CREDIT COIN: A PRIVACY-PRESERVING BLOCKCHAIN-BASED
INCENTIVE ANNOUNCEMENT NETWORK FOR
COMMUNICATION OF SMART VEHICLES

Submitted in partial fulfillment of the requirements for the award of Bachelor
Degree in Computer science

By
Naveen Kumar N (Reg.N0:38290055)

Naresh Kumar J (Reg.N0:38290054)

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OFCOMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI-600119

APRIL 2021

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY =TT,
(DEEMED TO BE UNIVERSITY)

Accredited with Grade "A" by NAAC S

ISO 9001:2008
JEPPIAR NAGAR, RAJIV GANDHI SALAI,CHENNNAI-600 119

>
Kal
2
f=]
=

OU,q (//\}

DEPARTMENT OF COMPUTER SCIENCE

BONAFIDE CERTIFICATE

This is to certify that the Project Report is the bonafide work of Mr. Naveen Kumar N
(Reg.N0:38290055) and Mr. Naresh Kumar J (Reg.N0:38290054) who carried out the project
entitled” CREDIT COIN: A PRIVACY-PRESERVING BLOCKCHAIN-BASED INCENTIVE
ANNOUNCEMENT NETWORK FOR COMMUNICATION OF SMART VEHICLES"
under our Supervisor from November 2020 to April 2021

Internal guide

Mrs.REFONAA M.E., (Ph.D)

Head of the department

Dr.S..VIGNESHWARI,M.E.,Ph.D.,

Submitted for Viva voice Examination held on

INTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

We Naveen Kumar N (Reg.N0:38290055) and Naresh Kumar J (Reg.N0:38290054) hereby declare that
the Project Report entitled " CREDIT COIN: A PRIVACY-PRESERVING BLOCKCHAIN-BASED
INCENTIVE ANNOUNCEMENT NETWORK FOR COMMUNICATION OF SMART VEHICLE" done
by us under the guidance of Mrs. REFONAA at Sathyabama Institute of Science and Technology is
submitted in partial fulfillment of the requirements for the award of Bachelor of science in computer

science

DATE:

PLACE: SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

| am pleased to acknowledge my sincere thanks to the BOARD OF MANAGEMENT
OF SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. | am grateful to them.

| convey my thanks to Dr.T.SASIKALA, M.E.,Ph.D.,Dean school of computer science
and engineering and Dr.S.Vigneshwari, M.E., Ph.D.and Dr.L.Lakshmanan M.E.,
Ph.D., Head of the Department, Department of Computer Science for providing me the

necessary support and details at the right time during the progressive reviews.

| would like to express my sincere and deep sense of gratitude to my Project Guide
Mrs.Refonaa, M.E,Ph.D., for her valuable guidance, suggestions which paved way for

the successful completion of my project work.

| wish to express my thanks to all teaching and non-teaching staff members of the
DEPARTMENT OF COMPUTER SCIENCE who were helpful in many ways for the

completion of project.

ABSTRACT

With the increasing privacy concerns in VANETS, since the messages
should be forwarded anonymously in VANETS, several attacks (e.g., the Syabil
attack) have drawn a lot of attention. These attacks lead to a trade- off
between users’ privacy and message’s reliability. Thus, some issues of
privacy, such as anonymity, reliability, link ability (i.e., two signatures on the
same message by one signer could be linkable) and traceability have become
the main topics to be studied. Kounga et al. proposed a secure hardware
mechanism to control the generation of pseudonyms for preventing Sybil
attacks. Wu et al. used one-time authentication and message-linkable group
signatures to identify malicious users. However, the trace phase requires
expensive pairing operations so that it is inefficient to trace doubtable
messages. Chen et al. proposed a threshold anonymous announcement (i.e.,
TA- Announcement) scheme with direct anonymous attestation and one-time
anonymous authentication. In their scheme, the credentials of the malicious
users cannot be revoked efficiently, and thus frequent attacks from malicious

vehicles would decrease the efficiency of the scheme.

Vehicular announcement network in VANETs (Vehicular ad hoc
networks) have become one of the most promising vehicular communication
applications, as it leads to a much safer vehicle-driving experience. Block
chain-based networks are promising in recording credit data with the good
properties of tamper resistance and decentralization, which is useful in
VANET’s. We propose a vehicular announcement protocol Echo-
Announcement in Credit Coin. It achieves efficiency and privacy-preserving
for the practical usage in forwarding announcements. We design an
incentive mechanism based on Block chain in Credit Coin. Users manage
reputation points while they earn or spend coins as incentives. Meanwhile,
Credit Coin still preserves privacy and achieves anonymity. Moreover,
based on Block chain, Credit Coin prevents many security attacks and
achieves conditional privacy because Trace manager will trace malicious

nodes when an unexpected event occurs.

Vv

CHAPTER No

TABLE OF CONTENTS

TITLE

LIST OF FIGURES

LIST OF ABBREVIATIONS
INTRODUCTION
1.1 About the Project
LITERATURE SURVEY
2.1 Merits and demerits
PROJECT PURPOSE AND SCOPE
3.1 Purpose
3.2 Project scope
3.3 Product prespective
3.4 System features
3.5 Design and implementation constraints
3.6 Other nonfunctional requirements
SYSTEM ANALYSIS
4.1 Existing system
4.2 Proposed system

REQUIREMENTS SPECIFICATION

5.1
52
5.3

Introduction

Hardware and software specification

Technologies used

5.3.1 Java

5.3.3.1

Introduction to JAVA

SYSTEM DESIGN

6.1

Architecture Diagram

Vi

PAGE NO

11
11
12
12
13
14
16
17
17
17
18
18
18
18
19
19
31
31

SYSTEM DESIGN-DETAILED

7.1 Modules

7.2 Module explanation

CODING AND TESTING

8.1 Coding

8.2 Coding standards

8.3 Test procedure

8.4 test data and output
CONCLUSION AND FUTURE WORK
REFERENCE

SOURCE CODE
SNAP SHOTS

vii

39
39
39
41
41
41
43
43
50
52

55
62

LIST OF FIGURES

FIGURE FIGURE NAMES
5.1 SYSTEM DESIGN
52 SEQUENCE DIAGRAM
5.3 USE CASE DIAGRAM
54 ACTIVITY DIAGRAM
5.5 COLLABORATION DIAGRAM:
5.6 DATA FLOW DIAGRAM

5.7 CLASS DIAGRAM

vii

oo OB~ W DN = O

.NO

LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

JDK AVA DEVELOPMENT TOOLKIT

DEX DALVIK EXECUTABLES

TCP TRANSMISSION CONTROL PROTOCOL
IP INTERNET PROTOCOL

HTTP HYPER TEXT TRANSFER PROTOCOL

ADT ANDROID DEVELOPMENT TOOL

CHAPTER 1

INTRODUCTION
Aim:

The main aim of this project is to develop an effective announcement
network called Credit Coin, a new privacy-preserving incentive

announcement network based on Block chain.
Synopsis:

Credit network is a common method to describe the credit relations
among users in the network. In Credit networks, each node has points related
to reputation, and it is easy to identify whether a node is honest or malicious
by judging the reputation points. Therefore, it is widely applied in the digital
currency of decentralized networks and Sybil-tolerant systems. Recently,
Kate considered building a Blockchain-based Credit network in anonymous
and Sybil-tolerant networks. Blockchain is currently idely studied on
cryptocurrency in recent years. Nakamoto proposed Bicoin, which is a

decentralized cryptocurrency based on Blockchain.

Bitcoin is popular and claimed as a kind of anonymity currency. However, due
to the property of de- centralization, it can obtain the relations between
different addresses by tracing a series of transactions. Therefore, there exists
related work focusing on studying Blockchain-based networks in a privacy-

preserving manner.

CHAPTER 2
LITERATURE SURVEY

Project Title: TrustDavis: A Non-Exploitable Online Reputation system
Author Name: Dimitri do B. DeFigueiredo Earl T. Barr Year of Publishing:
Abstract:

We present TrustDavis, an online reputation system that provides insurance
against trade fraud by leveraging existing relationships between players, such
as the ones present in social networks. Using TrustDavis and a simple
strategy, an honest player can set an upper bound on the losses caused by
any malicious collusion of players. In addition, TrustDavis incents participants
to accurately rate each other, resists participants’ pseudonym changes, and

is inherently distributed.

Project Title: A Survey on Vehicular Ad hoc Networks Author Name: Mr.
Bhagirath Patel, Ms. Khushbu Shah Year of Publishing: Dec. 2013
Abstract:

Vehicular Ad hoc Networks (VANETS), a subclass of mobile ad hoc network
(MANET), is a promising approach for the intelligent transport system (ITS).
VANET allows vehicles to form a self-organized network without the need for
a permanent infrastructure. As the VANET has a potential in improving road
safety, real time traffic update and other travel comforts, it turns attention of
the researcher. Though VANET and MANET shares some common
characteristics like self-organized network, dynamic topology, ad hoc nature
etc, VANET differs from MANET by challenges, application, architecture,
power constraint and mobility patterns, so routing protocols used in MANET

are not applicable with VANET. New routing strategy for VANET has been

proposed by many researchers in recent year. This paper provides focus on
the various aspects of VANET like architecture, characteristic, challenges,

glimpse of routing protocols, and simulation models used for VANET.

Project Title: Aggregation of Trustworthy Announcement Messages in

Vehicular Ad Hoc Networks

Author Name: Alexandre Viejo, Francesc Seb Josep Domingo-Ferrer
Year of Publishing: 2009 Abstract:

Vehicular ad hoc networks (VANETS) allow vehicle to- vehicle communication
and, in particular, vehicle- generated announcements. Vehicles can use such
announcements to warn vehicles about road conditions (traffic jams,
accidents). Thus, they can greatly increase the safety of driving. However,
their trustworthiness must be guaranteed. A new system for vehicle-
generated announcements is presented that is secure against external and
internal attackers attempting to send fake messages. Internal attacks are
thwarted by using an endorsement mechanism based on multi signatures.
Besides, this scheme ensures that vehicles volunteering to generate and/or

endorse trustworthy announcements do not have to sacrifice their privacy.

Project Title: Zerocash: Decentralized Anonymous Payments from Bitcoin
Author Name: Eli Ben-Sasson_, Alessandro Chiesay, Christina Garmanz,

Matthew Greenz, lan Miersz, Eran Tromerx, Madars Virzay

Year of Publishing: 2014 Abstract:

Bitcoin is the first digital currency to see widespread adoption. While
payments are conducted between pseudonyms, Bitcoin cannot offer strong
privacy guarantees: payment transactions are recorded in a public

decentralized ledger, from which much information can be deduced. Zerocoin
(Miers et al., IEEE S&P 2013) tackles some of these privacy issues by
unlinking transactions from the payment’s origin. Yet, it still reveals payments’
destinations and amounts, and is limited in functionality. In this paper, we
construct a full-fledged ledger-based digital currency with strong privacy
guarantees. Our results leverage recent advances in zero-knowledge
Succinct Non-interactive Arguments of Knowledge (zk-SNARKS). First, we
formulate and construct decentralized anonymous payment schemes (DAP
schemes). A DAP scheme enables users to directly pay each other privately:
the corresponding transaction hides the payment’s origin, destination, and
transferred amount. We provide formal definitions and proofs of the
construction’s security. Second, we build Zerocash, a practical instantiation
of our DAP scheme construction. In Zerocash, transactions are less than 1
kB and take under 6 ms to verify — orders of magnitude more efficient than

the less-anonymous Zerocoin and competitive with plain Bitcoin.

Project Title: Efficient Secure Aggregation in VANETSs

Author Name: Maxim Raya, Adel Aziz and Jean-Pierre Hubaux
Year of Publishing: 2006

Abstract:

In VANETS, better communication efficiency can be achieved by sacrificing
security and vice versa. But VANETs cannot get started without either of
them. In this paper, we propose a set of mechanisms that can actually
reconcile these two contradictory requirements. The main idea is to use
message aggregation and group communication. The first class solutions are
based on asymmetric cryptographic primitives, the second class uses
symmetric ones, and the third onemixes the two. We have also evaluated the

performance potential of one technique and arrived at the conclusion that

aggregation in VANETSs increases not only efficiency but also security.

Project Title: Fast and Secure Multi-hop Broadcast Solutions for Inter-
Vehicular Communication

Author Name: Wafa Ben Jaballah, Mauro Contiy, Mohamed

Mosbah, Claudio E. Palazzi

Year of Publishing: 2012

Abstract:

Inter-vehicular communication (IVC) is an important emerging research area
that is expected to contribute considerably to traffic safety and efficiency. In
this context, many possible IVC applications share the common need for fast
multi hop message propagation, including information such as position,
direction, speed, etc. Yet, it is crucial for such data exchange system to be
resilient to security attacks. Conversely, a malicious vehicle might inject
incorrect information into the inter- vehicle wireless links leading to life and
money losses, or to any other sort of adversarial selfishness (e.g., traffic
redirection for the adversarial’s benefit). In this work we analyze attacks to the
state of the art IVC based safety applications. Furthermore, this analysis
leads us to design a Fast and Secure Multi-hop BroadcastAlgorithm (FS-
MBA) for vehicular communication, which results resilient to the

aforementioned attacks.

Project Title: Privacy Issues in Vehicular Ad Hoc Networks

Author Name: Florian Dotzer Year of Publishing:

Abstract:

Vehicular Ad hoc Networks (VANETs) demand a thorough investigation of
privacy related issues. On one hand, users of such networks have to be
prevented from misuse of their private data by authorities, from location
profiling and from other attacks on their privacy. On the other hand, system
operators and car manufacturers have to be able to identify malfunctioning
units for sake of system availability and security. These requirements demand

an architecture that can really manage privacy instead of either providing full
5

anonymity or no privacy at all. In this paper we give an overview on the privacy
issues in vehicular ad hoc networks from a car manufacturer’s perspective

and introduce an exemplary approach to overcome these issues.

Project Title: Proving Reliability of Anonymous Information in VANETs
Author Name: Liqun Chen, Siaw-Lynn Ng Year of Publishing: 2010
Abstract:

Three vehicle-to-vehicle communication schemes by Kounga et al. (“Proving
reliability of anonymous information in VANETSs,” IEEE Trans. Veh. Technol.,
vol. 58, no. 6, pp. 2977-2989, Jul. 2009) were recently published to address
the issues of certificate management, scalability, and privacy. We present a
number of attacks on one of the schemes. Our result shows that, contrary to
what is claimed, this scheme does not provide the following four security
features: 1) authenticity of a message; 2) privacy of drivers and vehicles; 3)

reliability of distributed information; and 4) revocation of illegitimate vehicles.

Project Title: Reaching Agreement in the Presence of Faults
Author Name: M. PEASE, R, SHOSTAK, AND L. LAMPORT
Year of Publishing:

Abstract:

The problem addressed here concerns a set of isolated processors, some
unknown subset of which may be faulty, that communicate only by means of
two-party messages. Each non faulty processor has a private value of
reformation that must be communicated to eachother non faulty processor.
Non faulty processors always communicate honestly, whereas faulty
processors may lie The problem is to devise an algorithm in which processors
communicate their own values and relay values received from others that
allows each non faulty processor to refer a value for each other processor
The value referred for a non faulty processor must be that processor's private

value, and the value inferred for a faulty one must be consistent wRh the

6

corresponding value inferred by each other non faulty processor It is shown
that the problem is solvable for, and only for, n >_ 3m + 1, where m IS the
number of faulty processors and n is the total number. It is also shown that if
faulty processors can refuse to pass on reformation but cannot falsely relay
information, the problem is solvable for arbitrary n _> m _> 0. This weaker

assumption can be approximated m practice using cryptographic methods

Project Title: Threshold anonymous announcement in VANETs
Author Name: Guilin Wang, L Chen, S. L. Ng
Year of Publishing: 2011 Abstract:

Vehicular ad hoc networks (VANETs) allow wireless communications

between vehicles without the aid of a central server. Reliable exchanges of

information about road and traffic conditions allow a safer and more
comfortable travelling environment. However, such profusion of information
may allow unscrupulous parties to violate user privacy. On the other hand, a
degree of audit ability is desired for law enforcement and maintenance
purposes. In this paper we propose a Threshold Anonymous Announcement
service using direct anonymous attestation and one-time anonymous
authentication to simultaneously achieve the seemingly contradictory goals

of reliability, privacy and audit ability.

MERITS AND DEMERITS:

1. Trust Davis: A Non-Exploitable Online Reputation System

Advantages:

Honest participants can limit the damage caused by malicious collusions of
dishonest participants. Malicious participants gain no significant advantage
by changing or issuing themselves multiple identities.

There is strong incentive for participants to provide accurate ratings of each
other. It requires no centralized services, and thus can be easilydistributed.

DisAdv:

e The reputation systems now available on the internet can be manipulated by
malicious individuals or groups for selfish purposes.

2. A Survey On Vehicle Ad-Hoc Networks

Advantages:

e We presented basic fundamentals of VANETS like architecture,
characteristics, challenges and fundamental of routing and various types of
routing VANET.

DisAdv:

e We presented basic fundamentals of VANETSs like architecture,
characteristics, challenges and fundamental of routing and various types of
routing VANET.

3. Aggregation Of Trustworthy Announcement Messages In Vehicle
Ad Hoc Networks

Advantages:

e A new system has been presented for trustworthy vehicle-generated
announcements on VANETS that relies on a priori measures against internal
attackers (vehicles in the VANET sending fake messages).

e System uses multi signatures over a Gap Diffie-Hellman group to aggregate
announcements and reduce communication overhead
DisAdv:

¢ Vehicles trustworthiness must be guaranteed.

4. Zerocash: Decentralized Anonymous Payments From Bitcoin

Advantages:

e Zerocoin tackles some of these privacy issues by unlinking transactions from
the payment’s origin.

e We construct a full-fledged ledger-based digital currency with strong privacy
guarantees

DisAdv:

e To protect privacy, users need an instant, risk-free, and, most importantly,
automatic guarantee that data revealing their spending habits and account
balances is not publicly accessible by their neighbors, co-workers, and

merchants.

5. Efficient Secure Aggregation In VANETSs
Advantages:
e Proposed several mechanisms, including combined signatures, overlapping

groups, and dynamic group key creation.

e Addressed the tradeoff between efficiency and security in VANETs

DisAdv:

e Most VANET application designers attempt to minimize costs, sometimes
even suggesting to scrap security totally.

6. Fast And Secure Multi-Hop Broadcast Solutions For Inter- Vehicular

Communication

Advantages:

e The main goal of Inter Vehicular Communications (IVC) consists in
increasing people’s safety by exchanging warning messages between
vehicles.

e Elaborated on security issues in IVC considering a general

class of applications based on multi-hop broadcast; yet, without loss of

generality.

DisAdv:

e |t is crucial for data exchange system to be resilient to security attacks.

Conversely, a malicious vehicle might inject incorrect information into the
inter- vehicle wireless links leading to life and money losses, or to any other
sort of adversarial selfishness (e.g., traffic redirection for the adversarial
benefit).

7. Privacy Issues In Vehicular Ad Hoc Network Advantages:

e Proposed a possible solution, based on prototypical experiments that we
made and discussed its strengths and weaknesses.

e Discussed some threats to privacy in VANETs and argued why privacy is
important. We also pointed out that the degree of privacy depends on user
preferences, environmental settings, and application requirements and
should therefore be adjustable.

DisAdv:

e Vehicular Ad hoc NETworks (VANETs) demand a thorough investigation of
privacy related issues.

8. Threshold Anonymous Announcement In VANETs
Advantages:

e Presented a novel Threshold Anonymous Announcement scheme for VANET
communication based on direct anonymous attestation and one-time
anonymous authentication.

e Resolves the issues of non-repudiation and distinguish ability of origin which
were previously unresolved, thereby enabling a reliable and auditable TAA
service while preserving user privacy against both authorized parties and
adversaries.

DisAdv:

e Exchanges of information about road and traffic conditions, if reliable, would
enable a safer and more conducive travelling environment. On the other
hand, such profusion of information may allow unscrupulous parties to track
vehicles for profiling or more invidious purposes.

10

CHAPTER 3
PROJECT PURPOSE AND SCOPE

Purpose

The goal of our work is to design an effective vehicular announcement
network for VANETs. Based on the proposed incentive mechanism and
Echo- Announcement, CreditCoin has the following properties:
Enthusiasm:CreditCoin motivates users with incentives to share traffic
information via announcements. It is the vehicular incentive announcement
network in VANETs. Privacy:The requests, announcements, and the
transactions do not leak any information about their sources (anonymity).
Two messages in CreditCoin cannot be linked to the same sources
(unlinkability). Only the TM reveals the user’s identity when a un- expectancy
occurs (traceability in conditional privacy).
Reliability: The announcements are signed by several honest withesses
(truthfulness). According to threshold authentication and Blockchain, every
user could manage a copy of the whole block chains of
transactions, and each transaction is related to the phases of announcement
aggregation. Therefore, a source is unable to deny sending messages (non-

reputation).

Additionally, announcements and transactions cannot be modified without

authorization (tamper-resistance).

With the increasing privacy concerns of data, there exist two major issues
in building an effective vehicular announcement network. First, ideally, all
messages must be forwarded anonymously in VANETSs since they usually
contain sensitive information of users, such as vehicle numbers, driving
preferences and customer identities. However, forwarding messages
anonymously does not assure the reliability of the messages, thus decreasing
the credit of vehicular announcements.

Second, users usually lack enthusiasm to forward any messages in
11

VANETSs if there is a risk that their privacy will be breached. In addition, users
do not benefit from forwarding announcements, which also makes them lack

motivation to respond to messages.

Project Scope

In order to build an effective vehicular announcement network, there are
two parts in CreditCoin. The first part is announcement protocol, namely
Echo-Announcement. This protocol provides threshold authentication and a
certain privacy level to guarantee that anonymous announcements are
reliable in CreditCoin. Users set their roles as follows: An Initiator invites other
withesses as Repliers to agree with his/her announcement with
corresponding signatures and generates an announcement with traffic
information and responses signed by Repliers. Since there is a larger group
of users concealing all of the participants in the protocol, the receivers of the
announcement knows the number of participants but cannot figure out their
identities.

The second part is Blockchain-based incentive mechanism that works

together with Echo- Announcement. Every user in CreditCoin owns a credit
account at several addresses. The account contains reputation points called
the coins. Users reward traffic announcements from a certain area by paying
some coins as incentives. They can also spend some coins to make an
announcement for hunting others’ reward missions. Thus, in CreditCoin, a
user gets a small amount of coins from replying to the aggregation request
for an announcement of others. Meanwhile, he/she also has a chance to hunt
a large amount of coins by making an announcement to someone in

particular, as someone else needs it.

Product Perspective

In summary, we make the following contributions:

12

. To the best of our knowledge, CreditCoinis the first privacy-
preserving Blockchain-based incentive network in VANETS. It is able to build
trust in communications of smart vehicles.

. We propose a vehicular announcement protocol Echo-
Announcement in CreditCoin. It achieves efficiency and privacy-preserving
for the practical usage in forwarding announcements.

. We design an incentive mechanism based on Blockchain in
CreditCoin. Users manage reputation points while they earn or spend coins
as incentives. Meanwhile, CreditCoinstill preserves privacy and achieves
anonymity. Moreover, based on Blockchain, CreditCoinprevents many
security attacks and achieves conditional privacy because Trace manager will
trace malicious nodes when an unexpected event occurs.

. We implement CreditCoinsystematically in the simulation of
smart transportation in JavaFX 2.0 and Java Runtime Environment 1.8. The
test results show that CreditCoinis efficient and practical in the simulations

of the smart transportation and smart vehicles.

System Features

1. Consensus server: The consensus server is an entity that
receives transactions and participates in the consensus phase. RSUs or
official public vehicles are the consensus servers in our CreditCoin. There
are | servers in CreditCoin. Users are connected directly to at least one
server. For each serversz ,z=1, 2, - - -1, there is a Unique Node List (UNL),
called UNLsz. The list records the identities of multiple servers, each of which
is directly connected to the list. In the consensus phase, szonly believes the
vote results sent by the server listed on its UNLsz. According to the proof of
schwartzet al. in, when the probability that any of the servers in
UNLszattempts to initiate a collusion with other servers in the same list is less
than 20%, with the increasing number of servers, the probability of making an
undesirable consensus approaches to none quickly. As

13

Armknechtetal.proved, in order to avoid bifurcation, the repetition rate of
servers in two diffident UNLs equals to or is greater than p/2, where p is a
threshold of a voting rate about yes.

2. Cloud application server: Cloud application server manages
and stores non-privacy information in the VANETS, such as msgconsisting in
AGPs. For security reasons, they are separated from the encrypted
information to help the entire network operate safely. Application server
spreads public information, such as missions and announcements. Cloud
application server works as a watcher in CreditCoin.

3. User (OBU): The user is an entity that trades in
Credit Coin network. He/she creates or receives transactions. A user behaves

in varieties of roles, such as Hunter, Replier, Initiator, and Verifier. We will

elaborate these roles later in the following part.

4, Public role: Public role is defined similarly to the user.
However, it is more privileged than the user. It receives and sends
transactions and creates coins as well.

5. Trusted authority: Trusted authority takes charge of the
generation and delivery of public keys. It creates d addresses for each user,
and records the relationship between users and addresses.

6. Trace manager: Trace manager is the role that traces
malicious users. If a fraudulent transaction is reported to trace manager,
Trace manager will trace the malicious users with the help of trusted authority

and send a report to cloud application server.

Design and Implementation Constraints

Constraints in Analysis
¢ Constraints as Informal Text

¢ Constraints as Operational Restrictions

¢ Constraints Integrated in Existing Model Concepts
14

Constraints as a Separate Concept

Constraints Implied by the Model Structure

Constraints in Design

Determination of the Involved Classes
Determination of the Involved Objects

Determination of the Involved Actions

Determination of the Require Clauses

Global actions and Constraint Realization

Constraints in Implementation

A hierarchical structuring of relations may result in more classes
and a more complicated structure to implement. Therefore it is advisable to
transform the hierarchical relation structure to a simpler structure such as a
classical flat one. It is rather straightforward to transform the developed
hierarchical model into a bipartite, flat model, consisting of classes on the one
hand and flat relations on the other. Flat relations are preferred at the design
level for reasons of simplicity and implementation ease. There is no identity
or functionality associated with a flat relation. A flat relation corresponds with
the relation concept of entity-relationship modeling and many object oriented

methods.

15

Other Nonfunctional Requirements

Performance Requirements

The application at this side controls and communicates with the following

three main general components.

embedded browser in charge of the navigation and accessing to the web
service;Server Tier: The server side contains the main parts of the
functionality of the proposed architecture. The components at this tier are the

following.

Web Server, Security Module, Server-Side Capturing Engine,
Preprocessing Engine, Database System, Verification Engine, Output
Module.

Safety Requirements

1. The software may be safety-critical. If so, there are issues associated
with its integrity level

2. The software may not be safety-critical although it forms part of a safety-
critical system. For example, software may simply log transactions.

3. If a system must be of a high integrity level and if the software is shown
to be of that integrity level, then the hardware must be at least of the same
integrity level.

4, There is little point in producing 'perfect' code in some language if
hardware and system software (in widest sense) are not reliable.

5. If a computer system is to run software of a high integrity level then that
system should not at the same time accommodate software of a lower

integrity level.

6. Systems with different requirements for safety levels must be
separated.
7. Otherwise, the highest level of integrity required must be applied to all

systems in the same environment.

16

CHAPTER 4
SYSTEM ANALYSIS

EXISTING SYSTEM

In Existing Systems users usually lack enthusiasm to forward any
messages in VANETS if there is a risk that their privacy will be breached. In
addition, users do not benefit from forwarding announcements, which also
makes them lack motivation to respond to messages. Ideally, all messages
must be forwarded anonymously in VANETs since they usually contain
sensitive information of users, such as vehicle numbers, driving preferences
and customer identities. However, forwarding messages anonymously does
not assure the reliability of the messages, and also suffer from heavy

workload.

PROPOSED SYSTEM

In proposed system we propose a new technique called Credit Coin. It
achieves efficiency and privacy- preserving for the practical usage in
forwarding announcements. We design an incentive mechanism based on
Block chain in Credit Coin. Users manage reputation points while they earn
or spend coins as incentives. Meanwhile, Credit Coin still preserves privacy
and achieves anonymity. Moreover, based on Block chain, Credit Coin
prevents many security attacks and achieves conditional privacy because

Trace manager will trace malicious nodes when an unexpected event occurs.

17

CHAPTERS

REQUIREMENT SPECIFICATIONS

INTRODUCTION

The requirements specification is a technical specification of
requirements for the software products. It is the first step in the requirements
analysis process it lists the requirements of a particular software system
including functional, performance and security requirements. The
requirements also provide usage scenarios from a user, an operational and
an administrative perspective. The purpose of software requirements
specification is to provide a detailed overview of the software project, its
parameters and goals. This describes the project target audience and its user
interface, hardware and software requirements. It defines how the client, team

and audience see the project and its functionality.

HARDWARE AND SOFTWARE SPECIFICATION

HARDWARE REQUIREMENTS

Operating System : Windows 7 and above (64-bit).
Python : 3.6

Java :Jdk 1.8

SOFTWARE REQUIREMENTS

Hard Disk : 500GB and Above
RAM : 4GB and Above
Processor 113 and Above

TECHNOLOGIES USED
JAVA
PYTHON

18

BLOCKCHAIN

JAVA

Java is an object-oriented programming language developed initially by
James Gosling and colleagues at Sun Microsystems. The language, initially
called Oak (named after the oak trees outside Gosling's office), was intended

to replace C++, although the feature set better resembles that of Objective C.

INTRODUCTION TO JAVA

Java has been around since 1991, developed by a small team of Sun
Microsystems developers in a project originally called the Green project. The
intent of the project was to develop a platform-independent software
technology that would be used in the consumer electronics industry. The

language that the team created was originally called Oak.

The first implementation of Oak was in a PDA-type device called Star
Seven (*7) that consisted of the Oak language, an operating system called
GreenQS, a user interface, and hardware. The name *7 was derived from the
telephone sequence that was used in the team's office and that was dialed in

order to answer any ringing telephone from any other phone in the office.

Around the time the First Person project was floundering in consumer
electronics, a new craze was gaining momentum in America; the craze was
called "Web surfing." The World Wide Web, a name applied to the Internet's
millions of linked HTML documents was suddenly becoming popular for use
by the masses. The reason for this was the introduction of a graphical Web
browser called Mosaic, developed by ncSA. The browser simplified Web
browsing by combining text and graphics into a single interface to eliminate
the need for users to learn many confusing UNIX and DOS commands.

Navigating around the Web was much easier using Mosaic.

19

It has only been since 1994 that Oak technology has been applied to the
Web. In 1994, two Sun developers created the first version of Hot Java, and
then called Web Runner, which is a graphical browser for the Web that exists
today. The browser was coded entirely in the Oak language, by this time
called Java. Soon after, the Java compiler was rewritten in the Java language
from its original C code, thus proving that Java could be used effectively as
an application language. Sun introduced Java in May 1995 at the Sun World

95 convention.

Web surfing has become an enormously popular practice among millions
of computer users. Until Java, however, the content of information on the
Internet has been a bland series of HTML documents. Web users are hungry
for applications that are interactive, that users can execute no matter what
hardware or software platform they are using, and that travel across
heterogeneous networks and do not spread viruses to their computers. Java

can create such applications.

WORKING OF JAVA

For those who are new to object-oriented programming, the concept of a
class will be new to you. Simplistically, a class is the definition for a segment
of code that can contain both data (called attributes) and functions (called
methods).

When the interpreter executes a class, it looks for a particular method by
the name of main, which will sound familiar to C programmers. The main
method is passed as a parameter an array of strings (similar to the argv|[] of
C), and is declared as a static method.

To output text from the program, we execute the printinmethod of
System.out, which is java’s output stream. UNIX users will appreciate the
theory behind such a stream, as it is actually standard output. For those who

are instead used to the Wintel platform, it will write the string passed to it to
20

the user’s program.

Java consists of two things

Programming language

Platform

THE JAVA PROGRAMMING LANGUAGE

Java is a high-level programming language that is all of the following:
Simple

Object-oriented

Distributed

Interpreted

Robust

Secure
Architecture-neutral

Portable

High-performance
Multithreaded
Dynamic

The code and can bring about changes whenever felt necessary. Some
of the standard needed to achieve the above-mentioned objectives are as

follows:

Java is unusual in that each Java program is both co implied and
interpreted. With a compiler, you translate a Java program into an
intermediate language called Java byte codes - the platform independent

codes interpreted by the Java interpreter. With an interpreter, each Java byte
21

code instruction is parsed and run on the computer. Compilation happens just
once; interpretation occurs each time the program is executed. This figure

illustrates how it works:

Inferpreter

myprogrepd clazs 0101me

My
corputer

TT TT8%

A
cotopiler

Fig.5.1
You can think of Java byte codes as the machine code instructions for the
Java Virtual Machine (JVM). EveryJava interpreter, whether it's a Java
development tool or a Web browser that can run Java applets, is an
implementation of JVM. That JVM can also be implemented in hardware.

Java byte codes help make “write once, run anywhere” possible.

You can compile your Java program into byte codes on any platform that has
a Java compiler. The byte codes can then be run on any implementation of
the JVM. For example, that same Java program can e run on Windows NT,

Solaris and Macintos

” N\

PC-Compatible Sun Ultra Solaris Power

macintosh

Windows NT System 8

THE JAVA PLATFORM

A platform is the hardware or software environment in which a program
runs. The Java platform differs from most other platforms in that it's a
software-only platform that runs on top of other, hardware-based platforms.
Most other platforms are described as a combination of hardware and

operating system.

The Java platform has two components :

» The Java Virtual Machine (JVM)

» The Java Application Programming Interface (Java API)

You've already been introduced to the JVM. It's the base for the Java

platform and is ported onto various hardware-based platforms.

The Java APl is a large collection of ready-made software components
that provide many useful capabilities, such as graphical user interface (GUI)
widgets. The Java API is grouped into libraries (packages) of related
components. The following figure depicts a Java program, such as an
application or applet, that’s running on the Java platform. As the figure shows,
the Java API and Virtual Machine insulates the Java program from hardware

dependencies.
23

Tava platform
Java AFI Jawa
Java Virtual Machine Flatform
Hardware Bazed Platfrom
Fig.5.3

As a platform-independent environment, Java can be a bit slower than
native code. However, smart compliers, weel-tuned interpreters, and just-in-
time byte compilers can bring Java’s performance close to that of native code

without threatening portability.

Introduction to Python

Python is a widely used general-purpose, high level programming
language. It was initially designed by Guido van Rossum in 1991 and
developed by Python Software Foundation. It was mainly developed for
emphasis on code readability, and its syntax allows programmers to express
concepts in fewer lines of code.

Python is a programming language that lets you work quickly and
integrate systems more efficiently.

It is used for:

web development (server-side),
software development,
mathematics,

System scripting.

What can Python do?

Python can be used on a server to create web applications.
24

Python can be used alongside software to create workflows.

Python can connect to database systems. It can also read and modify files.

Python can be used to handle big data and perform complex

mathematics.

Python can be used for rapid prototyping, or for production-ready software

development.

Why Python?

Python works on different platforms (Windows, Mac, Linux, Raspberry Pi,
etc).

Python has a simple syntax similar to the English language.

Python has syntax that allows developers to write programs with fewer lines
than some other programming languages.

Python runs on an interpreter system, meaning that code can be executed as
soon as it is written. This means that prototyping can be very quick.

Python can be treated in a procedural way, an object-orientated way or a

functional way.

Good to know

The most recent major version of Python is Python 3, which we shall be using
in this tutorial. However, Python 2, although not being updated with anything
other than security updates, is still quite popular.

Python 2.0 was released in 2000, and the 2.x versions were the prevalent
releases until December 2008. At that time, the development team made the
decision to release version 3.0, which contained a few relatively small but
significant changes that were not backward compatible with the 2.x versions.
Python 2 and 3 are very similar, and some features of Python 3 have been

backported to Python 2. But in general, they remain not quite compatible.

Both Python 2 and 3 have continued to be maintained and developed, with
periodic release updates for both. As of this writing, the most recent versions

25

available are 2.7.15 and 3.6.5. However, an official End Of Life date of
January 1, 2020 has been established for Python 2, after which time it will no

longer be maintained.

Python is still maintained by a core development team at the Institute, and
Guido is still in charge, having been given the title of BDFL (Benevolent
Dictator For Life) by the Python community. The name Python, by the way,
derives not from the snake, but from the British comedy troupe Monty
Python’s Flying Circus, of which Guido was, and presumably still is, a fan. It
is common to find references to Monty Python sketches and movies scattered

throughout the Python documentation.

Itis possible to write Python in an Integrated Development Environment, such
as Thonny, Pycharm, Netbeans or Eclipse which are particularly useful when

managing larger collections of Python files.

Python Syntax compared to other programming languages

Python was designed to for readability, and has some similarities to the
English language with influence from mathematics.

Python uses new lines to complete a command, as opposed to other
programming languages which often use semicolons or parentheses.

Python relies on indentation, using whitespace, to define scope; such as the
scope of loops, functions and classes. Other programming languages often

use curly-brackets for this purpose.

Python is Interpreted

Many languages are compiled, meaning the source code you create needs
to be translated into machine code, the language of your computer’s
processor, before it can be run. Programs written in an interpreted language
are passed straight to an interpreter that runs them directly.

This makes for a quicker development cycle because you just type in your

code and run it, without the intermediate compilation step.
26

https://pythonclock.org/
https://pythonclock.org/
https://pythonclock.org/
https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus
https://en.wikipedia.org/wiki/Monty_Python%27s_Flying_Circus

One potential downside to interpreted languages is execution speed.
Programs that are compiled into the native language of the computer
processor tend to run more quickly than interpreted programs. For some
applications that are particularly computationally intensive, like graphics
processing or intense number crunching, this can be limiting.

In practice, however, for most programs, the difference in execution speed is
measured in milliseconds, or seconds at most, and not appreciably noticeable
to a human user. The expediency of coding in an interpreted language is
typically worth it for most applications.

For all its syntactical simplicity, Python supports most constructs that would
be expected in a very high-level language, including complex dynamic data
types, structured and functional programming, and object-oriented
programming.

Additionally, a very extensive library of classes and functions is available that
provides capability well beyond what is built into the language, such as
database manipulation or GUI programming.

Python accomplishes what many programming languages don’t: the
language itself is simply designed, butitis very versatile in terms of what you

can accomplish with it.

Introduction to Blockchain

With the emergence of Digital Currency (aka Crypto currency), several
enterprises or financial institutions are experimenting with the Distributed
Ledger system as a trusted way to track the ownership of the assets without
any central authority.

The core system behind the new currency system is Blockchain
technology. A walkthrough of the basic building blocks of the Blockchain
technology is described below.

A Blockchain is basically a chain of Blocks. Blocks are hashed using

SHA-256 hashing algorithm to generate the signature of the data associated
27

https://realpython.com/python3-object-oriented-programming/
https://realpython.com/python3-object-oriented-programming/

with it. Imagine a Blockchain as a linked-list whose node contains below
attributes:

Block number - a sequence number (monotonically increasing) assigned to
the block

Nonce - a random number which is used to generate Hash (as in #5) value
which starts with 4 zeroes (0000). The process of generating this Nonce is
called Mining.

Data - the actual user data associated with the block

Prev - contains the Hash of the previous block (e.g. current block # -1). The
value for the first block in the chain is 64 zeroes
(000
0000000000000).

Hash - current block’s Hash value (generated using SHA-256).

All of the above attributes excluding Hash e.g. Block #, Nonce, data, Prev

are used to calculate the Hash of this block.

[#=1, Nonce=3409, Data=x, Prev=00..0,
Hash=0000ffgr5rg67j]<- [#=2, Nonce=4986, Data=x,
Prev=0000ffgr5rg67j, Hash=000045tggr5rg..77yh] <-

...... and the chain goes on...

e.g. in above block #1, the value for Hash=0000ffgr5rg67j is generated using
the values 1,3409,x,00..0. In case value for any of these 4 attributes changes,
it will change the Hash value of this block. Once the Hash value of this Block
changes (e.g. from 0000ffgr5rg67j to 34sdffgrdrg67j), it will break the next
Block (#2) as its Prev field will point to invalid Hash (0000ffgr5rg67j doesn’t
exist anymore). This leads to a ripple effect and turns whole chain as
invalid/tampered.

One way to fix it is to run mining and recalculate the Hash value of Block
#1 which basically will generate new value for Nonce and hence leading to a
valid Hash value which starts with 4 zeroes. Copying this to next Block #2’s

Prev field will fix these 2 Blocks. However in order to fix the whole Blockchain,
28

we need to continue with this process for all the Blocks in the chain so that all
Blocks point to new & valid Hash codes of their previous blocks.

The cost of fixing the tampered Blockchain as described in above
process is very high. Because we have to go and fix the Chain from the
starting Block to the last one. In case the Chain is large, it becomes costly
operation. In case of Distributed Blockchain where several Peers are involved
in the process and keeping the copy of the Blockchain, the repairing the
Blocks becomeeven more costly operation.

The other and more efficient process is to come up with the
compensating data and add this Block at the end of the Chain. E.g. In case
your Chain contains the financial transaction (money movement) in Data field
of the Block, then instead of fixing each of the Block’s Data with corrected
financial transaction, come up with the adjusted financial transaction (aka
compensating transaction) and create a Block (with Data=adjusted
transaction record) and add this Block to the Blockchain (adds to the end of
the Chain).

SHA256 Hash

Data: test data

Hash: 916f0027a575074ce72a331777c3478d6513f786a591bd892dal1a577bf2335f9

29

Block

Blockchain

30

CHAPTER 6

SYSTEM DESIGN
Architecture Diagram:

A 4

Fig: 6.1

Sequence Diagram:

A Sequence diagram is a kind of interaction diagram that shows how
processes operate with one another and in what order. It is a construct of
Message Sequence diagrams are sometimes called event diagrams, event

sceneries and timing diagram.

31

Traffic Scenario

Update Trafic info

(=

SU
Traffic Oécured
T
S
!
=

Updtaes Traffic Info
Request Traffic Info

o)

F--- F---

ode
Neighbour Calculation
=

=

Create Nodes

—

pumn |

32

Use Case Diagram:

Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of software engineering. The standard is
managed and was created by the Object Management Group. UML includes
a set of graphic notation techniques to create visual models of software
intensive systems. This language is used to specify, visualize, modify,
construct and document the artifacts of an object oriented software intensive

system under development.

USE CASE DIAGRAM
A Use case Diagram is used to present a graphical overview of the
functionality provided by a system in terms of actors, their goals and any

dependencies between those use cases.

Use case diagram consists of two parts:
Use case: A use case describes a sequence of actions that provided
something of measurable value to an actor and is drawn as a horizontal

ellipse.

Actor: An actor is a person, organization or external system that plays a role

in one or more interaction with the system.

33

oy

Updates Traffie info”~_ /7

7/

- ” <-4
L L
Traffic Occured) ~ Er
N i RSU
User b s /

~ - /
N Requestiing ™ -~ "
Traffic Info S
/
Traffic Info <
Received

Activity Diagram:

Activity diagram is a graphical representation of workflows of stepwise

activities and actions with support for choice, iteration and concurrency. An

activity diagram shows the overall flow of control.

The most important shape types:

Rounded rectangles represent activities.

Diamonds represent decisions.

Bars represent the start or end of concurrent activities.
A black circle represents the start of the workflow.

Anencircled circle represents the end of the

34

workflow.

User

W

Create Nodes

W

Meighbour
Calculation

W

Traffic
Oceured

v

Mode Update
To RSU

W

Mode Request
Traffic
Information

W

Traffic
Information
Updated

é

35

Collaboration Diagram:

UML Collaboration Diagrams illustrate the relationship and interaction
between software objects. They require use cases, system operation
contracts and domain model to already exist. The collaboration diagram

illustrates messages being sent between classes and objects.

2: Neighbour Calculation

—
1: Create NQQ 3: Traffic Occured
User 7 Nodes > Traffic

Scenario

§ Updat_eTr i info 4: Updtaes Traffic Info

(\ 5: Request Traffic Info

RSU

36

DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) is a graphical representation of the
“flow” of data through an information system, modeling its aspects. It is a
preliminary step used to create an overview of the system which can later be

elaborated DFDs can also be used for visualization of data processing.

Level O:
Latitude
pates
U Vehic Network
sef Formation
Longitude
Level 1:
Latitude
User Nodes Neighbour
Calculation
Longitude
Level 2;
Node

Node Neighbour Data
Calculation Communication

Node

Level 3:

Node

Node Neighbour Data > Blockchain
User Calculation Communication

Node

Class Diagram
A Class diagram in the Unified Modelling Languageis a type of static
structure diagram that describes the structure of a system by showing the

system's classes, their attributes, operations (or methods), and the

relationships among objects.

38

Destination
source -

: name:String
namg:Strmg portint
poytzlnt ‘ latitudeint
Iatutu_de:tnF longitude:int
longitude:int
generateData() ?en;féliiaia()
findNeighbour() i

Observer
data:String
neighbour:String
setNeighbour()
getNeighbour()
setSpeed()
getSpeed()

Random
name:String
port:int
systemno:String
getName()
getPort()
getSysnum()

S X X

CHAPTER 7
SYSTEM DESIGN - DETAILED

Finally we design CreditCoin, a novel privacy- preserving Blockchain-based
incentive announcement network with our vehicular announcement protocol
Echo-Announcement in VANETs. Our announcement protocol maintains the
reliability of announcements without revealing users’ privacy and is reliable
and efficient in the non-fully-trusted environment in VANETs.Furthermore, the
designed incentive mechanism encourages users to be active in responding.
With Blockchain, the security is also enhanced since announcements and
transactions are traced only by Trace manager in CreditCoin. Through our
simulations, the total time of transaction part for users is around 130ms per
transaction, and the total time of consensus part for RSUs is around 92.4ms
per 100 transactions. To conclude, CreditCoinis practical in the scenario of

smart vehicles and smart transportation.

MODULES

Network Formation
Neighbor Calculation
Data Communication
Block Chain

MODULE EXPLANATION:

Network Formation:

In this module, we create a network formation. A network formation
consists of nodes. Each node has distance and range based on which
coverage area is formed. Based on coverage area nodes communicate with
each other and neighbor nodes are formed. If destination node is out of
coverage area of source node, message transmitted to destination via

neighbors.

39

Neighbor Calculation:

After Network is formed based on vehicle location and road side unit
location neighbor is calculated. In VANET environment vehicle to vehicle or
vehicle to road side unit communication takes place based on their neighbors
which have intersecting range. As vehiclesare dynamic neighbors are also
dynamic and neighbors keep changing once vehicle starts to move from one

location to another.

Data Communication:

After Network is formed and neighbors are calculated dynamically data
communication takes place between vehicle and road side unit. A vehicle in
the network request another vehicle in the network about traffic status via

road side unit as they were out of range.

Block Chain:

The users request and messages were securely stored in Block chain
implementation. When a credit coin were issued or received, it is considered
a block and added to the block chain. The block chain uses the miners to

append the transaction details as a block to the block chain.

40

CHAPTER 8

CODING AND TESTING

CODING

Once the design aspect of the system is finalizes the system enters into the
coding and testing phase. The coding phase brings the actual system into
action by converting the design of the system into the code in a given
programming language. Therefore, a good coding style has to be taken

whenever changes are required it easily screwed into the system.

CODING STANDARDS

Coding standards are guidelines to programming that focuses on the
physical structure and appearance of the program. They make the code
easier to read, understand and maintain. This phase of the system actually
implements the blueprint developed during the design phase. The coding
specification should be in such a way that any programmer must be able to
understand the code and can bring about changes whenever felt
necessary.Some of the standard neededto achieve the above-mentioned
objectives are as follows:

Program should be simple, clear and easy to understand. Naming
conventions

Value conventions

Script and comment procedure Message box format Exception and error

handling

NAMING CONVENTIONS

Naming conventions of classes, data member, member functions,
procedures etc., should be self- descriptive. One should even get the
meaning and scope of the variable by its name. The conventions are adopted

for easy understanding of the intended message by the user. So it is
41

customary to follow the conventions. These conventions are as follows:

Class names
Class names are problem domain equivalence and begin with capital

letter and have mixed cases

Members function and Data Members name
Member function and data member name begins with a lowercase letter
with each subsequent letters of the new words in uppercase and the rest of

letters in lowercase.

VALUE CONVENTIONS
Value conventions ensure values for variable at any point of time. This

involves the following:

Proper default values for the variables.
Proper validation of values in the field.

Proper documentation of flag values.

SCRIPT WRITING AND COMMENTING STANDARD

Script writing is an art in which indentation is utmost important.

Conditional and looping statements are to be properly aligned to facilitate
easy understanding. Comments are included to minimize the number of

surprises that could occur when going through the code.

MESSAGE BOX FORMAT

When something has to be prompted to the user, he must be able to
understand it properly. To achieve this,a specific format has been adopted

in displaying messages to the user. They are as follows:

X - User has performed illegal operation.
I - Information to the user.

42

TEST PROCEDURE SYSTEM TESTING

Testing is performed to identify errors. Itis used for quality assurance. Testing
is an integral part of the entire development and maintenance process. The
goal of the testing during phase is to verify that the specification has been
accurately and completely incorporated into the design, as well as to ensure
the correctness of the design itself. For example the design must not have
any logic faults in the design is detected before coding commences, otherwise
the cost of fixing the faults will be considerably higher as reflected. Detection
of design faults can be achieved by means of inspection as well as

walkthrough.

Testing is one of the important steps in the software development phase.
Testing checks for the errors, as a whole of the project testing involves the

following test cases:

Static analysis is used to investigate the structural properties of the Source
code.
Dynamic testing is used to investigate the behavior of the source code by

executing the program on the test data.

TEST DATA AND OUTPUT

UNIT TESTING

Unit testing is conducted to verify the functional performance of each modular
component of the software. Unit testing focuses on the smallest unit of the
software design (i.e.), the module. The white-box testing techniques were

heavily employed for unit testing.

FUNCTIONAL TESTS

43

YV V.V VY V

Functional test cases involved exercising the code with nominal
input values for which the expected results are known, as well as boundary
values and special values, such as logically related inputs, files of identical

elements, and empty files.

Three types of tests in Functional test:
Performance Test
Stress Test

Structure Test

PERFORMANCE TEST

It determines the amount of execution time spent in various parts of the
unit, program throughput, and response time and device utilization by the

program unit.

STRESS TEST

Stress Test is those test designed to intentionally break the unit. A
Great deal can be learned about the strength and limitations of a program by

examining the manner in which a programmer in which a program unit breaks.

STRUCTURED TEST

Structure Tests are concerned with exercising the internal logic of a
program and traversing particular execution paths. The way in which White-
Box test strategy was employed to ensure that the test cases could
Guarantee that all independent paths within a module have been have been

exercised at least once.

Exercise all logical decisions on their true or false sides.

Execute all loops at their boundaries and within their operational bounds.

Exercise internal data structures to assure their validity.
Checking attributes for their correctness.

Handling end of file condition, I/O errors, buffer problems and textual errors
44

in output information

INTEGRATION TESTING

Integration testing is a systematic technique for construction
the program structure while at the same time conducting tests to uncover
errors associated with interfacing. i.e., integration testing is the complete
testing of the set of modules which makes up the product. The objective is to
take untested modules and build a program structure tester should identify
critical modules. Critical modules should be tested as early as possible. One
approach is to wait until all the units have passed testing, and then combine
them and then tested. This approach is evolved from unstructured testing of
small programs. Another strategy is to construct the product in increments of
tested units. A small set of modules are integrated together and tested, to
which another module is added and tested in
combination. And so on. The advantages of thisapproach are that, interface

dispenses can be easily found and corrected.

The major error that was faced during the project is linking error.
When all the modules are combined the link is not set properly with all support
files. Then we checked out for interconnection and the links. Errors are
localized to the new module and its intercommunications. The product
development can be staged, and modules integrated in as they complete unit

testing. Testing is completed when the last module is integrated and tested.

TESTINGTECHNIQUES/TESTINGSTRATERGIES

TESTING
Testing is a process of executing a program with the intent of finding

an error. A good test case is one that has a high probability of finding an as-
yet — undiscovered error. A successful test is one that uncovers an as-yet-

undiscovered error. System testing is the stage of implementation, which is
45

aimed at ensuring that the system works accurately and efficiently as
expected before live operation commences. It verifies that the whole set of
programs hang together. System testing requires a test consists of several
key activities and steps for run program, string, system and is important in
adopting a successful new system. This is the last chance to detect and

correct errors before the system is installed for user acceptance testing.

The software testing process commences once the program is created
and the documentation and related data structures are designed. Software
testing is essential for correcting errors. Otherwise the program or the project
is not said to be complete. Software testing isthe critical element of software
quality assurance and represents the ultimate the review of specification
design and coding. Testing is the process of executing the program with the
intent of finding the error. A good test case design is one that as a probability
of finding an yet undiscovered error. A successful test is one that uncovers
an yet undiscovered error. Any engineering product can be tested in one of

the two ways:

WHITE BOXTESTING

This testing is also called as Glass box testing. In this testing, by knowing the

specific functions that a product has been design to perform test can be conducted

that demonstrate each function is fully operational at the same time searching for

errors in each function. It is a test case design method that uses the control structure

of the procedural design to derive test cases. Basis path testing is a white box testing.

YV V V V

Basis path testing:
Flow graph notation
Cyclometric complexity
Deriving test cases
Graph matrices Control

46

Y

BLACK BOX TESTING

In this testing by knowing the internal operation of a product, test can be
conducted to ensure that “all gears mesh”, that is the internal operation
performs according to specification and all internal components have been
adequately exercised. It fundamentally focuses on the functional

requirements of the software.

The steps involved in black box test case design are:
Graph based testing methods

Equivalence partitioning

Boundary value analysis

Comparison testing

SOFTWARE TESTING STRATEGIES:

A software testing strategy provides a road map for the software developer.
Testing is a set activity that can be planned in advance and conducted
systematically. For this reason a template for software testing a set of steps
into which we can place specific test case design methods should be strategy

should have the following characteristics:

Testing begins at the module level and works “outward” toward the integration
of the entire computer based system.

Different testing techniques are appropriate at different points in time.
The developer of the software and an independent test group conducts
testing.
Testing and Debugging are different activities but debugging must be
accommodated in any testing strategy.

INTEGRATION TESTING:

Integration testing is a systematic technique for constructing the program
structure while at the same time conducting tests to uncover errors associated

with. Individual modules, which are highly prone to interface errors, should
47

not be assumed to work instantly when we put them together. The problem of
course, is “putting them together”- interfacing. There may be the chances of
data lost across on another’s sub functions, when combined may not produce
the desired major function; individually acceptable impression may be
magnified to unacceptable levels; global data structures can present

problems.

PROGRAM TESTING:

The logical and syntax errors have been pointed out by program testing. A
syntax error is an error in a program statement that in violates one or more
rules of the language in which it is written. An improperly defined field
dimension or omitted keywords are common syntax error. These errors are
shown through error messages generated by the computer. A logic error on
the other hand deals with the incorrect data fields, out-off-range items and
invalid combinations. Since the compiler s will not deduct logical error, the
programmer must examine the output. Condition testing exercises the logical
conditions contained in a module. The possible types of elements in a
condition include a Boolean operator, Boolean variable, a pair of Boolean
parentheses A relational operator or on arithmetic expression. Condition
testing method focuses on testing each condition in the program the purpose
of condition test is to deduct not only errors in the condition of a program but

also other a errors in the program.

SECURITY TESTING:

Security testing attempts to verify the protection mechanisms built in
to a system well, in fact, protect it from improper penetration. The system
security must be tested for invulnerability from frontal attack must also be
tested for invulnerability from rear attack. During security, the tester

places the role of individual who desires to penetrate system.

48

VALIDATION TESTING

At the culmination of integration testing, software is completely
assembled as a package. Interfacing errors have been uncovered and
corrected and a final series of software test-validation testing begins.
Validation testing can be defined in many ways, but a simple definition is that
validation succeeds when the software functions in manner that is reasonably
expected by the customer. Software validation is achieved through a series
of black box tests that demonstrate conformity with requirement. After
validation test has been conducted, one of two conditions exists.
* The function or performance characteristics confirm to specifications and

are accepted.

* A validation from specification is uncovered and a deficiency created.

Deviation or errors discovered at this step in this project is corrected
prior to completion of the project with the help of the user by negotiating to
establish a method for resolving deficiencies. Thus the proposed system
under consideration has been tested by using validation testing and found
tobe working satisfactorily. Though there were deficiencies in the system they

were not catastrophic

USER ACCEPTANCE TESTING

User acceptance of the system is key factor for the success of any system.
The system under consideration is tested for user acceptance by constantly
keeping in touch with prospective system and user at the time of developing
and making changes whenever required. This is done in regarding to the
following points.

Input screen design.

Output screen design.

49

CHAPTER 9

CONCLUSION AND FUTURE WORKS
In this paper, we have proposed CreditCoin, a novel privacy-preserving
Blockchain-based incentive announcement network with our vehicular

announcement protocol Echo-Announcement in VANETS.

Our announcement protocol maintains the reliability of announcements
without revealing users’ privacy and is reliable and efficient in the non-fully-
trusted environment in VANETSs. Through our simulations, the total time of
announcements for a user only is 174ms in our assumptions, which is much
more efficient than other protocols. Furthermore , the designed incentive
mechanism encourages users to be active in responding. With Blockchain,
the security is also enhanced since announcements and transactions are
traced only by Tracemanager in CreditCoin. Through our simulations, the total
time of transcation part of users is around 130ms per transaction, and the
total time of consensus part for RSUs is around 92.4ms per 100 transctions.
To conclude, CreditCoin is practical in the scenario of smart vehicles and

smart transportation.

FUTURE WORK:

In future work, we plan to improve the key management and the coin

balance in CreditCoin.

Designing more effective trading propositions is also being investigated. .

50

RESULT:

‘& VANET ENVIRONMENT

51

REFERENCES

[11L. Chen, S.-L. Ng, and G. Wang, “Threshold anonymous
announcement in VANETSs,” IEEE J. Sel. Areas Commun., vol. 29, no.

3, pp- 605-615, Mar. 2011.

[2] J. Shao, X. Lin, R. Lu, and C. Zuo, “A threshold anonymous
authentication protocol for VANETSs,” IEEE Trans. Veh. Technol., vol. 65,
no. 3, pp. 1711-1720, Mar. 2016.

[3] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash
System. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[4] H. Hartenstein and L. P. Laberteaux, “A tutorial survey on vehicular
ad hoc networks,” IEEE Commun. Mag., vol. 46, no. 6, pp. 164-171, Jun.
2008.

[5] B. Parno and A. Perrig, “Challenges in securing vehicular networks,”
in Proc. Workshop Hot Topics Netw. (HotNets-1V), MD, USA, Nov. 2005,
pp. 1-6.

[6] F. Dotzer, “Privacy issues in vehicular ad hoc networks,” in Proc. Int.
Workshop Privacy Enhancing Technol., May 2005, pp. 197-209.

[7] J. R. Douceur, “The sybil attack,” in Proc. Int. Workshop Peer- to-Peer
Syst., 2002, pp. 251-260.

[8] E. Bresson, J. Stern, and M. Szydlo, “Threshold ring signatures and
applications to ad-hoc groups,” in Proc. Annu. Int. Cryptol. Conf.,Aug.
2002, pp. 465-480.

[9] J. Ren and L. Harn, “An efficient threshold anonymous authentication
scheme for privacy-preserving communications,” IEEE Trans. Wireless
Commun., vol. 12, no. 3, pp. 1018-1025, Mar. 2013.

[10] M. Raya, A. Aziz, and J.-P. Hubaux, “Efficient secure aggregation in
VANETS,” in Proc. 3rd Int. Workshop Veh. Ad Hoc Netw., Sep. 2006, pp.

52

67-75.

[11] C. Miller and C. Valasek, “Remote exploitation of an unaltered

passenger vehicle,” in Proc. Black Hat USA, Aug. 2015, pp. 1-91.

[12] R. G. Engoulou, M. Bellaiche, S. Pierre, and A. Quintero, “VANET

security surveys,” Comput. Commun., vol. 44, pp. 1-13, May 2014.

[13] B. Yu, C.-Z. Xu, and B. Xiao, “Detecting sybil attacks in VANETSs,”J.

Parallel Distrib. Comput., vol. 73, no. 6, pp. 746-756, Jun. 2013.

[14] J. Petit and S. E. Shladover, “Potential cyberattacks on automated

vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546-556,

Apr. 2015.

[15] W. B. Jaballah, M. Conti, M. Mosbah, and C. E. Palazzi, “Fast and

secure multihop broadcast solutions for intervehicular communication,”

IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 433-450, Feb. 2014.

[16] G. Kounga, T. Walter, and S. Lachmund, “Proving reliability of

anonymous information in VANETSs,” IEEE Trans. Veh. Technol., vol. 58,

no. 6, pp. 2977-2989, Jul. 2009.

[17] Q. Wu, J. Domingo-Ferrer, and U. Gonzalez-Nicolas, “Balanced

trustworthiness, safety, and privacy in vehicle-to- vehicle

communications,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 559-

573, Feb. 2009.

[18] B. Qin, Q. Wu, J. Domingo-Ferrer, and W. Susilo. (2012). Robust

Distributed Privacy-Preserving Secure Aggregation in Vehicular
Communication. [Online]. Available:

http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1309&context=ei

spapers
[19] Y. Xia, W. Chen, X. Liu, L. Zhang, X. Li, and Y. Xiang, “Adaptive

multimedia data forwarding for privacy preservation in

53

http://ro.uow.edu.au/cgi/viewcontent

vehicular adhoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 18, no.
10, pp. 2629-2641, Jan. 2017.

[20] L. Zhang, Q. Wu, B. Qin, and J. Domingo-Ferrer, “APPA: Aggregate
privacy-preserving authentication in vehicular ad hoc networks,” in Proc.
Int. Conf. Inf. Secur., Oct. 2011, pp. 293-308.

[21] X. Lin, “LSR: Mitigating zero-day sybil vulnerability in
privacypreserving vehicular peer-to-peer networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 9, pp. 237-246, Sep. 2013.

[22] M. Azees, P. Vijayakumar, and L. J. Deboarh, “EAAP: Efficient
anonymous authentication with conditional privacy- preserving scheme
for vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 9, pp. 2467-2476, Sep. 2017.

. [23] D. B. DeFigueiredo and E. T. Barr, “TrustDavis: A non- exploitable
online reputation system,” in Proc. IEEE Int. Conf. E- Commerce Technol.
(CEC), Jul. 2005, pp. 274-283.

[24] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and

R. Fugger, “Mechanism design on trust networks,” in Proc. Int. Workshop

Web Internet Econ., 2007, pp. 257-268.

[25] D. Schwartz, N. Youngs, and A. Britto. (2014). The Ripple Protocol

Consensus Algorithm, Ripple Labs Inc White Paper5. [Online].
Available: http://www.the-

blockchain.com/docs/Ripple%20Consensus%20Whitepaper.pdf

54

APPENDIX

Source Code Creditcoin.java packagecreditcoin;
importcom.controller.net.ApplicationBase;
importjavafx.application.Application; importjavafx.event.EventHandler;
importjavafx.fxml.FXMLLoader; importjavafx.scene.Parent;
importjavafx.scene.Scene; importjavafx.scene.input.MouseEvent;
importjavafx.stage.Stage; importjavafx.stage.StageStyle;
public class CreditCoin extends ApplicationBase { doubledragX=0;
doubledragY=0; @Override

public void start(Stage stage) throws Exception
{

Parent root =
FXMLLoader.load(getClass().getResource("FXMLDocu ment.fxml"));

Scene scene = new Scene(root);

String a=this.getClass().getResource("design.css").toExternalF orm();
scene.getStylesheets().add(a); stage.setScene(scene);
stage.initStyle(StageStyle. TRANSPARENT); stage.show();
root.setOnMouseDragged(new EventHandler<MouseEvent>()

{
@Override

public void handle (MouseEvent me)

{
stage.setX(me.getScreenX() - dragX); stage.setY(me.getScreenY() -

dragy);
}
D;

55

root.setOnMousePressed(new EventHandler<MouseEvent>()

{

@~Override
public void handle (MouseEvent me)
{
dragX = me.getScreenX() - stage.getX(); dragY = me.getScreenY() -
stage.getY();
}
D;
}
public static void main(String[] args) { launch(args);
}
}

Multisender.java packagecreditcoin; importjava.net.DatagramPacket;
importjava.net.InetAddress; importjava.net.MulticastSocket;
public class MultiSender extends Thread
{
public String str,node,sys,port,xVal,yVal,signal; UserControllerucc;
RsuControllerrcc;
publicMultiSender(String
nodename,Stringportnumber,Stringsysnumber,StringxV
al,StringyVal,Stringsigna,UserControlleruc)
{

this.node=nodename; this.sys=sysnumber;
this.port=porthumber;
this.xVal=xVal; this.yVal=yVal; this.signal=signa;
this.ucc=uc;
str="CARINFO"+"$"+nodename+"$"+sysnumber

56

+u$u+po
rtnumber+"$"+xVal+"$"+yVal+"$"+signa;

start();

}
publicMultiSender(String

nodename,Stringportnumber,Stringsysnumber,StringxV

al,StringyVal,RsuControllerrsu)

{

this.node=nodename; this.port=portnumber;
this.sys=sysnumber; this.xVal=xVal; this.yVal=yVal;

this.rcc=rsu;

str="RSUINFO"+"$"+nodename+"$"+portnumber+"$"+s

ysnumber+"$"+xVal+"$"+yVal;

start();

}

@0Override public void run()

{

try

{

InetAddress in =InetAddress.getByName("225.89.67.48");

MulticastSocket ms = new MulticastSocket(4567); ms.joinGroup(in);
DatagramPacketdp = new

DatagramPacket(str.getBytes(), str.length(), in, 4567);
ms.send(dp); Thread.sleep(2000);

}

catch(Exception e)

{
e.printStackTrace();

57

Multireceiver.java packagecreditcoin; importjava.io.ObjectOutputStream;
importjava.net.DatagramPacket; importjava.net.InetAddress;
importjava.net.MulticastSocket; importjava.net.Socket;

importjava.util. HashMap; importjava.util.StringTokenizer;

importjava.util. TreeMap; importjava.util.Vector;

public class MultiReceiver extends Thread{ public String node, sys, port,
xVal, yVal,signal,

Observer o = new Observer(); UserControllercarc; RsuControllerrcc;
public static HashMapallcarsyshum = new HashMap(); public static
HashMapallcarportnum = new HashMap(); public static
HashMapallcarsignal=new HashMap();

public static HashMapallrsusysnum = new HashMap();

public static HashMapallrsuportnum = new HashMap();

publicMultiReceiver(String nodename, String portnumber, String

sysnumber,Stringsigna, UserControlleruc)

{

this.node = nodename; this.port = portnumber;
this.sys = sysnumber; this.signal=signa;
0 = uc.getObserver(); carc = uc;

start();

}

publicMultiReceiver(String nodename,Stringportnumber, String sysnumber,

58

RsuControllerrc)

{

this.node = nodename; this.port = portnumber;
this.sys = sysnumber; this.rcc=rc;

o=rc.getObserver();

rcc=rc; start();

}
@~Override public void run()

{

try
{

InetAddress in =
InetAddress.getByName("225.89.67.48");

MulticastSocket ms = new MulticastSocket(4567); ms.joinGroup(in);

while(true)

{
byte[] b = new byte[1024];

DatagramPacketdp = new DatagramPacket(b, b.length); ms.receive(dp);
String datal = new
String(dp.getData()).trim();
StringTokenizer str1 = new StringTokenizer(data1, "$"); String str2 =
str1.nextToken().toString();

if (str2.equals("CARINFQO"))
{

String nodenum = str1.nextToken(); String sysnum = str1.nextToken();
String portnum = str1.nextToken(); String xVal=str1.nextToken(); String

yVal=str1.nextToken(); String signal=str1.nextToken();

59

allcarsignal.put(nodenum, signal); allcarsysnum.put(nodenum, sysnum);
allcarportnum.put(nodenum, portnum);

}
else if(str2.equals("RSUINFQO"))

{
String rsuname=str1.nextToken(); String portnum=str1.nextToken(); String
sysnum=str1.nextToken();

allrsusysnum.put(rsuname, sysnum); allrsuporthnum.put(rsuname, porthum);

}

}
}

catch(Exception e)

{
e.printStackTrace();

}
public void applyBreak(String partialBreakNode, intxPos,
intyPos, int speed, String data)
{
Try
{

String sysno =
allcarsysnum.get(partialBreakNode).toString().trim();

String portno =
allcarportnum.get(partialBreakNode).toString().trim();

Socket s = new Socket(sysno,

Integer.parselnt(portno));
ObjectOutputStreamoos = new

ObjectOutputStream(s.getOutputStream());

oos.writeObject("Break"); oos.writeObject(partialBreakNode);
60

oos.writeObject(xPos); oos.writeObject(yPos); oos.writeObject(speed);
oos.writeObject(data); oos.close();
s.close();

}

catch(Exception e)

{
e.printStackTrace();
}

}
public void criticalNeigh(String neighName, String

nodeName, int speed) {
try {
String sysho =

allcarsysnum.get(neighName).toString().trim();

String portno =

allcarportnum.get(neighName).toString().trim();

Socket s = new Socket(sysno,

Integer.parselnt(portno));

ObjectOutputStreamoos = new

ObjectOutputStream(s.getOutputStream());

oos.writeObject("Critical"); oos.writeObject(neighName);
oos.writeObject(nodeName); oos.writeObject(speed); oos.close();

s.close();

} catch (Exception e) { e.printStackTrace();

61

Screenshots:

62

EnterRSUCo-Ordinate:

Enter the Y Co-Ordinate

|s00]

VEHL... | PDI[I'| L(IA....| RESPOMNSE MESSAGE Signal Str...

63

VEHL... | P'DI{'I'| L(IA...| RESPOMNSE MESSAGE Signal Str...

64

LoginUser:

65

EnterX-CoordinateForVehicle

Enter the X Co-Ordinate

[100

EnterY-CoordinateForVehicle

Enter the Y Co-Ordinate

66

Request

ﬁ

Request Traffic Status

Update Traffic Status

67

Request

ﬁ

(o) it o

RSUETES
1
E]
Request Traffic Status

Update Traffic Status

68

Request

Request Traffic Status

Update Traffic Status

69

70

71

