

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956) Declared as Category 'A' University by MHRD, Govt. of India Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119, Tamilnadu. India.

School of Electrical and Electronics

DATE: 30-04-2016

VENUE: VLSI LAB

TIME: 10.30 a.m. to 12 noon

Minutes of Board of Studies Meeting held on 30th April, 2016

- Dr.E.Logashanmugam, Faculty Head of EEE at the outset extended his cordial welcome to all the members of the Governing Body and in his introductory remarks, he appreciated the members for their active participation in curriculum revision process. The BOS members expressed their highly appreciation and satisfaction about the courses and activities of the Department. The HODs of ECE, EEE, E&I, E&C and ETCE under the Faculty of Electrical and Electronics, Staff members from the faculty attended the meeting to have an effective interaction with the members as and when required.
- Dr.G.Sundari, Prof. & Head Department of Electronics and Communication started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting. The guidelines of the syllabus given by the management were explained by HOD to all the members of the BOS. The external members also ratified the decision to revise the syllabus under the mentioned guidelines.
- Dr. M. Madhavi Latha, Professor, JNTU College of Engineering, Hyderabad accepted the changes suggested by Mr.Vino in 'Satellite Communication'.
- Dr,N.M. Nandhitha presented the changes made in the subject ' Programming in MATLAB'. She highlights the added miscellaneous topics- file handling, import & Export – Low Level File I/O – Directory management – FTP File Operations – Time Computations. Dr.Ram Bilas Pachori, Professor, IIT appreciated the effort done by Dr.N.M.Nandhitha.
- Mr.Vino suggested the changes made in 'Digital Logic Circuits' Dr. M. Madhavi Latha accepted the changes. Dr.T.Ravi presented the new course introduced to the students 'Probability Theory and Random process'.
- Dr.T.Ravi also presented the new course introduced for PG courses are Testing of VLSI Circuits, High Speed VLSI design, VLSI for Wireless Communication, ASIC Design, Design of Semiconductor memories and RF circuits Design for M.E. Embedded system. The Syllabus Revision carried out in PG courses is Embedded System Modelling Using UML.

- Dr.R.Ramadevi presented the changes made in the process control lab by adding experiment related to fuzzy Logic and Neural Network Application as per the suggestion given by Dr.Sivakumaran.
- Dr.V.Sivachidambaranathan, Prof.& Head, Dept. of Electrical and Electronics Engineering requested Dr.Susitra, Faculty/EEE to present the curriculum revisions before the board.
- She has presented the old and new syllabus for DC machines and transformer (theory and practical) before the board and discussed the valid additions made in the syllabus.
- Dr.V.Sivachidambaranathan put forth the syllabus of the new courses, 'Advanced Power Electronics', 'Electric Vehicles' for the approval of the board. Dr.N Sivakumaran approved the Syllabus for these new courses.

The following internal and external members were present in the meeting.

	INTERNAL MEMBERS	SIGNATURE
1.	Dr.E.Logashanmugam Eligtungen	
2.	Dr.G.Sundari	
3.	Dr.N.M.Nandhitha	
4.	Dr.V.Sivachidambaranathan	
5.	Dr.V.Vijaya Baskar	
6.	Dr.S.Lakshmi S. Layv.	
7.	Dr.T.Ravi	
8.	Dr.V.G.Sivakumar	
9.	Dr. P. Kavipriya	
10.	Dr.P.Chitra	
11.	. Dr.S.Karthikeyan	
12	. Ms.K.Srilatha	
13	. Dr.R.Ramadevi RR	
14	. Dr.R.Ramadevi RR . Mrs.K.Sujatha & Sup	

15. Dr. Susitra

EXTERNAL MEMBERS

Dr. M. Madhavi Latha Professor, JNTU College of Engineering Hyderabad

30/9/12

Dr.Ram Bilas Pachori Professor, IIT Indore

3014/16

Dr.Sivakumaran, Professor, NIT, Thiruchirapaali

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956) Declared as Category 'A' University by MHRD, Govt. of India Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119, Tamilnadu. India.

School of Electrical and Electronics

DATE 26-11-2016

VENUE: VLSI LAB

TIME: 10.30 a.m. to 12 noon

Minutes of Board of Studies Meeting

- Dr.E.Logashanmugam, Faculty Head of EEE at the outset extended his cordial welcome to all the members of the Governing Body and in his introductory remarks, he appreciated the members for their active participation in curriculum revision process. The BOS members expressed their highly appreciation and satisfaction about the courses and activities of the Department.
- Dr.G.Sundari, Prof. & Head Department of Electronics and Communication started the meeting by welcoming both the external and the internal numbers to the Board of Studies meeting (26-11-2016, 10.30 a.m. to 12.00 noon).
- The guidelines of the syllabus given by the management were explained by HOD to all the members of the BOS.
- The external members also ratified the decision to revise the syllabus under the mentioned guidelines.
- Dr S Lakshmi, proposed syllabus revision in 'Spread Spectrum Communication'. Dr.M. Madhavi Latha, Professor, JNTU College of Engineering, Hyderabad accepted the changes.
- Dr. M. Madhavi Latha accepted the changes incorporated in the subject' Audio Signal Processing suggested by Dr.P.kavipriya.
- Dr.S.Karthikeyan presented the changes made in 'Analog Communication'. Dr.Ram Bilas Pachori accepted the changes.
- Ms.K.Srilatha presented the changes made in 'Electronic Circuit II'. Dr.Ram Bilas Pachori accepted the changes.
- Dr T Ravi presented the new 'Object Oriented Programming Lab ' for enriching the programming language to students which will be helpful during placement. The two courses introduced are Radar and Navigational Aids' and 'Television Engineering'

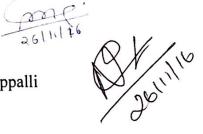
- To enrich the knowledge of student with real time industrial environment the five credit course 'Professional Training 1' was introduced to the students was put forth by Dr.G. Sundari.
- Dr.R.Ramadevi suggested few electives for EIE, AsTheory Of Robotics And Automation, Fundamentals of Mechatronics and Instrumentation And Control In Iron And Steel Industries
- Dr.V.Sivachidambaranathan, Prof.& Head, Dept. of Electrical and Electronics Engineering requested Dr.Rameshbabu, Faculty/EEE to present the curriculum revisions before the board.
- He presented the old and new syllabus for AC machines Lab before the board and discussed the valid additions made in the syllabus.

The meeting ended with vote of thanks from the Faculty Head Dr.E.Logashanmugam.

INTERNAL MEMBERS SIGNATURE 1. Dr.E.Logashanmugam 2. Dr.G.Sundari 3. Dr.N.M.Nandhitha 8)~ 4. Dr.V.Sivachidambaranathan 5. Dr.V.Vijaya Baskar 6. Dr.S.Lakshmi 7. Dr.T.Ravi 8. Dr.V.G.Sivakumar th 9. Dr. P. Kavipriya 10. Dr.P.Chitra 11. Dr.S.Karthikeyan 12. Ms.K.Srilatha 13. Dr.R.Ramadevi 14. Mrs.K.Sujatha

15. Dr. Susitra

Juni


External members

Dr. M. Madhavi Latha Professor, JNTU College of Engineering Hyderabad

114 MN

Dr.Ram Bilas Pachori Professor, IIT Indore

Dr.Sivakumaran, Professor, NIT, Thiruchirappalli

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NEW COURSES(2016-2017)

SL.NO	COURSE CODE	COURSE NAME
1.	SEC1213	PROBABILITY THEORY AND RANDOM PROCESS
2.	SCS4201	OBJECT ORIENTED PROGRAMMING LAB
3.	S14PT1	PROFESSIONAL TRAINING – 1
4.	SECX1060	RADAR AND NAVIGATIONAL AIDS
5.	SECX1043	TELEVISION ENGINEERING

		L	Т	Ρ	Credits	Total Marks
SEC1213	PROBABILITY THEORY AND RANDOM PROCESS	3	0	0	3	100

UNIT 1 PROBABILITY THEORY

Probability Theory: Random experiment, Definition of probability, Axioms of Probability, Probability Space, Theorem (without proof), Concept of a Random Variables (Discrete and Continuous), Functions of Random Va

UNIT 2 RANDOM VARIABLES

Probability Distributions: Discrete distributions: Binomial distribution, Poisson distribution, Geometric distributior Distributions: Uniform distribution, exponential distribution, Normal distribution (problems only).

UNIT 3 RANDOM PROCESS

Two Dimensional Random Variables : Two dimensional random variables, probability functions(x,y), Joint Marginal and conditional probability distributions, Independent random variables, Transformation of two dimens

UNIT 4 DISCRETE PARAMETER MARKOV CHAINS

Random Process: Random Process concept, Classification of random process, Stationary process, strict sense stationary process, Wide sense stationary processes, Poisson Process (Problems only), Auto correlation and its properties (problems only).

UNIT 5 CONTINUOUS PARAMETER MARKOV CHAINS

Queuing Theory : Introduction to Concept of Queuing Models -Symbolic representation of a queuing model, characteristic of queuing system, single server models (M/M/1):(∞/FCFS) and (M/M/C):(∞/FCFS) - Multiple server Models (M/M/1):(N/FCFS) and (M/M/C):(N/FCFS)- Problems only.

COURSE OUTCOMES:

On completion of this course, student will be able to

CO1	Appraise various probability distribution functions
CO2	Evaluate several probability values involving two dimensional random variables
CO3	Predict the properties of random processes and its various types
CO4	Create State classification and Pollaczek-Khinchin transform equation
CO5	Analyse Markovian model queueing systems with multi server and infinite/finite capacity
CO6	Develop continuous parameter Markov chain

12 hrs

12 hrs

12 hrs

12 hrs

12 hrs

TEXT / REFERENCE BOOKS

 T. Veerarajan, "Probability, statistics and Random Processes", Tata McGraw-Hill Publishing Company Ltd., 2005
J.Medhi, "Stochastic Processes", New Age International (P) Ltd., Third Revised Edition, 2010

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100

Exam Duration: 3 hrs

Part A: 10 questions of 2 marks each -No choice 20 Marks Part B: 5 questions from each unit with internal choice, each carrying 16 marks 80 Marks

		L	Т	Ρ	Credits	Total Marks
SCS4201	OBJECT ORIENTED PROGRAMMING LAB	0	0	4	2	100

1	Develop a C++ program to implement a class, object creation, member function	4 hrs
	invocation concept	
2	Develop a C++ program to implement the various constructors and destructor	3 hrs
	concept	
3	Develop a C++ program to implement a friend function, Inline function	3 hrs
4	Develop a C++ program to implement an operator (Unary & Binary) overloading	5 hrs
	concept	
5	Develop a C++ program to implement a function overloading concept	3 hrs
6	Develop a C++ program to implement a run time polymorphism	4 hrs
7	Develop a C++ program to implement the following inheritance types:	6 hrs
	a. Single	
	b. Multiple	
	c. Multilevel	
	d. Hierarchical	
	e. Hybrid	
8	Develop a C++ program to implement an Abstract class concept.	4 hrs
9	Develop a C++ program to implement a Virtual function.	4 hrs
10	Develop a C++ program to find the number of characters in a file	4 hrs
11	Develop a C++ program to handle the exceptions.	5 hrs

COURSE OUTCOMES:

On completion of this course, student will be able to

CO1	Describe the procedural and object-oriented paradigm with concepts of streams, classes, functions, data and objects
CO2	Explain the difference between object-oriented programming and procedural oriented language and data types in C++
CO3	Describe dynamic memory management techniques using pointers, constructors, destructors, etc.
CO4	Describe the concept of function overloading, operator overloading, virtual functions and polymorphism
CO5	Classify inheritance with the understanding of early and late binding, usage of exception handling, generic programming
CO6	Develop program using C++ features such as composition of objects, Operator overloading, inheritance, Polymorphism etc

SECX1060		L	Τ	Ρ	Credits	Total Marks
	RADAR AND NAVIGATIONAL AIDS (Common to ECE, ETCE)	3	0	0	3	100

UNIT 1 RADAR BASICS

Basic Radar-The Origins of Radar, Simple form of Radar Equation-Radar Block Diagram-Radar Frequencies-Application of Radar. The Radar Equation: Introduction-Detection of Signals in noise-Reciever noise and the Signal-to-Noise Ratio-Probability Density Function-Probabilities of Detection and False Alarm-Integration of Radar pulses-Radar Cross Section of Targets-Radar Cross Section Fluctuations-Transmitter Power-Pulse Repitation Frequency-Antenna Parameters-System Losses-Other Radar Euqation Considerations.

UNIT 2 MTI AND PULSE DOPPLER RADAR

Introduction To Doppler and MTI Radar-Delay- Line Cancelers-Staggered Pulse Repetition Frequencies-Doppler Filter Banks-Digital MTI Processing-Moving Target Detector-Limitation of MTI Performance-Pulse Doppler Radar-Other Doppler Radar Topics-Tracking with Radar-Monopulse Tracking-Conical Scan and Sequential Lobing-Limitation to Tracking Accuracy-Low-Angle Tracking-Tracking in Range-other Tracking Radar Topics-Comparison of Trackers-Automatic Tracking with Surveillance Radars(ADT)

UNIT 3 RADAR COMPONENTS

Detection of Signals in Noise: Introduction-Matched-Filter Receiver-Detection Criteria-Detectors-Automatic Detector-Integrators-Constant-False-Alarm Rate Receivers-The Radar Operator-Signal Management-Propagation Radar waves-Atmospheric Refraction-Standard Propagation-Non Standard Propagation. The Radar Antennas: Reflector Antennas-Electronically Steered Phased Array Antennas-Phase Shifter-Frequency-Scan Arrays Radar Transmitters: Introduction-Linear Beam Power Tubes-Solid State RF Power Sources-Magnetron-Crossed Field Amplifer-Other Rf Power Sources-Other aspects of Radar Transmitter. Radar Receivers: The Radar Receiver-Receiver Noise Figure-Superheterodyne Receiver-Duplexers and Receivers Protectors-Radar Displays.

UNIT 4 BASICS OF NAVIGATION

Introduction-Four Method of Navigation-Radio Direction Finding-The Loop Antenna-Loop Input Circuits-An Aural Null Direction Finder-The Goniometer-Error In Direction Finding-Adcock Direction Finders-Direction Finding at very High Frequencies-Automatic Direction Finders-The Commutated Aerial Direction Finders-Range and Accuracy of Direction Finders Radio Ranges-The LF/MF Four Course Radio Range-VHF Omni directional Range (VOR)-VOR Receiving Equipment-Range and accuracy of VOR-Recent Development Hyperbolic System of Navigation (Loran and Decca)-Loran-A-Loran-A Equipment-Range and Accuracy of Decca-The Omega System

UNIT 5 NAVIGATIONAL SYSTEM

DME and TACAN-Distance Measuring Equipment-Operation of DME-TACAN-TACAN Equipment Aids to Approach and Landing-Instrument Landing System-Ground Controlled Approach System-Microwave Landing System(MLS) Doppler Navigation-The Doppler Effect-Beam Configuration-Doppler frequency Equation-Track Stabilization-Doppler Spectrum-Components of The Doppler Navigation System-Doppler Range Equation-Accuracy of Doppler Navigation System. Inertial Navigation-Principles of Operation-

10 hrs

10 hrs

10 hrs

10 hrs

10 hrs

Navigation Over The Earth-Components of an inertial Navigation System-Earth Coordinate Mechanization-Strapped-Down Systems-Accuracy of Inertial Navigation Systems. Satellite Navigation System-The Transit System-Navstar Global Positioning System(GPS)-Nightvision systems.

COURSE OUTCOMES:

On completion of this course, student will be able to

CO1	Analyze the different terminologies used in RADAR systems
CO2	Design the operation of MTI and Pulse Doppler RADAR segment
CO3	Analyze the different component used in RADAR systems
CO4	Apply the corrective & controlling techniques in RADAR systems
CO5	Analyze the fundamental techniques used in Navigation system
CO6	Develop the applications of Navigational System

TEXT BOOKS :

1. Merrill I.Skolnik, "Introduction to Radar Systems", Tata McGraw-Hill (3rd Edition) 2003.

2. Nagaraja.N.S, "Elements of Electronics Navigation", Tata McGraw Hill 1993.

REFERENCE BOOKS :

1. Nadav Levanon, "Radar Principles", John Wiley and Sons, 1989

2. Peyton Z. Peebles, "Radar Principles", John Wiley & Sons, 2004

3. Toomay.J.C, "Principles of Radar", 2nd edition- PHI, 2004 4. Brookner, "Radar Technology", Artech Hons, 1986.

		L	Т	P	Credits	Total Marks	
SECX1043	TELEVISION ENGINEERING	3	0	0	3	100	
	(Common to ECE, ETCE)						

UNIT I TV PICTURES AND TV STANDARDS

Geo metric form and aspect ratio of the picture- scanning- interlaced scanning-number of scanned linesvertical and horizontal resolution – picture brightness- transfer characteristics – negative transmission – VSB transmission –Complete channel bandwidth- reception of VSB signals – allocation of frequency band for TV signals- CCIR and FCC standards.

UNIT II CAMERA TUBES

Camera tubes requirements- Iconoscope – Image Orthicon- Vidicon –Plumbicon- Silicon diode array-solid array – solid state image scanning- Gamma collection, Requirements of TV broad cast transmission- TV transmitter – Visual exciter- Aural exciter- Diplexer- transmitting antennas – MW TV relay systems- TV via satellites- CCTV- Cable TV – TV receiver as a data communication terminal-tele conference.

UNIT III TELEVISION RECEIVER

Receiver block diagram- receiving antennas- Balun and TV filters- RF tuners –VHF and UHF tuners, IF response – Wave traps, Video Detector, Video amplifier- DC restoration-Sync separator – Vertical and horizontal output stageEHT generation- Picture tube- Beam deflection- Centering and focusing- Geometric distortion in raster- Sound sections.

UNIT IV COLOUR TV

Nature of colour- Chromotocity diagram- compatibility with monochrome and vice versa Colour TV-Transmission and Reception-Video Tape recording, VCR/VCPs. Video discs- teletext and video text – Video games.

UNIT V ADVANCES IN TV TECHNOLOGY

Projection TV- Stereo sound in TV - 3D TV pictures - Digital TV - High definition TV (HD TV) - Flat panel display - LED TV

10 hrs

10 hrs

10 hrs

10 hrs

10 hrs

COURSE OUTCOMES:

On completion of this course, student will be able to

CO1	Analyze the different standards used in television
CO2	Analyze the different camera tubes used in monochrome and color television
CO3	Apply the corrective & controlling techniques to bring back the good quality picture and sound in TV
CO4	Analyze the losses in satellite communication and calculate the link budget equation
CO5	Analyze the different multiple access techniques used in satellite communication
CO6	Develop the applications of satellite in network environment

TEXT BOOKS:

1. R.R.Gulati, Monochrome and Colour Television, 2nd edition, New Age International publishers, 2004.

2. A.M.Dhake, Television and Video Engineering, 2nd edition, TMH, 2003.

REFERENCE BOOKS:

- 1. Grob and Bernard, Basic television principles and servicing, Mc Graw Hill, 2004.
- 2. R.R.Gulati, Modern TV practices: Principles, Technologies & servicing, New Age International, 1991