
DECENTRALIZED CLOUD STORAGE USING BLOCKCHAIN

Submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering Degree in Computer Science and Engineering

By

LOKESH KARTHIK. S

(37110407)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC|12B Status by UGC| Approved by AICTE

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

March - 2021

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC|12B Status by UGC| Approved by AICTE

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119

 .

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of LOKESH KARTHIK

S (17SCS8062) who carried out the project entitled “DECENTRALIZED CLOUD

STORAGE USING BLOCKCHAIN” under

our supervision from NOVEMBER 2020 to MARCH 2021.

Internal Guide

Dr.D.USHA NANDINI , M.E., Ph.D.,

Head of the Department

Dr.S.VIGNESHWARI , ME.,Ph.D.,

Submitted for Viva Voce Examination held on .

Internal Examiner External Examiner

DECLARATION

I, LOKESH KARTHIK S (17SCS8062) hereby declare that the Project

Report on “DECENTRALIZED CLOUD STORAGE USING BLOCKCHAIN”
done by us under the guidance of Dr.D. USHA NANDINI ,M.E.,Ph.D., at
Sathyabama Institute of Science and Technology is submitted in partial
fulfillment of the requirements for the award of Bachelor of Engineering degree
in Computer Science and Engineering.

DATE:

PLACE: SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of management of

SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. We are grateful to them.

I convey my thanks to Dr. T. Sasikala, M.E., Ph.D., Dean, School of Computing

and Dr. S.Vigneshwari, M.E., Ph.D., and Dr.L.Lakshmanan, M.E.,Ph.D., Heads

of the Department, Department of Computer Science and Engineering for

providing us the necessary support and details at the right time during the

progressive reviews.

I would like to express my sincere and deep sense of gratitude to our Project

Guide Dr.D.Usha Nandini, M.E., Ph.D., for her valuable guidance, suggestions and

constant paved way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many ways

for the completion of project.

i

ABSTRACT

Decentralized cloud storage is a Peer-to-peer network where each node provides

the storage service to the customer’s data. The storage system is based on the

blockchain domain where it is completely decentralized. Blockchain ensures the

user security and reliability of the user data. Peer-to-peer networking enables the

user to store the data in different nodes across the network with security where the

data are encrypted. This paper proposes a system which enables smart contract in

the cloud storage system where it acts as an agreement between the client and

the storage provider. Smart contract lets the user know about what data will be

stored and the cost of storage. The decentralized cloud storage is reliable, secure

and not power failure prone compared to the earlier systems. This system is

integrated with a smart contract which enables to keep an agreement and the

transaction will happen accordingly to the implemented smart contract.

ii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABTRACT i

LIST OF FIGURES v

1 INTRODUCTION 1

2 LITERATURE SURVEY 4

2.1 LITERATURE SURVEY 5

3 AIM AND SCOPE OF THE PROJECT 8

3.1 AIM 8

3.2 PROJECT SCOPE 8

3.3 OBJECTIVE 8

3.4 PROPOSED SYSTEM 9

4 METHODOLOGY 11

4.1 MODULE DESCRIPTION 11

4.1.1 WEB3J 11

4.1.2 SOLIDITY 11

4.1.3 REACTJS 11

4.1.4 TRUFFLE SUITE 12

4.1.5 GANACHE 12

4.1.6 NODE.JS 13

4.1.7 METAMASK 13

4.1.8 IPFS INFURA 13

4.1.9 ETHEREUM 14

4.1.10 JAVASCRIPT 14

4.1.11 CSS 15

iii

4.1.12 HTML 16

4.2 SOFTWARE DESCRIPTION 18

4.2.1 BUILDING PEER TO PEER NETWORK 19

4.3 NODE SETUP 19

4.3.1 NODE OPERATIONS 19

4.3.2 MOTIVATION FOR NODE 20

4.4 CLIENT SETUP 20

4.4.1 COMMUNICATION WITH NODE 20

4.4.2 AES ENCRYPTION AND DECRYPTION 21

4.4.3 FILE SPLITTING/MERGING 22

4.4.4 HASH ENCRYPTION 22

4.5 BLOCKCHAIN INTEGRATION 23

4.5.1 BLOCKCHAIN 23

4.5.2 SMART CONTRACT 25

4.5.3 FILE DETAILS RECORD 27

4.5.4 TOKEN TRANSFER 28

4.6 SYSTEM DEVELOPMENT METHODOLOGY 29

4.6.1 SOFTWARE DEVELOPMENT APPROACH 29

4.6.2 REQUIREMENT ANALYSIS 30

5 RESULTS AND DISCUSSION 31

5.1 CLIENT APPLICATION 31

5.1.1 RESULT OF NODE APP 31

6 CONCLUSION AND FUTURE SCOPE 36

6.1 CONCLUSION 36

6.2 FUTURE WORK 37

iv

REFERNCES 38

APPENDIX 39

A) SOURCE CODE 39

B) SCREENSHOTS 44

C) PUBLICATION AND PLAGIARISM CHECK REPORT 48

v

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

3.1 ARCHITECTURE DIAGRAM 9

4.1 P2P NETWORK 15

4.2 SECURE FILE STORAGE PROTOCOL 16

4.3 FILE PROCESSING 18

4.4 FILE STORAGE PROTOCOL 19

4.5 MERKLE TREE 22

4.6 SMART CONTRACT FLOW DIAGRAM 24

4.7 TOKEN TRANSFER 26

4.8 SCRUM METHODOLOGY 28

5.1 METAMASK 30

5.2 GANACHE 31

5.3 FILE UPLOADING 32

5.4 FILE UPLOAD AND RETRIEVING SCREENSHOT 33

CHAPTER 1

INTRODUCTION

In the past decade, technological advancements have been made by

research consortiums to adapt data sharing approaches. In such a way, research-

based activities can improve through collaboration with the growing fields of

Information Technology, Internet of Things and Digitization of every business,

organizational work and projects, Information has become the biggest valuable

asset for anyone. With the abundance of data and its ever-growing nature, it’s

equally important to store it in an organized way such that it’s easily accessible

and secure. For this purpose. Databases are used as a warehouse to store data.

Database play a crucial role for any individual as well as any organization and

business to store its data. Realizing the importance of data and insufficiency of

storage, databases are replicated, distributed and backed up in different ways.

Individuals store data in the cloud provided by different privately companies.

Organizations set up their data centers at different part of the globe to store its data.

For the security and bandwidth, data are scattered and replicated to different servers

at different places. This seems to provide good solution for the management of

rapidly increasing data. And also ensures data safety. In future, the rate of

increment of data is sure to reach high. To cope with it, the current database system

needs to be more reliable, safe and available all the time. Cloud servers store the

excessive amount of data, which is a centralized authority. There is various type of

risks associated with a central authority, such as single point failure. To avoid such

failure, third parties are involved to provide data backups. To eliminate third party for

developing a trust-based model, a blockchain is introduced to provide trust and

transparency. Decentralized storage is a solution, which allows storage of data

independently on multiple nodes of the network in the form of a distributed ledger.

Peer to Peer network is the distributed network where each node in the network

communicates with each other directly or through a series of channels via other

nodes. There is s no client server to access the resource. Each node will act both

as a host or a client as needed. There is no any Central server for controlling the

system flow and other nodes. Node is one of the member of P2P

1

2

system which is willing to provide store for the clients in return to tokens.Node is fully

responsible for handling the client’s data. It can view the encrypted data send by

client which is stored in node’s storage. Node can list all the data of the client and

organize it. In our system, node is getting paid for storing the client’s data by token

of our system. According to the agreement between node and client, the node gets

payment as file is downloaded by the client or duration of agreement finishes.

Introduction of smart contracts is used here as an agreement between the client and

the service provider where the user knows what data is stored and what is the price

for the stored data. Smart contracts are the set of protocols in which the

decentralized follows and the added advantage is it discloses any confusion

between the users and the provider. Smart contracts are implemented in the truffle

suite in this project. IPFS is a BitTorrent like network where number of nodes are

connected on the network so that the data can be uploaded and downloaded easily.

IPFS is used here to distribute the data blocks across the network where several

nodes can store the data which is encrypted. The address of this network is

available in the IPFS so that the transactions of this network can be watched using

wallets like ganache which is used in this project. Ganache is a private wallet where

the user can watch the transactions and information about the block is also available.

The frontend of this project is created using React which uses JavaScript

programming language. This project proposes a decentralized cloud storage using

IPFS system where the data stored on this network is more secure and reliable than

the conventional storage system. It is a simple and secure file storage system where

the file is distributed across the network and when the file needs to be retrieved,

decryption is performed on the data to restore in its original form. First, the data is

selected and it is fed in the system where the data is first sharded into several

number of blocks of bits. The number of shards is determined by the total number of

nodes available in the network. The encryption is the most crucial point of this

process where the data needs to be secure before distributing it across the network.

After the data is separated into several shards which is considered as a data block

is hash encrypted so that the receiver of this block doesn’t understand the

information. This process happens until the entire data is hashed encrypted.

Introduction of smart contracts is used here as an agreement

3

between the client and the service provider where the user knows what data is

stored and what is the price for the stored data. Smart contracts are the set of

protocols in which the decentralized follows and the added advantage is it

discloses any confusion between the users and the provider. Smart contracts are

implemented in the truffle suite in this project. IPFS is a BitTorrent like network

where number of nodes are connected on the network so that the data can be

uploaded and downloaded easily. IPFS is used here to distribute the data blocks

across the network where several nodes can store the data which is encrypted.

The address of this network is available in the IPFS so that the transactions of this

network can be watched using wallets like ganache which is used in this project.

Ganache is a private wallet where the user can watch the transactions and

information about the block is also available. The frontend of this project is created

using React which uses JavaScript programming language. The problem is the

storage and processing limitation of network nodes. For this purpose,

interplanetary file system (IPFS) is adapted, which is a p2p architecture. There is

no risk of single point failure. It’s similar to web3, but with different features. It

performs content addressing and works in a similar way as bit torrent. Availability

of data is ensured by storing it on a decentralized platform; IPFS.

4

CHAPTER 2

LITERATURE SURVEY

Existing System: Earlier, due to the non-usage of smart contracts in the previous

proposed systems have issues with transparency of transactions. The cloud storage

system doesn’t ensure the user about the cost of the storage of data and what type

of data will be stored. Some of the earlier systems didn’t feature peer-to- peer

networking which seems as a possible disadvantage. Currently, user uses his/her

offline storage devices and other secondary storages for data backup and protection.

Most of us often use the cloud service of Amazon, Google, Dropbox, Microsoft and

others. A huge amount of users data are stored in cloud which is in fact someone’s

computer or storage devices. Such organization has complete authority over users

data. In recent years, trend has increased rapidly in using those data without users

acknowledge and permission by those company for their uses and pursue higher

benefits from it. Most of the papers doesn’t purpose a privacy policy where some

information the transaction destination which can be improved with further

developing the system. Some papers propose encryption algorithms aren’t secure

as encryption holds an important process in the cloud storage system where the

data can’t be interrupted by hackers. Advanced encryption algorithms are being

developed which might provide better security to the users.

Proposed System: This paper proposes a decentralized cloud storage using IPFS

system where the data stored on this network is more secure and reliable than the

conventional storage system. It is a simple and secure file storage system where the

file is distributed across the network and when the file needs to be retrieved,

decryption is performed on the data to restore in its original form. First, the data is

selected and it is fed in the system where the data is first sharded into several

number of blocks of bits. The number of shards is determined by the total number

of nodes available in the network. The encryption is the most crucial point of this

process where the data needs to be secure before distributing it across the

5

network. After the data is separated into several shards which is considered as a

data block is hash encrypted so that the receiver of this block doesn’t understand

the information. This process happens until the entire data is hashed encrypted.

Introduction of smart contracts is used here as an agreement between the client

and the service provider where the user knows what data is stored and what is the

price for the stored data. Smart contracts are the set of protocols in which the

decentralized follows and the added advantage is it discloses any confusion

between the users and the provider. Smart contracts are implemented in the truffle

suite in this project. IPFS is a BitTorrent like network where number of nodes are

connected on the network so that the data can be uploaded and downloaded

easily. IPFS is used here to distribute the data blocks across the network where

several nodes can store the data which is encrypted. The address of this network

is available in the IPFS so that the transactions of this network can be watched

using wallets like ganache which is used in this project. Ganache is a private wallet

where the user can watch the transactions and information about the block is also

available. The frontend of this project is created using React which uses

JavaScript programming language.

2.1 LITERATURE SURVEY

Title : Blockchain-Based Secure Storage and Access Scheme for Electronic

Medical Records in IPFS

Author : Jin Sun

Year : 2014

Jin Sun proposed an access scheme for electronic medical records in IPFS

with blockchain-Based Secure Storage. The author constructed attribute-based

encryption scheme for secure storage and efficient sharing of electronic medical

records in IPFS environment. The ideology that the author suggests is that we

encrypt the data based on attributes and determine the attributes of the users. Each

user’s private key is related to their respected attributes whereas the ciphertext is

related to the policy.

6

Title : Blockchain-based Decentralized Storage Scheme

Author : Yan Zhu

Year : 2019

Yan Zhu suggests a decentralized storage scheme instead of a conventional

centralized system. The provider performs a data integrity certificate to the user and

only after it is verified, the user pays the fee for storage. The payment information is

stored in the blockchain which is secure.

Title : A Peer-to-Peer Cloud Storage Network

Author : Shawn Wilkinson

Year : 2016

Shawn Wilkinson used a peer-to-peer cloud storage which implements end-

to-end encryption which would allow to share and transfer data without a need for

third party data providers. The author implements a challenge algorithm which would

cryptographically check the integrity and availability of the user data.

Title : Simple Decentralized Storage

Author : David Vorick

Year : 2014

David Vorick introduced a simple decentralized storage system which enables

the formation of contracts between peers. Contracts are like agreements between

users and the provider which defines what data will be stored and at what price.

Title : A peer-to-peer electronic cash system

Author : Satoshi Nakamoto

Year : 2008

Satoshi Nakamoto introduced peer-to-peer networking which changed the

entire domain. The author suggests a user to send payments directly from one party

to another without a need for financial institution. This paper provides a solution to

double-spending problem with the introduction of peer-to-peer networks.

Title : IPFS - Content Addressed, Versioned, P2P File System

Author : Juan Bernet

Year : 2014

Juan Bernet introduced Inter Planetary File System which is a distributed

peer-to-peer file system that connects the computing devices. The author designed

the system in ways that it provides a high through-put content-addressed block

storage model.

Title : Zerocash: Decentralized Anonymous Payments from Bitcoin.

Author : Eli Ben-Sasson

Year : 2014

Eli Ben-Sasson explains in detail about decentralized anonymous payments

where the author points out some of the flaws in the bitcoin privacy guarantees. This

paper fulfills that flaw by unlinking transaction from the payment’s origin and it also

reveals the payment destinations and the amount.

7

8

CHAPTER 3

AIM AND SCOPE OF THE PROJECT

3.1 AIM

The main aim of this project is to develop a system over blockchain which can store

the users data in a decentralized database distributed across the peer to peer

network.

3.2 PROJECT SCOPE

In this project, we propose a working decentralised database system using

decentralized network and blockchain. The scope of the project is to show viability

of decentralized database system using blockchain and smart contracts.

3.3 OBJECTIVE

To develop a system over Ethereum Blockchain which can store the users data in

a decentralized database distributed across the peer to peer network. The specific

objectives are as follows:

• To research about cryptography, P2P network, web technology and

blockchain.

• To contribute in the active research on decentralized applications and

cryptography.

• To develop a distributed cloud storage platform.

9

3.4 PROPOSED SYSTEM

Fig. 3.1: Architecture Diagram

This project proposes a decentralized cloud storage using IPFS system where the

data stored on this network is more secure and reliable than the conventional

storage system. It is a simple and secure file storage system where the file is

distributed across the network and when the file needs to be retrieved, decryption

is performed on the data to restore in its original form. First, the data is selected and

it is fed in the system where the data is first sharded into several number of blocks

of bits. The number of shards is determined by the total number of nodes available

in the network. The encryption is the most crucial point of this process where the

data needs to be secure before distributing it across the network. After the data is

separated into several shards which is considered as a data block is

10

hash encrypted so that the receiver of this block doesn’t understand the information.

This process happens until the entire data is hashed encrypted. Introduction of smart

contracts is used here as an agreement between the client and the service provider

where the user knows what data is stored and what is the price for the stored data.

Smart contracts are the set of protocols in which the decentralized follows and the

added advantage is it discloses any confusion between the users and the provider.

Smart contracts are implemented in the truffle suite in this project. IPFS is a

BitTorrent like network where number of nodes are connected on the network so

that the data can be uploaded and downloaded easily. IPFS is used here to distribute

the data blocks across the network where several nodes can store the data which

is encrypted. The address of this network is available in the IPFS so that the

transactions of this network can be watched using wallets like ganache which is used

in this project. Ganache is a private wallet where the user can watch the transactions

and information about the block is also available. The frontend of this project is

created using React which uses JavaScript programming language.

11

CHAPTER 4

METHODOLOGY

4.1 MODULE DESCRIPTION

4.1.1 Web3j

Web3j is a lightweight, highly modular, reactive, type safe Java and Android library

for working with Smart Contracts and integrating with clients (nodes) on the

Ethereum network.This allows you to work with the Ethereum blockchain, without

the additional overhead of having to write your own integration code for the platform.

It has complete implementation of JSON-RPC client (Application Programming

Interface)API over Hyper Text Transfer Protocol(HTTP) and Inter Process

Communication(IPC).It has android compatible version and supports Infura.It has

complete support to ethereum wallet.

4.1.2 Solidity

Solidity is a contract-oriented programming language for writing smart

contracts.Solidity is a statically-typed programming language designed for

developing smart contracts that run on the EVM.It was influenced by C++, Python

and JavaScript and is designed to target the Ethereum Virtual Machine (EVM).

With Solidity, developers are able to write applications that implement self-

enforcing business logic embodied in smart contracts, leaving a nonrepudiable

and authoritative record of transactions. Solidity support inheritance, including

multiple inheritance with C3 linearization.

4.1.3 ReactJS

It is a JavaScript library for building user interfaces. It is maintained by Facebook

and a community of individual developers and companies. React can be used as a

base in the development of single-page or mobile applications. Complex React

applications usually require the use of additional libraries for state management,

routing, and interaction with an API. It makes developer painless to create

12

interactive UI. Properties commonly called props are passed from parent component

to child. It also has feature of stateful components which can be passed to child

components. React creates an in-memory data structure for virtual Document Object

Model(DOM) and updates the browser DOM efficiently. Lifecycle in ReactJS are

hooks which allows execution of code at set of points during component’s lifetime.

4.1.4 Truffle Suite

Truffle is the most popular development framework for Ethereum with a mission to

make your life a whole lot easier. Truffle takes care of managing your contract

artifacts so you don't have to. Includes support for custom deployments, library

linking and complex Ethereum applications. A world class development

environment, testing framework and asset pipeline for blockchains using the

Ethereum Virtual Machine (EVM), aiming to make life as a developer easier. Tighten

the feedback loop between deployment, operation, and debugging; all within

powerful development sandboxes. Share insights with the whole team.

4.1.5 Ganache

Quickly fire up a personal Ethereum blockchain which you can use to run tests,

execute commands, and inspect state while controlling how the chain operates.

The main features of ganache are

 Blockchain log output - See the log output of Ganache’s internal blockchain,

including responses and other vital debugging information.

 Advanced mining control - Configure advanced mining with a single click,

setting block times to best suit your development needs

 Ethereum blockchain - Byzantium comes standard, giving you the latest

Ethereum features needed for modern dapp development.

 Built-in block explorer - Examine all blocks and transactions to gain insight

about what’s happening under the hood.

13

4.1.6 Node.js

Node.js is an open-source, cross-platform, back-end, JavaScript runtime

environment that executes JavaScript code outside a web browser. Node.js is an

open-source, cross-platform, back-end JavaScript runtime environment that runs

on the V8 engine and executes JavaScript code outside a web browser. Node.js lets

developers use JavaScript to write command line tools and for server-side scripting-

running scripts server-side to produce dynamic web page content before the page

is sent to the user's web browser. Consequently, Node.js represents a "JavaScript

everywhere" paradigm, unifying web-application development around a single

programming language, rather than different languages for server-side and client-

side scripts.

4.1.7 Metamask

MetaMask is an extension for accessing Ethereum enabled distributed applications,

or "Dapps" in your browser! The extension injects the Ethereum web3 API into every

website's javascript context, so that dapps can read from the blockchain. MetaMask

is a cryptocurrency wallet used to interact with the Ethereum blockchain. MetaMask

allows users to store and manage account keys, broadcast transactions, send and

receive Ethereum-based cryptocurrencies and tokens, and securely connect to

decentralized applications through a compatible web browser or the mobile app's

built-in browser.

4.1.8 IPFS Infura

Infura provides secure, reliable, scalable, and easy to use APIs to access the

Ethereum network and the IPFS. In many cases, using this API this is preferable to

embedding IPFS directly in your program it allows you to maintain peer connections

that are longer lived than your app and you can keep a single IPFS node running

instead of several if your app can be launched multiple times.

14

4.1.9 Ethereum

Ethereum, and its provision of smart contracts provided real functionality even if

the results of its open system are dubious. Ethereum is a decentralized, open-

source blockchain featuring smart contract functionality. It is the native

cryptocurrency of the platform. It is the second-largest cryptocurrency by market

capitalization, after Bitcoin. Ethereum is the most actively used blockchain.

4.1.10 JavaScript

JavaScript often abbreviated as JS, is a programming language that conforms to the

ECMAScript specification. JavaScript is high-level, often just-in-time compiled, and

multi-paradigm. It has curly-bracket syntax, dynamic typing, prototype-based object-

orientation, and first-class functions. Alongside HTML and CSS, JavaScript is one

of the core technologies of the World Wide Web. JavaScript enables interactive web

pages and is an essential part of web applications. The vast majority of websites

use it for client-side page behavior and all major web browsers have a dedicated

JavaScript engine to execute it. As a multi-paradigm language, JavaScript supports

event-driven, functional, and imperative programming styles. It has application

programming interfaces (APIs) for working with text, dates, regular expressions,

standard data structures, and the Document Object Model (DOM). The ECMAScript

standard does not include any input/output (I/O), such as networking, storage, or

graphics facilities. In practice, the web browser or other runtime system provides

JavaScript APIs for I/O. JavaScript engines were originally used only in web

browsers, but they are now core components of other runtime systems, such as

Node.js and Deno. These systems are used to build servers and are also integrated

into frameworks, such as Electron and Cordova, for creating a variety of

applications. Although there are similarities between JavaScript and Java, including

language name, syntax, and respective standard libraries, the two languages are

distinct and differ greatly in design.

15

text/css

The main features of JavaScript are:

 Imperative and structured

 Weakly typed

 Dynamic

 Object-orientation (prototype-based)

 Functional

 Delegative

 Miscellaneous

 Vendor-specific extensions

4.1.11 CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the

presentation of a document written in a markup language such as HTML. CSS is a

cornerstone technology of the World Wide Web, alongside HTML and

JavaScript. CSS is designed to enable the separation of presentation and content,

including layout, colors, and fonts. This separation can improve content

accessibility, provide more flexibility and control in the specification of presentation

characteristics, enable multiple web pages to share formatting by specifying the

relevant CSS in a separate .css file which reduces complexity and repetition in the

structural content as well as enabling the .css file to be cached to improve the page

load speed between the pages that share the file and its formatting. Separation of

formatting and content also makes it feasible to present the same markup page in

different styles for different rendering methods, such as on-screen, in print, by voice

(via speech-based browser or screen reader), and on Braille-based tactile devices.

CSS also has rules for alternate formatting if the content is accessed on a mobile

device. The name cascading comes from the specified priority scheme to determine

which style rule applies if more than one rule matches a particular element. This

cascading priority scheme is predictable.

Internet media type (MIME type) is registered for use with CSS by RFC

https://en.wikipedia.org/wiki/Style_sheet_language
https://en.wikipedia.org/wiki/Presentation_semantics
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Page_layout
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Typeface
https://en.wikipedia.org/wiki/Accessibility
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Screen_reader
https://en.wikipedia.org/wiki/Braille_display
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/MIME_media_type

16

2318 (March 1998). The W3C operates a free CSS validation service for CSS

documents. In addition to HTML, other markup languages support the use of CSS

including XHTML, plain XML, SVG, and XUL. There is no single, integrated CSS4

specification, because the specification has been split into many separate modules

which level independently. Modules that build on things from CSS Level 2 started

at Level 3. Some of them have already reached Level 4 or are already approaching

Level 5. Other modules that define entirely new functionality, such as Flexbox,

have been designated as Level 1 and some of them are approaching Level 2. The

CSS Working Group sometimes publishes "Snapshots", a collection of whole

modules and parts of other drafts that are considered stable enough to be

implemented by browser developers. So far, five such "best current practices"

documents have been published as Notes, in 2007, 2010, 2015, 2017, and 2018.

Since these specification snapshots are primarily intended for developers, there has

been growing demand for as similar versioned reference document targeted at

authors, which would present the state of interoperable implementations as

meanwhile documented by sites like Can I Use…and the Mozilla Developer

Network. A W3C Community Group has been established in early 2020 in order to

discuss and define such a resource. The actual kind of versioning is also up to

debate, which means that the document once produced might not be called "CSS4".

4.1.12 HTML

The HyperText Markup Language, or HTML(HyperText Markup Language) is the

standard markup language for documents designed to be displayed in a web

browser. It can be assisted by technologies such as Cascading Style Sheets

(CSS) and scripting languages such as JavaScript. Web browsers receive HTML

documents from a web server or from local storage and render the documents into

multimedia web pages. HTML describes the structure of a web page semantically

and originally included cues for the appearance of the document. HTML elements

are the building blocks of HTML pages. With HTML

https://en.wikipedia.org/wiki/W3C_Markup_Validation_Service#CSS_validation
https://en.wikipedia.org/wiki/XHTML
https://en.wikipedia.org/wiki/Plain_Old_XML
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/XUL
https://en.wikipedia.org/wiki/Flexbox
https://en.wikipedia.org/wiki/Software_versioning
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Browser_engine
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/HTML_element
https://en.wikipedia.org/wiki/HTML_element

<input />

constructs, images and other objects such as interactive forms may be embedded

into the rendered page. HTML provides a means to create structured documents

by denoting structural semantics for text such as headings, paragraphs, lists, links,

quotes and other items. HTML elements are delineated

by tags, written using angle brackets. Tags such as

introduce content into the page. Other tags such as

and

surround and

directly

provide

information about document text and may include other tags as sub-elements.

Browsers do not display the HTML tags, but use them to interpret the content of

the page. HTML can embed programs written in a scripting language such as

JavaScript, which affects the behavior and content of web pages. Inclusion of CSS

defines the look and layout of content. The World Wide Web Consortium

(W3C), former maintainer of the HTML and current maintainer of the CSS standards,

has encouraged the use of CSS over explicit presentational HTML. An HTML

Application (HTA; file extension ".hta") is a Microsoft Windows application that

uses HTML and Dynamic HTML in a browser to provide

the application's graphical interface. A regular HTML file is confined to the security

model of the web browser's security, communicating only to web servers and

manipulating only web page objects and site cookies. An HTA runs as a fully trusted

application and therefore has more privileges, like creation/editing/removal of files

and Windows Registry entries. Because they operate outside the browser's security

model, HTAs cannot be executed via HTTP, but must be downloaded (just like an

EXE file) and executed from local file system.

17

<p>

https://en.wikipedia.org/wiki/HTML_element#Images_and_objects
https://en.wikipedia.org/wiki/Fieldset
https://en.wikipedia.org/wiki/Structured_document
https://en.wikipedia.org/wiki/Structured_document
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Hyperlink
https://en.wikipedia.org/wiki/Bracket#Angle_brackets
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Browser_security
https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/EXE

18

4.2 SOFTWARE DESCRIPTION

4.2.1 BUILDING PEER TO PEER NETWORK

Fig. 4.1: P2P Network

Peer to Peer network is the distributed network where each node in the network

communicates with each other directly or through a series of channels via other

nodes. There is s no client server to access the resource. Each node will act both

as a host or a client as needed. There is no any Central server for controlling the

system flow and other nodes.

19

4.3 NODE SETUP

Node is one of the member of P2P system which is willing to provide store for the

clients in return to tokens.

Fig. 4.2: Node Workflow

4.3.1 Node Operations

Node is fully responsible for handling the client’s data. It can view the encrypted data

send by client which is stored in node’s storage. Node can list all the data of the

client and organize it.

20

4.3.2 Motivation for Node

In our system, node is getting paid for storing the client’s data by token of our

system. According to the agreement between node and client, the node gets

payment as file is downloaded by the client or duration of agreement finishes.

4.4 CLIENT SETUP

4.4.1 Communication with Node

File Processing is the main function of our app is to encrypt/decrypt the file, split

it into user defined parts and upload it to nodes. Like that, download it from nodes,

merge the chunk to single file and then decrypt to original file.Figure given below will

give more clear idea about file processing in our system.

Fig. 4.3: File Processing

21

4.4.2 AES Encryption and Decryption

Using Random AES Key Generator, random key for AES gets generated. Like

that, Random IV spec generator generates Random IV which is required during

AES encryption. 24 byte AES key along with 16 byte Random IV encrypts the file.

AES key is further encrypted with master key. Therefore, our encrypted file consist

first 40 byte of key as header and remaining byte as encrypted data of the file.

Finally, the encrypted file gets chucked into user defined number and gets

transferred to network. Like that after downloading the chunks from network, all the

parts get merged into encrypted file.First 40 bytes is separated as header and

remaining as file cipher. Among 40 bytes, 24 bytes is seperated and AES key is

derived. After that remaining 16 bytes Random IV and AES key is used to decrypt

the file whichgives original file as an output.

Fig. 4.4: Secured File Storage Protocol

22

4.4.3 File Splitting/Merging

The encrypted file is splitted into number of nodes selected and transferred

to each node via network.Like that, during download those separate chunks

from different nodes get merged into single cipher file.

4.4.4 Hash Encryption

Encryption is a two-way function; what is encrypted can be decrypted with the proper

key. Hashing, however, is a one-way function that scrambles plain text to produce a

unique message digest. With a properly designed algorithm, there is no way to

reverse the hashing process to reveal the original password. An attacker who steals

a file of hashed passwords must then guess the password. Here’s how it works: A

user enters a password and an ID in a browser and sends it (preferably over a secure

link) to the authentication server. The server uses the ID to look up the associated

message digest. The password submitted by the user is then hashed with the same

algorithm, and if the resulting message digest matches the one stored on the server,

it is authenticated. In this process the server does not store or need to see plain-text

passwords. Stealing hashed files does the attacker little good because the attacker

cannot reverse the hashing process. But because people rarely use completely

random passwords there is a trick that can be used to help guess the passwords in

the file. An attacker can run a collection of a million or so commonly used passwords

through a hashing algorithm and get a list called a rainbow table of associated

message digests for these passwords. It is child’s play for a computer to compare a

file of stolen password hashes against a rainbow table. For every match, the table

will show the password for that hash. The protection against this is to salt the hash:

Add a random number to each password before it is hashed. The resulting message

digest is the product of both the password and the salt value and will not match

anything on the rainbow table. Of course, the attacker can always try adding random

values to common passwords to find a matching hash, but now the difficulty of

guessing the password makes it impractical. The return on investment of such a

process is so low that a stolen file of properly hashed and salted passwords is

essentially worthless.

23

4.5 BLOCKCHAIN INTEGRATION

4.5.1 Blockchain

Blockchain is the growing list of records called blocks, containing structured

information linked using the art of cryptography distributed globally . Each block in

blockchain contains the cryptographic hash of previous block along with timestamp

and data which typically varies with use-cases. Merkle trees are the fundamental

part of blockchain.Every block contains the block header which is outcome of

recursive cryptographic hashes of all the data nodes or transaction from bottom to

up approach. During hash generation, the order of data matters for the final hash

of the block. If single detail of transactions or order of transaction changes then

changes the merkle hash.Therefore, Merkle Root summarizes all of the data in the

related transactions, and is stored in the block header. This feature makes

blockchain resistance to modification which is considered secure by design. A

database is a collection of information that is stored electronically on a computer

system. Information, or data, in databases is typically structured in table format to

allow for easier searching and filtering for specific information.Large databases

achieve this by housing data on servers that are made of powerful computers.

These servers can sometimes be built using hundreds or thousands of computers

in order to have the computational power and storage capacity necessary for many

users to access the database simultaneously. While a spreadsheet or database

may be accessible to any number of people, it is often owned by a business and

managed by an appointed individual that has complete control over how it works

and the data within it.Blockchain is P2P network which relies on protocol for inter-

node communication and validating the blocks. Blockchain was invented by

Satoshi Nakamoto in 2008 to serve as the public transaction ledger of the

cryptocurrency bitcoin. Blocks in blockchain are the holder of valid transactions

that are hashed and encoded in Merkle tree. Every block contains the

cryptographic hash of previous blocks along with its own data which therefore

forms the chain. This iterative mechanism in each block conforms the integrity of

previous block all the way back to genesis block. Block time is the average time it

takes in the network to generate 1 extra block in blockchain.By the time block is

generated, the data of that block is verified. This means lesser the block time, fasre

the transactions. A hard fork is a rule change such that the software validating

according to the old rules will see the blocks produced according to the new rules

as invalid. Storing data in P2P network allows Blockchain to eliminate the pitfalls

of centralization. There will be no central point vulnerability ,no center point of faliure

in blockchain. It is open to public which makes it more user- friendly than traditionally

owned records. Being permissionless and open, there is no need to guard against

bad actors.Ethereum Ethereum is an open-source, public, blockchain-based

distributed computing platform and operating system featuring smart

contract(scripting) functionality.

Fig. 4.5: Merkle Tree

24

Ether is a cryptocurrency whose blockchain is generated by the Ethereum

platform. Ethereum provides a decentralized Turing-completevirtual machine, the

Ethereum Virtual Machine (EVM), which can execute scripts using an international

network of public nodes. "Gas", an internal transaction pricing mechanism, is used

to mitigate spam and allocate resources on the network. Ethereum address are

composed of the prefix”0X” a common identifier for hexadecimal, concatenated

with the rightmost 20 bytes of the Keccak-256 (SHA-3)hash (big endian) of the

ECDSA(Elliptic Curve Digital Signature Algorithm) public key. Smart Contract

Ethereum’s smart contracts are based on different computer languages, which

developers use to program their own functionalities. Smart contracts are highlevel

programming abstractions that are compiled down to EVM bytecode and deployed

to the Ethereum blockchain for execution. They can be written in Solidity (a

language library with similarities to Cand JavaScript), Serpent (similar to Python,

but deprecated), LLL (a low-level Lisp-like language), and Mutan (Go-based, but

deprecated). There is also a research-oriented language under development

called Viper (a strongly-typed Python-derived decidable language).ERC20 Token

ERC-20 is a technical standard used for smart contracts on the Ethereum

blockchain for implementing tokens. ERC stands for Ethereum Request for

Comment, and 20 is the number that was assigned to this request. The clear

majority of tokens issued on the Ethereum blockchain are ERC-20 compliant. The

ERC20 token standard describes the functions and events that an Ethereum token

contract has to implement.

4.5.2 Smart Contract Development

Smart contract acts as an agreement between client and postman during the

transaction of data.Therefore, we have tried to ensure(look) from both parties during

its development. We have tried to keep as less data as possible in blockchain

network without compromising services. The key to these contracts is the

decentralised network known as blockchain. Smart contracts use blockchain

technology to verify, validate, capture and enforce agreed-upon terms between

multiple parties.

25

Smart contracts on the blockchain allow for transactions and agreements to be

carried out among anonymous parties without the need for a central entity, external

enforcement, or legal system. The transactions are transparent, irreversible, and

traceable. Blockchain is the perfect environment for smart contracts, as all the data

stored is immutable and secure. The data of a smart contract is encrypted and exist

on a ledger, meaning that the information recorded in the blocks can never be

lost, modified, or deleted. Smart Contract act as a global database which gets

deployed in the blockchain.

There are 2 roles in our contract

Node : stores client data,earns tokens .

Client : stores data on node, pays tokens.

Fig. 4.6: Smart Contract Flow Diagram

26

User having ether in their ethereum account can interact with the contract. Our

system has its own ERC20 token which can be bought by ether. We have defined

our own exchange rate. In order to store data in our system, client must pay

agreed amount of tokens to the node as specified during node-client agreement in

smart contract.Client gets facility to store data on node’s storage. During this

process, client and postman come on agreement based on storage size,

bandwidth,time of storage and token amount.Once, agreement is done, all details

of agreement between client, node and associated data chunk is written smart

contract which gets deployed in Blockchain.

4.5.3 File Details Record

As client’s chucked file gets stored in node’s storage, there should be proper tracking

mechanism of file along with its chunk, associated node and client in Smart

Contract. Our system should ensure client for file retrieval. Smart contract tracks all

the record associated with client,file and node. Usually data are stored as key-value

data structure.

 Address with FileDetail Array It tracks the owner of file along with array of

owned file details by each individual.File Details contains the hash of file and

it’s filename.

 File Hash with Chunk Hash Array It tracks the chunk of file array associated

with the main file so that when file hash is known, its chunk can be traced.

 Chunk Hash with File hash Every node doesn’t have file hash where as smart

contract needs file hash for getting chunk info. This data gap is fulfilled by

this data structure where once chunk hash is known, file hash can be known

immediately.

 Chunk hash to index/File hash to index Looping in smart contract is very

expensive. Therefore for every index of chunk hash in array is mapped with

it’s chunk hash so that once chunk hash is known it’s index can be

immediately known. Like that, client can have number.

27

 ChunkIndex to Download index All the chunk uploaded to node will not be

downloaded. Therefore, this data structure tracks the chunk data which have

download request so that payment agreement can be done.

4.5.4 Token Transfer

During our contract deployment, we created fixed amount of token which serves as

payment mechanism in our system.Tokens can be exchanged with ether token.

For buying tokens, contract gives use option to buy it with ethers. Once tokens are

purchased, users can use our system properly. We have made a system of locking

the balance of 2 agreed parties so that both parties will perform their duty. Once

the agreement is made between client and node, the specified amount of tokens

from their balance is transferred to their lock balance. Here, lock balance means

that those deposited tokens are restricted to use for other purposes. Those tokens

get locked until agreement is not completed. When correct file is provided by node

to client which gets verified by blockchain, then payment is provided to node from

lock balance. Here, tokens of node is also transferred to lock balance so that if

node doesn’t behaves what is agreed in agreement then, client is compensated

with those tokens. Once the agreement is done, fund is not returned back.

Fig. 4.7: Token transfer

28

4.6 SYSTEM DEVELOPMENT METHODOLOGY

4.6.1 Software Development Approach

Making huge and dynamic system using traditional approach such as waterfall

model of software development cost more time and manpower. Therefore to meet

the requirements of the system with more flexibility and timely deliverly, we have

choosen Scrum methodology under the Agile Development method. Instead of

providing complete, detailed descriptions of how everything is to be done on a

project, much of it was left up to the project development team. The scrum team is

selforganizing in that there is no overall team leader who decides which person will

do which task or how a problem will be solved. So, each time every team member

tried to solve problems and find solutions.And in Scrum, a team is cross functional,

meaning everyone is needed to take a feature from idea to implementation. Project

progress were shown via a series of sprints. In keeping with an agile methodology,

sprints are timeboxed to no more than a month long, most commonly two weeks.

We met at every start of sprint and figure out each individual commits of task and

created backlog to keep track of work. We commonly had daily meetings duing

college team for discussing project’s problems and solutions. This helped all team

member to be fully synchronized which is one of the main benefit of Scrum

methodology. We made sprint burndown chart and release burndown chart which

helped us to know remaining work and track the overall project schedule. Hence

scrum is adpative, has small repeating cycles and there is short-term planning with

constant feedback, inspection and adaption and is therefore chosen as the

software development methodolgy.

29

Fig. 4.8: Scrum methodology

4.6.2 Requirement Analysis

The functional and non-functional requirements of this project are as listed below

Function Requirement:

 The system shall encrypt, decrypt the data of user.

 The system shall split and merge the file.

 The system shall built P2P network and allow clients to connect.

 The system shall read and write data from Rinkeby Test Net.

Non Function Requirement:

 The system must ensure data retrieval of clients.

 The system must allow client to store all types of files.

 The system should be dynamic enough to easily adapt with increasing

number of data.

30

CHAPTER 5

RESULTS AND DISCUSSION

5.1 CLIENT APPLICATION

Based on the observations of the system, we came to the following observations

and evaluations.

 The file storage service works well through all phases of the feature:

Selection, Encryption, Splitting, Upload, Listing, Download, Merging,

Decryption. Every record metadata is store in Smart Contract.

 The task is significantly smoother when a copy of all transaction is stored in

a local database and reading from contract is done for verification check only

during conflicting situation. This makes the user experience smooth.

 The node can now receive a real time notification of every details. The node

app is more user friendly and easily understandable about the existing real

time system.

 The file chunking-merging and encryption-decryption is highly dependent

upon the two factors: File Size and Processor speed. The time of any of the

file operation is linearly dependent upon the file size. So, uploading huge size

file produces significant load on the Android Thread and in some case is

forcefully killed by the system causing system crash.

 A webapp of the client side can be more impressive and easy to use for

loading contract, wallet, handling heavy processing task is more easier and

fast.

5.1.1 RESULT OF NODE APP

 The node interface communicates with the :

 The interface shows how much storage space the files have taken, number

of files the node has received and how many files in total clients have

downloaded.

 List of all the chunks received as file can be watched in this panel. The list

31

32

shows hash, creation and expiry date along with the number of download

count for individual files. Events like receiving files are shown in real time

using websockets.

 This interface shows information about a deployed node with its public key,

node id, private key. Other nodes connected or discovered by this node is

shown with their node Identity, IP address and port.

Fig. 5.1: Metamask

33

MetaMask is a cryptocurrency wallet used to interact with the Ethereum blockchain.

MetaMask allows users to store and manage account keys, broadcast transactions,

send and receive Ethereum-based cryptocurrencies and tokens, and securely

connect to decentralized applications through a compatible web browser or the

mobile app's built-in browser.

Fig. 5.2: Ganache

See the log output of Ganache’s internal blockchain, including responses and other

vital debugging information.Configure advanced mining with a single click, setting

block times to best suit your development needs Byzantium comes standard, giving

you the latest Ethereum features needed for modern dapp development.Examine all

blocks and transactions to gain insight about what’s happening under the hood.

Fig. 5.3: File uploading

With decentralized cloud storage, end-to-end encryption is standard on every file-

each file is encrypted on a user's computer before it's uploaded, broken into

pieces, and then spread out to uncorrelated Nodes across our network. Plus,

centralized cloud storage costs a lot more than our decentralized network. IPFS is

used here to distribute the data blocks across the network where several nodes

can store the data which is encrypted. is available in the IPFS so that the

transactions of this network can be watched using wallets like ganache which is

used in this project.

34

Ganache is a private wallet where the user can watch the transactions and

information about the block is also available. The frontend of this project is created

using React which uses JavaScript programming language.

Fig. 5.4: File upload and retrieving screenshot

The contents of the retrieved block are decrypted and merged into the original file

where the content is checked whether any loss of data is recorded. This type of

cloud storage is secure and is cost effective compared to the centralized server.

Each node in this network acts as a server and data is shared among them without

knowing what the data contains and whose is it.

35

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

The project consists of a P2P network where a node can join the network and

provide the storage services for the client. The system uses several Cryptography

and Network algorithms and provides two major services to client : Secure File

Storage and Secret Sharing. The agreement between the parties are bound by

Smart Contract and uses ERC20 token as a value for service.

The two layers of the system can also be implemented separately as components

for different use cases. The project was completed with a exciting exploration and

research in Cryptography and Blockchain field. There is always room for the

improvements in any projects. The project can be further enhanced including

following features:

 Currently, we have only mobile app for clients to use. Therefore, web app can

be made for client purposes.

 So that large sized files can be easily encrypted, splitted and merged.

 Compensation mechanism for faulty party can be further added in our system.

 The one approach for this could be the introduction of a central authority.

 It can also be achieved by using a third auditor node selected at random from

the network.

 Algorithms and the protocols used in the cryptography processes could

further be fine tuned.

36

37

6.2 FUTURE WORK

The future model can be improved with better encryption algorithms and this domain

is still under development so better data distribution algorithms can be used.

Blockchain-based cloud computing doesn’t only decentralize data storage. More

than ever, this technology is being used as part of data logistics platforms. Many

authorized users are allowed access to the data at once and can interact, interpret,

and change it as they see fit. This type of cloud computing solution allows

employees to work together virtually and securely to analyze and maintain

information. The virtualization of contractual agreements and other exchanges is

also easier with the use of blockchain, leading to a wide increase in usage over many

industries.

38

REFERENCES

[1] Crosby.M, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain

technology: Beyond bitcoin,” Applied Innovation, vol. 2, pp. 6–10, 2016.

[2] David Vorick et al. Sia: Simple Decentralized Storage. 2014.

[3] Eli Ben-Sasson et al. Zerocash: Decentralized Anonymous Payments from

Bitcoin.2014.

[4] Jin Sun et al. Blockchain-Based Secure Storage and Access Scheme for

Electronic Medical Records in IPFS.IEEE.2014.

[5] Juan Bernet.IPFS - Content Addressed, Versioned, P2P File System.2014.

[6] King.S - Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.2014.

[7] McConaghy.T, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G.

McMullen,R. Henderson, S. Bellemare, and A. Granzotto, “Bigchaindb: a scalable

blockchain database,” white paper, BigChainDB, 2016

[8] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Consulted, 2008.

[9] Shawn Wilkinson et al. Storj: A Peer-to-Peer Cloud Storage Network. 2016.

[10] Vitalik Buterin.Ethereum: A next-generation smart contract and decentralized

application platform.2013

[11] Wilkinson.S, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-to-peer

cloud storage network,” 2014.

[12] Yan Zhu et al. Blockchain-based Decentralized Storage Scheme.IOP

publishing.1237.4.2019.

39

APPENDIX

A) SOURCE CODE

Solidity:

1. Storage contract:

pragma solidity 0.4.24;

contract SimpleStorage {

string ipfsHash;

function set(string x) public {

ipfsHash = x;

}

function get() public view returns (string) {

return ipfsHash;

}

}

2. Migration:

pragma solidity ^0.4.2;

contract Migrations {

address public owner;

uint public last_completed_migration;

modifier restricted() {

if (msg.sender == owner) _;

}

function Migrations() public {

owner = msg.sender;

}

40

function setCompleted(uint completed) public restricted {

last_completed_migration = completed;}

function upgrade(address new_address) public restricted {

Migrations upgraded = Migrations(new_address);

upgraded.setCompleted(last_completed_migration);

}

}

Reactjs:

App.js:

import React, { Component } from 'react'

import SimpleStorageContract from '../build/contracts/SimpleStorage.json'

import getWeb3 from './utils/getWeb3'

import ipfs from './ipfs'

import './css/oswald.css'

import './css/open-sans.css'

import './css/pure-min.css'

import './App.css'

class App extends Component {

constructor(props) {

super(props)

this.state = {

ipfsHash: '',

web3: null,

buffer: null,

account: null

41

}

this.captureFile = this.captureFile.bind(this);

this.onSubmit = this.onSubmit.bind(this);

}

componentWillMount() {

// Get network provider and web3 instance.

// See utils/getWeb3 for more info.

getWeb3

.then(results => {

this.setState({

web3: results.web3

})

// Instantiate contract once web3 provided.

this.instantiateContract()

})

.catch(() => {

console.log('Error finding web3.')

})

}

instantiateContract() {

/*

* SMART CONTRACT EXAMPLE

*

* Normally these functions would be called in the context of a

* state management library, but for convenience I've placed them here.

*/

42

const contract = require('truffle-contract')

const simpleStorage = contract(SimpleStorageContract)

simpleStorage.setProvider(this.state.web3.currentProvider)

// Get accounts.

this.state.web3.eth.getAccounts((error, accounts) => {

simpleStorage.deployed().then((instance) => {

this.simpleStorageInstance = instance

this.setState({ account: accounts[0] })

// Get the value from the contract to prove it worked.

return this.simpleStorageInstance.get.call(accounts[0])

}).then((ipfsHash) => {

// Update state with the result.

return this.setState({ ipfsHash })

})

})

}

captureFile(event) {

event.preventDefault()

const file = event.target.files[0]

const reader = new window.FileReader()

reader.readAsArrayBuffer(file)

reader.onloadend = () => {

this.setState({ buffer: Buffer(reader.result) })

console.log('buffer', this.state.buffer)

}

43

}

onSubmit(event) {

event.preventDefault()

ipfs.files.add(this.state.buffer, (error, result) => {

if(error) {

console.error(error)

return}

this.simpleStorageInstance.set(result[0].hash, { from: this.state.account

}).then((r) => {

return this.setState({ ipfsHash: result[0].hash })

console.log('ifpsHash', this.state.ipfsHash)

})

})

}

render() {

return (

<div className="App">

<nav className="navbar pure-menu pure-menu-horizontal">

IPFS File

Upload DApp

</nav>

<main className="container">

<div className="pure-g">

<div className="pure-u-1-1">

<h1>Your Image</h1>

<p>This image is stored on IPFS & The Ethereum Blockchain!</p>

44

<h2>Upload Image</h2>

<form onSubmit={this.onSubmit} >

<input type='file' onChange={this.captureFile} />

<input type='submit' />

</form>

</div>

</div>

</main>

</div>);

}

}

export default App

B) SCREENSHOTS

1.File Upload

45

1.Metamask

46

3. File Retrieving

4. Ganache

47

5. Final Output

48

49

50

51

52

53

54

55

