
1

Machine Learning Based
Cryptomining Detection.

Submitted in partial fulfillment of the requirements for

the award of

Bachelor of Engineering degree in Computer Science and Engineering

By

Vivethan N (Reg. No.37110846)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC I 12B Status by UGCI

Approved by AICTE

JEPPIAAR NAGAR, RAJIV GANDHI SALAI

CHENNAI - 600 119

March - 2021

2

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with “A” grade by NAAC I 12B Status by UGCI

Approved by AICTE

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119

www.sathyabama.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of Mr. Vivethan N (37110846) who

have done the Project work on the project entitled "Machine Learning based Cryptomining Detection‖

under my supervision from November 2020 to March 2021.

Dr. A. Pravin,M.E.,Ph.d.,

Internal Guide

Head of the Department

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

http://www.sathyabama.ac.in/

3

DECLARATION

I Vivethan N (37110846) hereby declare that the Project Report entitled ―Machine Learning

Based Cryptomining Detection‖ done by me under the guidance of Dr. /Prof./ Mr./Ms.

 (Internal) and (External) at Sathyabama Institute of

Science & Technology is submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering degree in .

DATE:

PLACE: SIGNATURE OF THE CANDIDATE

4

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for completing it

successfully. I am grateful to them.

I convey my thanks to Dr. T.Sasikala M.E., Ph.D ., Dean, School of Computing and

Dr.L.Lakshmanan M.E., Ph.D.,and Dr.S.Vigneshwari M.E., Ph.D., Heads of the

Department of Computer Science and Engineering for providing me necessary support

and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide

Dr. A. Pravin,M.E.,Ph.d., for his valuable guidance, suggestions and constant

encouragement paved way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many

ways for the completion of the project.

5

ABSTRACT

In cloud computing, containers are operating-system level

virtualization abstractions for running isolated systems on a host

using a single kernel.The use of containers in cloud computing has

been steadily increasing. With the emergence of Kubernetes, the

management of applications inside containers (or pods) is

simplified. Kubernetes allows automated actions like self-healing,

scaling, rolling back, and updates for the application management.

During application deployment and execution in the pod, a

cryptomining process, started by a hidden malware executable can

be run in the background, and a method to detect malicious

cryptomining software running inside Kubernetes pods is needed.

One feasible strategy is to use machine learning (ML) to identify

and classify pods based onwhether or not they contain a running

process of cryptomining. In addition to such detection, the system

administrator will need an explanation as to the reason(s) of the

ML’s classification outcome. In this article, we describe the design

and implementation of an ML-based detection system of anomalous

pods in a Kubernetes cluster by monitoring Linux-kernel system

calls (syscalls). Several types of cryptominers images are used as

containers within an anomalous pod, and several ML models are

built to detect such pods in the presence of numerous healthy cloud

workloads.

6

TABLE OF CONTENTS

ABSTRACT V

List of Figures VII

CHAPTER No. TITLE PAGE No.

1. INTRODUCTION 8

 1.1 CRYPTOMINING 8

 1.2 CRYPTOMINING SIGNATURES 10

 1.3 MACHINE LEARNING 11

 1.4 MOTIVATION 14

2. LITERATURE SURVEY 16

3. SYSTEM ANALYSIS 23

 3.1 EXISISTING SYSTEM 23

 3.2 PROPOSED SYSTEM 23

 3.3 ARCHITECTURE DIAGRAM 26

 3.4 MODULES 26

4. SOFTWARE ENVIRONMENT 28

5. RESULTS 53

 SCREENSHOTS 53

6. CONCLUSION AND FUTURE WORK 59

 REFERENCES 60

7

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

3.1 SYSTEM

ARCHITECTURE

26

5.1 UPLOAD FILE 53

5.2 NODE INITIALIZATION 54

5.3 USING NORMAL CASE 55

5.4 USING CRYPTOMINING
CASE

56

5.5 SEND FAKE DATA 57

5.6 DATA INTEGRATION 57

5.7 ATTACK DETECTION 58

5.8 VIEW IP ADDRESS 58

8

1.1 CRYPTOMINING

CHAPTER 1

INTRODUCTION

The term crypto mining means gaining cryptocurrencies by solving

cryptographic equations through the use of computers. This process

involves validating data blocks and adding transaction records to a public

record (ledger) known as a blockchain. In a more technical sense,

cryptocurrency mining is a transactional process that involves the use of

computers and cryptographic processes to solve complex functions and

record data to a blockchain. In fact, there are entire networks of devices

that are involved in cryptomining and that keep shared records via those

blockchains.

With cryptocurrencies, there’s no central authority, nor is there a

centralized ledger. That’s because cryptocurrencies operate in a

decentralized system with a distributed ledger (more on this shortly) known

as blockchain. Unlike the traditional banking system, anybody can be

directly connected to and participate in the cryptocurrency ―system.‖ You

can send and receive payments without going through a central bank.

That’s why it’s called decentralized digital currency. But in addition to being

decentralized, cryptocurrency is also a distributed system. This means the

record (ledger) of all transactions is publicly available and stored on lots of

different computers. This differs from the traditional banks we mentioned

earlier, which are centralized systems. But without a central bank, how are

transactions verified before being added to the ledger? Instead of using a

central banking system to verify transactions (for example, making sure the

sender has enough money to make the payment), cryptocurrency uses

9

cryptographic algorithms to verify transactions. And that’s where bitcoin

miners come in. Performing the cryptographic calculations for each

transaction adds up to a lot of computing work. Miners use their computers

to perform the cryptographic work required to add new transactions to the

ledger.

In a nutshell, crypto miners verify the legitimacy of transactions in

order to reap the rewards of their work in the form of cryptocurrencies. To

understand how most cryptocurrency mining works in a more technical

sense, you first need to understand the technologies and processes behind

it. This includes understanding what blockchain is and how it works.

The first thing to know is that two things are central to the concept of

blockchain: public key encryption and math. While I’m definitely a fan of the

first, I’ll admit that the latter isn’t my strong suit. However, public key

cryptography (aka public key encryption or asymmetric encryption) and

math go together in blockchains like burgers and beer.

Traditional cryptocurrencies such as Bitcoin use a decentralized

ledger known as blockchain. A blockchain is a series of chained data

blocks that contain key pieces of data, including cryptographic hashes.

These blocks, which are integral to a blockchain, are groups of data

transactions that get added to the end of the ledger. Not only does this add

a layer of transparency, but it also serves as an ego inflator when people

get to see their transactions being added (chained) to the blockchain. Even

though it doesn’t have their names listed on it, it often still evokes a sense

of pride and excitement.

https://sectigostore.com/blog/5-differences-between-symmetric-vs-asymmetric-encryption/

10

1.2 CRYPTOMINING SIGNATURES

Cryptocurrency mining malware refers to software developed to use

the computer’s resources for cryptocurrency mining without a user’s explicit

permission. Attackers have attempted to profit from cryptocurrency mining

by harnessing the processing power of a large numbers of computers,

smartphones and other electronic devices. The detection of cryptocurrency

malware has been performed by generating its signatures in terms of

power consumption, network traffic behavior, operating system processes,

and patterns in hardware performance counters. In, an anatomy of the

browser-based cryptomining is presented, in which the attacker infects a

web page with Java- Script code that auto-executes when the web page is

loaded by the victim’s browser. The attacker takes advantage of the

browser to activate the necessary JavaScript mining module. The

term‖illegal leverage‖ states that javascript is used maximally and forcibly

taking full privilege without the victim’s consent for a mining operation. The

unauthorized execution of JavaScript can therefore be used as a signature

for cryptomining malware in this scenario. If the browser behavior is

measured using any profiling metrics (e.g., syscalls or processor/ memory

metrics like instruction per clock cycle, CPU utilization, virtual memory page

faults, context switches, etc.) a definite pattern of those metrics is marked

for the legitimate and healthy operation. If the browser is hijacked by the

mining operation, a significant deviation is shown by such profiling metric.

Such a deviation is called a mining signature of the browser. In

theWindows operating system, mining is run as an executable file in

11

memory that establishes an alteration in the system registry. In this

scenario, the monitoring of registry can signal the presence of malware.

Network signature extraction is also possible because mining programs

contact the central botnet server to register its presence and to download

relevant files depending on the architecture of the victim’s system. The

network transactions generate significant network traffic before the actual

cryptomining begins. Tracing such traffic is relatively easy because the

communication is unencrypted. The cryptominer signature is extracted in

terms of power consumption for IoT devices.

1.3 MACHINE LEARNING

Machine learning is a subfield of artificial intelligence (AI). The goal of

machine learning generally is to understand the structure of data and fit

that data into models that can be understood and utilized by people.

Although machine learning is a field within computer science, it differs from

traditional computational approaches. In traditional computing, algorithms

are sets of explicitly programmed instructions used by computers to

calculate or problem solve. Machine learning algorithms instead allow for

computers to train on data inputs and use statistical analysis in order to

output values that fall within a specific range. Because of this, machine

learning facilitates computers in building models from sample data in order

to automate decision-making processes based on data inputs. Any

technology user today has benefitted from machine learning. Facial

recognition technology allows social media platforms to help users tag and

share photos of friends. Optical character recognition (OCR) technology

converts images of text into movable type. Recommendation engines,

powered by machine learning, suggest what movies or television shows to

12

watch next based on user preferences. Self-driving cars that rely on

machine learning to navigate may soon be available to consumers.

Machine learning is a continuously developing field. Because of this,

there are some considerations to keep in mind as you work with machine

learning methodologies, or analyze the impact of machine learning

processes. In this tutorial, we’ll look into the common machine learning

methods of supervised and unsupervised learning, and common

algorithmic approaches in machine learning, including the k-nearest

neighbor algorithm, decision tree learning, and deep learning. We’ll explore

which programming languages are most used in machine learning,

providing you with some of the positive and negative attributes of each.

Additionally, we’ll discuss biases that are perpetuated by machine learning

algorithms, and consider what can be kept in mind to prevent these biases

when building algorithms.

1.3.1 Machine Learning Methods

In machine learning, tasks are generally classified into broad

categories. These categories are based on how learning is received or how

feedback on the learning is given to the system developed. Two of the most

widely adopted machine learning methods are supervised learning which

trains algorithms based on example input and output data that is labeled by

humans, and unsupervised learning which provides the algorithm with no

labeled data in order to allow it to find structure within its input data.

1.3.1.1 Supervised Learning

In supervised learning, the computer is provided with example inputs

that are labeled with their desired outputs. The purpose of this method is

13

for the algorithm to be able to ―learn‖ by comparing its actual output with

the ―taught‖ outputs to find errors, and modify the model accordingly.

Supervised learning therefore uses patterns to predict label values on

additional unlabeled data.

For example, with supervised learning, an algorithm may be fed data

with images of sharks labeled as fish and images of oceans labeled as

water. By being trained on this data, the supervised learning algorithm

should be able to later identify unlabeled shark images as fish and

unlabeled ocean images as water. A common use case of supervised

learning is to use historical data to predict statistically likely future events. It

may use historical stock market information to anticipate upcoming

fluctuations, or be employed to filter out spam emails. In supervised

learning, tagged photos of dogs can be used as input data to classify

untagged photos of dogs.

1.3.1.2 Unsupervised Learning

In unsupervised learning, data is unlabeled, so the learning algorithm

is left to find commonalities among its input data. As unlabeled data are

more abundant than labeled data, machine learning methods that facilitate

unsupervised learning are particularly valuable. The goal of unsupervised

learning may be as straightforward as discovering hidden patterns within a

dataset, but it may also have a goal of feature learning, which allows the

computational machine to automatically discover the representations that

are needed to classify raw data.

Unsupervised learning is commonly used for transactional data. You

may have a large dataset of customers and their purchases, but as a

14

human you will likely not be able to make sense of what similar attributes

can be drawn from customer profiles and their types of purchases. With this

data fed into an unsupervised learning algorithm, it may be determined that

women of a certain age range who buy unscented soaps are likely to be

pregnant, and therefore a marketing campaign related to pregnancy and

baby products can be targeted to this audience in order to increase their

number of purchases. Without being told a ―correct‖ answer, unsupervised

learning methods can look at complex data that is more expansive and

seemingly unrelated in order to organize it in potentially meaningful ways.

Unsupervised learning is often used for anomaly detection including for

fraudulent credit card purchases, and recommender systems that

recommend what products to buy next. In unsupervised learning, untagged

photos of dogs can be used as input data for the algorithm to find

likenesses and classify dog photos together.

1.4 MOTIVATION OF THE PROJECT

In public cloud computing services, access to the hardware resources

is typically not available to the customer. Instead, the Linux-kernel system

calls at the operating system level can be used as a proxy to signal the

possibility of threat in a running container. The system call (syscall) is the

fundamental interface between an application and the Linux kernel. A

syscall is generated every time the application interacts with the Linux-

kernel. Cryptominers have to repeatedly run a core Proof-of-Work (PoW)

algorithm that the currency is based on. Such repeated runs would result in

the repeated occurrence of particular patterns for certain syscalls. System

call monitoring helps to track such patterns, and any unanticipated change

in the patterns of an application can signal the presence of a threat in the

15

container. Under this scenario, an unusual syscall pattern can be used as

an alert for cryptomining. Prior research that uses syscalls and behavioral

models as detection mechanism while research using neural network

models.

Most of the anomaly detection models are considered as black-boxes

where no information is returned to the user regarding the cause of the

anomaly classification. Yet, this information must be transparent to the

system administrator who will need an explainable classification model in

order to take the appropriate action. An explainable model generates an

auditable set of explanations that describe key factors associated with the

prediction. It can recommend the critical signals that need to be carefully

monitored or recommend specific actions such as increasing the sampling

frequency to get finer-grain details of the event that is responsible for the

anomaly. It can also explain the association among the signals which are

needed to manage the false prediction rate. The best use of such

association rules is in fault tracing where impact at one pod might be due to

some event in another pod, which cascades in some manner to a third pod,

and so on. Explanations obtained from machine learning models help trace

key features or sequences and eventually detect the root cause. In this

work, a methodology is formulated and implemented to detect cryptominer

anomalies using system calls as proxies for mining events and using an

explainable machine learning (ML) model as the cryptomining detector.

16

CHAPTER 2

LITERATURE SURVEY

2.1 Crypto mining attacks in information systems: An emerging

threat to

cyber security

AUTHORS: A. Zimba, Z. Wang, M. Mulenga

The popularity of cryptocurrencies has continued to grow drastically

over the past decade and this has drawn significant attention to various

threat actors. Cybercriminals are now employing unconventional means to

acquire cryptocurrencies at the expense of benign Internet users. This

paper investigates the state-of-the-art crypto mining attacks by examining

the malware code and the behavioral analysis upon execution. It examines

the two most common attack approaches; web browser-based crypto

mining which leverages JavaScript and installable binary crypto mining

where the malware runs in memory. Furthermore, the paper investigates

how cybercriminals endeavor to establish a persistence mechanism and

avoid detection. The results from static and dynamic analysis uncover the

techniques employed by the malware to exploit potential victims. Indicators

of compromise are drawn from the uncovered artifacts which can be used

as inputs to intrusion detection systems to help mitigate such cyber-attacks.

2.2) Evaluation of deep learning methods efficiency for malicious and

benign system calls classification on the AWSCTD

17

AUTHORS: D. Ceponis and N. Goranin

The increasing amount of malware and cyberattacks on a host level

increases the need for a reliable anomaly-based host IDS (HIDS) that

would be able to deal with zero-day attacks and would ensure low false

alarm rate (FAR), which is critical for the detection of such activity. Deep

learning methods such as convolutional neural networks (CNNs) and

recurrent neural networks (RNNs) are considered to be highly suitable for

solving data-driven security solutions. Therefore, it is necessary to perform

the comparative analysis of such methods in order to evaluate their

efficiency in attack classification as well as their ability to distinguish

malicious and benign activity. In this article, we present the results

achieved with the AWSCTD (attack-caused Windows OS system calls

traces dataset), which can be considered as the most exhaustive set of

host-level anomalies at the moment, including 112.56 million system calls

from 12110 executable malware samples and 3145 benign software

samples with 16.3 million system calls. The best results were obtained with

CNNs with up to 90.0% accuracy for family classification and 95.0%

accuracy for malicious/benign determination. RNNs demonstrated slightly

inferior results. Furthermore, CNN tuning via an increase in the number of

layers should make them practically applicable for host-level anomaly

detection.

2.3) Android malware detection based on system call sequences and

LSTM

AUTHORS: X. Xiao, S. Zhang, F. Mercaldo, G. Hu

As Android-based mobile devices become increasingly popular,

malware detection on Android is very crucial nowadays. In this paper, a

18

novel detection method based on deep learning is proposed to distinguish

malware from trusted applications. Considering there is some semantic

information in system call sequences as the natural language, we treat one

system call sequence as a sentence in the language and construct a

classifier based on the Long Short-Term Memory (LSTM) language model.

In the classifier, at first two LSTM models are trained respectively by the

system call sequences from malware and those from benign applications.

Then according to these models, two similarity scores are computed.

Finally, the classifier determines whether the application under analysis is

malicious or trusted by the greater score. Thorough experiments show that

our approach can achieve high efficiency and reach high recall of 96.6%

with low false positive rate of 9.3%, which is better than the other methods.

2.4) Exploring adversarial examples in malware detection

AUTHORS: O. Suciu, S. Coull, and J. Johns

The convolutional neural network (CNN) architecture is increasingly

being applied to new domains, such as malware detection, where it is able

to learn malicious behavior from raw bytes extracted from executables.

These architectures reach impressive performance with no feature

engineering effort involved, but their robustness against active attackers is

yet to be understood. Such malware detectors could face a new attack

vector in the form of adversarial interference with the classification model.

Existing evasion attacks intended to cause misclassification on test-time

instances, which have been extensively studied for image classifiers, are

not applicable because of the input semantics that prevents arbitrary

changes to the binaries. This paper explores the area of adversarial

examples for malware detection. By training an existing model on a

production-scale dataset, we show that some previous attacks are less

19

effective than initially reported, while simultaneously highlighting

architectural weaknesses that facilitate new attack strategies for malware

classification. Finally, we explore how generalizable different attack

strategies are, the trade-offs when aiming to increase their effectiveness,

and the transferability of single-step attacks.

2.5) Criteria for learning without forgetting in artificial neural networks

AUTHORS: R. Karn, P. Kudva, and I. Elfadel

Task progressive learning without catastrophic forgetting using

artificial neural networks (ANNs) has demonstrated viability and promise.

Due to the large number of ANN hyper-parameters, a model already

trained over a group of tasks can further learn a new task without forgetting

the previous tasks. Several algorithms have been proposed for progressive

learning, including synaptic weight consolidation, ensemble, rehearsal, and

sparse coding. One major problem with such methods is that they fail to

detect the congestion in the ANN shared parameter space to indicate the

saturation of the existing network and its inability to add new tasks using

progressive learning. The detection of such saturation is especially needed

to avoid the catastrophic forgetting of old trained task and the concurrent

loss in their generalization quality. In this paper, we address such problem

and propose a methodology for ANN congestion detection. The

methodology is based on computing the Hessian of the ANN loss function

at the optimal weights for a group of previously learned tasks. Since the

Hessian calculation is compute-intensive, we provide a set of

approximation heuristics that are computationally efficient. The algorithms

are implemented and analyzed in the context of two cloud network security

datasets, namely, UNSW-NB15 and AWID, as well as the MNIST image

recognition dataset. Results show that the proposed congestion metrics

20

give an accurate assessment of the ANN progressive learning capacity for

these various datasets. Furthermore, the results show that models that

have more features exhibit higher congestion thresholds and are therefore

more amenable to progressive learning.

2.6) Adversarial deep learning for robust detection of binary encoded

malware

AUTHORS: A. Al-Dujaili, A. Huang, E. Hemberg

Malware is constantly adapting in order to avoid detection. Model

based malware detectors, such as SVM and neural networks, are

vulnerable to so-called adversarial examples which are modest changes to

detectable malware that allows the resulting malware to evade detection.

Continuous-valued methods that are robust to adversarial examples of

images have been developed using saddle-point optimization formulations.

We are inspired by them to develop similar methods for the discrete, e.g.

binary, domain which characterizes the features of malware. A specific

extra challenge of malware is that the adversarial examples must be

generated in a way that preserves their malicious functionality. We

introduce methods capable of generating functionally preserved adversarial

malware examples in the binary domain. Using the saddle-point

formulation, we incorporate the adversarial examples into the training of

models that are robust to them. We evaluate the effectiveness of the

methods and others in the literature on a set of Portable Execution~(PE)

files. Comparison prompts our introduction of an online measure computed

during training to assess general expectation of robustness.

2.8) Feedback autonomic provisioning for guaranteeing performance

in MapReduce systems

21

AUTHORS: M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and B.

Robu

Companies have a fast growing amounts of data to process and

store, a data explosion is happening next to us. Currently one of the most

common approaches to treat these vast data quantities are based on the

MapReduce parallel programming paradigm. While its use is widespread in

the industry, ensuring performance constraints, while at the same time

minimizing costs, still provides considerable challenges. We propose a

coarse grained control theoretical approach, based on techniques that have

already proved their usefulness in the control community. We introduce the

first algorithm to create dynamic models for Big Data MapReduce systems,

running a concurrent workload. Furthermore, we identify two important

control use cases: relaxed performance-minimal resource and strict

performance. For the first case we develop two feedback control

mechanism. A classical feedback controller and an even-based feedback,

that minimises the number of cluster reconfigurations as well. Moreover, to

address strict performance requirements a feedforward predictive controller

that efficiently suppresses the effects of large workload size variations is

developed. All the controllers are validated online in a benchmark running

in a real 60 node MapReduce cluster, using a data intensive Business

Intelligence workload. Our experiments demonstrate the success of the

control strategies employed in assuring service time constraints.

2.9) Spatio-temporal convolutional sparse auto-encoder for sequence

classification

AUTHORS: M. Baccouche, F. Mamalet, C. Wolf

We present in this paper a novel learning-based approach for video

sequence classification. Contrary to the dominant methodology, which

22

relies on hand-crafted features that are manually engineered to be optimal

for a specific task, our neural model automatically learns a sparse shift-

invariant representation of the local 2D+t salient information, without any

use of prior knowledge. To that aim, a spatio-temporal convolutional sparse

autoencoder is trained to project a given input in a feature space, and to

reconstruct it from its projection coordinates. Learning is performed in an

unsupervised manner by minimizing a global parametrized objective

function. The sparsity is ensured by adding a sparsifying logistic between

the encoder and the decoder, while the shift-invariance is handled by

including an additional hidden variable to the objective function. The

temporal evolution of the obtained sparse features is learned by a long

short-term memory recurrent neural network trained to classify each

sequence. We show that, since the feature learning process is problem-

independent, the model achieves outstanding performances when applied

to two different problems, namely human action and facial expression

recognition. Obtained results are superior to the state of the art on the

GEMEP-FERA dataset and among the very best on the KTH dataset.

2.10) Cryptomining application fingerprinting method

AUTHORS: D. Draghicescu, A. Caranica, A. Vulpe, and O. Fratu

Computing power has increased exponentially in the last decades,

and more and more consumer devices are now permanently connected to

the internet, to form the so called ―Internet of Things‖ (IoT), Following this

trend, security threats and vulnerabilities have increased drastically over a

short period of time, as more and more devices are inter-connected and not

properly secured. Lately, the growing popularity of Bitcoin and other

cryptocurrencies are generating a lot of hype and concern, among security

specialists, as unwanted mining applications on an end-user device can

23

potentially pose both security risks and increased operating costs. There

are multiple ways of detecting unwanted applications at the user-level, by

means of URL blocking and application fingerprinting, and this paper will

cover a detection method proposed by our group.

3.1 EXISTING SYSTEM

CHAPTER 3

SYSTEM ANALYSIS

Several methods to analyze syscall patterns are available. A method

that provides the best accuracy across cryptominers needs to be identified

along with the best possible explanation for such identification. One such

method is where a histogram of syscalls is created to find the distribution of

distinct syscalls in each time window. Another method is given where the

semantics of each syscall is interpreted to detect infected pods. A flow-

graph analysis is used in [20] to deduce the relationships between different

syscalls and generate application signatures. A Markov chain is mostly

used to graph the syscalls as a sequence of events in which the probability

of each event depends only on the state attained in the previous event.

Similarly a weighted directed graph is built using syscalls for Android

malware detection. Such graph is used as a malware signature and is

compared with other container syscalls graphs to detect the anomaly.

3.1.1 Disadvantages of existing system

 They require a significant amount of manual intervention to analyze

and interpret syscall semantics.

24

 They are difficult to use in the analysis of applications that produce a

large number of distinct syscalls in a small time window.

3.2 PROPOSED SYSTEM

Cryptominers prevent the deployed application from using full

container resources. Before deploying, booting or running the desired

application, it is therefore crucial to perform the health checks on the

container base image. In this work, we design an ML-based cryptomining

container detection framework using syscalls as a monitoring mechanism.

The cryptomining anomaly detection is based on the principle of

establishing an application behavior baseline and then evaluating

subsequent events against this baseline. Anything ―too far‖ from this

baseline can be regarded as anomalous and should be investigated. We

use several statistical and rule-based ML algorithms, and back up their

detection results with several explainability tools to investigate the cause of

the ML outcomes. These ML algorithms are then compared in terms of their

performance metrics.

A methodology for anomaly detection through system calls in the

Kubernetes pods is proposed, designed, and implemented. Several types

of cryptominer images are used in the creation of anomalous pods. Proxies

based on Linuxkernel syscalls are extracted and compared against healthy

applications that exhibit similar domain behavior as the cryptominers. Four

different ML algorithms are used for classifying a given pod as either a

crypto-hijacked or a normal pod. These algorithms are compared in terms

of accuracy, runtime, and resource utilization.

This paper makes the following specific contributions:

25

1) Design and implementation of a novel automated cryptomining pod

detection in a Kubernetes cluster.

2) Development and implementation of real-time, syscall extraction

methods for Kubernetes pods.

3) Implementation of statistical and rule-based ML models to detect

anomalous pods.

4) Implementation of two statistical explainability mechanisms for ML

models: one using open-source components and another with home-grown

software.

5) Comparative analysis of explainable ML implementations with their

differences quantified using welldefined performance metrics

3.2.1 Advantages of proposed system

 The syscalls frames from such n-grams achieve an aggregate

anomaly prediction accuracy of more than 78 percent.

 Improve performance

 Less computation time

26

3.3 SYSTEM ARCHITECTURE

Fig 3.1 System architecture

3.4 MODULES

• Topology construction

• Collection of path backscatter messages

27

• Cryptomining detection mechanism using machine learning

3.4.1 Topology Construction

The topology is the arrangement of nodes in the simulation area. The

routers are connected in mesh topology. In which each routers are

connected to each other via other routers (Path). In our simulation, we are

using 11 nodes as the router node and 20 nodes as the client-server node.

Totally we are having 31 nodes in our network. Each host is connected via

routers. Each host has multiple paths to reach a single destination node in

the network.

3.4.2 Collection of path backscatter messages

Though path backscatter can happen in any spoofing based attacks,

it is not always possible to collect the path backscatter messages, as they

are sent to the spoofed addresses. We classify spoofing based attacks into

four categories, and discuss whether path backscatter messages can be

collected in each category of attacks. Single Source, Multiple Destinations:

In such attacks, all the attack packets have the same source IP address.

3.4.3 Cryptomining detection mechanism using machine learning

Cryptomining detection is actually composed by a set of mechanisms.

The basic mechanism, which is based on topology and routing information,

is illustrated below. Whenever a path backscatter message whose source

is router r (named reflector) and the original destination is od is captured,

the most direct inference is that the packet from attacker to od should

bypass r. We use a machine learning mechanism in spoofing origin

tracking.

28

CHAPTER 4

Software Environment

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language is a high-level language that can be

characterized by all of the following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

 Multithreaded

 Robust

 Dynamic

29

 Secure

With most programming languages, you either compile or interpret a

program so that you can run it on your computer. The Java programming

language is unusual in that a program is both compiled and interpreted.

With the compiler, first you translate a program into an intermediate

language called Java byte codes —the platform-independent codes

interpreted by the interpreter on the Java platform. The interpreter parses

and runs each Java byte code instruction on the computer. Compilation

happens just once; interpretation occurs each time the program is

executed. The following figure illustrates how this works.

You can think of Java byte codes as the machine code instructions

for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s

a development tool or a Web browser that can run applets, is an

implementation of the Java VM. Java byte codes help make ―write once,

run anywhere‖ possible. You can compile your program into byte codes on

any platform that has a Java compiler. The byte codes can then be run on

any implementation of the Java VM. That means that as long as a

computer has a Java VM, the same program written in the Java

30

programming language can run on Windows 2000, a Solaris workstation, or

on an iMac.

The Java Platform

A platform is the hardware or software environment in which a

program runs. We’ve already mentioned some of the most popular

platforms like Windows 2000, Linux, Solaris, and MacOS. Most

platforms can be described as a combination of the operating system

and hardware. The Java platform differs from most other platforms in

that it’s a software-only platform that runs on top of other hardware-

based platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for

the Java platform and is ported onto various hardware-based

platforms.

31

The Java API is a large collection of ready-made software

components that provide many useful capabilities, such as graphical

user interface (GUI) widgets. The Java API is grouped into libraries of

related classes and interfaces; these libraries are known as

packages. The next section, What Can Java Technology Do?

Highlights what functionality some of the packages in the Java API

provide.

The following figure depicts a program that’s running on the Java

platform. As the figure shows, the Java API and the virtual machine

insulate the program from the hardware.

Native code is code that after you compile it, the compiled code

runs on a specific hardware platform. As a platform-independent

environment, the Java platform can be a bit slower than native code.

However, smart compilers, well-tuned interpreters, and just-in-time

byte code compilers can bring performance close to that of native

code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java

programming language are applets and applications. If you’ve surfed

the Web, you’re probably already familiar with applets. An applet is a

program that adheres to certain conventions that allow it to run within

a Java-enabled browser.

32

However, the Java programming language is not just for writing cute,

entertaining applets for the Web. The general-purpose, high-level

Java programming language is also a powerful software platform.

Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java

platform. A special kind of application known as a server serves and

supports clients on a network. Examples of servers are Web servers,

proxy servers, mail servers, and print servers. Another specialized

program is a servlet. A servlet can almost be thought of as an applet

that runs on the server side. Java Servlets are a popular choice for

building interactive web applications, replacing the use of CGI scripts.

Servlets are similar to applets in that they are runtime extensions of

applications. Instead of working in browsers, though, servlets run

within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so

with packages of software components that provides a wide range of

functionality. Every full implementation of the Java platform gives you

the following features:

 The essentials: Objects, strings, threads, numbers, input and

output, data structures, system properties, date and time, and

so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control Protocol), UDP

(User Data gram Protocol) sockets, and IP (Internet Protocol)

addresses.

 Internationalization: Help for writing programs that can be

localized for users worldwide. Programs can automatically

33

adapt to specific locales and be displayed in the appropriate

language.

 Security: Both low level and high level, including electronic

signatures, public and private key management, access control,

and certificates.

 Software components: Known as JavaBeansTM, can plug into

existing component architectures.

 Object serialization: Allows lightweight persistence and

communication via Remote Method Invocation (RMI).

 Java Database Connectivity (JDBCTM): Provides uniform

access to a wide range of relational databases.

The Java platform also has APIs for 2D and 3D graphics,

accessibility, servers, collaboration, telephony, speech, animation,

and more. The following figure depicts what is included in the Java 2

SDK.

34

How Will Java Technology Change My Life?

We can’t promise you fame, fortune, or even a job if you learn the

Java programming language. Still, it is likely to make your programs

better and requires less effort than other languages. We believe that

Java technology will help you do the following:

 Get started quickly: Although the Java programming language

is a powerful object-oriented language, it’s easy to learn,

especially for programmers already familiar with C or C++.

 Write less code: Comparisons of program metrics (class

counts, method counts, and so on) suggest that a program

written in the Java programming language can be four times

smaller than the same program in C++.

 Write better code: The Java programming language

encourages good coding practices, and its garbage collection

helps you avoid memory leaks. Its object orientation, its

JavaBeans component architecture, and its wide-ranging,

easily extendible API let you reuse other people’s tested code

and introduce fewer bugs.

 Develop programs more quickly: Your development time may

be as much as twice as fast versus writing the same program in

C++. Why? You write fewer lines of code and it is a simpler

programming language than C++.

 Avoid platform dependencies with 100% Pure Java: You

can keep your program portable by avoiding the use of libraries

written in other languages. The 100% Pure JavaTM Product

35

ODBC

Certification Program has a repository of historical process

manuals, white papers, brochures, and similar materials online.

 Write once, run anywhere: Because 100% Pure Java

programs are compiled into machine-independent byte codes,

they run consistently on any Java platform.

 Distribute software more easily: You can upgrade applets

easily from a central server. Applets take advantage of the

feature of allowing new classes to be loaded ―on the fly,‖

without recompiling the entire program.

Microsoft Open Database Connectivity (ODBC) is a standard

programming interface for application developers and database systems

providers. Before ODBC became a de facto standard for Windows

programs to interface with database systems, programmers had to use

proprietary languages for each database they wanted to connect to. Now,

ODBC has made the choice of the database system almost irrelevant from

a coding perspective, which is as it should be. Application developers have

much more important things to worry about than the syntax that is needed

to port their program from one database to another when business needs

suddenly change.

Through the ODBC Administrator in Control Panel, you can specify

the particular database that is associated with a data source that an ODBC

application program is written to use. Think of an ODBC data source as a

door with a name on it. Each door will lead you to a particular database.

For example, the data source named Sales Figures might be a SQL Server

database, whereas the Accounts Payable data source could refer to an

36

Access database. The physical database referred to by a data source can

reside anywhere on the LAN.

The ODBC system files are not installed on your system by Windows

95. Rather, they are installed when you setup a separate database

application, such as SQL Server Client or Visual Basic 4.0. When the

ODBC icon is installed in Control Panel, it uses a file called

ODBCINST.DLL. It is also possible to administer your ODBC data sources

through a stand-alone program called ODBCADM.EXE. There is a 16-bit

and a 32-bit version of this program and each maintains a separate list of

ODBC data sources.

From a programming perspective, the beauty of ODBC is that the

application can be written to use the same set of function calls to interface

with any data source, regardless of the database vendor. The source code

of the application doesn’t change whether it talks to Oracle or SQL Server.

We only mention these two as an example. There are ODBC drivers

available for several dozen popular database systems. Even Excel

spreadsheets and plain text files can be turned into data sources. The

operating system uses the Registry information written by ODBC

Administrator to determine which low-level ODBC drivers are needed to

talk to the data source (such as the interface to Oracle or SQL Server). The

loading of the ODBC drivers is transparent to the ODBC application

program. In a client/server environment, the ODBC API even handles many

of the network issues for the application programmer.

The advantages of this scheme are so numerous that you are

probably thinking there must be some catch. The only disadvantage of

37

ODBC is that it isn’t as efficient as talking directly to the native database

interface. ODBC has had many detractors make the charge that it is too

slow. Microsoft has always claimed that the critical factor in performance is

the quality of the driver software that is used. In our humble opinion, this is

true. The availability of good ODBC drivers has improved a great deal

recently. And anyway, the criticism about performance is somewhat

analogous to those who said that compilers would never match the speed

of pure assembly language. Maybe not, but the compiler (or ODBC) gives

you the opportunity to write cleaner programs, which means you finish

sooner. Meanwhile, computers get faster every year.

JDBC

In an effort to set an independent database standard API for Java;

Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC

offers a generic SQL database access mechanism that provides a

consistent interface to a variety of RDBMSs. This consistent interface is

achieved through the use of ―plug-in‖ database connectivity modules, or

drivers. If a database vendor wishes to have JDBC support, he or she must

provide the driver for each platform that the database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC’s framework

on ODBC. As you discovered earlier in this chapter, ODBC has widespread

support on a variety of platforms. Basing JDBC on ODBC will allow vendors

to bring JDBC drivers to market much faster than developing a completely

new connectivity solution.

JDBC was announced in March of 1996. It was released for a 90 day

public review that ended June 8, 1996. Because of user input, the final

JDBC v1.0 specification was released soon after.

38

The remainder of this section will cover enough information about JDBC for

you to know what it is about and how to use it effectively. This is by no

means a complete overview of JDBC. That would fill an entire book.

JDBC Goals

Few software packages are designed without goals in mind. JDBC is

one that, because of its many goals, drove the development of the API.

These goals, in conjunction with early reviewer feedback, have finalized the

JDBC class library into a solid framework for building database applications

in Java.

The goals that were set for JDBC are important. They will give you some

insight as to why certain classes and functionalities behave the way they

do. The eight design goals for JDBC are as follows:

1. SQL Level API

The designers felt that their main goal was to define a SQL interface

for Java. Although not the lowest database interface level possible, it is

at a low enough level for higher-level tools and APIs to be created.

Conversely, it is at a high enough level for application programmers to

use it confidently. Attaining this goal allows for future tool vendors to

―generate‖ JDBC code and to hide many of JDBC’s complexities from

the end user.

2. SQL Conformance

39

SQL syntax varies as you move from database vendor to database

vendor. In an effort to support a wide variety of vendors, JDBC will allow

any query statement to be passed through it to the underlying database

driver. This allows the connectivity module to handle non-standard

functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database

interfaces

The JDBC SQL API must ―sit‖ on top of other common SQL level

APIs. This goal allows JDBC to use existing ODBC level drivers by

the use of a software interface. This interface would translate JDBC

calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the

Java system

Because of Java’s acceptance in the user community thus far, the

designers feel that they should not stray from the current design of the

core Java system.

5. Keep it simple

This goal probably appears in all software design goal listings. JDBC

is no exception. Sun felt that the design of JDBC should be very simple,

allowing for only one method of completing a task per mechanism.

Allowing duplicate functionality only serves to confuse the users of the

API.

6. Use strong, static typing wherever possible

Strong typing allows for more error checking to be done at compile

time; also, less error appear at runtime.

40

7. Keep the common cases simple

Because more often than not, the usual SQL calls used by the

programmer are simple SELECT’s, INSERT’s, DELETE’s and

UPDATE’s, these queries should be simple to perform with JDBC.

However, more complex SQL statements should also be possible.

Finally we decided to proceed the implementation using Java

Networking.

And for dynamically updating the cache table we go for MS Access

database.

Java ha two things: a programming language and a

platform.

Java is a high-level programming language that is all of

the following

Simple Architecture-neutral

Object-oriented Portable

Distributed High-performance

Interpreted multithreaded

Robust Dynamic

Secure

41

My Program

Interpreter

Java is also unusual in that each Java program is both compiled

and interpreted. With a compile you translate a Java program into

an intermediate language called Java byte codes the platform-

independent code instruction is passed and run on the computer.

Compilation happens just once; interpretation occurs each time

the program is executed. The figure illustrates how this works.

You can think of Java byte codes as the machine code

instructions for the Java Virtual Machine (Java VM). Every Java

interpreter, whether it’s a Java development tool or a Web browser

that can run Java applets, is an implementation of the Java VM.

The Java VM can also be implemented in hardware.

Java Program

Compilers

42

Java byte codes help make ―write once, run anywhere‖ possible.

You can compile your Java program into byte codes on my platform

that has a Java compiler. The byte codes can then be run any

implementation of the Java VM. For example, the same Java

program can run Windows NT, Solaris, and Macintosh.

Networking

TCP/IP stack

The TCP/IP stack i

s shorter than

the OSI one:

TCP is a connection-oriented protocol; UDP (User Datagram

Protocol) is a connectionless protocol.

43

IP datagram’s

The IP layer provides a connectionless and unreliable delivery

system. It considers each datagram independently of the others.

Any association between datagram must be supplied by the higher

layers. The IP layer supplies a checksum that includes its own

header. The header includes the source and destination addresses.

The IP layer handles routing through an Internet. It is also

responsible for breaking up large datagram into smaller ones for

transmission and reassembling them at the other end.

UDP

UDP is also connectionless and unreliable. What it adds to IP is

a checksum for the contents of the datagram and port numbers.

These are used to give a client/server model - see later.

TCP

TCP supplies logic to give a reliable connection-oriented protocol

above IP. It provides a virtual circuit that two processes can use to

communicate.

Internet addresses

In order to use a service, you must be able to find it. The Internet

uses an address scheme for machines so that they can be located.

44

The address is a 32 bit integer which gives the IP address. This

encodes a network ID and more addressing. The network ID falls

into various classes according to the size of the network address.

Network address

Class A uses 8 bits for the network address with 24 bits left over

for other addressing. Class B uses 16 bit network addressing. Class

C uses 24 bit network addressing and class D uses all 32.

Subnet address

Internally, the UNIX network is divided into sub networks.

Building 11 is currently on one sub network and uses 10-bit

addressing, allowing 1024 different hosts.

Host address

8 bits are finally used for host addresses within our subnet. This

places a limit of 256 machines that can be on the subnet.

Total address

45

The 32 bit address is usually written as 4 integers separated by

dots.

Port addresses

A service exists on a host, and is identified by its port. This is a

16 bit number. To send a message to a server, you send it to the

port for that service of the host that it is running on. This is not

location transparency! Certain of these ports are "well known".

Sockets

A socket is a data structure maintained by the system to handle

network connections. A socket is created using the call socket. It

returns an integer that is like a file descriptor. In fact, under

Windows, this handle can be used with Read File and Write File

functions.

#include <sys/types.h>

#include <sys/socket.h>

int socket(int family, int type, int protocol);

Here "family" will be AF_INET for IP communications, protocol

will be zero, and type will depend on whether TCP or UDP is used.

Two processes wishing to communicate over a network create a

socket each. These are similar to two ends of a pipe - but the actual

pipe does not yet exist.

JFree Chart

46

JFreeChart is a free 100% Java chart library that makes it easy

for developers to display professional quality charts in their

applications. JFreeChart's extensive feature set includes:

A consistent and well-documented API, supporting a wide

range of chart types;

A flexible design that is easy to extend, and targets both server-

side and client-side applications;

Support for many output types, including Swing components,

image files (including PNG and JPEG), and vector graphics file

formats (including PDF, EPS and SVG);

JFreeChart is "open source" or, more specifically, free software.

It is distributed under the terms of the GNU Lesser General Public

Licence (LGPL), which permits use in proprietary applications.

1. Map Visualizations

Charts showing values that relate to geographical areas. Some

examples include: (a) population density in each state of the United

States, (b) income per capita for each country in Europe, (c) life

expectancy in each country of the world. The tasks in this project

include:

Sourcing freely redistributable vector outlines for the countries

of the world, states/provinces in particular countries (USA in

particular, but also other areas);

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html

47

Creating an appropriate dataset interface (plus default

implementation), a rendered, and integrating this with the existing

XYPlot class in JFreeChart;

Testing, documenting, testing some more, documenting some

more.

2. Time Series Chart Interactivity

Implement a new (to JFreeChart) feature for interactive time series

charts --- to display a separate control that shows a small version of ALL

the time series data, with a sliding "view" rectangle that allows you to

select the subset of the time series data to display in the main chart.

3. Dashboards

There is currently a lot of interest in dashboard displays. Create a

flexible dashboard mechanism that supports a subset of JFreeChart

chart types (dials, pies, thermometers, bars, and lines/time series) that

can be delivered easily via both Java Web Start and an applet.

4. Property Editors

The property editor mechanism in JFreeChart only handles a small

subset of the properties that can be set for charts. Extend (or

reimplement) this mechanism to provide greater end-user control

over the appearance of the charts.

48

J2ME (Java 2 Micro edition):-

Sun Microsystems defines J2ME as "a highly optimized Java run-time

environment targeting a wide range of consumer products, including

pagers, cellular phones, screen-phones, digital set-top boxes and car

navigation systems." Announced in June 1999 at the JavaOne Developer

Conference, J2ME brings the cross-platform functionality of the Java

language to smaller devices, allowing mobile wireless devices to share

applications. With J2ME, Sun has adapted the Java platform for consumer

products that incorporate or are based on small computing devices.

1. General J2ME architecture

J2ME uses configurations and profiles to customize the Java Runtime

Environment (JRE). As a complete JRE, J2ME is comprised of a

configuration, which determines the JVM used, and a profile, which defines

49

the application by adding domain-specific classes. The configuration

defines the basic run-time environment as a set of core classes and a

specific JVM that run on specific types of devices. We'll discuss

configurations in detail in the The profile defines the application;

specifically, it adds domain-specific classes to the J2ME configuration to

define certain uses for devices. We'll cover profiles in depth in the The

following graphic depicts the relationship between the different virtual

machines, configurations, and profiles. It also draws a parallel with the

J2SE API and its Java virtual machine. While the J2SE virtual machine is

generally referred to as a JVM, the J2ME virtual machines, KVM and CVM,

are subsets of JVM. Both KVM and CVM can be thought of as a kind of

Java virtual machine -- it's just that they are shrunken versions of the J2SE

JVM and are specific to J2ME.

2.Developing J2ME applications

Introduction In this section, we will go over some considerations you

need to keep in mind when developing applications for smaller devices.

We'll take a look at the way the compiler is invoked when using J2SE to

compile J2ME applications. Finally, we'll explore packaging and

deployment and the role preverification plays in this process.

3.Design considerations for small devices

Developing applications for small devices requires you to keep

certain strategies in mind during the design phase. It is best to strategically

design an application for a small device before you begin coding.

Correcting the code because you failed to consider all of the "gotchas"

50

before developing the application can be a painful process. Here are some

design strategies to consider:

* Keep it simple. Remove unnecessary features, possibly making those

features a separate, secondary application.

* Smaller is better. This consideration should be a "no brainer" for all

developers. Smaller applications use less memory on the device and

require shorter installation times. Consider packaging your Java

applications as compressed Java Archive (jar) files.

* Minimize run-time memory use. To minimize the amount of memory used

at run time, use scalar types in place of object types. Also, do not depend

on the garbage collector. You should manage the memory efficiently

yourself by setting object references to null when you are finished with

them. Another way to reduce run-time memory is to use lazy instantiation,

only allocating objects on an as-needed basis. Other ways of reducing

overall and peak memory use on small devices are to release resources

quickly, reuse objects, and avoid exceptions.

4.Configurations overview

The configuration defines the basic run-time environment as a set of

core classes and a specific JVM that run on specific types of devices.

Currently, two configurations exist for J2ME, though others may be defined

in the future:

* Connected Limited Device Configuration (CLDC) is used specifically

with the KVM for 16-bit or 32-bit devices with limited amounts of memory.

This is the configuration (and the virtual machine) used for developing

51

small J2ME applications. Its size limitations make CLDC more interesting

and challenging (from a development point of view) than CDC. CLDC is

also the configuration that we will use for developing our drawing tool

application. An example of a small wireless device running small

applications is a Palm hand-held computer.

* Connected Device Configuration (CDC) is used with the C virtual

machine (CVM) and is used for 32-bit architectures requiring more than 2

MB of memory. An example of such a device is a Net TV box.

5.J2ME profiles

What is a J2ME profile?

As we mentioned earlier in this tutorial, a profile defines the type of

device supported. The Mobile Information Device Profile (MIDP), for

example, defines classes for cellular phones. It adds domain-specific

classes to the J2ME configuration to define uses for similar devices. Two

profiles have been defined for J2ME and are built upon CLDC: KJava and

MIDP. Both KJava and MIDP are associated with CLDC and smaller

devices. Profiles are built on top of configurations. Because profiles are

specific to the size of the device (amount of memory) on which an

application runs, certain profiles are associated with certain configurations.

A skeleton profile upon which you can create your own profile, the

Foundation Profile, is available for CDC.

Profile 1: KJava

KJava is Sun's proprietary profile and contains the KJava API. The KJava

profile is built on top of the CLDC configuration. The KJava virtual machine,

52

KVM, accepts the same byte codes and class file format as the classic

J2SE virtual machine. KJava contains a Sun-specific API that runs on the

Palm OS. The KJava API has a great deal in common with the J2SE

Abstract Windowing Toolkit (AWT). However, because it is not a standard

J2ME package, its main package is com.sun.kjava. We'll learn more about

the KJava API later in this tutorial when we develop some sample

applications.

Profile 2: MIDP

MIDP is geared toward mobile devices such as cellular phones and pagers.

The MIDP, like KJava, is built upon CLDC and provides a standard run-

time environment that allows new applications and services to be deployed

dynamically on end user devices. MIDP is a common, industry-standard

profile for mobile devices that is not dependent on a specific vendor. It is a

complete and supported foundation for mobile application

development. MIDP contains the following packages, the first three of

which are core CLDC packages, plus three MIDP-specific packages.

* java.lang

* java.io

* java.util

* javax.microedition.io

* javax.microedition.lcdui

* javax.microedition.midlet

* javax.microedition.rms

53

CHAPTER 5

SCREENSHOTS

5.1 UPLOAD FILE

Fig 5.1 Upload file

54

5.2 NODE INITIALIZATION

Fig 5.2 Node initialization

55

5.3 FILE SENDING FROM SOURCE TO DESTINATION USING NORMAL

CASE

Fig 5.3 File sending from source to destination using normal case

56

5.4 NODE INITIALIZATION USING CRYPTOMINING CASE

Fig 5.4 Node initialization using cryptomining case

57

5.5 SEND FAKE DATA

Fig 5.5 Send fake data

5.6 DATA INTEGRATION

58

Fig 5.6 Data integration

5.7 ATTACK DETECTION FOR CRYPTOMINING CASE

Fig 5.7 Attack detection for cryptomining case

5.8 VIEW ATTACKED IP ADDRESS

59

Fig 5.8 View attacked IP address

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this paper, an automated pod anomaly detection setup is

demonstrated in a Kubernetes cluster to detect cryptomining applications

using explainable ML models. The explainability aspect is important for

system administrators who must grasp the system-level rationales to

support disruptive administrative decisions such as pod removal from a

cluster. Several types of cryptomining algorithms may be used to launch an

anomalous pod but the patterns of cryptomining system calls have common

features that facilitate anomalous pod identification and discrimination

against other CPU-intensive applications such as deep-learning, MySQL,

60

Cassandra, Hydoop etc. Three explainable tools and four ML model have

been implemented using syscall n-grams as data features. The syscalls

frames from such n-grams achieve an aggregate anomaly prediction

accuracy of more than 78 percent.

Further, a comparative study of ML explainability among the four

models has been performed with the tree decision model found to be the

most precise achieving accuracy of more than 97 percent, SHAP and LIME

are most efficient while LSTM autoencoder being least amenable to

automated explanation extraction because of longer training time and

convergence instability.

REFERENCES

[1] Accessed: Aug. 16, 2018. [Online]. Available: https://kubernetes. io/

[2] A. S. Abed, C. Clancy, and D. S. Levy, ―Intrusion detection system for

applications using linux containers,‖ in Proc. Int. Workshop Secur. Trust

Manage., 2015, pp. 123–135.

[3] M. Mattetti, A. Shulman-Peleg, Y. Allouche, A. Corradi, S. Dolev, and L.

Foschini, ―Securing the infrastructure and the workloads of linux

61

containers,‖ in Proc. IEEE Conf. Commun. Netw. Secur., 2015, pp. 559–

567.

[4] Accessed: Aug. 16, 2018. [Online]. Available: https://www.

bleepingcomputer.com/news/security/17-backdoored-dockerimages-

removed-from-docker-hub/

[5] Accessed: Aug. 16, 2018. [Online]. Available: https://arstechnica.com/

information-technology/2018/06/backdoored-images-downloaded5-million-

times-finally-removed-from-docker-hub/

[6] Accessed: Aug. 16, 2018. [Online]. Available: https://news.

ycombinator.com/item?id=17309883

[7] Accessed: Jun. 07, 2020. [Online]. Available: https://www.mcafee.

com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019. pdf

[8] Accessed: Jun. 07, 2020. [Online]. Available: https://www.

guardicore.com/2019/05/nansh0u-campaign-hackers-arsenalgrows-

stronger/

[9] Accessed: Jun. 07, 2020. [Online]. Available: https://threatpost.

com/threatlist-cryptominers-dominate-malware-growth-in-2018/ 139448/

[10] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, ―Crypto mining

attacks in information systems: An emerging threat to cyber security,‖ J.

Comput. Inf. Syst., vol. 60, pp. 297–308, 2020.

[11] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo,

―Detecting crypto-ransomware in IoT networks based on energy

http://www/
http://www/

62

consumption footprint,‖ J. Ambient Intell. Humanized Comput., vol. 9, pp.

1141–1152, 2018.

[12] R. Tahir et al., ―Mining on someone else’s dime: Mitigating covert

mining operations in clouds and enterprises,‖ in Proc. Int. Symp. Res.

Attacks Intrusions Defenses, 2017, pp. 287–310.

[13] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and

E. Kirda, ―A quantitative study of accuracy in system callbased malware

detection,‖ in Proc. Int. Symp. Softw. Testing Anal., 2012, pp. 122–132.

[14] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, ―Shadow attacks:

Automatically evading system-call-behavior based malware detection,‖ J.

Comput. Virology, vol. 8, no. 1/2, pp. 1–13, 2012.

[15] X. Xiao, Z. Wang, Q. Li, S. Xia, and Y. Jiang, ―Back-propagation neural

network on Markov Chains from system call sequences: A new approach

for detecting android malware with system call sequences,‖ IET Inf. Secur.,

vol. 11, no. 1, pp. 8–15, 2016.

[16] D. Ceponis and N. Goranin, ―Evaluation of deep learning methods

efficiency for malicious and benign system calls classification on the

AWSCTD,‖ Secur. Commun. Netw., vol. 2019, 2019, Art. no. 2317976.

[17] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, ―Android

malware detection based on system call sequences and LSTM,‖

Multimedia Tools Appl., vol. 78, no. 4, pp. 3979–3999, 2019.

[18] A. S. Abed, T. C. Clancy, and D. S. Levy, ―Applying bag of system calls

for anomalous behavior detection of applications in linux containers,‖ in

Proc. IEEE Globecom Workshops, 2015, pp. 1–5.

63

[19] H. Liang, Q. Hao, M. Li, and Y. Zhang, ―Semantics-based anomaly

detection of processes in linux containers,‖ in Proc. Int. Conf. Identification

Inf. Knowl. Internet Things, 2016, pp. 60–63.

[20] A. Desnos, E. Petrova, A. Boulgakov, R. Neal, and Z. Mithra, ―Flow-

graph analysis of system calls for exploit detection,‖ Tech. Discl.

Commons, Jun. 2018. [21] M. Salehi and M. Amini, ―Android malware

detection using Markov Chain model of application behaviors in requesting

system services,‖ CoRR, vol. abs/1711.05731, 2017. [Online]. Available:

http://arxiv.org/abs/1711.05731

http://arxiv.org/abs/1711.05731

