ELECTRIC VEHICLE DESIGN USING MATLAB

Submitted in partial fulfilment of the requirements for the Professional training – I of Bachelor of Engineering Degree in Electrical and Electronics Engineering

BY

Karthik vishva.v(39140022)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SCHOOL OF ELECTRICAL AND ELECTRONICS

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI 600119. TAMILNADU

AUGUST 2021
CONTENTS

MATLAB- Simulink Introduction
Electric Vehicle Introduction
Forces on EV Calculations
POWER EV Calculations
Introduction to Power Electronics
Power Converter Design -1
Power Convert design – 2 (PFC)
Inverter Design MATLAB Simulink
Introduction to Electric Motor MATLAB Simulink
DC Motor Speed Control MATLAB Simulink
BLDC Motor Control MATLAB Simulink
AC Induction Motor Control MATLAB Simulink
PMSM Motor Control MATLAB Simulink
MATLAB - MATRIX Laboratory

MATLAB is a multi-paradigm programming language and numeric computing environment Tool
MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Simulink is a MATLAB-based graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems.
Simscape enables you to create models of physical systems within the Simulink environment.
ELECTRIC VEHICLE (EV)

An EV is a shortened acronym for an electric vehicle. EVs are vehicles that are either partially or fully powered on electric power. Electric vehicles have low running costs as they have less moving parts for maintaining and also very environmentally friendly as they use little or no fossil fuels (petrol or diesel).

There are 4 (four) types of electric cars, with the following outline:

- Battery Electric Vehicle (BEV)
- Hybrid. Hybrid Electric Vehicle (HEV) Plug-in Hybrid Electric Vehicle (PHEV)
- Fuel Cell Electric Vehicle (FCEV)
FORCES ON THE VEHICLE

Total Tractive Force

1. Rolling Resistance Force(F_{rr})
2. Aerodynamic drag force(F_{aero})
3. Hill climbing Force(F_{hc})
4. Acceleration Force(F_{xi})
 1. Linear Acceleration Force
 2. Angular acceleration force
Rise / Run

\[F_{hc} = m \cdot g \cdot \sin \theta \]

Observation:

Huge Variation in Motive power

- Vehicle is fully loaded to unloaded condition
- Vehicle in hill climbing condition
- Vehicle Speed

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameters</th>
<th>Units</th>
<th>Value 1</th>
<th>Units</th>
<th>Value 2</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>Weight</td>
<td>m</td>
<td>1,000.000 Kg</td>
<td></td>
<td>1,200.000 Kg</td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>Width</td>
<td>m</td>
<td>1.000 m</td>
<td></td>
<td>1.000 m</td>
<td></td>
</tr>
<tr>
<td>(H)</td>
<td>Height</td>
<td>m</td>
<td>1.500 m</td>
<td></td>
<td>1.500 m</td>
<td></td>
</tr>
<tr>
<td>(\mu_r)</td>
<td>Rolling Resistance</td>
<td>(\mu_r)</td>
<td>0.020</td>
<td></td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>Air Density</td>
<td>(\rho)</td>
<td>1.250 kg/m2</td>
<td></td>
<td>1.250 kg/m2</td>
<td></td>
</tr>
<tr>
<td>(C_d)</td>
<td>Drag Coefficient</td>
<td>(C_d)</td>
<td>0.300</td>
<td></td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>gravitational Force</td>
<td>(g)</td>
<td>9.800</td>
<td></td>
<td>9.800</td>
<td></td>
</tr>
<tr>
<td>Speed in km</td>
<td></td>
<td></td>
<td>40.000 km/h</td>
<td></td>
<td>50.000 km/h</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>Formtal Area</td>
<td>(A)</td>
<td>1.500 m²</td>
<td></td>
<td>1.500 m²</td>
<td></td>
</tr>
<tr>
<td>(v)</td>
<td>Velocity</td>
<td>(v)</td>
<td>11.111 m/s</td>
<td></td>
<td>13.889 m/s</td>
<td></td>
</tr>
<tr>
<td>Angle - Hill Climbing</td>
<td></td>
<td>(\theta)</td>
<td>11.00 degree</td>
<td>0.192 Rad</td>
<td>15.000 degree</td>
<td>0.262 Rad</td>
</tr>
</tbody>
</table>
Acceleration of Force

The Vehicle will not be at constant speed. Dynamic equation for Acceleration force \((dv/dt)\)

\[m \cdot \frac{dv}{dt} = F_t - (F_{rr} + F_{ad} + F_{hc}) \]

How fast can vehicle reach the top speed?

Limiting Factors I

- Weight of Vehicle
- Motor Power of Vehicle

Limiting Factors II

- The Drive wheels will spin on the ground if, tractive effort > adhesive capability between tire and ground
- Significant Slipping on the ground for wet, icy, snow covered or soft soil.
- Irrespective of the maximum torque power train can apply on wheel

The vehicle is driven by motor power through gear

- \(P = T \cdot \omega \)
- \(v = P / (T \times 36.66) \)
- \(v = 12000 / (140 \times 36.66) \) m/s
- Critical Velocity = 19.8 m/s

Motor Operating Region
Power Electronics

Power electronics is the application of **solid-state electronics** to the control and conversion of electric power.

Ideal Switch | SCR, MOSFET, IGBT

Application of Power Electronics Converters in Electric Vehicle

- Bidirectional Converter Topologies for Plug-In Electric Vehicles
- Bidirectional Battery Charger for an Electric Vehicle

\[P = T \cdot \omega \]
• Bidirectional DC–DC Converter for Ultra-Capacitor Applications

• Integrated Bidirectional Converters for Plug-In HEV Applications

• Resonant Converter for a Bidirectional EV Charger

• Wireless Topology for EV Battery Charging

• Direct Conversion of an AC–DC Converter for Plug-In Hybrid Vehicles Isolated Bidirectional AC–DC Converter for a DC Distribution System

• Bidirectional T-Type Converter Topology for EV Applications

• Multilevel Two-Quadrant Converter for Regenerative Braking

• Multiphase Integrated On-board Charger for Electric Vehicles

• Split Converter-Fed Induction Motor/BLDC/SRM Drive for Flexible Charging in EV and HEV Applications

Rectifier:

• Uncontrolled Rectifier
• Controlled Rectifier

• Half wave controlled Converter

• Full wave controlled Converter

• Single Phase/Three Phase Converter
POWER CONVERTER DESIGN

POWER CONVERTER:

Power Converters for Electric Vehicles gives an overview, topology, design, and simulation of different types of converters used in electric vehicles (EV). It covers a wide range of topics ranging from the fundamentals of EV, Hybrid EV and its stepwise approach, simulation of the proposed converters for real-time applications.

Power Factor Correction (PFC)

- Power Factor Correction (PFC) shapes the input current of the power supply to be in synchronization with the mains voltage, in order to maximize the real power drawn from the mains.
In a perfect PFC circuit, the input current follows the input voltage as a pure resistor, without any input current harmonics.

Observations:

- Power factor correction is essential to minimizing the total apparent power consumed from the grid.
- Regions around the world recognize this need and have implemented voluntary or mandatory requirements depending on the class of electronic equipment.

Design Procedure

- Specifications
- Efficiency
- Range of Input
- % of Accuracy

\[L = \frac{1}{\% \text{Ripple}} \cdot \frac{V_{ac.min}^2}{P_o} \left(1 - \sqrt{2} \cdot \frac{V_{ac.min}}{V_o} \right) \cdot T \]

\[C_o \geq \frac{P_o}{2 \cdot \pi \cdot f_{line} \cdot \Delta V_o \cdot V_o} \]

Specifications:

- Power: 2KW
- Output Voltage: 400V/5A
- Efficiency: 90%
- Input Voltage regulation 15% of Input
- Op Voltage ripple 20%
Inverter Design MATLAB Simulink

A power inverter, or inverter, is a power electronic device or circuitry that changes direct current to alternating current.

Inverter Types

<table>
<thead>
<tr>
<th>Based on Load Type</th>
<th>output Waveform Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Single phase</td>
<td>1. Square Wave</td>
</tr>
<tr>
<td></td>
<td>2. Modified sine wave</td>
</tr>
<tr>
<td>2. Three Phase</td>
<td>3. Pure sine wave</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• Half Bridge</td>
<td>1. Square Wave</td>
</tr>
<tr>
<td>• Full Bridge</td>
<td>2. Modified sine wave</td>
</tr>
<tr>
<td>• 120 Degree</td>
<td>3. Pure sine wave</td>
</tr>
<tr>
<td>• 180 Degree</td>
<td></td>
</tr>
</tbody>
</table>

Single Phase Inverter

![Single Phase Inverter Diagram]
Three Phase Inverter

Working Principle

● 180 Degree Mode of Conduction
 ○ 3 Switches will be in “ON” Mode at a Time
 ○ Remaining Switches will be in “OFF” Mode

● 120 Degree Mode of Conduction
 ○ 2 Switches will be on ON Mode at a Time
 ○ Remaining Switches will be in “OFF” Mode

Application of Inverter

● Motor control in EV Applications
● Home Applications
● Industry Motor Control

Intro to Electric Motor for EV Application
Motors required Specification

- High efficiency
- High instant power
- Fast torque response
- High power density
- Low cost
- High acceleration
- Robustness

Motor Types:

A **synchronous electric motor** is an AC motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles.

An **induction motor** or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding.
MOTORS IN EV

- Sun roof
- Sliding door
- 4WD Transfer case
- Seat adjustment
- Front wiper
- HVAC compressor pump
- Seat ventilation
- HVAC blower
- Rear wiper
- Rear camera cover
- Trunk, tail gate
- Seat belt pretension
- Window lift
- Power Train Motor

PURPOSE OF CONTROLLER

- Starting
• Stopping
• Reversing
• Running
• Speed Control
• Safety of Operator
• Protection from Damage

10 Factors to choose Electric Motors for EV

• Driving cycles
• Vehicle characteristics
• Vehicle configuration (electric, hybrid)
• Maximal speed
• Maximal torque
• Maximal power
• Battery Capacity • Battery Voltage
• Gearbox or direct-drive?
• Cost

Top 10 Best Electric Motorcycles in world

• Harley-Davidson LiveWire
• Zero SR
• Energica Ego
• Brutus V9
• Johammer J1.200
• Tacita T-Race Diabolika
• Damon Hypersport Premier
• Vespa Elettrica
• Gogoro Smartscooter S2 Adventure
• Honda PCX ELECTRIC

Top 10 best luxury electric cars 2021

1. Mercedes-Benz EQC
2. Jaguar I-Pace
3. Ford Mustang Mach-E
4. Tesla Model S
5. Tesla Model 3
6. Polestar 2
7. Audi E-tron Quattro
8. BMW iX3
9. Tesla Model X
10. Lexus UX 300e

DC Motor Speed Control
When a wire carrying electric current is placed in a magnetic field, a magnetic force acting on the wire is produced.

The force is perpendicular to the wire and the magnetic field.

The magnetic force is proportional to the wire length, magnitude of the electric current, and the density of the magnetic field.

Magnetic Force \(F = BIL \)
Torque \(T = BIL \cos \alpha \)

\(\alpha \) — angle between the coil plane and magnetic field
\(F = \) Force, \(B = \) magnetic flux density, \(I = \) current
Flux Control Armature & Rheostat Control

SPEED CONTROL:

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Torque</td>
<td>High Maintenance cost</td>
</tr>
<tr>
<td>Simple Control</td>
<td>Poor Efficiency</td>
</tr>
<tr>
<td>Low Cost</td>
<td></td>
</tr>
</tbody>
</table>
BLDC Motor Speed Control

Brushed DC Commutation
- The windings in the armature are switched to the DC power by the brushes and armature
- Each winding sees a positive voltage, then a disconnect, then a negative voltage
- The field produced in the armature interacts with the stationary magnet, producing torque and rotation

DC Motor Bridge
- The DC motor needs four transistors to operate the DC motor
- The combination of transistor is called an H-Bridge, due to the obvious shape
- Transistors are switched diagonally to allow DC current to flow in the motor in either direction
- The transistors can be Pulse Width Modulated to reduce the average voltage at the motor.

Three-Phase Bridge to Drive BLDC Motor
Six-step Commutation

- The Brushless DC motor is really a DC motor constructed inside-out, but without the Brushes and Commutators
- The mechanical switches are replaced with transistors
- The windings are moved from the armature, to the stator
- The magnet is moved from the outside to become the rotor

3-Phase PWM:

We can divide up the phase data into individual transistor gate signals

Types of BLDC Motor based on Magnet Arrangement

1. One Pole Pair
2. Two Pole Pair
3. Four Pole Pair
Induction Motor Speed Control

AC Motor
Asynchronous Motor & Synchronous Motor

Three Phase
Single Phase
Wound Rotor
Squirrel Cage
Speed Control Methods
(Note: For Squirrel Cage Motors)

\[
N_s = \frac{120f}{P}
\]

\[
E \text{ or } V = 4.44\phi K T f \quad \text{or} \quad \phi = \frac{V}{4.44 K T f}
\]

Variable Frequency Variable Voltage

Advantages:
- Simple and rough construction
- Affordable and low maintenance
- High reliability and highly proficient
- No requirement of additional starting motor and necessity not be synchronized

Applications:
- Large capacity exhaust fans
- Driving lathe machines
- Oil extracting mills
- Electric Sewing Machine
- Drilling machines

PMSM Speed Control

Permanent Magnet Synchronous Motors (PMSM) are similar to Brushless DC motors (BLDC). PMSM are rotating electrical machines that have a wound stator and permanent magnet rotors that provide sinusoidal flux distribution in the air gap, making the BEMF inform a sinusoidal shape.
PMSM Structure

<table>
<thead>
<tr>
<th>BLDC</th>
<th>PMSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DC Power</td>
<td>• AC Power</td>
</tr>
<tr>
<td>• Square Flux Density</td>
<td>• Sinusoidal Flux Density</td>
</tr>
<tr>
<td>• Trapezoidal Back EMF</td>
<td>• Sinusoidal Back EMF</td>
</tr>
<tr>
<td>• Stator Current is Trapezoidal</td>
<td>• Stator Current is Sinusoidal</td>
</tr>
<tr>
<td>• Controlling is easy and cheaper</td>
<td>• Quite Complex and costly</td>
</tr>
</tbody>
</table>

Classification of PMSM with the Rotor Design

- Surface Mount PMSM
- Interior Mount PMSM
PMSM Characteristics

- No sparks, safer in explosive environments
- Clean, fast and efficient
- Designed for high-performance servo applications
- Runs with/without position encoders

Applications

1. AC Drives
2. Automated Guided Vehicles
3. Heating, ventilation and air conditioning
4. Robots
5. Servo drives

Switched Reluctance Motor Speed Control

- 1830-1850 SRM Concept Evolved
- Due to Tesla Invented AC Induction Motor in Late 1800’s, the entire market diverted
- Technology development in Power Electronic Circuit, the SRM again capture the Market (1960s)
SR Drive:

6/4 Pole Switched Reluctance Motor

- Converter Design
- Gate Pulse Generation
- Current Control

Battery For EV Application

Types of EV Battery

- Lithium-ion
- Lithium Phosphate
- Nickel-metal hydride batteries
- Lead-acid batteries
Battery Parameters

Battery SoC: The fraction of the total energy or battery capacity that has been used over the total available from the battery

Shows the remaining capacity of the battery while in use

<table>
<thead>
<tr>
<th>Model</th>
<th>Battery</th>
<th>Charge Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota Prius</td>
<td>4.4kWh Li-ion, 18km all-electric range</td>
<td>1.5h at 230VAC 15A</td>
</tr>
<tr>
<td>PHEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy Volt</td>
<td>16kWh; Li-manganese/NMC, liquid cooled, 181kg (400 lb), all electric range 6-4km</td>
<td>4h at 230VAC, 15A</td>
</tr>
<tr>
<td>PHEV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitsubishi iMiEV</td>
<td>16kWh; 88 cells; 4-cell modules; Li-ion; 109Wh/kj; 330V, range 128km</td>
<td>7h at 230VAC 15A</td>
</tr>
<tr>
<td>Smart Fortwo ED</td>
<td>16.5kWh; 18650 Li-ion, driving range 136km</td>
<td>3.5h at 230VAC, 15A</td>
</tr>
<tr>
<td>BMW i3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curb 1,365kg</td>
<td>Since 2019: 42kWh, LMO/NMC, large 60A prismatic cells, battery weights 270kg (595 lb); driving range: EPA 246 (154 mi); NEDC 345km (215 mi); WLTP 285 (178 mi)</td>
<td>11kW on-board AC charger; ~4h charge; 50kW DC charge; 30 min charge.</td>
</tr>
<tr>
<td>Nissan Leaf*</td>
<td>39kWh; Li-manganese, 192 cells; air cooled; 272kg, driving range up to 250km</td>
<td>5h at 230VAC, 15A; 4h at 230VAC, 30A</td>
</tr>
<tr>
<td>Tesla S*</td>
<td>70kWh and 90kWh, 18650 NCA cells of 3.4Ah; liquid cooled; 90kWh pack has 7,616 cells; battery weights 50kg (1200 lb); S 85 has up to 424km range</td>
<td>9h with 10kW charger; 12kW Supercharger, 80% charge in 30 min</td>
</tr>
<tr>
<td>Curb 2,100kg (4,630 lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla 3</td>
<td>Since 2018, 75kWh battery, driving range 496km; 346hp engine, energy consumption 15kWh/100km (24kWh/mi)</td>
<td>11.5kW on-board AC charger; DC charge 30 min</td>
</tr>
<tr>
<td>Curb 1,872kg (4072 lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy Bolt</td>
<td>60kWh; 288 cells in 96x3p format. EPA driving rate 383km; liquid cooled; 200hp electric motor (130kW)</td>
<td>10h at 230VAC, 30A 1h with 50kW</td>
</tr>
<tr>
<td>Curb 1,616kg; battery 440kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG EV ZS</td>
<td>44.5kW Lithium Ion</td>
<td>594V</td>
</tr>
</tbody>
</table>

Battery Calculations

Step #1 Current Consumption by Motor

\[P = V \times I \]

\[I = 10KW/72V \]

Current required to run full load by the Motor - 139 Amps
Step #2 Watt-Hour Calculation
Assume Running Time 1 Hour

\[P = 10000 \times 1 \text{ Watt-Hour} \]

Step #3 Ampere Hour Calculation

The Source must have 20-30% more than the required energy

Assume: 20%

Watt-Hour = 10000 \times 1.2 = 12000

Ampere Hour = \frac{\text{Watt-Hour}}{\text{Battery Terminal Voltage}}

= \frac{12000}{72}

= 166.67\text{Ah}

Battery Rating 72V, 166.67\text{Ah}

SoC Estimation

State of charge (SOC) is a relative measure of the amount of energy stored in a battery, defined as the ratio between the amount of charge extractable from the cell at a specific point in time and the total capacity

\[\text{SoC} = \frac{\text{Capacity Remaining}}{\text{Total Capacity}} \]

\[(t) = \frac{1}{C} \int_{0}^{t} I(t) \]

\[\text{SoCdt} \]

\[(t) = \text{SoC}(t-1) + \frac{1}{C} \int_{0}^{1} I(t) \]

\[t \]
SoC(t −1) Initial SoC

I(t) Battery Current at time Instant \(dt \)

.......................... Step Time

C Nominal Capacity of Battery in Ah

Methods to Estimate SoC

- Coulomb Counting
- Kalman Filter
- Extended Kalman Filter

Simscape Introduction

To create models of physical systems within the Simulink® environment.

Simscape (Schematic)

- Modeling and simulating multidomain physical systems
- Elements for various physical domains
• unit manager, data logging etc

Simscape Fundamental

Understanding the Physical Variables

Energy Flow = Across X Through Sensors in Parallel X Sensor in Series

Electrical Domain Power = Voltage (V) X Current (Amps)
Mechanical Rotational Domain
Power = Angular Velocity (rad/sec) X Torque (Nm)

Rules Governing Physical Variables

Kirchhoff’s Current Law \(\sum_{r=1}^{4} i_r = \sum_{r=5}^{8} i_r = 0 \)
Kirchhoff’s Voltage Law \(0 = V_{\text{DC}} \)
\[V_{+DC} = V_{-R} V_{+R} \]
\[= V_{-C} \]
\[V_{+C} = 0 \]

Protocols for EVs

PROTOCOL: It’s an agreement about how to do something

Communication:
- Fault tolerance
- Determinism
- Bandwidth
- Flexibility
- Security
Types of Protocols

- Data Link Protocols (UART/SPI/IIC/LIN/CAN)
- Application Protocols (UDS/J1939/CAN-Open/MOST)
- Others (Bluetooth/Wi-Fi/USB/4G/5G)

How to select new protocol for a new feature?

- Max Payload Size
- Network Bandwidth ex Max Speed of Data Transmission
- Max Bus Length Supported
- Architecture (Master/Slave Configuration Options)
- Transfer Model (Full/Half duplex & synchronous/asynchronous)
- Fault Tolerance
- Suitability for safety critical feature
- Ease of addition removal into/from the vehicle network design

Protocols for EV Charging Industry

EV charging industry standards and protocols which deliver the flexibility that is needed for the entire electric vehicle market and will be a key enabler of future EV charging infrastructure developments.
Gate Driver Design for MOSFET/IGBT

How to Choose Device

GATE Driver Properties

1. Isolator
2. Amplifier Gate Current Calculation
3. Speed up Mechanism(Turn ON/OFF)
4. Driver Peak Current
5. Fast short-circuit protection,
6. Active Miller clamp,
7. Shoot-through protection,
8. Fault, Shutdown, and over current protection

Structure of MOSFET Technology

V-groove or trench technology to further increase cell density in power MOSFET devices.
The better performance and denser integration do not come free; however, as trench MOS devices are more difficult to manufacture.

Using polycrystalline silicon gate structures and self-aligning processes, higher density integration and rapid reduction in capacitances became possible
EV Model Fabrication Design

Hardware Design of EV
Step#1 Specification
Step#2 Vehicle Structure
Step#3 Motor Selection
Step#4 Controller Design

1) Specification

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameters</th>
<th>Units</th>
<th>Vehicle Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Weight</td>
<td>m</td>
<td>140.000</td>
<td>Kg</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
<td>L</td>
<td>0.900</td>
<td>m</td>
</tr>
<tr>
<td>W</td>
<td>Width</td>
<td>W</td>
<td>0.500</td>
<td>m</td>
</tr>
<tr>
<td>μ_r</td>
<td>Rolling Resistance</td>
<td>μ_r</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>Air Density</td>
<td>ρ</td>
<td>1.250</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Cd</td>
<td>Drag Coefficient</td>
<td>Cd</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gravitational Force</td>
<td>g</td>
<td>9.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed in km</td>
<td></td>
<td>20.000</td>
<td>kph</td>
</tr>
<tr>
<td>A</td>
<td>Fornital Area</td>
<td>A</td>
<td>0.450</td>
<td>m²</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
<td>v</td>
<td>5.556</td>
<td>m/sec</td>
</tr>
</tbody>
</table>

Rolling Resistance Force: 68.600 Watts
Aerodynamic Drag Force: 10.417 Watts
Hill Climbing Force: - Watts

F_{te}: Ttractive Force F_{te}: 79.017 $F_{RR}+F_{ad}$
Total Power for 20Km: F_{te}: 438.981 Watts

2) Vehicle Structure
3) Motor Selection Motors required Specification

- High efficiency
- High instant power
- Fast torque response
- High power density
- Low cost
• High acceleration
• Robustness

Motor Specification
• Rated Power: 360W
• Output Speed: 250rpm
• Motor Length: 330mm
• Rated Voltage: 24V

Motors for EV
• DC Motor
• AC Induction Motor
• PMBLDC
• PMSM • SRM

4) **Controller Design**
• Motor Type: PMDC Motor
• Operation: 4 Quadrant
• Motor Speed 0-100rpm
• Vehicle Speed: 0-20/25 kmph
• Break: Regenerative Brake
• Controller: Arduino Mega
Power Supply Requirements

- Motor Power Supply (Battery: 24V)
- Gate Driver Power Supply (15V DC)
- Arduino Power Supply (5 V DC)

SCOPE OF ELECTRIC VEHICLE

Automakers from all around the world are sighting a keen eye on Indian markets. With world’s largest electric vehicle manufacturer, Tesla coming into to the Indian electric automotive spectrum, it is not futile to say that India got a new lease for becoming the future hub for electric vehicles. However, the pandemic has slowed the growth speed of India by leaps and bounds.

In April 2019, NITI Aayog, the federal think tank, published a report titled “India's Electric Mobility Transformation”, which pegs EV sales penetration in India at **70 percent for**
commercial cars, 30 percent for private cars, 40 percent for buses, and 80 percent for two- and three- wheelers by 2030.

As electric vehicle manufacturing is becoming popular every day, its market share is also expected to rise greatly. India's GDP is expected to grow by an amazing 25% by 2022. The best part is that, apart from reducing environmental pollution, EVs can lower oil import by about $60 Billion by 2030.

CONCLUSION

The global electric vehicle market size is projected to grow from 4,093 thousand units in 2021 to 34,756 thousand units by 2030, at a CAGR of 26.8%. India has already shown its keen interest to be a major part of this automotive paradigm shift. Countries like, The UK, France, Norway and Germany have even brought in legislation to ban the sales of non-electric vehicles as early as 2025.

India has already shown its keen interest to be a major part of this automotive paradigm shift. Adding to that, India has already put forward the desire to become the biggest hub for electric vehicles in the future.

Price of electricity as fuel could fall as low as Rs 1.1/km, helping an electric vehicle owner save up to Rs. 20,000 for every 5,000km traversed.
Finally, electrification will help reduce vehicular emissions, a key contributor to air pollution which causes an average 3% GDP loss every year, reports suggest.

REFERENCES:

MATLAB SIMULATION FILES

C:\Users\91900\Downloads\Download-Day-3-PPTs1\Download Day 4 simulation\d4exp2.mdl