

CREDIT CARD FRAUD DETECTION WITH

FORMULA BASED AUTHENTICATION

 Submitted in partial fulfillment of the requirements for the award of

 Bachelor of engineering degree in Computer Science and Engineering

 By

 CHAVVA NIKHITA (Reg. No. 38110102)
 BHAVYA BABU (Reg. No. 38110080)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

APRIL-2022

ii

 DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of CHAVVA

NIKHITA (Reg.no.38110102) and BHAVYA BABU (Reg.no.38110080) who

carried out the project entitled “CREDIT CARD FRAUD DETECTION WITH

FORMULA BASED AUTHENTICATION” under my supervision from November

2021 to April 2022.

Internal Guide

 Dr. ASHA. P, M.E.,

PH.D.,

Head of the Department

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

iii

DECLARATION

I CHAVVA NIKHITA (Reg. No. 38110080) and BHAVYA BABU (Reg. No. 38110080)

hereby declare the Project Report entitled “CREDIT CARD FRAUD DETECTION WITH

FORMULA BASED AUTHENTICATION” done by me under the guidance of Dr. ASHA.

P, M.E., PH.D., is submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering in Computer Science and Engineering.

DATE:

PLACE: SIGNATURE OF THE CANDIDATE

iv

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to the Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. I am grateful to them.

I convey my thanks to Dr.T.Sasikala M.E.,Ph.D., Dean, School of Computing,

Dr.S.Vigneshwari M.E.,Ph.D. and Dr.L.Lakshmanan M.E.,Ph.D., Heads of the

Department of Computer Science and Engineering for providing me necessary

support and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my project guide

Dr. ASHA. P, M.E., PH.D., for her valuable guidance, suggestions and constant

encouragement paved the way for the successful completion of my project.

I wish to express my thanks to all teaching and non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many

ways for the completion of the project.

v

vi

vii

 ABSTRACT

Credit cards have become an important part of digital transactions. Days have

come where people don’t have to carry cash in their pockets and just a small card

is enough to make all the transactions. The problem with credit cards is that the

password can be hacked and can easily lead to fraud. In this project, credit card

fraud can be detected using Hidden Markov Model (HMM) and formula based

authentication. In the Existing system, credit card transactions have become

commonplace today and so are the frauds associated with it. In the proposed

system, machine learning supervised and unsupervised algorithms have been

applied to detect master card deception in an imbalanced dataset. In the

modification process, an application is developed for a banking sector particularly

for a credit or ATM card. Users can create an account and get the ATM or credit

card along with a unique formula which should be used during suspicious

transactions. The user behavior of every transaction is tracked by Hidden Markov

Model and if there are any occurrences of suspicious transactions, then a

message is sent to the user with the keys that are required to complete the

formula. After the user applies the keys to the formula the solution must be

entered as the password in order to complete the transaction successfully.

viii

TABLE OF CONTENTS

 ABSTRACT vii

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xi

CHAPTER NO TITLE PAGE NO

1 INTRODUCTION 1

 1.1 OBJECTIVE 1

 1.2 OUTLINE OF THE PROJECT 1

 1.3 ARCHITECTURE OF CREDIT CARD DETECTION
AND AUTHENTICATION

2

 1.4 FLOW CHARTS 4

 1.5 APPLICATION OF CREDIT CARDS 5

2 AIM AND SCOPE OF PROJECT 7

 2.1 AIM OF THE PROJECT 7

 2.2 SCOPE OF THE PROJECT 7

3 LITERATURE SURVEY OF PROJECT 8

 3.1 LITERATURE SURVEY 8

 3.2 INFERENCES FROM LITERATURE 14

4 EXPERIMENTAL OR MATERIALS AND METHODS;
ALGORITHMS USED

15

 4.1 SOFTWARE REQUIREMENTS 15

 4.2 HARDWARE REQUIREMENTS 15

 4.3 JAVA 15

 4.4 APPLICATION OF JAVA 16

 4.5 FEATURES OF JAVA 16

 4.6 JDK 19

 4.6.1 JDK AND JAVA COMPILER 20

 4.6.2 JDK PACKAGES 20

ix

 4.6.3 JDK VERSIONS COMPATIBILITY 20

 4.7 TOOLS FOR INTERFACING WITH OTHER
LANGUAGES

20

 4.8 ALGORITHMS STEPS 22

5 PROJECT DESCRIPTION 19

 5.1 EXISTING SYSTEM 19

 5.2 EXISTING SYSTEM DISADVANTAGES 19

 5.3 PROPOSED WORK 19

 5.4 ADVANTAGES OF PROPOSED WORK 20

 5.5 MODULES 20

 5.5.1 USER REGISTRATION 20

 5.5.2 BANK SERVER 20

 5.5.3 HMM MODEL 21

 5.5.4 FORMULA BASED AUTHENTICATION 21

 5.6 HIDDEN MARKOV MODEL 21

 5.7 NUMERIC NOTATION

5.8 RESULTS

22

6 CONCLUSION AND FUTURE ENHANCEMENTS 26

 6.1 CONCLUSION 26

 6.2 FUTURE ENHANCEMENTS 26

REFERENCES

 APPENDIX 37

 A. SOURCE CODE 37

 B. PLAGARISM REPORT 43

x

 LIST OF FIGURES

FIGURE

NO

 NAME PAGE NO

1.1 System Architecture of Credit Card Fraud Detection System 2

1.2 Flowchart representing the initial steps of the model 4

1.3 Flowchart representing the Transaction process 5

6.1 User Login Page 23

6.2 User Registration Page 23

6.3 User Amount Transaction Page 24

6.4 User transaction page with successful transaction 24

6.5 User transaction page, with unsuccessful transaction 25

6.6 Transaction History of the User 25

xi

 LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

HMM Hidden Markov Model

FDS Fraud Detection System

FPS Fraud Prevention Systems

OTP One Time Password

EMI Equated Monthly Installment

OOP Object Oriented Programming

API Application Programming Interface

JVM Java Virtual Machine

JRE Java Runtime Environment

RMI Remote Method Innovation

EJB Jakarta Enterprise Beans

JSE Java Standard Edition

JEE Java Enterprise Edition

JDK Java Development Kit

JME Java Mobile Edition

1

 CHAPTER 1

INTRODUCTION

Credit cards are being used for digital transactions as a payment method by both

online and offline buyers in a huge way. On the other hand, this method has few

drawbacks. Criminals, hackers and perpetrators have started targeting credit card

based transactions. For any transaction, only the card information has to be entered

and the card need not be present physically. In most cases, a One Time-Password

(OTP) authentication is used as an extra safety factor. Specifically for international

transactions, a method called Card-Not-Present, is used where only the card details are

required rather than the physical card for unauthorized purchases. It is very easy to get

the card details using methods like shoulder surfing, buying card information, credit

card stealing and web traffic sniffing.

The main victims of the credit card frauds are the card holder, the bank, and the

merchant. One of the main duties of the credit card holder is to detect any suspicious

activities and report fraudulent transactions to the issuing bank. The bank then takes

the responsibility to investigate the problem and if any evidence for fraudulent activities

are found, then the credit card transaction is reversed.

1.1 OBJECTIVE

The main objective of this project is to detect credit card frauds and authenticate

using formula based authentication.

1.2 OUTLINE OF THE PROJECT

Credit card information can be fetched easily through various modernized

techniques. Even though many credit card methods are emerging today, so is the fraud

associated with it. Digital transactions do not require credit cards to be present

physically instead authentication such as OTP methods are used. Even though there are

many secured methods of transactions fraudulent activities occur frequently.

2

It is impossible to find out whether the credit card transaction is genuine or fraudulent.

As a result, credit card fraud detection becomes more important to verify the authenticity

of the transaction. To overcome this problem, user behavior is monitored using HMM

model and formula based authentication is applied for security. In this process the user

will be issued with a formula during credit card registration. Every transaction will be

monitored by the HMM model and if any suspicious transaction is detected, the

authentication key is sent to the user. The user must apply the formula with generated

keys to find out and enter the correct solution as password in order to complete the

transaction successfully.

1.3 ARCHITECTURE OF THE CREDIT CARD DETECTION AND AUTHENTICATION

FIG 1.1 System Architecture of Credit card fraud detection system

SYSTEM ARCHITECTURE MODULES:

1. USER - User is an authorized person allowed to use a credit card. User is issued a

credit card at the time of registration in a bank, along with the unique formula. Each

of the transaction of the user will be tracked and monitored by the HMM model.

Users will also follow the principle of formula based transaction.

3

2. INTEGRATING FORMULA BASED AUTHENTICATION - Formula Based

Authentication is the main system used by this bank. This type of authentication

allows the user to securely transact the money from the bank without having to worry

about the fraudsters. This method of security prevents shoulder surfing or web

tracking done by the fraudsters to get hold of the user’s card information. In this

verification process, the user is issued a formula at the time of registration and will

use it along with a randomized key generated at the time of each suspicious

transaction monitored by the HMM model.

3. REGISTRATION OF FORMULA - every user at the time of registration is given a

unique formula, which is only known to the user. At a time of any suspicious

transaction detected by the HMM model a randomized key for this formula will be

sent to the user, which can be applied in the formula to get the solution. Once the

password is applied, the transaction will be successful. This process is also called

Formula Based Authentication.

4. SMART CARD - Smart card, also known as an interested circuit or chip card, is an

authorization device which is used to control access to a resource since it is

electronic. Smart card is basically a type or credit card embedded with an interesting

circuit chip. Smart cards offer more security and confidentiality for the user. They use

encryption techniques which prevent the tracking of information.

5. APPLICATION OF CREDIT CARD - Each transaction made by the user will be

tracked and monitored by the HMM model. For suppose if the user transacts a

certain amount of money each month, and suddenly extracts a huge sum of money,

the HMM model monitoring the transaction pattern will raise a suspicion and send

the user a unique key for the formula. Once the user applies the key to the formula,

and answers with the correct solution, the transaction will be successful. In this way,

the HMM model as well as the Formula Based Authentication will be demonstrated.

4

1.4 FLOW CHARTS:

FIG 1.2 Flowchart representing the initial steps of the model

User makes a transaction in the bank. The HMM model monitors the user behavior and

tracks every transaction. If the HMM model detects a suspicious activity, it immediately

sends a warning to the user. This initiates the formula based authentication. The user will

receive a set of keys which is applied to the formula. The solution is entered, and if it's

correct, the transaction will be successful.

FIG 1.3 Flowchart representing the transaction process

Each transaction done by the user will be tracked, monitored by the HMM model and all

these will be stored in the database. If there is any excess withdrawal or increased

frequency of withdrawal, the HMM model will send a warning through formula based

5

authentication. The keys received by the user will be applied to the formula to receive the

password. Once the correct solution is entered, the transaction will be successful.

 1.5 APPLICATIONS OF CREDIT CARD

Credit cards have a broad spectrum of applications, such as shopping, dining out,

travel, payment of bills, home furnishing, cab rides, movie ticket booking.

1. SHOPPING

Nowadays in markets, grocery stores, shopping malls credit card payment methods are

readily available. There are rarely any shops that do not accept card payment. This

type of payment can be included for items ranging from groceries to clothes. Days have

come where liquid cash no longer exists and it is overtaken digitalization. A method

called Auto-debit feature also gives the user the access to unlimited entertainment.

2. DINING OUT

Extinction of liquid cash has led several restaurants to accept credit card payments.

3. TRAVEL

Credit cards ensure a great deal of secure travel because liquid cash is not being used

by the travelers. From booking tickets to hotel stay credit cards can be used for

payment methods.

4. PAYMENT OF BILLS

Utility bills such as water, electricity, phone bills can be paid by making use of a credit

card online. Since these utility bills are a necessity in our daily life the credit card

method ensures that the pending bill amount is deducted automatically provided that

the user has given the access and hence the user will not skip a payment.

6

CHAPTER 2

 AIM AND SCOPE OF THE PROJECT

2.1 AIM

 The main aim of the project is to secure the account by adding formula based

authentication along with the user behavior being monitored by using the HMM model.

User behavior is monitored based on frequency of withdrawal and the amount of money

withdrawn by the user.

2.2 SCOPE

The major benefit of the project is that it cannot be easily manipulated. The formula

key which is generated during the transaction cannot be manipulated because it is

random every time which will lead to high authentication. Even if the key is hacked by

the fraudster, they will not be able to complete the transaction due to the unique

formula which is only known to the user.

In the Existing system, card withdrawals are very routine among the people and

the frauds corresponding to the improvement of security are increasing. In the

proposed system, ML algorithms have been applied to detect master card deception in

a disproportionate dataset. In the modification process, an application is developed for

a banking sector particularly for a credit or ATM card. Users can create an account and

get the ATM card along with a unique formula which should be used during suspicious

transactions. The user behavior of every transaction is tracked by Hidden Markov

Model and if there are any occurrences of suspicious transactions, then a message is

sent to the user with the keys that are required to complete the formula. After the user

applies the keys to the formula the solution must be entered as the password in order

to complete the transaction

7

CHAPTER 3

LITERATURE SURVEY

3.1 LITERATURE SURVEY

 3.1.1 Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare

Alippi, and Gianluca Bontempi, “Credit Card Fraud Detection: A Realistic

Modeling and a Novel Learning Strategy” (2017)

A novel learning strategy using real world data containing over 75 million transactions which

were authorized over a time period of three years explains how to overcome a number of

challenges which includes verification latency that is few transactions are checked by

investigators from time to time, class imbalance that specifies more frauds than genuine

transactions and concept drift which states that the fraudsters strategies change time to

time as customers evolve their habits. Many proposed machine learning algorithms depend

upon assumptions due to which there is a lack of realism that leads to two major concerns:

the way and timing in which the supervised data is fetched and the measures used to

detect fraud-detection performance. A formalization of the fraud detection problem is

proposed with the help of an industrial partner which describes the Fraud Detection

System’s (FDS) operations that analyze massive streams of transactions and also

illustrates performance measures used for fraud detection purposes. The pros include

addressing drift and verification latency and class imbalance and implementing alert

feedback interaction meanwhile, the alert interactions were less precise.

PROS: Addressed class imbalance, concept drift and verification latency, and alert

feedback interaction.

CONS: Less precise alerts.

8

3.1.2 John O. Awoyemi, Adebayo O. Adetunmbi, Samuel A.

Oluwadare,”Credit card fraud detection using Machine Learning

Techniques” (2017)

It explains the performance of various machine learning techniques like Naive Bayes, k-

nearest neighbor and logistic regression on highly skewed dataset. The major challenges of

credit card fraud detection are that the fraud transaction datasets are highly skewed and the

original as well as the fraudulent behavior change constantly. The sampling approach on

dataset, variables selection and detection techniques has shown great effect in the

performance of fraud detection. The European cardholder’s transaction dataset is

considered and under-sampling and oversampling hybrid techniques are carried on the

skewed data which consists of 284,407 transactions. The performance of the techniques is

evaluated based on accuracy, sensitivity, specificity, precision, Matthews correlation

coefficient and balanced classification rate and is implemented in Python. The accuracy for

k-nearest neighbor and Naive Bayes were 97.69% and 97.92% while the logistic regression

classifiers was 54.86% resulting logistic regression being a less accurate model compared

to the other two models. More parameter tuning is required in order to improve the

accuracy.

PROS: Highly skewed datasets are used.

CONS: More parameter tuning can be done to improve accuracy.

9

3.1.3 Lutao zheng, Guanjun Liu, Wenjing Luan, Zhengchuan Li, Yuwei

Zhang, Chungang Yan, Changjun Jiang), “A New Credit Card Fraud

Detecting Method Based on Behavior Certificate''(2018)

It explains the correlation between behavior features and special cases considered based

on behavior certificate. Initially, the behavior features are extracted from the card holders

historical transaction record patterns as it is an important way to detect fraud. Based on the

behavior features, a behavior certificate is constructed. Using a behavior certificate the risk

degree for each cardholder’s incoming transaction is calculated and if the degree is more

than the threshold, it is considered as fraud. In this paper to reflect the card holders

transaction habits a new credit card fraud detection system (FDS) based on behavior

certificate is introduced. The major asset in this paper is that it is highly effective while

performing with simulated data, whereas it is difficult to learn the characteristics of

fraudulent transactions.

PROS: Highly effective when performed with simulated data.

CONS: It is difficult to learn the characteristics of fraudulent transactions.

10

3.1.4 Abhimanyu Roy, Jingyi Sun, Robert Mahoney, Loreto Alonzi,

Stephen Adams, Peter Beling, "Deep Learning Detecting Fraud in Credit

Card Transactions"(2018)

It studies about a deep learning approach which provided comparable results to prevailing

fraud detection methods and provided a guide to sensitivity analysis of model parameters in

consideration with accuracy of fraud detection. The preceding customer data as well as the

present transaction details are recorded and are used for deep learning. A number of

topologies including Gradient Boosted Trees and Logistic Regression were encompassed

in deep learning as well as model construction using various parameters which influenced

its results. This paper evaluates topologies ranging from general artificial neural networks to

topologies with built-in time and long short term memory components. From pre-labeled as

fraudulent and legitimate 80 million credit card transactions, different parameters were

identified to improve their effectiveness in fraud detection. Class imbalance and scalability

which were the common CCF detection problems were suppressed using a high

performance distributed cloud computing environment. To reduce losses by preventing

fraudulent activity, a framework for parameter tuning of topologies is presented. The major

benefits include a high performance computing environment and better performance than

traditional algorithms whereas, the general validation performance decreases as data size

is increased.

PROS: High performance computing environment that has better performance than

traditional algorithms.

CONS: General validation performance decreases as data size is increased.

11

3.1.5 Sahil Dhankhad, Emad A. Mohammed, Behrouz Far, “Supervised

Machine Learning Algorithms for Credit Card Fraudulent” (2018)

A comparative study, explains about the hidden patterns to detect the fraudulent

transactions using real world dataset. The most important variables that lead to fraud

transactions are identified and are used to achieve higher accuracy. The advancement in

modernized technology has escalated the fraudulent activities. In order to delineate the

hidden patterns the supervised machine learning algorithms were applied. Publicly

available datasets were used which were highly imbalanced. The major advantages in this

paper includes using various supervised machine learning algorithms to implement a super

classifier using ensemble learning methods whereas, the drawback includes delay in

updating the supervised model due to verification latency.

PROS: Implements super classifier using ensemble learning methods.

CONS: Delay in updating the supervised model due to verification latency.

12

3.1.6 Aisha Abdallah n, Mohd Aizaini Maarof, Anazida Zainal, “Survey on

systematic and comprehensive overview” (2016)

This explains the collaboration of FDSs with FPSs to protect electronic commerce systems

from fraudsters. FDS and FPS individually are insufficient to provide the security needed for

electronic commerce systems. This paper provides the solution for the issues like large

amounts of data. Real time detection, concept drift as well as skewed distribution hinders

the performance of FDS and provides a systematic and comprehensive overview. The five

electronic commerce systems selected for this paper are automobile insurance, credit card,

online auction, telecommunication and healthcare insurance in which the prevalent fraud

types are examined closely. Further, the state-of-the-art of the FDS is also systematically

introduced. The major benefit is combining FDS and FPS for fraud detection whereas, this

combination leads to an increase in the false prediction rate of legitimate transactions and

increases investigation cost for banks.

PROS: Collaborated fraud detection and fraud prevention systems.

CONS: Leads to an increase in the false prediction rate of legitimate transactions. It also

increases investigation cost for banks.

13

3.2 INFERENCES FROM THE LITERATURE

The major challenges were concept drift, class imbalance and verification latency.

Verification latency that is few transactions are checked by investigators from time to time,

class imbalance that specifies more frauds than genuine transactions and concept drift

which states that the fraudsters' strategies change from time to time as customers evolve

their habits. There is a lack of realism in the dataset and it was less precise with the alert

interactions. As the data size increased the validation performance decreased. It is

observed that there is a delay in updating the supervised model due to the verification

latency. In some cases, there was a false prediction rate of legitimate transactions.

Parameter tuning can be done to improve accuracy. The other major drawback was that the

customers' habits evolve and the fraudsters change their strategies accordingly. There are

genuine transactions along with far outnumbered frauds. Alert systems must be precise and

should overcome the outliers.

14

CHAPTER 4

EXPERIMENTAL OR MATERIALS AND METHODS, ALGORITHMS USED

4.1 SOFTWARE REQUIREMENTS

Platform: Windows 7/8

Front End: Java-JDK1.7

Back End: MYSQL

Big Data: Apache Hadoop -2.3.1

4.2 HARDWARE REQUIREMENTS

The hardware requirements are needed to serve as the basis for implementation of the

system and hence should be an absolute and coherent specification of the entire

system. The software engineers use the hardware requirements as the starting point for

the system design. It indicates what the system performs and what the system should

execute.

PROCESSOR: Core i3/i5/i7

RAM: 2-4GB

HDD: 500 GB

4.3 JAVA

Java is a high-level programming, general-purpose, class-based, object-oriented language

designed with lesser implementation dependencies. Java is a fast, secure, reliable

computing platform for application development. Initially the major cause for developing

java was for handheld devices, and set-top boxes but later it became popular for creating

web applications, android applications and used for internet of things.

15

4.4 APPLICATIONS OF JAVA

The major applications of java include:

● Desktop applications

● Database connection

● Web servers and application servers

● Web applications

● Games

● Mobile applications

4.5 FEATURES OF JAVA

The important features of java are:

● SIMPLE

Java is very straightforward to understand as its syntax is not complicated, clean and easy

to comprehend. According to Sun Micro system, Java is a user friendly programming

language because java and C++ are relatively similar, many complex features have been

eliminated while creating java, since a feature called automatic garbage collection is

present in Java, no need to remove unreferenced objects.

● OBJECT ORIENTED

Java works with objects. Object oriented includes organizing the software as a combination

of various types of objects that consist of data and behavior.

Java uses Object-oriented programming (OOPs) methodology that maintains using a set of

rules and simplifies software development. The major concepts include encapsulation,

abstraction, polymorphism, class, inheritance, abstraction.

16

● PLATFORM INDEPENDENT

Unlike other languages like C, C++, Java is platform independent as it can be run on

multiple platforms. It is also called "code once, run anywhere." A program runs on hardware

or software called a platform.

There are Software based and Hardware based platform environments in which Java

provides Software based environments.

The Java platform is different from most other platforms. It is a software-based platform that

runs on top of other hardware-based platforms. Java platform has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java can be run on multiple platforms. It can be compiled and converted as bytecode,

which is a platform independent code.

● SECURED

Java can be used to develop various virus-free systems and is more secure because of no

explicit pointer and virtual machine sandboxes are used to run the programs.

Class loader is used to load classes into Java Virtual Machine dynamically. This adds

security due to the separation of classes from the local file system from those that are

imported from network sources. Bytecode verification is used to check the code fragments

for illegal code that violate access rights to objects. Security manages helps to determine

the resources of a class which has access such as reading and writing to local disk.

● ROBUST

The meaning of Robust is strong. Java is robust because:

● Java applies well-built memory management techniques.

● Java consists of exception handling as well as type checking.

17

● By using Java Virtual Machine, the objects not used by the Java Application can be

eliminated. Java also provides automatic garbage collection.

● Security problems can't be avoided easily due to lack of pointers.

● ARCHITECTURE NEUTRAL

No implementation dependent features make java architecture neutral. This leads to fixed

size of primitive types. In java, 4 bytes are required for both 32 and 64-bit architectures

whereas, in C programming, int data type occupies 2 bytes of memory for 32-bit

architecture.

● PORTABLE

Java is portable as it facilitates the user to carry the Java bytecode to any platform. Java

doesn't require any implementation.

● HIGH PERFORMANCE

Java is faster compared to traditional interpreted languages. It is because the byte code is

“close” to native code. This is a bit slower than compiled languages like C, C++, etc.

● DISTRIBUTED

Java is distributed as it allows users to create distributed applications in Java. RMI and EJB

are implemented for creating distributed applications. This feature of Java allows the users

to access files by calling the methods from any machine on the internet.

● MULTI THREADED

Thread executes concurrently like a separate program. Multiple threads are used to deal

with many tasks at the same time. It does not occupy memory for each thread as they

share the common memory area. Threads are important for web applications, multi-media

etc.

● DYNAMIC

18

Java is also known as a dynamic language as it supports the dynamic loading of classes.

Dynamic loading means that on demand, classes are loaded. The functions from its native

languages are also supported. Finally, automatic memory management as well as dynamic

compilation is also supported.

4.6 JAVA DEVELOPMENT KIT

The Java Development Kit (JDK) combined with Java Virtual Machine (JVM) and Java

Runtime Environment (JRE) is one of the main core technologies implemented in Java.

The difference between the three technologies is:

● The programs are executed by the Java platform component called JVM.

● JVM is created on the disk part of JRE.

● JVM and JRE executes and runs the Java programs that are created by developers

given permission by JDK.

Often, Java Development Kit and Java Runtime Environment are confused by the new

developers. The major difference between JDK and JRE is that JRE is a package of tools

that is used to run the Java Code while JDK is a package of tools used to create the Java

based software.

Since JRE is a part of JDK, it can also be implemented as a standalone component to

execute and run the Java code. Developing the JDK involves JRE running the Java

programs.

Below is the technical and everyday definition of JDK:

● Technical Definition: JDK is an implementation of platform specification which

includes the compiler as well as class libraries.

● Daily definition: To create Java based applications, JDK is required as it is a

software package.

4.6.1 THE JDK AND THE JAVA COMPILER:

19

Along with JRE, the environment which is implemented to execute the Java code and its

applications, all JDK contains a Java compiler. The compiler is able to take the raw .Java

files containing plain text and render them into executable class files.

4.6.2 JDK PACKAGES

A Java package is also needed along with the Java version. For different types of

development, separate Java Development Kits called Packages are selected. Java Mobile

Edition (Java ME), Java Enterprise Edition (Java EE) as well as Java Standard Edition

(Java SE) are the available packages.

Beginners sometimes will be confused on choosing the package for their project. Each JDK

contains Java SE. The standard version is available along with Java EE and Java ME

download.

4.6.3 JDK VERSION COMPATIBILITY:

The JDK is the one which determines the type of Java Version that the user is able to code,

as it is the supplier of compilers for all Java programs.

4.7 TOOLS FOR INTERFACING WITH OTHER LANGUAGES:

C LANGUAGE

INLINE-C

Inline-C applies Quasi Quotation to call the C libraries and embed the powerful Inline-C

code into Haskell modules.

C-HASKELL

C-Haskell is a lightweight tool to implement access from Haskell to C Libraries.

C2HSC

For C libraries, Bindings-DSL based interface documents are created by using C2HSC.

20

HSFFIG

By using the Haskell FFI Binding Mosulod Generation tool, Haskell Foreign Function

Interval import declarations for items are induced by the C library include file (.h).

KDIRECT

KDirect is less dominant than Haskell Direct. It is uncomplicated and more portable. KDirect

is a tool to clarify the process for uniting C libraries to Haskell.

LIBFFI

From Haskell, C functions of types known at runtime with binding to LIBFFI.

JAVA

INLINE-JAVA Any JVM function is called from Haskell.

JAVA-BRIDGE a high level interface generator as well as Java Native Interface is banded

by Java-Bridge.

PYTHON

CPYTHON Python is called by Haskell code, as it is given permission by Bindings.

MISSINGPY: MissingPy provides support for translating Python code by interfacing with

Python or C API and handling Python objects. It is allocated to call Python from Haskell.

The tools between Python objects and its Haskell equivalents are changed by using tools

provided by MissingPy. Python exceptions get mapped to Haskell Dynamic Exceptions.

MissingPy contains Haskell interfaces to Python Modules.

https://wiki.haskell.org/HSFFIG
http://www.astercity.net/~khaliff/haskell/kdirect/index.html
http://quux.org/devel/missingpy

21

4.8 ALGORITHM STEPS:

Step 1: The client registers in a bank with new account details.

Step 2: Clients will be issued with a unique formula that will be used during a suspicious

transaction detected by the HMM.

Step 3: In a certain predicament, if the client tries to take an amount that is out of the typical

observable patterns, the HMM will immediately raise uncertainty.

Step 4: Formula Based Authentication will be initiated through the HMM.

Step 5: The client will receive a set of keys which are unrepeatable to his formula.

Step 6: The client will apply these keys to the formula, and once the correct password is

given, the transaction will be fulfilled.

HMM provides instructions about evaluation, decrypting, and learning. Evaluation is defined

as expecting the monitoring order further as well as reverse design. Decrypting specifies all

unknown states order (Viterbi). Using the observed information, HMM will be created using

Learning (Baum-Welch).

The HMM model works on the transaction history of the client, and after the required

formulation if the current transaction is found to be suspicious, then the formula based

authentication is initiated. If the user is able to authorize using the keys to their formula,

then the transaction will be successful.

19

 CHAPTER 5

PROJECT DESCRIPTION

5.1 EXISTING SYSTEM:

In the existing system whenever the user tries to make a transaction, the user

receives an OTP (One Time Password), which must be entered to make successful

transactions. But, if the OTP is seen by the fraudster by shoulder surfing, web

trafficking or by any other means then the fraudster will be able to make transactions

from the user’s account which will lead to credit card fraud.

5.2 EXISTING MODEL DISADVANTAGES:

PIN, credit card account number, security code and OTP can be shoulder surfed by

the fraudster and transactions can be made by them.

By using a misappropriated or stolen master card many unauthorized purchases can

be made by the fraud.

A fraudster can trick the user into providing the user's card number by visiting a

fraudulent website by which the fraudster may get the credit card information and

make purchases.

A tiny device called a credit card skimmer is used in ATM or fuel stations which can

be installed anywhere by the fraudster to get your account information making it an

effective way for them to steal.

5.3 IMPLEMENTATION / PROPOSED WORK:

This application is developed for a banking sector particularly for a Credit or ATM

card. Users can create an account and get the credit card along with a unique

formula from the bank. User behavior is monitored using HMM model based on the

user's money withdrawal sequence, which means the first condition is that every

month the user will be able to withdraw a limited amount and the second condition is

20

that frequency of money withdrawal is monitored when using credit cards. Users can

withdraw the cash as per limited money requirement. Time frequency is also

monitored and recorded. It is very useful to withdraw an amount without a time delay.

The user can withdraw cash from their account after successful authentication of the

formula key password.

5.4 ADVANTAGES OF PROPOSED WORK:

● Hidden Markov model is used for user behavior analysis of cash withdrawal.

● Security is ensured by the implementation of formula based authentication.

● Big data is included in the system for analyzing huge volumes of data.

● Even after the fraudster gets to know the keys or the pin, the fraudster will not

be able to make any transactions, as the fraudster is not aware of the unique

formula.

● Due to the randomization of the generated pin, this secured pin keeps

changing for every suspicious transaction.

5.5 MODULES

5.5.1 USER REGISTRATION

User initially creates the account, and allows access to the network.

To request the Service Provider for the job, the user has to login.

The Service Provider will process and respond to the user requested job based on

what the user has requested.

The Service Provider database will contain all the user details.

Using Java Programming, the User interface Frame will communicate with the

Server through Network Coding.

The Service Provider gives the authentication to the user to access the requested

data, as the user will send a request to the Service Provider.

5.5.2 BANK SERVER

The Bank Service Provider will have a data storage which contains the information

about users.

They also maintain all the user information that helps the user to authenticate

21

whenever they wish to access the account.

The bank server will establish connection with the client and other modules of the

Company server to communicate. Hence, a User Interface Frame is connected.

5.5.3 HMM MODEL

The Hidden Markov Model is used to analyze user behavior on every transaction.

It is executed to understand the user's money withdrawal sequence, meaning that

the first condition is the total amount of withdrawal each month and the second being

frequency of withdrawal. The time frequency is also monitored and recorded.

5.5.4 FORMULA BASED AUTHENTICATION

Formula Based Authentication provides security by adding a formula.

This formula is unique for every user, registered at the time of creating an account.

The keys to the formula changes every time, and the user is requested to submit the

answer after substitution of the corresponding keys to the formula.

This usage of formula is required only when the user tries to withdraw beyond the

permitted.

5.6 HIDDEN MARKOV MODEL:

The Hidden Markov Model (HMM) is used to model sequential data in a simple way.

The Hidden Markov Model (HMM) is defined as the basic Markov Model data which

is hidden or unknown. The observational data is known whereas the information

about the states remains unknown which means data is produced by a specific type

of model whereas the background processes producing the data are unknown. It is

one of the powerful modeling statistical tool used for speech, handwriting recognition

etc. HMM provides information about evaluation, decoding, and learning. Evaluation

is the probability of the observation sequence (forward and backward algorithm).

Decoding specifies the most probable hidden states sequence from an observation

sequence (Viterbi algorithm). Learning explains the way to create HMM models from

observed data (Baum-Welch).

The basic parts of HMM model include state emission probability distribution, state

transition probability distribution, transition to terminal state probability distribution (in

most cases excluded from model because all probabilities equal to 1 in general

use),transition from initial state to initial hidden state probability distribution,

22

observation symbols (or states),hidden states.

The HMM model is divided into two parts which includes a hidden part that consists

of unobserved hidden states. These hidden states emit observation symbols which

are used to indicate their presence.

5.7 NUMERIC NOTATION

Initially the user gets a unique formula while registering for the credit card. During

normal transactions the user does not have to enter the authentication formula but if

the HMM model detects any particular transactions which are out of the user

behavior pattern that is, if the model detects the transaction as suspicious then the

user receives the keys through messages. For example: Let the unique formula be

A+B-C. User will receive a message with keys as shown when suspicious

transaction is found by the HMM model:

A=3 B=2 C=1 D=5 E=6 F=9 G=10 H=5 I=8 J=0 K=7 L=2 M=1 N=7 O=5 P=11 Q=4

R=3 S=5 T=6 U=1 V=7 W=6 X=0 Y=1 Z=1(which will be generated randomly)

The user must apply the formula using the keys:

=A+B-C

= 3+2-1

= 4

Hence this must be entered as the password in order to complete the transaction.

Every suspicious transaction generates keys randomly therefore, even if the

fraudsters hack the mobile for keys they will not be able to get the money as the

23

formula remains confidential with the user. In this way, the user's account will be free

from fraudulent activities.

5.8 RESULTS:

FIG 6.3.1 User Login Page

FIG 6.3.2 User Registration Page

24

FIG 6.3.3 User Amount Transaction Page

FIG 6.3.4: Process: User amount transaction page, with formula based

authentication and transaction successful page (when successful).

25

FIG 6.3.5: User amount transaction page, with formula based authentication

and fraud detected page (when failed)

FIG 6.3.6: Sample of transaction history of the user

26

CHAPTER 6

CONCLUSION AND FUTURE ENHANCEMENTS

 6.1 CONCLUSION

 More credit card forgery is happening at a huge level these days. Even

after the existence of cyber security fraudulent transactions are still active.

Formula based authentication is one of the processes to perform the

transactions securely. This process allows only genuine transactions to take

place. HMM model is a robust technique for user behavior pattern extraction

and to detect a fraudulent transaction. HMM is used to get a set of unknown

variables from known variables. Pattern changes in the transaction history of

the account holder can be detected by using the HMM model. If the transaction

is detected to be fraudulent an authentication key is sent to the user, and the

user must apply the keys to the formula in order to find the solution and enter it

as password for successful transaction.

6.2 FUTURE ENHANCEMENTS

 Multiple Algorithms can be deployed for effective filtering. A toggle button

can be used to enable formula based detection transactions (for ex: the user

can choose to enable or disable the transaction limit). Counterfactual analysis

can be deployed. Hardware implementation can also be interfaced using NFC

(Near Field Communication) for easy transactions.

27

 REFERENCES

[1] The importance of credit cards:

https://budgeting.thenest.com/importancecredit- cards-29514.html

[2] The chargeback process in a credit card:

https://chargebacks911.com/chargeback-process/

[3] Low and Slow Is How the Credit Card Fraudsters Roll:

https://www.threatmetrix.com/digital-identity-blog/fraudprevention/low-

and-slow-is-how-the-credit-card-fraudsters-roll/

[4] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi and G. Bontempi,

”Credit Card Fraud Detection: A Realistic Modeling and a Novel

Learning Strategy,” in IEEE Transactions on Neural Networks and

Learning Systems, vol. 29, no. 8, pp. 3784-3797, Aug. 2018.

[5] L. Zheng, G. Liu, C. Yan and C. Jiang, ”Transaction Fraud Detection

Based on Total Order Relation and Behavior Diversity,” in IEEE

Transactions on Computational Social Systems, vol. 5, no. 3, pp. 796-

806, Sept. 2018.

[6] Vaishali. Article: Fraud Detection in Credit Card by Clustering Approach.

International Journal of Computer Applications 98(3):29-32, July 2014.

[7] J. O. Awoyemi, A. O. Adetunmbi and S. A. Oluwadare, ”Credit card

fraud detection using machine learning techniques: A comparative

analysis,” 2017 International Conference on Computing Networking and

Informatics (ICCNI), Lagos, 2017, pp. 1-9.

[8] L. Zheng et al., ”A new credit card fraud detecting method based on

behavior certificate,” 2018 IEEE 15th International Conference on

Networking, Sensing and Control (ICNSC), Zhuhai, 2018, pp. 1-6.

[9] SurajPatil*, VarshaNemade, PiyushKumarSoni, Predictive Modelling for

Credit Card Fraud Detection Using Data Analytics, International

28

[10] Conference on Computational Intelligence and Data Science (ICCIDS

2018)

[11] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams and P. Beling, ”Deep

/learning detecting fraud in credit card transactions,” 2018 Systems and

Information Engineering Design Symposium (SIEDS), Charlottesville,

VA, 2018, pp. 129-134.

29

A. IMPLEMENTATION/SOURCE CODE:

package com.nura.entity;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "cc_trans")
public class CCTransactions implements Serializable{

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private long seq;
 private String ccno;
 private String userid;
 private String transamt;
 private String month;

 public CCTransactions(){

 }

 /**
 * @return the seq
 */
 public long getSeq() {
 return seq;
 }

 /**
 * @param seq the seq to set
 */
 public void setSeq(long seq) {
 this.seq = seq;
 }

 /**
 * @return the ccno
 */
 public String getCcno() {

30

 return ccno;
 }

 /**
 * @param ccno the ccno to set
 */
 public void setCcno(String ccno) {
 this.ccno = ccno;
 }

 /**
 * @return the userid
 */
 public String getUserid() {
 return userid;
 }

 /**
 * @param userid the userid to set
 */
 public void setUserid(String userid) {
 this.userid = userid;
 }

 /**
 * @return the transamt
 */
 public String getTransamt() {
 return transamt;
 }

 /**
 * @param transamt the transamt to set
 */
 public void setTransamt(String transamt) {
 this.transamt = transamt;

}

 /**
 * @return the month
 */
 public String getMonth() {
 return month;
 }

 /**
 * @param month the month to set
 */
 public void setMonth(String month) {

31

 this.month = month;
 }
}
import com.nura.dao.impl.CCDtlsDAOImpl;
import com.nura.dao.impl.CCTransDAOImpl;
import com.nura.dao.impl.UserDetailsDAOImpl;
import com.nura.entity.CCDtls;
import com.nura.entity.CCTransactions;
import com.nura.entity.UserDetails;
import com.nura.hadoop.HadoopAnalyzer;
import com.nura.mail.SendMail;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Scanner;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JOptionPane;

public class TransactionFrame extends javax.swing.JFrame {

 private CCTransDAOImpl _ccTransDAOImpl = new CCTransDAOImpl();
 private CCDtlsDAOImpl _ccDtlsDAOImpl = new CCDtlsDAOImpl();
 private UserDetails _usrDtls;

 /**
 * Creates new form TransactionFrame
 */
 public TransactionFrame() {

 }

 public TransactionFrame(UserDetails _usrDtls) {
 FileInputStream fis = null;
 initComponents();
 this._usrDtls = _usrDtls;
 tf_userName.setText(_usrDtls.getUserName());
 tf_userName.setEditable(false);
 // fis = new FileInputStream(constants.Constants.RFID_READER_FILE);
 // Scanner scan = new Scanner(fis);
 tf_CCno.setText(_usrDtls.getCreditCardNo());
 tf_CCno.setEditable(false);
 tf_avlBal.setEditable(false);
 setBalance();

32

 // fis.close();
 }

 /**
 * This method is called from within the constructor to initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is always
 * regenerated by the Form Editor.
 */
 @SuppressWarnings("unchecked")
 // <editor-fold defaultstate="collapsed" desc="Generated Code">
 private void initComponents() {

 jPanel1 = new javax.swing.JPanel();
 jLabel1 = new javax.swing.JLabel();
 cb_Month = new javax.swing.JComboBox();
 jLabel2 = new javax.swing.JLabel();
 tf_userName = new javax.swing.JTextField();
 jLabel3 = new javax.swing.JLabel();
 tf_amt = new javax.swing.JTextField();
 tf_submit = new javax.swing.JButton();
 tf_cancel = new javax.swing.JButton();
 jLabel5 = new javax.swing.JLabel();
 jLabel6 = new javax.swing.JLabel();
 tf_CCno = new javax.swing.JTextField();
 tf_avlBal = new javax.swing.JTextField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jLabel1.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel1.setText("Select Month:-");

 cb_Month.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 cb_Month.setModel(new javax.swing.DefaultComboBoxModel(
 constants.Constants.MONTHS));
 cb_Month.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 cb_MonthActionPerformed(evt);
 }
 });

 jLabel2.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel2.setText("User Name:-");

 tf_userName.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel3.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel3.setText("Enter Amount");

 tf_amt.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N

 tf_submit.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N

33

 tf_submit.setText("Submit");
 tf_submit.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 tf_submitActionPerformed(evt);
 }
 });

 tf_cancel.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 tf_cancel.setText("Cancel");
 tf_cancel.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 tf_cancelActionPerformed(evt);
 }
 });

 jLabel5.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel5.setText("Credit Card Number:-");

 jLabel6.setFont(new java.awt.Font("Times New Roman", 1, 18)); // NOI18N
 jLabel6.setText("Available Balance");

 javax.swing.GroupLayout jPanel1Layout = new
javax.swing.GroupLayout(jPanel1);
 jPanel1.setLayout(jPanel1Layout);
 jPanel1Layout.setHorizontalGroup(

jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addGap(138, 138, 138)
 .addComponent(tf_submit,
javax.swing.GroupLayout.PREFERRED_SIZE, 147,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
 .addComponent(tf_cancel,
javax.swing.GroupLayout.PREFERRED_SIZE, 147,
javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addGap(53, 53, 53)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(jLabel6, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addComponent(jLabel5, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

34

 .addComponent(jLabel3, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
.addComponent(jLabel2, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addComponent(jLabel1, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
 .addGap(67, 67, 67)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(cb_Month, 0, 198, Short.MAX_VALUE)
 .addComponent(tf_userName)
 .addComponent(tf_amt)
 .addComponent(tf_CCno)
 .addComponent(tf_avlBal))))
 .addContainerGap(91, Short.MAX_VALUE))
);
 jPanel1Layout.setVerticalGroup(

jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addGap(35, 35, 35)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(jLabel2, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addComponent(tf_userName, javax.swing.GroupLayout.DEFAULT_SIZE,
40, Short.MAX_VALUE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(jLabel5, javax.swing.GroupLayout.DEFAULT_SIZE, 33,
Short.MAX_VALUE)
 .addComponent(tf_CCno))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(cb_Month)
 .addComponent(jLabel1, javax.swing.GroupLayout.PREFERRED_SIZE,
37, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGap(18, 18, 18)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(jLabel3, javax.swing.GroupLayout.DEFAULT_SIZE,

35

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addComponent(tf_amt, javax.swing.GroupLayout.DEFAULT_SIZE, 37,
Short.MAX_VALUE))
 .addGap(18, 18, 18)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(jLabel6, javax.swing.GroupLayout.DEFAULT_SIZE, 31,
Short.MAX_VALUE)

 .addComponent(tf_avlBal))

 .addGap(73, 73, 73)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING, false)
 .addComponent(tf_submit, javax.swing.GroupLayout.DEFAULT_SIZE, 39,
Short.MAX_VALUE)
 .addComponent(tf_cancel, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE,
Short.MAX_VALUE))
);

 javax.swing.GroupLayout layout = new
javax.swing.GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
);
 layout.setVerticalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
);

 pack();
 }// </editor-fold>

 private void cb_MonthActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 }

 private void tf_submitActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 if (true) {
 CCTransactions ccTrans = new CCTransactions();
 ccTrans.setCcno(this._usrDtls.getCreditCardNo());

36

 ccTrans.setMonth(cb_Month.getSelectedItem().toString());
 ccTrans.setTransamt(tf_amt.getText());
 ccTrans.setUserid("" + this._usrDtls.getId());
 List<UserDetails> subUserList = null;
 Map<Long, CCDtls> getCCDtls = new HashMap<>();
 if (this._usrDtls.getParentAc() == 0l) {
 subUserList = new
UserDetailsDAOImpl().getUserDetalsBsdOnParentId(this._usrDtls.getId());
 }

 long maxAmt = 0l;
 long cardId = 0l;
 for (UserDetails ud : subUserList) {
 CCDtls _ccDtls = new
CCDtlsDAOImpl().getCCDtlsBsdOnUserId(ud.getId());
 getCCDtls.put(ud.getId(), _ccDtls);
 if (_ccDtls.getCcBal() > maxAmt) {
 maxAmt = _ccDtls.getCcBal();

 cardId = _ccDtls.getUserId();
 }
 }

 List<CCTransactions> ccTransList =
_ccTransDAOImpl.getCCTrans(this._usrDtls.getId());

 if (this._usrDtls.getParentAc() == 0l) {
 ccTransList = _ccTransDAOImpl.getCCTrans(this._usrDtls.getId());
 } else {
 ccTransList =
_ccTransDAOImpl.getCCTransForJanMonth(this._usrDtls.getId(),
cb_Month.getSelectedItem().toString());
 }

 Long totTransAmtForAMonth = 0l;
 for (CCTransactions cctrans : ccTransList) {
 totTransAmtForAMonth = totTransAmtForAMonth +
Long.parseLong(cctrans.getTransamt());
 }

 if (ccTransList.size() < 3) {
 if (Long.parseLong(tf_amt.getText()) <
Long.parseLong(tf_avlBal.getText())) {
 ccTrans.setCcno(this._usrDtls.getCreditCardNo());
 ccTrans.setMonth(cb_Month.getSelectedItem().toString());
 ccTrans.setTransamt(tf_amt.getText());
 ccTrans.setUserid("" + this._usrDtls.getId());

 CCDtls _ccDtls =
_ccDtlsDAOImpl.getCCDtlsBsdOnUserId(this._usrDtls.getId());

37

 long bal = _ccDtls.getCcBal();
 long due = _ccDtls.getCcDue();
 _ccDtls.setCcBal((bal - Long.parseLong(tf_amt.getText())));
 _ccDtls.setCcDue((due + Long.parseLong(tf_amt.getText())));
 _ccDtlsDAOImpl.updateCCDtls(_ccDtls);
 if (_ccTransDAOImpl.saveCCTrans(ccTrans)) {
 clearFields();
 setBalance();
 JOptionPane.showMessageDialog(this, "Transaction successful");
 } else {
 JOptionPane.showMessageDialog(this, "Transaction failed!Contact
Admin");
 }
 } else {
 JOptionPane.showMessageDialog(this, "Transaction declined! Available
balance is less");
 }
 } else {
 try {
 //Validate from hadoop
 System.out.println("Validating the transaction from Hadoop");
 new HadoopAnalyzer().main(this._usrDtls.getId());
 File hfile = new
File(constants.Constants.FILE_HADOOP_OUT_LOCATION);
 int indicator = 0;

 FileReader fileReader = new FileReader(hfile);
 Scanner scanFile = new Scanner(fileReader);
 int freqCount = 0;
 long finalAmtAllowd = 0l;
 while (scanFile.hasNext()) {
 String data = scanFile.nextLine();
 String[] splitData = data.split("\t");
 if (freqCount < Integer.parseInt(splitData[1].split("\\|")[1])) {
 freqCount = Integer.parseInt(splitData[1].split("\\|")[1]);
 finalAmtAllowd = Long.parseLong(splitData[1].split("\\|")[0]);
 }
 }

 if (Long.parseLong(tf_amt.getText()) <
Long.parseLong(tf_avlBal.getText())
 || Long.parseLong(tf_amt.getText()) < maxAmt) {
 if ((this._usrDtls.getParentAc() == 0l &&
Long.parseLong(tf_amt.getText()) <= this._usrDtls.getCcLimit())
 || (Long.parseLong(tf_amt.getText()) + totTransAmtForAMonth
<= this._usrDtls.getCcLimit())) {
 CCDtls _ccDtls =
_ccDtlsDAOImpl.getCCDtlsBsdOnUserId(this._usrDtls.getId());

 long bal = _ccDtls.getCcBal();

38

 long due = _ccDtls.getCcDue();
 _ccDtls.setCcBal((bal - Long.parseLong(tf_amt.getText())));
 _ccDtls.setCcDue((due + Long.parseLong(tf_amt.getText())));
 _ccDtlsDAOImpl.updateCCDtls(_ccDtls);
 if (_ccTransDAOImpl.saveCCTrans(ccTrans)) {
 clearFields();
 setBalance();
 JOptionPane.showMessageDialog(this, "Transaction
successful");
 } else {
 JOptionPane.showMessageDialog(this, "Transaction
failed!Contact Admin");
 }
 } else if (this._usrDtls.getParentAc() == 0l &&
Long.parseLong(tf_amt.getText()) <= finalAmtAllowd) {
 CCDtls _ccDtls =
_ccDtlsDAOImpl.getCCDtlsBsdOnUserId(this._usrDtls.getId());
 long bal = _ccDtls.getCcBal();
 long due = _ccDtls.getCcDue();
 _ccDtls.setCcBal((bal - Long.parseLong(tf_amt.getText())));
 _ccDtls.setCcDue((due + Long.parseLong(tf_amt.getText())));
 _ccDtlsDAOImpl.updateCCDtls(_ccDtls);
 if (_ccTransDAOImpl.saveCCTrans(ccTrans)) {
 clearFields();
 setBalance();
 JOptionPane.showMessageDialog(this, "Transaction
successful");
 } else {
 JOptionPane.showMessageDialog(this, "Transaction
failed!Contact Admin");
 }
 } else { //Allow transaction based on formula
 Random rand = new Random();
String otp = "";
 for (int k = 0; k < 5; k++) {
 otp = otp + rand.nextInt(9);
 }
 String msgBox = "";
 int counter = 0;
 java.util.Map<String, Integer> formulaVal = new
java.util.HashMap<String, Integer>();
 for (String alpha : constants.Constants.FORMULA_CHAR) {
 if (counter == 0) {
 //msgBox = msgBox + alpha + ":=" + "" + rand.nextInt(9) + "\t";
 } else {
 int val = rand.nextInt(9);
 msgBox = msgBox + alpha + ":=" + "" + val + "\t ";
 formulaVal.put(alpha, val);
 }
 counter++;

39

 }
 String inputRec = JOptionPane.showInputDialog(this, msgBox);
 System.out.println("Input " + inputRec);
 String[] splitUserForm = this._usrDtls.getFormula().split("#");
 int userVal = 0;

 //First operator validation
 if (splitUserForm[1].equalsIgnoreCase("+")) {
 userVal = formulaVal.get(splitUserForm[0]) +
formulaVal.get(splitUserForm[2]);
 } else {
 userVal = formulaVal.get(splitUserForm[0]) -
formulaVal.get(splitUserForm[2]);
 }

 //Second operator validation
 if (splitUserForm[3].equalsIgnoreCase("+")) {
 userVal = userVal + formulaVal.get(splitUserForm[4]);
 } else {
 userVal = userVal - formulaVal.get(splitUserForm[4]);
 }

 //System.out.println("User amt " + userVal + " and rec amt " +
inputRec);
 if (userVal == Long.parseLong(inputRec)) {
 //Sending otp to mail id
// if (this._usrDtls.getParentAc() == 0l) {
// SendMail.main(this._usrDtls.getEmailId(), "Your OTP is =>"
+ otp, "OTP");
// } else {
// UserDetails subUser = new
UserDetailsDAOImpl().getUserDetals(this._usrDtls.getParentAc());
// SendMail.main(subUser.getEmailId(), "Your OTP is =>" +
otp, "OTP");
// }

 //String otpEntered = JOptionPane.showInputDialog("Enter
OTP");
 //if (otpEntered.equals(otp)) {
 CCDtls _ccDtls =
_ccDtlsDAOImpl.getCCDtlsBsdOnUserId(this._usrDtls.getId());
 long bal = _ccDtls.getCcBal();
 long due = _ccDtls.getCcDue();
 _ccDtls.setCcBal((bal - Long.parseLong(tf_amt.getText())));
 _ccDtls.setCcDue((due + Long.parseLong(tf_amt.getText())));
 _ccDtlsDAOImpl.updateCCDtls(_ccDtls);
 if (_ccTransDAOImpl.saveCCTrans(ccTrans)) {
 clearFields();
 setBalance();
 JOptionPane.showMessageDialog(this, "Transaction

40

successful");
 } else {
 JOptionPane.showMessageDialog(this, "Transaction
failed!Contact Admin");
 }
 // }
// else {
// JOptionPane.showMessageDialog(this, "Invalid OTP");
// }
 }
 else {
 JOptionPane.showMessageDialog(this, "Credit card fraud
detected");
 }
 }
 } else {
 JOptionPane.showMessageDialog(this, "Transaction declined!
Available balance is less");
 }
 } catch (Exception ex) {

Logger.getLogger(TransactionFrame.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 } else {
 JOptionPane.showMessageDialog(this, "Invalid pin");
 }
 }

 private void setBalance() {
 CCDtls _ccDtls =
_ccDtlsDAOImpl.getCCDtlsBsdOnUserId(this._usrDtls.getId());
 tf_avlBal.setText("" + _ccDtls.getCcBal());
 }

 private void clearFields() {
 this.tf_amt.setText("");
 }

 private void tf_cancelActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:
 dispose();
 new UserLogin().main();
 }

 /**
 * @param args the command line arguments
 */
 public static void main(final UserDetails ud) {

41

 /* Set the Nimbus look and feel */
 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code
(optional) ">
 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look
and feel.
 * For details see
http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
 */
 try {
 for (javax.swing.UIManager.LookAndFeelInfo info :
javax.swing.UIManager.getInstalledLookAndFeels()) {
 if ("Nimbus".equals(info.getName())) {
 javax.swing.UIManager.setLookAndFeel(info.getClassName());
 break;
 }
 }
 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(TransactionFrame.class.getName()).log(java.util.l
ogging.Level.SEVERE, null, ex);
 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(TransactionFrame.class.getName()).log(java.util.l
ogging.Level.SEVERE, null, ex);
 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(TransactionFrame.class.getName()).log(java.util.l
ogging.Level.SEVERE, null, ex);
 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(TransactionFrame.class.getName()).log(java.util.l
ogging.Level.SEVERE, null, ex);
 }
 //</editor-fold>

 /* Create and display the form */
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 File file = new File(constants.Constants.RFID_READER_FILE);
 FileReader fileReader = null;
 try {
 fileReader = new FileReader(file);
 } catch (FileNotFoundException ex) {

Logger.getLogger(TransactionFrame.class.getName()).log(Level.SEVERE, null, ex);
 }
 Scanner scan = new Scanner(fileReader);
 long id = 0;
 while (scan.hasNext()) {
 id = (Long.parseLong(scan.nextLine()));

42

 }
 //UserDetails _usrDB = new UserDetailsDAOImpl().getUserDetals(id);
 UserDetails _usrDB = new
UserDetailsDAOImpl().getUserDetals(ud.getId());
 new TransactionFrame(_usrDB).setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify
 private javax.swing.JComboBox cb_Month;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JLabel jLabel5;
 private javax.swing.JLabel jLabel6;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField tf_CCno;
 private javax.swing.JTextField tf_amt;
 private javax.swing.JTextField tf_avlBal;
 private javax.swing.JButton tf_cancel;
 private javax.swing.JButton tf_submit;
 private javax.swing.JTextField tf_userName;
 // End of variables declaration
}

43

B. PLAGARISM REPORT

44

45

46

47

48

CREDIT CARD FRAUD
DETECTION WITH FORMULA BASED AUTHENTICATION

Abstract—Nowadays, digital withdrawals mostly

rely on cards. Days have come where people

don’t have to carry cash in their pockets and just

a small card is enough to make all the

withdrawals. Problems with cards will lead to

passwords being hacked and easily lead to fraud.

Credit card fraud can be identified using Hidden

Markov Model (HMM) and Formula Based

Authentication.

In the Existing system, card withdrawals are very

routine among the people and the frauds

corresponding to the improvement of security are

increasing. In the proposed system, ML algorithms

have been applied to detect master card deception in a

disproportionate dataset. In the modification process,

an application is developed for a banking sector

particularly for a credit or ATM card. Users can

create an account and get the ATM card along with a

unique formula which should be used during

suspicious transactions. The user behavior of every

transaction is tracked by Hidden Markov Model and if

there are any occurrences of suspicious transactions,

then a message is sent to the user with the keys that are

required to complete the formula. After the user

applies the keys to the formula the solution must be

entered as the password in order to complete the

transaction.

I. INTRODUCTION

Electronic and non electronic buyers use credit

cards for digital withdrawals as a method of settlement

in a huge way even though this method has few

drawbacks. Card based activities are frequently

targeted by culprits, criminals as well as perpetrators.

For any transaction, only a particular attribute has to be

inserted. In most cases, One Time-Password (OTP) is

used as an extra safety. Specifically for international

withdrawals, a method called Card-Not-Present, is used

where only the details are required rather than the

physical card for unauthorized payments. It is very easy

to get the card details using methods like shoulder

surfing, buying card details, credit card stealing as well

as web traffic sniffing.

The main sufferer of the fraud will be the bank,

trader and registrant. The main duties of the registrant

is to detect any malicious activities and report

fraudulent withdrawals. The bank then has the

responsibility for analyzing all issues and if any

evidence for malicious activities are identified, then the

amount withdrawn is reversed.This issue can be

resolved using formula based authentication.

II. LITERATURE SURVEY

 40

Andrea [4] proposed a novel learning strategy using

authentic data accommodating over abundance of

negotiations which were approved over 3 years explains

how to overcome a number of challenges which

includes verification latency that is few transactions are

checked by investigators from time to time,class

imbalance which specifies more frauds than genuine

actions and concept drift which states that the fraudster

strategies change time to time as customers evolve

their practices. Many proposed ML algorithms depend

upon assumptions due to which there is a lack of realism

that leads to two major concerns: the strategy and

schedule in which the supervised data is fetched and the

initiatives done to identify the fraud. A formalization of

the malicious problem proposed with help of an

industrial partner which describes the malicious systems

operations which analyzes massive streams of

withdrawals and illustrates performance measures used

for fraudulent purposes. Advantages include addressing

drift and verification latency and class imbalance and

implementing alert feedback interaction meanwhile the

alert interactions were less accurate.

John [5] explains the performance of various ML

methods on a large crooked dataset. The major

challenges of fraud detection are that the malicious

datasets are highly skewed and the original as well as

the fraudulent behavior change constantly. The

procedure on dataset, variables chosen and diagnosed

methods has shown great effect in performance of theft

activities. The European cardholder’s transaction dataset

is considered and an undergoing sampling and hybrid

techniques are implemented on the skew data which

consists of 284,407 withdrawals. These methods

implemented in python are evaluated based on the

performance on discrete, precision, accuracy, Matthews

correlation coefficient, clarity and stabilized grouping

rate. The accuracy for k-nearest neighbor and naive

bayes were 97.69% and 97.92% while the logistic

regression classifiers was 54.86% resulting in logistic

regression as a less accurate model compared to the

other two models. More parameter tuning is required in

order to improve the accuracy.

Lutao [6] explains the association between special cases

and behavior features considered based on behavior

certificates. Initially, the behavior features were

49

extracted from the card holders historical transaction

record patterns as it is an important way to detect fraud.

Based on the behavior features, a behavior certificate is

constructed. Using this reduces the danger rate for

cardholder’s revenue and if it is larger than the

 restriction rate, it is estimated as trickery. To reflect the

applicant’s transaction habits, a new Fraud Detection

System (FDS) based on behavior certificate is

introduced. By implementing a Behavior Certificate, the

applicant’s transaction habits can be reflected using a

Fraud Detection System. The major asset in this paper

is that it is highly effective while performing with

simulated data, whereas it is difficult to learn the

characteristics of unauthorized activities.

Sahil Dhankhad[7] proposed a commensurate

evaluation, explaining about the hidden ideas to detect

fraudulent activities using real world dataset. The

important variables that lead to fraudulent activities are

identified and are used to achieve higher accuracy. The

advancement in modernized technology has escalated

the fraudulent activities. Inorder to delineate the hidden

patterns, the supervised ML algorithms were applied.

Publicly available datasets were used which were highly

imbalanced. The major advantages in this paper

includes using various supervised machine learning

designs to administer a classifier using a combination of

researching methods whereas, the drawback includes

delay in updating the supervised model due to

verification latency.

Aisha Abdallah n [8] explains the association of Fraud

Detection System with Faster Payment System to

protect computerized methodology from fraudsters.

FDS and FPS individually are scarce to deliver the

surety needed for computerized processes. It provides

the solution for the problems like large amounts of

information, real time identification, concept drift as

well as skewed distribution hinders the performance of

FDS and provides a systematic and comprehensive

overview. The five electronic commerce systems

selected for this paper are automobile insurance, credit

card, online auction, telecommunication and healthcare

insurance in which the prevalent fraud types are

examined closely. Further, the state-of-the-art of the

FDS is also systematically introduced. The increase in

the false prediction rate of honest withdrawal of money

is due to the combination of FDS and FPS and also

increases the cost of investigation for banks.

 III. INFERENCE FROM LITERATURE

The major challenges were concept drift, class

imbalance and verification latency. Verification latency

that means few transactions are checked by

investigators from time to time, class imbalance that

specifies more frauds than genuine transactions and

concept drift which states that the fraudsters strategies

change from time to time as customers evolve their

habits. There is a lack of realism in the dataset and it

was less precise with the alert interactions. As the data

size increased the validation performance decreased. It

is observed that there is a delay in updating the
 41

supervised model due to the verification latency. In

some cases, there was a false prediction rate of honest

transactions. Parameter tuning can be done to improve

accuracy. The other major drawback was that the

customer’s habits evolve and the fraudsters change

their strategies accordingly. There are genuine

transactions along with far outnumbered frauds. Alert

systems must be precise and should overcome the

outliers.

 IV. EXISTING SYSTEM

In the existing methodology whenever the user tries to

make a transaction, the user receives an OTP (One

Time Password), which must be entered to make

successful money withdrawals. But, if the OTP is seen

by the fraudster through shoulder surfing, web

trafficking or any alternate means then the fraudster can

steal money from the users card giving rise to credit

card fraud.

 V. PROPOSED WORK

This implementation is developed for the investment

sector. By using Formula Based Authentication, banks

can ensure reliability. Users can create an account and

get the card issued along with a unique formula with

the help of the bank. Every user behavior is monitored

using the HMM based on the money withdrawal

sequence. The client’s frequency of transaction is

monitored. Whenever the HMM detects any pattern out

of bounds, it immediately issues a warning. This

induces the formula based authentication, which sends

a set of keys to the client. If the client enters the correct

solution, the transaction is successful. This method

assists in identifying fraudulent actions.

50

Modules:
1. User : A User is also called as bank depositors,

since they trust the banking facilities for storage of

money to receive interest. There are many types of

clients in a bank, such as trustees, joint account
holders, to which they have separate facilities to

support their people.

2. Bank Account Registration : The client is asked to

create an account under their name, along with a

certain amount of deposit. They will be allowed to

withdraw, deposit as well as a loan. When an

account is created, the client will be given a unique

formula, which will be used by the particular client

whenever they find any track of suspicious

transactions. The client will be asked to enter the key

in the formula to have a successful transaction.

3. Bank Server :Bank Service Provider will have a

data storage which contains the information about

users. They also maintain all the user information

that helps the user to authenticate whenever they

wish to access the account. The bank server will

establish relationships with the consumer and other

modules of the Company server to communicate.

Hence, a User Interface Frame is connected.

4. HMM initiated using big data (user behavior) : It

is operated for analyzing client actions on every

transaction. It is executed for understanding

retraction of money by the client, meaning the basic

idea is total sum of withdrawal each month and the

second being frequency of withdrawal. The time

recurrence is also monitored and recorded.

5. Money Withdrawal (Malicious user behavior) :

HMM tracks the user behavioral patterns. If any

malicious transaction is identified, HMM will send

an indication in the form of keys to the user,

indicating the fraudulent withdrawal. If the client

enters the correct keys to the formula, the transaction

will be successful. The transactions will be blocked

if the answer to the formula is incorrect.

6. Money Withdrawal (Normal user behavior):

When the client withdraws a certain amount, the

HMM tracks the user behavior patterns. If

transactions are found to be normal, then the

permission to withdraw the money is successful.

7. Formula-based Verification: Formula Based

Affirmation provides safety by adding a formula.

The formula is unique for every user, registered at

the time of creating an account. The keys to the

formula changes every time, and the user is

requested to submit an answer following the

substitution of corresponding keys to the formula.

This usage of formula is required only when the user

tries to withdraw beyond the permitted.

 VI PROPOSED ALGORITHM

Step 1: The client registers in a bank with new account

 42

details.

Step 2: Clients will be issued with a unique formula

that will be used during a suspicious transaction

detected by the HMM.

Step 3: In a certain predicament, if the client tries to

take an amount that is out of the typical observable

patterns, the HMM will immediately raise uncertainty.

Step 4: Formula Based Authentication will be initiated

through the HMM.

Step 5: The client will receive a set of keys which are

unrepeatable to his formula.

Step 6: The client will apply these keys to the formula,

and once the correct password is given, the transaction

will be fulfilled.

HMM provides instructions about evaluation,

decrypting, and learning. Evaluation is defined as

expecting the monitoring order further as well as reverse

design. Decrypting specifies all unknown states order

(Viterbi). Using the observed information, HMM will

be created using Learning (Baum-Welch).

The HMM model works on the transaction history of

the client, and after the required formulation if the

current transaction is found to be suspicious, then the

formula based authentication is initiated. If the user is

able to authorize using the keys to their formula, then

the transaction will be successful.

51

Numeric Notation for formula based authentication
Initially the user gets a unique formula while registering

for the credit card. During normal transactions the user

does not have to enter the authentication formula but if

the HMM model detects any particular deals that are not

the general user behavior pattern i.e, if the model detects

the money withdrawal as skeptical then the user

receives the keys through messages.
Example:
Let the unique formula be A+B-C+D.
User will receive a message with keys as shown when

suspicious transaction is found by the HMM model:
A=3 B=2 C=1 D=1
The user must apply the formula using the keys:
=A+B-C+1
= 3+2-1+1
= 5
Hence this must be entered as the password in order to

complete the transaction. Every suspicious transaction

generates keys randomly. Therefore, even if the

fraudsters hack the mobile for keys they will not be

able
to get the money as the formula remains confidential

with the user. In this way, the user's account will be free

from fraudulent activities.
 VII. RESULTS AND DISCUSSION
 The main aim is to establish a systematic formula

based authentication model using ML methods for

predicting fraud research. In our proposed work, the

client withdrawal history acts as a dataset for the HMM

model. Whenever the HMM detects a doubtful

transaction the formula based verification will be

activated.

When the user enters the right key, the transaction will

be successful.

When the customer enters the wrong key, a suspicious

transaction will be identified.

 43

Transaction history of the customer.

 VIII. CONCLUSION

More credit card forgery is happening in huge level

these days. Even after the existence of cyber security,

dishonest money extractions are still active. Formula

based authentication is one of many processes to

perform the transactions securely. This process allows

only genuine deals to take place. Hidden Markov Model

is a robust technique for user behavior pattern extraction

and to detect deceitful behavior. HMM is used to get a

set of unknown variables from known variables. Pattern

changes in the transaction history of the account holder

can be detected by using the HMM model. If the

transaction is detected to be fraudulent an authentication

key is sent to the user, and the user must apply the keys

to the formula in order to find the solution and enter it

as password for successful transaction.

IX FUTURE ENHANCEMENTS

Methodological filtering can be made more effective

using various algorithms. Hardware implementation can

be improvised using counterfactual analysis and can be

interfaced using near-field communication for simple

transactions. A toggle button can be used to enable

formula based detection transaction.(for eg: the user can

choose to enable or disable the transaction limit).

 REFERENCES

[1]The importance of credit cards:

https://budgeting.thenest.com/importancecredit- cards-

29514.html
[2]The chargeback process in a credit card:

https://chargebacks911.com/chargeback-process/

52

[3]Low and Slow Is How the Credit Card Fraudsters

Roll: https://www.threatmetrix.com/digital-identity-

blog/fraudprevention/low-and-slow-is-how-the-credit-

card-fraudsters-roll/
[4]Andrea Dal Pozzolo, G. Boracchi, O. Caelen, C.

Alippi and G. Bontempi, ”Credit Card Fraud Detection:

A Realistic Modeling and a Novel Learning Strategy,”

in IEEE Transactions on Neural Networks and Learning

Systems, vol. 29, no. 8, pp. 3784-3797, Aug. 2018.
[5]John. O. Awoyemi, A. O. Adetunmbi and S. A.

Oluwadare, ”Credit card fraud detection using machine

learning techniques: A comparative analysis,” 2017

International Conference on Computing Networking and

Informatics (ICCNI), Lagos, 2017, pp. 1-9.
[6]Lutao Zheng et al., ”A new credit card fraud

detecting method based on behavior certificate,” 2018

IEEE 15th International Conference on Networking,

Sensing and Control (ICNSC), Zhuhai, 2018, pp. 1-6.
[7]Sahil Dhankhad, Emad A. Mohammed, Behrouz Far,

(2018) “Supervised Machine Learning Algorithms for

Credit Card Fraudulent”.
[8]Aisha Abdallah n , Mohd Aizaini Maarof, Anazida

Zainal,(2016),”Survey on systematic and

comprehensive overview.

