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ABSTRACT 

In cloud computing, containers are operating-system level 

virtualization abstractions for running isolated systems on a host 

using a single kernel.The use of containers in cloud computing has 

been steadily increasing. With the emergence of Kubernetes, the 

management of applications inside containers (or pods) is 

simplified. Kubernetes allows automated actions like self-healing, 

scaling, rolling back, and updates for the application management. 

During application deployment and execution in the pod, a 

cryptomining process, started by a hidden malware executable can 

be run in the background, and a method to detect malicious 

cryptomining software running inside Kubernetes pods is needed. 

One feasible strategy is to use machine learning (ML) to identify 

and classify pods based onwhether or not they contain a running 

process of cryptomining. In addition to such detection, the system 

administrator will need an explanation as to the reason(s) of the 

ML’s classification outcome. In this article, we describe the design 

and implementation of an ML-based detection system of anomalous 

pods in a Kubernetes cluster by monitoring Linux-kernel system 

calls (syscalls). Several types of cryptominers images are used as 

containers within an anomalous pod, and several ML models are 

built to detect such pods in the presence of numerous healthy cloud 

workloads. 
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1.1 CRYPTOMINING 

CHAPTER 1 

INTRODUCTION 

 

The term crypto mining means gaining cryptocurrencies by solving 

cryptographic equations through the use of computers. This process 

involves validating data blocks and adding transaction records to a public 

record (ledger) known as a blockchain. In a more technical sense, 

cryptocurrency mining is a transactional process that involves the use of 

computers and cryptographic processes to solve complex functions and 

record data to a blockchain. In fact, there are entire networks of devices 

that are involved in cryptomining and that keep shared records via those 

blockchains. 

With cryptocurrencies, there’s no central authority, nor is there a 

centralized ledger. That’s because cryptocurrencies operate in a 

decentralized system with a distributed ledger (more on this shortly) known 

as blockchain. Unlike the traditional banking system, anybody can be 

directly connected to and participate in the cryptocurrency ―system.‖ You 

can send and receive payments without going through a central bank. 

That’s why it’s called decentralized digital currency. But in addition to being 

decentralized, cryptocurrency is also a distributed system. This means the 

record (ledger) of all transactions is publicly available and stored on lots of 

different computers. This differs from the traditional banks we mentioned 

earlier, which are centralized systems. But without a central bank, how are 

transactions verified before being added to the ledger? Instead of using a 

central banking system to verify transactions (for example, making sure the 

sender has enough money to make the payment), cryptocurrency uses 
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cryptographic algorithms to verify transactions. And that’s where bitcoin 

miners come in. Performing the cryptographic calculations for each 

transaction adds up to a lot of computing work. Miners use their computers 

to perform the cryptographic work required to add new transactions to the 

ledger. 

In a nutshell, crypto miners verify the legitimacy of transactions in 

order to reap the rewards of their work in the form of cryptocurrencies. To 

understand how most cryptocurrency mining works in a more technical 

sense, you first need to understand the technologies and processes behind 

it. This includes understanding what blockchain is and how it works. 

The first thing to know is that two things are central to the concept of 

blockchain: public key encryption and math. While I’m definitely a fan of the 

first, I’ll admit that the latter isn’t my strong suit. However, public key 

cryptography (aka public key encryption or asymmetric encryption) and 

math go together in blockchains like burgers and beer. 

Traditional cryptocurrencies such as Bitcoin use a decentralized 

ledger known as blockchain. A blockchain is a series of chained data 

blocks that contain key pieces of data, including cryptographic hashes. 

These blocks, which are integral to a blockchain, are groups of data 

transactions that get added to the end of the ledger. Not only does this add 

a layer of transparency, but it also serves as an ego inflator when people 

get to see their transactions being added (chained) to the blockchain. Even 

though it doesn’t have their names listed on it, it often still evokes a sense 

of pride and excitement. 

https://sectigostore.com/blog/5-differences-between-symmetric-vs-asymmetric-encryption/
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1.2 CRYPTOMINING SIGNATURES 

 
Cryptocurrency mining malware refers to software developed to use 

the computer’s resources for cryptocurrency mining without a user’s explicit 

permission. Attackers have attempted to profit from cryptocurrency mining 

by harnessing the processing power of a large numbers of computers, 

smartphones and other electronic devices. The detection of cryptocurrency 

malware has been performed by generating its signatures in terms of 

power consumption, network traffic behavior, operating system processes, 

and patterns in hardware performance counters. In, an anatomy of the 

browser-based cryptomining is presented, in which the attacker infects a 

web page with Java- Script code that auto-executes when the web page is 

loaded by the victim’s browser. The attacker takes advantage of the 

browser to activate the necessary JavaScript mining module. The 

term‖illegal leverage‖ states that javascript is used maximally and forcibly 

taking full privilege without the victim’s consent for a mining operation. The 

unauthorized execution of JavaScript can therefore be used as a signature 

for cryptomining malware in this scenario. If the browser behavior is 

measured using any profiling metrics (e.g., syscalls or processor/ memory 

metrics like instruction per clock cycle, CPU utilization, virtual memory page 

faults, context switches, etc.) a definite pattern of those metrics is marked 

for the legitimate and healthy operation. If the browser is hijacked by the 

mining operation, a significant deviation is shown by such profiling metric. 

Such a deviation is called a mining signature of the browser. In 

theWindows operating system, mining is run as an executable file in 
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memory that establishes an alteration in the system registry. In this 

scenario, the monitoring of registry can signal the presence of malware. 

Network signature extraction is also possible because mining programs 

contact the central botnet server to register its presence and to download 

relevant files depending on the architecture of the victim’s system. The 

network transactions generate significant network traffic before the actual 

cryptomining begins. Tracing such traffic is relatively easy because the 

communication is unencrypted. The cryptominer signature is extracted in 

terms of power consumption for IoT devices. 

1.3 MACHINE LEARNING 

 
Machine learning is a subfield of artificial intelligence (AI). The goal of 

machine learning generally is to understand the structure of data and fit 

that data into models that can be understood and utilized by people. 

Although machine learning is a field within computer science, it differs from 

traditional computational approaches. In traditional computing, algorithms 

are sets of explicitly programmed instructions used by computers to 

calculate or problem solve. Machine learning algorithms instead allow for 

computers to train on data inputs and use statistical analysis in order to 

output values that fall within a specific range. Because of this, machine 

learning facilitates computers in building models from sample data in order 

to automate decision-making processes based on data inputs. Any 

technology user today has benefitted from machine learning. Facial 

recognition technology allows social media platforms to help users tag and 

share photos of friends. Optical character recognition (OCR) technology 

converts images of text into movable type. Recommendation engines, 

powered by machine learning, suggest what movies or television shows to 
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watch next based on user preferences. Self-driving cars that rely on 

machine learning to navigate may soon be available to consumers. 

Machine learning is a continuously developing field. Because of this, 

there are some considerations to keep in mind as you work with machine 

learning methodologies, or analyze the impact of machine learning 

processes. In this tutorial, we’ll look into the common machine learning 

methods of supervised and unsupervised learning, and common 

algorithmic approaches in machine learning, including the k-nearest 

neighbor algorithm, decision tree learning, and deep learning. We’ll explore 

which programming languages are most used in machine learning, 

providing you with some of the positive and negative attributes of each. 

Additionally, we’ll discuss biases that are perpetuated by machine learning 

algorithms, and consider what can be kept in mind to prevent these biases 

when building algorithms. 

1.3.1 Machine Learning Methods 

 
In machine learning, tasks are generally classified into broad 

categories. These categories are based on how learning is received or how 

feedback on the learning is given to the system developed. Two of the most 

widely adopted machine learning methods are supervised learning which 

trains algorithms based on example input and output data that is labeled by 

humans, and unsupervised learning which provides the algorithm with no 

labeled data in order to allow it to find structure within its input data. 

1.3.1.1 Supervised Learning 

 
In supervised learning, the computer is provided with example inputs 

that are labeled with their desired outputs. The purpose of this method is 
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for the algorithm to be able to ―learn‖ by comparing its actual output with 

the  ―taught‖  outputs  to  find  errors,  and  modify  the  model  accordingly. 

Supervised learning therefore uses patterns to predict label values on 

additional unlabeled data. 

For example, with supervised learning, an algorithm may be fed data 

with images of sharks labeled as fish and images of oceans labeled as 

water. By being trained on this data, the supervised learning algorithm 

should be able to later identify unlabeled shark images as fish and 

unlabeled ocean images as water. A common use case of supervised 

learning is to use historical data to predict statistically likely future events. It 

may use historical stock market information to anticipate upcoming 

fluctuations, or be employed to filter out spam emails. In supervised 

learning, tagged photos of dogs can be used as input data to classify 

untagged photos of dogs. 

1.3.1.2 Unsupervised Learning 

 
In unsupervised learning, data is unlabeled, so the learning algorithm 

is left to find commonalities among its input data. As unlabeled data are 

more abundant than labeled data, machine learning methods that facilitate 

unsupervised learning are particularly valuable. The goal of unsupervised 

learning may be as straightforward as discovering hidden patterns within a 

dataset, but it may also have a goal of feature learning, which allows the 

computational machine to automatically discover the representations that 

are needed to classify raw data. 

Unsupervised learning is commonly used for transactional data. You 

may have a large dataset of customers and their purchases, but as a 



14  

human you will likely not be able to make sense of what similar attributes 

can be drawn from customer profiles and their types of purchases. With this 

data fed into an unsupervised learning algorithm, it may be determined that 

women of a certain age range who buy unscented soaps are likely to be 

pregnant, and therefore a marketing campaign related to pregnancy and 

baby products can be targeted to this audience in order to increase their 

number of purchases. Without being told a ―correct‖ answer, unsupervised 

learning methods can look at complex data that is more expansive and 

seemingly unrelated in order to organize it in potentially meaningful ways. 

Unsupervised learning is often used for anomaly detection including for 

fraudulent credit card purchases, and recommender systems that 

recommend what products to buy next. In unsupervised learning, untagged 

photos of dogs can be used as input data for the algorithm to find 

likenesses and classify dog photos together. 

1.4 MOTIVATION OF THE PROJECT 

 
In public cloud computing services, access to the hardware resources 

is typically not available to the customer. Instead, the Linux-kernel system 

calls at the operating system level can be used as a proxy to signal the 

possibility of threat in a running container. The system call (syscall) is the 

fundamental interface between an application and the Linux kernel. A 

syscall is generated every time the application interacts with the Linux- 

kernel. Cryptominers have to repeatedly run a core Proof-of-Work (PoW) 

algorithm that the currency is based on. Such repeated runs would result in 

the repeated occurrence of particular patterns for certain syscalls. System 

call monitoring helps to track such patterns, and any unanticipated change 

in the patterns of an application can signal the presence of a threat in the 
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container. Under this scenario, an unusual syscall pattern can be used as 

an alert for cryptomining. Prior research that uses syscalls and behavioral 

models as detection mechanism while research using neural network 

models. 

Most of the anomaly detection models are considered as black-boxes 

where no information is returned to the user regarding the cause of the 

anomaly classification. Yet, this information must be transparent to the 

system administrator who will need an explainable classification model in 

order to take the appropriate action. An explainable model generates an 

auditable set of explanations that describe key factors associated with the 

prediction. It can recommend the critical signals that need to be carefully 

monitored or recommend specific actions such as increasing the sampling 

frequency to get finer-grain details of the event that is responsible for the 

anomaly. It can also explain the association among the signals which are 

needed to manage the false prediction rate. The best use of such 

association rules is in fault tracing where impact at one pod might be due to 

some event in another pod, which cascades in some manner to a third pod, 

and so on. Explanations obtained from machine learning models help trace 

key features or sequences and eventually detect the root cause. In this 

work, a methodology is formulated and implemented to detect cryptominer 

anomalies using system calls as proxies for mining events and using an 

explainable machine learning (ML) model as the cryptomining detector. 
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CHAPTER 2 

LITERATURE SURVEY 

 
2.1 Crypto mining attacks in information systems: An emerging 

threat to 

cyber security 

AUTHORS: A. Zimba, Z. Wang, M. Mulenga 

The popularity of cryptocurrencies has continued to grow drastically 

over the past decade and this has drawn significant attention to various 

threat actors. Cybercriminals are now employing unconventional means to 

acquire cryptocurrencies at the expense of benign Internet users. This 

paper investigates the state-of-the-art crypto mining attacks by examining 

the malware code and the behavioral analysis upon execution. It examines 

the two most common attack approaches; web browser-based crypto 

mining which leverages JavaScript and installable binary crypto mining 

where the malware runs in memory. Furthermore, the paper investigates 

how cybercriminals endeavor to establish a persistence mechanism and 

avoid detection. The results from static and dynamic analysis uncover the 

techniques employed by the malware to exploit potential victims. Indicators 

of compromise are drawn from the uncovered artifacts which can be used 

as inputs to intrusion detection systems to help mitigate such cyber-attacks. 

2.2) Evaluation of deep learning methods efficiency for malicious and 

benign system calls classification on the AWSCTD 
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AUTHORS: D. Ceponis and N. Goranin 

The increasing amount of malware and cyberattacks on a host level 

increases the need for a reliable anomaly-based host IDS (HIDS) that 

would be able to deal with zero-day attacks and would ensure low false 

alarm rate (FAR), which is critical for the detection of such activity. Deep 

learning methods such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) are considered to be highly suitable for 

solving data-driven security solutions. Therefore, it is necessary to perform 

the comparative analysis of such methods in order to evaluate their 

efficiency in attack classification as well as their ability to distinguish 

malicious and benign activity. In this article, we present the results 

achieved with the AWSCTD (attack-caused Windows OS system calls 

traces dataset), which can be considered as the most exhaustive set of 

host-level anomalies at the moment, including 112.56 million system calls 

from 12110 executable malware samples and 3145 benign software 

samples with 16.3 million system calls. The best results were obtained with 

CNNs with up to 90.0% accuracy for family classification and 95.0% 

accuracy for malicious/benign determination. RNNs demonstrated slightly 

inferior results. Furthermore, CNN tuning via an increase in the number of 

layers should make them practically applicable for host-level anomaly 

detection. 

2.3) Android malware detection based on system call sequences and 

LSTM 

 
AUTHORS: X. Xiao, S. Zhang, F. Mercaldo, G. Hu 

As Android-based mobile devices become increasingly popular, 

malware detection on Android is very crucial nowadays. In this paper, a 
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novel detection method based on deep learning is proposed to distinguish 

malware from trusted applications. Considering there is some semantic 

information in system call sequences as the natural language, we treat one 

system call sequence as a sentence in the language and construct a 

classifier based on the Long Short-Term Memory (LSTM) language model. 

In the classifier, at first two LSTM models are trained respectively by the 

system call sequences from malware and those from benign applications. 

Then according to these models, two similarity scores are computed. 

Finally, the classifier determines whether the application under analysis is 

malicious or trusted by the greater score. Thorough experiments show that 

our approach can achieve high efficiency and reach high recall of 96.6% 

with low false positive rate of 9.3%, which is better than the other methods. 

2.4) Exploring adversarial examples in malware detection 

AUTHORS: O. Suciu, S. Coull, and J. Johns 

The convolutional neural network (CNN) architecture is increasingly 

being applied to new domains, such as malware detection, where it is able 

to learn malicious behavior from raw bytes extracted from executables. 

These architectures reach impressive performance with no feature 

engineering effort involved, but their robustness against active attackers is 

yet to be understood. Such malware detectors could face a new attack 

vector in the form of adversarial interference with the classification model. 

Existing evasion attacks intended to cause misclassification on test-time 

instances, which have been extensively studied for image classifiers, are 

not applicable because of the input semantics that prevents arbitrary 

changes to the binaries. This paper explores the area of adversarial 

examples for malware detection. By training an existing model on a 

production-scale dataset, we show that some previous attacks are less 
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effective than initially reported, while simultaneously highlighting 

architectural weaknesses that facilitate new attack strategies for malware 

classification. Finally, we explore how generalizable different attack 

strategies are, the trade-offs when aiming to increase their effectiveness, 

and the transferability of single-step attacks. 

2.5) Criteria for learning without forgetting in artificial neural networks 

AUTHORS: R. Karn, P. Kudva, and I. Elfadel 

Task progressive learning without catastrophic forgetting using 

artificial neural networks (ANNs) has demonstrated viability and promise. 

Due to the large number of ANN hyper-parameters, a model already 

trained over a group of tasks can further learn a new task without forgetting 

the previous tasks. Several algorithms have been proposed for progressive 

learning, including synaptic weight consolidation, ensemble, rehearsal, and 

sparse coding. One major problem with such methods is that they fail to 

detect the congestion in the ANN shared parameter space to indicate the 

saturation of the existing network and its inability to add new tasks using 

progressive learning. The detection of such saturation is especially needed 

to avoid the catastrophic forgetting of old trained task and the concurrent 

loss in their generalization quality. In this paper, we address such problem 

and propose a methodology for ANN congestion detection. The 

methodology is based on computing the Hessian of the ANN loss function 

at the optimal weights for a group of previously learned tasks. Since the 

Hessian calculation is compute-intensive, we provide a set of 

approximation heuristics that are computationally efficient. The algorithms 

are implemented and analyzed in the context of two cloud network security 

datasets, namely, UNSW-NB15 and AWID, as well as the MNIST image 

recognition dataset. Results show that the proposed congestion metrics 
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give an accurate assessment of the ANN progressive learning capacity for 

these various datasets. Furthermore, the results show that models that 

have more features exhibit higher congestion thresholds and are therefore 

more amenable to progressive learning. 

2.6) Adversarial deep learning for robust detection of binary encoded 

malware 

AUTHORS: A. Al-Dujaili, A. Huang, E. Hemberg 

Malware is constantly adapting in order to avoid detection. Model 

based malware detectors, such as SVM and neural networks, are 

vulnerable to so-called adversarial examples which are modest changes to 

detectable malware that allows the resulting malware to evade detection. 

Continuous-valued methods that are robust to adversarial examples of 

images have been developed using saddle-point optimization formulations. 

We are inspired by them to develop similar methods for the discrete, e.g. 

binary, domain which characterizes the features of malware. A specific 

extra challenge of malware is that the adversarial examples must be 

generated in a way that preserves their malicious functionality. We 

introduce methods capable of generating functionally preserved adversarial 

malware examples in the binary domain. Using the saddle-point 

formulation, we incorporate the adversarial examples into the training of 

models that are robust to them. We evaluate the effectiveness of the 

methods and others in the literature on a set of Portable Execution~(PE) 

files. Comparison prompts our introduction of an online measure computed 

during training to assess general expectation of robustness. 

2.8) Feedback autonomic provisioning for guaranteeing performance 

in MapReduce systems 
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AUTHORS: M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B. 

Robu 

Companies have a fast growing amounts of data to process and 

store, a data explosion is happening next to us. Currently one of the most 

common approaches to treat these vast data quantities are based on the 

MapReduce parallel programming paradigm. While its use is widespread in 

the industry, ensuring performance constraints, while at the same time 

minimizing costs, still provides considerable challenges. We propose a 

coarse grained control theoretical approach, based on techniques that have 

already proved their usefulness in the control community. We introduce the 

first algorithm to create dynamic models for Big Data MapReduce systems, 

running a concurrent workload. Furthermore, we identify two important 

control use cases: relaxed performance-minimal resource and strict 

performance. For the first case we develop two feedback control 

mechanism. A classical feedback controller and an even-based feedback, 

that minimises the number of cluster reconfigurations as well. Moreover, to 

address strict performance requirements a feedforward predictive controller 

that efficiently suppresses the effects of large workload size variations is 

developed. All the controllers are validated online in a benchmark running 

in a real 60 node MapReduce cluster, using a data intensive Business 

Intelligence workload. Our experiments demonstrate the success of the 

control strategies employed in assuring service time constraints. 

2.9) Spatio-temporal convolutional sparse auto-encoder for sequence 

classification 

AUTHORS: M. Baccouche, F. Mamalet, C. Wolf 

We present in this paper a novel learning-based approach for video 

sequence classification. Contrary to the dominant methodology, which 
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relies on hand-crafted features that are manually engineered to be optimal 

for a specific task, our neural model automatically learns a sparse shift- 

invariant representation of the local 2D+t salient information, without any 

use of prior knowledge. To that aim, a spatio-temporal convolutional sparse 

autoencoder is trained to project a given input in a feature space, and to 

reconstruct it from its projection coordinates. Learning is performed in an 

unsupervised manner by minimizing a global parametrized objective 

function. The sparsity is ensured by adding a sparsifying logistic between 

the encoder and the decoder, while the shift-invariance is handled by 

including an additional hidden variable to the objective function. The 

temporal evolution of the obtained sparse features is learned by a long 

short-term memory recurrent neural network trained to classify each 

sequence. We show that, since the feature learning process is problem- 

independent, the model achieves outstanding performances when applied 

to two different problems, namely human action and facial expression 

recognition. Obtained results are superior to the state of the art on the 

GEMEP-FERA dataset and among the very best on the KTH dataset. 

2.10) Cryptomining application fingerprinting method 

AUTHORS: D. Draghicescu, A. Caranica, A. Vulpe, and O. Fratu 

Computing power has increased exponentially in the last decades, 

and more and more consumer devices are now permanently connected to 

the internet, to form the so called ―Internet of Things‖ (IoT), Following this 

trend, security threats and vulnerabilities have increased drastically over a 

short period of time, as more and more devices are inter-connected and not 

properly secured. Lately, the growing popularity of Bitcoin and other 

cryptocurrencies are generating a lot of hype and concern, among security 

specialists, as unwanted mining applications on an end-user device can 
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potentially pose both security risks and increased operating costs. There 

are multiple ways of detecting unwanted applications at the user-level, by 

means of URL blocking and application fingerprinting, and this paper will 

cover a detection method proposed by our group. 

 

 
 
 

 
3.1 EXISTING SYSTEM 

CHAPTER 3 

SYSTEM ANALYSIS 

 

Several methods to analyze syscall patterns are available. A method 

that provides the best accuracy across cryptominers needs to be identified 

along with the best possible explanation for such identification. One such 

method is where a histogram of syscalls is created to find the distribution of 

distinct syscalls in each time window. Another method is given where the 

semantics of each syscall is interpreted to detect infected pods. A flow- 

graph analysis is used in [20] to deduce the relationships between different 

syscalls and generate application signatures. A Markov chain is mostly 

used to graph the syscalls as a sequence of events in which the probability 

of each event depends only on the state attained in the previous event. 

Similarly a weighted directed graph is built using syscalls for Android 

malware detection. Such graph is used as a malware signature and is 

compared with other container syscalls graphs to detect the anomaly. 

3.1.1 Disadvantages of existing system 

 
 They require a significant amount of manual intervention to analyze 

and interpret syscall semantics. 
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 They are difficult to use in the analysis of applications that produce a 

large number of distinct syscalls in a small time window. 

3.2 PROPOSED SYSTEM 

 
Cryptominers prevent the deployed application from using full 

container resources. Before deploying, booting or running the desired 

application, it is therefore crucial to perform the health checks on the 

container base image. In this work, we design an ML-based cryptomining 

container detection framework using syscalls as a monitoring mechanism. 

The cryptomining anomaly detection is based on the principle of 

establishing an application behavior baseline and then evaluating 

subsequent events against this baseline. Anything ―too far‖ from this 

baseline can be regarded as anomalous and should be investigated. We 

use several statistical and rule-based ML algorithms, and back up their 

detection results with several explainability tools to investigate the cause of 

the ML outcomes. These ML algorithms are then compared in terms of their 

performance metrics. 

A methodology for anomaly detection through system calls in the 

Kubernetes pods is proposed, designed, and implemented. Several types 

of cryptominer images are used in the creation of anomalous pods. Proxies 

based on Linuxkernel syscalls are extracted and compared against healthy 

applications that exhibit similar domain behavior as the cryptominers. Four 

different ML algorithms are used for classifying a given pod as either a 

crypto-hijacked or a normal pod. These algorithms are compared in terms 

of accuracy, runtime, and resource utilization. 

This paper makes the following specific contributions: 
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1) Design and implementation of a novel automated cryptomining pod 

detection in a Kubernetes cluster. 

2) Development and implementation of real-time, syscall extraction 

methods for Kubernetes pods. 

3) Implementation of statistical and rule-based ML models to detect 

anomalous pods. 

4) Implementation of two statistical explainability mechanisms for ML 

models: one using open-source components and another with home-grown 

software. 

5) Comparative analysis of explainable ML implementations with their 

differences quantified using welldefined performance metrics 

3.2.1 Advantages of proposed system 

 
 The syscalls frames from such n-grams achieve an aggregate 

anomaly prediction accuracy of more than 78 percent. 

 Improve performance 
 

 Less computation time 
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3.3 SYSTEM ARCHITECTURE 
 
 

 
Fig 3.1 System architecture 

 
3.4 MODULES 

 
• Topology construction 

 
• Collection of path backscatter messages 
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• Cryptomining detection mechanism using machine learning 
 

3.4.1 Topology Construction 

 
The topology is the arrangement of nodes in the simulation area. The 

routers are connected in mesh topology. In which each routers are 

connected to each other via other routers (Path). In our simulation, we are 

using 11 nodes as the router node and 20 nodes as the client-server node. 

Totally we are having 31 nodes in our network. Each host is connected via 

routers. Each host has multiple paths to reach a single destination node in 

the network. 

3.4.2 Collection of path backscatter messages 

 
Though path backscatter can happen in any spoofing based attacks, 

it is not always possible to collect the path backscatter messages, as they 

are sent to the spoofed addresses. We classify spoofing based attacks into 

four categories, and discuss whether path backscatter messages can be 

collected in each category of attacks. Single Source, Multiple Destinations: 

In such attacks, all the attack packets have the same source IP address. 

3.4.3 Cryptomining detection mechanism using machine learning 
 

Cryptomining detection is actually composed by a set of mechanisms. 

The basic mechanism, which is based on topology and routing information, 

is illustrated below. Whenever a path backscatter message whose source 

is router r (named reflector) and the original destination is od is captured, 

the most direct inference is that the packet from attacker to od should 

bypass r. We use a machine learning mechanism in spoofing origin 

tracking. 
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CHAPTER 4 

 
Software Environment 

 
Java Technology 

Java technology is both a programming language and a platform. 

 
The Java Programming Language 

The Java programming language is a high-level language that can be 

characterized by all of the following buzzwords: 

 Simple 

 Architecture neutral 

 Object oriented 

 Portable 

 Distributed 

 High performance 

 Interpreted 

 Multithreaded 

 Robust 

 Dynamic 
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 Secure 

 
 

With most programming languages, you either compile or interpret a 

program so that you can run it on your computer. The Java programming 

language is unusual in that a program is both compiled and interpreted. 

With the compiler, first you translate a program into an intermediate 

language called Java byte codes —the platform-independent codes 

interpreted by the interpreter on the Java platform. The interpreter parses 

and runs each Java byte code instruction on the computer. Compilation 

happens just once; interpretation occurs each time the program is 

executed. The following figure illustrates how this works. 

 

 

 
 
 

You can think of Java byte codes as the machine code instructions 

for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s 

a development tool or a Web browser that can run applets, is an 

implementation of the Java VM. Java byte codes help make ―write once, 

run anywhere‖ possible. You can compile your program into byte codes on 

any platform that has a Java compiler. The byte codes can then be run on 

any implementation of the Java VM. That means that as long as a 

computer has a Java VM, the same program written in the Java 
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programming language can run on Windows 2000, a Solaris workstation, or 

on an iMac. 

 
 
 
 

 
 

The Java Platform 

A platform is the hardware or software environment in which a 

program runs. We’ve already mentioned some of the most popular 

platforms like Windows 2000, Linux, Solaris, and MacOS. Most 

platforms can be described as a combination of the operating system 

and hardware. The Java platform differs from most other platforms in 

that it’s a software-only platform that runs on top of other hardware- 

based platforms. 

The Java platform has two components: 

 The Java Virtual Machine (Java VM) 

 The Java Application Programming Interface (Java API) 

You’ve already been introduced to the Java VM. It’s the base for 

the Java platform and is ported onto various hardware-based 

platforms. 
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The Java API is a large collection of ready-made software 

components that provide many useful capabilities, such as graphical 

user interface (GUI) widgets. The Java API is grouped into libraries of 

related classes and interfaces; these libraries are known as 

packages. The next section, What Can Java Technology Do? 

Highlights what functionality some of the packages in the Java API 

provide. 

The following figure depicts a program that’s running on the Java 

platform. As the figure shows, the Java API and the virtual machine 

insulate the program from the hardware. 

 
Native code is code that after you compile it, the compiled code 

runs on a specific hardware platform. As a platform-independent 

environment, the Java platform can be a bit slower than native code. 

However, smart compilers, well-tuned interpreters, and just-in-time 

byte code compilers can bring performance close to that of native 

code without threatening portability. 

What Can Java Technology Do? 

The most common types of programs written in the Java 

programming language are applets and applications. If you’ve surfed 

the Web, you’re probably already familiar with applets. An applet is a 

program that adheres to certain conventions that allow it to run within 

a Java-enabled browser. 
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However, the Java programming language is not just for writing cute, 

entertaining applets for the Web. The general-purpose, high-level 

Java programming language is also a powerful software platform. 

Using the generous API, you can write many types of programs. 

An application is a standalone program that runs directly on the Java 

platform. A special kind of application known as a server serves and 

supports clients on a network. Examples of servers are Web servers, 

proxy servers, mail servers, and print servers. Another specialized 

program is a servlet. A servlet can almost be thought of as an applet 

that runs on the server side. Java Servlets are a popular choice for 

building interactive web applications, replacing the use of CGI scripts. 

Servlets are similar to applets in that they are runtime extensions of 

applications. Instead of working in browsers, though, servlets run 

within Java Web servers, configuring or tailoring the server. 

How does the API support all these kinds of programs? It does so 

with packages of software components that provides a wide range of 

functionality. Every full implementation of the Java platform gives you 

the following features: 

 The essentials: Objects, strings, threads, numbers, input and 

output, data structures, system properties, date and time, and 

so on. 

 Applets: The set of conventions used by applets. 

 Networking: URLs, TCP (Transmission Control Protocol), UDP 

(User Data gram Protocol) sockets, and IP (Internet Protocol) 

addresses. 

 Internationalization: Help for writing programs that can be 

localized for users worldwide. Programs can automatically 
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adapt to specific locales and be displayed in the appropriate 

language. 

 Security: Both low level and high level, including electronic 

signatures, public and private key management, access control, 

and certificates. 

 Software components: Known as JavaBeansTM, can plug into 

existing component architectures. 

 Object serialization: Allows lightweight persistence and 

communication via Remote Method Invocation (RMI). 

 Java Database Connectivity (JDBCTM): Provides uniform 

access to a wide range of relational databases. 

The Java platform also has APIs for 2D and 3D graphics, 

accessibility, servers, collaboration, telephony, speech, animation, 

and more. The following figure depicts what is included in the Java 2 

SDK. 
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How Will Java Technology Change My Life? 

We can’t promise you fame, fortune, or even a job if you learn the 

Java programming language. Still, it is likely to make your programs 

better and requires less effort than other languages. We believe that 

Java technology will help you do the following: 

 Get started quickly: Although the Java programming language 

is a powerful object-oriented language, it’s easy to learn, 

especially for programmers already familiar with C or C++. 

 Write less code: Comparisons of program metrics (class 

counts, method counts, and so on) suggest that a program 

written in the Java programming language can be four times 

smaller than the same program in C++. 

 Write better code: The Java programming language 

encourages good coding practices, and its garbage collection 

helps you avoid memory leaks. Its object orientation, its 

JavaBeans component architecture, and its wide-ranging, 

easily extendible API let you reuse other people’s tested code 

and introduce fewer bugs. 

 Develop programs more quickly: Your development time may 

be as much as twice as fast versus writing the same program in 

C++. Why? You write fewer lines of code and it is a simpler 

programming language than C++. 

 Avoid platform dependencies with 100% Pure Java: You 

can keep your program portable by avoiding the use of libraries 

written in other languages. The 100% Pure JavaTM Product 
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ODBC 

Certification Program has a repository of historical process 

manuals, white papers, brochures, and similar materials online. 

 Write once, run anywhere: Because 100% Pure Java 

programs are compiled into machine-independent byte codes, 

they run consistently on any Java platform. 

 Distribute software more easily: You can upgrade applets 

easily from a central server. Applets take advantage of the 

feature of allowing new classes to be loaded ―on the fly,‖ 

without recompiling the entire program. 

Microsoft Open Database Connectivity (ODBC) is a standard 

programming interface for application developers and database systems 

providers. Before ODBC became a de facto standard for Windows 

programs to interface with database systems, programmers had to use 

proprietary languages for each database they wanted to connect to. Now, 

ODBC has made the choice of the database system almost irrelevant from 

a coding perspective, which is as it should be. Application developers have 

much more important things to worry about than the syntax that is needed 

to port their program from one database to another when business needs 

suddenly change. 

Through the ODBC Administrator in Control Panel, you can specify 

the particular database that is associated with a data source that an ODBC 

application program is written to use. Think of an ODBC data source as a 

door with a name on it. Each door will lead you to a particular database. 

For example, the data source named Sales Figures might be a SQL Server 

database, whereas the Accounts Payable data source could refer to an 
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Access database. The physical database referred to by a data source can 

reside anywhere on the LAN. 

The ODBC system files are not installed on your system by Windows 

95. Rather, they are installed when you setup a separate database 

application, such as SQL Server Client or Visual Basic 4.0. When the 

ODBC icon is installed in Control Panel, it uses a file called 

ODBCINST.DLL. It is also possible to administer your ODBC data sources 

through a stand-alone program called ODBCADM.EXE. There is a 16-bit 

and a 32-bit version of this program and each maintains a separate list of 

ODBC data sources. 

 

 
From a programming perspective, the beauty of ODBC is that the 

application can be written to use the same set of function calls to interface 

with any data source, regardless of the database vendor. The source code 

of the application doesn’t change whether it talks to Oracle or SQL Server. 

We only mention these two as an example. There are ODBC drivers 

available for several dozen popular database systems. Even Excel 

spreadsheets and plain text files can be turned into data sources. The 

operating system uses the Registry information written by ODBC 

Administrator to determine which low-level ODBC drivers are needed to 

talk to the data source (such as the interface to Oracle or SQL Server). The 

loading of the ODBC drivers is transparent to the ODBC application 

program. In a client/server environment, the ODBC API even handles many 

of the network issues for the application programmer. 

The advantages of this scheme are so numerous that you are 

probably thinking there must be some catch. The only disadvantage of 
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ODBC is that it isn’t as efficient as talking directly to the native database 

interface. ODBC has had many detractors make the charge that it is too 

slow. Microsoft has always claimed that the critical factor in performance is 

the quality of the driver software that is used. In our humble opinion, this is 

true. The availability of good ODBC drivers has improved a great deal 

recently. And anyway, the criticism about performance is somewhat 

analogous to those who said that compilers would never match the speed 

of pure assembly language. Maybe not, but the compiler (or ODBC) gives 

you the opportunity to write cleaner programs, which means you finish 

sooner. Meanwhile, computers get faster every year. 

 
JDBC 

In an effort to set an independent database standard API for Java; 

Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC 

offers a generic SQL database access mechanism that provides a 

consistent interface to a variety of RDBMSs. This consistent interface is 

achieved through the use of ―plug-in‖ database connectivity modules, or 

drivers. If a database vendor wishes to have JDBC support, he or she must 

provide the driver for each platform that the database and Java run on. 

To gain a wider acceptance of JDBC, Sun based JDBC’s framework 

on ODBC. As you discovered earlier in this chapter, ODBC has widespread 

support on a variety of platforms. Basing JDBC on ODBC will allow vendors 

to bring JDBC drivers to market much faster than developing a completely 

new connectivity solution. 

JDBC was announced in March of 1996. It was released for a 90 day 

public review that ended June 8, 1996. Because of user input, the final 

JDBC v1.0 specification was released soon after. 
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The remainder of this section will cover enough information about JDBC for 

you to know what it is about and how to use it effectively. This is by no 

means a complete overview of JDBC. That would fill an entire book. 

 
JDBC Goals 

Few software packages are designed without goals in mind. JDBC is 

one that, because of its many goals, drove the development of the API. 

These goals, in conjunction with early reviewer feedback, have finalized the 

JDBC class library into a solid framework for building database applications 

in Java. 

The goals that were set for JDBC are important. They will give you some 

insight as to why certain classes and functionalities behave the way they 

do. The eight design goals for JDBC are as follows: 

 
 
 

 
1. SQL Level API 

The designers felt that their main goal was to define a SQL interface 

for Java. Although not the lowest database interface level possible, it is 

at a low enough level for higher-level tools and APIs to be created. 

Conversely, it is at a high enough level for application programmers to 

use it confidently. Attaining this goal allows for future tool vendors to 

―generate‖ JDBC code and to hide many of JDBC’s complexities from 

the end user. 

2. SQL Conformance 
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SQL syntax varies as you move from database vendor to database 

vendor. In an effort to support a wide variety of vendors, JDBC will allow 

any query statement to be passed through it to the underlying database 

driver. This allows the connectivity module to handle non-standard 

functionality in a manner that is suitable for its users. 

3. JDBC must be implemental on top of common database 

interfaces 

The JDBC SQL API must ―sit‖ on top of other common SQL level 

APIs. This goal allows JDBC to use existing ODBC level drivers by 

the use of a software interface. This interface would translate JDBC 

calls to ODBC and vice versa. 

4. Provide a Java interface that is consistent with the rest of the 

Java system 

Because of Java’s acceptance in the user community thus far, the 

designers feel that they should not stray from the current design of the 

core Java system. 

5. Keep it simple 

This goal probably appears in all software design goal listings. JDBC 

is no exception. Sun felt that the design of JDBC should be very simple, 

allowing for only one method of completing a task per mechanism. 

Allowing duplicate functionality only serves to confuse the users of the 

API. 

6. Use strong, static typing wherever possible 

Strong typing allows for more error checking to be done at compile 

time; also, less error appear at runtime. 
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7. Keep the common cases simple 

Because more often than not, the usual SQL calls used by the 

programmer are simple SELECT’s, INSERT’s, DELETE’s and 

UPDATE’s, these queries should be simple to perform with JDBC. 

However, more complex SQL statements should also be possible. 

 

Finally we decided to proceed the implementation using Java 

Networking. 

 

And for dynamically updating the cache table we go for MS Access 

database. 

 

Java ha two things: a programming language and a 

platform. 

Java is a high-level programming language that is all of 

the following 

 

 
Simple Architecture-neutral 

 

Object-oriented Portable 
 

Distributed High-performance 
 

Interpreted multithreaded 
 

Robust Dynamic 
 

Secure 
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My Program 

Interpreter 

Java is also unusual in that each Java program is both compiled 

and interpreted. With a compile you translate a Java program into 

an intermediate language called Java byte codes the platform- 

independent code instruction is passed and run on the computer. 

 

 
Compilation happens just once; interpretation occurs each time 

the program is executed. The figure illustrates how this works. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
You can think of Java byte codes as the machine code 

instructions for the Java Virtual Machine (Java VM). Every Java 

interpreter, whether it’s a Java development tool or a Web browser 

that can run Java applets, is an implementation of the Java VM. 

The Java VM can also be implemented in hardware. 

Java Program 

Compilers 
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Java byte codes help make ―write once, run anywhere‖ possible. 

You can compile your Java program into byte codes on my platform 

that has a Java compiler. The byte codes can then be run any 

implementation of the Java VM. For example, the same Java 

program can run Windows NT, Solaris, and Macintosh. 

 

 
Networking 

TCP/IP stack 

The TCP/IP stack i 
 

s shorter than 

the OSI one: 
 
 
 
 
 

TCP is a connection-oriented protocol; UDP (User Datagram 

Protocol) is a connectionless protocol. 
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IP datagram’s 

 
The IP layer provides a connectionless and unreliable delivery 

system. It considers each datagram independently of the others. 

Any association between datagram must be supplied by the higher 

layers. The IP layer supplies a checksum that includes its own 

header. The header includes the source and destination addresses. 

The IP layer handles routing through an Internet. It is also 

responsible for breaking up large datagram into smaller ones for 

transmission and reassembling them at the other end. 

 
 
 

UDP 

 
UDP is also connectionless and unreliable. What it adds to IP is 

a checksum for the contents of the datagram and port numbers. 

These are used to give a client/server model - see later. 

 
TCP 

 
TCP supplies logic to give a reliable connection-oriented protocol 

above IP. It provides a virtual circuit that two processes can use to 

communicate. 

 

Internet addresses 

 
In order to use a service, you must be able to find it. The Internet 

uses an address scheme for machines so that they can be located. 
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The address is a 32 bit integer which gives the IP address. This 

encodes a network ID and more addressing. The network ID falls 

into various classes according to the size of the network address. 

 

Network address 

 
Class A uses 8 bits for the network address with 24 bits left over 

for other addressing. Class B uses 16 bit network addressing. Class 

C uses 24 bit network addressing and class D uses all 32. 

 

Subnet address 

 
Internally, the UNIX network is divided into sub networks. 

Building 11 is currently on one sub network and uses 10-bit 

addressing, allowing 1024 different hosts. 

 

Host address 

 
8 bits are finally used for host addresses within our subnet. This 

places a limit of 256 machines that can be on the subnet. 

 
 
 

Total address 
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The 32 bit address is usually written as 4 integers separated by 

dots. 

 

Port addresses 

 
A service exists on a host, and is identified by its port. This is a 

16 bit number. To send a message to a server, you send it to the 

port for that service of the host that it is running on. This is not 

location transparency! Certain of these ports are "well known". 

 

Sockets 

 
A socket is a data structure maintained by the system to handle 

network connections. A socket is created using the call socket. It 

returns an integer that is like a file descriptor. In fact, under 

Windows, this handle can be used with Read File and Write File 

functions. 

 

#include <sys/types.h> 

#include <sys/socket.h> 

int socket(int family, int type, int protocol); 

 
Here "family" will be AF_INET for IP communications, protocol 

will be zero, and type will depend on whether TCP or UDP is used. 

Two processes wishing to communicate over a network create a 

socket each. These are similar to two ends of a pipe - but the actual 

pipe does not yet exist. 

 

JFree Chart 
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JFreeChart is a free 100% Java chart library that makes it easy 

for developers to display professional quality charts in their 

applications. JFreeChart's extensive feature set includes: 

A consistent and well-documented API, supporting a wide 

range of chart types; 

A flexible design that is easy to extend, and targets both server- 

side and client-side applications; 

Support for many output types, including Swing components, 

image files (including PNG and JPEG), and vector graphics file 

formats (including PDF, EPS and SVG); 

JFreeChart is "open source" or, more specifically, free software. 

It is distributed under the terms of the GNU Lesser General Public 

Licence (LGPL), which permits use in proprietary applications. 

 

1. Map Visualizations 

Charts showing values that relate to geographical areas. Some 

examples include: (a) population density in each state of the United 

States, (b) income per capita for each country in Europe, (c) life 

expectancy in each country of the world. The tasks in this project 

include: 

Sourcing freely redistributable vector outlines for the countries 

of the world, states/provinces in particular countries (USA in 

particular, but also other areas); 

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
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Creating an appropriate dataset interface (plus default 

implementation), a rendered, and integrating this with the existing 

XYPlot class in JFreeChart; 
 

Testing, documenting, testing some more, documenting some 

more. 
 
 
 
 
 
 
 

2. Time Series Chart Interactivity 

 
 

Implement a new (to JFreeChart) feature for interactive time series 

charts --- to display a separate control that shows a small version of ALL 

the time series data, with a sliding "view" rectangle that allows you to 

select the subset of the time series data to display in the main chart. 

3. Dashboards 

There is currently a lot of interest in dashboard displays. Create a 

flexible dashboard mechanism that supports a subset of JFreeChart 

chart types (dials, pies, thermometers, bars, and lines/time series) that 

can be delivered easily via both Java Web Start and an applet. 

4. Property Editors 

The property editor mechanism in JFreeChart only handles a small 

subset of the properties that can be set for charts. Extend (or 

reimplement) this mechanism to provide greater end-user control 

over the appearance of the charts. 
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J2ME (Java 2 Micro edition):- 

 
Sun Microsystems defines J2ME as "a highly optimized Java run-time 

environment targeting a wide range of consumer products, including 

pagers, cellular phones, screen-phones, digital set-top boxes and car 

navigation systems." Announced in June 1999 at the JavaOne Developer 

Conference, J2ME brings the cross-platform functionality of the Java 

language to smaller devices, allowing mobile wireless devices to share 

applications. With J2ME, Sun has adapted the Java platform for consumer 

products that incorporate or are based on small computing devices. 

 
 

1. General J2ME architecture 
 
 
 
 

 

 
J2ME uses configurations and profiles to customize the Java Runtime 

Environment (JRE). As a complete JRE, J2ME is comprised of a 

configuration, which determines the JVM used, and a profile, which defines 
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the application by adding domain-specific classes. The configuration 

defines the basic run-time environment as a set of core classes and a 

specific JVM that run on specific types of devices. We'll discuss 

configurations in detail in the The profile defines the application; 

specifically, it adds domain-specific classes to the J2ME configuration to 

define certain uses for devices. We'll cover profiles in depth in the The 

following graphic depicts the relationship between the different virtual 

machines, configurations, and profiles. It also draws a parallel with the 

J2SE API and its Java virtual machine. While the J2SE virtual machine is 

generally referred to as a JVM, the J2ME virtual machines, KVM and CVM, 

are subsets of JVM. Both KVM and CVM can be thought of as a kind of 

Java virtual machine -- it's just that they are shrunken versions of the J2SE 

JVM and are specific to J2ME. 

 
 

2.Developing J2ME applications 

 
Introduction In this section, we will go over some considerations you 

need to keep in mind when developing applications for smaller devices. 

We'll take a look at the way the compiler is invoked when using J2SE to 

compile J2ME applications. Finally, we'll explore packaging and 

deployment and the role preverification plays in this process. 

3.Design considerations for small devices 

 
Developing applications for small devices requires you to keep 

certain strategies in mind during the design phase. It is best to strategically 

design an application for a small device before you begin coding. 

Correcting the code because you failed to consider all of the "gotchas" 
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before developing the application can be a painful process. Here are some 

design strategies to consider: 

* Keep it simple. Remove unnecessary features, possibly making those 

features a separate, secondary application. 

* Smaller is better. This consideration should be a "no brainer" for all 

developers. Smaller applications use less memory on the device and 

require shorter installation times. Consider packaging your Java 

applications as compressed Java Archive (jar) files. 

* Minimize run-time memory use. To minimize the amount of memory used 

at run time, use scalar types in place of object types. Also, do not depend 

on the garbage collector. You should manage the memory efficiently 

yourself by setting object references to null when you are finished with 

them. Another way to reduce run-time memory is to use lazy instantiation, 

only allocating objects on an as-needed basis. Other ways of reducing 

overall and peak memory use on small devices are to release resources 

quickly, reuse objects, and avoid exceptions. 

4.Configurations overview 

 
The configuration defines the basic run-time environment as a set of 

core classes and a specific JVM that run on specific types of devices. 

Currently, two configurations exist for J2ME, though others may be defined 

in the future: 

* Connected Limited Device Configuration (CLDC) is used specifically 

with the KVM for 16-bit or 32-bit devices with limited amounts of memory. 

This is the configuration (and the virtual machine) used for  developing 
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small J2ME applications. Its size limitations make CLDC more interesting 

and challenging (from a development point of view) than CDC. CLDC is 

also the configuration that we will use for developing our drawing tool 

application. An example of a small wireless device running small 

applications is a Palm hand-held computer. 

* Connected Device Configuration (CDC) is used with the C virtual 

machine (CVM) and is used for 32-bit architectures requiring more than 2 

MB of memory. An example of such a device is a Net TV box. 

5.J2ME profiles 

 
What is a J2ME profile? 

 
As we mentioned earlier in this tutorial, a profile defines the type of 

device supported. The Mobile Information Device Profile (MIDP), for 

example, defines classes for cellular phones. It adds domain-specific 

classes to the J2ME configuration to define uses for similar devices. Two 

profiles have been defined for J2ME and are built upon CLDC: KJava and 

MIDP. Both KJava and MIDP are associated with CLDC and smaller 

devices. Profiles are built on top of configurations. Because profiles are 

specific to the size of the device (amount of memory) on which an 

application runs, certain profiles are associated with certain configurations. 

A skeleton profile upon which you can create your own profile, the 

Foundation Profile, is available for CDC. 

Profile 1: KJava 

 
KJava is Sun's proprietary profile and contains the KJava API. The KJava 

profile is built on top of the CLDC configuration. The KJava virtual machine, 
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KVM, accepts the same byte codes and class file format as the classic 

J2SE virtual machine. KJava contains a Sun-specific API that runs on the 

Palm OS. The KJava API has a great deal in common with the J2SE 

Abstract Windowing Toolkit (AWT). However, because it is not a standard 

J2ME package, its main package is com.sun.kjava. We'll learn more about 

the KJava API later in this tutorial when we develop some sample 

applications. 

Profile 2: MIDP 

 
MIDP is geared toward mobile devices such as cellular phones and pagers. 

The MIDP, like KJava, is built upon CLDC and provides a standard run- 

time environment that allows new applications and services to be deployed 

dynamically on end user devices. MIDP is a common, industry-standard 

profile for mobile devices that is not dependent on a specific vendor. It is a 

complete and supported foundation for mobile application 

development. MIDP contains the following packages, the first three of 

which are core CLDC packages, plus three MIDP-specific packages. 

* java.lang 

 
* java.io 

 
* java.util 

 
* javax.microedition.io 

 
* javax.microedition.lcdui 

 
* javax.microedition.midlet 

 
* javax.microedition.rms 
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CHAPTER 5 

SCREENSHOTS 

5.1 UPLOAD FILE 
 

 

Fig 5.1 Upload file 
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5.2 NODE INITIALIZATION 
 

Fig 5.2 Node initialization 
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5.3 FILE SENDING FROM SOURCE TO DESTINATION USING NORMAL 

CASE 
 

Fig 5.3 File sending from source to destination using normal case 
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5.4 NODE INITIALIZATION USING CRYPTOMINING CASE 
 

Fig 5.4 Node initialization using cryptomining case 
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5.5 SEND FAKE DATA 
 

 

Fig 5.5 Send fake data 

5.6 DATA INTEGRATION 
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Fig 5.6 Data integration 

 

 
5.7 ATTACK DETECTION FOR CRYPTOMINING CASE 

 

Fig 5.7 Attack detection for cryptomining case 

5.8 VIEW ATTACKED IP ADDRESS 
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Fig 5.8 View attacked IP address 

 
 
 
 
 
 
 
 
 
 
 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this paper, an automated pod anomaly detection setup is 

demonstrated in a Kubernetes cluster to detect cryptomining applications 

using explainable ML models. The explainability aspect is important for 

system administrators who must grasp the system-level rationales to 

support disruptive administrative decisions such as pod removal from a 

cluster. Several types of cryptomining algorithms may be used to launch an 

anomalous pod but the patterns of cryptomining system calls have common 

features that facilitate anomalous pod identification and discrimination 

against other CPU-intensive applications such as deep-learning, MySQL, 
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Cassandra, Hydoop etc. Three explainable tools and four ML model have 

been implemented using syscall n-grams as data features. The syscalls 

frames from such n-grams achieve an aggregate anomaly prediction 

accuracy of more than 78 percent. 

Further, a comparative study of ML explainability among the four 

models has been performed with the tree decision model found to be the 

most precise achieving accuracy of more than 97 percent, SHAP and LIME 

are most efficient while LSTM autoencoder being least amenable to 

automated explanation extraction because of longer training time and 

convergence instability. 
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