
ENHANCED USER DATA STORAGE WITH

CRYPTOGRAPHY

Submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering Degree in Computer Science and Engineering

By

SRIRAM.S (Reg. No. 39290105)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI – 600119, TAMILNADU

MARCH 2022

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC
(Established under Section 3 of UGC Act, 1956)

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI– 600119
www.sathyabama.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to verify that this Project Report is the bonafide work of SRIRAM . S (Reg. No.

39290105) who carried out the project entitled as “ENHANCED USER DATA

STORAGE WITH CRYPTOGRAPY” under my supervision from . Dec 2020 to march

2022

Internal Guide

 Dr.Mohanprasad ,M.E.,Ph.d.,

Head of the Department

 DR. L .Lakshmanan M.E, Ph.D

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

http://www.sathyabama.ac.in/

DECLARATION

I,SRIRAM.S (Reg. No. 39290105) hereby declare that the Project Report entitled

"ENHANCED USER DATA STORAGE WITH CRYPTOGRAPHYSs” done by me

under the guidance of Dr.Mohanprasad ,M.E.,Ph.d., is submitted in partial

fulfillment of the requirements for the award of Bachelor of Science degree in Computer

Science.

 .

DATE:

PLACE: CHENNAI SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for completing it

successfully. I am grateful to them.

I convey my thanks to Dr. T. SASIKALA, M.E., Ph.D., Dean, School of Computing and

Dr. S. VIGNESHWARI, M.E., Ph.D., and Dr. L. LAKSHMANAN, M.E., Ph.D.,

Head of the Department, Department of Computer Science and Engineering for providing

me necessary support and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide

Dr. mohanradhakrishnan ., for his valuable guidance, suggestions and constant

encouragement paved way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many ways For the

Completion of the project.

v

ABSTRACT

The Data security is one of the most important topics in an Internet first world.

Millions of user records are stored in here by various web and mobile applications every day and

they very easily get hacked or leaked by malicious user very often due to lack of security which

is a very critical level problem today in an internet first world. Also we should make sure that it

is the need of the hour to ensure data security and user privacy.

In our approach, we proposed a novel idea to enable user to securely store their data through

special techniques such as encryption and decryption of data into 2048 bits and etc. technique

and we mainly improve awareness about such topics at the same time.

v

i

Chapter

TABLE OF CONTENTS

Page

TITLE
No. No.

ABSTRACT

LIST OF FIGURES

v

vii

i

1

INTRODUCTION

1

1.1 OVERVIEW OF PROJECT 1

2 LITERATURE SURVEY 2

3 AIM AND SCOPE OF PRESENT INVESTIGATION 4

3.1 AIM OF THE PROJECT 4

3.2 SCOPE AND OBJECTIVE 4

3.3 SYSTEM REQUIREMENTS 6

 3.3.1 HARDWARE REQUIREMENTS 6

 3.3.2 SOFTWARE REQUIREMENTS 6

3.4 SOFTWARE USED 7

3.4.1 PYTHON BACKEND 7

3.4.2 FAST API FRAME WORKS 7

3.4.3 JAVA SCRIPT LANGUAGE 7

3.4.4 VUE JS FRAME WORK 8

 3.4.5 VS CODE 8

v

ii

4 METHODOLOGY 10

4.1 RSA ALGORYTHM 10

4.1.1 EXISTING SYSTEM 10

4.1.2 PROPOSED SYSTEM 10

4.2 MODULE DESCRIPTION 11

4.3 FRONT END DISCRIPTION 16

5 RESULTS AND PERFORMANCE ANALYSIS 20

5.1 RESULT 20

5.2 PERFOMANCE ANASLYSIS 21

6 CONCLUSION AND FUTURE ENHANCEMENT 22

6.1 CONCLUSION 22

6.2 FUTURE ENHANCEMENT 22

REFERENCES 23

APPENDIX 24

A. SOURCE CODE 24

v

ii

i

LIST OF FIGURES

FIGURE NO: FIGURE NAME PAGE NO

4.1

4.2

RSA algorithm

User management in web application

10

11

4.3 Type of User management 11

4.3 Key management In web application 12

4.4 Types of key management 12

4.5 Crypto management in web application 13

4.6 Type of crypto management 13

4.7

Architecture diagram
14

4.8
User register page

16

4.9 user login page 17

4.10 user after login page 17

4.11 user data entering 18

4.12 user data encryption 18

4.13 user data decryption 19

i

x

5.1 performance and analysis 21

1

CHAPTER 1

1.1 OVERVIEW OF PROJECT

1. INTRODUCTION

What is data security?

Data security is the practice of protecting digital information from unauthorized access,
corruption, or theft throughout its entire lifecycle.

DATA Security means protecting digital data , such as those in a database , from destructive
forces and from the unwanted actions of unauthorized users , such as cyber attack or a data
breach. Web application security is so important In these days that we can prevent losing of
any sensitive data through cyberattack or hacking and data breach .
DATA SECURITY is the most important topic in our day today internet first world.
The Web application security is very crucial to protecting data for customers and
organization from data pilferage and other harmful results of cyber crime.
In such complications, we make it simple and secure by encrypting and decrypting the data,
with a unique key per user. .

.

2

CHAPTER 2

2. LITERATURE SURVEY

1. A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems

Authors: R.L. Rivest, A. Shamir, and L. Adleman

RSA (Rivest–Shamir–Adleman) is a widely used public-key cryptosystem used to secure

data. The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard
Adleman, who invented the algorithm. An equivalent system was developed by English
mathematician Clifford Cocks.

 Public-key cryptosystem consist of two non identical keys. The encryption key is public and
distinct from the decryption key, which is kept secret (private). An RSA user creates and
publishes a public key based on two large prime numbers, along with an auxiliary value. The
prime numbers are kept secret. Messages can be encrypted by anyone, via the public key,
but can only be decoded by someone who knows the prime numbers.

The length of the key forms a critical part in determining the security of the algorithm. There
are various key length such as 256, 512, 1024, 2048, bits. As computational power
increases key length is also increased proportionally.

2. OpenPGP Message Format Callas, J., Donnerhacke, L., Finney, H.,

and R. Thayer

Pretty Good Privacy (PGP) is an encryption program that
provides cryptographic privacy and authentication for data communication. PGP is used
commonly in encrypting, and decrypting texts, signing, files, emails, directories, and to
increase the security of e-mail communications. Phil Zimmermann invented PGP in 1991.

OpenPGP is an open standard of PGP encryption software, standard (RFC 4880) for
encrypting and decrypting data.

PGP encryption uses a combination of techniques such as , , symmetric-key cryptography,
data compression, hashing, public-key cryptography; each step uses one of several
supported algorithms. Each public key is bound to a username or an e-mail address. The
first version of PGP encryption was generally known as a web of trust to contrast with
the X.509 system, which uses a different approach based on certificate authority and which
was added to PGP implementations later. Current versions of PGP encryption include
options through an automated key management server.

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Acronym
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Leonard_Adleman
https://en.wikipedia.org/wiki/Clifford_Cocks
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Encryption_key
https://en.wikipedia.org/wiki/Decryption_key
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Encryption_software
https://en.wikipedia.org/wiki/Cryptographic
https://en.wikipedia.org/wiki/Privacy
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Data_communication
https://en.wikipedia.org/wiki/Security
https://en.wikipedia.org/wiki/Phil_Zimmermann
https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Symmetric-key_cryptography
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Certificate_authority

3

3. Data Encryptionand Decryption Using RSA Algorithm in a

NetworkEnvironment”. Nentawe Y. Goshwe Arham Chopra ,“

 Security has become a wide necessity in everyday life. The most important security of all is
data security. Data is
exposed to high potential risks by various platform in our system. The authors have
adopted various methods for various security reasons. Now everyone is dependent on the
security and storage cloud platform, but cloud environment is as well vulnerable to different
threats. The cloud data is not good-secured as it
can be accessed by anyone who can reach our credentials, and cloud providers also have
equal access to us. Thus, using
encryption and steganography, the authors have propose enhanced data security. Here the
data is encrypted and hidden behind an image
and subsequently uploaded to the cloud. The image could be downloaded whenever it felt
necessary and the data can be
decrypted to retrieve the original file. The results of this paper provide improved data
security and can be used smoothly anywhere.

4

CHAPTER 3

3. AIM AND SCOPE OF PRESENT INVESTIGATION

3.1 AIM OF THE PROJECT

Genre classification is an important task with many real world applications.to

develop a deep learning project to automatically classify different musical genres from

audio files. We will classify these audio files using their low-level features of frequency and

time domain. we need a dataset of audio tracks having similar size and similar frequency

range. GTZAN genre classification dataset is the most recommended dataset for the music

genre classification

3.2 SCOPE AND OBJECTIVE

Providing a secure data storage option to user.

User’s data has been stored in a very very secure way where decoding the encrypted message

is an impossible way.

User can upload the files to the web portal.

 user can upload their sensitive data through web portal itself which is secured by

 private and public key.

Ensure only owner of the data can access the information even incase of cyber attack.

Even in a cyber attack the data which hass been stolen by the hackers can decoded by the user

with the key given to the user.

Utilize efficient cryptographic algorithms like RSA, elliptic curve algorithms to encrypt data

fast and real time.

Very efficient cryptographic algorithms like RSA, Elliptic curve have been used as it is very

fast and easy to crypt and decrypt.

One secure key per user during profile creation.

Every user has been given an unique secure key while creating the user account in the web

server.

All user keys are encrypted with master key

every single user key is secured and protected with a single master key which is with the

webserver.

5

Fig 3.1

6

3.3 SYSTEM REQUIREMENTS

3.3.1 Hardware Requirements

The most common set of requirements defined by any operating system or software

application is the physical computer resources, also known as hardware. The minimal

hardware requirements are as follows,

Server side:

• CPU 2GB ram

• Hard-disk: 50GB

• Python 3.9 or higher

• Postgres 13.6 or higher
Client Side:

• CPU: 4GB

• Operating system: any

• Latest browser version of any browser

3.3.2 Software Requirements

Software requirements deals with defining resource requirements and

prerequisites that needs to be installed on a computer to provide functioning of an

application. The minimal software requirements are as follows,

1. Front end : Java script

2. Back end :Python

3. IDE : Vs code

4. Operating System : Windows

7

3.4 SOFTWARE USED:

3.4.1 Python Language

Python is an object-oriented programming language created by Guido Rossum in

1989. It is ideally designed for rapid prototyping of complex applications. It has interfaces to

many OS system calls and libraries and is extensible to C or C++. Many large companies use

the Python programming language include NASA, Google, YouTube, BitTorrent, etc.

Python programming is widely used in Artificial Intelligence, Natural Language

Generation, Neural Networks and other advanced fields of Computer Science. Python had

deep focus on code readability & this class will teach you python from basics.

3.4.2 FAST API

 In python, fast api is a webframework which is used for developing RESTful APIs .

 It can fully support asynchronous programming

 It can easily set up and run with Uvicorn and Gunicorn.

 From the earliest days of the project, editor support was considered to improve developer-

friendliness of the project.

 It is far more lighter then Django and offers more similar features to flask.

 It is built with async in mind.

3.4.3 JAVA SCRIPT LANGUAGE:

JAVA script tool is very important tool for front end developer.

It has a powerful framework tool which can help to render a page. These are also used in typical

situations with complex dynamics interactions that needed to occur.

We can resolve many complex issues using java script framework and complete your expected form

and make your clients requirement fulfill.

Without java script webpages could not have become dynamic web application. No image carousels

would be there without java script. without java script there could not be a partial page which when

reloads , keeps your spot on the current page.

8

There would not be many things which are the things we are currently, accustomed in our day

today life .

3.4.4 Vue js framework

For building user interfaces Vue is a very progressive framework.

It is incrementally adoptable as it is designed ground up.

Since the core library is focused on the view layer,

it is very easy an simple to pickup and integrate with other libraries or

 existing projects.

Very sophisticated single –page is perfectly and efficiently handled by vue.

Also handles applications used in combination with modern tooling and

supporting libraries.

3.4.5 VS Code:

VS Code is a free, open source streamlined cross-platform code editor with excellent

support for Python code editing, IntelliSense, debugging, linting, version control, and more.

Additionally, the Python Extension for Visual Studio Code tailors VS Code into a Python IDE. It

is a streamlined code editor with support for development operations like debugging, task running

and version control.

VS Code is free for both private and commercial use, runs on Windows, macOS, and

Linux, and includes support for linting, debugging, task running, version control and Git

integration, IntelliSense code completion, and conda environments. VS Code is openly extensible

and many extensions are available.

https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/vscode

9

Visual Studio Code is a streamlined code editor with support for development operations like debugging,

task running, and version control. It aims to provide just the tools a developer needs for a quick code-build-

debug cycle and leaves more complex workflows to fuller featured IDEs, such as Visual Studio IDE.

CHAPTER 4

10

4. EXPERIMENTAL OR MATERIAL METHODS

4.1 RSA algorithm

RSA algorithm is a asymmetric algorithm. Which actually means that RSA algorithm works on two different

keys , they are public and private key. Public key is given to everyone and the private key is stored in

private.

For example , a browser sends its public key and askes for some data. Then the server sends the encrypted

data to the server which is encrypted using server’s public key, Then the server recives it and decrypts the

data.

Fig 4.1

4.1.1 Existing System:

512-bit key is forbidden key as it can be easily cracked. In 1999 August 512-bit has been

factorized as the challenge for breaking this key code was successfully completed nowadays it

would be a lot easier than those days to crack such combinations.

 The current record is 768.

4.1.2 Proposed System:

 The end user can very easily download and upload their required data in a very safe and

secure manner. We make sure that the actual owner of the specific data can only access it. We

have stored the data safely through cryptographic encryption. The data is encrypted when the user

uploads it with his private key . using the private key when the user downloads the data it is

decrypted.

11

 4.2 MODULE DISCRIPTION

 user management
 Through these functions we can easily handle such functions as read,update and delete of the
user data . all the related functions and calls of these functions are in backend.
The ‘USER’ in the database table is used for the relevant process.

FIG 4.2

FIG 4.3

12

Module 2: key management module

Through these functions we can easily handle create, read of the secure key data.

All the related API calls are in backend. The ‘user-key’ in the database table is used for

relevant process.

FIG 4.3

FIG 4.4

13

Module 3: crypto management module

We can handle encryption and decryption of the user data. All thye related calls are in

the backend. Here we get data from the user encrypt them and stored safely in the db.

Then reads the cipher texts from the db, decrypts the data and sends to the front end.

‘user-key’ is used for the relevant process of the data base.

FIG 4.5

FIG 4.6

14

Fig 4.7: Architecture Diagram

15

ARCHITECTURE DIAGRAM EXPLANATION.

The Data owner will upload the data to the server, then the data which is uploaded by
the user to the server is data processed and encoded with encryption. Then the data
is linked to the user with a unique key which is given seperatly for every data owner
separately. Then Finally the encrypted data is uploaded to the web server safely.
This is how the owner’s data has been secured safely.When the data owner requests
the uploaded file to the database then the downloading request processes takes
place. Where the Data will be fetched for the corresponding user from the web server
which is then verified with the user key and then decoding process takes place.Then
downloaded data is decoded and decrypted. Finally the requested data by the user is
returned to the data owner.

16

4.3 Front end description

User registration / login page

FIG 4.8

This is the screenshot of the login page where the user logs in using his user
id and password.

17

Before login:

FIG 4.9

After login:

Fig 4.10

18

Login page for already existing user, where the user can login to access his data by
using his email and his secure password.

 User Entering the data with hint for easy reference.

Fig 4.11

User’s data where every data is secured with special unique key.

Fig 4.12

19

User after entering the secure key and decrypting the data.

Fig 4.13

20

CHAPTER 5

5. RESULTS AND PERFORMANCE ANALYSIS

5.1 RESULT

RSA key used in our system

As 512-bit keys are not providing sufficient security and should be minimized in

secure / confidential projects or for usage in security because of lack of rigid

security. So we have used 2048 bits for extreme security for valuables like data

and etc.

The 2048 key is 4 times efficient than 512 and 2 times efficient than 1024 bits.

Our approach is more durable and efficient in securing user data.

Our algorithm users 2048 bit key length to secure the data, which is the industry

standard.

21

5.2 PERFORMANCE ANALYSIS

Key length Security effectiveness

128 10

256 25

512 40

1024 60

2048 95

Table 5.1

22

CHAPTER 6
6. CONCLUSION AND FUTURE ENHANCEMENT

6.1 CONCLUSION:

We would like to address the multi-class solution to problems such as data theft

with an ensemble of Machine Learning methods that could prevent loss of many sensitive data,

with using RSA and CRYPTORAPHY methods. This would encrypt the user’s data which

is then encoded with symmetric encryption with separate public and private keys. We not

only provide only security but also sureity for safe data which is very very hard for an

outsider to decrypt it.as we have used 2048 RSA-CRYPTOGRAPHY encryption.as 512

and 1024 key codes can be easily de coded using today’s morden computer and super

computer. As 2048 key code is 2 times more secure than 1024 and 4 times more secure than

512 key code .

6.2 FUTURE ENHANCEMENTS:

In the future, we hope to experiment with other types of deep learning methods,

given that 2048 key codes can be decrypted using advanced super computers. As for now

2048 performed the best. Even if 2048 is decrypted in future using super computers we may

also have improved key codes which will be harder for future computers which will be

enhanced by the future generations.

23

REFERENCES

[1] R.L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems Linn, J., "Privacy Enhancement for Internet

Electronic Mail: Part I: Message Encryption and Authentication

Procedures", RFC 1421, February 1993.

[2] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer, "OpenPGP

Message Format", RFC 2440, November 1998.

[3] Nentawe Y. Goshwe Arham Chopra ,“Data Encryptionand Decryption

Using RSA Algorithm in a NetworkEnvironment”.

[4] Schönbrodt FD, Humberg S (2021). RSA: An R package for response

surface analysis (version 0.10.4).

[5] https://cran.r-project.org/package=RSA.

[6] https://datatracker.ietf.org/doc/html/rfc4492

[7] https://core.ac.uk/download/pdf/231151959.pdf

https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc1421
https://datatracker.ietf.org/doc/html/rfc2440
https://cran.r-project.org/package=RSA
https://datatracker.ietf.org/doc/html/rfc4492
https://core.ac.uk/download/pdf/231151959.pdf

24

APPENDIX

A. SOURCE CODE

FRONT END SOURCE CODE:

For user login
<template>
 <div v-if="loginFailure" class="alert alert-danger AlertBanner" role="alert">
 Login failed
 </div>

 <div>
 <div v-if="this.$store.state.loggedIn">
 <div>
 <table>
 <tr>
 <th>Label</th>
 <th>Value</th>
 </tr>
 <tr>
 <td>First Name</td>
 <td>{{this.firstName}}</td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td>{{this.lastName}}</td>
 </tr>
 <tr>
 <td>Email</td>
 <td>{{this.email}}</td>
 </tr>
 </table>
 </div>
 <button class="SignOut Button" @click="logout"> Sign-out </button>
 </div >
 <div v-else-if="this.$store.state.loggedIn == false && registerFirstTime == false">
 <div class="LoginForm">
 <label class="Label">Enter your email:</label>

 <input class="UserName" type="text" v-model="email" placeholder="E-mail"

/>
 <label class="InputError" v-if="emailError ">Username should not be

empty</label>

 <label class="Label">Enter your password:</label>

 <input class="password" type="password" v-model="password"

placeholder="Password"/>
 <label class="InputError" v-if="passwordError">Password should not be

empty</label>

25

 </div>
 <button class="Button" @click="login"> Sign-in </button>
 <p class="Register"> Do not have an account yet? <a href="/registerUser"

@click="register"> Register here </p>
 </div>
 </div>

</template>

<script>
import axios from "axios"
import { useCookies } from "vue3-cookies";

export default {
 name: 'Login',
 setup() {
 const { cookies } = useCookies();
 return { cookies };
 },
 components: {

 },
 props: {
 }, data(){
 return {
 email: '',
 password:'',
 firstName : '',
 lastName:'',
 registerFirstTime:false,
 emailError:false,
 passwordError:false,
 loginFailure:false,
 loginSuccess:false,
 allMessages:[],
 }
 },

 mounted(){
 this.loginSuccess = this.$store.state.loggedIn
 if(this.loginSuccess){
 const info = this.$store.state.userInfo
 console.log(info)
 const infoarray = info.split('*')
 console.log(infoarray)
 this.firstName = infoarray[0]
 this.lastName = infoarray[1]
 this.email = infoarray[2]
 }
 },

 methods:{
 login(){
 if(!this.email){

26

 this.emailError= true
 }
 if(!this.password){
 this.passwordError= true
 }
 if(!this.emailError && !this.passwordError){
 axios.post('http://localhost:8000/login', {
 'email':this.email,
 'password':this.password
 })
 .then((response)=>{
 this.cookies.set("studentId", response.data.id);
 this.loginSuccess= true
 this.emitter.emit('LogInstatus', 'finished')
 this.$store.commit('confirmLogin')
 this.$store.commit('setUserInfo',

response.data.firstName+'*'+response.data.lastName+'*'+response.data.email)
 this.$router.push({ path: '/' })
 })
 .catch(error=>{
 this.loginFailure = true;
 console.log(error);
 });
 }

 },
 logout(){
 this.cookies.remove("studentId");
 this.emitter.emit('LogOutstatus', 'finished')
 this.$store.commit('confirmLogout')
 },
 register(){
 this.registerFirstTime = true
 }
 }
}
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
ul {
 list-style-type: none;
 padding: 0;
}
li {
 display: inline-block;
 margin: 0 10px;
}
a {
 color: #42b983;
}
header{
 background-color: #42b983;
 padding:8px
}

27

.Label{
 width: 100%;
 text-align: left;
 font-weight:bold;
}
.UserName{
 width:100%
}
.password{
 width:100%
}
.LoginForm{
 margin: 10px;
}
.InputError{
 color: red;
 text-align: left;
 width:100%;
 font-weight:bold;
}
table{
 margin:50px;
 margin-left: auto;
 margin-right: auto;
}
th{
 text-align:left;
}
tr{
 width: 150px;
 margin:50px;
 text-align:left;
}
td{
 width: 150px;
 margin:50px;
 text-align:left;
}
.SignOut{
 float: right;
 margin:30px
}
.Button{
 background-color: #42b983;
}
.Register{
 margin:20px
}
</style>

For Storing messages:
 <template>

28

 <div class="Root">
 <div>
 <p class="StoredMsg"> Your stored messages</p>
 </div>
 <div class="Holding">
 <div class="Heading">
 <label class="Hint"> Hint </label>
 <label> Action </label>
 <label class="Message"> Message </label>
 </div>
 <div class= "Row" v-for="item in allMessages" :key="item.id">
 <MessageItem :message = "item"></MessageItem>
 </div>
 </div>
 </div>
</template>

<script>
import axios from "axios"
import MessageItem from "./MessageItem.vue"
// import Header from "./Header.vue"
import { useCookies } from "vue3-cookies";

export default {
 name: 'HelloWorld',
 setup() {
 const { cookies } = useCookies();
 return { cookies };
 },
 components: {
 MessageItem,
 },
 props: {
 msg: String
 }, data(){
 return {
 logInComplete:false,
 allMessages:[],
 }
 },
 created(){
 },
 mounted(){
 this.logInComplete = this.$store.state.loggedIn
 this.checkLogInComplete()
 this.getData()
 },

 methods:{
 getData(){
 const studentId = this.cookies.get("studentId");
 axios.get(`http://localhost:8000/student/${studentId}/messages`)
 .then((response)=>{
 let messages = response.data.messages;

29

 this.allMessages = messages
 this.allMessages = this.allMessages.map(item =>({...item,

studentId:studentId}))
 });
 },
 checkLogInComplete(){
 if(!this.logInComplete){
 this.$router.push({ path: '/login' })
 }
 }

 }
}
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
ul {
 list-style-type: none;
 padding: 0;
}
li {
 display: inline-block;
 margin: 0 10px;
}
a {
 color: #42b983;
}
header{
 background-color: #42b983;
 padding:8px
}
.StoredMsg{
 font-weight: bold;
 text-align: center;
 width:100%;
 padding-top: 10px;

}
.Holding{
 margin:10px;
}
.Heading{
 display: flex;
 justify-content: space-between;
}
.Row:nth-child(even) {background-color: #f2f2f2;}

label{
 /* display: inline-block; */
 /* margin-left: 108px; */
}
.Hint{
 margin-left: 16%;
}

30

.Message{
 margin-right: 14%;
}
</style>

For reading messages:

<template>
<div class = "MessageItem">
 {{message.hint}}
 <button class="Button" @click="decryptMessage(message.hint,

message.studentId)"> Decrypt</button>
 {{decryptedMessage}}
</div>

</template>

<script>
import axios from "axios"
export default {
 name: 'HelloWorld',
 props: {
 message:{}
 },
 data(){
 return {
 decryptedMessage:''
 }
 },
 methods:{
 decryptMessage(hint, studentId){
 axios.get(`http://localhost:8000/student/${studentId}/decrypt?hint=${hint}`)
 .then((response)=>{
 console.log(response);
 this.decryptedMessage = response.data.decryptedMessage
 }).catch((err)=>{
 console.log(err);
 alert('Message Decryption Failed!!! Contact your Admin')
 });
 }
 }
}
</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>

.MessageItem{
 text-align:center;
 width: 100%;
 display: flex;

31

 justify-content: space-between;
 margin-top: 10px;
 margin-bottom: 10px;
}
.Label{
 width: 33%;
}
.Message{
 width: 33%;
}
.Button{
 height: 30px;
 background-color: #42b983;
}
/* .Label{

 display: inline-block;
 width: 87px;
 margin-top: 7px;
 margin-bottom: 7px;
 text-align: center;
 padding-left: 60px;
} */
/*
.Message{
 padding-left: 120px;
 display: inline-block;
 width: 87px;
 margin-top: 7px;
 margin-bottom: 7px;
 text-align: center;
}

.Button{

 display: inline-block;
 margin-left:100px;
 margin-top: 7px;
 margin-bottom: 7px;
 text-align: center;
 background-color: #42b983;
} */

</style>

Back end sourse code:
For encryption and decryption:
class MessageController:
 def encryptMessage(self, student_id:int, message:str, hint:str):
 student_controller = StudentController()
 student:StudentResponseModel | None =
student_controller.read_student_by_id(student_id)

32

 database = Database()
 student_key = database.read_key_for_student(student.id)
 if student_key is not None:
 rsa_service = RsaService()
 encrypted_message = rsa_service.encrypt_data(student_key.private_key,
message)
 stored_data = database.store_encrypted_message(student_id, hint,
encrypted_message)
 return EncryptedMessageResponseeModel(id=stored_data.id, hint =
stored_data.hint, encryptedMessage = stored_data.encrypted_message)
 else:
 raise NotFoundException(f"Key for student with id {student_id} not found")

 def decryptMessage(self, student_id:int, hint:str):
 student_controller = StudentController()
 student_key_controller = StudentKeyController()
 database = Database()

 student:StudentResponseModel | None =
student_controller.read_student_by_id(student_id)
 student_key = database.read_key_for_student(student.id)
 encrypted_message = database.read_encrypted_message(student_id, hint)
 if encrypted_message is not None and student_key is not None:
 rsa_service = RsaService()
 decrypted_message = rsa_service.decrypt_data(
 student_key.private_key,
 encrypted_message.encrypted_message
)
 elif encrypted_message is None:
 raise NotFoundException(f"Student with id {id} has no message with hint
{hint}")
 elif student_key is None:
 raise NotFoundException(f"Key for student with id {student_id} not found")
 return DecryptedMessageResponseeModel(
 id=encrypted_message.id,
 decryptedMessage = decrypted_message,
 hint = hint
)

 def readAllMessageaForStudent(self, student_id:int):
 student_controller = StudentController()
 student:StudentResponseModel | None =
student_controller.read_student_by_id(student_id)
 database = Database()
 messages = database.read_all_encrypted_message_for_student(student_id)
 encryptedMessages = []
 if messages is not None:
 for message in messages:

encryptedMessages.append(EncryptedMessageResponseeModel(id=message.id,
hint = message.hint, encryptedMessage = message.encrypted_message))

33

 return
AllEncryptedMessageResponseeModel(messages=encryptedMessages)
 else:
 raise NotFoundException(f"Student with id {id} has no encrypted message")

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI – 600119, TAMILNADU
	(DEEMED TO BE UNIVERSITY)

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (1)
	Internal Guide
	Head of the Department
	Submitted for Viva voce Examination held on

	DECLARATION
	ACKNOWLEDGEMENT

	ABSTRACT
	Chapter
	Page

	CHAPTER 1
	1. INTRODUCTION
	CHAPTER 2
	1. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

	CHAPTER 3
	3.1 AIM OF THE PROJECT
	3.2 SCOPE AND OBJECTIVE
	3.3 SYSTEM REQUIREMENTS
	3.3.2 Software Requirements
	3.4 SOFTWARE USED:
	3.4.2 FAST API
	3.4.3 JAVA SCRIPT LANGUAGE:
	3.4.4 Vue js framework
	3.4.5 VS Code:

	CHAPTER 4
	4. EXPERIMENTAL OR MATERIAL METHODS
	4.1 RSA algorithm
	Fig 4.1
	4.1.1 Existing System:
	4.1.2 Proposed System:
	4.2 MODULE DISCRIPTION
	user management
	Module 2: key management module
	FIG 4.4
	Module 3: crypto management module
	FIG 4.6
	Before login:
	Fig 4.10
	Login page for already existing user, where the user can login to access his data by using his email and his secure password.
	User Entering the data with hint for easy reference.
	Fig 4.11
	User’s data where every data is secured with special unique key.
	Fig 4.12
	User after entering the secure key and decrypting the data.

	Fig 4.13
	CHAPTER 5
	5. RESULTS AND PERFORMANCE ANALYSIS
	CHAPTER 6
	6. CONCLUSION AND FUTURE ENHANCEMENT
	6.1 CONCLUSION:
	6.2 FUTURE ENHANCEMENTS:

	REFERENCES
	APPENDIX
	A. SOURCE CODE

