List of New Courses Introduced in the Academic Year 2019-2020

EVEN SEM

S.No	Course Code	Name of the Course				
1	SCSA3019	Augmented and Virtual Reality				
2	SITA3011	Block chain Technologies				
3	SCSA1706	Cyber Digital Twin				

SCSA3019	AUGMENTED AND VIRTUAL	\mathbf{L}	Т	Р	Credits	Total Marks
	REALITY	3	0	0	3	100

COURSE OBJECTIVES

- To make students to know the basic concepts and framework in virtual reality.
- To teach students the principles and multidisciplinary features in virtual reality.
- To teach students the technology for multimodal user interaction and perception in • VR, in particular the visual, audial and haptic interface and behavior.
- To teach students the technology for managing large scale VR environment in real time.
- To provide students with an introduction to the VR system framework and development tools.

UNIT 1 INTRODUCTION OF VIRTUAL REALITY

Fundamental Concept and Components of Virtual Reality- Primary Features and Present Development on Virtual Reality - VR systems - VR as a discipline-Basic features of VR systems-Architecture of VR systems-VR hardware -VR input hardware: tracking systems, motion capture systems, data gloves-VR output hardware: visual displays.

UNIT 2 I/O INTERFACE & TECHNIQUES IN VR

Multiple Modals of Input and Output Interface in Virtual Reality: Input -- Tracker, Sensor, Digital Glove, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output -- Visual / Auditory / Haptic Devices. Interactive Techniques in Virtual Reality: Body Track, Hand Gesture, 3D Manus, Object Grasp.

UNIT 3 VISUAL COMPUTATION IN VIRTUAL REALITY

Fundamentals of Computer Graphics-Software and Hardware Technology on Stereoscopic Display-Advanced Techniques in CG: Management of Large Scale Environments & Real Time Rendering -Development Tools and Frameworks in Virtual Reality: Frameworks of Software Development Tools in VR. X3D Standard; Vega, MultiGen, Virtoolsetc

UNIT 4 INTRODUCTION OF AUGMENTED REALITY

System Structure of Augmented Reality-Key Technology in AR-- AR software development - AR software. Camera parameters and camera calibration. Marker-based augmented reality. Pattern recognition. AR Toolkit

UNIT 5 APPLICATION OF VR IN DIGITAL ENTERTAINMENT

VR Technology in Film & TV Production.VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.3D user interfaces - Why 3D user interfaces. Major user tasks in VE.Interaction techniques for selection, manipulation and navigation.3DUI evaluation.

COURSE OUTCOMES :

On completion of the course, the student will be able to CO1:Design and implement the VR system. **CO2:**Implement the Augmented Reality software. **CO3:**Analyze and design the framework in VR using various software development tools in VR. CO4:Design the multi modal user interface. CO5:Describe the principles and features of VR and AR. **CO6:**Recognize the technologies used to manage the large scale VR environment in real time.

TEXT / REFERENCE BOOKS :

- 1. Sherman, William R. and Alan B. Craig. Understanding Virtual Reality Interface, Application, and Design, Morgan Kaufmann, 2002.
- 2. Fei GAO. Design and Development of Virtual Reality Application System, Tsinghua Press, March 2012.
- 3. Guangran LIU. Virtual Reality Technology, Tsinghua Press, Jan. 2011.
- 4. Burdea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006. END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration:3 Hrs
Part A: 10 questions carrying 2 marks each – No choice	20 marks
Part B: 2 questions from each unit of internal choice, each carrying 16 marks	80 marks

9 Hrs.

9 Hrs.

9Hrs.

9Hrs.

9Hrs.

Max. 45 Hours

SITA3011	BLOCK CHAIN TECHNOLOGIES	L	Т	Р	Credits	Total Marks
		3	0	0	3	100

COURSE OBJECTIVES

- To introduce Bit coin and other crypto currencies.
- To study the algorithms and techniques in block chain.
- To understand the practical aspects in the design of crypto currency
- To understand the function of Block chains as a method of securing distributed ledgers.
- To design, code, deploy and execute a smart contract.

UNIT 1 INTRODUCTION TO BLOCKCHAIN

Basics of blockchain-Public Ledgers-Block Chain as Public Ledgers-Types of Block chains-Pillars of Block chain- Government Initiatives of BlockChain-Bitcoin-SmartContracts

UNIT 2 ARCHITECTURE AND CONCEPTUALIZATION OF BLOCK CHAIN, CRYPTO CURRENCIES

Block in a Block chain-find Transactions-Distributed Consensus-Proof of work, Stake, Space-Attacks on POW-Ethereum- Pos/POW Hybrids-Crypto currency to block chain 2.0, Model of Blockchain-Algorand

UNIT 3 CRYPTO PRIMITIVES, SECURING AND INTERCONNECTING PUBLIC AND PRIVATE BLOCK CHAINS 9Hrs.

Hash Function and Merle Tree-Security Properties-Security Considerations for block chain-Digital Signature-Public Key Cryptography-Bit coinblock chain incentive structures- Nash Equilibriums-evolutionary stable strategies, and Pareto¬ efficiency (game theory) Weaknesses and news Points of Failure¬ Mitigation Methods¬ Redundancies and fall-back methods

UNIT 4 MINING AND CRYPTO CURRENCIES - HOW TO USE AND INTERACT 9Hrs.

Mining-Pools-Impact of CPU and GPU-Transaction in Bit coin Network- Block Mining-Block propagation and block relay

UNIT 5 USE CASES-APPLICATIONS IN DIFFERENT AREAS

Industry applications of Blockchain-Blockchain in Government-Government use cases-Preventing Cybercrime through block chain-Block Chain in defense, tax payments

COURSE OUTCOMES :

On completion of the course the student will be able to

CO1: Explain the structure of a block chain.

CO2 : Analyze the incentive structure in a block chain based system.

CO3 : Judge the scenario where "smart" contract is most appropriate.

CO4 :Identify Basic knowledge of Bitcoin, Ethereum.

CO5 : Apply Blockchain in future use cases for security.

CO6: Understand the various Block Chain applications.

TEXT / REFERENCE BOOKS :

100

- 1. Mastering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos O'Reilly, First Edition, 2014.
- 2. Blockchain by Melanie Swa, O'Reilly Media 2015
- 3. Zero to Block chain An IBM Redbooks course, by Bob Dill, David Smits -

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration:3 Hrs
Part A: 10 questions carrying 2 marks each – No choice	20 marks
Part B: 2 questions from each unit of internal choice, each carrying 16 marks	80 marks

9Hrs.

9Hrs.

.....

9 Hrs.

SCSA 1706	CVDED DICITAL TWIN	L	Т	Р	Credits	Total Marks
SUSAT/00	CIBER DIGITAL I WIN	3	0	0	3	100

COURSE OBJECTIVES

- To gain knowledge in cyber security and digital firmware.
- To identify types of digital twin and data IoT Technologies
- To make a twin modelling. .
- To understand about Risk Management and Twin Constructions
- To make students aware of security concerns while implementing Cyber Digital Twin Technology

UNIT I INTRODUCTION

Introduction- Cyber Digital twin-definition-uses and benefits-need for digital twin-working principle Technology Digital thread-digital shadow-building blocks of digital twin-digital twin technology drivers and enablers.

UNIT IIDATA MODELLING ENVIRONMENT

Types of digital twin-Based on Product and Process-Based on Functionality-Based on Maturity. Development considerations-Overview of Data-Modeling Environment. Modelling-model and data management-Managing data-implementing the model- Cloud and IOT technologies.

UNIT-III DIGITAL TWIN OPTIMIZATION

Cyber range vs digital twin-human behavior modeling in digital twin-optimization using digital twin-digital twin and cyber security- Techniques. Technologies-Industrial IOT and Digital Twin-simulation and digital twin-Machine learning and digital twin-virtual reality and digital twin-cloud technology and digital twin.

UNIT IV RISK MANAGEMENT

Digital twin and Risk Assessment-Digital twin reference model-Implementation-Development of risk assessment plan-Development of communication and control system-Development of digital twin tools-Integration-platform validation-Difficulties-Practical implications.

UNIT -V APPLICATIONS

Applications: Digital Twin in Manufacturing-Digital Twin in Automotive-Digital Twin in Healthcare-Digital Twin in Utilities-Digital Twin in Construction.

COURSE OUTCOMES:

On completion of the course the student will be able to

- **CO1**: Implement fundamental Cyber System and Digital Twin Technology
- **CO2**: Understand types and data modelling of Digital twin
- CO3: Understand the optimization, simulation and validation
- CO4: Know about the risk and Control development
- **CO5**: Understand the application in different fields

CO6: Develop applications using Cyber digital Twin Technologies

TEXT/REFERENCE BOOK:

- 1. Cyber-physical System and Digital Twins Michael E. AuerKalyan Ram B.Digital Part of the Lecture Notes in Networks and Systems book series.
- 2. Development and Deployment on the Cloud Nassim Khaed, Bibin Pattel and Affan Siddiqui Elsevier 2020.
- 3. Hacking Exposed Industrial Control Systems: ICS and SCADA Security Secrets & Solutions (1st Edition), by Clint Bodungen, Bryan Singer, Aaron Shbeeb, Kyle Wilhoit, and Stephen Hilt, ISBN: 978-1259589713.
- 4. Applied Cyber Security and the Smart Grid: Implementing Security Controls into the Modern Power Infrastructure (1st Edition), by Eric D. Knapp and Raj Samani
- 5. The Art of Invisibility Kevin Mitnick, 2017.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 100

Part A: 10 questions carrying 2 marks each – No choice Part B: 2 questions from each unit of internal choice, each carrying 16 marks **Exam Duration:3 Hrs.** 20 marks 80 marks

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs