
i

PROJECT

CHAT APPLICATION USING
REACT JS

ii

PROFESSIONAL TRAINING REPORT AT
Sathyabama Institute of Science and Technology

(Deemed to be university)

Submitted in partial fullfilment of the requirements for the
award of Bachelor of Technology in Information Technology

By

Preethi. S

Reg no-39120084

DEPARTMENT OF INFORMATION TECHNOLOGY

SCHOOL OF COMPUTING

SATHYABAMA INSTITUTE OF SCIENCE AND
TECHNOLOGY

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,
CHENNAI – 600119, TAMILNADU

 NOVEMBER 2021

iii

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

 (DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC
(Established under Section 3 of UGC Act, 1956)

JEPPIAAR NAGAR, RAJIV GANDHI SALAI
CHENNAI– 600119

www.sathyabama.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of
preethi.S_39120084who carried out the project entitiled”chat application using
React-js”under my supervision from June 2021 to November 2021.

Internal Guide

Dr. J. Jabez

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

http://www.sathyabama.ac.in/

iv

 DECLARATION
I, preethi. Shereby declare that the project report entitled Chat application using React js
done by me under the guidance of Dr.J.Jabezfulfillment of the requirements for the award of
Bachelor of Engineering Degree in Computer Science and Engineering.

DATE:

PLACE:

SIGNATURE OF THE CANDIDATE:

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of
SATHYABAMA for their kind encouragement in doing this project and for completing
it successfully. I am grateful to them.

I convey my thanks to Dr. T. Sasikala M.E., Ph.D, Dean, School of Computing, Dr. S.
Vigneshwari, M.E., Ph.D. and Dr. L. Lakshmanan, M.E., Ph.D., Heads of the
Department of INFORMATION TECHNOLOGY providing me necessary support and
details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide
Dr..J.Jabezfor his valuable guidance, suggestions and constant encouragement
paved way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the
Department of Information Technology who were helpful in many ways for the
completion of the project.

v

ABSTRACT

Chat refers to the process of communicating, interacting and/or exchanging messages

over the Internet. It involves two or more individuals that communicate through a chat-

enabled service or software. Chat may be delivered through text, audio

or video communication via the Internet A chat application has basic two components,

viz server and client. A server is a computer program or a device that provides functionality

for other programs or devices. Clients who want to chat with each other connect to the

server The chat application we are going to make will be more like a

chat room, rather than a peer to peer chat. So this means that multiple users can connect

to the chat server and send their messages. Every message is broadcasted to every

connected chat user . With the rapid development of mobile phones, mobile devices have

become one of the integral part of daily activities. In recent years, chat applications have

evolved and made a major change in social media because of their distinctive features

that attract audiences. It provides real-time messaging and offers different services

including, exchange text messages, images, files and etc. Moreover, it supports cross

platforms such as Android and iOS. There are currently hundred millions of users

smartphone are using chat applications on monthly basis. There are two types of

architecture in those applications, client-server and peer-to-peer networks. In a peer-to-

peer network, there is no central server and each user has his/her own data storage. On

the contrary, there are dedicated servers and clients in a client-server network and the

data is stored on a central server[3]. Security and privacy in chat applications have a

paramount importance but few people take it seriously. In a test done by the Electronic

Frontier Foundation, most of the popular messaging applications failed to meet most

security standards. These applications might be using the conversations as an information

for certain purposes. Moreover, reading the private conversations is certainly

unacceptable in terms of privacy. Most applications only used Transport Layer Security

(TLS) for securing channel, the service provider has full access to every message

exchanged through their infrastructure . Therefore, these messages can be accessed by

attackers. Therefore to maintain protection and privacy, messages should be encrypted

from sender to receiver and no one can read messages even the service provider, in

addition to protecting the local storage of the device . In this paper, we focus on security,

privacy and speed by proposing end-to-end security which ensures only sender and

receiver can read messages without a third party. As well as storage protection and fast

transfer of messages between the parties. The main contributions of this paper are the

following: 1- Propose client-server mobile chat application which supports the status of

the communicating parties whether online or offline. 2- Provide a friendship request

service. 3. Secure key exchange, then calculate the session key. 4. Secure exchange of

end-to-end message 5.Analysis and test the proposed chat..

vi

TABLE OF CONTENTS

S.NO

TITLE PAGE NO

1
ABSTRACT

V

2

LIST OF FIGURES

VII

3

LIST OF ABBREVATIONS

VII

4

AIM

1. DESCRIPTION
2. BACKEND SOURCE
3. SCOPE AND OBJECTIVE
4. PROJECT OUTLINE
5. HARDWARE REQUIREMENTS
6. SOFT WARE REQUIREMENTS

1-2

5

CHAT ENGINE

1. FEATURES
2. CHAT OBJECT
3. MESSAGE OBJECT
4. WORKING OF API

2-3

6

NETLIFY

1. ADVANTAGES
2. DISADVANTAGES

3-4

7

1. Html
2. CSS

 4-5

8

REACT JS

 5-8

vii

1. REQUIREMENTS
2. NEEDS
3. ADVANTAGES
4. DISADVANTAGES
5. PROS AND CONS
6. BENIFIT
7. APPLICATION OF REACT-JS

9

SOURCE CODE

9-31

9

RESULT

31-34

10

CONCLUSION

34

LIST OF FIGURES

S.NO

FIGURE NAME

PAGE.NO

1

REACT –JS

1. ADVANTAGES
2. BE NIFITS
3. PROS AND CONS
4. APPLICATIONS

6-8

4

RESULT

31-34

LIST OF ABBREVATIONS

viii

API

Application Programming
Interface

JSON

JAVA SCRIP OBJECT NOTATION

JS

JAVA SCRIPT

CSS

CASCADING STYLES SHEET

HTML

HYPER TEXT MARKUP
LANGUAGE

1

AIM:

To create a chat Application using React js

DESCRIPTION

A chat application makes it easy to communicate with people anywhere in the world
by sending and receiving messages in real time. With a chat app, users are able to
receive the same engaging and lively interactions through custom messaging features,
just as they would in person. This also keeps users conversing on your platform
instead of looking elsewhere for a messaging solution. Whether it’s a private chat,
group chat, or large scale chat, adding personalized chat features to your app can help
ensure that your users have a memorable experience.

.

BACKEND - REACTJS

React (also known as React.js or ReactJS) is a free and open-source front-end
JavaScript library for building user interfaces based on UI components. It is maintained
by Meta (formerly Facebook) and a community of individual developers and
companies.React can be used as a base in the development of single-page, mobile,
or server-rendered applications with frameworks like Next.js. However, React is only
concerned with state management and rendering that state to the DOM, so creating
React applications usually requires the use of additional libraries for routing, as well
as certain client-side functionality.

.

PROJECT OUTLINE

User can login to the chat application using their username and password then allowed
to use the chat app. In this chat application user can send and receive text Messages,
Multimedia , create groups or chat groups for their common discussion . chat admin is
someone who creates the group who’s allowed to add any numbers user under the
group where they can share their common thoughts. After using the chat application
user can logout the chat app through the logout option.

SCOPE AND OBJECTIVE

2

The chat application is built using react js deployed using chat engine api , and
hosted on netlify. The main aspect is where one user can can send text ,images
from one end and the other receives the same from their end. Also user can create
a chat group ,add any number of people to their wish and share the text,images
apparently the other members of the group receives the same in the chat room.

HARDWARE REQUIREMENTS

• Windows system

• A good internet quality

SOFTWARE REQUIREMENTS

• react js

• chat engine api

• netlify to host chat app

CHAT ENGINE– API:

API stands for Application Programming Interface. An API is a software
intermediary that allows two applications to talk to each other APIs unlock a door

to software (or web-based data), in a way that is controlled and safe for the program.
Code can then be entered that sends requests to the receiving software, and data
can be returned. A clear example of this in action is the Google Maps API

Chat Engine is an API which makes it easy to build chat services. Building a chat
from scratch takes a lot of time, code, and is expensive. It's better to use a product
instead of writing it from scratch. We make it easy to build your chat idea in minutes.

3

FEATURES:

• Authenticate user

• Subscribe (connect) to incoming chats and messages

• Create chats and messages

• Add and remove people from chats

• Edit and delete chat and message data.

CHAT OBJECT:

• id (int) - Unique primary key to identify this chat

• admin (String) - Unique username of the person who created this chat

• title (String) - Optional title of this chat

• created (Datetime) - Date-time of chat creation

• people (Array) - Array of people added to this chat

MESSAGE OBJECT:

•
• id (int) - Unique primary key to identify this message

• sender (String) - Unique username of the person who sent this message

• text (String) - Contents of the message sent

• created (Datetime) - Date-time of message creation

WORKING OF API KEY

An application programming interface key (API key) is a unique code that
is passed in to an API to identify the calling application or user. API keys
are used to track and control how the API is being used, for example to
prevent malicious use or abuse of the API. The API key often acts as both
a unique identifier and a secret token for authentication, and is assigned a
set of access that is specific to the identity that is associated with it.

NETLIFY

4

Netlify is a web developer platform that multiplies productivity By unifying the elements of the

modern decoupled web, from local development to advanced edge logic, Netlify enables a 10x faster

path to much more performance, secure, and scalable websites and apps. Our bet on the Jamstack is

quickly coming true. The web is rapidly changing away from monolithic to decoupled apps, and web

developers are storming ahead with more power than ever. Netlify is built to cater to that movement,

and in just a few years we’ve on-boarded millions of developers and businesses, and are building and
serving millions of web projects daily around the globe. Fun fact: in the time it took you to read the

above, Netlify served over 600,000 requests.

ADVANTAGES:

● Netlify Is Less Expensive, and You Get a Faster Site.

● Netlify Build Enables Developers to Build With Any Integration.

● It's Easier to Launch a Site Using Netlify.

DISADVANTAGES:

● Netlify Is Less Expensive, and You Get a Faster Site.
● Netlify Build Enables Developers to Build With Any Integration.
● It's Easier to Launch a Site Using Netlify.

 HTML

The Hyper Text Mark-up Language or HTML is the standard mark-up language for
documents designed to be displayed in a web browser. It can be assisted by
technologies such as Cascading StyleSheets(CSS) and scripting languages such

5

as JavaScript
HTML can embed programs written in a scripting language such as JavaScript, which
affects the behaviour and content of web pages. Inclusion of CSS defines the look and
layout of content

css

Cascading Style Sheets (CSS) is a style sheet language used for describing
the presentation of a document written in a mark up language such as HTML CSS is a
cornerstone technology of the World Wide Web, alongside HTML and JavaScript
 CSS is designed to enable the separation of presentation and content,
including layout, colours, and fonts This separation can improve content accessibility;
provide more flexibility and control in the specification of presentation characteristics; enable
multiple web pages to share formatting by specifying the relevant CSS in a separate .

REACT-JS

React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript
library for building user interfaces based on UI components. It is maintained by Meta
(formerly Facebook) and a community of individual developers and companies. React can
be used as a base in the development of single-page, mobile, or server-rendered
applications with frameworks like Next.js. However, React is only concerned with state
management and rendering that state to the DOM, so creating React applications usually
requires the use of additional libraries for routing, as well as certain client-side functionality.

React js requirements:

6

• HTML + CSS. No front-end dev is a stranger to HTML and CSS. ...

• JSX. In React, you never really touch HTML proper. ...

• JavaScript Fundamentals + ES6. ...

• Node + npm. ...

• Redux.

NEEDS OF REACT-JS

 To react, you just need basic knowledge of CSS and HTML. React can be used to create
mobile applications (React Native). And React is a diehard fan of reusability, meaning
extensive code reusability is supported. So at the same time, we can make IOS, Android and
Web applications.
 React is an excellent tool with which to create interactive applications for mobile, web, and
other platforms. React's popularity and usage are increasing day by day for good reason. As
a developer, coding in React makes you better at JavaScript, a language that holds nearly
90% of the web development share today.

ADVANTAGES:

● Makes JavaScript coding easier.

● Extremely competent.

● Excellent cross-platform support.

● Handles dependencies.

● Template designing made easy.

● Provides amazing developer tools.

● UI focused designs.

● Easy to adopt.

7

DISADVANTAGES:

• The high pace of development. The high pace of development has an advantage and
disadvantage both. ...

• Poor Documentation. It is another cons which are common for constantly updating
technologies. ...

• View Part. ReactJS Covers only the UI Layers of the app and nothing else. ...

• JSX as a barrier.

PROS AND CONS

BENIFITS OF REACT-JS

• Performance

• Code reusability

• Easy to learn easy and quick testing

• Native app development

• Server side rendering

8

APPLICATIONS OF REACT-JS

9

SOURCE CODE:

App.css

* {

 font-family: Avenir, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto,

 Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji,

 Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji;

 letter-spacing: 0.5px;

}

.ce-chat-list {

 background-color: rgb(240, 240, 240) !important;

}

.ce-chats-container {

 background-color: rgb(240, 240, 240) !important;

}

.ce-active-chat-card {

 background-color: #cabcdc !important;

 border: 4px solid #cabcdc !important;

 border-radius: 0px !important;

}

.ce-chat-subtitle-text {

 color: #595959 !important;

}

10

.ce-chat-form-container {

 padding-bottom: 20px !important;

}

.ce-text-input {

 border-radius: 6px !important;

 border: 1px solid #3b2a50 !important;

}

.ce-primary-button {

 border-radius: 6px !important;

 background-color: #7554a0 !important;

 position: relative;

 bottom: 1px;

}

.ce-danger-button {

 background-color: white !important;

 border-radius: 22px !important;

}

.ce-settings {

 background-color: rgb(240, 240, 240) !important;

}

.ce-autocomplete-input {

11

 border-radius: 6px !important;

 border: 1px solid #3b2a50 !important;

}

.ce-autocomplete-options {

 border-radius: 6px !important;

 border: 1px solid #3b2a50 !important;

 background-color: white !important;

}

.ce-chat-settings-container {

 padding-top: 12px !important;

}

.ce-chat-avatars-row {

 display: none !important;

}

/* CUSTOM FEED */

.chat-feed {

 height: 100%;

 width: 100%;

 overflow: scroll;

 background-color: rgb(240, 240, 240);

}

12

.chat-title-container {

 width: calc(100% - 36px);

 padding: 18px;

 text-align: center;

}

.chat-title {

 color: #7554a0;

 font-weight: 800;

 font-size: 24px;

}

.chat-subtitle {

 color: #7554a0;

 font-weight: 600;

 font-size: 12px;

 padding-top: 4px;

}

.message-row {

 float: left;

 width: 100%;

 display: flex;

 margin-left: 18px;

}

.message-block {

13

 width: 100%;

 display: inline-block;

}

.message-avatar {

 width: 44px;

 height: 44px;

 border-radius: 22px;

 color: white;

 text-align: center;

 background-repeat: no-repeat;

 background-position: center;

 background-size: 48px;

}

.logout-button {

 text-align: center;

 margin-top: 20px;

 margin-left: 43%;

 margin-bottom: 40px;

 width: 70px;

 border-radius: 6px !important;

 border: 1px solid #3b2a50 !important;

 background-color: #7554a0 !important;

}

14

.message {

 padding: 12px;

 font-size: 16px;

 border-radius: 6px;

 max-width: 60%;

}

.message-image {

 margin-right: 18px;

 object-fit: cover;

 border-radius: 6px;

 height: 30vw;

 /* width: 30vw; */

 max-height: 200px;

 max-width: 200px;

 min-height: 100px;

 min-width: 100px;

}

.read-receipts {

 position: relative;

 bottom: 6px;

}

.read-receipt {

 width: 13px;

 height: 13px;

15

 border-radius: 13px;

 margin: 1.5px;

 background-repeat: no-repeat;

 background-position: center;

 background-size: 14px;

}

.message-form-container {

 position: absolute;

 bottom: 0px;

 width: calc(100% - 36px);

 padding: 18px;

 background-color: rgb(240, 240, 240);

}

.message-form {

 overflow: hidden;

 border-radius: 6px;

 border: 1px solid #3b2a50;

 background-color: white;

}

.message-input {

 height: 40px;

 width: calc(100% - 132px);

 background-color: white;

 border: 1px solid white;

16

 padding: 0px 18px;

 outline: none;

 font-size: 15px;

}

.image-button {

 cursor: pointer;

 padding: 0px 12px;

 height: 100%;

}

.send-button {

 height: 42px;

 background-color: white;

 border: 1px solid white;

 padding: 0px 18px;

 cursor: pointer;

}

.send-icon {

 top: 1px;

 position: relative;

 transform: rotate(-90deg);

}

.picture-icon {

 top: 1px;

17

 position: relative;

 font-size: 14px;

}

/* FORM STYLES */

*,

*::after,

*::before {

 margin: 0;

 padding: 0;

 box-sizing: border-box;

 font-size: 62, 5%;

}

.wrapper {

 height: 100vh;

 width: 100%;

 background: rgb(117, 84, 160);

 background: linear-gradient(90deg, rgba(117, 84, 160, 1) 7%, rgba(117, 84, 160, 1) 17%, rgba(106,

95, 168, 1) 29%, rgba(99, 103, 174, 1) 44%, rgba(87, 116, 184, 1) 66%, rgba(70, 135, 198, 1) 83%,

rgba(44, 163, 219, 1) 96%, rgba(22, 188, 237, 1) 100%, rgba(0, 212, 255, 1) 100%);

 display: flex;

 justify-content: center;

 align-items: center;

}

.input {

 color: #333;

18

 font-size: 1.2rem;

 margin: 0 auto;

 padding: 1.5rem 2rem;

 border-radius: 0.2rem;

 background-color: rgb(255, 255, 255);

 border: none;

 width: 90%;

 display: block;

 border-bottom: 0.3rem solid transparent;

 transition: all 0.3s;

 outline: none;

 margin-bottom: 25px;

}

.form {

 width: 400px;

}

.title {

 text-align: center;

 color: white;

 margin-bottom: 30px;

 width: 100%;

 font-size: 2.3em;

 ;

}

19

.button {

 border-radius: 4px;

 border: none;

 background-color: white;

 color: black;

 text-align: center;

 text-transform: uppercase;

 font-size: 22px;

 padding: 20px;

 width: 200px;

 transition: all 0.4s;

 cursor: pointer;

 margin: 5px;

 width: 90%;

}

.button span {

 cursor: pointer;

 display: inline-block;

 position: relative;

 transition: 0.4s;

}

.button span:after {

 content: '\00bb';

 position: absolute;

 opacity: 0;

20

 top: 0;

 right: -20px;

 transition: 0.5s;

}

.button:hover span {

 padding-right: 25px;

}

.button:hover span:after {

 opacity: 1;

 right: 0;

}

.error {

 color: white;

 text-align: center;

 margin-top: 20px;

}

APP.js

import { ChatEngine } from "react-chat-engine";

import './App.css';

import ChatFeed from './components/ChatFeed';

import LoginForm from "./components/LoginForm";

const App = () => {

21

 if(!localStorage.getItem('username')) return <LoginForm />

 return (

 <ChatEngine

 height = "100vh"

 projectID = "7a704088-98dc-4203-a0f7-cc2159f81d85"

 userName = {localStorage.getItem('username')}

 userSecret = {localStorage.getItem('password')}

 renderChatFeed = {(ChatAppProps) => <ChatFeed {... ChatAppProps} />}

 />

);

}

export default App;

index.js

import React from 'react';

import ReactDom from 'react-

dom';

import App from './App';

ReactDom.render(<App/>,

document.getElementById('root'))

;

Chatfeed.jsx
import MessageForm from "./MessageForm";

import MyMessage from "./MyMessage";

import TheirMessage from "./TheirMessage";

const ChatFeed = (props) => {

 const { chats, activeChat, userName,

messages } = props;

22

 const chat = chats &&

chats[activeChat];

 const renderReadReceipts = (message,

isMyMessage) => {

 return chat.people.map((person,

index) => person.last_read === message.id

&& (

 <div

 key={`read_${index}`}

 className="read-receipt"

 style={

 {

 float: isMyMessage

? 'right' : 'left',

 backgroundImage:

`url(${person?.person?.avatar})`

 }

 }

 />

))

 }

 const renderMessages = () => {

 const keys = Object.keys(messages);

 return keys.map((key, index) => {

 const message = messages[key];

 const lastMessageKey = index

=== 0 ? null : key[index - 1];

 const isMyMessage = userName

=== message.sender.username;

 return (

 <div key={`msg_${index}`}

style={{ width: '100%' }}>

 <div

className="message-block">

 {

 isMyMessage

23

 ?

<MyMessage message={message} />

 :

<TheirMessage message={message}

lastMessage={messages[lastMessageKey]} />

 }

 </div>

 <div className="read-

receipts" style={{ marginRight: isMyMessage

? '18px' : '0px', marginLeft: isMyMessage ?

'0px' : '68px' }}>

{renderReadReceipts(message, isMyMessage)}

 </div>

 </div>

)

 })

 }

 const logout = () => {

localStorage.removeItem('username');

localStorage.removeItem('password');

 window.location.reload();

 }

 if (!chat) return '...loading';

 return (

 <div className="chat-feed">

 <div className="chat-title-

container">

 <div className="chat-

title">

24

 {chat.title}

 </div>

 <div className="chat-

subtitle">

{chat.people.map((person) => `

${person.person.username}`)}

 </div>

 <div className="logout-

button">

 <button

onClick={logout}>Logout</button>

 </div>

 {renderMessages()}

 <div style={{ height:

'100px' }} />

 <div className="message-

form-container">

 <MessageForm {...props}

chatId={activeChat} />

 </div>

 </div>

 </div>

)

}

export default ChatFeed;

loginform.jsx

import { useState } from "react";

import axios from "axios";

const LoginForm = () => {

 const [username, setUsername] =

useState("");

 const [password, setPassword] =

useState("");

 const [error, setError] = useState("");

25

 const handleSubmit = async (e) => {

 e.preventDefault();

 const authObject = { 'project-Id':

"7a704088-98dc-4203-a0f7-cc2159f81d85",

'User-Name': username, 'User-Secret':

password }

 try {

 await

axios.get("https://api.chatengine.io/chats"

, { headers: authObject });

localStorage.setItem('username', username);

localStorage.setItem('password', password);

 window.location.reload();

 } catch (error) {

 setError("Oops, Wrong

Credentials..Try again")

 }

 }

 return (

 <div className="wrapper">

 <div className="form">

 <h1 className="title" >

Chat Application </h1>

 <form

onSubmit={handleSubmit}>

 <input type="text"

value={username} onChange={(e) =>

setUsername(e.target.value)}

className="input" required

placeholder="Username" />

26

 <input type="password"

value={password} onChange={(e) =>

setPassword(e.target.value)}

className="input" required

placeholder="Password" />

 <div align="center">

 <button

type="submit" className="button">

 Start

Chatting

 </button>

 </div>

 </form>

 <div

className="error">{error}</div>

 </div>

 </div>

);

}

export default LoginForm

messageform.jsx

import { PictureOutlined, SendOutlined } from "@ant-design/icons";

import { useState } from "react"

import { sendMessage, isTyping } from "react-chat-engine";

const MessageForm = (props) => {

 const [value, setValue] = useState('');

 const { chatId, creds } = props;

 const handleSubmit = (event) => {

 event.preventDefault();

27

 const text = value.trim();

 if (text.length > 0) {

 sendMessage(creds, chatId, { text })

 }

 setValue('');

 }

 const handleChange = (event) => {

 setValue(event.target.value);

 isTyping(props, chatId);

 }

 const handleUpload = (event) => {

 sendMessage(creds, chatId, { files: event.target.files, text: '' })

 }

 return (

 <form className="message-form" onSubmit={handleSubmit}>

 <input

 placeholder="Type Your Message Here"

 className="input-message"

 value={value}

 onChange={handleChange}

28

 onSubmit={handleSubmit}

 />

 <label htmlFor="upload-button">

 <PictureOutlined className="picture-icon" />

 </label>

 <input id="upload-button"

 type="file"

 multiple="false"

 style={{ display: 'none' }}

 onChange={handleUpload}

 />

 <button type="submit" className="send-button">

 <SendOutlined className="send-icon" />

 </button>

 </form>

)

}

export default MessageForm;

mymessage.jsx

const MyMessage = ({ message }) => {

 if (message?.attachments?.length > 0) {

 return (

 <img

29

 src={message.attachments[0].file}

 alt="message-attachment"

 className="messgage-image"

 style={{ float: 'right' }}

 />

)

 }

Theirmessages.jsx

const TheirMessage = ({ lastMessage, message }) => {

 const isFirstMessageByUser = !lastMessage || lastMessage.sender.username !==

message.sender.username;

 return (

 <div className="message-row">

 {isFirstMessageByUser && (

 <div className="message-avatar"

 style={{ backgroundImage: `url(${message?.sender?.avatar})` }} />

)}

 {message?.attachments?.length > 0

 ? (

 <img

 src={message.attachments[0].file}

 alt="message-attachment"

 className="messgage-image"

 style={{ marginLeft: isFirstMessageByUser ? '4px' : '48px' }}

30

 />

) : (

 <div className="message" style={{ float: 'left', backgroundColor: '#CABCDC',

marginLeft: isFirstMessageByUser ? '4px' : '48px' }}>

 {message.text}

 </div>

)

 }

 </div>

)

}

export default console.log(message);

 return (

 <div className="message" style={{ float: 'right', marginRight: '18px', color: 'white',

backgroundColor: '#3B2A50' }}>

 {message.text}

 </div>

)

}

export default MyMessage;

TheirMessage.jsx

const TheirMessage = ({ lastMessage, message }) => {

31

 const isFirstMessageByUser = !lastMessage || lastMessage.sender.username !==

message.sender.username;

 return (

 <div className="message-row">

 {isFirstMessageByUser && (

 <div className="message-avatar"

 style={{ backgroundImage: `url(${message?.sender?.avatar})` }} />

)}

 {message?.attachments?.length > 0

 ? (

 <img

 src={message.attachments[0].file}

 alt="message-attachment"

 className="messgage-image"

 style={{ marginLeft: isFirstMessageByUser ? '4px' : '48px' }}

 />

) : (

 <div className="message" style={{ float: 'left', backgroundColor: '#CABCDC',

marginLeft: isFirstMessageByUser ? '4px' : '48px' }}>

 {message.text}

 </div>

)

 }

 </div>

)

32

}

export default TheirMessage;

RESULT

login-page

HOME PAGE

33

SENDING MESSAGES

CREATING A CHAT GROUP

34

CONCLUSION :

We have successfully created a Chat Apllicaiton using React js with the help of chat
engine API key and hosted successfully on netlify

	CHAT APPLICATION USING REACT JS
	By
	Preethi. S
	Reg no-39120084
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	BONAFIDE CERTIFICATE
	Submitted for Viva voce Examination held on
	DATE:

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVATIONS
	To create a chat Application using React js
	DESCRIPTION
	A chat application makes it easy to communicate with people anywhere in the world by sending and receiving messages in real time. With a chat app, users are able to receive the same engaging and lively interactions through custom messaging features, j...
	.
	BACKEND - REACTJS
	React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript library for building user interfaces based on UI components. It is maintained by Meta (formerly Facebook) and a community of individual developers and companies.R...
	.
	PROJECT OUTLINE
	User can login to the chat application using their username and password then allowed to use the chat app. In this chat application user can send and receive text Messages, Multimedia , create groups or chat groups for their common discussion . chat ...
	SCOPE AND OBJECTIVE
	The chat application is built using react js deployed using chat engine api , and hosted on netlify. The main aspect is where one user can can send text ,images from one end and the other receives the same from their end. Also user can create a cha...
	HARDWARE REQUIREMENTS
	SOFTWARE REQUIREMENTS
	API stands for Application Programming Interface. An API is a software intermediary that allows two applications to talk to each other APIs unlock a door to software (or web-based data), in a way that is controlled and safe for the program. Code can t...
	Chat Engine is an API which makes it easy to build chat services. Building a chat from scratch takes a lot of time, code, and is expensive. It's better to use a product instead of writing it from scratch. We make it easy to build your chat idea in min...
	 Authenticate user
	 Subscribe (connect) to incoming chats and messages
	 Create chats and messages
	 Add and remove people from chats
	 Edit and delete chat and message data.
	 id (int) - Unique primary key to identify this chat
	 admin (String) - Unique username of the person who created this chat
	 title (String) - Optional title of this chat
	 created (Datetime) - Date-time of chat creation
	 people (Array) - Array of people added to this chat
	 id (int) - Unique primary key to identify this message
	 sender (String) - Unique username of the person who sent this message
	 text (String) - Contents of the message sent
	 created (Datetime) - Date-time of message creation
	WORKING OF API KEY
	The Hyper Text Mark-up Language or HTML is the standard mark-up language for documents designed to be displayed in a web browser. It can be assisted by technologies such as Cascading StyleSheets(CSS) and scripting languages such as JavaScript HTML can...

