
Training Report on Python

Submitted in partial fulfillment of the requirements for

Bachelor of Engineering Degree in

Electrical and Electronics

Engineering By

Snowsha J(39140054)

DEPARTMENT OF ELECTRICAL AND

ELECTRONICS SCHOOL OF ELECTRICAL AND

ELECTRONICS SATHYABAMA INSTITUTE OF

SCIENCE AND TECHNOLOGY JEPPIAAR

NAGAR, RAJIV GANDHI SALAI,

CHENNAI – 600119. TAMILNADU.

JANUARY - 2021

SATHYABAMA INSTITUTE OF SCIENCE AND
TECHNOLOGY

(Established under Section 3 of UGC Act,
1956) Jeppiaar Nagar, Rajiv Gandhi Salai,

Chennai –600119

SCHOOL OF ELECTRICAL AND ELECTRONICS

BONAFIDE CERTIFICATE

This is to certify that this Professional Training Report is
the Bonafide work of Snowsha J (39140054) who

underwent the professional training in “Python” from 20TH
AUGUST to 20TH OCTOBER

Internal Guide

Head of the Department

Dr. SIVA CHIDAMBARANATHAN M.E., Ph.D.,

Acknowledgement

It is our proud privilege and duty to acknowledge the kind of help and guidance received
from several people in preparation of this report. It would not have been possible to prepare
this report in this form without their valuable help, cooperation and guidance.

First and foremost, we wish to record our sincere gratitude to Prof., Mr for his constant
support and encouragement in preparation of this report and for making available library and
laboratory facilities needed to prepare this report.

The seminar on “Python” was very helpful to us in giving the necessary background
information and inspiration in choosing this topic for the seminar. Their contributions and
technical support in preparing this report are greatly acknowledged.

Last but not the least, we wish to thank our parents for financing our studies in this college
as well as for constantly encouraging us to learn engineering. Their personal sacrifice in
providing this opportunity to learn engineering is gratefully acknowledgement.

Table Of Contents

Introduction

1.1Python 1-2

1.2Scripting Language 2-3

1.3Object Oriented Programming 3-3

1.4History of python 3-4

1.5Behind the Scene of Python 5-5

Downloading & Installing Python

2.1Downloading Python 6-7

2.2Installing Python 8-10

2.3Setup path of variable 10-11

2.4Running The Python IDE 12-13

2.5Python code Execution 13-13

Data Types & Operator

3.1Data Type 14-15

3.2Variables 15-15

3.3String 15-16

3.4Python Operator 16-17

3.4.1Arithmetic Operator 17-17

3.4.2Comparison Operator 17-18

Tuple & List

4.1 Tuple 18-20

4.1.1 Accessing Tuple Values 18-18

4.1.2 Built in Operation 18-19

4.1.3 Built in Touple Functions 19-19

4.2 List 20-23

4.2.1Accessing List Values 20-21

4.2.2Built in Operation 21-21

4.2.3Built in Functions 21-21

Loops & Conditional Statements

5.1 Loops 21-26

5.1.1 Loops Definition 21-22

5.1.2 Loops Example 22-23

5.2 Conditional Statement 23-23

5.21Conditional Statement Definition 23-23

5.2.2 Conditional Statement Example 24-25

5.3 Function 25-25

5.3.1 Syntax & Examples 25-26

Uses & Scope of python.

6.1 What can we do With Python? 26-26

6.2 Who Uses Python Today? 27-27

6.3 Why do People use python? 27-27

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming

language. Its design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than would be possible in

languages such as C++ or Java. The language provides constructs intended to enable clear

programs on both a small and large scale.

Python supports multiple programming paradigms, including object-oriented, imperative and

functional programming or procedural styles. It features a dynamic type system and

automatic memory management and has a large and comprehensive standard library.

Python interpreters are available for installation on many operating systems, allowing Python

code execution on a wide variety of systems.

Scripting Language

A scripting or script language is a programming language that supports scripts, programs

written for a special run-time environment that automate the execution of tasks that could

alternatively be executed one-by-one by a human operator.

Scripting languages are often interpreted (rather than compiled). Primitives are usually the

elementary tasks or API calls, and the language allows them to be combined into more

complex programs. Environments that can be automated through scripting include software

applications, web pages within a web browser, the shells of operating systems (OS),

embedded systems, as well as numerous games.

A scripting language can be viewed as a domain-specific language for a particular

environment; in the case of scripting an application, this is also known as an

extension language. Scripting languages are also sometimes referred to as very

high-level programming languages, as they operate at a high level of abstraction, or

as control languages.

Object Oriented Programming Language

Object-oriented programming (OOP) is a programming paradigm based on the concept of

"objects", which may contain data, in the form of fields, often known as attributes; and code,

in the form of procedures, often known as methods. A distinguishing feature of objects is

that an object's procedures can access and often modify the data fields of the object with

which they are associated (objects have a notion of "this" or "self").

In OO programming, computer programs are designed by making them out of objects that

interact with one another. There is significant diversity in objectoriented programming, but

most popular languages are class-based, meaning that objects are instances of classes,

which typically also determines their type.

History

Python was conceived in the late 1980s, and its implementation was started in December

1989 by Guido van Rossum at CWI in the Netherlands as a successor to the ABC language

(itself inspired by SETL) capable of exception handling and interfacing with the Amoeba

operating system. Van Rossum is Python's principal author, and his continuing central role in

deciding the direction of Python is reflected in the title given to him by the Python community,

benevolent dictator for life (BDFL).

“Python is an experiment in how much freedom programmers

need. Too much freedom and nobody can read another's code;

too little and expressiveness is endangered.”

- Guido van Rossum

Behind The Scene of Python

About the origin of Python, Van Rossum wrote in 1996:

Over six years ago, in December 1989, I was looking for a "hobby" programming project

that would keep me occupied during the week around Christmas. My office ... would be

closed, but I had a home Computer, and not much else on my hands. I decided to write an

interpreter for the new scripting language I had been thinking about lately: a descendant of

ABC that would appeal to Unix/C hackers. I chose Python as a working title for the project,

being in a slightly irreverent mood (and a big fan of Monty Python's Flying Circus).

Downloading python

If you don’t already have a copy of Python installed on your computer, you will need to open

up your Internet browser and go to the Python download page

(http://www.python.org/download/).

Now that you are on the download page, select which of the software builds you would

like to download. For the purposes of this article we will use the most up to date version

available (Python 3.4.1).

http://www.python.org/download/)

Once you have clicked on that, you will be taken to a page with a description of all the new

updates and features of 3.4.1, however, you can always read that while the download is in

process. Scroll to the bottom of the page till you find the “Download” section and click on the

link that says “download page.”

Now you will scroll all the way to the bottom of the page and find the “Windows

x86 MSI installer.” If you want to download the 86-64 bit MSI, feel free to do so.

We believe that even if you have a 64-bit operating system installed on your

computer, the 86-bit MSI is preferable. We say this because it will still run well

and sometimes, with the 64- bit architectures, some of the compiled binaries and

Python libraries don’t work well.

Installing Python

Once you have downloaded the Python MSI, simply navigate to the download location

on your computer, double clicking the file and pressing Run when the dialog box pops

up.

If you are the only person who uses your computer, simply leave the “Install for all

users” option selected. If you have multiple accounts on your PC and don’t want to

install it across all accounts, select the “Install just for me” option then press “Next.”

f you want to change the install location, feel free to do so; however, it is best to leave

it as is and simply select next, Otherwise...

Scroll down in the window and find the “Add Python.exe to Path” and click on the small

red “x.” Choose the “Will be installed on local hard drive” option then press “Next.”

Now that you have completed the installation process, click on “Finish.

Setup the Path Variable

Begin by opening the start menu and typing in “environment” and select the option

called “Edit the system environment variables.”

When the “System Properties” window appears, click on “Environment Variables…”

Once you have the “Environment Variables” window open, direct your focus to the

bottom half. You will notice that it controls all the “System Variables” rather than

just this associated with your user. Click on “New…” to create a new variable for

Python.

Simply enter a name for your Path and the code shown below. For the

purposes of this example we have installed Python 2.7.3, so we will call the

path: “Pythonpath.” The string that you will need to enter is:

“C:\Python27\;C:\Python27\Scripts;”

Running The Python IDE

Now that we have successfully completed the installation process and added our

“Environment Variable,” you are ready to create your first basic Python script. Let’s

begin by opening Python’s GUI by pressing “Start” and typing “Python” and selecting

the “IDLE (Python GUI).”

Once the GUI is open, we will begin by using the simplest directive possible. This is

the “print” directive which simply prints whatever you tell it to, into a new line. Start

by typing a print directive like the one shown in the image below or copy and paste

this text then press

“Enter”: print (“Congratulations on executing your first print directive!”)

Python Code Execution

Python’s traditional runtime execution model: source code you type is translated to byte

code, which is then run by the Python Virtual Machine. Your code is automatically compiled,

but then it is interpreted.

Source code extension is .py

Byte code extension is .pyc (compiled python code)

Data Type

(this is called dynamic typing). Data types determine whether an object can do something,

or whether it just would not make sense. Other programming languages often determine

whether an operation makes sense for an object by making sure the object can never be

stored somewhere where the operation will be performed on the object (this type system is

called static typing). Python does not do that. Instead it stores the type of an object with the

object, and checks when the operation is performed whether that operation makes sense for

that object

Python has many native data types. Here are the important ones:

Booleans are either True or False.

Numbers can be integers (1 and 2), floats (1.1 and 1.2), fractions (1/2 and 2/3), or even complex

numbers.

Strings are sequences of Unicode characters, e.g. an HTML document.

Bytes and byte arrays, e.g. a JPEG image file.

Lists are ordered sequences of values.

Tuples are ordered, immutable sequences of values.

Sets are unordered bags of values.

Variable

Variables are nothing but reserved memory locations to store values. This means that when
you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what

can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals or characters in these variables.

Ex: counter = 100 # An integer

assignment miles = 1000.0 # A floating

point name = "John" # A string

String

In programming terms, we usually call text a string. When you think of a string as a
collection of letters, the term makes sense.

All the letters, numbers, and symbols in this book could be a

string. For that matter, your name could be a string, and so could

your address.

Creating Strings

In Python, we create a string by putting quotes around text. For example, we could take our
otherwise useless

• "hello"+"world" "helloworld" # concatenation

• "hello"*3 "hellohellohello" # repetition

• "hello"[0] "h" # indexing

• "hello"[-1] "o" # (from end)
• "hello"[1:4] "ell" # slicing

• len("hello") 5 # size

• "hello" < "jello" 1 # comparison

• "e" in "hello" 1 # search

Python Operator

Arithmetic Operator

Operator
Meaning Example

+ Add two operands or unary plus x + y
+2

- Subtract right operand from the left or unary minus x - y
-2

* Multiply two operands x * y

/ Divide left operand by the right one (always results
into float)

x / y

% Modulus - remainder of the division of left operand by
the right

x % y (remainder
of x/y)

// Floor division - division that results into whole number
adjusted to the left in the number line

x // y

** Exponent - left operand raised to the power of right x**y (x to
the power y)

Comparison Operator

Cha

Tuples

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples use

parentheses.

Accessing Values in Tuples:

To access values in tuple, use the square brackets for slicing along with the index or

indices to obtain value available at that index. For example − tup1 = ('physics',

'chemistry', 1997, 2000); tup2 = (1, 2, 3, 4, 5, 6, 7); print "tup1[0]: ", tup1[0] print

"tup2[1:5]: ", tup2[1:5]

When the above code is executed, it produces the following result − tup1[0]:

physics tup2[1:5]: [2, 3, 4, 5]

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and
repetition here too, except that the result is a new tuple, not a string. In fact, tuples
respond to all of the general sequence operations we used on strings in the prior chapter
−

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Built-in Tuple Functions

Python includes the following tuple functions −

SN Function with Description

1 cmp(tuple1, tuple2) Compares elements of both tuples.

2 len(tuple) Gives the total length of the tuple.

3 max(tuple) Returns item from the tuple with max value.

4 min(tuple) Returns item from the tuple with min value.

5 tuple(seq) Converts a list into tuple.

List

The list is a most versatile datatype available in Python which can be written as a list of
comma- separated values (items) between square brackets. Important thing about a list is
that items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between

square brackets. For example − list1 = ['physics', 'chemistry', 1997, 2000]; list2 = [1,

2, 3, 4, 5]; list3 = ["a", "b", "c", "d"];

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Accessing Values in Lists:

To access values in lists, use the square brackets for slicing along with the index or indices

to obtain value available at that index. For example − list1 = ['physics', 'chemistry', 1997,

2000]; list2 = [1, 2, 3, 4, 5, 6, 7]; print "list1[0]: ", list1[0] print "list2[1:5]: ", list2[1:5]

http://www.tutorialspoint.com/python/tuple_cmp.htm
http://www.tutorialspoint.com/python/tuple_len.htm
http://www.tutorialspoint.com/python/tuple_max.htm
http://www.tutorialspoint.com/python/tuple_min.htm
http://www.tutorialspoint.com/python/tuple_tuple.htm

Output: list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Update: list = ['physics', 'chemistry', 1997, 2000]; print

"Value available at index 2 : " print list[2] list[2] = 2001; print

"New value available at index 2 : " print list[2]

Output: Value available at index 2 :

1997 New value available at index 2 :

2001

Delete: list1 = ['physics', 'chemistry', 1997, 2000]; print

list1 del list1[2]; print "After deleting value at index 2 : " print

list1

['physics', 'chemistry', 1997, 2000]

Output: After deleting value at index 2 :

['physics', 'chemistry', 2000]

Basic List Operation

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Built-in List Functions & Methods:

SN Function with Description

1 cmp(list1, list2) Compares elements of both lists.

2 len(list) Gives the total length of the list.

3 max(list) Returns item from the list with max value.

4 min(list) Returns item from the list with min value.

5 list(seq) Converts a tuple into list.

Python includes following list methods

SN Methods with Description

1 list.append(obj) Appends object obj to list

2 list.count(obj) Returns count of how many times obj occurs in list

3 list.extend(seq) Appends the contents of seq to list

4 list.index(obj) Returns the lowest index in list that obj appears

5 list.insert(index, obj) Inserts object obj into list at offset index

6 list.pop(obj=list[-1]) Removes and returns last object or obj from list

http://www.tutorialspoint.com/python/list_cmp.htm
http://www.tutorialspoint.com/python/list_len.htm
http://www.tutorialspoint.com/python/list_max.htm
http://www.tutorialspoint.com/python/list_min.htm
http://www.tutorialspoint.com/python/list_list.htm
http://www.tutorialspoint.com/python/list_append.htm
http://www.tutorialspoint.com/python/list_count.htm
http://www.tutorialspoint.com/python/list_extend.htm
http://www.tutorialspoint.com/python/list_index.htm
http://www.tutorialspoint.com/python/list_insert.htm
http://www.tutorialspoint.com/python/list_pop.htm

7 list.remove(obj) Removes object obj from list

8 list.reverse() Reverses objects of list in place

9 list.sort([func]) Sorts objects of list, use compare func if given

Loop definition
Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The
following diagram illustrates a loop statement −

> Greater that - True if left operand is greater than the right x > y

< Less that - True if left operand is less than the right x < y

== Equal to - True if both operands are equal x ==
y

http://www.tutorialspoint.com/python/list_remove.htm
http://www.tutorialspoint.com/python/list_reverse.htm
http://www.tutorialspoint.com/python/list_sort.htm

!= Not equal to - True if operands are not equal x != y

>= Greater than or equal to - True if left operand is greater than or
equal to the right

x >=
y

<= Less than or equal to - True if left operand is less than or equal to
the right

+x <=
y

Python programming language provides following types of loops to handle looping requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given
condition is TRUE. It tests the condition before executing the
loop body.

for loop Executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

nested loops You can use one or more loop inside any another while, for or
do..while loop.

Loop Example:

For Loop:

>>> for mynum in [1, 2, 3, 4, 5]:

print ("Hello", mynum)

Hello 1

Hello 2

Hello 3

Hello 4

Hello 5

While Loop:

>>> count = 0 >>while(count< 4):

print 'The count is:', count count =
count + 1

The count is: 0

The count is: 1

The count is: 2

The count is: 3

http://www.tutorialspoint.com/python/python_while_loop.htm
http://www.tutorialspoint.com/python/python_for_loop.htm
http://www.tutorialspoint.com/python/python_nested_loops.htm

Conditional Statements:

Decision making is anticipation of conditions occurring while execution of the program and specifying
actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as
outcome. You need to determine which action to take and which statements to execute
if outcome is TRUE or FALSE otherwise.

Python programming language provides following types of decision making statements. Click
the following links to check their detail.

Statement Description

if statements An if statement consists of a boolean expression
followed by one or more statements.

if...else statements An if statement can be followed by an optional else
statement, which executes when the boolean
expression is FALSE.

nested if statements You can use one if or else if statement
inside another if or else if statement(s).

http://www.tutorialspoint.com/python/python_if_statement.htm
http://www.tutorialspoint.com/python/python_if_else.htm
http://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Example:

If Statement:

a=33

b=200

If b>a:

print(“b”)

If...Else Statement:

a=200

b=33

if b>a:

print(“b is greater than a”)

else:

print(“a is greater than b”)

Function

Function blocks begin with the keyword def followed by the function name and parentheses (()
).

Any input parameters or arguments should be placed within these parentheses. You can
also define parameters inside these parentheses.
The first statement of a function can be an optional statement - the documentation string of the
function.

The code block within every function starts with a colon (:) and is indented.

The statement return [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as return None.

Syntex:
Def functionname(parameters):

“function_docstring”

Function_suite

Return[expression]

Example:

Def printme(str):

“this print a passed string into this

function” print str

return
1. # Function definition is here def

printme(str):

"This prints a passed string into this function" print
str return;

Now you can call printme function printme("I'm first call to
user defined function!") printme("Again second call to the
same function")

SCOPE OF PYTHON

1 - Science
- Bioinformatics

2 - System Administration
- Unix

- Web logic

- Web sphere

3 - Web Application Development

What Can We do With Python?

1- System programming

2 - Graphical User Interface

Programming 3 - Internet Scripting

4 - Component Integration

5 - Database Programming

6 - Gaming, Images, XML , Robot and more

WHO USES PYTHON TODAY?

• Python is being applied in real revenue-generating products by real companies.

• Google makes extensive use of Python in its web search system, and employs Python’s
creator.

• Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hardware testing.
• ESRI uses Python as an end-user customization tool for its popular GIS mapping products.

WHY DO PEOPLE USE PYTHON?

• The YouTube video sharing service is largely written in Python.

• Python is object-oriented o Structure supports such concepts as
polymorphism, operation overloading, and multiple inheritance.

• Indentation o Indentation is one of the greatest future in Python.

• It's free (open source) o Downloading and installing Python is free
and easy o Source code is easily accessible

• It's powerful o Dynamic typing o Built-in types and tools o Library
utilities

o Third party utilities (e.g. Numeric, NumPy, SciPy) o
Automatic memory management

• It's portable o Python runs virtually every major platform used
today o As long as you have a compatible Python interpreter
installed, Python programs will run in exactly the same manner,
irrespective of platform.

Conclusion

I believe the trial has shown conclusively that it is both possible and desirable to use
Python as the principal teaching language:

o It is Free (as in both cost and source code).
o It is trivial to install on a Windows PC allowing students to take their interest

further. For many the hurdle of installing a Pascal or C compiler on a Windows
machine is either too expensive or too complicated;

o It is a flexible tool that allows both the teaching of traditional procedural
programming and modern OOP; It can be used to teach a large number of
transferable skills;

o It is a real-world programming language that can be and is used in academia
and the commercial world;

o It appears to be quicker to learn and, in combination with its many libraries,
this offers the possibility of more rapid student development allowing the
course to be made more challenging and varied;

and most importantly, its clean syntax offers increased understanding and enjoyment for
students

