

Point Of Sale System

Submitted in partial fulfillment of the requirements for

the award of
Bachelor of Technology degree in Information Technology

by

Sivakumar G (37120070)

Ravikumar P (37120058)

DEPARTMENT OF INFORMATION TECHNOLOGY

SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC
JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI - 600 119

MARCH – 2021

I

SCHOOL OF COMPUTING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of Sivakumar G (37120070.) and

Ravikumar P (37120058.) who carried out the project entitled “Point Of Sale System” under

our supervision from November 2020 to March 2021.

Internal Guide

Mrs. Vimali J S, M.Tech.,(Ph.D.,)

Head of the Department

Dr. R. SUBHASHINI, M.E., Ph.D.,

Submitted for Viva voice Examination held on

Internal Examiner External Examiner

II

DECLARATION

We G.Sivakumar and P.Ravikumar hereby declare that the project report

entitled on “Point of Sale System” done by us under the guidance of Mrs.

Vimali JS, M.Tech., (Ph.D.,) at Sathyabama Institute of Science And

Technology, Semmancheri, Chennai – 600 119 and is submitted in partial

fulfillment of the requirements for the award of Bachelor of Technology

degree in Information Technology.

DATE:

PLACE: Chennai SIGNATURE OF THE CANDIDATES

iii

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

Sathyabama Institute of Science and Technology for their kind encouragement in

doing this project and for completing it successfully. I am grateful to them.

I convey my thanks to Dr. T.Sasikala M.E., Ph.D, Dean, School of Computing,

Dr.R.Subhashini M.E., Ph.D., Head of the Department of Information Technology

for providing me necessary support and details at the right time during the

progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide

Mrs. Vimali J S M.Tech., (Ph.D.,) for her valuable guidance, suggestions and

constant encouragement paved way for the successful completion of my project

work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Information Technology who were helpful in many ways for the

completion of the project.

iv

ABSTRACT

This project is about the point of sale (POS) system Implemented in Embedded

Systems, which is being done for the organization LCS Controls Private Limited. Point of sale

is the point at which a customer makes a payment to the merchant after buying their product.

After receiving payment, the merchant may issue a receipt or bill for the transaction, which is

usually printed but can also be dispensed with or sent electronically. To calculate the amount

to be paid by the customer for what he/she purchased, the merchant may use various

devices such as weighing scales, barcode scanners, and cash registers, to control all these

devices a microcontroller is used in hardware. The microcontroller processes all the input

data given to it and output’s the processed data to the required output console. To process

those data, a programmer should give a proper algorithm to the microcontroller through any

programming language which is accepted by the microcontroller. Ex. C, Python etc. In this

project a proper algorithm is given to the microcontroller through C programming language, in

order to solve the point of sale problem. The problem can be solved by getting data input to

the microcontroller through various input devices such as weighing scales, Keyboards and

output as a bill to the billing machine. This system is an integrated weighing point of sale

(POS) system, such that the weighing scale measured weight for each item is directly

displayed in the output screen. POS system enables quick product return processes. When a

customer cancels a purchase, the merchant can process it through POS system with just a

few clicks. The number of stock that was reduced automatically increases again once the

purchase has been cancelled. The Accounting details of a grocery store can be stored in well

organized manner, either it may be the tax amount or the total revenue collected by the store.

v

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1

1.1

1.2

1.3

1.4

1.5

COVER PAGE i

BONAFIDE ii

DECLARATION iii

ACKNOWLEDGMENT iv

ABSTRACT v

LIST OF FIGURES viii

LIST OF TABLES x

INTRODUCTION 1

INTRODUCTION TO THE COMPANY 1

INTRODUCTION TO THE PROJECT 1

BACKGROUND OF THE PROJECT 2

AIM OF THE PROJECT 2

SCOPE OF THE PROJECT 3

2

2.1

2.2

2.3

LITERATURE REVIEW 4

AN ANALYSIS OF POINT OF SALE SYSTEM (2017) 4

POINT-OF-SALES SYSTEMS IN FOOD AND 4

BEVERAGE INDUSTRY (2017)

R&D LCS CONTROLS PVT. LTD. 4

3 METHODOLOGY

3.1 LANGUAGES AND LIBRARIES USED

3.1.1 C LANGUAGE

3.1.2 C#

3.1.3 JAVA

3.1.4 LPC1549 HEADER FILES (C LANGUAGE)

3.2 SOFTWARES USED

3.2.1 KEIL

3.2.2 FLASH MAGIC PROGRAMMER

3.2.3 HERCULES SETUP UTILITY

3.2.4 VISUAL STUDIOS 2010

3.2.5 ANDROID STUDIOS

vi

5

5

5

6

7

8

9

9

10

11

12

13

3.3 MATERIALS/HARDWARE USED 14

3.3.1 RS232 CONNECTOR & BILL PRINTER (32 CHAR) 14

3.3.2 WEIGHING SCALE 15

3.3.3 LPC1548/1549 MICROCONTROLLER 16

3.4 METHODS AND ALGORITHM 18

3.4.1 ALGORITHM STARTBILLING() 18

3.5 FLOW CHART OF THE POS SYSTEM 19

3.6 E2 PROM 21

3.7 E2 PROM ITEM BACKUP THAT IS ENTERED 22

 DURING BILLING

3.8 E2 PROM TODAY’S BILL SUMMARY 23

3.9 E2 PROM MONTHLY’S BILL SUMMARY 24

3.10 E2 PROM YEARLY’S BILL SUMMARY 24

3.11 SOCKETS 25

3.12 INFORMATION COLLECTED BY MOBILE 26

4 RESULTS AND DISCUSSION 28

4.1 RESULT 28

4.2 DISCUSSION 28

5 CONCLUSION AND FUTURE WORK 29

5.1 CONCLUSION 29

5.2 FUTURE WORK 29

 REFERENCES 30

 APPENDICES 31

A SAMPLE CODE 31

B SCREENSHOTS 36

C PUBLICATION WITH PLUGIARISM REPORT 41

vii

 LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

1.1 LCS Controls Pvt. Ltd. Logo 1

1.2 Sample POS System 1

1.4 Single POS System 3

3.1 C Language 5

3.2 C Sharp (C#) 6

3.3 Java 7

3.4 LPC1549 LPCXpresso board 8

3.5 Keil Software 9

3.6 Flash Magic Programmer 10

3.7 Hercules Setup Utility 11

3.8 Visual Studios 2010 12

3.9 Android Studio 13

3.10 RS232 Connector & Bill Printer 14

3.11 Weighing Scale 15

3.12 LPC1548/1549 MICROCONTROLLER 16

3.13 LPC15XX Block Diagram 17

3.14 Flow Chart 19

3.15 Flow Chart (Cont.) 20

3.16 Item Backup Memory Map 22

3.17 Today’s Bill Summary Memory Map 23

3.18 Monthly’s Bill Summary Memory Map 24

viii

3.19 Yearly’s Bill Summary Memory Map 24

3.20 Wireless Mobile Communication 25

7.1 Input Data Example In Weight (KG) 36

7.2 Input Data Example In Pieces 36

7.3 Bill Generated 37

7.4 Brief Today’s Bill Summary 37

7.5 Brief Monthly’s Bill Summary 37

7.6 Brief Yearly’s Bill Summary 38

7.7 Detailed Today’s Bill Summary 38

7.8 Detailed Monthly’s Bill Summary 38

7.9 Detailed Yearly’s Bill Summary 39

7.10 POS_DataTransmitter PC Software 39

7.11 Main Page 40

7.12 Receiving Page 40

7.13 Sending Page 40

8.1

Published paper page 1 41

8.2 Published paper page 2 42

8.3 Published paper page 3 43

8.4 Published paper page 4 44

8.5 Published paper page 5 45

8.6 Plagiarism paper 46

8.7 Paper Acceptance 47

ix

 LIST OF TABLES

TABLE NO. TABLE NAME PAGE NO.

3.13 QUERY INFORMATION 27

3.14 DATE WISE SUMMARY QUERY EXPANSION 27

x

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO THE COMPANY

LCS Controls PVT. LTD. is a service oriented company who are Designers,

manufacturers and “end-to-end” total solution providers in industrial weighing, batching,

bagging, packing and allied automation with a full-fledged manufacturing facility in

industrial hub of Chennai, India. They also provide embedded electronics, mechanical

items, electrical drives, material handling equipments, sensors & pneumatic actuators,

real-time software etc.

Figure 1.1 : LCS Controls Pvt Ltd. Logo

1.2 INTRODUCTION TO THE PROJECT

The point of sale (POS) is the place or time a retail transaction is performed or

completed. During the point of sale, the merchant summarizes the amount owed by his/her

customer, indicating that amount either through invoice or through cash register printouts

and can show the options for the customers to pay those bills. It can be also called as a

point where customer does payement to the merchant for any service done, any exchange

of goods or things. The next step to the payment, the customer will be given with the

receipt in acknowledgment to the payment customer had done.

Figure 1.2 : Sample POS System

1

In this project a suitable algorithm is given to the LPC1548/1549, an ARM Cortex-M3

processer to perform the task and to overcome the objective of Point of sale activity.

1.3 BACKGROUND OF THE PROJECT

This Project can differentiate each item through an unique identifier called item code.

Each item has its own unique item code number and its quantity is measured in twotypes,

one is weight and the other is pieces. Since, the memory size is limited POS System

implemented in the LPC1548/1549 microcontroller can store data of 500 Items, 1000 bills

per day and it’s summary (max), most recent 2 months bill summary, most recent 2 years

bill summary. Each Item entered for billing are stored as a backup at the spot which can

handle power cut situation so that it can retrieve all previously entered items when power

is back. The user is allowed to edit/delete the items that he/she entered. The weight is

measured through the weight scale and it sends the analog data to the microcontroller,

the microcontroller performs ADC operations and can determine the actual weight through

calibrated values. The bill can be printed through a bill printer (i.e) connected using UART

protocol with the hardware. A provision has been given to print the brief summary of

today’s bill, Monthly’s bill, yearly’s bill. The list of items and shop name are loaded into the

hardware through a PC based software (Windows) and an android application, detailed

bill summary is retrieved from the hardware through the same software by storing it as a

text file in the PC/ so that it can be viewed at any time. All the communications between

the hardware and the pc will be serially at present through UART protocol.

1.4 AIM OF THE PROJECT

The main aim of the project is to make an integrated weighing point of sale (POS)

system, such that the weighing scale measured weight for each item is directly processed

by the hardware to get the desired output and to make the billing process more faster. The

Accounting details for any store can be stored in a well organised manner, either it may be

the tax amount or the total revenue collected by the store.

2

Figure 1.4 : Single POS System

1.5 SCOPE OF THE PROJECT

POS solutions can lower the cost of doing business while increasing productivity,

improving the bottom line. Upgrading from an Cash register to a point of sale system will

result in a fast return on investment (ROI), both in rupees and time spent on day-to-day

operations. As the days of analog technology continue to fall further out of use behind us,

so do cash registers. Today, everything is digital, and everything is faster. POS systems

will be simple for employees to learn, which will result in shortening training time and help

them to be more productive overall. Point of sale systems have reporting features that

allow to keep a close eye on sales, profits, and expenses like Cost of Goods Sold (COGS).

POS reports give data in real-time, and formatted with easy-to-read information. It also

helps streamline the accounting process. Old-fashioned cash registers force accountants

to sort through hundreds of receipts, but with a POS system, you can print reports and, in

many cases, import data directly with a suitable software.

3

CHAPTER 2

LITERATURE REVIEW

2.1 AN ANALYSIS OF POINT OF SALE SYSTEM PHYSICAL

CONFIGURATIONS AND SECURITY MEASURES IN ZIMBABWEAN SMES

(2017)

The local client server model for POS system is referred from the research paper

which helped this project to build a robust topology for communication in a network. This

client server model made data communication over a network very fast. This model made

connection seamless were disconnection cannot happen at all (under normal case).

2.2 POINT-OF-SALES SYSTEMS IN FOOD AND BEVERAGE INDUSTRY

EFFICIENT TECHNOLOGY AND ITS USER ACCEPTANCE (2017)

This paper made the project more user responsive and completely describes the

ease in usability of the POS System. The project is made trustful with use at most ease.

The project is fast in usability and collects user’s attitudes towards the system.

2.3 R&D LCS CONTROLS PVT. LTD.

The R&D of the company researched many technical works and made the

project a good look at final. They referred non-volatile memory to store and process data

any time. An external device communication via UART protocol is established, LED and

LCD display is made responsive with help of the team.

4

CHAPTER 3

METHODOLOGY

3.1 LANGUAGES AND LIBRARIES USED

3.1.1 C Language

C is a general-purpose, procedural computer programming language supporting

structured programming, lexical variable scope, and recursion, with a static type system. By

design, C provides constructs that map efficiently to typical machine instructions. The main

features of C language include low-level access to memory, a simple set of keywords, and

clean style, these features make C language suitable for system programmings like an

operating system or compiler development.

C is an imperative procedural language. It was designed to be compiled to provide

low-level access to memory and language constructs that map efficiently to machine

instructions, all with minimal runtime support. Despite its low-level capabilities, the

language was designed to encourage cross-platform programming. A standards-compliant

C program written with portability in mind can be compiled for a wide variety of computer

platforms and operating systems with few changes to its source code.

C is a procedural programming language. It was initially developed by Dennis

Ritchie in the year 1972. It was mainly developed as a system programming language to

write an operating system. The main features of C language include low-level access to

memory, a simple set of keywords, and clean style, these features make C language

suitable for system programmings like an operating system or compiler development.

Many later languages have borrowed syntax/features directly or indirectly from C

language. Like syntax of Java, PHP, JavaScript, and many other languages are mainly

based on C language. C++ is nearly a superset of C language (There are few programs

that may compile in C, but not in C++).

Figure 3.1 : C Language

5

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Porting

3.1.2 C#

C# is pronounced as "C-Sharp". It is an object-oriented programming language

provided by Microsoft that runs on .Net Framework. By the help of C# programming

language, we can develop different types of secured and robust applications:

Window applications

Web applications

Distributed applications

Web service applications

Database applications etc.

C# is approved as a standard by ECMA and ISO. C# is designed for CLI (Common

Language Infrastructure). CLI is a specification that describes executable code and

runtime environment. C# programming language is influenced by C++, Java, Eiffel,

Modula-3, Pascal etc. languages.

C# is a modern, general-purpose programming language that can be used to perform a

wide range of tasks and objectives that span over a variety of professions. C# is primarily

used on the Windows .NET framework, although it can be applied to an open source

platform. This highly versatile programming language is an object-oriented programming

language (OOP)—which isn’t very common—and fairly new to the game, yet already a

reliable crowd pleaser

Figure 3.2 : C#

6

3.1.3 Java

Java is a class-based, object-oriented programming language that is designed to

have as few implementation dependencies as possible. It is a general-purpose

programming language intended to let application developers write once, run anywhere

(WORA), meaning that compiled Java code can run on all platforms that support Java

without the need for recompilation.

Java applications are typically compiled to bytecode that can run on any Java

virtual machine (JVM) regardless of the underlying computer architecture. The syntax of

Java is similar to C and C++, but has fewer low-level facilities than either of them. The

Java runtime provides dynamic capabilities (such as reflection and runtime code

modification) that are typically not available in traditional compiled languages. As of 2019,

Java was one of the most popular programming languages in use according to GitHub,

particularly for client-server web applications, with a reported 9 million developers.

The Java syntax is similar to C++, but is strictly an object-oriented programming

language. For example, most Java programs contain classes, which are used to define

objects, and methods, which are assigned to individual classes. Java is also known for

being more strict than C++, meaning variables and functions must be explicitly defined.

This means Java source code may produce errors or "exceptions" more easily than other

languages, but it also limits other types of errors that may be caused by undefined

variables or unassigned types.

Figure 3.3 : Java

7

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Client%E2%80%93server
https://en.wikipedia.org/wiki/Client%E2%80%93server

3.1.4 LPC1549 Header Files (C Language)

The LPC1549 LPCXpresso™ board with NXP®'s LPC1549 Cortex-M3

microcontroller is designed to make it as easy as possible to get started with the project.

The LPC1549 header library has all the driver codes to make the code what engineer

types compatible with the microcontroller.

The platform is comprised of a simplified Eclipse-based IDE and low-cost target

boards which include an attached JTAG debugger. LPCXpresso is an end-to-end solution

enabling embedded engineers to develop their applications from initial evaluation to final

production.

Figure 3.4 : LPC1549 LPCXpresso board

8

3.2 SOFTWARES USED

3.2.1 Keil

Keil MDK is the complete software development environment for a wide range of

Arm Cortex-M based microcontroller devices. MDK includes the µVision IDE and

debugger, Arm C/C++ compiler, and essential middleware components. It supports all

silicon vendors with more than 7,500 devices and is easy to learn anduse.

The Keil µVision Debugger accurately simulates on-chip peripherals (I²C, CAN,

UART, SPI, Interrupts, I/O Ports, A/D Converter, D/A Converter, and PWM Modules) of

your 8051 device. Simulation helps you understand hardware configurations and avoids

time wasted on setup problems. Additionally, with sWhen starting a new project, simply

select the microcontroller you use from the Device Database and the µVision IDE sets all

compiler, assembler, linker, and memory options for you.

Numerous example programs are included to help you get started with the most

popular embedded 8051 devicesimulation, you can write and test applications before

target hardware is available.

When you are ready to begin testing your software application with target

hardware, use the MON51, MON390, MONADI, or FlashMON51 Target Monitors, the

ISD51 In-System Debugger, or the ULINK USB-JTAG Adapter to download and test

program code on your target system.

Figure 3.5 : Keil Software

9

https://www.keil.com/mdk5
https://www.keil.com/uvision
https://www.keil.com/uvision
https://www.keil.com/debug
https://www.keil.com/debug
https://www.keil.com/middleware
https://www.keil.com/dd2

3.2.2 Flash Magic Programmer

Flash Magic is a PC tool for programming flash based microcontrollers from NXP

using a serial or Ethernet protocol while in the target hardware.

Flash Magic is a PC burner tool for programming flash memory based

microcontroller using serial or Ethernet protocol built by NXP. This tool helps the developer

to easily burn the hex file generated by the embedded software like Keil µvision for 8051

and ARM microcontrollers or MPLAB for PIC microcontrollers. It is available free and easy

to install in Windows or Mac OS based PC.

Features : Automatically program checksums. Using the supplied checksum

calculation routine your firmware can easily verify the integrity of a Flash block, ensuring

no unauthorized or corrupted code can ever be executed. Check which Flash blocks are

blank or in use with the ability to easily erase all blocks in use. Reprogram the Boot Vector

and Status Byte with the help of confirmation features that prevent accidentally

programming incorrect values. Powerful, flexible Just In Time Code feature. Write your

own JIT Modules to generate last minute code for programming, for example serial number

generation. Check which Flash blocks are blank or in use with the ability to easily erase all

blocks in use. Control the DTR and RTS RS232 signals to place the device into BootROM

and Execute modes automatically (requires hardware support). Support programming

certain LPC1xxx/LPC2xxx devices via Ethernet. Build your own Flash Magic based

applications using the DLLs for C, C++, Python.

Figure 3.6 : Flash Magic Programmer

10

http://www.nxp.com/microcontrollers
http://www.nxp.com/microcontrollers

3.2.3 Hercules Setup Utility

Hercules SETUP utility is useful serial port terminal (RS-485 or RS-232 terminal),

UDP/IP terminal and TCP/IP Client Server terminal. It was created for HW group internal

use only, but today it's includes many functions in one utility and it's Freeware! With our

original devices (Serial/Ethernet Converter, RS-232/Ethernet Buffer or I/O Controller) it can

be used for the UDP Config.

Hercules SETUP provides the users for setting up environment the UDP and TCP

serial terminal ports. You don’t have to install this software on your computer to start the

operations instead it comes with an execution-able file that can allow you to start working

as soon as you get it.

You can also view file formats, enable macros, transfer files, and use the

debugging features of the serial port terminals through this application. Furthermore, it is

easy to use and have simple buttons for implementing the changes.

One of the drawbacks of this application is that it is not supported by many devices,

which can be a bit problematic if you are expecting to use this application with many

devices.

You can setup UDP and TCP serial terminal ports with Hercules SETUP. However,

its restrictions include the limited device support.

Figure 3.7 : Hercules Setup Utility

11

3.2.4 Visual Studios 2010

Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It is used to develop computer programs, as well as websites, web apps, web

services and mobile apps. Visual Studio uses Microsoft software development platforms

such as Windows API, Windows Forms, Windows Presentation Foundation, Windows

Store and Microsoft Silverlight. It can produce both native code and managed code.

Visual Studio includes a code editor supporting IntelliSense (the code completion

component) as well as code refactoring. The integrated debugger works both as a source-

level debugger and a machine-level debugger. Other built-in tools include a code profiler,

designer for building GUI applications, web designer, class designer, and database

schema designer. It accepts plug-ins that expand the functionality at almost every level—

including adding support for source control systems (like Subversion and Git) and adding

new toolsets like editors and visual designers for domain-specific languages or toolsets for

other aspects of the software development lifecycle (like the Azure DevOps client: Team

Explorer).

Visual Studio supports 36 different programming languages and allows the code

editor and debugger to support (to varying degrees) nearly any programming language,

provided a language-specific service exists. Built-in languages include C, C++, C++/CLI,

Visual Basic .NET, C#, F#, JavaScript, TypeScript, XML, XSLT, HTML, and CSS. Support

for other languages such as Python, Ruby, Node.js, and M among others is available via

plug-ins. Java (and J#) were supported in the past.

Figure 3.8 : Visual Studios 2010

12

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Windows_Presentation_Foundation
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/Microsoft_Silverlight
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Managed_code

3.2.5 Android Studios

Android Studio is the official integrated development environment (IDE) for

Google's Android operating system, built on JetBrains, IntelliJ IDEA software and designed

specifically for Android development. It is available for download on Windows, macOS and

Linux based operating systems or as a subscription-based service in 2020. It is a

replacement for the Eclipse Android Development Tools (E-ADT) as the primary IDE for

native Android application development.

Android Studio was announced on May 16, 2013 at the Google I/O conference. It

was in early access preview stage starting from version 0.1 in May 2013, then entered beta

stage starting from version 0.8 which was released in June 2014.The first stable build was

released in December 2014, starting from version 1.0.

On May 7, 2019, Kotlin replaced Java as Google's preferred language for Android

app development.Java is still supported, as is C++.

Android Studio supports all the same programming languages of IntelliJ (and CLion)

e.g. Java, C++, and more with extensions, such as Go; and Android Studio 3.0 or later

supports Kotlin and "all Java 7 language features and a subset of Java 8 language features

that vary by platform version."External projects backport some Java 9 features. While

IntelliJ states that Android Studio supports all released Java versions, and Java 12, it's not

clear to what level Android Studio supports Java versions up to Java 12 (the documentation

mentions partial Java 8 support). At least some new language features up to Java 12 are

usable in Android.

Figure 3.9 : Android Studio

13

3.3 MATERIALS/HARDWARE USED

3.3.1 RS232 Connector & Bill Printer (32 char)

RS232 is a standard protocol used for serial communication, it is used for

connecting computer and its peripheral devices to allow serial data exchange between

them. As it obtains the voltage for the path used for the data exchange between the

devices. Bill printer of 32 characters per line.

RS232 connector is a port used for data exchange between equipments. It was

designed for data exchange between DTE (Data Terminal Equipment) or PC and DCE

(Data Communication Equipment) or MODEM. The need for RS232 came from limitations

raised by parallel data exchange. RS232 uses serial communication protocol where data

exchange is done bit by bit. Although RS232 is later replaced by faster USB (Universal

Serial Bus) it is still popular in some areas. RS232 used to have 25 pin, now it is shrunk to

just 9 pin.

New RS232 has nine pins as mentioned earlier. These nine pins are arranged in

the port as shown in RS232 Connector Pinout. The DCE and DTE ports are exactly similar

except for the direction of data flow.

When you want a simple communication interface between two units. A two pin full

duplex communication can be establishes easily on RS232 port.

RS232 is used in systems where clock sharing is difficult. RS232 is

ASYNCHRONOUS so there will be no clock sharing between systems. All you need to do

is set data bit rate for each unit. Once baud rate is set the units will sample the data

according to set baud rate.

Figure 3.10 : RS232 Connector & Bill Printer

14

3.3.2 Weighing Scale

. A weighing scale (or weighing balance) is a device to measure weight or mass

 One plate holds an object of unknown mass (or weight), while known masses are added

to the other plate until static equilibrium is achieved and the plates level off, which
happens when the masses on the two plates are equal. A spring scale will make use of a

spring of known stiffness to determine mass (or weight). Suspending a certain mass wil

extend the spring by a certain amount depending on the spring's stiffness (or spring

constant). The heavier the object, the more the spring stretches, as described in Hooke's

law.

A scale or balance is a device to measure weight or mass. These are also

known as mass scales, weight scales, mass balances, weight balances.

The traditional scale consists of two plates or bowls suspended at equal distances

different physical principles also exist.from a fulcrum. One plate holds an object of unknown

mass (or weight), while knownmasses are added to the other plate until static equilibrium is

achieved and the plates level off, which happens when the masses on the two plates are equal.

The perfect scale rests at neutral. A spring scale will make use of a spring of known stiffness to

determine mass (or weight). Suspending a certain mass will extend the spring by a certain

Amount depending on the spring's stiffness (or spring constant). The heavier the object, the

More the spring stretches, as described in Hooke's law. Other types of scales making use of

Some scales can be calibrated to read in units of force (weight) such as newtons

instead of units of mass such as kilograms. Scales and balances are widely used in

commerce, as many products are sold and packaged by mass.

Figure 3.11 : Weighing Scale

15

3.3.3 LPC1548/1549 MICROCONTROLLER

The LPC15xx are ARM Cortex-M3 based microcontrollers for embedded

applications featuring a rich peripheral set with very low power consumption. The ARM

Cortex-M3 is a next generation core that offers system enhancements such as enhanced

debug features and a higher level of support block integration.

The LPC15xx operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3

CPU incorporates a 3-stage pipeline and uses a Harvard architecture with separate local

instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3 CPU

also includes an internal prefetch unit that supports speculative branching.

The LPC15xx includes up to 256 kB of flash memory, 32 kB of ROM, a 4 kB

EEPROM, and up to 36 kB of SRAM. The peripheral complement includes one full-speed

USB 2.0 device, two SPI interfaces, three USARTs, one Fast-mode Plus I2C-bus interface,

one C_CAN module, PWM/timer subsystem with four configurable, multi- purpose State

Configurable Timers (SCTimer/PWM) with input pre-processing unit, a Real-time clock

module with independent power supply and a dedicated oscillator,

two 12-channel/12-bit, 2 Msamples/s ADCs, one 12-bit, 500 kSamples/s DAC, four voltage

comparators with internal voltage reference, and a temperature sensor. A DMA engine can

service most peripherals.

Figure 3.12 : LPC1548/1549 MICROCONTROLLER
16

Fig 3.13 : LPC15XX Block Diagram

17

3.4 METHODS AND ALGORITHM

3.4.1 Algorithm StartBilling()

STEP 1: Check if there is any previously entered items without billed, stored in

E2 Prom.

STEP 1.1: If there Items exist read it and continue billing

STEP 1.2: If there is no item in the E2 Prom start billing newly.

STEP 2: Get the item code from the IBM Keyboard

STEP 2.1: if Item Count equals zero

STEP 2.1.1: If menu key is pressed do device menu operations like

calibration, diagnostics, set date/time etc.

STEP 2.1.2: if F1 key is pressed show bill summary.

STEP 2.1.3: if F3 key is pressed provide tare weight operation.

STEP 2.1.4: if ENTER key is pressed in the IBM Keyboard show

cannot print since no item is entered

STEP 2.2: If item code is invalid do not process and repeat STEP 2

STEP 2.3: If item code is valid show the Item description corresponding

to that item code.

STEP 2.4: if the input key is ENTER from the IBM keyboard

STEP 2.4.1: Print the Bill, remove entered items from E2 Prom

STEP 2.4.2: Update Today’s, Monthly’s, Yearly’s Summary.

STEP 2.5: if the input is F4 key perform edit/delete operation for

corresponding entered items.

STEP 3: If that particular item is measured in terms of weight get the

weight directly from weight scale.

STEP 4: If that particular item is measured in terms of pieces get no. of

pieces from IBM Keyboard directly.

STEP 5 : if the input key is ESC Key from the IBM Keyboard, repeat from STEP 2

STEP 6: After pressing enter key in the IBM keyboard, store the Items to the E2

PROM, Repeat from STEP 2.

18

3.5 FLOW CHART OF THE POS SYSTEM

The below depicted is the actual flow of the POS system in this project

implemented in the microcontroller.

Figure 3.14 : Flow Chart

19

Figure 3.15 : Flow Chart (Cont.)

20

3.6 E2 PROM

EEPROM (also E 2̂ PROM) stands for electrically erasable programmable read-

only memory and is a type of non-volatile memory used in computers, integrated in

microcontrollers for smart cards and remote keyless systems, and other electronic devices

to store relatively small amounts of data but allowing individual bytes to be erased and

reprogrammed.

EEPROMs are organized as arrays of floating-gate transistors. EEPROMs can be

programmed and erased in-circuit, by applying special programming signals. Originally,

EEPROMs were limited to single-byte operations, which made them slower, but modern

EEPROMs allow multi-byte page operations. An EEPROM has a limited life for erasing and

reprogramming, now reaching a million operations in modern EEPROMs. In an EEPROM

that is frequently reprogrammed, the life of the EEPROM is an important design

consideration.

Flash memory is a type of EEPROM designed for high speed and high density, at

the expense of large erase blocks (typically 512 bytes or larger) and limited number of

write cycles (often 10,000). There is no clear boundary dividing the two, but the term

"EEPROM" is generally used to describe non-volatile memory with small erase blocks (as

small as one byte) and a long lifetime (typically 1,000,000 cycles). Many microcontrollers

include both: flash memory for the firmware, and a small EEPROM for parameters and

history.

21

3.7 E2 PROM ITEM BACKUP THAT IS ENTERED DURING BILLING

Figure 3.16 : Item Backup Memory Map

The above memory map is for 50 items at maximum.

22

3.8 E2 PROM TODAY’S BILL SUMMARY

Figure 3.17 : Today’s Bill Summary Memory Map

The Indexing memory acts as an index to the Today’s bill summary memory which

can give a detailed bill report for a particular day. The indexing memory represents the

starting and ending memory location of the bill report for that particular date. Hence, today

bill summary memory can be used as an circular buffer to store daily bill report, so that

memory is utilized efficiently.

23

3.9 E2 PROM MONTHLY’S BILL SUMMARY

Figure 3.18: Monthly’s Bill Summary Memory Map

The above memory map is done for two months of each 31 days assumed.

3.10 E2 PROM YEARLY’S BILL SUMMARY

Figure 3.19: Yearly’s Bill Summary Memory Map

The above memory map is done for two Years of each 366 days assumed.

24

3.11 SOCKETS

The android mobiles are used to communicate with the awew 2000 POS indicator

wirelessly via socket. The IP address and port number of the indicator is given to the

android application.

Sockets allow communication between two different processes on the same or

different machines. To be more precise, it's a way to talk to other computers using

standard Unix file descriptors. In Unix, every I/O action is done by writing or reading a file

descriptor. A file descriptor is just an integer associated with an open file and it can be a

network connection, a text file, a terminal, or something else.

To a programmer, a socket looks and behaves much like a low-level file descriptor.

This is because commands such as read() and write() work with sockets in the same way

they do with files and pipes.

Sockets were first introduced in 2.1BSD and subsequently refined into their current

form with 4.2BSD. The sockets feature is now available with most current UNIX system

releases.

A Unix Socket is used in a client-server application framework. A server is a

process that performs some functions on request from a client. Most of the application-

level protocols like FTP, SMTP, and POP3 make use of sockets to establish connection

between client and server and then for exchanging data.

Figure 3.20 : Wireless Mobile Communication

25

3.12 INFORMATION COLLECTED BY MOBILE

The android mobile can collect,

 Today’s Summary

 Date Wise Summary

 Current Monthly’s Summary

 Previous Monthly’s Summary

 Current Yearly’s Summary

 Previous Yearly’s Summary

 Price List

 Stock Report

All the above information’s are collected by sending appropriate query.

26

TABLE 3.13: QUERY INFORMATION

Query Description

%LPL$ This query will load the price list csv to the indicator.

%LSN$ This query will load the Store Name csv to the indicator.

%STS$
This query will retrieve the today's summary information from the

indicator.

%SDWSDDMMYYYY$
This query will retrieve the date wise summary for the given date (DD),

month (MM), year (YYYY) from the indicator.

%SCMS$
This query will retrieve the current month summary information from

the indicator.

%SPMS$
This query will retrieve the previous month summary information from

the indicator.

%SCYS$

This query will retrieve the current year summary information from the

indicator.

%SPYS$

This query will retrieve the previous year summary information from the

indicator.

%SIPL$ This query will retrieve the price list csv i.e. Stored in the indicator.

%SSR$ This query will retrieve the stock report of the items from the indicator.

%SISN$ This query will retrieve the store name headers from the indicator.

TABLE 3.14: DATE WISE SUMMARY QUERY EXPANSION

%SDWS DD MM YYYY $
Query to retrieve Date Wise Date Month (ex. Year Ending

Summary (ex. 09) 10) (ex. 2020) Character

27

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULT

The project was tested with many real time inputs example Item code, weight

through weight scale, number of pieces and got the expected output as efficient as

possible.

4.2 DISCUSSION

This result driven project is considered to be the Version 1.0 of the project.

The upcoming versions are developed once the project gets into the market and

collects the feedback what users want. The company and R&D team has

speculated some of the features that needs to be added in the POS system. The

features are voice recognition, multi language facilities to bring nativity into the project,

biometrics to access users etc.

28

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this paper, the POS system implemented on the microcontroller LPC1548/1549

and making compatible with the awew 2000 device is explained with atmost perfection, as

much as possible. This kind of Integrated weight POS system makes the usablity more

faster by making an user to stick their eyes directly to the product and the device rather

than always seeing the weighing scale each and every time when a product is loaded.

This POS system can print reports and, in many cases, import data directly with

suitable PC/Android software which makes the user to well structure their accounting

details.

5.2 FUTURE WORK

The above POS System can be made to work with voice recognition which can be

compatible with all Indian languages. Multi language bill printer can be implemented such

that nativity can be achieved.

29

REFERENCES

1. Sai, K. (2017). An Analysis of Point of Sale Systems Physical

Configurations and Security Measures in Zimbabwean SMEs.

2. Yomayra Ramos, Dr. Angel Ojeda Castro (2017) Point-Of-Sales Systems in

Food and Beverage Industry: Efficient Technology and Its UserAcceptance

3. https://retailexpress.com.au/blog/8-benefits-of-point-of-sale-pos-systems/

4. https://solutiondots.com/blog/point-of-sale-system/

5. https://www.investopedia.com/terms/p/point-of-sale.asp.

6. R&D LCS Controls Pvt. Ltd.

30

https://retailexpress.com.au/blog/8-benefits-of-point-of-sale-pos-systems/
https://solutiondots.com/blog/point-of-sale-system/
https://www.investopedia.com/terms/p/point-of-sale.asp

APPENDICES

A) SAMPLE CODE

//getting Item Code

short GetCode(ItemMaster g_Items_Available[], //;Bill *Current_Bill, char *Item_Count, short

*Total_Items){

const unsigned char Digit_Increement_Length =

2; const unsigned char Code_Total_Length = 4;

char Inactiveness=0, Inactiveness1 = 0;

char PieceFlag=0, AnimationFlag = 0;

char Item_Description[21],Index;

short Item_Code,Item_Code1=0;

float Item_Weight;

unsigned char AcceptBuff[21];

unsigned char CorrectBuff1[21]={" "};

unsigned char CodeBuff[21];

unsigned char digit = 0;

unsigned char blink = 0;

memcpy(CodeBuff," ",Total_LCD_Line_Length);

Keypad_Entry_Flag = 1;

sprintf(CodeBuff,"Code:"); while(1)

{

IBMKeyValue=0;

memcpy(AcceptBuff,CorrectBuff1,Code_Total_Length);

if(blink < 10)

AcceptBuff[digit] = '_';

if(blink > 25)

blink=0;

blink++;

memset(LcdBotBuff,' ',16);

memcpy(CodeBuff+5,AcceptBuff,Code_Total_Length);

31

sprintf(CodeBuff+9,"%7.2f",g_Present_Price);

sprintf(LcdBotBuff,"%d",*Item_Count+1);

LcdDisplay(TOP,(char *)&CodeBuff);

KeySence();

DisplayCurrWt();

Item_Weight=(float)LoadCalibData.CurWeight;

if(digit<=Digit_Increement_Length){

switch(IBMKeyValue)

{

case ATKey_1:

CorrectBuff1[digit] = '1';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_2:

CorrectBuff1[digit] = '2';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_3:

CorrectBuff1[digit] = '3';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_4:

CorrectBuff1[digit] = '4';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_5:

32

CorrectBuff1[digit] = '5';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_6:

CorrectBuff1[digit] = '6';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_7:

CorrectBuff1[digit] = '7';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_8:

CorrectBuff1[digit] = '8';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_9:

CorrectBuff1[digit] = '9';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

case ATKey_0:

CorrectBuff1[digit] = '0';

digit++;

AnimationFlag=Item_Code1=Inactiveness1=Inactiveness=0;

break;

33

blink=10;

}

}

CorrectBuff1[digit] = 0;

if(strlen(CorrectBuff1) == 3 && ((Inactiveness++)>2 || IBMKeyValue ==

ENTERKEY)){

Inactiveness=3;

Item_Code=(short)atoi((const char *)&CorrectBuff1);

if(Item_Code<=*Total_Items && Item_Code != 0){

if(Item_Code1 != Item_Code)

{ InitializePriceList(g_Items_Available,Item_Code);

Item_Code1= Item_Code;

}

if(strlen(g_Items_Available[(Item_Code-

1)%5].Item_Description)>7) memcpy(LcdBotBuff+3,g_Items_Available[(Item_Code-

1)%5].Item_Description,7);

else sprintf(LcdBotBuff+3,g_Items_Available[(Item_Code-1)%5].Item_Description);

if(CheckUnit(g_Items_Available, Item_Code)==0)

sprintf(LcdBotBuff+11,"%.2f",Item_Weight/100);

else sprintf(LcdBotBuff+11,"Pc");

if((*Item_Count) < g_Max_ItemsPerBill

&& CheckUnit(g_Items_Available, Item_Code) == 1){

if(PieceFlag == 0) { PieceFlag=1; continue;}

CodeBuff[8]=' ';

IBMKeyValue = ENTERKEY;

}

if(strlen(g_Items_Available[(Item_Code-1)%5].Item_Description)>7

&& (Inactiveness1++)>10){

Inactiveness1=6;

strcpy(Item_Description,g_Items_Available[(Item_Code-

1)%5].Item_Description+1);

if(AnimationFlag == 0){

34

sprintf(Item_Description+strlen(Item_Description)," %c",g_Items_Available[(Item_Code-

1)%5].Item_Description[0]);

AnimationFlag = 1;

}else

sprintf(Item_Description+strlen(Item_Description),"%c",g_Items_Available[(Item_Code-

1)%5].Item_Description[0]);

sprintf(g_Items_Available[(Item_Code-

1)%5].Item_Description,"%s",Item_Description);

}

}

}

LcdDisplay(BOTTOM,LcdBotBuff);

if((*Item_Count)==0){

if(IBMKeyValue == ENTERKEY)

{

if(CorrectBuff1[0]==0){

IBMKeyValue = 0;

ClearLcdDisplay();

LcdDisplay(TOP,"Nothing To Print");

Delay_1sec(3);

ClearLcdDisplay();

}

}

if(IBMKeyValue==F1KEY){

IBMKeyValue=0;

LcdDisplay(TOP,"* Bill Summary *");

LcdDisplay(BOTTOM," ");

Delay_1sec(5);

ShowBillSummary();

}

35

B) SCREENSHOTS

Figure 7.1: Input Data Example In Weight (KG)

Figure 7.2: Input Data Example In Pieces

36

a. Bill Generated

Figure 7.3: Bill Generated

b. Brief Today’s Bill Summary

Figure 7.4: Brief Today’s Bill Summary

c. Brief Monthly’s Bill Summary

Figure 7.5: Brief Monthly’s Bill Summary

37

d. Brief Yearly’s Bill Summary

Figure 7.6 : Brief Yearly’s Bill Summary

e. Detailed Today’s Bill Summary

Figure 7.7: Detailed Today’s Bill Summary

f. Detailed Monthly’s Bill Summary

Figure 7.8: Detailed Monthly’s Bill Summary

38

g. Detailed Yearly’s Bill Summary

Figure 7.9: Detailed Yearly’s Bill Summary

h. POS_DataTransmitter PC Software

Figure 7.10: POS_DataTransmitter PC Software

39

i. POS Data Transmitter Android Application

Fig 7.11 Main Page Fig 7.12 Sending Page

Fig 7.13 Receiving Page

40

C) PUBLICATION WITH PLAGIARISM REPORT

Fig 8.1 Published paper page 1

41

Fig 8.2 Published paper page 2

42

Fig 8.3 Published paper page 3

43

Fig 8.4 Published paper page 4

44

Fig 8.5 Published paper page 5

45

 Fig 8.6 Plagiarism paper

46

Fig 8.7 Paper Acceptance

47

