

i

A Novel 32 Bit RISC-V Based Pipelined Processor Design

Using Verilog

Submitted in partial fulfillment of the requirements for the award of Bachelor of

Engineering Degree in ELECTRONICS AND COMMUNICATION ENGINEERING

by

SANDEEP.P (38130193)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

SCHOOL OF ELECTRICAL AND ELECTRONICS

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC I 12B Status by UGC I Approved by AICTE

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

March – 2022

ii

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with “A” grade by NAAC I 12B Status by UGC I Approved by AICTE

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai – 600 119

www.sathyabama.ac.in

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of Sandeep.p(38130193)

who have done the Project work as a team who carried out the project entitled “A

Novel 32 Bit RISC-V Based Pipelined Processor Design Using Verilog” . Under my

supervision from December 2022 to January 2022.

 Internal Guide

(Dr.V.Vedanarayanan)

Head of the Department

(Dr. T. RAVI, M.E., Ph.D)

Submitted for Viva voce Examination held on ______________________

 Internal Examiner

External Examiner

iii

DECLARATION

I SANDEEP.P(38130193) hereby declare that the Project Report entitled “A Novel

32 Bit RISC-V Based Pipelined Processor Design Using Veri log ” done

by me under the guidance of Dr.V.Vedanarayanan at Sathyabama Institute of Science

and Technology, Chennai- 600119 is submitted in partial fulfillment of the requirements

for the award of Bachelor Engineering degree in Electronicsand Communication

Engineering.

DATE:

PLACE: SIGNATURE OF THE CANDIDATE

iv

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. I am grateful to them.

I convey my thanks to Dr. N. M. Nandhita, Dean, School of Electrical and

Electronics Engineering and Dr. T. RAVI, Head of the Department, Dept. of

Electrical and Electronics Engineering for providing me necessary support and

details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project

Guide Dr.V.Vedanarayanan for his valuable guidance, suggestions and constant

encouragement paved way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of

the Department of ELECTRICAL AND ELECTRONICS who were helpful in many

ways for the completion of the project.

v

ABSTRACT

The main goal of this study is to develop a 32-bit pipelined processor with several clock

domains based on the RISC-V (open source RV32I Version 2.0) ISA. To minimise the

complexity of the instruction set and speed up the execution time per instruction, RISC

(Reduced Instruction Set Computer) is a type of processor that uses less hardware than

CISC (Complex Instruction Set Computer) is used. Furthermore, we constructed this

processor with five levels of pipelining, resulting in parallelism in instruction execution.

With the aid of necessary block diagrams, all of the processes are well described.

Multiple clock domains employing two clock sources are used to ensure that variable

delays such as clock skew and metastability are avoided within the stage pipeline

registers. Quartus Prime was used to design and synthesis this processor, which was

written in Verilog HDL. ModelSim was used to verify this design, and all of the instructions

have been thoroughly checked. Furthur the processor is implemented on the “ALTERA

Cyclone 10 LP” board for calculating the device utilization.

vi

TABLE OF CONTENTS

 TITLE PAGE NO

ABSTRACT V

LIST OF ABBREVIATIONS X

1. INTRODUCTION 1

 1.1 Generations of microprocessors 1

1.2 Types of microprocessors 2

1.3 RISC vs CISC 3

1.4 Importance of CPI 5

1.5 Hazards Encountered 7

2. LITERATURE REVIEW 8

2.1 Implementation of a 32-bit MIPS based RISC processor using

Cadence 8

2.2 Synthesis and Simulation of a 32Bit MIPS RISC Processor

using VHDL 9

2.3 Design and simulation of 32-Bit RISC architecture based on

MIPS using VHDL 10

2.4 Single cycle RISC-V micro architecture processor and

its FPGA prototype 11

vii

2.5 32-Bit RISC processor with floating point unit for DSP

applications 12

2.6 A RISC-V instruction set processor-micro-architecture

design and analysis 13

2.7 Advanced low power RISC processor design

using MIPS instruction set 14

2.8 ASIC design of MIPS based RISC processor for

high performance 15

2.9 Design and development of FPGA based low power

pipelined 64-Bit RISC processor with double precision

floating point unit 16

2.10 Design of an 8-bit five stage pipelined RISC microprocessor

for sensor platform application 17

2.11 Design of FPGA based 8-bit RISC controller IP core

using VHDL 18

3. INSTRUCTION SET ARCHITECTURE USED 19

 3.1 RISC V 19

 3.1.1 R-type RV32I Instruction Format 20

 3.1.2. I-type RV32I Instruction Format 21

 3.1.3. S-type RV32I Instruction Format 22

 3.1.4. B-type RV32I Instruction Format 23

 3.1.5. U-type & J-type RV32I Instruction Format 24

viii

 3.2 INSTRUCTIONS SUPPORTED 26

 3.2.1 Arithmetic Operations 27

 3.2.2 Logical Operations 28

 3.2.3 Data Transfer Operations 29

 3.2.4 Control Transfer Instructions 30

4. CONSTRUCTION OF THE PROCESSOR 31

 4.1 PIPELINING OF A PROCESSOR 31

 4.2 Organization Of The RISC-V Processor 33

 4.2.1 Instruction memory 34

 4.2.2 Register file 35

 4.2.3 Data Memory 36

 4.2.4 Instruction Fetch Stage 37

 4.2.5 Decode Stage 38

 4.2.6 Execute Stage 39

 4.2.7 Memory Access Stage 40

 4.2.8 Write Back Stage 41

 4.3. ELIMINATION OF PIPELINE HAZARDS 42

 4.3.1 STRUCTURAL HAZARDS 42

 4.3.2 DATA HAZARDS 44

ix

 4.3.3 CONTROL HAZARDS 46

 4.4. CONSTRUCTION OF MULTIPLE CLOCK DOMAINS 48

 4.4.1 CAUSES OF METASTABLE CONDITIONS 48

 4.4.2 PREVENTION OF METASTABLE CONDITIONS 51

5. SIMULATION AND SYNTHESIS RESULTS 53

 5.1 SOFTWARE USED 53

5.2 SIMULATION RESULTS 58

5.2.1 ARITHMETIC TYPE INSTRUCTIONS 59

5.2.2 LOGICAL TYPE INSTRUCTIONS 60

5.2.3 IMMEDIATE TYPE INSTRUCTIONS 61

5.2.4 STORE TYPE INSTRUCTIONS 62

5.2.5 LOAD TYPE INSTRUCTIONS 63

 5.2.6 BRANCH TYPE INSTRUCTIONS 64

 5.2.7 JUMP TYPE INSTRUCTIONS 65

 5.3 IMPLEMENTATION ON FPGA 66

6. CONCLUSION AND FUTURE SCOPE 67

 6.1 CONCLUSION 67

 6.2 FUTURE SCOPE 68

7. REFERENCES 69

x

LIST OF ABBREVIATIONS

S.NO ABBREVIATION FULL FORM

1 RISC Reduced Instruction Set

Computer

2 CISC Complex Instruction Set

Computer

3 LUT Look Up Tables

4 FPGA Field Programmable Gate

Array

5 CPI Cycles per instruction

6 CLK Clock

7 ISA Instruction Set

Architecture

1

1.INTRODUCTION

Transistor was invented in 1948 (23 December 1947 in Bell lab). IC was invented in 1958

(Fair Child Semiconductors) By Texas Instruments J Kilby. The first microprocessor was

invented by INTEL(INTegrated ELectronics).

1.1 Generations of microprocessors:

First-generation – From 1971 to 1972, the first generation of microprocessors appeared,

including the INTEL 4004, Rockwell International PPS-4, and INTEL 8008 among others.

Second generation – From 1973 until 1978, the second generation of 8-bit

microprocessors was developed. Processors such as the INTEL 8085, Motorola 6800,

and 6801 were developed.

Third generation – The third generation saw the introduction of 16-bit processors such

as the INTEL 8086/80186/80286, Motorola 68000 68010, and others. This generation

employed the HMOS technology from 1979 to 1980.

Fourth generation – Between 1981 and 1995, the fourth generation existed. 32-bit

CPUs based on HMOS manufacturing were created. This generation's prominent

processors include the INTEL 80386 and Motorola 68020.

Fifth-generation –We've been in the fifth generation since 1995. There were 64-bit CPUs such

as the PENTIUM, Celeron, twin, quad, and octa-core processors.

2

1.2 Types of microprocessors

Complex instruction set microprocessor –

 The processors are built with the goal of reducing the number of instructions per

programme while ignoring the number of cycles per instruction. Because the code is

relatively short and extra RAM is utilised to hold the instructions, the compiler is used to

translate a high-level language to assembly-level language.

 These processors can download, upload, and recall data from memory, among other

things. This microprocessor can also do sophisticated mathematical calculations in a

single instruction, in addition to these functions.

Example: IBM 370/168, VAX 11/780

Reduced instruction set microprocessor –

 These processors are built to do specific tasks. They are meant to use a reduced

instruction set to reduce execution time. They are capable of carrying out minor tasks in

response to particular commands. These processors are more efficient at completing

commands. To implement a result at uniform execution time, they simply need one clock

cycle. There are a lot of registers and a lot of transistors. The LOAD and STORE

instructions are used to access the memory location.

Example: Power PC 601, 604, 615, 620

Superscalar microprocessor –

 These processors are capable of handling multiple tasks at once. ALUs and multiplier-

like arrays can both benefit from them. They feature several operating units and execute

multiple orders to complete tasks.

3

Application-specific integrated circuit –

 These processors, like personal digital assistant computers, are application-specific.

They are created in accordance with strict guidelines.

Digital signal multiprocessor –

 Signals such as analogue to digital and digital to analogue are converted using these

processors. These processors' chips are found in a variety of devices, including RADAR

SONAR home theatre systems.

1.3 RISC vs CISC

Over the past decades, microprocessors and microcontrollers has been constructed around

two types of architectures, Reduced Instruction Set computer and Complex Instruction Set

Computer.

 CISC instructions are variable in length and are encoded for doing more micro operations

per instruction. As a result, the complex architecture of CISC processors makes instructions

take a longer time to execute. Since all instructions of a RISC processor have the same

instruction length, the decoding process becomes easier compared to a CISC processor.

 RISC is widely used due to its efficient architecture which can be used for low power and

high speed processing application. It supports very few addressing modes, LOAD and

STORE instructions are the only instructions that are used to access the external memory.

Hence RISC processors are mainly dependent on software and CISC processors are mainly

dependent on hardware for executing complex tasks.

4

 Reduced Instruction Set Architecture (RISC) –

The fundamental goal is to make hardware simpler by employing an instruction set that

consists of only a few basic loading, evaluating, and storing stages. A store command does

the same thing as a load command: it stores the data.

 Complex Instruction Set Architecture (CISC) –

The basic notion is that a single instruction will handle all loading, evaluating, and storing

operations, similar to how a multiplication command will handle loading, evaluating, and

storing data, which is why it's complicated.

Fig 1.1: RISC vs. CISC

 Cycles per instruction (also known as clock cycles per instruction, clocks per instruction,

or CPI) is the average number of clock cycles per instruction for a programme or programme

fragment in computer architecture. [1] It's the inverse of instructions per cycle multiplied by

a factor of two.

5

1.3 Importance of CPI

 The average of Cycles Per Instruction in a given process is defined by the following:

 Where ICi is the number of instructions for a given instruction type i, CCi is the clock-cycles

or that instruction type and IC is the total instruction count. The summation sums over all

instruction types for a given benchmarking process.

Every processor architecture design’s primary aim is to keep Clock per Instruction (CPI)

close to 1 which can be always challenging. To increase the throughput we have

implemented the processor using 5 stages pipelined architecture, by implementing separate

stages for Fetch instructions, Decoding, Arithmetic operations, Memory access and write

back. Through pipelining on each cycle, an instruction can be executed.

Let us assume a classic RISC pipeline, with the following five stages:-

1) Instruction fetch cycle (IF).

2) Instruction decode/Register fetch cycle (ID).

3) Execution/Effective address cycle (EX).

4) Memory access (MEM).

5) Write-back cycle (WB).

 Each step takes one clock cycle, and instructions are passed through the stages in the

order they are received. In a multi-cycle processor without pipelining, a new instruction is

fetched in stage 1 only after the preceding instruction has completed at stage 5, resulting in

a clock cycle count of five (CPI = 5 > 1). The processor is considered to be subscalar in this

instance.

6

 Because one could theoretically have five instructions in the five pipeline stages at once

(one instruction per stage), a different instruction would complete stage 5 in every clock

cycle, and the average number of clock cycles it takes to execute an instruction is one (CPI

= 1). The processor is said to be scalar in this situation.

 The best CPI achievable with a single-execution-unit CPU is 1. With a multiple-execution-

unit processor, however, CPI values can be improved even more (CPI 1). The processor is

considered to be superscalar in this instance. Without pipelining, the number of execution

units must be greater than the number of stages to achieve better CPI values.

 With six execution units, for example, six new instructions are received in stage 1 only

after the six preceding instructions have completed at stage 5, resulting in an average of 5/6

clock cycles per instruction (CPI = 5/6 1). Pipelining requires at least two execution units to

achieve superior CPI values.

 For example, by utilising instruction-level parallelism, two new instructions are fetched

every clock cycle, resulting in two different instructions completing stage 5 every clock cycle,

and the average number of clock cycles required to execute an instruction is 1/2 (CPI = 1/2

01).

The likelihood of pipeline risks during the execution of numerous instructions increases when

instructions are executed in parallel.

7

1.4 Hazards Encountered

 There are mainly three types of dependencies possible in a pipelined processor.

These are:-

1) Structural Dependency

2) Control Dependency

3) Data Dependency

 Structural Dependency causes Structural hazards which are encountered when multiple

instructions use a common resource at the same time. This has been eliminated by

implementing the processor using Harvard architecture with separate data and instruction

memory, also a general-purpose memory with two read ports and one write port. Therefore,

several data accesses can be performed simultaneously without conflict.

 Control Dependency causes Control hazards that are encountered during the successful

execution of branch and jump instructions. This can be prevented by a branch flag which

goes HIGH when the branch is taken, thus following instructions following after the branch

in memory and write backstage are terminated.

 Data Dependency Data hazards which are encountered due to the usage of common

source and destination resources in consecutive instructions, this occurs when the source

for instruction is the destination for the previous instruction. Data hazards can be prevented

by inserting dummy instructions during compiling using the compiler to create a gap between

those instructions.

8

2. LITERATURE REVIEW

2.1 Implementation of a 32-bit MIPS based RISC processor using Cadence

 By M. N. Topiwala and N. Saraswathi, 2014 IEEE International Conference on

Avanced Communications, Control and Computing Technologies, 2014, pp. 979-983, doi:

10.1109/ICACCCT.2014.7019240.

 The implementation of a 5-stage pipelined 32-bit High Performance MIPS based RISC

Core is presented in this project. A RISC (Reduced Instruction Set Computer) architecture is

a MIPS (Microprocessor without Interlocked Pipeline Stages). This microprocessor was

created with the goal of enhancing the processor's overall speed by performing a small set of

instructions. Instruction Fetch (IF), Instruction Decode (ID), Execution (EX), Memory Access

(MEM), and Write Back (WB) are the five steps of the MIPS pipeline. Instruction Memory,

Data Memory, ALU, Registers, and other modules are employed. The goal of this work is to

incorporate a Hazard detection unit and a Data forwarding unit for a more efficient pipeline

implementation. Verilog-HDL is used to create the design. The main goal is to complete the

entire ASIC.

Advantages:-

1) It is a pipelined processor hence increased throughput.

2) This design has been synthesized using cadence.

3) Data forward unit.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V.

9

2.2 Synthesis and Simulation of a 32Bit MIPS RISC Processor using VHDL

 By S. P. Ritpurkar, M. N. Thakare and G. D. Korde, 2014 International Conference on

Advances in Engineering & Technology Research (ICAETR - 2014), 2014, pp. 1-6, doi:

10.1109/ICAETR.2014.7012843.

 This paper's main goal is to use VHDL to develop and simulate a 32-bit MIPS

(Microprocessor Interlocked Pipeline Stages) RISC (Reduced Instruction Set Computer)

processor (Very High Speed Integrated Circuit Hardware Description Language). They

examined the Instruction fetch module, Decoder module, Execution module, which includes

32Bit Floating point ALU, 32Bit Flag register, MIPS Instruction Set, and 32Bit general purpose

registers, as well as design theory based on the 32Bit MIPS RISC Processor in this study.

Furthermore, they used the pipeline approach, which involves the MIPS RISC processor's

Instruction Fetch, Instruction Decode, Execution, Memory, and Write Back modules in a

single clock cycle. VHDL is used to code all of the modules in the design because it is a very

useful language with its notion.

 Advantages:-

1) It is based on 32 bit ISA. Hence more data can be accesses reducing memory latency.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V

2) Non-pipelined hence less throughput.

10

2.3 Design and simulation of 32-Bit RISC architecture based on MIPS

using VHDL

 By S. P. Ritpurkar, M. N. Thakare and G. D. Korde, 2015 International Conference on

Advanced Computing and Communication Systems, 2015, pp. 1-6, doi:

10.1109/ICACCS.2015.7324067.

 The design of a RISC (Reduced Instruction Set Computer) CPU architecture based on

MIPS (Microprocessor Interlock Pipeline Stages) in VHDL is shown in this work. It also

describes the processor's instruction set, architecture, and timing diagram. Converting a

floating point number to a fixed number is the most common operation when working with

numbers, and this may be done with the Float to Fixed Number Converter module. Finally,

the suggested RISC Processor based on MIPS was designed, synthesised, and simulated

using the Xilinx ISE 13.1i Simulator, with coding written in the VHDL language. Result

forwarding is more efficient than stalling in resolving data hazards because it eliminates the

time penalty associated with handling such disputes.

 Advantages:-

1) It is based on 32 bit ISA. Hence more data can be accesses reducing memory latency.

2) It is a pipelined processor hence increased throughput.

3) It can do floating point computations.

 Disadvantages:-

1) It is based on older ISA. Hence more LUT consumption than RISC-V.

11

2.4 Single cycle RISC-V micro architecture processor and its FPGA

prototype

 By D. K. Dennis et al 2017 7th International Symposium on Embedded Computing and

System Design (ISED), 2017, pp. 1-5, doi: 10.1109/ISED.2017.8303926.

 This work describes the creation of a fully synthesizable 32-bit processor using the open-

source RISC-V (RV32I) ISA. This CPU was created with low-cost embedded devices in mind.

This document also includes a RISC-V development and validation framework, as well as

assembling tools and automated test suites. The result is a single-core, in-order, RISC-V

processor with low hardware complexity that is not bus-based. The suggested processor is

written in Verilog HDL and then prototyped on an FPGA board called the "Spartan 3E

XC3S500E." The maximum functioning frequency was discovered to be 32MHz. Using the

Xilinx Power Analyzer, the power is assessed to be 7.9mW.

 Advantages:-

1) It is based on the latest 32 bit RISC V ISA. Hence consuming less LUTs.

 Disadvantages:-

1) No hazard avoidance unit.

2) Non-pipelined hence less throughput.

12

2.5 32-Bit RISC processor with floating point unit for DSP applications

 By S. Palekar and N. Narkhede, 2016 IEEE International Conference on Recent Trends

in Electronics, Information & Communication Technology (RTEICT), 2016, pp. 2062-2066,

doi: 10.1109/RTEICT.2016.7808202.

 The goal of this study is to propose the design of a high-speed MIPS-based 32-bit RISC

processor with a single-precision floating point unit for DSP applications. The entire

architecture is geared at boosting the performance of the floating point arithmetic unit in order

to improve the overall RISC processor performance. This suggested processor can do

arithmetic, logical, floating point, data transmission, memory, shifting, and rotating operations.

Because complex multiplication is commonly utilised in DSP applications, a separate

instruction for complex multiplication has been included. When compared to ordinary complex

multiplication, multiplication consumes the majority of the time, power, and area of any

operation. As a result, the multiplier is reduced from four to two.

 Advantages:-

1) It is based on 32 bit ISA. Hence more data can be accesses reducing memory latency.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V

2) Non-pipelined hence less throughput.

13

2.6 A RISC-V instruction set processor-micro-architecture design and

analysis

 By A. Raveendran, V. B. Patil, D. Selvakumar and V. Desalphine, 2016 International

Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA),

2016, pp. 1-7, doi: 10.1109/VLSI-SATA.2016.7593047.

 This work describes the microarchitecture design and analysis of a 5-stage pipelined

RISC-V ISA compliant processor, as well as the impact of the instruction set on the pipeline

and microarchitecture design. This design was evaluated in terms of instruction encoding,

functionality, instruction types, decoder logic complexity, data hazard detection, register file

organisation and access, pipeline functionality, branch instruction effect, control flow, data

memory access, operating modes, and execution unit hardware resources. This processor

was micro-architected, simulated using Blue-spec System Verilog, synthesised, and analysed

on an FPGA platform and ASIC nodes in the 65nm and 130nm technology nodes. Similar

attempts on RISC-V ISA based processor cores are contrasted and analysed with the

synthesis results.

Advantages:-

1) It is based on 32 bit ISA. Hence more data can be accesses reducing memory latency.

2) It is a pipelined processor hence increased throughput.

3) It can do floating point computations.

4) Has hazard detection and branch prediction unit.

 Disadvantages:-

1) It is based on older ISA. Hence more LUT consumption than RISC-V.

14

2.7 Advanced low power RISC processor design using MIPS instruction

set

 By P. V. S. R. Bharadwaja, K. R. Teja, M. N. Babu and K. Neelima, 2015 2nd International

Conference on Electronics and Communication Systems (ICECS), 2015, pp. 1252-1258, doi:

10.1109/ECS.2015.7124785.

 This paper primarily focuses on resolving some of these challenges. They are proposing

an upgraded version of MIPS to address these issues. The MIPS (Microprocessor without

Interlocked Pipeline Stages) architecture is a relatively new addition to the semiconductor

industry. This study focuses solely on the architecture design in Verilog HDL. This design was

simulated and synthesised using cadence Inc's Nc-launch and RTL-compiler, respectively.

Socencounter worked on the physical design of the synthesised architecture using the TSMC

Cmos 180nm technology node's slow.lib library.

Advantages:-

1) It is a pipelined processor hence increased throughput.

2) This design has been synthesized using socencounter.

3) Data forward unit.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V.

15

2.8 ASIC design of MIPS based RISC processor for high performance

 By A. Ashok and V. Ravi, 2017 International Conference on Nextgen Electronic

Technologies: Silicon to Software (ICNETS2), 2017, pp. 263-269, doi:

10.1109/ICNETS2.2017.8067945.

 The main goal of this study is to use Verilog to create a 32-bit MIPS RISC processor. The

suggested technique, which is based on a 32-bit MIPS RISC processor, examines the many

phases of instruction decoding, including the Instruction fetch module, Decoder module,

Execution module, and design theory. Furthermore, the algorithm employs the pipelining idea,

which involves the MIPS RISC processor's Instruction Fetch, Instruction Decode, Execution,

Memory, and Write Back modules in a single clock cycle. In general, the processor brings

information from memory to work with a large number of instructions every second. Hardware

interlocks occur when the processor speed does not correspond to the memory access

speed. There is one more thing I'd like to add to this.

Advantages:-

1) It is a pipelined processor hence increased throughput.

2) This design has been synthesized using soc encounter.

3) Data forward unit.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V.

16

2.9 Design and development of FPGA based low power pipelined 64-Bit

RISC processor with double precision floating point unit

 By J. V. Kumar, B. Nagaraju, C. Swapna and T. Ramanjappa, 2014 International

Conference on Communication and Signal Processing, 2014, pp. 1054-1058, doi:

10.1109/ICCSP.2014.6950008.

 This work describes a low-power pipelined 64-bit RISC processor with Floating Point Unit

based on FPGA. This processor is designed specifically for fixed and floating point arithmetic

operations, as well as branch and logical functions. Because dynamic branch prediction is

used, pipelining will not flush when a branch instruction occurs. This will improve the flow of

instructions via the pipeline while also ensuring high efficiency. Clock gating is a technique

used in RTL coding to reduce dynamic power. Double Precision floating point arithmetic

operations such as addition, subtraction, multiplication, and division are also implemented in

this article. By utilising floating point computations, this architecture has become vital and

growing significant in various applications like as signal processing, graphics, and medicine.

In the hardware description, the relevant code is written.

 Advantages:-

1) It is based on 32 bit ISA. Hence more data can be accesses reducing memory latency.

 Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V

2) Non-pipelined hence less throughput.

17

2.10 Design of an 8-bit five stage pipelined RISC microprocessor for

sensor platform application

 By R. J. L. Austria, A. L. Sambile, K. M. Villegas and J. N. T. Tabing, TENCON 2017 -

2017 IEEE Region 10 Conference, 2017, pp. 2110-2115, doi:

10.1109/TENCON.2017.8228209.

 This study describes a low-power pipelined 64-bit RISC processor with Floating Point

Unit based on FPGA technology. This processor is designed for fixed and floating point

numerical arithmetic, as well as branch and logical tasks. Because dynamic branch prediction

is used to achieve pipelining, it will not flush when a branch instruction is sent. This will

improve the efficiency of the instruction stream. Using the clock gating technique in RTL

coding, one can lower the dynamic power. Addition, subtraction, multiplication, and division

are also implemented in this work using Double Precision floating point arithmetic. Because

floating point operations are used in many applications, such as signal processing, graphics,

and medicine, this architecture has become vital and increasingly important. The hardware

description contains all of the necessary code.

Advantages:-

1) It is verified using UVM.

2) It is a pipelined processor hence more throughput.

3) It is synthesized using synopsys tool.

Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V.

2) It is a 8bit processor hence more memory latency,

18

2.11 Design of FPGA based 8-bit RISC controller IP core using VHDL

 By R. Aneesh. and K. Jiju., 2012 Annual IEEE India Conference (INDICON), 2012, pp.

427-432, doi: 10.1109/INDCON.2012.6420656.

 The design, development, and implementation of an 8-bit RISC controller IP core are

described in this study. The controller was created using the Hardware Description Language

for Very High Speed Integrated Circuits (VHDL). Speed, power, and area are the design

restrictions. This controller is ideal for tiny applications and efficient for particular applications.

Fetch, Decode, Execute, and a stage control unit make up this non-pipelined controller. It has

a built-in data and programme memory. It also comes with four ports for connecting to other

I/O devices. Basic units have been modelled using behavioural programming utilising a

hierarchical approach. Structural programming is used to combine the fundamental parts. The

ALTERA STRATIX II FPGA was used to implement the design.

Advantages:-

1) Less LUT consumption since it is a 8 bit processor.

2) It is based on a microcontroller.

Disadvantages:-

1) It is based on a older ISA. Hence more LUT consumption than RISC-V.

2) It is a 8bit processor hence more memory latency.

3) It is not pipelined hence less throughput.

19

3. INSTRUCTION SET ARCHITECTURE USED

3.1 RISCV

 The RISC-V (RV32I) instruction set has a fixed length of 32 bits, which must be aligned

to 32 bit boundaries. It is designed to form a sufficient compile target and support modern

OS environments. It was constructed in a way that it reduces the hardware needed for

minimum implementation. It follows a little endian format, where the lowest address contains

the LSB part of the particular word.

 The format used in this project is RV32I which is v2.0 of RISC V. Which is an optimized

ISA for creating RISC machines. This ISA can support almost all modern operations and

features. It has 32 general purpose registers reg0 to reg31 and reg0 is hardwired to the

constant 0.

 There is one additional user accessible register known as the program counter that holds

the address of the next instruction to execute. The program counter is of 32 bits in length, at

the positive edge of the clock the program counter is incremented. The number of the

increment value is dependent on the instruction memory. In this project the instruction

memory is word addressable so the program counter is incremented by one.

 RISC V was mainly chose because it can be easily pipelined and consumes less

hardware and power. Since it is mainly software oriented, we need techniques like loop

unrolling and compiler scheduling to optimize the run time of this processor.

 There are six instruction formats in the RV32I instruction set: R-type, U-type, I-type, B-

type, J-type. and S-type shown in Figure 3.2. All of the types are explained in the following

section

20

 3.1.1. R-type RV32I Instruction Format

Fig 3.1: R-Type RV32I V 2.0 Instruction Format

 Figure 3.1 depicts the Register-type RV32I ISA V 2.0. It has a total of six fields. Opcode

width is 7 bits, which is used to indicate the type of instruction. Source registers (rs1, rs2)

and destination register (rd) are indicated by five-bit fields. The function field is of a total of

10 bits, which is used for identifying the type of operation to be performed. The instructions

which are supported by this format are add, sub, sltu, sll, xor, and, sra, srl, or, and slt.

Fig 3.2: RISC-V instruction formats.

21

3.1.2 I-type RV32I Instruction Format

Fig 3.3: I-Type RV32I V 2.0 Instruction Format

Fig 3.4: Decoding an I-type Instruction

 Figure 2.3 depicts the Register-type RV32I ISA V 2.0. Similar to R-type, Opcode width

is of 7 bits. Source registers (rs1) and destination register (rd) are indicated by five bit fields.

The function field of 3 bits, is used for identifying the type of operation to be performed. It

has a separate 12 bit field for holding the immediate operand, used for immediate data

operations. The instructions which are supported by this format are jalr, lhu, lw, lb, lbu, lh,

srai, srli, slli, slti, addi, andi, ori, xori and sltiu. Figure 2.4 shows the decoding logic of I type

Instruction

22

3.1.3 S-type RV32I Instruction Format

Fig 3.5: S-Type RV32I V 2.0 Instruction Format

Fig: 3.6: Decoding an S-type Instruction

 Figure 3.5 depicts the Store-type RV32I ISA V 2.0. Similar to R-type, Opcode width is

7 bits. Source registers (rs1 and rs2) are indicated by five bit fields. Function field is of 3

bits, which is used to indicate the size of the data need to be stored. It has a separate

7+5=12 bit field space for holding the immediate operand. This immediate operand is added

with rs1 to calculate the address in which the value rs2 needed to be stored. The

instructions which are supported by this format are sw, sb and sh. Figure 2.6 shows the

decoding logic of s type Instruction. Figure 3.6 shows the decoding logic of S type Instruction

23

3.1.4 B-type RV32I Instruction Format

Fig 3.7: B-Type RV32I V 2.0 Instruction Format

Fig 3.8: Decoding a B-type Instruction.

 Figure 3.7 shows the Branch-type RV32I ISA V 2.0. Similar to other instructions, the

Opcode width is of 7 bits. Source registers (rs1 and rs2) are indicated by five bit fields which

are used for comparison for branching. The function field is of 3 bits, which is used to

indicate the type of condition that need to be checked for branching. It has a separate

7+5=12 bit field space for holding the immediate operand, which is added to the program

counter if a branch is taken. The instructions which are supported by this format are bne,

bltu, blt, bgeu, bge and beq. Figure 3.8 shows the decoding logic of B type Instruction

`

24

3.1.5 U-type & J-type RV32I Instruction Format

Fig 3.9: J-Type RV32I V 2.0 Instruction Format

Fig 3.10: Decoding a J-type instruction.

25

Fig 3.11: U-Type RV32I V 2.0 Instruction Format

Fig 3.12: Decoding a U-type instruction

 Figure 3.9 & 3.11 shows the U-type and J-type RV32I ISA V 2.0 which are similar to

each other. It has a total of two fields. Opcode width is 7 bits, which is used to indicate the

type of instruction format. The destination register (rd) is indicated by a five bit field. It has

a 20 bit field for holding the immediate operand, used for immediate data operations. For J-

type the immediate data is rearranged before branching. The instructions which are

supported by this format are jal, lui and auipc. Figure 3.10 & 3.12 shows the decoding logic

of J & U type Instruction.

26

3.2. INSTRUCTIONS SUPPORTED

 The instructions supported by the RISC V RV32I processor supports a

wide variety of operations. The types of operations can be mainly classified

into:-

1) Arithmetic Operations

2) Logical Operations

3) Data Transfer operations

4) Control operations

Each of these operations requires the contributions of different

combinations of stages to execute. Hence all stages are interdependent of

each other to make a particular instruction to execute. The detailed

operations of each instructions are listed in the tables below.

27

3.2.1 Arithmetic Operations

Table 3.1: Arithmetic Operations

 Table 3.1 shows the list of arithmetic operations supported by the processor.

Arithmetic operations are carried out by the ALU in the execution stage of the processor.

These operations are carried out on two source operands and the result is written back to

the register file at the memory write back stage. The immediate data are sign extended to

32 bits, thus all operations are carried out with respect to 32 bits. All operations are done

such that register 1 will always take the left hand side and the register 2 or the immediate

data on the right hand side.

28

3.2.2 Logical Operations

Table 3.2: Logical Operations

Table 3.2 shows the list of Logical operations supported by the processor. Logical

operations are carried out by the ALU in the execution stage of the processor. These

operations are carried out on two source operands and the result is written back to the

register file at the memory write back stage. The immediate data are sign extended to 32

bits, thus all operations are carried out with respect to 32 bits. All operations are done such

that register 1 will always take the left hand side and the register 2 or the immediate data

on the right hand side.

29

3.2.3 Data Transfer Operations

Table 3.3: Data Transfer Operations

 Table 3.3 shows the list of Data transfer operations supported by the processor. Address

calculation part is carried out by the ALU in the execution stage of the processor. These

operations are carried out on two source operands and the result is written back to the next

stages for memory access. The immediate data are sign extended to 32 bits, thus all

operations are carried out with respect to 32 bits. All operations are done such that register

1 will always take the left hand side and the register 2 or the immediate data on the right

hand side. Load operations are carried out on the write back stage and the store operations

are carried on the memory access stage.

30

3.2.4 Control Transfer Instructions

Table 3.4: Control Transfer Operations

Table 3.4 shows the list of Control Transfer operations supported by the processor. The

condition for branching is checked and carried out by the ALU in the execution stage of the

processor. These operations are carried out on two source operands and the result is used

for setting the taken branch flag. The immediate data are sign extended to 32 bits, thus all

operations are carried out with respect to 32 bits. All operations are done such that register

1 will always take the left hand side and the register 2 or the immediate data on the right

hand side. The taken branch flag does not allow the following two instructions to make

changes to the memory and register file of the processor.

31

4. CONSTRUCTION OF THE PROCESSOR

4.1 PIPELINING OF A PROCESSOR

 The process of gathering instructions from the processor through a pipeline is known as

pipelining. It provides for the systematic storage and execution of instructions. Pipeline

processing is another name for it.

Fig 4.1: Pipelining scheduling

 Pipelining is a the process of gathering instructions from the processor via a pipeline is

known as pipelining. It enables the systematic storage and execution of instructions.

Processor processing is another name for it. Figure 4.1 shows pipelining scheduling where

5 instructions can use the same part of the processor at the same time.

32

 Pipelining increases the overall instruction throughput. In pipeline system, each

segment consists of an input register followed by a combinational circuit. The register is

used to hold data and combinational circuit performs operations on it. The output of

combinational circuit is applied to the input register of the next segment. In Figure 4.2 S1

indicated a combinational circuit and R! shows the latch.

Fig 4.2: Latch configuration of a pipelined system

The process of accumulating instructions from the processor through a pipeline is known

as pipelinelining. It enables for the orderly storage and execution of instructions. It's also

referred to as pipeline processing.

Fig 4.3: Resource utilization per clock cycle

33

 4.2. ORGANIZATION OF THE RISC-V PROCESSOR

This RISC processor design has been constructed using five pipeline stages. The used

pipeline stages are the Instruction Fetch stage (IF), Instruction Decode stage (ID), Execution

stage (EX), Memory Access stage (MEM) and Write Back stage (WB). Pipeline registers or

latches are used to separate the stages of the processor into 5 parts, so there is no

contradictory data due to the execution of multiple instructions. They are named with the

prefix as IF_ID, ID_EX, EX_MEM, MEM_WB, and WB_END. They are asserted with two

different clock sources for alternate stages, the working of multiple clock domains is

discussed in section IV. Other blocks include instruction memory (IR_MEM), Data memory

(DATA_MEM), and General purpose registers. The working of all memory units and stages

are explained here.

Fig 4.4: Netlist (Block diagram) of the proposed processor

34

4.2.1 Instruction memory

Fig 4.5: Instruction Memory Block

All instructions to be performed are stored in the ROM that acts as the instruction memory.

The program counter (pc_ir) points to the location address of the next instruction to be

executed as shown in Fig. The output is the 32-bit instruction, which is sent to the instruction

fetch stage. Here the pc address length is of 32 bits hence it can point up to 2^32 locations.

Figure 4.6 shows the Logic Diagram of Instruction Memory Block

Fig 4.6: Logic Diagram of Instruction Memory Block

35

4.2.2 Register file

Fig 4.7: General Purpose Register file Block

This module consists of 32 registers each of 32 bit in length. The values stored in the

General Purpose registers can be read simultaneously twice and written once at the same

time. Data can only be written at negative edge of clock 2 if en_GPR is HIGH. The registers

in this unit can be used in arithmetic and logical operations either as a source or destination

[5]. The rs1_addr[4:0] is used to point to the location of source register 1 (rs1[31:0]),

whereas the rs2_addr[4:0] is used to point to the location of source register 2 (rs2[31:0]).

The address is of length 5 bits because there are a total of 32 registers (2^5=32). The

data_in[31:0] is used to feed the input data to be written and data_addr[4:0] is used to point

to the register that needs to be written. Figure 4.8 shows the Logic Diagram of Register file.

Fig 4.8: Logic Diagram of Register file

36

4.2.3 Data Memory

Fig 4.9: Data Memory Block

Data memory in this processor functions as RAM. This memory can only be accessed by

store and load instructions. The store instruction enables the signal en_w HIGH, so at

negative edge of clock 2 data can be written into the memory. Data can be read by using

load instructions by setting en_w as LOW. Figure 4.10 shows the Logic Diagram of Data

Memory

Fig 4.10: Logic Diagram of Data Memory

37

4.2.4 Instruction Fetch Stage

Fig 4.11: Instruction Fetch Stage Module

This Stage contains the program counter (PC) which points to the next instruction address

to be executed in the instruction memory. Branch condition from execution stage is given

as input to this stage, if branch taken the TAKEN_BRANCH signal is asserted HIGH at the

positive edge of clock 1. This is the only stage in the processor that needs both the clocks

to operate. At the positive edge of clock 1, the Program counter is incremented and if the

branch is taken, the new address is written to the program counter. Clock 2 is used for

resetting the status of TAKEN_BRANCH. The instruction fetched and its memory address

are forwarded to the next stage. Figure 4.12 shows the Logic Diagram of Fetch Stage.

Fig 4.12: Logic Diagram of Fetch Stage

38

4.2.5 Decode Stage

Fig 4.13: Decode Stage Module

The instruction is decoded in this stage and decoded information is forwarded at the

positive edge of clock 2. Source operands from general-purpose registers are fetched. The

immediate data from the instruction is rearranged according to the opcode and are sign-

extended to 32 bits. The function field is decoded to find the operation needed to be

performed. All the data from the decoder is forwarded to the next stage for further

processing. Figure 4.14 shows the Logic Diagram of Decode Stage.

Fig 4.14: Logic Diagram of Decode Stage

39

4.2.6 Execute Stage

Fig 4.15: Execute Stage Module

This stage contains an ALU which is used to do all the arithmetic and logical operations. If

a successful branch is taken then EX_MEM_cond is set HIGH alerting the Instruction fetch

stage to update the program counter with EX_MEM_ALUOUT value. At the positive edge

of clock1 the computed data is forwarded to the next stage. Figure 4.16 shows the Logic

Diagram of Execute Stage.

Fig 4.16: Logic Diagram of Execute Stage

40

4.2.7 Memory Access Stage

Fig 4.17: Memory Access Stage Module

Load and Store operations are performed in this stage. If the instruction is not a memory

access instruction then it is ignored and en_w is set to LOW. MEM_WB_LMD is the data

read from memory for Load instructions. If TAKEN_BRANCH is HIGH then all write

operations are terminated, since the instruction before this has taken the branch. At the

positive edge of clock 2, the output is forwarded to data memory or the next stage for write

back. Figure 4.18 shows the Logic Diagram of Memory Access Stage.

Fig 4.18: Logic Diagram of Memory Access Stage

41

4.2.8 Write Back Stage

Fig 4.19: Write Back Stage Module

In this stage, the output data from the previous stage is uploaded to the address in the

destination register. If TAKEN_BRANCH is HIGH then all write operations are terminated.

Figure 4.20 shows the Logic Diagram of Write Back Stage.

Fig 4.20: Logic Diagram of Write Back Stage

42

4.3 ELIMINATION OF PIPELINE HAZARDS

There are possibly three types of hazards that arise in a pipelined processor:-

1) Structural Hazards

2) Data Hazards

3) Control Hazards

4.3.1 STRUCTURAL HAZARDS

Dvm m

Fig 4.21: Separate IR memory and date memory

The process of gathering instructions from the processor through a pipeline is known as

pipelining. It provides for the systematic storage and execution of instructions. Pipeline

processing is another name for it.

43

Example:-

Fig 4.22. Example of Structural Hazard

 In the above scenario in Figure 4.22, in cycle 4, instructions I1 and I4 are trying to

access same resource (Memory) which introduces a resource conflict.

 To avoid this problem, we have to keep the instruction on wait until the required

resource (memory in our case) becomes available

 Execution of instructions in parallel will also introduce the risk of pipeline hazards

during the execution of multiple instructions. Structural hazards are encountered when

multiple instructions use a common resource at the same time.

 This has been eliminated by implementing the processor using Harvard architecture

with separate data and instruction memory, so instruction can be fetched and data can be

accessed at the same time.

 Also the general-purpose memory with two read ports and one write port. Hence both

the decode stage and write back stage can access the register file at the same time.

Therefore, several data accesses can be performed simultaneously without conflict.

44

 4.3.2 DATA HAZARDS

Data hazards can be classified in to three types:-

A) Read After Write (RAW) Hazard [Flow/True data dependency].

B) Write After Read (WAR) Hazard [Anti-Data dependency] .

C) Write After Write (RAW) Hazard [Output data dependency] .

 Let there be two instructions I and J, such that J follow I. Then,

RAW hazard occurs when instruction J tries to read data before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R4 <- R2 + R3

WAR hazard occurs when instruction J tries to write data before instruction I reads it.

Eg:

I: R2 <- R1 + R3

J: R3 <- R4 + R5

WAW hazard occurs when instruction J tries to write output before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R2 <- R4 + R5

WAR and WAW hazards occur during the out-of-order execution of the instructions.

45

In RISC V RAW hazards are only possible, Due to the organization of stages. Since

write back stage is after read and instructions are executed in order.

 RAW Data hazards are encountered due to the usage of common When the source

for one instruction is also the destination for the previous instruction, this is known as source

and destination resources in successive instructions.

 For example in the figure ,R3 must be written before reading from it. But due the

organization of the stages the written is taken in the last stage which causes the error. Data

hazards can be prevented by inserting dummy instructions during compiling using the

compiler to create a gap between those instructions.

Fig 4.23: Example for RAW Hazard

46

 4.3.3 CONTROL HAZARDS

 This form of dependency happens when control instructions such as BRANCH, CALL,

JMP, and others are transferred. When the processor wants to introduce a new instruction

into the pipeline, it will not know the target address of these instructions on many

instruction architectures. Unwanted instructions are fed into the pipeline as a result of

this.Consider the following sequence of instructions in the program:

100: I1

101: I2 (JMP 250)

102: I3

.

250: BI1

Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

Fig 4.24: Example for RAW Hazard

47

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output, that means the pipeline is

not implemented correctly as shown in Figure 4.24.

 These hazards are encountered during the successful execution of branch and jump

instructions. This can be prevented by a branch flag which goes HIGH when the branch is

taken, thus following instructions following after the branch in memory and write backstage

are terminated.

 For example in figure 4.25, when the branch enters the pipeline the result of whether to

take branch or not will be known at the execution stage only. Within that period of time the

next two instruction would have already entered the pipeline. If the branch condition is

satisfied the next two instruction execution must not take place. Hence with the help of the

taken branch flag the next following two instructions are terminated.

Fig 4.25: Example for Control Hazard

48

4.4. CONSTRUCTION OF MULTIPLE CLOCK DOMAINS

4.4.1 CAUSES OF METASTABLE CONDITIONS

 The outputs of registers (or clocked flip-flops in old money) in digital circuits are subject

to metastability, which refers to the possibility of an output terminal entering a'metastable

condition.' D-type flip-flops are commonly used in FPGA devices. Before we look at how such

a state might be entered, it's a good idea to refresh our memories on some of the most

important timing factors in register operation:

’Set-up time’ – The outputs of registers (or clocked flip-flops in old money) in digital circuits

are concerned with metastability, which refers to the possibility of a'metastable state' for an

output terminal.

‘Hold time’ – The outputs of registers (or clocked flip-flops in old money) in digital circuits

are subject to metastability, which refers to the possibility of an output terminal entering

a'metastable condition.'

‘Clock-to-Output Delay time’ – This is the amount of time that passes after the clock edge

before the register's output changes. This is also known as the'settling time' or 'propagation

delay' of the register.

There is the chance of encountering metastability whenever a signal travels between two

asynchronous clock domains — digital sub-circuits within the overall design that are running

on distinct, or unrelated clocks. Data transfer from an unclocked part of a design into a

synchronous system – for example, external (outside) signals fed into an FPGA – is also true.

49

Fig 4.26: Outputs of metastable conditions

 Figure 4.26 shows the various types of output results in case of violation

of set up and hold time.

50

 Input A: The output is available after the device's Clock-to-Output Delay time, and the

input observes the register's Set-up and Hold durations.

Input B: During the Set-up time of the register, the input transitions, and the output

becomes metastable until it settles to the correct stable level beyond the Clock-to-Output

Delay time.

Input C: During the Hold period of the register, the input transitions, and the output

becomes metastable. Not only does the output stabilise after the Clock-to-Output Delay time,

but it also stabilises at the incorrect logic level!

If the register's output feeds into more than one subsequent register in the circuit in

parallel, these destination registers may capture the data at different logic levels, depending

on whether the source register's metastable output has settled to a stable state before each

destination register is clocked over to capture the next data. The problem is exacerbated by

path delays between the source and destination registers, which are added to the time it

takes for the metastable output to become stable.

51

 4.4.2 PREVENTION OF METASTABLE CONDITIONS

Fig 4.24: Clock distribution to the stages

 Two Clock sources (clk1, clk2) are used for consecutive stages as shown in Figure 4.24.

Both clock sources are non-Overlapping as shown in Figure 4.25.

Fig 4.25: Non–Overlapping clock sources

 They are non-overlapped to take care of variable delays like clocks skew, there is also a

gap in between them where both clocks are LOW. This is a very safe kind of clocking scheme

where we have non-overlapping clocks with a safe margin in between.

52

For example: since there is no overlap, at the positive edge clock 1, it is guaranteed that

EX_MEM is active and the previous stage ID_EX is inactive. Hence the inputs to EX_MEM

are held constant so setup & hold time violation does not occur, thus it prevents unstable

output or metastable output. Thus by using two-phase clocks isolation of one stage from the

other can be achieved.

53

5. SIMULATION AND SYNTHESIS RESULTS

5.1 SOFTWARES USED

 There are mainly two softwares used in this project :-

1) ModelSim

2) Quartus Prime

5.1.1 ModelSim

 Mentor's ModelSim is the best HDL language simulation software on the market. It is the

industry's first single-core simulator that supports VHDL and Verilog mixed simulation and

can provide a nice simulation environment. It makes use of single-core simulation

technology, Tcl/Tk technology, and directly optimised compilation technology.

 The compilation simulation is quick, and the produced code is platform agnostic. It's simple

to secure the IP core, create a personalised graphical and user interface, and speed up

debugging for users. Is the first choice of simulation software for FPGA/ASIC design because

it provides a powerful means.

Features:-

o RTL and gate-level optimization, local compilation structure, fast compilation simulation

speed, cross-platform and cross-version simulation;

o Single core VHDL and Verilog mixed simulation;

o Source code templates and assistants, project management;

o Integrated performance analysis, waveform comparison, code coverage, and data flow

ChaseX, Signal Spy, Virtual Object, Memory window, Assertion window, source window

display signal value, signal condition breakpoint, and many other debugging functions;C

and Tcl/Tk interface, C debugging;

o Direct support for SystemC, arbitrarily mixed with HDL;

o Support the design function of SystemVerilog;

54

o The most comprehensive support for system-level description languages, SystemVerilog,

SystemC, PSL;

o ASIC Sign off.

o Behavioral, RTL level, and gate-level codes can be performed individually or

simultaneously.

Fig 5.1: ModelSim Logo

55

5.1.2 Quartus Prime

In the system-on-a-programmable-chip (SOPC) design environment, the Quartus II
design is the most advanced and complex. Quartus II design offers a complete temporal
closure as well as a LogicLockTM block-based design flow. Quartus II design is the only
software that provides fundamental capabilities such as a programmable logic device
(PLD) with timing closure and a block-based design flow. The Quartus II design software
boosts performance, adds functionality, and eliminates design delays. It is the first in the
industry to provide a unified process for the creation of FPGA and mask-programmed
devices.

Fig 5.2: QuartusLogo

 Due to its extensive design capabilities and simple and easy-to-use interface, Altera

Quartus II is becoming increasingly popular among digital system designers as a

programmable logic design environment. The most recent version is v17.0, which is now

available for official download.

 Altera Quartus II (3.0 and higher) is the industry's only design tool that combines
FPGAs and fixed-function HardCopy devices into a single design flow. Engineers may
design HardCopy Stratix devices for mass production using the same low-cost tools they

use for functional verification and prototyping of Stratix FPGAs.

System designers may now assess the performance and power consumption of
HardCopy Stratix devices using the Quartus II software, and design the maximum
throughput accordingly.

 The fourth-generation PLD development platform is Altera's Quartus II
programmable logic software. The platform accommodates design needs in a workgroup
setting, including Internet-based collaborative design. Cadence, ExemplarLogic,
MentorGraphics, Synopsys, and Synplicity's development tools are all compatible with the
Quartus platform.

56

 The LogicLock module design function has been enhanced, FastFit compilation
options have been added, network editing performance has been enhanced, and debugging
features have been enhanced.

I. The software is smaller and faster

The installation software for QuartusII2.0 is 290M, while the entire installation is 700M. If
you tailor the installation and don't use the Excalibur embedded processor, the space
required for installation is 460M, which is more than half as much as the QuartusII1.1

version.

But it can still handle all ALTERA chips. Development. At the same time, the software is
substantially faster than version 1.1 in terms of loading, compilation, and simulation.

II. LogicLock design process improves performance by 15%

By upgrading the hierarchical LogicLock module-level architecture, QuartusII2.0 design
software boosts performance by an average of 15%. The LogicLock design method allows
the designer to manage the placement of the entire module, and an auxiliary layout can be
employed if necessary. During the building of big SOPC systems, the LogicLock design
method allows designers to optimise and lock the performance of each module
independently while retaining the overall system performance.

In future Altera devices, the new LogicLock design flow algorithm is integrated into the
Quartus II design software version 2.0. This algorithm makes use of module-level design to
its greatest potential.

III. Reduce compilation time with quick adaptation options

QuartusII2.0 adds a new quick adaptation compilation option. Selecting this option will
shorten the compilation time by 50% compared to the default setting. The quick adaptation
function retains the best performance settings and speeds up the compilation process.

 In this way, the layout adaptation algorithm has fewer iterations, faster compilation
speed, and minimal impact on design performance.

57

IV. New features reduce system-level verification

Version 2.0 of the Quartus II design software adds additional features to help speed

up the verification step of the SOPC design process, which is normally the most time-

consuming. The new SignalProbe technology allows users to route internal nodes to

unused pins for analysis during the initial compilation period, while keeping the design's

original wiring, time limit, and design files.

The SignalProbe technology extends the capabilities of the SignalTap embedded

logic analysis. Designers can also use the HDL test templates included in the new

version to create HDL simulation vectors fast.

From the Quartus II simulator waveform file, version 2.0 of the Quartus II design

programme can automatically produce a complete HDL test platform.

The Quartus II design programme now supports high-speed I/O design in version

2.0.

58

5.2. SIMULATION RESULTS

The proposed microprocessor design is developed using Verilog and simulated using

ModelSim, The design is simulated by providing loaded instructions in the instruction

memory.

The following examples of instruction types are shown as examples with respect to

pipelining in the upcoming sessions

1 ARITHMETIC TYPE INSTRUCTIONS

2 LOGICAL TYPE INSTRUCTIONS

3 IMMEDIATE TYPE INSTRUCTIONS

4 STORE TYPE INSTRUCTIONS

5 LOAD TYPE INSTRUCTIONS

6 BRANCH TYPE INSTRUCTIONS

7 JUMP TYPE INSTRUCTIONS

During the following examples assume that in the following simulations the general

purpose registers R4,R6,R7 are preloaded with hexa values of 3,10,f.

59

5.2.1 ARITHMETIC TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

add r1,r4,r6

sub r2,r6,r4

Fig 5.3: Simulation Example of ARITHMETIC TYPE INSTRUCTIONS

First the contents of r4 and r6 is fetched and added, then stored into r1. At the same
time in the continuing cycle the hardware is used paralleled by the next instruction to fetch

r6 and r4 values and subtracted, then stored into r2.

Fig 5.4: GPR value after execution of above instructions

60

5.2.2 LOGICAL TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

or r1,r4,r6

and r2,r6,r4

Fig 5.5: Simulation Example of LOGICAL TYPE INSTRUCTIONS

First the contents of r4 and r6 is fetched and computed, then stored into r1. At the same

time in the continuing cycle the hardware is used paralleled by the next instruction to fetch

r6 and r4 values and computed, then stored into r2.

Fig 5.6: GPR value after execution of above instructions

61

5.2.3 IMMEDIATE TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

addi r1,r4,7

andi r2,r7,3

Fig 5.7: Simulation Example of IMMEDIATE TYPE INSTRUCTIONS

First the contents of r4 is fetched and effective value is computed, then stored into r1. At

the same time in the continuing cycle the hardware is used paralleled by the next instruction

to fetch r7 value and and to compute the effective value, then stored into r2.

Fig 5.8: GPR value after execution of above instructions

62

5.2.4 STORE TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

sb r4,01(r0)

sw r7,02(r0)

Fig 5.9: Simulation Example of STORE TYPE INSTRUCTIONS

First the contents of r4 is fetched and effective address is computed, then stored. At the

same time in the continuing cycle the hardware is used paralleled by the next instruction to

fetch r7 and the effective address is computed, then stored.

Fig 5.10: GPR value after execution of above instructions

63

5.2.5 LOAD TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

lw r6,1(r0)

lb r7,2(r0)

Fig 5.11: Simulation Example of LOAD TYPE INSTRUCTIONS

First the contents of r4 is fetched and effective address is computed, then stored. At the

same time in the continuing cycle the hardware is used paralleled by the next instruction to

fetch r7 and the effective address is computed, then stored.

Fig 5.12: GPR value after execution of above instructions

64

5.2.6 BRANCH TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

beq r1,r2,12

bne r1,r2,5

Fig 5.13: Simulation Example of LOAD TYPE INSTRUCTIONS

First the contents of r1 and r2 is fetched and compared. At the same time in the continuing

cycle the hardware is used paralleled by the next instruction to fetch r1 and r4. Then branch

is decided based on the condition.

65

5.2.7 JUMP TYPE INSTRUCTIONS

Consider the following instructions loaded into the instruction memory from position 0. The

instructions are executed in a pipeline fashion as shown using modelsim in the figure below.

Eg:-

jal r1,12

jalr r1,5(r3)

Fig 5.14: Simulation Example of LOAD TYPE INSTRUCTIONS

First the contents of r1 is fetched and effective address is computed, then jump occurs. At

the same time in the continuing cycle the hardware is used paralleled by the next instruction

to fetch r1 and the effective address is computed then jump occurs.

66

5.3 IMPLEMENTATION ON FPGA

This processor is synthesized using Quartus Prime. Figure 16 shows the Register Transfer

Logic diagram of the proposed 32-bit RISC-V processor. The processor is implemented on

ALTERA Cyclone 10 LP 10CL080ZF484I8G FPGA. Table 1: shows the device utilization of

the proposed processor.

Fig 5.15: RTL View of the Processor Design

Parameter Utilization

Combinational

LUTs

1,599 / 81,264 (2 %)

Logic Registers 410

Max .Frequency 250 MHZ

Table 5.1: Device Utilization

67

6. CONCLUSION AND AND FUTURE SCOPE

6.1 CONCLUSION

 THE DESIGN OF A MULTIPLE CLOCK DOMAIN PIPELINED RISC PROCESSOR IS DISCUSSED IN

THIS WORK. ON THE BASIS OF RV32I ISA V 2.0, WE HAVE INCORPORATED OVER 30 INSTRUCTIONS

INTO THE ARCHITECTURE. WE INCREASED THROUGHPUT BY LOWERING THE NUMBER OF CLOCKS

PER INSTRUCTION VIA PIPELINING.

 QUARTUS PRIME WAS USED TO SYNTHESIS THE DESIGN, AND MODELSIM WAS USED TO

MODEL IT. EXTENSIVE SIMULATIONS WERE USED TO VERIFY EACH INSTRUCTION SEPARATELY.

METASTABILITY AND UNPREDICTABLE DELAYS LIKE CLOCK SKEW BY USING NON-OVERLAPPING TWO-

PHASE CLOCKS.

 The future depends on the computing speed of these RISC processors. IOT

devices has already started emerging in this century. More and more RISC based

processors will be designed and verified for the consumers. Thus more flexible designs are

needed like the one being projected in this report.

The processor can be further converted from RTL to GDSI for a specific technology node.

Where the power and area can be optimized for tape out.

After fabrication the processor can be installed with an OS to make it work as applicable to

a application.

Then further it can be loaded with applications and output devices to make to consumer

friendly to use.

68

6.2 FUTURE SCOPE

The existing processor can be enhanced by the following ways:-

 Branch prediction and Branch history table can be added for better branching and

for reducing stalls by branch

 Data forwarding unit can be added to reduce data delay slots by the compiler and

to make the throughput high.

 Multiple cycle units can be added to increase the throughput.

 Multiple issue and multiple execution can be done by implementing the same

concept by using tomasulos algorithm.

 Interrupt error checker can be added.

 Error information from interrupts can be forwarded by registers by pipelining for

finding the fault.

The processor can be further converted from RTL to GDSI for a specific

technology node. Where the power and area can be optimized for tape out.

After fabrication the processor can be installed with an OS to make it work as

applicable to a application.

Then further it can be loaded with applications and output devices to make to

consumer friendly to use.

69

7. REFERENCES

[1] M. N. Topiwala and N. Saraswathi, "Implementation of a 32-bit MIPS based RISC

processor using Cadence," 2014 IEEE International Conference on Advanced

Communications, Control and Computing Technologies, 2014, pp. 979-983, doi:

10.1109/ICACCCT.2014.7019240.

[2] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, "Synthesis and Simulation of a 32Bit

MIPS RISC Processor using VHDL," 2014 International Conference on Advances in

Engineering & Technology Research (ICAETR - 2014), 2014, pp. 1-6, doi:

10.1109/ICAETR.2014.7012843.

[3] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, "Design and simulation of 32-Bit RISC

architecture based on MIPS using VHDL," 2015 International Conference on Advanced

Computing and Communication Systems, 2015, pp. 1-6, doi:

10.1109/ICACCS.2015.7324067.

[4] D. K. Dennis et al., "Single cycle RISC-V micro architecture processor and its FPGA

prototype," 2017 7th International Symposium on Embedded Computing and System

Design (ISED), 2017, pp. 1-5, doi: 10.1109/ISED.2017.8303926.

[5] S. Palekar and N. Narkhede, "32-Bit RISC processor with floating point unit for DSP

applications," 2016 IEEE International Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT), 2016, pp. 2062-2066, doi:

10.1109/RTEICT.2016.7808202.

[6] A. Raveendran, V. B. Patil, D. Selvakumar and V. Desalphine, "A RISC-V instruction

set processor-micro-architecture design and analysis," 2016 International Conference on

VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), 2016, pp. 1-7, doi:

10.1109/VLSI-SATA.2016.7593047.

70

[7] P. V. S. R. Bharadwaja, K. R. Teja, M. N. Babu and K. Neelima, "Advanced low power

RISC processor design using MIPS instruction set," 2015 2nd International Conference on

Electronics and Communication Systems (ICECS), 2015, pp. 1252-1258, doi:

10.1109/ECS.2015.7124785.

[8] A. Ashok and V. Ravi, "ASIC design of MIPS based RISC processor for high

performance," 2017 International Conference on Nextgen Electronic Technologies: Silicon

to Software (ICNETS2), 2017, pp. 263-269, doi: 10.1109/ICNETS2.2017.8067945.

[9] J. V. Kumar, B. Nagaraju, C. Swapna and T. Ramanjappa, "Design and development of

FPGA based low power pipelined 64-Bit RISC processor with double precision floating point

unit," 2014 International Conference on Communication and Signal Processing, 2014, pp.

1054-1058, doi: 10.1109/ICCSP.2014.6950008.

[10] R. J. L. Austria, A. L. Sambile, K. M. Villegas and J. N. T. Tabing, "Design of an 8-bit

five stage pipelined RISC microprocessor for sensor platform application," TENCON 2017 -

2017 IEEE Region 10 Conference, 2017, pp. 2110-2115, doi:

10.1109/TENCON.2017.8228209.

[11] R. Aneesh. and K. Jiju., "Design of FPGA based 8-bit RISC controller IP core using

VHDL," 2012 Annual IEEE India Conference (INDICON), 2012, pp. 427-432, doi:

10.1109/INDCON.2012.6420656.

Sandeep Prabhakaran

Design and Analysis of a Multi Clocked Pipelined Processor Based on
RISC-V

Design and Analysis of a Multi Clocked Pipelined

Processor Based on RISC-V

Abstract— The main goal of this study is to develop a 32-bit

pipelined processor with several clock domains based on the

RISC-V (open source RV32I Version 2.0) ISA. To minimise the

complexity of the instruction set and speed up the execution

time per instruction, RISC (Reduced Instruction Set

Computer) is a type of processor that uses less hardware than

CISC (Complex Instruction Set Computer) is used.

Furthermore, we constructed this processor with five levels of

pipelining, resulting in parallelism in instruction execution.

With the aid of necessary block diagrams, all of the processes

are well described. Multiple clock domains employing two

clock sources are used to ensure that variable delays such as

clock skew and metastability are avoided within the stage

pipeline registers. Quartus Prime was used to design and

synthesis this processor, which was written in Verilog HDL.

ModelSim was used to verify this design, and all of the

instructions have been thoroughly checked. Furthur the

processor is implemented on the “ALTERA Cyclone 10 LP”

board for calculating the device utilization.

Keywords—RISC, Multiple Clock Domains, Pipeline, Verilog,

Processor.

I. INTRODUCTION

Over the past decades, microprocessors and
microcontrollers has been constructed around two types of
architectures, Reduced Instruction Set computer and
Complex Instruction Set Computer [1]. CISC instructions are
variable in length and are encoded for doing more micro
operations per instruction. As a result, the complex
architecture of CISC processors makes instructions take a
longer time to execute [2]. Since all instructions of a RISC
processor have the same instruction length, the decoding
process becomes easier compared to a CISC processor. RISC
is widely used due to its efficient architecture which can be
used for low power and high speed processing application. It
supports very few addressing modes, LOAD and STORE
instructions are the only instructions that are used to access
the external memory. Hence RISC processors are mainly
dependent on software and CISC processors are mainly
dependent on hardware for executing complex tasks.

Every processor architecture design’s primary aim is to
keep Clock per Instruction (CPI) close to 1 which can be
always challenging. To increase the throughput we have
implemented the processor using 5 stages pipelined
architecture, by implementing separate stages for Fetch
instructions, Decoding, Arithmetic operations, Memory
access and write back. Through pipelining on each cycle, an
instruction can be executed. Execution of instructions in
parallel will also introduce the risk of pipeline hazards during

the execution of multiple instructions. Structural hazards are
encountered when multiple instructions use a common
resource at the same time. This has been eliminated by
implementing the processor using Harvard architecture with
separate data and instruction memory, also a general-purpose

memory with two read ports and one write port. Therefore,
several data accesses can be performed simultaneously
without conflict. Data hazards are encountered due to the
usage of common source and destination resources in
consecutive instructions, this occurs when the source for
instruction is the destination for the previous instruction [3].
Data hazards can be prevented by inserting dummy
instructions during compiling using the compiler to create a
gap between those instructions. Control hazards are
encountered during the successful execution of branch and
jump instructions. This can be prevented by a branch flag
which goes HIGH when the branch is taken, thus following
instructions following after the branch in memory and write
backstage are terminated.

The organization of the paper is as follows. Section II
explains the ISA of RISC-V RV32I in detail. Section III
presents the working of individual stages and memory units
of the processor. Sections IV describes the construction of
multiple clock domains. Section V shows the simulated
waveforms in ModelSim. Section VI shows the RTL view
and Device utilization summary of the design. The final
section provides the Conclusion and References.

II. INSTRUCTION SET ARCHITECTURE (RV32I)

The RISC-V (RV32I) instruction set has a fixed length of

32 bits. It is designed to form a sufficient compile target and
support modern OS environments [4]. It was constructed in a
way that it reduces the hardware needed for minimum
implementation. It has 32 general purpose registers reg0 to
reg31 and reg0 is hardwired to the constant 0. There are six
instruction formats in the RV32I instruction set: R-type, U-
type, I-type, B-type, J-type. and S-type. All of the types are
explained in the following section.

A. R-type RV32I Instruction Format

Fig. 1. R-Type RV32I V 2.0 Instruction Format

 Figure 1 depicts the Register-type RV32I ISA V 2.0. It
has a total of six fields. Opcode width is 7 bits, which is used
to indicate the type of instruction. Source registers (rs1, rs2)
and destination register (rd) are indicated by five-bit fields.
The function field is of a total of 10 bits, which is used for
identifying the type of operation to be performed. The
instructions which are supported by this format are add, sub,
sltu, sll, xor, and, sra, srl, or, and slt.

B. I-type RV32I Instruction Format

Fig. 2. I-Type RV32I V 2.0 Instruction Format

Sandeep Prabhakaran
Dept. of ECE,

Sathyabama Institute of Science and
Technology

Chennai, India

Mathan N
Dept. of ECE,

Sathyabama Institute of Science
and Technology
Chennai, India

V Vedanarayanan
Dept. of ECE,

Sathyabama Institute of Science and
Technology

Chennai, India

 Figure 1 depicts the Register-type RV32I ISA V 2.0.

Similar to R-type, Opcode width is of 7 bits. Source

registers (rs1) and destination register (rd) are indicated by

five bit fields. The function field of 3 bits, is used for

identifying the type of operation to be performed. It has a
separate 12 bit field for holding the immediate operand,

used for immediate data operations. The instructions which

are supported by this format are jalr, lhu, lw, lb, lbu, lh, srai,

srli, slli, slti, addi, andi, ori, xori and sltiu.

C. S-type RV32I Instruction Format

Fig. 3. S-Type RV32I V 2.0 Instruction Format

 Figure 3 depicts the Store-type RV32I ISA V 2.0.

Similar to R-type, Opcode width is 7 bits. Source registers

(rs1 and rs2) are indicated by five bit fields. Function field is
of 3 bits, which is used to indicate the size of the data need

to be stored. It has a separate 7+5=12 bit field space for

holding the immediate operand. This immediate operand is

added with rs1 to calculate the address in which the value

rs2 needed to be stored. The instructions which are

supported by this format are sw, sb and sh.

D. B-type RV32I Instruction Format

Fig. 4. B-Type RV32I V 2.0 Instruction Format

 Figure 4 shows the Branch-type RV32I ISA V 2.0.

Similar to other instructions, the Opcode width is of 7 bits.

Source registers (rs1 and rs2) are indicated by five bit fields
which are used for comparison for branching. The function

field is of 3 bits, which is used to indicate the type of

condition that need to be checked for branching. It has a

separate 7+5=12 bit field space for holding the immediate

operand, which is added to the program counter if a branch

is taken. The instructions which are supported by this format

are bne, bltu, blt, bgeu, bge and beq.

E. U-type & J-type RV32I Instruction Format

Fig. 5. J-Type RV32I V 2.0 Instruction

Format

Fig. 6. U-Type RV32I V 2.0 Instruction Format

 Figure 5 shows the U-type and J-type RV32I ISA V 2.0

which are similar to each other. It has a total of two fields.

Opcode width is 7 bits, which is used to indicate the type of
instruction format. The destination register (rd) is indicated

by a five bit field. It has a 20 bit field for holding the

immediate operand, used for immediate data operations. For

J-type the immediate data is rearranged before branching.

The instructions which are supported by this format are jal,

lui and auipc.

III. ORGANISATION OF RISC-V PROCESSOR

This RISC processor design has been constructed using
five pipeline stages. The used pipeline stages are the
Instruction Fetch stage (IF), Instruction Decode stage (ID),
Execution stage (EX), Memory Access stage (MEM) and
Write Back stage (WB). Pipeline registers or latches are used

to separate the stages of the processor into 5 parts, so there is
no contradictory data due to the execution of multiple
instructions. They are named with the prefix as IF_ID,
ID_EX, EX_MEM, MEM_WB, and WB_END. They are
asserted with two different clock sources for alternate stages,
the working of multiple clock domains is discussed in section
IV. Other blocks include instruction memory (IR_MEM),
Data memory (DATA_MEM), and General purpose
registers. The working of all memory units and stages are
explained here.

A. Instruction memory

Fig. 7. Instruction Memory Block

All instructions to be performed are stored in the ROM
that acts as the instruction memory. The program counter
(pc_ir) points to the location address of the next instruction
to be executed. The output is the 32-bit instruction, which is
sent to the instruction fetch stage.

B. Register file

Fig. 8. General Purpose Register file Block

This module consists of 32 registers each of 32 bit in
length. The values stored in the General Purpose registers

can be read simultaneously twice and written once at the

same time. Data can only be written at negative edge of

clock 2 if en_GPR is HIGH. The registers in this unit can be

used in arithmetic and logical operations either as a source

or destination [5].

C. Data Memory

Fig. 9. Data Memory Block

Data memory in this processor functions as RAM. This

memory can only be accessed by store and load instructions.
The store instruction enables the signal en_w HIGH, so at

negative edge of clock 2 data can be written into the

memory. Data can be read by using load instructions by

setting en_w as LOW.

D. Instruction Fetch Stage

Fig. 10. Instruction Fetch Stage Module

This Stage contains the program counter (PC) which

points to the next instruction address to be executed in the

instruction memory. Branch condition from execution stage

is given as input to this stage, if branch taken the

TAKEN_BRANCH signal is asserted HIGH at the positive

edge of clock 1. This is the only stage in the processor that

needs both the clocks to operate. At the positive edge of

clock 1, the Program counter is incremented and if the

branch is taken, the new address is written to the program

counter. Clock 2 is used for resetting the status of
TAKEN_BRANCH. The instruction fetched and its memory

address are forwarded to the next stage.

E. Decode Stage

Fig. 11. Decode Stage Module

The instruction is decoded in this stage and decoded

information is forwarded at the positive edge of clock 2.

Source operands from general-purpose registers are fetched.

The immediate data from the instruction is rearranged

according to the opcode and are sign-extended to 32 bits.

The function field is decoded to find the operation needed to

be performed. All the data from the decoder is forwarded to
the next stage for further processing.

F. Execute Stage

Fig. 12. Execute Stage Module

This stage contains an ALU which is used to do all the

arithmetic and logical operations. If a successful branch is

taken then EX_MEM_cond is set HIGH alerting the

Instruction fetch stage to update the program counter with

EX_MEM_ALUOUT value. At the positive edge of clock1
the computed data is forwarded to the next stage.

G. Memory Access Stage

Fig. 13. Memory Access Stage Module

Load and Store operations are performed in this stage. If

the instruction is not a memory access instruction then it is

ignored and en_w is set to LOW. MEM_WB_LMD is the

data read from memory for Load instructions. If

TAKEN_BRANCH is HIGH then all write operations are

terminated, since the instruction before this has taken the
branch. At the positive edge of clock 2, the output is

forwarded to data memory or the next stage for write back.

H. Write Back Stage

Fig. 14. Write Back Stage Module

In this stage, the output data from the previous stage is

uploaded to the address in the destination register. If

TAKEN_BRANCH is HIGH then all write operations are

terminated.

IV. CONSTRUCTION OF MULTIPLE CLOCK DOMAINS

Fig. 15. Clock distribution to the stages

Fig. 16. RTL View of the Processor Design

 Two Clock sources (clk1, clk2) are used for consecutive
stages as shown in Figure 15. Both clock sources are non-
Overlapping as shown in Figure 17.

Fig. 17. Non –Overlapping clock sources

They are non-overlapped to take care of variable delays

like clocks skew, there is also a gap in between them where
both clocks are LOW. This is a very safe kind of clocking
scheme where we have non-overlapping clocks with a safe
margin in between. For example: since there is no overlap, at
the positive edge clock 1, it is guaranteed that EX_MEM is
active and the previous stage ID_EX is inactive. Hence the
inputs to EX_MEM are held constant so setup & hold time
violation does not occur, thus it prevents unstable output or
metastable output. Thus by using two-phase clocks isolation
of one stage from the other can be achieved.

V. SIMULATION RESULTS

The proposed microprocessor design is developed using

Verilog and simulated using ModelSim, The design is
simulated by providing loaded instructions in the instruction

memory. Figure 18 shows the simulated output of I-type and

R-type instructions, addi R3, R4, 10, add R5, R6, R7.

Fig. 18. Simulation Waveform of R-type and I-type Instructions.

Figure 19 shows the simulated output of S-type and

J-type instructions, sw R4, 1(R0) and jal R1,0

Fig. 19. Simulation Waveform of S-type and J-type Instructions

VI. IMPLEMENTATION ON FPGA

This processor is synthesized using Quartus Prime.

Figure 16 shows the Register Transfer Logic diagram of the

proposed 32-bit RISC-V processor. The processor is

implemented on ALTERA Cyclone 10 LP
10CL080ZF484I8G FPGA. Table 1: shows the device

utilization of the proposed processor.

Table 1: Device Utilization

Parameter Utilization

Combinational LUTs 1,599 / 81,264 (2 %)

Logic Registers 410

Max .Frequency 250 MHZ

VII. CONCLUSION

 The design of a multiple clock domain pipelined RISC

processor is discussed in this work. On the basis of RV32I
ISA V 2.0, we have incorporated over 30 instructions into

the architecture. We increased throughput by lowering the

number of clocks per instruction via pipelining. Quartus

Prime was used to synthesis the design, and ModelSim was

used to model it. Extensive simulations were used to verify

each instruction separately. Metastability and unpredictable

delays like clock skew by using non-overlapping two-phase

clocks.

REFERENCES

[1] M. N. Topiwala and N. Saraswathi, "Implementation of a 32-bit

MIPS based RISC processor using Cadence," 2014 IEEE

International Conference on Advanced Communications, Control and
Computing Technologies, 2014, pp. 979-983, doi:

10.1109/ICACCCT.2014.7019240.

[2] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, "Synthesis and
Simulation of a 32Bit MIPS RISC Processor using VHDL," 2014

International Conference on Advances in Engineering & Technology
Research (ICAETR - 2014), 2014, pp. 1-6, doi:

10.1109/ICAETR.2014.7012843.

[3] S. P. Ritpurkar, M. N. Thakare and G. D. Korde, "Design and
simulation of 32-Bit RISC architecture based on MIPS using VHDL,"

2015 International Conference on Advanced Computing and
Communication Systems, 2015, pp. 1-6, doi:

10.1109/ICACCS.2015.7324067.

[4] D. K. Dennis et al., "Single cycle RISC-V micro architecture
processor and its FPGA prototype," 2017 7th International

Symposium on Embedded Computing and System Design (ISED),

2017, pp. 1-5, doi: 10.1109/ISED.2017.8303926.

[5] S. Palekar and N. Narkhede, "32-Bit RISC processor with floating

point unit for DSP applications," 2016 IEEE International Conference
on Recent Trends in Electronics, Information & Communication

Technology (RTEICT), 2016, pp. 2062-2066, doi:

10.1109/RTEICT.2016.7808202.

[6] A. Raveendran, V. B. Patil, D. Selvakumar and V. Desalphine, "A

RISC-V instruction set processor-micro-architecture design and
analysis," 2016 International Conference on VLSI Systems,

Architectures, Technology and Applications (VLSI-SATA), 2016, pp.

1-7, doi: 10.1109/VLSI-SATA.2016.7593047.

[7] P. V. S. R. Bharadwaja, K. R. Teja, M. N. Babu and K. Neelima,
"Advanced low power RISC processor design using MIPS instruction

set," 2015 2nd International Conference on Electronics and
Communication Systems (ICECS), 2015, pp. 1252-1258, doi:

10.1109/ECS.2015.7124785.

[8] A. Ashok and V. Ravi, "ASIC design of MIPS based RISC processor
for high performance," 2017 International Conference on Nextgen

Electronic Technologies: Silicon to Software (ICNETS2), 2017, pp.

263-269, doi: 10.1109/ICNETS2.2017.8067945.

[9] J. V. Kumar, B. Nagaraju, C. Swapna and T. Ramanjappa, "Design

and development of FPGA based low power pipelined 64-Bit RISC
processor with double precision floating point unit," 2014

International Conference on Communication and Signal Processing,

2014, pp. 1054-1058, doi: 10.1109/ICCSP.2014.6950008.

[10] R. J. L. Austria, A. L. Sambile, K. M. Villegas and J. N. T. Tabing,

"Design of an 8-bit five stage pipelined RISC microprocessor for
sensor platform application," TENCON 2017 - 2017 IEEE Region 10

Conference, 2017, pp. 2110-2115, doi:

10.1109/TENCON.2017.8228209.

[11] R. Aneesh. and K. Jiju., "Design of FPGA based 8-bit RISC

controller IP core using VHDL," 2012 Annual IEEE India Conference
(INDICON), 2012, pp. 427-432, doi:

10.1109/INDCON.2012.6420656.

