

PROFESSIONAL TRAINING REPORT

At

Sathyabama Institute of Science and
Technology

(Deemed to be University)

 Submitted in partial fulfillment of the requirements for the award

of Bachelor of Technology Degree in

 Information Technology

 By

 M.HARISH

 (Reg.No.37120028)

DEPARTMENT OF INFORMATION TECHNOLOGY

SCHOOL OF COMPUTING

SATHYABAMA INSTITUTE OF SCIENCE AND
TECHNOLOGY (DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC
JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI - 600119

 December 2020

 SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

 (Established under Section 3 of UGC Act, 1956)

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119

www.sathyabama.ac.in

Department of Information Technology

SCHOOL OF COMPUTING

BONAFIDE CERTIFICATE

This is to certify that this Professional Training Report is the bonafide work

HARISH.M (Reg.No.37120028) who underwent the professional training in“GAME

DEVELOPMENT USING PYTHON”under our supervision from DEC 2020 TO

JAN 2021

InternalGuide

 MR.P.SARAVANAN

HeadoftheDepartment

DR.R.SUBHASHINI M.E.,Ph.D.,

submittedforVivavoceExaminationheldon_____________________

InternalExaminer ExternalExaminer

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of

Management of SATHYABAMA INSTITUTE OF SCIENCE AND

TECHNOLOGY for their kind encouragement in doing this project and

for completing it successfully. I am grateful to them.

I convey my thanks to Dr.T.Sasikala M.E., Ph.D, Dean, School of

Computing, Dr.SUBHASHINI M.E., Ph.D., Head of the Department of

Information and Technology for providing me necessary support and

details at the right time during the progressive reviews. I would like to

express my sincere and deep sense of gratitude to my Project Guide,

Mr. P.Saravanan M.E., for his valuable guidance, suggestions and

constant encouragement paved way for the successful completion of my

project work.

I wish to express my thanks to all Teaching and Non-teaching staff

members of the Department of Information Technology who were

helpful in many ways for the completion of the project.

TRAINING CERTIFICATE

ABSTRACT

Game development using Python is a basic project which uses different modules of

Python to crack the logic behind different strategic games. The following project

depicts a game center containing two different strategic games namely “Tic-Tac-Toe”

and “Rock Paper Scissors”. In this project it’s about a single player strategy

emphasizing logical thinking and planning. Tactical organization and execution are

necessary and the decision-making skills and delivery of commands are left in the

player’s hand. Tic-Tac-Toe is a complete strategy game where the decision making is

left in player’s hand. Tic-tac-toe, noughts and crosses or Xs and Os is for two players,

X and O, who take turns marking the spaces in a 3×3 grid who take turns marking the

spaces in a 3×3 grid. The player who succeeds in placing three of their marks in a

horizontal, vertical, or diagonal row wins the game while on the other hand Rock Paper

Scissors, is a hand game usually played between two people, in which each player

simultaneously chooses one the three traits. These traits are "rock", "paper", and

"scissors". It has only two possible outcomes: a draw or a win for one player and a loss

for the other. A player who decides to play rock will beat another player who has

chosen scissors ("rock crushes scissors" or sometimes "blunts scissors"), but will lose

to one who has played paper ("paper covers rock"); a play of paper will lose to a play

of scissors. If both players choose the same shape, the game is tied and is usually

immediately replayed to break the tie. Both the games a single player games with the

other player being the computer.

CHAPTER 1

INTRODUCTION

1.1 OUTLINE OF THE PROJECT

The primary objective of this project is to develop a gaming centre using python

which presents a menu displaying different games which can be played

according to the user’s choice. All the games displayed are single player games

where the other player will be the computer itself. After the end of each game the

player is asked if he/she wishes to play the game again. According to the desired

output of the player i.e. “yes” or “no”, either the game begins again from the start

or else the player is taken back to the main menu happening according to the

player’s given input. The player can leave the anytime he wishes to by just

pressing “exit” command and the game will terminate eventually. The use of

various python modules makes the implementation of the project simpler

compared to developing the project in any other programming language.

1.2 LITERATURE REVIEW

 In this project, I am going to build Gaming Centre software which enables us to

play different games with computer. With this program, user can play the game with

bot when alone. Doing mathematics, and thinking about how you are doing it at the

same time are not the easiest things to do. It is even more difficult if the player is not

aware that he/she should be attempting both processes at the same time. They are

likely to concentrate on the immediate task of "doing" the mathematics, rather than

trying to access the deeper process. Yet it is this deeper process that is really at the

heart of mathematics. In turn, accessing this deeper process requires in part some

command of the appropriate rational/logical language so communication with

yourself and others can proceed effectively and efficiently. This part discusses the

possibilities of using player’s explorations of the traditional strategy game "tic-tac-

toe," and some extensions, to set up situations for player to discuss and examine

this process.

1.3 DESIGNING THE SOFTWARE

 Figure 1.0 shows a flowchart of the Tic-Tac-Toe program. The program

starts by asking the player to choose their letter, X or O. Who takes the first turn

is randomly chosen. Then the player and computer take turns making moves.

Fig 1.0 Flowchart of game’s logic.

1.4 PROBLEM STATEMENT

Tic-tac-toe is a pencil-and-paper game for two players, X (ascii value 88) and O

(ascii value 79), who take turns marking the spaces in a 3×3 grid. The player who

succeeds in placing three respective marks in a horizontal, vertical, or diagonal row

wins the game. Empty space is represented by (ascii value 95), and the X player

goes first.

Here is an example figure 1.1 game won by the first player, X:

Fig 1.1Trail of the game.

The function nextMove takes in a char player, and the 3x3 board as an array.

Complete the function to print 2 space separated integers r and c which denote the

row and column that will be marked in your next move. The top left position is

denoted by (0,0).

How does it work? Your code is run alternately with the opponent bot for every

move.

1.5 OBJECTIVE

The objective of Game Development using Python is as follows:

• To provide user with the trending skills

• The main aim of designing and developing

• Expand game play techniques as per cross-platform applications necessities.

• Make computer code that is supposed to create the game function smoothly.

• Plan and writing of computer code that controls and runs the graphics of a

game on display.

CHAPTER 2

ALGORITHMS AND METHODS

2.1 GENERAL

Python is interpreted, object-oriented, high-level programming language

with dynamic semantics. It’s high-level built in data structures, combined with

dynamic typing and dynamic binding, make it very attractive for Rapid Application

Development, as well as for use as a scripting or glue language to connect

existing components together. Python’s simple, easy to learn syntax emphasizes

readability and therefore reduces the cost of program maintenance. Python

supports modules and packages, which encourages program modularity and code

reuse. The python interpreter and the extensive standard library are available in

source or binary form without change for all major platforms, and can be freely

distributed.

Often, programmers are more compatible with python because of the increased

productivity it provides. Since there is no compilation step, the edit-test-debug

cycle is incredibly fast. Debugging Python programs is easy a bug or bad input will

never cause a segmentation fault. Instead, when the interpreter discovers an

error, it raises an exception. When the program does not catch the exception, the

interpreter prints a stack trace. A source level debugger allows inspection of local

and global variables, evaluation of arbitrary expressions, setting breakpoints,

stepping through the code a line at a time, and so on. The debugger is written in

Python itself, testifying to Python’s introspective power. On the other hand, often

the quietest way to debug a program is to add a few print statements to the

source. The fast edit-test-debug cycle makes this simple approach very effective.

 2.2 OVERVIEW

 Python is Interpreted − Python is processed at runtime by the interpreter.



You do not need to compile your program before executing it. This is

similar to PERL and PHP.



 Python is Interactive − You can actually sit at a Python prompt and

interactwith the interpreter directly to write your programs.



 Python is Object-Oriented − Python supports Object-Oriented style

ortechnique of programming that encapsulates code within objects.



 Python is a Beginner's Language − Python is a great language for

thebeginner-level programmers and supports the development of a wide

range of applications from simple text processing to WWW browsers to

games.

As shown in the above PYTHON plays a major role in all applications

development and we are doing project based on basic syntax. As we can send

anything according to our convenience.

 2.3 MODULAR DESIGN

2.3.1 HARDWARE AND SOFTWARE REQUIREMENTS

 Programming language : Python 3.7.0 and above versions

 Hardware requirements : CPU

 Software requirements : Microsoft windows 10

 



2.3.2 DESIGN CRITERIA

 Simplicity : easily understood

 Efficiency : uses minimal resources

 Completeness :solves entire problem

 Not independent

 Simplicity by default



 2.4 MODULES

 2.4.1 ABOUT RANDOM MODULE

This module implements pseudo-random number generators for various

distributions. For integers, there is uniform selection from a range. For sequences,

there is uniform selection of a random element, a function to generate a random

permutation of a list in-place, and a function for random sampling without

replacement. On the real line, there are functions to compute uniform, normal

(Gaussian), lognormal, negative exponential, gamma, and beta distributions. For

generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates

a random float uniformly in the semi-open range [0.0, 1.0). Python uses the

Mersenne Twister as the core generator. It produces 53-bit precision floats and has

a period of 2**19937-1. The underlying implementation in C is both fast and

threadsafe. The Mersenne Twister is one of the most extensively tested random

number generators in existence. However, being completely deterministic, it is not

suitable for all purposes, and is completely unsuitable for cryptographic purposes.

 2.4.2RANDINT IN PYTHON IMPLEMENTING RANDOM

random.randint(a, b) such that Return a random integer N such that a <= N <= b.

Alias for randrange(a, b+1).randint() is an inbuilt function of the random module in

Python3. The random module gives access to various useful functions and one of

them being able to generate random numbers, which is randint(). Parameters: (start,

end) : Both of them must be integer type values.

2.5 SUMMARY

Python doesn't have pointers like other C-based languages, making it much more

reliable. Along with that, errors never pass silently unless they're explicitly silenced.

This allows you to see and read why the program crashed and where to correct your

error, we can also use other programming languages like C, C++, Java but its

effective to use and also have predefined functions to use in the Python language

since the syntax for this programming language is simple to use and is more

effective comparatively. So we have used Python for this project as python is fast

enough for this project and allows one to produce maintainable features in record

times.

CHAPTER 3

SYSTEM IMPLEMENTATION

3.1 GENERAL

 Implementation is the stage in the project where the theoretical design is

turned into a working system. The implementation phase constructs, installs and

operates the new system. The most crucial stage in achieving a new successful

system is that it will work efficiently and effectively. In-order to implement the Gaming

Centre project firstly we need to install Python in our system. There are some steps

to be followed to while installing Python in our system and the steps are as follows:

STEP 1:

Firstly, visit the link https://www.python.org/downloads/windows/ and the window

opened will show the Python Releases for Windows as well as Macs. There will be

many versions of Python software and according to our requirement we need to click

on that version of python software. And here in this project I have used the Python

version of 3.7.3.

STEP 2:

After selecting our required version of python software we need to select the bit

configuration of the system which will be displayed in the same window were the

different versions are available. There will be different bit configurations for different

systems and in this project and according to my system bit configuration I have

chosen 64 bit configuration.

STEP 3:

After clicking on the above two requirements the python software will start

downloading and after downloading we need to follow the instructions that are shown

by the software. After reading each and every instruction that are shown we need to

click the Next button that is shown at the bottom of that window. In between the

process we also need to set the destination directory that is where the python

software needs to be stored or installed.

STEP 4:

After clicking the Next button finally the window with “Setup is successful” will be

displayed and the installation of the Python project is successfully completed. This is

not the final step of the Python installation and we still need to proceed further where

the path should be set.

STEP 5:

After the completion of Python installation software we need to proceed to the next

step which is to set the path. For setting the path we need to go the properties and in

that Environment variables where we need to set the path. Setting the path is just

copying the address of the Python where it is stored in the path location.

STEP 6:

The directory of the Python should be pasted in the path location and the changes

we have made should be saved. This is the final step of the Python installation and

after completion of these steps we can proceed to our project by using Python that

we have just installed.

3.2 IMPLEMENTATION PHASE

 First of all you need to print the menu depicting the available games that the

player can play. Using “choice” as a switch statement one can take input from the

user and run the game the user wishes to play. On the main menu screen the player

is provided with three options namely “Tic Tac Toe”, “Rock Paper Scissors” and an

“Exit” button for terminating the program.*

 3.2.1 Implementation of Rock Paper Scissors

First, we import randint from the random module. This is how our computer opponent

will play. Then we create a list of play options:

t = ["Rock", "Paper", "Scissors"]

There are three possible plays you and the computer can make on each turn,

“Rock”, “Paper” and “Scissors”. Next we setup our players, the computer and the

user:

computer = t[randint(0,2)]

player = False

We assign a random play to the computer using our list, t, and the randint function.

Why (0,2)? Remember that computers start counting at 0. So “Rock” is in the 0

position, “Paper” is in the 1, and so on. Unlike playing RPS with friends in

meatspace, the computer has made its play and is waiting for you to take your turn.

Also unlike playing RPS with friends in meat space, the computer isn’t go to cheat

and change its play after you make yours. We set you, the player, to False. Why? I’m

glad you asked. Let’s take a look at the body of our program the while loop:

Once the while loop starts, the computer will patiently wait for you to make a play. As

soon as you take your turn, your status changes from False to True because any

value assigned to the variable player makes player True. We use the input() function

to pass the new value to the variable player. Your input will determine which

statement is triggered below.

Using nested if/elif/else statements, we check every possible outcome of the game

and return a message stating the winner, a tie, or an error.

We use else at the end to catch anything that isn’t “Rock”, “Paper” or “Scissors”.

Finally we reset the player value to False to restart the while loop.

3.2.2 Implementation of Tic Tac Toe

REPRESENTING BOARD AS DATA

First, you must figure out how to represent the board as data in a variable. On paper,

the Tic-Tac-Toe board is drawn as a pair of horizontal lines and a pair of vertical

lines, with an X, O, or empty space in each of the nine spaces. In the program, the

Tic-Tac-Toe board is represented as a list of strings like the ASCII art of Hangman.

Each string represents one of the nine spaces on the board. The strings are either 'X'

for the X player, 'O' for the O player, or a single space ' ' for a blank space.

Remember that we’re laying out our board like a number pad on a keyboard. So if a

list with 10 strings was stored in a variable named board, then board[7] would be the

top-left space on the board, board[8] would be the top-middle space, board[9] would

be the top-right space, and so on. The program ignores the string at index 0 in the

list. The player will enter a number from 1 to 9 to tell the game which space they

want to move on.

STRATEGIZING WITH THE GAME AI:

The AI needs to be able to look at the board and decide which types of spaces it will

move on. To be clear, we will label three types of spaces on the Tic-Tac-Toe board:

corners, sides, and the center. The chart in Figure 3.0 shows what each space is.

The AI’s strategy for playing Tic-Tac-Toe will follow a simple algorithm—a finite

series of instructions to compute a result. A single program can make use of several

different algorithms. An algorithm can be represented with a flowchart. The Tic-Tac-

Toe AI’s algorithm will compute the best move to make, as shown in Figure 3.1.

Fig 3.0Game’s AI.Fig 3.1Game’s AI flowchart.

PRINTING THE BOARD ON THE SCREEN:

The drawBoard() function prints the game board represented by the board

parameter. Remember that the board is represented as a list of 10 strings, where the

string at index 1 is the mark on space 1 on the Tic-Tac-Toe board, and so on. The

string at index 0 is ignored. Many of the game’s functions work by passing a list of 10

strings as the board. Be sure to get the spacing right in the strings; otherwise, the

board will look funny when printed on the screen. Here are some example calls (with

an argument for board) to drawBoard() and what the function would print. The

program takes each string and places it on the board in number order according to

the keyboard number pad from Figure 10-1, so the first three strings are the bottom

row of the board, the next three strings are the middle, and the last three strings are

the top.

LETTING THE PLAYER CHOOSE X OR O:

The inputPlayerLetter() function asks whether the player wants to be X or O. The

while loop’s condition contains parentheses, which means the expression inside the

parentheses is evaluated first. If letter has the value 'X' or 'O', then the loop’s

condition is False and lets the program execution continue past the while block. If the

condition is true, the program will keep asking the player to choose a letter until the

player enters an X or O. The string returned by the call to input() to uppercase letters

with the upper() string method. A figure representing the alogorithm

Fig 3.2 Selection of X and O.

DECIDING WHO GOES FIRST:

The whoGoesFirst() function does a virtual coin flip to determine whether the

computer or the player goes first. The coin flip is done with a call to

random.randint(0,). There is a 50 percent chance the function returns 0 and a 50

percent chance the function returns 1. If this function call returns a 0, the

whoGoesFirst() function returns the string 'computer'. Otherwise, the function returns

the string 'player'. The code that calls this function will use the return value to

determine who will make the first move of the game.

CHECKING WHETHER THE PLAYER WON:

The bo and le names are shortcuts for the board and letter parameters. These

shorter names mean you have less to type in this function. Remember, Python

doesn’t care what you name your variables. There are eight possible ways to win at

Tic-Tac-Toe: you can have a line across the top, middle, or bottom rows; you can

have a line down the left, middle, or right columns; or you can have a line across

either of the two diagonals. Each line of the condition checks whether the three

spaces for a given line are equal to the letter provided (combined with the and

operator). You combine each line using the or operator to check for the eight

different ways to win. This means only one of the eight ways must be true in order for

us to say that the player who owns the letter in le is the winner.

DUPLICATING THE BOARD DATA:

The getBoardCopy() function allows you to easily make a copy of a given 10-string

list that represents a Tic-Tac-Toe board in the game. When the AI algorithm is

planning its moves, it will sometimes need to make modifications to a temporary

copy of the board without changing the actual board. In those cases, we call this

function to make a copy of the board’s list. Right now, the list stored in boardCopy is

just an empty list. The for loop will iterate over the board parameter, appending a

copy of the string values in the actual board to the duplicate board. After the

getBoardCopy() function builds up a copy of the actual board, it returns a reference

to this new board in boardCopy, not to the original one in board.

CHECKING WHETHER A SPACE ON THE BOARD IS FREE:

Given a Tic-Tac-Toe board and a possible move, the simple isSpaceFree() function

returns whether that move is available or not. Remember that free spaces in the

board lists are marked as a single-space string. If the item at the space’s index is not

equal to ' ', then the space is taken.

LETTING THE PLAYER ENTER A MOVE:

The getPlayerMove() function asks the player to enter the number for the space they

want to move on. The loop makes sure the execution doesn’t continue until the

player has entered an integer between 1 and 9. It also checks that the space entered

isn’t already taken, given the Tic-Tac-Toe board passed to the function for the board

parameter. The two lines of code inside the while loop simply ask the player to enter

a number from 1 to 9. The expression on the left side checks whether the player’s

move is equal to '1', '2', '3', and so on up to '9' by creating a list with these strings

(with the split() method) and checking whether move is in this list. In this expression,

'1 2 3 4 5 6 7 8 9'.split() evaluates to ['1', '2', '3', '4', '5', '6', '7', '8', '9'], but the former is

easier to type. The expression on the right side checks whether the move the player

entered is a free space on the board by calling isSpaceFree(). Remember that

isSpaceFree() returns True if the move you pass is available on the board. Note that

isSpaceFree() expects an integer for move, so the int() function returns an integer

form of move. The not operators are added to both sides so that the condition is True

when either of these requirements is unfulfilled. This causes the loop to ask the

player again and again for a number until they enter a proper move. Finally, line 68

returns the integer form of whatever move the player entered. input() returns strings,

so the int() function is called to return an integer form of the string.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULT AND ANALYSIS

On executing the python code of GAMING CENTRE we get the output according to

the corresponding code.

Fig 4.1 Output of Gaming centre program.

The above screenshot is the output of the code gaming centre, the functioning of the

code is as follows, first we have compiled the main function of the program which on

implementation display’s the menu showed above displaying the menu. Then we use

choice keyword to take input from the user and run the code of the game choice the

user selected.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 SUMMARY

This game is very popular and is fairly simple by itself. It is a two player game. The

object we are scripting is composed of 9 cubes with an X/O texture pre-set and a

back pane prim as the root prim. The player who succeeds in placing three of their

marks in a horizontal, vertical, or diagonal row wins the game. The link order of the

child prims tic -tac-toe is assumed to be in any sequential reading order (left to right,

top to bottom or similar).The game can be generalized to an m, n, k-game in which

two players alternate placing stones of their own colour or letter on an m ×n board,

with the goal of getting k of their own colour or letter in a row.Tic-tac-toe is the

(3,3,3)-game. There is no such use of complex pseudo code and algorithm. It can

also be generalized as n^d game. Tic-tac-toe is the game where n equals 3 and d

equals 2. If played properly, the game will end in a draw making tic-tac-toe a futile

game. Hence, tic-tac-toe is most often played by young children. Due to the

simplicity of tic-tac-toe, it is often used as a pedagogical tool.

5.2 FUTURE WORKS

 Keyboard functions will be added.

 I want to design more complex boards for the game in future.

 In future in Android application development I would like to learn the OpenGI

2D graphics which can be implemented in the application which will improve

the working and presentation of the application.

 Also, I would like to implement a 4x4 board game.

 Python programming language is best used for application development, web

application or web development, game development, system administration,

scientific computing and so I am looking forward to develop such games in

future.

5.3 CONCLUSION

 In the end I would like to conclude that my aim to make this project was to

research in the field of GAME DEVELOPMENT and also implementation of

Artificial Intelligence by developing the logic for the game. Some scopes of

improvements are also there in the project which will be rectified in the future

advancements of the project.

 The design of project taught us about programming and also the

documentation involved with creating this project. The limitations of this

project were time constraints and limited testing time. Creating the whole

project and documenting our design process went well.

REFERENCES

[1] Python Basics, https://docs.python.org/3/ , accessed on July 2019. Used to know

the basics of python and installation on python software.

[2] Basics of Tic Tac Toe, http://inventwithpython.com/invent4thed/chapter10.html ,

accessed on July 2019 which was used to develop the logic behind the game.

[3] Basics of Rock Paper Scissors, https://thehelloworldprogram.com/python/python-

game-rock-paper-scissors/ , accessed on July 2019 which was used to develop the

logic behind the game.

[4] Game Development Using Python(Android+IOS), Udemy,

https://www.udemy.com/course/android-game-development-using-python-build-12-

apps-games/learn accessed on July 2019 which was used for better understanding

of game development.

https://docs.python.org/3/
http://inventwithpython.com/invent4thed/chapter10.html
https://thehelloworldprogram.com/python/python-game-rock-paper-scissors/
https://thehelloworldprogram.com/python/python-game-rock-paper-scissors/
https://www.udemy.com/course/android-game-development-using-python-build-12-apps-games/learn
https://www.udemy.com/course/android-game-development-using-python-build-12-apps-games/learn

APPENDIX

A) SOURCE CODE

The following is the code of the project “Game Development Using Python”. The

code contains all the packages that are required for the project and the functions that

are required are also written in the code.

import random

import sys

from random import randint

defget_input():

 ifsys.version_info>= (3, 0):

 return input()

 else:

 returnraw_input()

defdrawBoard(board):

print(' ' + board[7] + ' | ' + board[8] + ' | ' + board[9])

print('-----------')

print(' ' + board[4] + ' | ' + board[5] + ' | ' + board[6])

print('-----------')

print(' ' + board[1] + ' | ' + board[2] + ' | ' + board[3])

definputPlayerLetter():

letter = ''

while not (letter == 'X' or letter == 'O'):

print('Do you want to be X or O?')

letter = get_input().upper()

if letter == 'X':

return ['X', 'O']

else:

return ['O', 'X']

defwhoGoesFirst():

ifrandom.randint(0, 1) == 0:

return 'computer'

else:

return 'player'

defplayAgain():

print('Do you want to play again? (yes or no)')

returnget_input().lower().startswith('y')

defmakeMove(board, letter, move):

ifisSpaceFree(board,move):

board[move] = letter

else:

raise Exception("makeMove: the field is not empty!")

defisWinner(bo, le):

return ((bo[7] == le and bo[8] == le and bo[9] == le) or

 (bo[4] == le and bo[5] == le and bo[6] == le) or

 (bo[1] == le and bo[2] == le and bo[3] == le) or

 (bo[7] == le and bo[4] == le and bo[1] == le) or

 (bo[8] == le and bo[5] == le and bo[2] == le) or

 (bo[9] == le and bo[6] == le and bo[3] == le) or

 (bo[7] == le and bo[5] == le and bo[3] == le) or

 (bo[9] == le and bo[5] == le and bo[1] == le))

defgetBoardCopy(board):

dupeBoard = []

for i in board:

dupeBoard.append(i)

returndupeBoard

defisSpaceFree(board, move):

return board[move].isdigit()

defgetPlayerMove(board):

move = ' '

while move not in '1 2 3 4 5 6 7 8 9'.split() or not isSpaceFree(board, int(move)):

print('What is your next move? (1-9)')

move = get_input()

returnint(move)

defchooseRandomMoveFromList(board, movesList):

possibleMoves = []

for i in movesList:

ifisSpaceFree(board, i):

possibleMoves.append(i)

iflen(possibleMoves) > 0:

returnrandom.choice(possibleMoves)

else:

return None

defgetComputerMove(board, computerLetter):

ifcomputerLetter == 'X':

playerLetter = 'O'

else:

playerLetter = 'X'

for i in range(1, 10):

copy = getBoardCopy(board)

ifisSpaceFree(copy, i):

makeMove(copy, computerLetter, i)

ifisWinner(copy, computerLetter):

return i

for i in range(1, 10):

copy = getBoardCopy(board)

ifisSpaceFree(copy, i):

makeMove(copy, playerLetter, i)

ifisWinner(copy, playerLetter):

return i

move = chooseRandomMoveFromList(board, [1, 3, 7, 9])

if move != None:

return move

ifisSpaceFree(board, 5):

return 5

returnchooseRandomMoveFromList(board, [2, 4, 6, 8])

defisBoardFull(board):

for i in range(1, 10):

ifisSpaceFree(board, i):

return False

return True

def main():

 d=0

while(d!=1):

print('')

print('')

print(".............................WELCOME TO GAME CENTER.............................")

print('')

print('1) Tic Tac Toe Game')

print("2) Rock, Paper, Scissors")

print("3) Exit")

print('')

choice= input()

if choice=='2':

 t=['Rock','Paper','Scissors']

comp=t[randint(0,2)]

player=False

 x=0

print('you dont want to continue press "n"')

while player==False and x!=1:

player=input('Rock,Paper,Scissors?')

if player==comp:

print("Tie")

elif player=="Rock":

if comp=="paper":

print("you lose!")

else:

print("You WIN")

elif player=="Paper":

if comp=="Scissors":

print("you lose!")

else:

print("You WIN")

elif player=="Scissors":

if comp=="Rock":

print("you lose!")

else:

print("You WIN")

elif player=='n':

 x=1

else:

print("Not VALID")

player=False

comp=t[randint(0,2)]

elif choice=='1':

print('Welcome to Tic Tac Toe!')

random.seed()

while True:

theBoard = [' '] * 10

for i in range(9,0,-1):

theBoard[i] = str(i)

playerLetter, computerLetter = inputPlayerLetter()

turn = whoGoesFirst()

print('The ' + turn + ' will go first.')

gameIsPlaying = True

whilegameIsPlaying:

if turn == 'player':

drawBoard(theBoard)

move = getPlayerMove(theBoard)

makeMove(theBoard, playerLetter, move)

ifisWinner(theBoard, playerLetter):

drawBoard(theBoard)

print('Hooray! You have won the game!')

gameIsPlaying = False

else:

ifisBoardFull(theBoard):

drawBoard(theBoard)

print('The game is a tie!')

break

else:

turn = 'computer'

else:

move = getComputerMove(theBoard, computerLetter)

makeMove(theBoard, computerLetter, move)

ifisWinner(theBoard, computerLetter):

drawBoard(theBoard)

print('The computer has beaten you! You lose.')

gameIsPlaying = False

else:

ifisBoardFull(theBoard):

drawBoard(theBoard)

print('The game is a tie!')

break

else:

turn = 'player'

if not playAgain():

break

elif choice=='3':

 d=1

else:

print("NOT A VALID INPUT")

if __name__ == "__main__":

main()

B)SCREENSHOTS:

Fig B.1 Screenshot of Actual Code

Fig B.2 Screenshot of Actual Code

Fig B.3 Screenshot of Actual Code

Fig B.4 Screenshot of Actual Code

Fig B.5 Screenshot of Actual Code

Fig B.6 Screenshot of Actual Code

Fig B.7 USER INPUT SCREEN

