Note: Removed Contents are marked in Yellow color and Added Contents are marked in red color

SCSX1011	OPERATING SYSTEMS	L	Т	Ρ	Credits	Total Marks
		3	1	0	4	100

UNIT I INTRODUCTION

Introduction – Operating system structures – System components – OS services – System calls – System structure – Resources – Processes – Threads – Objects – Device management – Different approaches – Buffering device drivers.

UNIT II PROCESS MANAGEMENT

Processes - Process concepts - Process schedulling - Operations on processes - Cooperating processes - CPU schedulling - Basic concepts - Scheduling criteria - Scheduling algorithms - Preemptive strategies - Non-preemptive strategies.

UNIT III SYNCHRONIZATION AND DEADLOCKS

The critical section problem - Semaphores - Classic problems of synchronization - Critical regions - Monitors - Deadlocks - Deadlock characterization - Prevention - Avoidance - Detection - Recovery.

UNIT IV MEMORY MANAGEMENT

Storage Management Strategies - Contiguous vs. non-contiguous storage allocation - Fixed & variable partition multiprogramming - Paging - Segmentation - Paging/Segmentation systems - Page replacement strategies - Demand & anticipatory paging – File concept – Access methods – Directory structure – File sharing – Protection – File – system structure - Implementation.

UNIT V LINUX & SHELL PROGRAMMING

Shell operation commends – Linux file structure – File management operation – Internet service – Telnet-FTP – Filters & regular expressions – Shell programming – Variable, arithmetic operations, control structures, handling date, time & system information.

REFERENCE BOOKS:

1. Abraham Silberschatz, Peter Galvin and Gagne, "Operating System Concepts"th, E6dition, Addison Wesley, 2002.

2. Harvey M.Deitel, "Operating System", 2nd Edition, Addison Wesley, 2000.

3. Gary Nutt, "Operating System, A modern perspective", ⁿ2^d Edition, Addison Wesley, 2000.

4. Richard Peterson, "Linux : The Complete Reference", th6 Edition, Tata McGraw Hills, 2007.

UNIVERSITY EXAM QUESTION PAPER PATTERN

Max Marks : 80	Exam Duration : 3 hrs.
Part A: 2 Questions from each unit, each carrying 2 marks	20 marks
PARTB:2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

10 hrs.

10 hrs.

10 hrs.

10 hrs.

5051201		L	Т	Ρ	Credits	Total Marks
3031301	OFERATING STSTEM	3	0	0	3	100

UNIT 1 INTRODUCTION

Introduction - Operating system structures - System components - OS services - System calls - System structure - Resources Processes - Threads - Objects - Device management - Different approaches - Buffering device drivers.

UNIT 2 PROCESS MANAGEMENT

Processes - Process concepts - Process scheduling - Operations on processes - Cooperating processes - CPU scheduling - Basic concepts - Scheduling criteria - Scheduling algorithms - Preemptive strategies - Non-preemptive strategies

UNIT 3 SYNCHRONIZATION AND DEADLOCKS

The critical section problem - Semaphores - Classic problems of synchronization - Critical regions - Monitors-Dead locks - Deadlock characterization - Prevention - Avoidance - Detection - Recovery.

UNIT 4 MEMORY MANAGEMENT

Storage Management Strategies - Contiguous Vs. Non-Contiguous Storage Allocation - Fixed & Variable Partition Multiprogramming - Paging - Segmentation - Paging/Segmentation Systems - Page Replacement Strategies - Demand & Anticipatory Paging - File Concept - Access Methods - Directory Structure - File Sharing - Protection - File - System Structure - Implementation.

UNIT 5 I/O SYSTEMS, LINUX & SHELL PROGRAMMING

Mass Storage Structure - Disk Structure - Disk Scheduling - Disk Management - Swap Space Management - RAID Structure - Shell Operation Commends - Linux File Structure - File Management Operation - Internet Service - Telnet - FTP - Filters & Regular Expressions - Shell Programming - Variable, Arithmetic Operations, Control Structures, Handling Date, Time & System Information.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 : Comprehend knowledge about operating system components and services.
- CO2 : Apply knowledge of process scheduling algorithms for a given context.
- CO3 : Analyze process synchronization and deadlock conditions.
- CO4 : Construct the process of Mapping logical address to physical address.
- CO5 : Design appropriate strategies for Paging, Segmentation.
- CO6 : Develop real time applications Based on Linux shell programming.

TEXT / REFERENCE BOOKS

- 1. Abraham Silberschatz, Peter Galvin and Gagne, "Operating System Concepts", 6th Edition, Addison Wesley, 2002.
- 2. Harvey M.Deitel, "Operating System", 2nd Edition, Addison Wesley, 2000.
- 3. Gary Nutt, "Operating System, A modern perspective", 2nd Edition, Addison Wesley, 2000.
- 4. Richard Peterson, "Linux : The Complete Reference", 6th Edition, Tata McGraw Hills, 2007.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs.
PART A: 2 Questions from each unit, each carrying 2 marks	20 Marks
PART B: 2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

9Hrs.

9 Hrs.

8 Hrs.

10 Hrs.

9 Hrs.

Max. 45 Hours.

SCSX1023	COMPUTER GRAPHICS & MULTIMEDIA SYSTEM	SL	Т	Ρ	Credits	Total Marks
	(Common to CSE & IT)	3	0	0	3	100

UNIT I BASICS OF COMPUTER GRAPHICS

Output Primitives: Survey of computer graphics – Overview of graphics systems – Line drawing algorithm – Circle drawing algorithm – Curve drawing algorithm - Attributes of output primitives – Anti-aliasing

UNIT II 2D AND 3D CONCEPTS AND TRANSFORMATIONS

Basic two dimensional transformations – Other transformations – 2D and 3D viewing – Line clipping – Polygon clipping – Logical classification – Input functions – Interactive picture construction techniques – Three dimensional concepts – Three dimensional transformations

UNIT III METHODS AND MODELS

Visible surface detection methods – Illumination models – Halftone patterns – Dithering techniques – Polygon rendering methods – Ray tracing methods – Color models and color applications

UNIT IV BASICS OF MULTIMEDIA

Introduction to multimedia – Multimedia skills – Multimedia building blocks – Text, sound, images, audio, animations – Making instant multimedia – Basic software tools – File Formats – JPEG, MPEG

UNIT V MULTIMEDIA TOOLS

Introduction to Photoshop – Workplace – Tools – Navigating window – Importing and exporting images – Operations on Images – resize, crop, rotate. Introduction to Flash – Elements of flash document – flash environment – Drawing tools – Flash animations – Importing and exporting - Adding sounds – Publishing flash movies – Basic action scripts – GoTo, Play, Stop, Tell Target.

REFERENCE BOOKS:

- 1. Donald Hearn, Pauline Baker M., "Computer Graphics", ⁿ2^d Edition, Prentice Hall, 1994.
- 2. Tay Vaughan ,"Multimedia", ^t5^h Edition, Tata McGraw Hill, 2001.
- 3. Ze-Nian Li, Mark S. Drew, "Fundamentals of Multimedia", Prentice Hall of India, 2004.
- 4. D. McClelland, L.U.Fuller,"Photoshop CS2 Bible", Wiley Publishing, 2005.

UNIVERSITY EXAM QUESTION PAPER PATTERN

Max Marks : 80	Exam Duration : 3 hrs.
Part A : 2 Questions from each unit, each carrying 2 marks	20 marks
PARTB:2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

10 hrs.

10 hrs.

10 hrs.

10 hrs.

SCS1302	COMPUTER GRAPHICS AND MULTIMEDIA SYSTEMS

UNIT 1 BASICS OF COMPUTER GRAPHICS

Output Primitives: Survey of computer graphics - Overview of graphics systems - Line drawing algorithm - Circle drawing algorithm - Curve drawing algorithm - Attributes of output primitives - Anti-aliasing.

UNIT 2 2D TRANSFORMATIONS AND VIEWING

Basic two dimensional transformations - Other transformations - 2D and 3D viewing - Line clipping - Polygon clipping - Logical classification -Input functions - Interactive picture construction techniques.

UNIT 3 3D CONCEPTS AND CURVES

3D object representation methods - B-REP, sweep representations, Three dimensional transformations. Curve generation - cubic splines, Beziers, blending of curves- other interpolation techniques, Displaying Curves and Surfaces, Shape description requirement, parametric function. Three dimensional concepts - Introduction - Fractals and self-similarity- Successive refinement of curves, Koch curve and peano curves.

UNIT 4 METHODS AND MODELS

Visible surface detection methods - Illumination models - Halftone patterns - Dithering techniques - Polygon rendering methods - Ray tracing methods - Color models and color applications.

UNIT 5 MULTIMEDIA BASICS AND TOOLS

Introduction to multimedia - Compression & Decompression - Data & File Format standards - Digital voice and audio - Video image and animation. Introduction to Photoshop - Workplace - Tools - Navigating window - Importing and exporting images - Operations on Images resize, crop, and rotate - Introduction to Flash - Elements of flash document - Drawing tools - Flash animations - Importing and exporting -Adding sounds - Publishing flash movies - Basic action scripts - GoTo, Play, Stop, Tell Target.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 : Construct lines and circles for the given input.
- CO2 : Apply 2D transformation techniques to transform the shapes to fit them as per the picture definition...
- CO3 : Construct splines, curves and perform 3D transformations
- CO4 : Apply color and transformation techniques for various applications.
- CO5 : Analyze the fundamentals of animation, virtual reality, and underlying technologies
- CO6 : Develop photo shop applications. .

TEXT / REFERENCE BOOKS

- 1. Donald Hearn, Pauline Baker M., "Computer Graphics", 2nd Edition, Prentice Hall, 1994.
- 2. Tay Vaughan ,"Multimedia", 5th Edition, Tata McGraw Hill, 2001.
- Ze-Nian Li, Mark S. Drew, "Fundamentals of Multimedia", Prentice Hall of India, 2004 3.
- D. McClelland, L.U.Fuller, "Photoshop CS2 Bible", Wiley Publishing, 2005. 4.
- Jiames D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, "Computer Graphics Principles and Practice, 2nd 5. Edition in C, Audison Wesley, ISBN - 981 -235-974-5.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100	Exam Duration : 3 Hrs.
PART A : 10 questions of 2 marks each- No choice	20 Marks
PART B : 2 guestions from each unit of internal choice, each carrying 16 marks	80 Marks

Max. 45 Hours

9 Hrs.

8Hrs.

10 Hrs.

Credits

3

Total Marks

100

8Hrs.

10 Hrs.

rs.

L 3 Т

0

Ρ

0

SCSY1004	SOFTWARE ENGINEERING	L	Т	Ρ	Credits	Total
30371004	(Common to CSE & IT)					Marks
		3	0	0	3	100

UNIT I INTRODUCTION

S/W engineering paradigm –Life cycle models – Water fall – Incremental – Spiral – Evolutionary – Prototyping - Object oriented - System engineering - Computer based system - Verification - Validation - Life cycle process -Development process – System engineering hierarchy – Introduction to CMM – Levels of CMM.

UNIT II SOFTWARE ENGINEERING PROCESS

Functional And Non-Functional – User – System – Requirement Engineering Process – Feasibility Studies -Requirements - Elicitation - Validation and management - Fundamental of requirement analysis - Analysis principles - Software prototyping - Prototyping in the Software Process - Rapid Prototyping Techniques - User Interface Prototyping – S/W Document Analysis and Modeling – Data – Functional and Behavioral Models – Structured Analysis and Data Dictionary.

UNIT III DESIGN PROCESS AND CONCEPTS

Modular design – Design heuristic – Design model and document – Architectural design – Software architecture - Data design - Architecture data - Transform and transaction mapping - User interface design - User interface design principles.

UNIT IV BASIC CONCEPTS OF SOFTWARE TESTING

Levels - Test activities - Types of s/w test - Black box testing - Testing boundary condition - Structural testing - Test coverage criteria based on data flow mechanisms - Regression testing - Testing in the large- S/W testing strategies - Strategic approach and issues - Unit testing - Integration testing - Validation testing - System testing and debugging. Case studies – Writing black box and white box testing.

UNIT V COST ESTIMATION & MAINTENENCE

Software cost estimation – Function point models – COCOMO model – Quality management – Quality concepts – SQA – Software reviews – Formal technical reviews – Formal approaches of SQA and software reliability – Error tracking – Software maintenance – SCM - Need for SCM - Version control - Introduction to SCM process - Software configuration items. Re-Engineering – Software reengineering – Reverse engineering – Restructuring – Forward engineering.

REFERENCE BOOKS:

- 1. Pressman, "Software Engineering and Application", th6Edition, Mcgraw International Edition, 2005.
- 2. Shooman. M.C., "Software Engineering Design", Mcgraw International Edition, 1985.
- 3. Richardairley, "SoftwareEngineering-Design, Reliability And Management", Mcgraw International Edition, 1983.
- 4. Sommerville, "Software Engineering", ^t6^h Edition, Pearson Education, 2000.
- 5. Pfleeger, "Software Engineering", 6th Edition, Prentice Hall of India, 2005
- 6. Ghezzi, "Software Engineering", ⁿ2^d Edition, Prentice Hall of India, 2005.

UNIVERSITY EXAM QUESTION PAPER PATTERN

Max Marks : 80	Exam Duration : 3 hrs.
Part A: 2 Questions from each unit, each carrying 2 marks	20 marks
PARTB:2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

10 hrs.

10 hrs.

10 hrs.

10 hrs.

SCS1305		L	Т	Ρ	Credits	Total Marks
9091303	SOFTWARE ENGINEERING	3	0	0	3	100

UNIT 1 INTRODUCTION

S/W engineering paradigm - Life cycle models - Water fall - Incremental - Spiral - Evolutionary - Prototyping - Object oriented system engineering - Computer based system - Verification - Validation - Life cycle process - Development process - System engineering hierarchy -Introduction to CMM - Levels of CMM.

UNIT 2 SOFTWARE ENGINEERING PROCESS

Functional And Non-Functional - User - System - Requirement Engineering Process - Feasibility Studies - Requirements - Elicitation -Validation and management - Fundamental of requirement analysis - Analysis principles-Software prototyping - Prototyping in the Software Process - Rapid Prototyping Techniques - User Interface Prototyping - Software Document Analysis and Modeling - Data - Functional and Behavioral Models - Structured Analysis and Data Dictionary.

UNIT 3 DESIGN PROCESS AND CONCEPTS

Design process - Modular design - Design heuristic - Design model and document - Architectural design - Software architecture - Data design -Architecture data - Transform and transaction mapping - User interface design - User interface design principles.

UNIT 4 BASIC CONCEPTS OF SOFTWARE TESTING

Levels - Software Testing Fundamentals - Types of s/w test - White box testing- Basis path testing - Black box testing - Control Structure testing- Regression testing - Testing in the large- S/W testing strategies - Strategic approach and issues - UNIT testing - Integration testing -Validation testing - System testing and debugging. Case studies - Writing black box and white box testing.

UNIT 5 COST ESTIMATION & MAINTENENCE

Software cost estimation - COCOMO model - Quality management - Quality concepts- SQA - Software reviews - Formal technical reviews -Formal approaches of SQA and software reliability - Software maintenance - SCM - Need for SCM - Version control - Introduction to SCM process - Software configuration items. Re-Engineering - Software reengineering - Reverse engineering - Restructuring - Forward engineering.

COURSE OUTCOMES

On completion of the course, student will be able to

- : Select appropriate Software Development Lifecycle Model for a given requirement. CO1
- CO2 : Comprehend various Functional and Non-Functional Requirements.
- CO3 : Create User Interface using Design concepts.
- CO4 Generate Test cases for the developed Code. :
- CO5 : Estimate Cost & Maintenance of the Project..
- CO6 : Generate an overall plan for a specific application

TEXT / REFERENCE BOOKS

- 1. Pressman, "Software Engineering and Application", 6th Edition, McGraw International Edition, 2005...
- Shooman. M.C., "Software Engineering Design", McGraw International Edition, 1985. Compiler Principles, Techniques & Tools", Addison-2. Wesley Publishing Company, 1986
- 3. Richard Fairley, "Software Engineering - Design, Reliability And Management", McGraw International Edition, 1983.
- Sommerville, "Software Engineering", 6th Edition, Pearson Education, 2000. 4.
- 5. Pfleeger, "Software Engineering", 6th Edition, Prentice Hall of India, 2005
- Ghezzi, "Software Engineering", 2nd Edition, Prentice Hall of India, 2005. 6.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 100 PART A: 10 guestions of 2 marks each- No choice **PART B**: 2 guestions from each unit of internal choice, each carrying 16 marks Exam Duration : 3 Hrs. 20 Marks 80 Marks

9 Hrs.

9 Hrs

9 Hrs.

9 Hrs.

9 Hrs.

Max. 45 Hours

SCSX1018	DATABASE SYSTEM	L	Т	Ρ	Credits	Total Marks
	(Common to CSE, IT & ECE)	3	1	0	4	100

UNIT I BASIC CONCEPTS

Databases and databases users – Database system concepts and architecture – Data modeling using entity Relationship model – Enhanced entity relationship and object modeling – Record storage and file organizations – Index structures for files.

UNIT II DATABASE MODELS

Introduction to Network – Hierarchial ,Relational and Object Oriented Model – Relational Model – Relation algebra and calculus – Commercial query languages – Security and integrity – Functional dependency – Normalization – Relational database design.

UNIT III ADVANCED CONCEPTS

Query processing – Crash recovery – Concurrency control – Distributed databases - Database security and authorization – Object oriented databases.

UNIT IV ORACLE DATABASE ADMINISTRATION

Oracle architecture – Managing Oracle instance – Creation of database - Data dictionary and dynamic performance views.

UNIT V ORACLE DATABASE STRUCTURE AND STORAGE

Data files and tablespaces – Control files – Redo log files and archived log files – Managing users and privileges – Managing password security and resources.

REFERENCE BOOKS:

- 1. Elmasri & Navathe, "Fundamentals of Database Systems", rd3Edition, Addison Wesley, 2000.
- 2. Abraham Silberschatz, Henry.F.Korth and S.Sudharshan, "Database System Concepts^{t,,h}, E4dition, 2002.
- 3. Jan L. Harrington,"Object Oriented Database Design", Harcourt India Pvt Ltd. 2000.(Unit III)
- 4. Kevin Loney & Marlene Theriault, "Oracle9i DBA Handbook ", Tata McGraw-Hill, 2002. (Unit IV and V)
- 5. Michael Abbey, Michael Corey, Ian Abramson, "Oracle9i A Beginner's Guide", Tata McGraw-Hill, 2002. (Unit IV and V)
- 6. www.oracle.com (Unit IV and V)

UNIVERSITY EXAM QUESTION PAPER PATTERN

Max Marks : 80	Exam Duration : 3 hrs.
Part A: 2 Questions from each unit, each carrying 2 marks	20 marks
PARTB:2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

10 hrs.

10 hrs.

10 hrs.

10 hrs.

10 hrs.

4.6.1

5051206	DATADASE MANAGEMENT SYSTEM	L	Т	Ρ	Credits	Total Marks
3031300	DATADASE MANAGEMENT STSTEM	3	0	0	3	100

UNIT 1 INTRODUCTION TO DATABASES

Databases and Databases users - Database system concepts and architecture - Data modeling using Entity Relationship (ER) Model.

UNIT 2 DATABASE DESIGN

Overview of the QBE Language - Overview of the Hierarchical Data Model - Overview of the Network Data Model - SQL-99: Schema Definition, Constraints, Queries, and Views- Functional Dependencies and Normalization for Relational Databases.

Relational Model - The Relational Data Model and Relational Database Constraints - The Relational Algebra and Relational Calculus.

UNIT 3 QUERY PROCESSING

Algorithms for Query Processing and Optimization - Introduction to Transaction Processing Concepts and Theory - Concurrency control techniques.

UNIT 4 RECOVERY AND SECURITY

Database Recovery Techniques - Database Security - Distributed databases and Client- Server Architecture

UNIT 5 OBJECT DATABASE

Concepts for Object Database - Enhanced Data Models for Advanced Application Emerging Database Technologies and Application

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 : Construct ER model for a given application..
- CO2 : Apply normalization on Relational Databases
- CO3 : Demonstrate query optimization and concurrent transaction processing
- CO4 : Analyse recovery techniques, security mechanism, fragmentation and load balancing of databases.
- CO5 : Design database using Object Oriented techniques...
- CO6 : Create database for a specified application

TEXT / REFERENCE BOOKS

1. Elmasrl & Navathe - Fundamentals of Database Systems - 3rd Edition, 2nd Reprint, Addison Wesley, 2000

2. Abraham Silberschatz, Henry. F. Korth and S. Sudharshan "Database System Concepts", 4th Edition, 2002.

- 3. C. J. Date, "Introduction to database systems", Addison Wesley, 7th Edition, 2001.
- 4. Jan L. Harrington, "Object oriented database design", Harcourt India private limited

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100 PART A : 10 questions of 2 marks each- No choice PART B : 2 questions from each unit of internal choice, each carrying 16 marks

Max. 45 Hours

9Hrs.

9 Hrs.

9 Hrs.

9Hrs.

9Hrs.

Exam Duration : 3 Hrs. 20 Marks 80 Marks

SCSX1017	DATA COMMUNICATION & COMPUTER	L	Т	Ρ	Credits	Total Marks
	NETWORKS	3	1	0	4	100
	(Common to CSE, IT & EEE)					

UNIT I PROTOCOLS & MEDIA

Introduction to data communication – Network protocols & standards – Line configuration – Topology – Transmission mode – Categories of networks – OSI model – Layers of OSI model – Transmission media – Guided media - Unguided media.

UNIT II SIGNALS & ERRORS

Analog and digital signals – Encoding and modulation – Parallel and serial transmission – DTE/DCE – Types of errors – Error detection and correction – Data link control – Line discipline – Flow control – Error control.

UNIT III MULTIPLEXING & SWITCHING

Multiplexing – Types of multiplexing – LAN – Project 802 – Ethernet – Token bus – Token ring – FDDI – MAN IEEE 802.6 – Circuit switching – Packet switching.

UNIT IV ISDN & ATM

History of analog and digital network – Access to ISDN – ISDN layers – Broadband ISDN – Packet layer protocol - ATM - ATM architecture - ATM layers - Congestion control - Leaky bucket algorithm.

UNIT V NETWORK & APPLICATION LAYER

Repeaters – Bridges – Routers – Gateway – Routing algorithms – TCP/IP – Overview – Network layer – Transport and application layers of TCP/IP – DNS – SMTP – HTTP – WWW.

REFERENCE BOOKS:

1. Behrouz and Forouzan, "Data Communications and Networking", nd2Edition, Tata McGraw Hill, 2007.

2. Andrew.S.Tenenbaum, "Computer Networks", ^t4^h Edition, Prentice Hall of India, 2008.

3. WilliamStallings, "Data and Computer Communication", ^t6^h Edition, Pearson Education, 2000.

UNIVERSITY EXAM QUESTION PAPER PATTERN

Max Marks : 80	Exam Duration : 3 hrs.
Part A: 2 Questions from each unit, each carrying 2 marks	20 marks
PARTB:2 Questions from each unit with internal choice, each carrying 16 marks	80 Marks

10 hrs.

10 hrs.

10 hrs.

10 hrs.

SCS1314	DATA COMMUNICATION	L	Т	Р	Credits	Total Marks
	AND COMPUTER NETWORKS	3	0	0	3	100

UNIT 1 DATA COMMUNICATION

Introduction to data communication - Network protocols & standards - Line configuration - Topology - Transmission mode - Categories of networks - OSI model - Layers of OSI model - TCP/IP Model - Transmission media- Guided media - Unguided media.

UNIT 2 DATALINK LAYER

Link layer services - Framing - Flow Control - Error control- Medium Access Control - Ethernet CSMA/CD - Token Ring - FDDI - Token Passing- Wireless LAN - CSMA/CA

UNIT 3 NETWORK LAYER

Circuit Switching - Packet Switching - Routing - Distance Vector Routing - Link State Routing - Addressing- Subnetting - IPV4- IPV6-ARP - RARP - ICMP - IGMP - DHCP.

UNIT 4 TRANSPORT LAYER TCP- UDP - Connection Management- Flow Control - Retransmission - Congestion Control - Detection and Avoidance.

UNIT 5 APPLICATION LAYER

Networking Devices - Repeaters - Switches - Bridges - Routers - Gateways- Domain Name System - FTP - WWW and HTTP - SNMP - SMTP - POP3 - IMAP - MIME.

Max. 45 Hours

9 Hrs.

9 Hrs.

9 Hrs

9 Hrs.

9 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to:

CO1: Understand and explain the concept of Data Communication and networks, layered architecture and their applications.

CO2: Evaluate data communication link considering elementary concepts of data link layer protocols for error detection and correction.

CO3: Apply various network layer techniques for designing subnets and supernets and analyse packet flow on basis of routing protocols.

CO4: Analyze and Set up protocol designing issues for Communication networks.

CO5: Estimate the congestion control mechanism to improve quality of service of networking application

CO6: Understand and design application layer protocols and internet applications such as network security, Email and DNS,

TEXT / REFERENCE BOOKS

- 1. Behrouz A. Fourouzan, "Data Communication and Networking", McGraw-Hill Education India Pvt. Ltd New Delhi.
- 2. William Stallings, Data and Computer Communications (8th ed.), Pearson Education, 2007.
- 3. P.C. Gupta, Data Communications and Computer Networks, Prentice-Hall of India, 2006.
- 4. Andrew S. Tanenbaum, "Computer Networks", Fourth Edition, Pearson.
- 5. L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach (3rd ed.), Morgan Kaufmann, 2003.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100	Exam Duration : 3 Hrs.
PART A : 10 questions of 2 marks each- No choice	20 Marks
PART B : 2 questions from each unit of internal choice, each carrying 16 marks	80 Marks

SCSX4013	OPERATING SYSTEMS LAB	L	Т	Ρ	Credits	Total Marks
		0	0	4	2	100

List of Experiments

- 1. Study of basic LINUX & Vi Editor command
- 2. Searching a SubString in given text
- 3. Menu Based Math Calculator
- 4. Printing pattern using loop statement
- 5. Converting File names from Uppercase to Lowercase
- 6. Manipulate Date/Time/Calendar
- 7. Showing various system information
- 8. Implementation of process scheduling mechanism FCFS, SJF, Priority Queue.
- 9. Reader Writer Problem.
- 10. Dinner's Philosopher Problem.
- 11. First Fit, Worst Fit, Best Fit allocation strategy.
- 12. Bankers Algorithm
- 13. Implement the producer consumer problem using Semaphore
- 14. Implement some memory management Scheme

505/301	ODEDATING SYSTEM LAB	L	Т	Ρ	Credits	Total Marks
3034301	OF ERATING STOTEM LAD	3	0	0	3	100

- 1. Study of basic LINUX & vi Editor command
- 2. String and Numerical Handling Functions
- 3. Loop and Selection Constructs
- 4. File Handing Functions
- 5. Manipulate Date/Time/Calendar
- 6. Retrieve System information
- 7. Implementation of process scheduling mechanism FCFS, SJF, Priority Queue.
- 8. Reader Writer Problem.
- 9. Diner's Philosopher Problem.
- 10. First Fit, Worst Fit, Best Fit allocation strategy.
- 11. Bankers Algorithm
- 12. Implement the producer consumer problem using Semaphore
- 13. Implement memory management Scheme

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 : Apply Linux Shell program for networking problems.
- CO2 : Analyze different types of scheduling algorithms for concurrent processes.
- CO3 : Formulate critical section problems for process synchronization.
- CO4 : Investigate cause and effect related to process deadlock.
- CO5 : Decide appropriate memory allocation strategy.
- CO6 : Create a real time application based on operating system concepts.

SCSX4011	RDBMS LAB	L	Г	Ρ	Credits	Total Marks
		0	0	4	2	100

List of Experiments

- 1. Data Definition Language (DDL) commands in RDBMS.
- 2. Data Manipulation Language (DML) and Data Control Language (DCL) commands in RDBMS.
- 3. Constraints and Oracle built-in Functions
- 4. Joins and Group-by Commands
- 5. Design and implementation of Payroll Processing System.
- 6. Design and implementation of Banking System.
- 7. Design and implementation of Student Information System.
- 8. Design and implementation of Quiz Application

5054303	PDPMS I AP	L	Т	Ρ	Credits	Total Marks
3034302		0	0	4	2	100

SUGGESTED LIST OF EXPERIMENTS

- 1. Data Definition Language (DDL)
- 2. Data Manipulation Language (DML)
- 3. Data Control Language (DCL)
- 4. Constraints and built-in Functions
- 5. Joins and Group-by Commands
- 6. PL/SQL Program using functions
- 7. PL/SQL Program to create Triggers
- 8. Consider any application and design using.
- a. Normalization
- b. Data Flow Diagram
- c. Entity-Relation Diagram
- d. Data Dictionary
- e. Table Structure

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 : Comprehend the underlying concepts of relational database management system
- CO2 : Analyze various DDL/DML/DQL/DCL commands in SQL.
- CO3 : Implement integrity constraints on a database using a state-of-the-art DBMS
- CO4 : Design a normalized database using normalization techniques
- CO5 : Create PL/SQL programs including stored Procedures, stored functions, cursors, triggers.
- CO6 : Design a schema for any given real world problem