated Circuit (I2C) - Serial Peripheral Interface (SPI) - Universal Serial Bus (USB) - Controller Area Network (CAN)- Ethernet- Distributed Embedded system

UNIT 5 EMBEDDED SOFTWARE DEVELOPMENT TOOLS and REAL TIME OPERATING SYSTEM

9Hrs.

Introduction to assembler - Compiler -Cross compilers -Linker/ Locators - Simulators - RToS - Desktop OS versus RTOs - Software architectures - Round Robin, Round-Robin with Interrupts, Function Queue Scheduling architecture - ISRs and Scheduling -Task management - Task scheduling - Race conditions - Priority Inversion — Inter task Communication.

Max. 45 Hrs.

COURSE OUTCOMES:

On completion of the course, student will be able to

- CO1 Analyze the architecture, functionalities of PIC 16F877A Microcontroller and apply for addressing the Engineering problems.
- CO2 Develop knowledge and skills required to develop an real time embedded system using ARDUINO for addressing Engineering problems
- CO3 Analyze the architecture of ARM processor and concepts of SoC and SoM.
- CO4 Analyse the various standards and protocols used for embedded interfaces.
- CO5 Analyze various embedded software development tools.
- CO6 Evaluate the concept of RTOS in real time embedded system.

TEXT / REFERENCE BOOKS

- 1. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, "PIC microcontrollers and embedded systems using assembly and C", 1st edition, Pearson, 2007.
- 2. Rajesh Singh, Anita Gehlot, Bhupendra Singh, and Sushabhan Choudhury," Arduino-Based Embedded Systems, CRC Press; 1 edition, November 2017.
- 3. Ashwin Pajankar, ARDUINO MADE SIMPLE: With Interactive Projects, BPB Publications, 2018.
- 4. Raj Kamal, "Embedded system-Architecture, Programming, Design", Tata McGraw Hill, 2011.
- 2. Sriram. V. Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", 2004 Tata McGraw Hill Publishing Company Limited, 2006.
- 3. Frank Vahid, Tony Givargis, 'Embedded system Design A unified Hardware / software Introduction', John Wiley and Sons, 2002.
- 4. Todd D Morton, 'Embedded Microcontrollers', Reprint by 2005, Low Price Edition.
- 5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, 'The 8051 Microcontroller and Embedded Systems', Low Price Edition, Second Impression 2006.
- $6. \underline{https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01167-custom-arm-soc.pdf}$
- 7. https://www.arm.com/resources/guide/designing-soc-with-cortex-m
- $8.\ \underline{https://www.microchip.com/design-centers/32-bit-mpus/sip-som/system-on-module}$

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100
PART A: 10 Question of 2 marks each – No choice

PART B: 2 Questions from each unit of internal choice; each carrying 16 marks

Exam Duration: 3 Hrs. 20 Marks 80 Marks

B.E./B.Tech. - Regular 49 REGULATIONS 2019

SECA2703	EMBEDDED AND DSP LAB	L	T	P	Credits	Total Marks
		0	0	4	2	100

COURSE OBJECTIVES

- To impart knowledge in basic of embedded programming using PIC16F877.
- To analyze the various application of embedded systems.
- To implement filters using MATLAB.

SUGGESTED LIST OF EXPERIMENTS EMBEDDED LAB

Using PICF877

- 1. Basic illustration programs for arithmetic operations using PIC16F877.
- 2. Basic illustration programs for logical operations using PIC16F877.
- 3. Interfacing LED.
- 4. Illustration of TIMER.
- 5. Interfacing of LDR .

Using Arduino

- 6. Interfacing LCD for display.
- 7. Interfacing of sensors.
- 8. Interfacing with the wireless communication modules
- 9. Design of Stepper Motor Control System
- 10. Design of Temperature Monitoring System Using RF Modem

DSP LAB

Programs using MATLAB

- 1. Generation of Standard Signals.
- 2. Design of FIR filters using Windowing technique.
- 3. Design of IIR Filters using Butterworth filters.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Familiarize with the various basic operations using PIC16F877.
- CO2 Interface sensors and display units with microcontroller.
- CO3 Analyze the performance of TIMER and Interrupts.
- CO4 Design of microcontroller-based embedded systems.
- CO5 Explain the various signals using MATLAB.
- CO6 Design infinite and finite impulse response filter.