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ABSTRACT 

 
Bot detection using machine learning (ML), with network flow-level features, has 

been extensively studied in the literature. However, existing flow-based 

approaches typically incur a high computational overhead and do not completely 

capture the network communication patterns, which can expose additional aspects 

of malicious hosts. Recently, bot detection systems that leverage communication 

graph analysis using ML have gained attention to overcome these limitations. 

 
A graph-based approach is rather intuitive, as graphs are true representation of 

network communications. In this paper, we propose BotChase, a two-phased 

graph-based bot detection system that leverages both unsupervised and 

supervised ML. The first phase prunes presumable benign hosts, while the second 

phase achieves bot detection with high precision. Our prototype implementation of 

BotChase detects multiple types of bots and exhibits robustness to zero-day 

attacks. It also accommodates different network topologies and is suitable for 

large-scale data. Compared to the state-of-the-art, BotChase outperforms an end- 

to-end system that employs flow-based features and performs particularly well in 

an online setting. 
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CHAPTER 1 

INTRODUCTION 

Now a days everyone is storing their information in their systems. Here comes a 

problem in providing security to their systems. On other hand cyber-attacks are also 

increasing randomly which can hack your personal data like photos, social media and 

chats. Bot attacks increased worldwide. There are also some servers getting hacked 

which contains data of some lakhs people, where hacking a server is equal to 

hacking some lakhs people data. 

Botnet is also a type of cyber-attack which is a collection of internet-connected 

devices, where these devices are called as bot. By using this bots the attacker can 

also hack a big servers. These bots all together called as bot army. Botnet can make 

time-consuming tasks easier because of its army. Botnet also perform helpful tasks 

people are using it for malicious works. It is also a source of many malicious 

activities. The different models of botnet are Client/Server .There are many types in 

botnet like centralized, client-server, decentralized and peer-to-peer models and 

attacks such as DDoS, phishing, cryptojacking, snooping, bricking, Brute force and 

spambots. Common Botnet actions are  Email spam, Financial breach, Targeted 

intrusions. A bot herder can do a collective of hijacked devices by using remote 

commands. Once your machine is infected, it becomes a bot, you may not even 

know. Botnet leads to Financial theft, Informational theft, Sabotage of services, 

Selling access to other criminals. The 3 main components of botnet are the bots, 

Botnet attacks has been increased in the recent years at the same time different 

types of Botnet detection frameworks are also increased. 

 
The hacker can access the device only when his application was in the device. Once 

his application started running in the device then he can steal, change or destroy 

information. The hacker can also steal money, username and passwords. The hacker 

can also change your confidential data. Also install and run any application in your 

system he want. All the devices which are connected to the internet can be hacked 

by the hacker. The more targeted devices like desktop and laptops which runs on 

Windows OS or macOS. Mobiles are next target devices as more people are using by 

connecting them to the internet. Recent years connecting devices to the internet has 

increased rapidly botnets also create from connected devices has become more 

noted. 

First the hacker will start by injecting the malware infection to your device. some 

download links to the target device to hack the device. For example Trojan Horse 

(Happy New Year! Click here to see magic). If the owner of the device does not know 

about whether the download link is an attacker link and if he click on the link then the 

hacker application will get download in the device and sit around wait for command 

from the main system (hacker system). Now the hacker can access everything from 

his device. In order not to get attacked by hackers he should know all the malware 

links, so he can save his device from hacker. To stay away from malware links his 

device should able to find the malware links or prevent the initial infection or identify 



2 
 

an existing infection. Botnet attacks are hard to detect. Preventing botnet attacks is 

more difficult. Yet we can still take certain measures to prevent botnet attacks. 

 

 
1.1 OVERVIEW 

Cyberattacks are on the rise these days. Many systems are getting infected by 

attacks to overcome these attacks, In the past, we used signature-based research. 

However, as technology developed, attacks became more sophisticated and we used 

k-means and decision trees to see how many bots were targeted and how many were 

not. If there is an attack, we will find how many bots were attacked or detected and 

we will give the number. 

 
1.2 OBJECTIVE 

A botnet is a collection of bots, agents in compromised hosts, controlled by 

botmasters via command and control (C2) channels. A malevolent adversary controls 

the bots through botmaster, which could be distributed across several agents that 

reside within or outside the network. Hence, bots can be used for tasks ranging from 

distributed denial-of-service (DDoS), to massive-scale spamming, to fraud and 

identify theft. While bots thrive for different sinister purposes, they exhibit a similar 

behavioral pattern when studied up-close. The intrusion kill-chain dictates the 

general phases a malicious agent goes through in-order to reach and infest its target. 

 
1.3 SCOPE 

For this phase in BotChase, we evaluate four SL techniques, namely DT, LR, SVM 

and FNN. We use DT with Gini instance split rule algorithm, LR without 

regularization, and SVM with the Gaussian kernel and a soft margin penalty of 1. 

Moreover, NN is configured to use cross entropy as an error function and 10 hidden 

layers of 1000 units each. The DT classifier shows the best performance with the 

small dataset, as depicted in Table IV. It successfully detects all bots in the test 

dataset, with only a single FP out of the 366871 benign hosts. In contrast, all other 

classifiers are lackluster and unable to recall even a single bot from the dataset. We 

believe this is because all classifiers, except DT, rely on gradient-descent for 

errorcorrection. This implies that every single node in the dataset will affect the end- 

hypothesis function. Thus, with a dataset that is unbalanced, the hypothesis will be 

biased towards the benign hosts, which is the case for LR, SVM and FNN. 
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         CHAPTER 2 

LITERATURE SURVEY 

 
2.1 Effective Botnet Detection Through Neural Networks on Convolutional 

Features(Shao-Chien Chen, Yi-Ruei Chen, Wen-Guey Tzeng) 

ABSTRACT: Botnet is one of the major threats on the Internet for committing 

cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, 

etc. It is a challenging issue to detect modern botnets that are continuously improving 

for evading detection. In this paper, we propose a machine learning based botnet 

detection system that is shown to be effective in identifying P2P botnets. Our 

approach extracts convolutional version of effective flow-based features, and trains a 

classification model by using a feed-forward artificial neural network. The 

experimental results show that the accuracy of detection using the convolutional 

features is better than the ones using the traditional features. It can achieve 94.7% of 

detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. 

Furthermore, our system provides an additional confidence testing for enhancing 

performance of botnet detection. It further classifies the network traffic of insufficient 

confidence in the neural network. The experiment shows that this stage can increase 

the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%. 

2.2 An approach for host based botnet detection system 

AUTHORS: Yulia ALEKSIEVA, Hristo VALCHANOV, Veneta ALEKSIEVA. 

ABSTRACT: Most serious occurrence of modern malware is Botnet. Botnet is a 

rapidly evolving problem that is still not well understood and studied. One of the main 

goals for modern network security is to create adequate techniques for the detection 

and eventual termination of Botnet threats. The article presents an approach for 

implementing a host-based Intrusion Detection System for Botnet attack detection. 

The approach is based on a variation of a genetic algorithm to detect anomalies in a 

case of attacks. An implementation of the approach and experimental results are 

presented. 

2.3 Towards using transfer learning for Botnet Detection 

AUTHORS: Prapa Rattadilok, Basil Alothman 

ABSTRACT: Botnet Detection has been an active research area over the last 

decades. Researchers have been working hard to develop effective techniques to 

detect Botnets. From reviewing existing approaches it can be noticed that many of 

them target specific Botnets. Also, many approaches try to identify any Botnet activity 

by analysing network traffic. They achieve this by concatenating existing Botnet 

datasets to obtain larger datasets, building predictive models using these datasets 

and then employing these models to predict whether network traffic is safe or 

harmful. The problem with the first approaches is that data is usually scarce and 

costly to obtain. By using small amounts of data, the quality of predictive models will 

always be questionable. On the other hand, the problem with the second approaches 

is that it is not always correct to concatenate datasets containing network traffic from 

different Botnets. Datasets can have different distributions which means they can 

downgrade the predictive performance of machine learning models. Our idea is 
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instead of concatenating datasets, we propose using transfer learning approaches 

tocarefully decide what data to use. Our hypothesis is ―Predictive Performance can 

be improved by using transfer learning techniques across datasets containing 

network traffic from different Botnets‖. 

2.4 Development of an Intrusion Detection System Using a Botnet with the R 

Statistical Computing System 

AUTHORS: Takashi Yamanoue, Junya Murakami 

ABSTRACT: Development of an intrusion detection system, which tries to detect 

signs of technology of malware, is discussed. The system can detect signs of 

technology of malware such as peer to peer (P2P) communication, DDoS attack, 

Domain Generation Algorithm (DGA), and network scanning. The system consists of 

beneficial botnet and the R statistical computing system. The beneficial botnet is a 

group of Wiki servers, agent bots and analyzing bots. The script in a Wiki page of the 

Wiki server controls an agent bot or an analyzing bot. An agent bot is placed between 

a LAN and its gateway. It can capture every packet between hosts in the LAN and 

hosts behind the gateway from the LAN. An analyzing bot can be placed anywhere in 

the LAN or WAN if it can communicate with the Wiki server for controlling the 

analyzing bot. The analyzing bot has R statistical computing system and it can 

analyze data which is collected by agent bots. 

2.5 An efficient botnet detection system for P2P botnet 

AUTHORS: M. Thangapandiyan, P. M. Rubesh Anand 

ABSTRACT: Peer-to-Peer (P2P) botnets are exploited by the botmasters for their 

resiliency against the take down efforts. As the modern botnets are stealthier, the 

traditional botnet detection approaches are not suitable for the botnet detection. In 

this paper, an efficient botnet detection system is proposed for detecting the P2P 

botnet. The proposed botnet detection system estimates the flow export using 

NetFlow protocol. The packet flow is analyzed using three main components namely, 

Exporter, Collector, and Analyzer. The exporter captures the packet and monitors the 

contents of the packet. The collector captures the flow traffic and the analyzer 

component initiates an automated analysis of traffic with the captured packet 

information. The packet flow information is collected by virtual interface and physical 

probe. The virtual interface is used for collecting the malicious traffic information 

between the Virtual Machines (VMs) and the physical probe gathers malicious traffic 

information between the network bridges connecting VMs. The information collected 

from these techniques are analyzed for detecting the botnets in inter VM and intra 

VM. Compared to the existing Dendritic Cell Algorithm (DCA), the proposed VM 

based botnet detection system has minimal time consumption, increased detection 

speed, and higher attack prevention ratio. 

2.6 Overview of Botnet Detection Based on Machine Learning 

AUTHORS: Xiaxin Dong, Jianwei Hu ,Yanpeng Cui 

ABSTRACT: With the rapid development of the information industry, the applications 

of Internet of things, cloud computing and artificial intelligence have greatly affected 

people's life, and the network equipment has increased with a blowout type. At the 

same time, more complex network environment has also led to a more serious 
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network security problem. The traditional security solution becomes inefficient in the 

new situation. Therefore, it is an important task for the security industry to seek 

technical progress and improve the protection detection and protection ability of the 

security industry. Botnets have been one of the most important issues in many 

network security problems, especially in the last one or two years, and China has 

become one of the most endangered countries by botnets, thus the huge impact of 

botnets in the world has caused its detection problems to reset people's attention. 

This paper, based on the topic of botnet detection, focuses on the latest research 

achievements of botnet detection based on machine learning technology. Firstly, it 

expounds the application process of machine learning technology in the research of 

network space security, introduces the structure characteristics of botnet, and then 

introduces the machine learning in botnet detection. The security features of these 

solutions and the commonly used machine learning algorithms are emphatically 

analyzed and summarized. Finally, it summarizes the existing problems in the 

existing solutions, and the future development direction and challenges of machine 

learning technology in the research of network space security. 

2.7 Botnet and P2P Botnet Detection Strategies: A Review 

AUTHORS: Jitender Kumar , Himanshi Dhayal 

ABSTRACT: Among various network attacks, botnet led attacks are considered as 

the most serious threats. A botnet, i.e., the network of compromised computers is 

able to perform large scale illegal activities such as Distributed Denial of Service 

attacks, click fraud, bitcoin mining etc. These attacks are considered as the major 

concern now-a-days. In this paper, we present a comprehensive review of botnets, 

their lifecycle and types. We also discuss the peer-to-peer botnet detection 

techniques' behaviors using various latest detection techniques. 

2.8 Botnet Detection Using Recurrent Variational Autoencoder 

AUTHORS: Jeeyung Kim, Alex Sim, Jinoh Kim, Kesheng Wu 

ABSTRACT: Botnet detection is an active research topic as botnets are a source of 

many malicious activities, including distributed denial-of-service (DDoS), click-fraud, 

spamming, and crypto-mining attacks. However, it is getting more complicated to 

identify botnets due to the continuous evolution of botnet software and families that 

harness new types of devices and attack vectors. Recent studies employing machine 

learning (ML) showed improved performance to detect botnets to some extent, but 

they are still limited and ineffective with the lack of sequential pattern analysis, which 

is a key to detect various classes of botnets. In this paper, we propose a novel botnet 

detection method, built upon Recurrent Variational Autoencoder (RVAE), that 

effectively captures sequential characteristics of botnet anomalies. We validate the 

feasibility of the proposed method with the CTU-13 dataset that have been widely 

employed for botnet detection studies, and show that our method is at least 

comparable to existing techniques in terms of detection accuracy. In addition, our 

experimental results show that the proposed method can detect previously unseen 

botnets by utilizing sequential patterns of network traffic. We will also show how our 

method can detect botnets in the streaming mode, which is the essential requirement 

to perform real-time, on-line detection. 
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2.9 Sonification of Network Traffic for Detecting and Learning About Botnet Behavior 

AUTHORS: Mohamed Debashi, Paul Vickers 

ABSTRACT: Today's computer networks are under increasing threat from malicious 

activity. Botnets (networks of remotely controlled computers, or ―bots‖) operate in 

such a way that their activity superficially resembles normal network traffic which 

makes their behavior hard to detect by current intrusion detection systems (IDS). 

Therefore, new monitoring techniques are needed to enable network operators to 

detect botnet activity quickly and in real time. Here, we show a sonification technique 

using the SoNSTAR system that maps characteristics of network traffic to a real-time 

soundscape enabling an operator to hear and detect botnet activity. A case study 

demonstrated how using traffic log files alongside the interactive SoNSTAR system 

enabled the identification of new traffic patterns characteristic of botnet behavior and 

subsequently the effective targeting and real-time detection of botnet activity by a 

human operator. An experiment using the 11.39 GiB ISOT botnet data set, containing 

labeled botnet traffic data, compared the SoNSTAR system with three leading 

machine learning-based traffic classifiers in a botnet activity detection test. SoNSTAR 

demonstrated greater accuracy (99.92%), precision (97.1%), and recall (99.5%) and 

much lower false positive rates (0.007%) than the other techniques. The knowledge 

generated about characteristic botnet behaviors could be used in the development of 

future IDSs. 

2.10 Analysis of Machine Learning Algorithms for IoT Botnet 

AUTHOR: Umang Garg, Vaibhav Kaushik, Anushka Panwar, Neha Gupta 

ABSTRACT: The Internet of Things (IoT) gains a lot of popularity day-by-day due to 

their everlasting availability and ease. As the popularity of IoT increases, it also 

attracts hackers which try to take advantage of the vulnerability of IoT devices. An 

Intrusion Detection System (IDS) is an intelligence-based system that can investigate 

or detect the intrusion in the IoT botnet and check the state of software and hardware 

executing in the network. Once the intrusion is detected, it may generate an alarm to 

alert the administrator or send some alert message to the owner. In the last decade, 

there are several IDSs available which can detect the intrusion. But the major 

problems with the existing IDSs like accuracy rate, generation of the false alarm, and 

fewer chances of detection of unknown attacks. To deal with the above problems, 

some machine learning techniques have been involved by researchers. These 

techniques can differentiate between the normal and abnormal behavior of the user's 

data or network traffic with high accuracy. In this paper, we summarize and classify 

the machine learning algorithms that can be used in IDS with their metrics, 

parameters. Then, a case study is implemented with the UNSW-NB15 dataset that 

has realistic network traffic with frequently used machine learning techniques. After 

that, a comparison will be done and displayed by using an accuracy percentage table 

and a bar chart. Finally, some challenges and future scope of the machine learning 

techniques in the improvement of IDS will be discussed. 

2.11 An enhancing framework for botnet detection using generative adversarial 

networks 

AUTHORS: Chuanlong Yin, Yuefei Zhu, Shengli Liu, Jinlong Fei, Hetong Zhang 
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ABSTRACT: The botnet, as one of the most formidable threats to cyber security, is 

often used to launch large-scale attack sabotage. How to accurately identify the 

botnet, especially to improve the performance of the detection model, is a key 

technical issue. In this paper, we propose a framework based on generative 

adversarial networks to augment botnet detection models (Bot-GAN). Moreover, we 

explore the performance of the proposed framework based on flows. The 

experimental results show that Bot-GAN is suitable for augmenting the original 

detection model. Compared with the original detection model, the proposed approach 

improves the detection performance, and decreases the false positive rate, which 

provides an effective method for improving the detection performance. In addition, it 

also retains the primary characteristics of the original detection model, which does 

not care about the network payload information, and has the ability to detect novel 

botnets and others using encryption or proprietary protocols. 

2.12 A Survey on Botnet Detection Techniques 

AUTHOR: Shivani Gaonkar, Nandini Fal Dessai, Jenny Costa 

ABSTRACT: Due to the increased rate of internet usage, security problems have also 

increased. One of the serious threats in network security are Botnets. A Botnet is 

defined as a collection of various bots that Botmaster controls through the Command 

and Control (C&C) channel. During recent times, different technologies and 

techniques have been proposed to track the detection of botnets. This paper 

summarizes different techniques to detect different botnets. General bot detection 

and IoT-bot detection techniques are separately explained. UNSW-NB15 datasets 

have been used in training and testing of the proposed model. A real-time IoT-Bot 

detection using deep learning algorithm is proposed in this paper. Wireshark is used 

to capture a package from network traffic. 

2.13 Analysis of Botnet Domain Names for IoT Cybersecurity 

AUTHOR: Wanting Li, Jian Jin, Jong-Hyouk Lee 

ABSTRACT: Botnets are widespread nowadays with the expansion of the Internet 

and commonly occur in many cyber-attacks, resulting in serious threats to network 

services and users' properties. With the rapid development of the Internet of Things 

(IoT) applications, the botnet can easily make use of IoT devices for larger-scale 

attacks. Domain name system (DNS) is widely used by the botnet to establish the 

connection between bots and their corresponding command-and-control (C&C). In 

order to avoid the track of the C&C through the DNS information, some sophisticated 

schemes are used by the botnet and fast-flux is a typical one. In this paper, the 

activities of Rustock botnet domain names which just use the fast-flux as the 

connection method between bots and C&C, are deeply analyzed from multiple 

aspects. Besides, we extract 32 special features of Rustock domain named querying 

traffic. Then multiple popular classifiers are adopted in order to pick the malicious 

domain names out from the DNS traffic using those 32 features. The work of this 

paper aims to provide guidance for future botnet detection based on real statics and 

experiments. 

 
2.14 Email Shape Analysis for Spam Botnet Detection 
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AUTHOR: Paul Sroufe, Santi Phithakkitnukoon, Ram Dantu, Joao Cangussu 

ABSTRACT: Botnets have become the major sources of spamming, which generates 

massive unwanted traffic on networks. An effective detection mechanism can greatly 

mitigate the problem. In this paper, we present a novel botnet detection mechanism 

based on the email "shape" analysis that relies on neither content nor reputation 

analysis. Shape is our new way of characterizing an email by mimicking human visual 

inspection. A set of email shapes are derived and then used to generate a botnet 

signature. Our preliminary results show greater than 80% classification accuracy 

(without considering email content or reputation analysis). This work investigates the 

discriminatory power of email shape, for which we believe will be a significant 

complement to other existing techniques such as a network behavior analysis. 

2.15 Bot Detection via IoT Environment 

AUTHOR: Im Y. Jung, Jae J. Jang, Jae-geun Moon 

Abstract: Many users do not realize whether their devices become bots or not. There 

are many security accidents due to malicious bots. To solve this problem, we propose 

a monitor system composed of IoT devices to detect bots. 

 
2.16 Detection Method of DNS-based Botnet Communication Using Obtained NS 

Record History 

AUTHOR: Katsuyoshi Iida, Yong Jin, Hikaru Ichise 

ABSTRACT: To combat with botnet, early detection of the botnet communication and 

fast identification of the bot-infected PCs is very important for network administrators. 

However, in DNS protocol, which appears to have been used for botnet 

communication recently, it is difficult to differentiate the ordinary domain name 

resolution and suspicious communication. Our key idea is that the most of domain 

name resolutions first obtain the corresponding NS (Name Server) record from 

authoritative name servers in the Internet, whereas suspicious communication may 

omit the procedures to hide their malicious activities. Based on this observation, we 

propose a detection method of DNS basis botnet communication using obtained NS 

record history. Our proposed method checks whether the destined name server (IP 

address) of a DNS query is included in the obtained NS record history to detect the 

botnet communications 

2.17 Botnet detection using software defined networking 

AUTHOR: Udaya Wijesinghe, Udaya Tupakula, Vijay Varadharajan 

ABSTRACT: Software Defined Networking (SDN) is considered as a new approach 

promising simplified network management by providing a programmable interface. 

The idea of SDN is based on the separation of control plane from the data plane in 

networking devices. This is achieved by having the network intelligence centralised in 

what is called as SDN controller. In this paper we propose techniques for botnet 

detection in networks using SDN. The SDN controller makes use of generic 

templates for capturing the traffic flow information from the OpenFlow switches and 

makes use of this information for detecting bots. We will show that our model can 

detect a range of bots including IRC, HTTP and peer-to-peer bots. 

2.18 DGA Bot Detection with Time Series Decision Trees 
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AUTHOR: Anaël Bonneton, Daniel Migault, Stephane Senecal, Nizar Kheir 

ABSTRACT: This paper introduces a behavioral model for botnet detection that 

leverages the Domain Name System (DNS) traffic in large Internet Service Provider 

(ISP) networks. More particularly, we are interested in botnets that locate and 

connect to their command and control servers thanks to Domain Generation 

Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts 

belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to 

build decision tree classifiers to recognize these patterns in very little computation 

time. The main contribution of this paper is to consider whole time series to represent 

the temporal behavior of hosts instead of aggregated values computed from the time 

series. Our experiments are carried out on real world DNS traffic collected from a 

large ISP. 

2.19 An analysis of network traffic classification for botnet detection 

AUTHOR: Matija Stevanovic, Jens Myrup Pedersen 

ABSTRACT: Botnets represent one of the most serious threats to the Internet 

security today. This paper explores how network traffic classification can be used for 

accurate and efficient identification of botnet network activity at local and enterprise 

networks. The paper examines the effectiveness of detecting botnet network traffic 

using three methods that target protocols widely considered as the main carriers of 

botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We 

propose three traffic classification methods based on capable Random Forests 

classifier. The proposed methods have been evaluated through the series of 

experiments using traffic traces originating from 40 different bot samples and diverse 

non-malicious applications. The evaluation indicates accurate and time-efficient 

classification of botnet traffic for all three protocols. The future work will be devoted to 

the optimization of traffic analysis and the correlation of findings from the three 

analysis methods in order to identify compromised hosts within the network. 

2.20 Botnet Domain Name Detection based on machine learning 

AUTHOR: Baoping Yan, Guanggang Geng, Zhiwei Yan, Jian Jin 

ABSTRACT: Domain Name System (DNS) is a fundamental component of today's 

Internet: it provides mappings between domain names used by people and the 

corresponding IP addresses required by network protocols. However, the open and 

fundamental characteristics of DNS are recently used by the botnet for the 

communication between bots and C&C. In this paper, we select six kinds of special 

features of botnet domain querying traffic based on the deep studies of the DNS log. 

Then three popular classifiers are adopted in order to pick the malicious domains 

outfrom the DNS traffic using those features. 



10 
 

     CHAPTER 3 

METHODOLOGY 
 
 

3.1 EXISTING SYSTEM 

 
In existing flow-based approaches typically incur a high computational overhead and 

do not completely capture the network communication patterns, which can expose 

additional aspects of malicious hosts. Recently, bot detection systems that leverage 

communication graph analysis using ML have gained attention to overcome these 

limitations. A graph-based approach is rather intuitive, as graphs are true 

representation of network communications. 

 
3.1.1 EXISTING SYSTEM DISADVANTAGE 

 
• Do not completely capture the network communication patterns, which can expose 

additional aspects of malicious hosts. 

 
3.2 PROPOSED WORK 

 

In this paper, we propose BotChase, an anomaly-, graph-based bot detection 

system, which is protocol agnostic, i.e., it detects bots regardless of the protocol. 

BotChase employs graph-based features in a two phased ML approach, which is 

robust to zero-day attacks, spatially stable, and suitable for large datasets.We 

evaluate the BotChase prototype system in an online setting that recurrently trains 

and tests the ML models with new data. We also leverage the Hoeffding Adaptive 

Tree (HAT) classifier for incremental learning. This is crucial to account for changes 

in network traffic and host behavior. 
 

Cyberattacks are on the rise these days. Many systems are getting infected by 

attacks to overcome these attacks, In the past, we used signature-based research. 

However, as technology developed, attacks became more sophisticated and we used 

k-means and decision trees to see how many bots were targeted and how many were 

not. If there is an attack, we will find how many bots were attacked or detected and 

we will give the number. 

 
LIMITATIONS 

Botnet detection has been an active area of research that has generated a 

substantial body of work. Common botnet detection approaches are passive. They 

assume successful intrusions and focus on identifying infected hosts (bots) or 

detecting C2 communications, by analyzing system logs and network data, using 

signature- or anomaly-based techniques. Signature-based techniques have 

commonly been used to detect pre-computed hashes of existing malware in hosts 

and/or network traffic. They are also used to isolate IRC-based bots by detecting bot-  
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like IRC nicknames and to identify C2-related DNS requests by detecting C2-like 

domain names. Metadata such as regular expressions based on packet content and 

target IP occurrence tuples is an example of what could be employed in a signature 

and pattern detection algorithm. More generally, signature-based techniques have 

been employed to identify C2 by comparison with known C2 communication patterns 

extracted from observed C2 traffic, and infected hosts by comparison with static 

profiles and behaviours of known bots. 

 
In the application CTU-13 dataset is used form kaggle Upload ctu-13 dataset button 

,it open the files.There we select the dataset click on open. After uploading the 

dataset on screen it display the path from where we are taking dataset , dataset size 

Also displays total rows and total columns, showing the Start Time, Duration, Protoc , 

SrcAddrress,Sport,Dire,DstAddress,Dport,State,sTos,dTos,TotalPackets,TotalBytes, 

SrcBytes,Label and also the rows and columns in side square braces. 

 
Apply k-means to separate bot and benign data from the data set. It gives us the 

dataset size before removing benign records, i.e (total rows and columns). gives the 

dataset size after removing the benign records, i.e (total rows and columns) By using 

k-means we separated the Bot and Benign data. 

 
When we have a look at the CMD there it show as generated bot graph points On UI 

it shoes the number of nodes , number of edges, number of graph created , between- 

Ness centrality for all IP address or node. Here ip address nothing but nodes, 

Execution time, clustering time calculation, alpha centrality time calculation Alpha 

Centrality time. 

 
After clicking on it, Normalizing features process completed & below are some 

sample records out out- degree-weight in-degree-wt outdegree ,indegree bot   bc 

lcc ac. All the values of it which are normalized, Normalized & transformed data 

saved inside normalize_data. csv file, as well as we can have a look at the CMD 

there it show as features normalization module 100 percent done and shoes the 

record in it. 

 
It shows Normalized data loading to decision tree classifier Total dataset size to build 

model.Model training records size, Model testing records size, Decision Tree 

Accuracy , Decision Tree Precision , Decision Tree Recall ,True -Pos , False- 

Pos,True-Neg, False-Neg.we have test 20 % of data, and training 80% of data . 

The Accuracy of this model is 99%. 

 

 
3.3 SUPERVISED LEARNING 

A method of teaching machine learning labeled data by hand is called supervised 

learning. its already know output of the algorithm before it start working on it, example 

classifying a dataset in CTU-13, here it matches the input to output, here we will train  
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the data and and tested the data , once algorithm is well trained, it is tested using the 

new data when it comes to unsupervised learning the training phase is big because 

the machine is only given the input,it has to figure out the output on its own, so there 

is no supervisor here or there’s  is no mentor over here. 

 
3.4 UNSUPERVISED LEARNING 

Unsupervised learning involves the machine learning without any guidance in the 

form of unlabeled data.Here it forms as groups for example in this project like attack 

and non-attack, the only difference is it Cant add the labels, it understands how the 

cluster groups separate .Types of problems: Association ,clustering: separating on 

based Anomaly The detection of unusual activities can be used for detecting 

suspicious activity and the reinforcement of these activities is what we call 

reinforcement learning now.In unsupervised learning we must find patterns in data 

and keep exploring the data until it reaches the output. Observing patterns and 

extracting insights in unsupervised approaches is all about figuring out how to get the 

output, since the algorithm is only given input, it must find ways to gain insights from 

data by finding trends and associations, mapping the known input to known outputs. 

 
3.4.1 K-means 

It’s a technique most of us do in our daily life, for example like group of people 

sharing tableClustering is the process of dispersing datasets into groups consisting of 

similar data points. For example: k-means clustering. Exclusive clustering is hard 

clustering, where points/items belong only to one cluster. 

 
Descion tree: (supervised) 

Descion tree it can be used as both supervised and unsupervised, but in this project 

we are using decision tree as supervised algorithm. It has a root that grows as a 

number of different options is increased, similar to decision trees. A decision tree is a 

visual representation of all possible solutions based on many conditions. and the 

condition now, here we will split the dataset into different subsets will become the 

input to child, the goal is produce the purest possible distribution of the labels at each 

nodes 

 
In this project we are using k-means and desicion tree algorithms for building this 

projecte. 

To execute the project we have to click on run , then the CMD opens which shows 

the path of project where it located, after that the user interface opens, splits of 2 

screens one screen contains buttons Other side it shows the executed functions 

output. 

 
CHAPTER 

A. Upload CTU Dataset 

B. Apply KMEANS to separate Bot & Benign Data 
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C. Run Flow Ingestion & Graph Transformation 

D. Features Extraction & Normalization 

E. Run Decision Tree Algorithm 

F. View Graph 

G. Exit 

 
First open the application then run in the command prompt User Interface (UI) is 

displayed. On UI you will have some buttons like Upload CTU Dataset, Apply 

KMEANS to separate Bot & Benign Data, Run Flow Ingestion & Graph 

Transformation, Features Extraction & Normalization, Run Decision Tree Algorithm, 

View Graph, Exit. Click on the first button i.e Upload CTU Dataset, then some 

datasets are displayed. Select one among them and click open. It gives the dataset 

size like total rows, total columns and also dataset samples. Then click on the second 

button i.e Apply KMEANS to separate Bot & Benign Data. It gives you the information 

about dataset size before removing the benign records and after removing the benign 

records. This button will apply k means algorithm to the dataset and separate as two 

clusters namely bot and benign and will remove the benign records from the set. Then 

click on the third button i.e Run Flow Ingestion & Graph Transformation. It gives the 

information like number of nodes, number of edges and betweenness. Then click on 

the the fourth button Features Extraction & Normalization. It complete the Normalizing 

features process and display some sample records. Then click on the Run Decision 

Tree Algorithm. It display information like Decision Tree Accuracy, Decision Tree 

Precision, Decision Tree Recall, True Positive, False Positive, True Negative, False 

Negative. Then you can select number of nodes to draw graph. After selecting the 

nodes you can click on View Graph to display the graph. The graph displays the 

cluster.  Last you will find a exit button to exit from the UI. Click on the exit to close the 

interface. If you want to find botnet attacks from other datasets, then you can again 

upload a new dataset in the upload button and repeat the steps like applying k means, 

then click Run Flow Ingestion & Graph Transformation, then feature extraction and 

normalization and apply run decision tree algorithm. 
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3.5 Advantage 

 
• It also accommodates different network topologies and is suitable for large-scale 

data. 

• Compared to the state-of-the-art, BotChase outperforms an end-to-end system that 

employs flow-based features and performs particularly well in an online setting. 

3.6 SOFTWARE AND HARDWARE REQUIREMENTS 

SOFTWARE REQUIREMENTS 

The functional requirements or the overall description documents include the product 

perspective and features, operating system and operating environment, graphics 

requirements, design constraints and user documentation. 

 
The appropriation of requirements and implementation constraints gives the general 

overview of the project in regards to what the areas of strength and deficit are and 

how to tackle them. 

 
• Python idel 3.7 version (or) 

• Anaconda 3.7 ( or) 

• Jupiter (or) 

• Google colab 

 
HARDWARE REQUIREMENTS 

Minimum hardware requirements are very dependent on the particular software being 

developed by a given Enthought Python / Canopy / VS Code user. Applications that 

need to store large arrays/objects in memory will require more RAM, whereas 

applications that need to perform numerous calculations or tasks more quickly will 

require a faster processor. 

 
•Operating system: windows, linux 

•Processor: minimum intel i3 

• Ram 

•Hard disk : minimum 250gb 
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3.7 SYSTEM STUDY 

FEASIBILITY STUDY 

 
The feasibility of the project is analyzed in this phase and business proposal is 

put forth with a very general plan for the project and some cost estimates. During 

system analysis the feasibility study of the proposed system is to be carried out. This 

is to ensure that the proposed system is not a burden to the company. For feasibility 

analysis, some understanding of the major requirements for the system is essential. 

 
Three key considerations involved in the feasibility analysis are 

• ECONOMICAL FEASIBILITY 

• TECHNICAL FEASIBILITY 

• SOCIAL FEASIBILITY 

 
3.7.1 Economical Feasibility 

 
This study is carried out to check the economic impact that the system will have on 

the organization. The amount of fund that the company can pour into the research 

and development of the system is limited. The expenditures must be justified. Thus 

the developed system as well within the budget and this was achieved because most 

of the technologies used are freely available. Only the customized products had to be 

purchased. 

3.7.2 Technical Feasibility 

 
This study is carried out to check the technical feasibility, that is, the technical 

requirements of the system. Any system developed must not have a high demand on 

the available technical resources. This will lead to high demands on the available 

technical resources. This will lead to high demands being placed on the client. The 

developed system must have a modest requirement, as only minimal or null changes 

are required for implementing this system. 

3.7.3 Social Feasibility 

 
The aspect of study is to check the level of acceptance of the system by the 

user. This includes the process of training the user to use the system efficiently. The 

user must not feel threatened by the system, instead must accept it as a necessity. 

The level of acceptance by the users solely depends on the methods that are 

employed to educate the user about the system and to make him familiar with it. His 

level of confidence must be raised so that he is also able to make some constructive 

criticism, which is welcomed, as he is the final user of the system. 
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Fig 1 .SYSTEM ARCHITECTURE 

 
3.8 DATA FLOW DIAGRAM: 

 
1.The DFD is also called as bubble chart. It is a simple graphical formalism that can 

be used to represent a system in terms of input data to the system, various 

processing carried out on this data, and the output data is generated by this system. 

2.The data flow diagram (DFD) is one of the most important modeling tools. It is used 

to model the system components. These components are the system process, the 

data used by the process, an external entity that interacts with the system and the 

information flows in the system. 

3. DFD shows how the information moves through the system and how it is modified 

by a series of transformations. It is a graphical technique that depicts information flow 

and the transformations that are applied as data moves from input to output. 

4. DFD is also known as bubble chart. A DFD may be used to represent a system at 

any level of abstraction. DFD may be partitioned into levels that represent increasing 

information flow and functional detail. 
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Fig 2 DATA FLOW DIAGRAM: 
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Upload Student Dataset 
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3.8.1 Introduction To UML 

The Unified Modeling Language (UML) is a standard language for specifying, 

visualizing, constructing, and documenting the artifacts of software systems, as well 

as for business modeling and other non-software systems. The UML represents a 

collection of best engineering practices that have proven successful in the modeling 

of large and complex systems. The UML is a very important part of developing 

objects oriented software and the software development process. The UML uses 

mostly graphical notations to express the design of software projects. Using the UML 

helps project teams communicate, explore potential designs, and validate the 

architectural design of the software. 

 
3.8.2 Goals of UML 

. The primary goals in the design of the UML were: 

• Provide users with a ready-to-use, expressive visual modeling language so they 

can develop and exchange meaningful models. 

• Provide extensibility and specialization mechanisms to extend the core concepts. 

• Be independent of particular programming languages and development processes. 

• Provide a formal basis for understanding the modeling language. 

• Encourage the growth of the OO tools market. 

• Support higher-level development concepts such as collaborations, frameworks, 

patterns and components. 

• Integrate best practices. 

 
Why we use UML? 

As the strategic value of software increases for many companies, the industry looks 

for techniques to automate the production of software and to improve quality and 

reduce cost and time-to-market. These techniques include component technology, 

visual programming, patterns and frameworks. Businesses also seek techniques to 

manage the complexity of systems as they increase in scope and scale. In particular, 

they recognize the need to solve recurring architectural problems, such as physical 

distribution, concurrency, replication, security, load balancing and fault tolerance. 

Additionally, the development for the World Wide Web, while making some things 

simpler, has exacerbated these architectural problems. The Unified Modeling 

Language (UML) was designed to respond to these needs. 

3.9 UML Diagram 

The underlying premise of UML is that no one diagram can capture the different 

elements of a system in its entirety. Hence, UML is made up of nine diagrams that 

can be used to model a system at different points of time in the software life cycle of 

a system. 

 
The nine UML diagrams are: 
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3.9.1 Use case diagram: 

 

The use case diagram is used to identify the primary elements and processes that 

form the system. The primary elements are termed as "actors" and the processes are 

called "use cases." The use case diagram shows which actors interact with each use 

case. 

 
 

 

Fig 3: Use case diagram 
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3.9.2 Class diagram: 

The class diagram is used to refine the use case diagram and define a detailed 

design of the system. The class diagram classifies the actors defined in the use case 

diagram into a set of interrelated classes. The relationship or association between the 

classes can be either an "is-a" or "has-a" relationship. Each class in the class 

diagram may be capable of providing certain functionalities. These functionalities 

provided by the class are termed "methods" of the class. Apart from this, each class 

may have certain "attributes" that uniquely identify the class. 

 

 

 
 

FIG.4 CLASS DIAGRAM 
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3.9.3 Object diagram: 

The object diagram is a special kind of class diagram. An object is an instance of a 

class. This essentially means that an object represents the state of a class at a given 

point of time while the system is running. The object diagram captures the state of 

different classes in the system and their relationships or associations at a given point 

of time. 

 
 

FIG 5:OBJECT DIAGRAM 

3.9.4 State diagram: 

A state diagram, as the name suggests, represents the different states that objects in 

the system undergo during their life cycle. Objects in the system change states in 

response to events. In addition to this, a state diagram also captures the transition of 

the object's state from an initial state to a final state in response to events affecting 

the system. 
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FIG 6:STATE DIAGRAM 
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3.9.5 Activity diagram: 

The process flows in the system are captured in the activity diagram. Similar to a 

state diagram, an activity diagram also consists of activities, actions, transitions, initial 

and final states, and guard conditions. 
 

FIG 7:ACTIVITY DIAGRAM 
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3.9.6 Sequence diagram: 

A sequence diagram represents the interaction between different objects in the 

system. The important aspect of a sequence diagram is that it is time-ordered. This 

means that the exact sequence of the interactions between the objects is represented 

step by step. Different objects in the sequence diagram interact with each other by 

passing "messages". 

 

 
 

FIG 8:SEQUENCE DIAGRAM 

 

 
3.9.7 Collaboration diagram: 

A collaboration diagram groups together the interactions between different objects. 

The interactions are listed as numbered interactions that help to trace the sequence 

of the interactions. The collaboration diagram helps to identify all the possible 

interactions that each object has with other objects. 
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FIG 9:COLLABORATION DIAGRAM 

 
 

 
3.9.8 Component diagram: 

The component diagram represents the high-level parts that make up the system. 

This diagram depicts, at a high level, what components form part of the system and 

how they are interrelated. A component diagram depicts the components culled after 

the system has undergone the development or construction phase. 
 

 

FIG 10: COMPONENT DIAGRAM 
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3.9.9 Deployment diagram: 

The deployment diagram captures the configuration of the runtime elements of the 

application. This diagram is by far most useful when a system is built and ready to be 

deployed. 
 

 

FIG 11: DEPLOYMENT DIAGRAM 

 

 
3.10 Modules: 

 Upload CTU Dataset 

 Apply KMEANS to separate Bot & Benign Data 

 Run Flow Ingestion & Graph Transformation 

 Features Extraction & Normalization 

 Run Decision Tree Algorithm 

 Exit 

 
A .Uploading ctu-13 datset 

Upload ctu-13 dataset button ,it open the files there we select the dataset click on 

open, after uploading the dataset on screen it shows the path from where we are 

taking dataset , dataset size, by mentioning total rows and total columns, and 

showing the StartTime, Duration, Protoc ,Srcorce-Addrress 

,Sport,Dire,DstAddress,Dport,State,sTos,dTos,TotalPackets,TotalBytes,SrurceBytes, 

Label and also the rows and columns in side square braces. 

 
B. Apply k-means to separate bot and benign data: 

Apply k-means to separate bot and benign data from the data set , it gives us the 

dataset size before removing benign records total rows and columns, and also it 

gives the dataset size after removing the benign records total rows and columns by 

using k-means we separate there data. 
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C. RunFlow Integration and graph transformation 

After clicking on run flow integration it shoes two screens extract which we need to 

close ,when we have a look at the CMD there it show as generated bot graph points 

, on ui it shoes the number nodes , number of edges, number of graph created , 

between-Ness centrality for all IP address or node , here ip address nothing but 

nodes, Execution time, clustering time calculation, alpha centrality time calculation 

Alpha Centrality time. 

 

 
D. Features Extraction and normalization: 

After clicking on it, Normalizing features process completed & below are some 

sample records out out- degree-weight in-degree-wt outdegree ,indegree bot   bc 

lcc ac, all the values of it which are normalized, Normalized & transformed data 

saved inside normalize_data.csv file, as well as we can have a look at the CMD there 

it show as features normalization module 100 percent done and shoes the record in 

it. 

 
E. Run Decision Tree Algorithm 

It shows Normalized data loading to decision tree classifier, Total dataset size to build 

model, Model training records size, Model testing records size, Decision Tree 

Accuracy , Decision Tree Precision ,Decision Tree Recall ,True -Positive ,False- 

Positive ,True-Negative , False-Negative . we have test 20 % of data, and training 

80% of data .The Accuracy of this model is 99%. 

 
F. View Graph 

In the final module there will be input textbox where we can enter some number into 

it , so that it generate the graph after clicking on the view graph.it pop up another 

screen shoes all the ip address and its connections. After completing the whole 

project clicking on exit we exit from the GUI interface. 

 
G. EXIT 

Clicking on exit button we will exit from GUI interface.come out of project. 
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3.10.1 Algorithm: 

k-Means, Density-Based Spatial Clustering (DBScan) and SOM, Decision Tree, 

Feed-forward Neural Network (FNN), Logistic Regression (LR) and Support Vector 

Machine (SVM). 

 
• k-Means—The k-Means clustering algorithm attempts to find an optimal assignment 

of nodes to k pre-determined clusters, such that the sum of the pairwise distance 

from the cluster mean is minimized. k-Means is static, it results in the same cluster 

composition for a given dataset across different runs of the algorithm, with the same 

number of clusters and iterations. Assume k is set to the cardinality of the label set. 

Idealistically, there should be a clean assignment of hosts to corresponding clusters. 

However, in reality, some benign hosts exhibit an outlier behavior. For example, 

network nodes that host webservers and public APIs will depict a huge amount of 

data and connections, thus impacting ID, IDW, OD and ODW. Therefore, depending 

on the dataset, altering k may adversely affect clustering performance. 

• Density-Based Spatial Clustering (DBScan)—Unlike kMeans, DBScan does not 

require the parameter k, the predetermined number of clusters. In contrast, it 

computes the clusters and assignment of nodes according to a rigid set of density- 

based rules. DBScan requires a pair of parameters: (i) p, the minimum number of 

points required to be assigned as core points, and (ii) e, the minimum distance 

required to detect points as neighbors. DBScan classifies points as core, edge or 

noise, where core points must have p points in their neighborhood with a distance 

less than e. Otherwise, if the point is reachable via e distance from at least one of the 

core points, it is considered an edge. The remaining points are considered noise and 

are not clustered. That is, points are not forcefully assigned to clusters as some 

points may just be noise. Therefore, DBScan is capable of detecting non-linearly 

separable clusters. 

• Self-Organizing Map (SOM)—A SOM is a special purpose artificial neural network 

that applies competitive learning instead of error-correction. It is frequently used for 

dimensionality reduction and clusters similar data. However, the notion of similarity in 

SOM is looser than that of k-Means and DBScan. In SOM, neurons are pushed 

towards the data points for a certain number of iterations. It uses the best matching 

unit to determine the winner neuron and updates its weights accordingly. 

Furthermore, SOMs also apply a learning radius that affects all the other neurons, 

when a close-by neuron is updated. The number of neurons also play an important 

role in clustering. Higher number of neurons result in dispersion of nodes away from 

a single cluster. Importantly, the same logic applies to k-Means, hence the classifier 

with the best assignment must be selected, according to the objectives outlined in 

this phase. 2) Phase 2: Phase 1 separates the dataset between nodes that are inside 

and outside the benign cluster. All the nodes, ideally small, that reside outside the 

benign cluster are input to Phase 2 for further classification. Optimally, all the bots 
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should be outside the benign cluster, regardless of whether or not they are co-located 

in the same cluster. Depending on the amount of hosts outside the benign cluster, the 

supervised learning (SL) classifiers used in this phase will exhibit different results. 

The primary objective in this phase is to maximize recall. Recall is a measure of how 

many bots are recalled correctly i.e., do not go unnoticed. It is proportional to the 

number of true positives (TPs) and inversely proportional to false negatives (FNs). 

Various SL classifiers can be deployed in this phase to achieve this objective, such 

as logistic regression (LR), support vector machine (SVM), feed-forward neural 

network (FNN) and decision tree (DT). 

• Logistic Regression (LR) and Support Vector Machine (SVM)—LR focuses on 

binary classification of its input, based on a sigmoid function. Input features are 

coupled with corresponding weights and fed into the function. Once a threshold p is 

defined, usually 0.5 for the logistic function, it establishes the differentiator between 

positive and negative points. Unlike LR, SVM is a non-probabilistic model for 

classification. It is not restricted to linearly separable datasets. There are various 

methods of computing SVM, including the renowned gradient-descent algorithm. 

• Feed-forward Neural Network (FNN)—FNNs are artificial neural networks that do 

not contain any cyclic dependencies. For a given feed-forward network with multiple 

layers, a feature vector is dispersed into the input layer, fed to the hidden layer of the 

network, and then to its output layer. While the input layer is constrained by the 

number of features exposed, the hidden and output layers are not. Every neuron may 

rely on a separate activation function that shapes the output. Popular activation 

functions for FNNs include identity, sigmoid, ReLU and binary step, among others. 

FNNs and the previously mentioned SL techniques are online classifiers. An online 

classifier is capable of incremental learning, as the weights associated with the 

deployed perceptrons are not static. This makes FNNs an attractive candidate for 

production-grade deployment. 

• Decision Tree (DT)—DTs rely heavily on information entropy (IE) and gain to 

conjure its conditional routing procedure. Generally, IE states how many bits are 

needed to represent certain stochastic information in the dataset. By using DT, 

information gain is maximized from the observed data and the taken path. After 

training a DT, newly observed data points can be predicted. However, unlike all the 

other classifiers, DTs are not online. That is, optimally retraining a DT must be done 

from scratch. Recall the objective from Phase 1 i.e., minimize hosts outside the 

benign cluster (HOB), while maximizing bots outside the benign cluster (BOB). This 

results in a minimal training dataset for Phase 2. Also, it is expected that the resultant 

training dataset from Phase 1 would be unbalanced, with a bias towards benign 

hosts. This may prove problematic for LR, SVM and FNN in achieving high recall 

rates. 
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CHAPTER 4 

RESULTS AND DISCUSSION, PERFORMANCE ANALYSIS 
 

The aim of this paper is to develop a user interface which can detect the Botnet 

records based on graph. This application will detect Botnet records in the internet 

connected system by using Machine learning algorithms and also detect the newly 

attacks based on the graph which is plotted using the k means algorithm. Where as k 

means is an unsupervised learning algorithm it will detect the newly created attacks 

by the distance formula 

The internet connected device owner can provide security to their systems by our 

User Interface. 

 
CHAPTER 5 

SUMMARY AND CONCLUSIONS 
 

In this paper, we propose Botnet detection, a system that is capable of efficiently 

transforming network flows into an aggregated graph model. It leverages two ML 

phases to differentiate bots from benign hosts. Botnet allows you to combination 

community flows into graphical version based on network flow facts. In the primary 

phase, SOM is used to make sure an Maximizing the benign clusters but maintaining 

an acceptable compromise while alienating the malicious bots. Additionally, the 

consequences show high TPs ,coffee FPs for DT. Without the F Norm, the effects of 

the SOM have been made worse, i.E., fewer bots within the normal (bengin) cluster, 

and the size of the benign cluster reduced. In addition to detecting bots that use one 

of a kind protocols, BotChase is also capable to educate and infer ML fashions for 

pass-network ML education is attacked by go-community. Graph-based totally 

capabilities outperform go with the flow-based features in BotChase. Further, 

BotChase outperforms an quit-to-cease device that is predicated on float-based 

capabilities and compares favorably with the graph-based Bot detection. BotChase, 

in web-primarily based surroundings, applies incremental learning using HAT. FNorm 

requires longer to converge, however the model performs extremely nicely in its very 

last country. Future research consciousness on tuning the classifiers, investigating 

superior ensemble gaining knowledge of and feature engineering strategies, and 

increasing FNorm to better degrees. 

 

 

 



31 
 

 

 

 

 

 

 

 
REFERENCES 

 
Textbooks: 

 
1.Programming Python, Mark Lutz 

2.Head First Python, Paul Barry 

3. Core Python Programming, R. Nageswara Rao 

4. Learning with Python, Allen B. Downey 

 
Journals: 

[1]. Jay N. Paranjape ., Misha Mehra ., Jay N. Paranjape ., Vinay Joseph Ribeiro., 

― Improving ML Detection of IoT Botnets using Comprehensive Data   and 

Feature Sets ‖., 2021. 

 
[2]. Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., ― Optimized 

Random Forest Model for Botnet Detection Based on DNS Queries ‖ ., 2021. 

 
[3]. Mrutyunjaya Panda ., Abd Allah A. Mousa, Aboul Ella Hassanien ., ― Developing 

an Efficient Feature Engineering and Machine Learning Model for Detecting IoT- 

Botnet Cyber Attacks ‖ ., 2021. 

 
[4]. Kostas E. Psannis ., Vasileios A. Memos ., ― AI- Powered Honeypots for 

Enhanced – IoT  Botnet Detection ― .,2020. 

 
5] Sina Hojjatinia ., Hadis Mohseni ., Sajad Hamzenejadi ., ― Android Botnet 

Detection using Convolutional Neural Networks ‖, 2020. 

 
[6]. Paul D. Yoo, Sami Muhaidat, Omar Y. Al-Jarrah ., Omar Alhussein ., Kwangjo 

Kim., , Kamal Taha ., ― Data Randomization and Cluster- Based Partitioning for 

Botnet Intrusion Detection ‖ ., 2015. 

 [7]. Duc C. Le ., Nur Zincir-Heywood ., ― Learning From Evolving Network Data for 

Dependable Botnet Detection ‖., 2020. 

 
[8]. Khalid Alsubhi., Afnan Alharbi ., Khalid Alsubhi., ― Botnet Detection Approach 

Using Graph-Based Machine Learning ‖., 2021. 

 



32 
 

[9] S. Sriram ., Mamoun Alazab ., R. Vinayakumar, .,Soman KP ― Network Flow 

based IoT Botnet Attack Detection using Deep Learning ‖ ., 2020. 

 
[10] Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., ― Detecting 

Botnet   Attacks in   IoT   Environments: An Optimized Machine Learning Approach 

‖ ., 2021. 

 

 
[11] . Sean Miller ., Curtis Busby-Earle ., ― The role of machine learning in botnet 

detection ‖ ., 2017. 

 
[12] Rafael L. Gomes ., Antonia Raiane S. Araujo Cruz ., Marcial P. Fernandez ., ― 

An Intelligent Mechanism to Detect Cyberattack of Mirai Botnet in IoT Networks ‖ ., 

2021. 

 
[13] Stefano Secci ., Mathieu Bouet ., Agathe Blaise ., Vania Conan ., Stefano Secci 

., ― Botnet Fingerprinting: A Frequency Distributions Scheme for Lightweight Bot 

Detection ‖ ., 2020. 

 
[14] Raouf Boutaba ., Mohammad A . Salahuddin ., Abbas Abou Daya ., Noura 

Limam ., ― A Graph-Based Machine Learning Approach for Bot- Detection ‖ ., 

2019. 

 
[15] Madhuri Gurunathrao Desai ., Kun Suo ., Yong Shi ., ― IoT Bonet and Network 

Intrusion Detection using Dimensionality Reduction and Supervised Machine 

Learning ‖ ., 2020. 



33 
 

 

SCREENSHOTS: 
 

 

Fig 2: GUI screen 
 

 

 
 

Fig 3:CTU-13 dataset 
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Fig 4: K-means 
 
 
 
 
 
 
 

 

Fig 5: RunFlow Integration and graph transformation 
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Fig 6: CMD graph build 
 

 

Fig 7: Features Extraction and normalization 
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Fig 8: Run Decision Tree 

 
 

 

 

 
                                      Fig 9: Graph 
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Source code: 

font = ('times', 16, 'bold') 

title = Label(main, text='Detection of bot Using Graph-Based Machine 

Learning') 

title.config(bg='LightGoldenrod1', fg='medium orchid') 

title.config(font=font) 

title.config(height=3, width=120) 

title.place(x=0,y=5) 

 
font1 = ('times', 12, 'bold') 

text=Text(main,height=30,width=100) 

scroll=Scrollbar(text) 

text.configure(yscrollcommand=scroll.set) 

text.place(x=400,y=100) 

text.config(font=font1) 

font1 = ('times', 12, 'bold') 

uploadButton = Button(main, text="Upload Dataset", command=upload) 

uploadButton.place(x=50,y=100) 

uploadButton.config(font=font1) 

 
 

kmeansButton = Button(main, text="Apply KMEANS to Separate Bot & Benign 

Data", command=kmeans) 

kmeansButton.place(x=50,y=150) 

kmeansButton.config(font=font1) 

 
transformButton = Button(main, text="Run Flow Ingestion & Graph 

Transformation", command=graphTransform) 

transformButton.place(x=50,y=200) 

transformButton.config(font=font1) 

 
normalizationButton = Button(main, text="Features Extraction & 

Normalization", command=featuresNormalization) 

normalizationButton.place(x=50,y=250) 
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normalizationButton.config(font=font1) 

dtButton = Button(main, text="Run Decision Tree Algorithm", 

command=decisionTree) 

dtButton.place(x=50,y=300) 

dtButton.config(font=font1) 

 
graphselection_list = [] 

graphselection_list.append(10) 

graphselection_list.append(20) 

graphselection_list.append(30) 

graphselection_list.append(40) 

graphselection_list.append(50) 

graphselection_list.append(60) 

graphselection_list.append(70) 

graphselection_list.append(80) 

graphselection_list.append(90) 

graphselection_list.append(100) 

graphlist = 

ttk.Combobox(main,values=graphselection_list,postcommand=lambda: 

graphlist.configure(values=graphselection_list)) 

graphlist.place(x=50,y=350) 

graphlist.current(0) 

graphlist.config(font=font1) 

graphButton = Button(main, text="View Graph", command=viewGraph) 

graphButton.place(x=240,y=350) 

graphButton.config(font=font1) 

 
 

exitButton = Button(main, text="Exit", command=close) 

exitButton.place(x=50,y=400) 

exitButton.config(font=font1) 

 
 

main.config(bg='OliveDrab2') 

main.mainloop() 
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