Malicious Attacks Detection Using Machine
Learning

Submitted in partial fulfillment of the requirements for
the award of

Bachelor of Engineering Degree in Computer Science and Engineering
By

YEMIREDDY CHAITANYA
(38110092)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SCHOOL OF COMPUTING
SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited with Grade “A” by NAAC
JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

MARCH -2022

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of
YEMIREDDY CHAITANYA (Reg.n0:38110092) who carried out the

project entitled “Malicious Attacks Detection Using Machine Learning”

under my supervision from JUNE 2021 to NOVEMBER 2021

Internal Guide
Dr. A. Jesudoss, M.E., Ph.D.,

Head of the Department

(Dr.S Vigneshwari & Dr.L.Lakshmanan)

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

(Ms.Yogitha) (Dr.Mathivanan)

DECLARATION

| YEMIREDDY CHAITANYA here by declare that the Project Report entitled

“MALICIOUS ATTACKS DETECTION USING MACHINE LEARNING ” done by
me under the guidance of Dr.A.Jesudoss,ME.,Ph.D., is submitted in partial
fulfilment of the requirements for the award of Bachelor of Engineering in

Computer Science.

y~ O X SNOIA R
DATE:6!" March 2022
PLACE:Chennai SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

| am pleased to acknowledge my sincere thanks to Board Of Management of
SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY for their kind
encouragement in doing this project and for completing it successfully. | am grateful to
them.

| convey my thanks to Dr.T.Sasikala M.E.,Ph.D, Dean, School of Computing,
Dr.S.Vigneshwari M.E.,Ph.D and Dr.L.Lakshmanan M.E.,Ph.D., Heads of the
Department of Computer Science and Engineering for providing me necessary support
and details at the right time during the progressive reviews.

| would like to express my sincere and deep sense of gratitude to my project guide
Dr.AJesudoss M.E.,Ph.D for her valuable guidance, suggestions and constant

encouragement paved way for the successful completion of my project.

| wish to express my thanks to all teaching and non-teaching staff members of
Department of Computer Science and Engineering who were helpful in many ways for

the completion of the project.

ABSTRACT

Bot detection using machine learning (ML), with network flow-level features, has
been extensively studied in the literature. However, existing flow-based
approaches typically incur a high computational overhead and do not completely
capture the network communication patterns, which can expose additional aspects
of malicious hosts. Recently, bot detection systems that leverage communication

graph analysis using ML have gained attention to overcome these limitations.

A graph-based approach is rather intuitive, as graphs are true representation of
network communications. In this paper, we propose BotChase, a two-phased
graph-based bot detection system that leverages both unsupervised and
supervised ML. The first phase prunes presumable benign hosts, while the second
phase achieves bot detection with high precision. Our prototype implementation of
BotChase detects multiple types of bots and exhibits robustness to zero-day
attacks. It also accommodates different network topologies and is suitable for
large-scale data. Compared to the state-of-the-art, BotChase outperforms an end-
to-end system that employs flow-based features and performs particularly well in

an online setting.

CHAPTER
NO

TABLE OF CONTENTS
TITLE

ABSTRACT

LIST OF FIGURES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1 OVERVIEW

1.2. OBJECTIVE

1.3. SCOPE

LITERATURE SURYEY

METHODOLOGY

3.0 EXISTING SYSTEM

3.1 EXISTING SYSTEM
DISADVANRAGES
3.2 PROPOSED WORK

3..3 SUPERVISED LEARNING

3.3.1 DECISION TREE

3.4 UNSUPERVISED LEARNING

3.4.1 K-MEANS

3.5 ADVANTAGES

vi

PAGE
NO

10

10

10

10

11

11

11

11

14

CHAPTER
NO

TABLE OF CONTENTS
TITLE

3.6 SOFTWARE AND
HARDWARE
3.7 SYSTEM STUDY

3.7.1 ECONOMICAL
FEASIBILITY
3.7.2 ECHNICAL FEASIBILITY

3.7.3 SOCIAL FEASIBILITY

CHAPTER DATA FLOW
DIAGRAM
3.8.1 INTRODUCTION TO UML

3.8.2 GOAL OF UML

3.9 UML DIAGRAM

3.9.1 USE CASE DIAGRAM

3.9.2 CLASS DIAGRAM

3.9.3 OBJECT DIAGRAM

3.9.4 STATE DIAGRAM

3.9.5 ACTIVITY DIAGRAM

3.9.6 SEQUENCE DIAGRAM

3.9.7 COLLABORATION
DIAGRAM
3.9.8 COMPONENT DIAGRAM

Vii

PAGE

NO
14

15

15

15

15

16

18

18

18

19

20

21

21

23

24

24

25

CHAPTER TITLE PAGE

NO NO

3.9.9 DEPLOYMENT DIAGRAM 26
3.10 MODULES 26
3.10.1 ALGORITHM 28

4 RESULTS AND DISCUSSION 30
PERFORMANCE ANALYSIS

5 SUMMARY AND CONCLUSION 30
REFERENCE APPENDICES 31
A.SCREENSHOTS 33
B.SOUREC CODE 37

C.PLAGARISM REPORT 39

viii

LIST OF FIGURES

FIGURE NO NAME OF THE FIGURE PAGE NO
1 SYSTEM ARCHITECTURE 16
2 DATA FLOW DIAGRAM 24
3 USE CASE DIAGRAM 19
4 CLASS DIAGRAM 19
5 OBJECT DIAGRAM 20
6 STATE DIAGRAM 21
7 ACTIVITY DIAGRAM 23
8 SEQUENCE DIAGRAM 24
9 COLLABORATION DIAGRAM 25
10 COMPONENT DIAGRAM 25

11 DEPLOYMENT DIAGRAM 26

LIST OF ABBREVIATIONS

MATLAB Matrix Laboratory

PD Pandas

NLTK Natural Language Tool Kit
Computing

NX Networkx

TTK Tkinter

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)

]
v Accredited with Grade 'A' By NAAC | 12B Status by UGC |Approved By AICTE
www.sathyabama.ac.in

Advancing Technology
for Humanity

School of Computing

Department of Information Technology
Certificate of Presentation

This is to certify that

YEMIREDDY CHAITANYA
of

has presented a paper entitled

Malicious Attacks Detection using Machine Learning

in the AICTE sponsored
International Conference on Artificial Intelligence and Machine Learning (IAIM-2022),
held from 27" January 2022 - 29" January 2022.

R DL .

Dr. R. SUBHASHINI Dr.T. SASIKALA Dr. T. SASIPRABA .
HOD [Information Technology] Dean [School of Computing] Vice Ch 1l I [
(H]

|

L

Xi

CHAPTER 1
INTRODUCTION

Now a days everyone is storing their information in their systems. Here comes a
problem in providing security to their systems. On other hand cyber-attacks are also
increasing randomly which can hack your personal data like photos, social media and
chats. Bot attacks increased worldwide. There are also some servers getting hacked
which contains data of some lakhs people, where hacking a server is equal to
hacking some lakhs people data.

Botnet is also a type of cyber-attack which is a collection of internet-connected
devices, where these devices are called as bot. By using this bots the attacker can
also hack a big servers. These bots all together called as bot army. Botnet can make
time-consuming tasks easier because of its army. Botnet also perform helpful tasks
people are using it for malicious works. It is also a source of many malicious
activities. The different models of botnet are Client/Server .There are many types in
botnet like centralized, client-server, decentralized and peer-to-peer models and
attacks such as DDoS, phishing, cryptojacking, snooping, bricking, Brute force and
spambots. Common Botnet actions are Email spam, Financial breach, Targeted
intrusions. A bot herder can do a collective of hijacked devices by using remote
commands. Once your machine is infected, it becomes a bot, you may not even
know. Botnet leads to Financial theft, Informational theft, Sabotage of services,
Selling access to other criminals. The 3 main components of botnet are the bots,
Botnet attacks has been increased in the recent years at the same time different
types of Botnet detection frameworks are also increased.

The hacker can access the device only when his application was in the device. Once
his application started running in the device then he can steal, change or destroy
information. The hacker can also steal money, username and passwords. The hacker
can also change your confidential data. Also install and run any application in your
system he want. All the devices which are connected to the internet can be hacked
by the hacker. The more targeted devices like desktop and laptops which runs on
Windows OS or macOS. Mobiles are next target devices as more people are using by
connecting them to the internet. Recent years connecting devices to the internet has
increased rapidly botnets also create from connected devices has become more
noted.

First the hacker will start by injecting the malware infection to your device. some
download links to the target device to hack the device. For example Trojan Horse
(Happy New Year! Click here to see magic). If the owner of the device does not know
about whether the download link is an attacker link and if he click on the link then the
hacker application will get download in the device and sit around wait for command
from the main system (hacker system). Now the hacker can access everything from
his device. In order not to get attacked by hackers he should know all the malware
links, so he can save his device from hacker. To stay away from malware links his
device should able to find the malware links or prevent the initial infection or identify

1

an existing infection. Botnet attacks are hard to detect. Preventing botnet attacks is
more difficult. Yet we can still take certain measures to prevent botnet attacks.

1.1 OVERVIEW

Cyberattacks are on the rise these days. Many systems are getting infected by
attacks to overcome these attacks, In the past, we used signature-based research.
However, as technology developed, attacks became more sophisticated and we used
k-means and decision trees to see how many bots were targeted and how many were
not. If there is an attack, we will find how many bots were attacked or detected and
we will give the number.

1.2 OBJECTIVE

A botnet is a collection of bots, agents in compromised hosts, controlled by
botmasters via command and control (C2) channels. A malevolent adversary controls
the bots through botmaster, which could be distributed across several agents that
reside within or outside the network. Hence, bots can be used for tasks ranging from
distributed denial-of-service (DDoS), to massive-scale spamming, to fraud and
identify theft. While bots thrive for different sinister purposes, they exhibit a similar
behavioral pattern when studied up-close. The intrusion kill-chain dictates the
general phases a malicious agent goes through in-order to reach and infest its target.

1.3 SCOPE

For this phase in BotChase, we evaluate four SL techniques, namely DT, LR, SVM
and FNN. We use DT with Gini instance split rule algorithm, LR without
regularization, and SVM with the Gaussian kernel and a soft margin penalty of 1.
Moreover, NN is configured to use cross entropy as an error function and 10 hidden
layers of 1000 units each. The DT classifier shows the best performance with the
small dataset, as depicted in Table IV. It successfully detects all bots in the test
dataset, with only a single FP out of the 366871 benign hosts. In contrast, all other
classifiers are lackluster and unable to recall even a single bot from the dataset. We
believe this is because all classifiers, except DT, rely on gradient-descent for
errorcorrection. This implies that every single node in the dataset will affect the end-
hypothesis function. Thus, with a dataset that is unbalanced, the hypothesis will be
biased towards the benign hosts, which is the case for LR, SVM and FNN.

CHAPTER 2
LITERATURE SURVEY

2.1Effective Botnet Detection Through Neural Networks on Convolutional
Features(Shao-Chien Chen, Yi-Ruei Chen, Wen-Guey Tzeng)

ABSTRACT: Botnet is one of the major threats on the Internet for committing
cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams,
etc. It is a challenging issue to detect modern botnets that are continuously improving
for evading detection. In this paper, we propose a machine learning based botnet
detection system that is shown to be effective in identifying P2P botnets. Our
approach extracts convolutional version of effective flow-based features, and trains a
classification model by using a feed-forward artificial neural network. The
experimental results show that the accuracy of detection using the convolutional
features is better than the ones using the traditional features. It can achieve 94.7% of
detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets.
Furthermore, our system provides an additional confidence testing for enhancing
performance of botnet detection. It further classifies the network traffic of insufficient
confidence in the neural network. The experiment shows that this stage can increase
the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.
2.2 An approach for host based botnet detection system

AUTHORS: Yulia ALEKSIEVA, Hristo VALCHANOV, Veneta ALEKSIEVA.
ABSTRACT: Most serious occurrence of modern malware is Botnet. Botnet is a
rapidly evolving problem that is still not well understood and studied. One of the main
goals for modern network security is to create adequate techniques for the detection
and eventual termination of Botnet threats. The article presents an approach for
implementing a host-based Intrusion Detection System for Botnet attack detection.
The approach is based on a variation of a genetic algorithm to detect anomalies in a
case of attacks. An implementation of the approach and experimental results are
presented.

2.3 Towards using transfer learning for Botnet Detection

AUTHORS: Prapa Rattadilok, Basil Alothman

ABSTRACT: Botnet Detection has been an active research area over the last
decades. Researchers have been working hard to develop effective techniques to
detect Botnets. From reviewing existing approaches it can be noticed that many of
them target specific Botnets. Also, many approaches try to identify any Botnet activity
by analysing network traffic. They achieve this by concatenating existing Botnet
datasets to obtain larger datasets, building predictive models using these datasets
and then employing these models to predict whether network traffic is safe or
harmful. The problem with the first approaches is that data is usually scarce and
costly to obtain. By using small amounts of data, the quality of predictive models will
always be questionable. On the other hand, the problem with the second approaches
is that it is not always correct to concatenate datasets containing network traffic from
different Botnets. Datasets can have different distributions which means they can

downgrade the predictive performance of machine learning models. Our idea is
3

instead of concatenating datasets, we propose using transfer learning approaches
tocarefully decide what data to use. Our hypothesis is “Predictive Performance can
be improved by using transfer learning techniques across datasets containing
network traffic from different Botnets”.

2.4Development of an Intrusion Detection System Using a Botnet with the R
Statistical Computing System

AUTHORS: Takashi Yamanoue, Junya Murakami

ABSTRACT: Development of an intrusion detection system, which tries to detect
signs of technology of malware, is discussed. The system can detect signs of
technology of malware such as peer to peer (P2P) communication, DDoS attack,
Domain Generation Algorithm (DGA), and network scanning. The system consists of
beneficial botnet and the R statistical computing system. The beneficial botnet is a
group of Wiki servers, agent bots and analyzing bots. The script in a Wiki page of the
Wiki server controls an agent bot or an analyzing bot. An agent bot is placed between
a LAN and its gateway. It can capture every packet between hosts in the LAN and
hosts behind the gateway from the LAN. An analyzing bot can be placed anywhere in
the LAN or WAN if it can communicate with the Wiki server for controlling the
analyzing bot. The analyzing bot has R statistical computing system and it can
analyze data which is collected by agent bots.

2.5 An efficient botnet detection system for P2P botnet

AUTHORS: M. Thangapandiyan, P. M. Rubesh Anand

ABSTRACT: Peer-to-Peer (P2P) botnets are exploited by the botmasters for their
resiliency against the take down efforts. As the modern botnets are stealthier, the
traditional botnet detection approaches are not suitable for the botnet detection. In
this paper, an efficient botnet detection system is proposed for detecting the P2P
botnet. The proposed botnet detection system estimates the flow export using
NetFlow protocol. The packet flow is analyzed using three main components namely,
Exporter, Collector, and Analyzer. The exporter captures the packet and monitors the
contents of the packet. The collector captures the flow traffic and the analyzer
component initiates an automated analysis of traffic with the captured packet
information. The packet flow information is collected by virtual interface and physical
probe. The virtual interface is used for collecting the malicious traffic information
between the Virtual Machines (VMs) and the physical probe gathers malicious traffic
information between the network bridges connecting VMs. The information collected
from these techniques are analyzed for detecting the botnets in inter VM and intra
VM. Compared to the existing Dendritic Cell Algorithm (DCA), the proposed VM
based botnet detection system has minimal time consumption, increased detection
speed, and higher attack prevention ratio.

2.6 Overview of Botnet Detection Based on Machine Learning

AUTHORS: Xiaxin Dong, Jianwei Hu ,Yanpeng Cui

ABSTRACT: With the rapid development of the information industry, the applications
of Internet of things, cloud computing and artificial intelligence have greatly affected
people's life, and the network equipment has increased with a blowout type. At the
same time, more complex network environment has also led to a more serious

4

network security problem. The traditional security solution becomes inefficient in the

new situation. Therefore, it is an important task for the security industry to seek
technical progress and improve the protection detection and protection ability of the
security industry. Botnets have been one of the most important issues in many
network security problems, especially in the last one or two years, and China has
become one of the most endangered countries by botnets, thus the huge impact of
botnets in the world has caused its detection problems to reset people's attention.
This paper, based on the topic of botnet detection, focuses on the latest research
achievements of botnet detection based on machine learning technology. Firstly, it
expounds the application process of machine learning technology in the research of
network space security, introduces the structure characteristics of botnet, and then
introduces the machine learning in botnet detection. The security features of these
solutions and the commonly used machine learning algorithms are emphatically
analyzed and summarized. Finally, it summarizes the existing problems in the
existing solutions, and the future development direction and challenges of machine
learning technology in the research of network space security.

2.7 Botnet and P2P Botnet Detection Strategies: A Review

AUTHORS: Jitender Kumar , Himanshi Dhayal

ABSTRACT: Among various network attacks, botnet led attacks are considered as
the most serious threats. A botnet, i.e., the network of compromised computers is
able to perform large scale illegal activities such as Distributed Denial of Service
attacks, click fraud, bitcoin mining etc. These attacks are considered as the major
concern now-a-days. In this paper, we present a comprehensive review of botnets,
their lifecycle and types. We also discuss the peer-to-peer botnet detection
techniques' behaviors using various latest detection technigues.

2.8 Botnet Detection Using Recurrent Variational Autoencoder

AUTHORS: Jeeyung Kim, Alex Sim, Jinoh Kim, Kesheng Wu

ABSTRACT: Botnet detection is an active research topic as botnets are a source of
many malicious activities, including distributed denial-of-service (DDoS), click-fraud,
spamming, and crypto-mining attacks. However, it is getting more complicated to
identify botnets due to the continuous evolution of botnet software and families that
harness new types of devices and attack vectors. Recent studies employing machine
learning (ML) showed improved performance to detect botnets to some extent, but
they are still limited and ineffective with the lack of sequential pattern analysis, which
is a key to detect various classes of botnets. In this paper, we propose a novel botnet
detection method, built upon Recurrent Variational Autoencoder (RVAE), that
effectively captures sequential characteristics of botnet anomalies. We validate the
feasibility of the proposed method with the CTU-13 dataset that have been widely
employed for botnet detection studies, and show that our method is at least
comparable to existing techniques in terms of detection accuracy. In addition, our
experimental results show that the proposed method can detect previously unseen
botnets by utilizing sequential patterns of network traffic. We will also show how our
method can detect botnets in the streaming mode, which is the essential requirement

to perform real-time, on-line detection.
5

2.9 Sonification of Network Traffic for Detecting and Learning About Botnet Behavior

AUTHORS: Mohamed Debashi, Paul Vickers
ABSTRACT: Today's computer networks are under increasing threat from malicious
activity. Botnets (networks of remotely controlled computers, or “bots”) operate in
such a way that their activity superficially resembles normal network traffic which
makes their behavior hard to detect by current intrusion detection systems (IDS).
Therefore, new monitoring techniques are needed to enable network operators to
detect botnet activity quickly and in real time. Here, we show a sonification technique
using the SONSTAR system that maps characteristics of network traffic to a real-time
soundscape enabling an operator to hear and detect botnet activity. A case study
demonstrated how using traffic log files alongside the interactive SONSTAR system
enabled the identification of new traffic patterns characteristic of botnet behavior and
subsequently the effective targeting and real-time detection of botnet activity by a
human operator. An experiment using the 11.39 GiB ISOT botnet data set, containing
labeled botnet traffic data, compared the SoNSTAR system with three leading
machine learning-based traffic classifiers in a botnet activity detection test. SONSTAR
demonstrated greater accuracy (99.92%), precision (97.1%), and recall (99.5%) and
much lower false positive rates (0.007%) than the other techniques. The knowledge
generated about characteristic botnet behaviors could be used in the development of
future IDSs.
2.10 Analysis of Machine Learning Algorithms for IoT Botnet

AUTHOR: Umang Garg, Vaibhav Kaushik, Anushka Panwar, Neha Gupta
ABSTRACT: The Internet of Things (loT) gains a lot of popularity day-by-day due to
their everlasting availability and ease. As the popularity of 10T increases, it also
attracts hackers which try to take advantage of the vulnerability of 10T devices. An
Intrusion Detection System (IDS) is an intelligence-based system that can investigate
or detect the intrusion in the 10T botnet and check the state of software and hardware
executing in the network. Once the intrusion is detected, it may generate an alarm to
alert the administrator or send some alert message to the owner. In the last decade,
there are several IDSs available which can detect the intrusion. But the major
problems with the existing IDSs like accuracy rate, generation of the false alarm, and
fewer chances of detection of unknown attacks. To deal with the above problems,
some machine learning techniques have been involved by researchers. These
techniques can differentiate between the normal and abnormal behavior of the user's
data or network traffic with high accuracy. In this paper, we summarize and classify
the machine learning algorithms that can be used in IDS with their metrics,
parameters. Then, a case study is implemented with the UNSW-NB15 dataset that
has realistic network traffic with frequently used machine learning techniques. After
that, a comparison will be done and displayed by using an accuracy percentage table
and a bar chart. Finally, some challenges and future scope of the machine learning
techniques in the improvement of IDS will be discussed.
2.11 An enhancing framework for botnet detection using generative adversarial
networks
AUTHORS: Chuanlong Yin, Yuefei Zhu, Shengli Liu, Jinlong Fei, Hetong Zhang

6

ABSTRACT: The botnet, as one of the most formidable threats to cyber security, is

often used to launch large-scale attack sabotage. How to accurately identify the
botnet, especially to improve the performance of the detection model, is a key
technical issue. In this paper, we propose a framework based on generative
adversarial networks to augment botnet detection models (Bot-GAN). Moreover, we
explore the performance of the proposed framework based on flows. The
experimental results show that Bot-GAN is suitable for augmenting the original
detection model. Compared with the original detection model, the proposed approach
improves the detection performance, and decreases the false positive rate, which
provides an effective method for improving the detection performance. In addition, it
also retains the primary characteristics of the original detection model, which does
not care about the network payload information, and has the ability to detect novel
botnets and others using encryption or proprietary protocols.
2.12 A Survey on Botnet Detection Techniques
AUTHOR: Shivani Gaonkar, Nandini Fal Dessai, Jenny Costa
ABSTRACT: Due to the increased rate of internet usage, security problems have also
increased. One of the serious threats in network security are Botnets. A Botnet is
defined as a collection of various bots that Botmaster controls through the Command
and Control (C&C) channel. During recent times, different technologies and
techniques have been proposed to track the detection of botnets. This paper
summarizes different techniques to detect different botnets. General bot detection
and loT-bot detection techniques are separately explained. UNSW-NB15 datasets
have been used in training and testing of the proposed model. A real-time loT-Bot
detection using deep learning algorithm is proposed in this paper. Wireshark is used
to capture a package from network traffic.
2.13 Analysis of Botnet Domain Names for 10T Cybersecurity

AUTHOR: Wanting Li, Jian Jin, Jong-Hyouk Lee
ABSTRACT: Botnets are widespread nowadays with the expansion of the Internet
and commonly occur in many cyber-attacks, resulting in serious threats to network
services and users' properties. With the rapid development of the Internet of Things
(IoT) applications, the botnet can easily make use of 10T devices for larger-scale
attacks. Domain name system (DNS) is widely used by the botnet to establish the
connection between bots and their corresponding command-and-control (C&C). In
order to avoid the track of the C&C through the DNS information, some sophisticated
schemes are used by the botnet and fast-flux is a typical one. In this paper, the
activities of Rustock botnet domain names which just use the fast-flux as the
connection method between bots and C&C, are deeply analyzed from multiple
aspects. Besides, we extract 32 special features of Rustock domain named querying
traffic. Then multiple popular classifiers are adopted in order to pick the malicious
domain names out from the DNS traffic using those 32 features. The work of this
paper aims to provide guidance for future botnet detection based on real statics and
experiments.

2.14 Email Shape Analysis for Spam Botnet Detection
7

AUTHOR: Paul Sroufe, Santi Phithakkitnukoon, Ram Dantu, Joao Cangussu

ABSTRACT: Botnets have become the major sources of spamming, which generates
massive unwanted traffic on networks. An effective detection mechanism can greatly
mitigate the problem. In this paper, we present a novel botnet detection mechanism
based on the email "shape" analysis that relies on neither content nor reputation
analysis. Shape is our new way of characterizing an email by mimicking human visual
inspection. A set of email shapes are derived and then used to generate a botnet
signature. Our preliminary results show greater than 80% classification accuracy
(without considering email content or reputation analysis). This work investigates the
discriminatory power of email shape, for which we believe will be a significant
complement to other existing techniques such as a network behavior analysis.

2.15 Bot Detection via IoT Environment

AUTHOR: Im Y. Jung, Jae J. Jang, Jae-geun Moon

Abstract: Many users do not realize whether their devices become bots or not. There
are many security accidents due to malicious bots. To solve this problem, we propose
a monitor system composed of 10T devices to detect bots.

2.16 Detection Method of DNS-based Botnet Communication Using Obtained NS
Record History
AUTHOR: Katsuyoshi lida, Yong Jin, Hikaru Ichise
ABSTRACT: To combat with botnet, early detection of the botnet communication and
fast identification of the bot-infected PCs is very important for network administrators.
However, in DNS protocol, which appears to have been used for botnet
communication recently, it is difficult to differentiate the ordinary domain name
resolution and suspicious communication. Our key idea is that the most of domain
name resolutions first obtain the corresponding NS (Name Server) record from
authoritative name servers in the Internet, whereas suspicious communication may
omit the procedures to hide their malicious activities. Based on this observation, we
propose a detection method of DNS basis botnet communication using obtained NS
record history. Our proposed method checks whether the destined name server (IP
address) of a DNS query is included in the obtained NS record history to detect the
botnet communications
2.17 Botnet detection using software defined networking
AUTHOR: Udaya Wijesinghe, Udaya Tupakula, Vijay Varadharajan
ABSTRACT: Software Defined Networking (SDN) is considered as a new approach
promising simplified network management by providing a programmable interface.
The idea of SDN is based on the separation of control plane from the data plane in
networking devices. This is achieved by having the network intelligence centralised in
what is called as SDN controller. In this paper we propose techniques for botnet
detection in networks using SDN. The SDN controller makes use of generic
templates for capturing the traffic flow information from the OpenFlow switches and
makes use of this information for detecting bots. We will show that our model can
detect a range of bots including IRC, HTTP and peer-to-peer bots.
2.18 DGA Bot Detection with Time Series Decision Trees

8

AUTHOR: Anaél Bonneton, Daniel Migault, Stephane Senecal, Nizar Kheir
ABSTRACT: This paper introduces a behavioral model for botnet detection that
leverages the Domain Name System (DNS) traffic in large Internet Service Provider
(ISP) networks. More particularly, we are interested in botnets that locate and
connect to their command and control servers thanks to Domain Generation
Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts
belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to
build decision tree classifiers to recognize these patterns in very little computation
time. The main contribution of this paper is to consider whole time series to represent
the temporal behavior of hosts instead of aggregated values computed from the time
series. Our experiments are carried out on real world DNS traffic collected from a
large ISP.

2.19 An analysis of network traffic classification for botnet detection

AUTHOR: Matija Stevanovic, Jens Myrup Pedersen

ABSTRACT: Botnets represent one of the most serious threats to the Internet
security today. This paper explores how network traffic classification can be used for
accurate and efficient identification of botnet network activity at local and enterprise
networks. The paper examines the effectiveness of detecting botnet network traffic
using three methods that target protocols widely considered as the main carriers of
botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We
propose three traffic classification methods based on capable Random Forests
classifier. The proposed methods have been evaluated through the series of
experiments using traffic traces originating from 40 different bot samples and diverse
non-malicious applications. The evaluation indicates accurate and time-efficient
classification of botnet traffic for all three protocols. The future work will be devoted to
the optimization of traffic analysis and the correlation of findings from the three
analysis methods in order to identify compromised hosts within the network.

2.20 Botnet Domain Name Detection based on machine learning

AUTHOR: Baoping Yan, Guanggang Geng, Zhiwei Yan, Jian Jin

ABSTRACT: Domain Name System (DNS) is a fundamental component of today's
Internet: it provides mappings between domain names used by people and the
corresponding IP addresses required by network protocols. However, the open and
fundamental characteristics of DNS are recently used by the botnet for the
communication between bots and C&C. In this paper, we select six kinds of special
features of botnet domain querying traffic based on the deep studies of the DNS log.
Then three popular classifiers are adopted in order to pick the malicious domains
outfrom the DNS traffic using those features.

CHAPTER 3
METHODOLOGY

3.1 EXISTING SYSTEM

In existing flow-based approaches typically incur a high computational overhead and
do not completely capture the network communication patterns, which can expose
additional aspects of malicious hosts. Recently, bot detection systems that leverage
communication graph analysis using ML have gained attention to overcome these
limitations. A graph-based approach is rather intuitive, as graphs are true
representation of network communications.

3.1.1 EXISTING SYSTEM DISADVANTAGE

Do not completely capture the network communication patterns, which can expose
additional aspects of malicious hosts.

3.2 PROPOSED WORK

JIn this paper, we propose BotChase, an anomaly-, graph-based bot detection
system, which is protocol agnostic, i.e., it detects bots regardless of the protocol.
BotChase employs graph-based features in a two phased ML approach, which is
robust to zero-day attacks, spatially stable, and suitable for large datasets.We
evaluate the BotChase prototype system in an online setting that recurrently trains
and tests the ML models with new data. We also leverage the Hoeffding Adaptive
Tree (HAT) classifier for incremental learning. This is crucial to account for changes
in network traffic and host behavior.

JCyberattacks are on the rise these days. Many systems are getting infected by
attacks to overcome these attacks, In the past, we used signature-based research.
However, as technology developed, attacks became more sophisticated and we used
k-means and decision trees to see how many bots were targeted and how many were
not. If there is an attack, we will find how many bots were attacked or detected and
we will give the number.

LIMITATIONS

Botnet detection has been an active area of research that has generated a
substantial body of work. Common botnet detection approaches are passive. They
assume successful intrusions and focus on identifying infected hosts (bots) or
detecting C2 communications, by analyzing system logs and network data, using
signature- or anomaly-based techniques. Signature-based techniques have
commonly been used to detect pre-computed hashes of existing malware in hosts

and/or network traffic. They are also used to isolate IRC-based bots by detecting bot-
10

like IRC nicknames and to identify C2-related DNS requests by detecting C2-like

domain names. Metadata such as regular expressions based on packet content and
target IP occurrence tuples is an example of what could be employed in a signature
and pattern detection algorithm. More generally, signature-based techniques have
been employed to identify C2 by comparison with known C2 communication patterns
extracted from observed C2 traffic, and infected hosts by comparison with static
profiles and behaviours of known bots.

In the application CTU-13 dataset is used form kaggle Upload ctu-13 dataset button
it open the files.There we select the dataset click on open. After uploading the
dataset on screen it display the path from where we are taking dataset , dataset size
Also displays total rows and total columns, showing the Start Time, Duration, Protoc ,
SrcAddrress,Sport,Dire,DstAddress,Dport,State,sTos,dTos, TotalPackets, TotalBytes,
SrcBytes,Label and also the rows and columns in side square braces.

Apply k-means to separate bot and benign data from the data set. It gives us the
dataset size before removing benign records, i.e (total rows and columns). gives the
dataset size after removing the benign records, i.e (total rows and columns) By using
k-means we separated the Bot and Benign data.

When we have a look at the CMD there it show as generated bot graph points On Ul
it shoes the number of nodes , number of edges, number of graph created , between-
Ness centrality for all IP address or node. Here ip address nothing but nodes,
Execution time, clustering time calculation, alpha centrality time calculation Alpha
Centrality time.

After clicking on it, Normalizing features process completed & below are some
sample records out out- degree-weight in-degree-wt outdegree ,indegree bot bc
Ilcc ac. All the values of it which are normalized, Normalized & transformed data
saved inside normalize_data. csv file, as well as we can have a look at the CMD
there it show as features normalization module 100 percent done and shoes the
record in it.

It shows Normalized data loading to decision tree classifier Total dataset size to build
model.Model training records size, Model testing records size, Decision Tree
Accuracy , Decision Tree Precision , Decision Tree Recall ,True -Pos , False-
Pos,True-Neg, False-Neg.we have test 20 % of data, and training 80% of data .

The Accuracy of this model is 99%.

3.3 SUPERVISED LEARNING
A method of teaching machine learning labeled data by hand is called supervised
learning. its already know output of the algorithm before it start working on it, example

classifying a dataset in CTU-13, here it matches the input to output, here we will train
11

the data and and tested the data , once algorithm is well trained, it is tested using the

new data when it comes to unsupervised learning the training phase is big because
the machine is only given the input,it has to figure out the output on its own, so there
IS no supervisor here or there’s is no mentor over here.

3.4 UNSUPERVISED LEARNING

Unsupervised learning involves the machine learning without any guidance in the
form of unlabeled data.Here it forms as groups for example in this project like attack
and non-attack, the only difference is it Cant add the labels, it understands how the
cluster groups separate .Types of problems: Association ,clustering: separating on
based Anomaly The detection of unusual activities can be used for detecting
suspicious activity and the reinforcement of these activities is what we call
reinforcement learning now.In unsupervised learning we must find patterns in data
and keep exploring the data until it reaches the output. Observing patterns and
extracting insights in unsupervised approaches is all about figuring out how to get the
output, since the algorithm is only given input, it must find ways to gain insights from
data by finding trends and associations, mapping the known input to known outputs.

3.4.1 K-means

I's a technique most of us do in our daily life, for example like group of people
sharing tableClustering is the process of dispersing datasets into groups consisting of
similar data points. For example: k-means clustering. Exclusive clustering is hard
clustering, where points/items belong only to one cluster.

Descion tree: (supervised)

Descion tree it can be used as both supervised and unsupervised, but in this project
we are using decision tree as supervised algorithm. It has a root that grows as a
number of different options is increased, similar to decision trees. A decision tree is a
visual representation of all possible solutions based on many conditions. and the
condition now, here we will split the dataset into different subsets will become the
input to child, the goal is produce the purest possible distribution of the labels at each
nodes

In this project we are using k-means and desicion tree algorithms for building this
projecte.

To execute the project we have to click on run , then the CMD opens which shows
the path of project where it located, after that the user interface opens, splits of 2
screens one screen contains buttons Other side it shows the executed functions
output.

CHAPTER
A. Upload CTU Dataset
B. Apply KMEANS to separate Bot & Benign Data

12

C. Run Flow Ingestion & Graph Transformation

D. Features Extraction & Normalization
E. Run Decision Tree Algorithm

F. View Graph

G. Exit

First open the application then run in the command prompt User Interface (Ul) is
displayed. On Ul you will have some buttons like Upload CTU Dataset, Apply
KMEANS to separate Bot & Benign Data, Run Flow Ingestion & Graph
Transformation, Features Extraction & Normalization, Run Decision Tree Algorithm,
View Graph, Exit. Click on the first button i.e Upload CTU Dataset, then some
datasets are displayed. Select one among them and click open. It gives the dataset
size like total rows, total columns and also dataset samples. Then click on the second
button i.e Apply KMEANS to separate Bot & Benign Data. It gives you the information
about dataset size before removing the benign records and after removing the benign
records. This button will apply k means algorithm to the dataset and separate as two
clusters namely bot and benign and will remove the benign records from the set. Then
click on the third button i.e Run Flow Ingestion & Graph Transformation. It gives the
information like number of nodes, number of edges and betweenness. Then click on
the the fourth button Features Extraction & Normalization. It complete the Normalizing
features process and display some sample records. Then click on the Run Decision
Tree Algorithm. It display information like Decision Tree Accuracy, Decision Tree
Precision, Decision Tree Recall, True Positive, False Positive, True Negative, False
Negative. Then you can select number of nodes to draw graph. After selecting the
nodes you can click on View Graph to display the graph. The graph displays the
cluster. Last you will find a exit button to exit from the Ul. Click on the exit to close the
interface. If you want to find botnet attacks from other datasets, then you can again
upload a new dataset in the upload button and repeat the steps like applying k means,
then click Run Flow Ingestion & Graph Transformation, then feature extraction and
normalization and apply run decision tree algorithm.

13

3.5 Advantage

«It also accommodates different network topologies and is suitable for large-scale
data.

«Compared to the state-of-the-art, BotChase outperforms an end-to-end system that
employs flow-based features and performs particularly well in an online setting.

3.6 SOFTWARE AND HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

The functional requirements or the overall description documents include the product
perspective and features, operating system and operating environment, graphics
requirements, design constraints and user documentation.

The appropriation of requirements and implementation constraints gives the general
overview of the project in regards to what the areas of strength and deficit are and
how to tackle them.

«Python idel 3.7 version (or)
«Anaconda 3.7 (or)
«Jupiter (or)

*Google colab

HARDWARE REQUIREMENTS

Minimum hardware requirements are very dependent on the particular software being
developed by a given Enthought Python / Canopy / VS Code user. Applications that
need to store large arrays/objects in memory will require more RAM, whereas
applications that need to perform numerous calculations or tasks more quickly will
require a faster processor.

*Operating system: windows, linux
*Processor: minimum intel i3
*Ram

*Hard disk : minimum 250gb

14

3.7SYSTEM STUDY
FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is
put forth with a very general plan for the project and some cost estimates. During
system analysis the feasibility study of the proposed system is to be carried out. This
is to ensure that the proposed system is not a burden to the company. For feasibility
analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are
+ECONOMICAL FEASIBILITY

*TECHNICAL FEASIBILITY

*SOCIAL FEASIBILITY

3.7.1 Economical Feasibility

This study is carried out to check the economic impact that the system will have on
the organization. The amount of fund that the company can pour into the research
and development of the system is limited. The expenditures must be justified. Thus
the developed system as well within the budget and this was achieved because most
of the technologies used are freely available. Only the customized products had to be
purchased.

3.7.2 Technical Feasibility

This study is carried out to check the technical feasibility, that is, the technical
requirements of the system. Any system developed must not have a high demand on
the available technical resources. This will lead to high demands on the available
technical resources. This will lead to high demands being placed on the client. The
developed system must have a modest requirement, as only minimal or null changes
are required for implementing this system.

3.7.3 Social Feasibility

The aspect of study is to check the level of acceptance of the system by the
user. This includes the process of training the user to use the system efficiently. The
user must not feel threatened by the system, instead must accept it as a necessity.
The level of acceptance by the users solely depends on the methods that are
employed to educate the user about the system and to make him familiar with it. His
level of confidence must be raised so that he is also able to make some constructive
criticism, which is welcomed, as he is the final user of the system.

15

Upload I i
b he Gt
dataset

Feature = -} Feature
Normalization 8 Extraction

Travinving
data

Fig 1 .SYSTEM ARCHITECTURE

Decision

froe

3.8 DATA FLOW DIAGRAM:

1.The DFD is also called as bubble chart. It is a simple graphical formalism that can
be used to represent a system in terms of input data to the system, various
processing carried out on this data, and the output data is generated by this system.
2.The data flow diagram (DFD) is one of the most important modeling tools. It is used
to model the system components. These components are the system process, the
data used by the process, an external entity that interacts with the system and the
information flows in the system.

3.DFD shows how the information moves through the system and how it is modified
by a series of transformations. It is a graphical technique that depicts information flow
and the transformations that are applied as data moves from input to output.

4.DFD is also known as bubble chart. A DFD may be used to represent a system at
any level of abstraction. DFD may be partitioned into levels that represent increasing
information flow and functional detail.

16

User

Yes

user

NO
l ——» | Unauthorized

Upload Student Dataset

A 4

Preprocess Dataset

Clustering the data

Model Generation

+
DBSCAN Clustering

|
N

KMean Clustering

Visualize Clusters

Display Anomalous Student ID's

fEnd process J
N

Fig 2 DATA FLOW DIAGRAM:
UML DIAGRAMS

17

3.8.1 Introduction To UML

The Unified Modeling Language (UML) is a standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as well
as for business modeling and other non-software systems. The UML represents a
collection of best engineering practices that have proven successful in the modeling
of large and complex systems. The UML is a very important part of developing
objects oriented software and the software development process. The UML uses
mostly graphical notations to express the design of software projects. Using the UML
helps project teams communicate, explore potential designs, and validate the
architectural design of the software.

3.8.2 Goals of UML

. The primary goals in the design of the UML were:

*Provide users with a ready-to-use, expressive visual modeling language so they
can develop and exchange meaningful models.

*Provide extensibility and specialization mechanisms to extend the core concepts.
*Be independent of particular programming languages and development processes.
*Provide a formal basis for understanding the modeling language.

*Encourage the growth of the OO tools market.

«Support higher-level development concepts such as collaborations, frameworks,
patterns and components.

«Integrate best practices.

Why we use UML?

As the strategic value of software increases for many companies, the industry looks
for techniques to automate the production of software and to improve quality and
reduce cost and time-to-market. These techniques include component technology,
visual programming, patterns and frameworks. Businesses also seek techniques to
manage the complexity of systems as they increase in scope and scale. In particular,
they recognize the need to solve recurring architectural problems, such as physical
distribution, concurrency, replication, security, load balancing and fault tolerance.
Additionally, the development for the World Wide Web, while making some things
simpler, has exacerbated these architectural problems. The Unified Modeling
Language (UML) was designed to respond to these needs.

3.9 UML Diagram

The underlying premise of UML is that no one diagram can capture the different
elements of a system in its entirety. Hence, UML is made up of nine diagrams that
can be used to model a system at different points of time in the software life cycle of
a system.

The nine UML diagrams are:

18

3.9.1 Use case diagram:

The use case diagram is used to identify the primary elements and processes that
form the system. The primary elements are termed as "actors" and the processes are
called "use cases." The use case diagram shows which actors interact with each use
case.

System

% Upload CTU Dataset Dataset
I
e
——__—_‘—‘-—_
. 0y -—____\—_‘_‘_‘——_
Application Preprocess Dataset
Apply KMEANS to separate Bot & Benign Data

% Run Flow Ingestion & Graph Transformation

K\

Features Extraction & Normalization
Run Decision Tree Algorithm

User

/I

@

Fig 3: Use case diagram

3.9.2 Class diagram:

The class diagram is used to refine the use case diagram and define a detailed
design of the system. The class diagram classifies the actors defined in the use case
diagram into a set of interrelated classes. The relationship or association between the
classes can be either an "is-a" or "has-a" relationship. Each class in the class
diagram may be capable of providing certain functionalities. These functionalities
provided by the class are termed "methods" of the class. Apart from this, each class
may have certain "attributes” that uniquely identify the class.

User Upload CTU Dataset

+dataset +dataset

+Upload CTU Dataset() +Read Dataset()
Apply KMEANS to separate Bot & Benign Data
+dataset
+Reduce Dataset Size()

i Run Flow Ingestion & Graph Transformation
i +benign records
) +Toatal nodes and Edges Generated()

Features Extraction & Normalization

+records

+Normalized records()

Run Decision Tree Algorithm

+records

+Generated Training Module()

FIG.4 CLASS DIAGRAM

20

3.9.3 Object diagram:

The object diagram is a special kind of class diagram. An object is an instance of a
class. This essentially means that an object represents the state of a class at a given
point of time while the system is running. The object diagram captures the state of
different classes in the system and their relationships or associations at a given point
of time.

U:User Up:Upload CTU Dataset

+dataset +dataset

+Jpload CTU Dataset() +Read Dataset()
A:Apply KMEANS to separate Bot & Benign Data
+dataset
+Reduce Dataset Size()

S:Syst l
sl R1:Run Flow Ingestion & Graph Transformation
I +benign records
S] +Toatal nodes and Edges Generated()

|

F:Features Extraction & Normalization

+ecords

+Normalized records()

R2:Run Decision Tree Algorithm

+records

+Generated Training Module()

FIG 5:0BJECT DIAGRAM
3.9.4 State diagram:
A state diagram, as the name suggests, represents the different states that objects in
the system undergo during their life cycle. Objects in the system change states in
response to events. In addition to this, a state diagram also captures the transition of
the object's state from an initial state to a final state in response to events affecting
the system.

21

Open Application

¢
[Upload CTU Dataset j

v

Apply KMEANS to separate Bot & Benign Data

Preprocess Dataset

Model generates

E‘{un Flow Ingestion & Graph Transformatiorj

[Features Extraction & Normalizah'on]

(Run Dedision Tree Algorithm]

Close Here

FIG 6:STATE DIAGRAM

22

3.9.5 Activity diagram:

The process flows in the system are captured in the activity diagram. Similar to a
state diagram, an activity diagram also consists of activities, actions, transitions, initial
and final states, and guard conditions.

User Dataset System Result

Open Application %<Upload DataseMpdv KMEANS to separate Bot & Benign Dat}
Databet

Model generate

Run Flow Ingestion & Graph Trensformation

Feafures Extraction & Normalzaton
Run Decison Tree Algorithm

Normalzation data

Graph

i

FIG 7:ACTIVITY DIAGRAM

23

3.9.6 Sequence diagram:

A sequence diagram represents the interaction between different objects in the
system. The important aspect of a sequence diagram is that it is time-ordered. This
means that the exact sequence of the interactions between the objects is represented
step by step. Different objects in the sequence diagram interact with each other by
passing "messages".

Dataset

[
7
(1]
R

Application

1:start) ;
2 : Upload CTU Dataset() . —I—|

: al
<4
l_' 3: Load Dataset()
4 : Preprocess dataset()

5 : Apply KMEANS to separate Bot & Benign Data()

-

6 : Run Flow Ingestion & Graph Transformation()

7 : Features Extraction & Normalization()

8 : Run Dedision Tree Algorithm()

T
U
T

9: Exit)

FIG 8:SEQUENCE DIAGRAM

3.9.7 Collaboration diagram:

A collaboration diagram groups together the interactions between different objects.
The interactions are listed as numbered interactions that help to trace the sequence
of the interactions. The collaboration diagram helps to identify all the possible
interactions that each object has with other objects.

24

Model 1: Start() User
10 : Exit()

8 : Features Extraction &Normalizaﬁono\ /v

9 : Run Dedision Tree Algorithm()

6 : Run Flow Ingestion & Graph Transformation() Application

7 : Accuracy Graph()

o

2 : Upload CTU Dataset() Result

3 : Load Dataset()
4 : Preprocess dataset()

Dataset

5 : Apply KMEANS to separate Bot & Benign Data()

FIG 9:COLLABORATION DIAGRAM

3.9.8 Component diagram:

The component diagram represents the high-level parts that make up the system.
This diagram depicts, at a high level, what components form part of the system and
how they are interrelated. A component diagram depicts the components culled after
the system has undergone the development or construction phase.

<<component:>>
<<component>> User
Application
S <<artifact>> D

Preprocess

4
<<artifact>> D
Model Building

< <artifact>> < <component> >
Train &Test Result

FIG 10: COMPONENT DIAGRAM

25

3.9.9 Deployment diagram:

The deployment diagram captures the configuration of the runtime elements of the
application. This diagram is by far most useful when a system is built and ready to be
deployed.

Application

_/ N

Dataset

User

; — Train &Test[j Resu“ﬁ
upload dataset Iﬁ Preprocess dataset B]

FIG 11: DEPLOYMENT DIAGRAM

3.10 Modules:
% Upload CTU Dataset
s Apply KMEANS to separate Bot & Benign Data
% Run Flow Ingestion & Graph Transformation
Features Extraction & Normalization
Run Decision Tree Algorithm
Exit

X/
o

4

o
S

X/
o

A .Uploading ctu-13 datset

Upload ctu-13 dataset button ,it open the files there we select the dataset click on
open, after uploading the dataset on screen it shows the path from where we are
taking dataset , dataset size, by mentioning total rows and total columns, and
showing the StartTime, Duration, Protoc ,Srcorce-Addrress
,Sport,Dire,DstAddress,Dport,State,sTos,dTos, TotalPackets, TotalBytes,SrurceBytes,
Label and also the rows and columns in side square braces.

B. Apply k-means to separate bot and benign data:

Apply k-means to separate bot and benign data from the data set , it gives us the
dataset size before removing benign records total rows and columns, and also it
gives the dataset size after removing the benign records total rows and columns by
using k-means we separate there data.

26

C. RunFlow Integration and graph transformation

After clicking on run flow integration it shoes two screens extract which we need to
close ,when we have a look at the CMD there it show as generated bot graph points
, on ui it shoes the number nodes , number of edges, number of graph created ,
between-Ness centrality for all IP address or node , here ip address nothing but
nodes, Execution time, clustering time calculation, alpha centrality time calculation
Alpha Centrality time.

D.Features Extraction and normalization:

After clicking on it, Normalizing features process completed & below are some
sample records out out- degree-weight in-degree-wt outdegree ,indegree bot bc
Icc ac, all the values of it which are normalized, Normalized & transformed data
saved inside normalize_data.csv file, as well as we can have a look at the CMD there
it show as features normalization module 100 percent done and shoes the record in
it.

E. Run Decision Tree Algorithm

It shows Normalized data loading to decision tree classifier, Total dataset size to build
model, Model training records size, Model testing records size, Decision Tree
Accuracy , Decision Tree Precision ,Decision Tree Recall ,True -Positive ,False-
Positive ,True-Negative , False-Negative . we have test 20 % of data, and training
80% of data .The Accuracy of this model is 99%.

F. View Graph

In the final module there will be input textbox where we can enter some number into
it , so that it generate the graph after clicking on the view graph.it pop up another
screen shoes all the ip address and its connections. After completing the whole
project clicking on exit we exit from the GUI interface.

G.EXIT
Clicking on exit button we will exit from GUI interface.come out of project.

27

3.10.1 Algorithm:

k-Means, Density-Based Spatial Clustering (DBScan) and SOM, Decision Tree,
Feed-forward Neural Network (FNN), Logistic Regression (LR) and Support Vector
Machine (SVM).

« k-Means—The k-Means clustering algorithm attempts to find an optimal assignment
of nodes to k pre-determined clusters, such that the sum of the pairwise distance
from the cluster mean is minimized. k-Means is static, it results in the same cluster
composition for a given dataset across different runs of the algorithm, with the same
number of clusters and iterations. Assume k is set to the cardinality of the label set.
Idealistically, there should be a clean assignment of hosts to corresponding clusters.

However, in reality, some benign hosts exhibit an outlier behavior. For example,
network nodes that host webservers and public APIs will depict a huge amount of
data and connections, thus impacting ID, IDW, OD and ODW. Therefore, depending
on the dataset, altering k may adversely affect clustering performance.

« Density-Based Spatial Clustering (DBScan)—Unlike kMeans, DBScan does not
require the parameter k, the predetermined number of clusters. In contrast, it
computes the clusters and assignment of nodes according to a rigid set of density-
based rules. DBScan requires a pair of parameters: (i) p, the minimum number of
points required to be assigned as core points, and (ii) e, the minimum distance
required to detect points as neighbors. DBScan classifies points as core, edge or
noise, where core points must have p points in their neighborhood with a distance
less than e. Otherwise, if the point is reachable via e distance from at least one of the
core points, it is considered an edge. The remaining points are considered noise and
are not clustered. That is, points are not forcefully assigned to clusters as some
points may just be noise. Therefore, DBScan is capable of detecting non-linearly
separable clusters.

« Self-Organizing Map (SOM)—A SOM is a special purpose artificial neural network
that applies competitive learning instead of error-correction. It is frequently used for
dimensionality reduction and clusters similar data. However, the notion of similarity in
SOM is looser than that of k-Means and DBScan. In SOM, neurons are pushed
towards the data points for a certain number of iterations. It uses the best matching
unit to determine the winner neuron and updates its weights accordingly.
Furthermore, SOMs also apply a learning radius that affects all the other neurons,
when a close-by neuron is updated. The number of neurons also play an important
role in clustering. Higher number of neurons result in dispersion of nodes away from
a single cluster. Importantly, the same logic applies to k-Means, hence the classifier
with the best assignment must be selected, according to the objectives outlined in
this phase. 2) Phase 2: Phase 1 separates the dataset between nodes that are inside
and outside the benign cluster. All the nodes, ideally small, that reside outside the
benign cluster are input to Phase 2 for further classification. Optimally, all the bots

28

should be outside the benign cluster, regardless of whether or not they are co-located
in the same cluster. Depending on the amount of hosts outside the benign cluster, the
supervised learning (SL) classifiers used in this phase will exhibit different results.
The primary objective in this phase is to maximize recall. Recall is a measure of how
many bots are recalled correctly i.e., do not go unnoticed. It is proportional to the
number of true positives (TPs) and inversely proportional to false negatives (FNs).
Various SL classifiers can be deployed in this phase to achieve this objective, such
as logistic regression (LR), support vector machine (SVM), feed-forward neural
network (FNN) and decision tree (DT).

« Logistic Regression (LR) and Support Vector Machine (SVM)—LR focuses on
binary classification of its input, based on a sigmoid function. Input features are
coupled with corresponding weights and fed into the function. Once a threshold p is
defined, usually 0.5 for the logistic function, it establishes the differentiator between
positive and negative points. Unlike LR, SVM is a non-probabilistic model for

classification. It is not restricted to linearly separable datasets. There are various
methods of computing SVM, including the renowned gradient-descent algorithm.

« Feed-forward Neural Network (FNN)—FNNs are artificial neural networks that do
not contain any cyclic dependencies. For a given feed-forward network with multiple
layers, a feature vector is dispersed into the input layer, fed to the hidden layer of the
network, and then to its output layer. While the input layer is constrained by the
number of features exposed, the hidden and output layers are not. Every neuron may
rely on a separate activation function that shapes the output. Popular activation
functions for FNNs include identity, sigmoid, ReLU and binary step, among others.
FNNs and the previously mentioned SL techniques are online classifiers. An online
classifier is capable of incremental learning, as the weights associated with the
deployed perceptrons are not static. This makes FNNs an attractive candidate for
production-grade deployment.

« Decision Tree (DT)—DTs rely heavily on information entropy (IE) and gain to
conjure its conditional routing procedure. Generally, IE states how many bits are
needed to represent certain stochastic information in the dataset. By using DT,
information gain is maximized from the observed data and the taken path. After
training a DT, newly observed data points can be predicted. However, unlike all the
other classifiers, DTs are not online. That is, optimally retraining a DT must be done
from scratch. Recall the objective from Phase 1 i.e., minimize hosts outside the
benign cluster (HOB), while maximizing bots outside the benign cluster (BOB). This
results in a minimal training dataset for Phase 2. Also, it is expected that the resultant
training dataset from Phase 1 would be unbalanced, with a bias towards benign
hosts. This may prove problematic for LR, SVM and FNN in achieving high recall
rates.

29

CHAPTER 4
RESULTS AND DISCUSSION, PERFORMANCE ANALYSIS

The aim of this paper is to develop a user interface which can detect the Botnet
records based on graph. This application will detect Botnet records in the internet
connected system by using Machine learning algorithms and also detect the newly
attacks based on the graph which is plotted using the k means algorithm. Where as k
means is an unsupervised learning algorithm it will detect the newly created attacks
by the distance formula

The internet connected device owner can provide security to their systems by our
User Interface.

CHAPTER 5
SUMMARY AND CONCLUSIONS

In this paper, we propose Botnet detection, a system that is capable of efficiently
transforming network flows into an aggregated graph model. It leverages two ML
phases to differentiate bots from benign hosts. Botnet allows you to combination
community flows into graphical version based on network flow facts. In the primary
phase, SOM is used to make sure an Maximizing the benign clusters but maintaining
an acceptable compromise while alienating the malicious bots. Additionally, the

consequences show high TPs ,coffee FPs for DT. Without the F Norm, the effects of
the SOM have been made worse, i.E., fewer bots within the normal (bengin) cluster,
and the size of the benign cluster reduced. In addition to detecting bots that use one
of a kind protocols, BotChase is also capable to educate and infer ML fashions for
pass-network ML education is attacked by go-community. Graph-based totally
capabilities outperform go with the flow-based features in BotChase. Further,
BotChase outperforms an quit-to-cease device that is predicated on float-based
capabilities and compares favorably with the graph-based Bot detection. BotChase,
in web-primarily based surroundings, applies incremental learning using HAT. FNorm
requires longer to converge, however the model performs extremely nicely in its very
last country. Future research consciousness on tuning the classifiers, investigating
superior ensemble gaining knowledge of and feature engineering strategies, and
increasing FNorm to better degrees.

30

REFERENCES
Textbooks:

1.Programming Python, Mark Lutz

2.Head First Python, Paul Barry

3.Core Python Programming, R. Nageswara Rao
4. Learning with Python, Allen B. Downey

Journals:

[1]. Jay N. Paranjape ., Misha Mehra ., Jay N. Paranjape ., Vinay Joseph Ribeiro.,
“ Improving ML Detection of loT Botnets using Comprehensive Data and
Feature Sets ”., 2021.

[2]. Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., “ Optimized
Random Forest Model for Botnet Detection Based on DNS Queries ” ., 2021.

[3]. Mrutyunjaya Panda ., Abd Allah A. Mousa, Aboul Ella Hassanien ., “ Developing
an Efficient Feature Engineering and Machine Learning Model for Detecting I0T-
Botnet Cyber Attacks ” ., 2021.

[4]. Kostas E. Psannis ., Vasileios A. Memos ., “ Al- Powered Honeypots for
Enhanced — loT Botnet Detection “ .,2020.

5] Sina Hojjatinia ., Hadis Mohseni ., Sajad Hamzenejadi ., “ Android Botnet
Detection using Convolutional Neural Networks ”, 2020.

[6]. Paul D. Yoo, Sami Muhaidat, Omar Y. Al-Jarrah ., Omar Alhussein ., Kwangjo
Kim., , Kamal Taha ., “ Data Randomization and Cluster- Based Partitioning for
Botnet Intrusion Detection ” ., 2015.

[7]. Duc C. Le ., Nur Zincir-Heywood ., “ Learning From Evolving Network Data for
Dependable Botnet Detection ., 2020.

[8]. Khalid Alsubhi., Afnan Alharbi ., Khalid Alsubhi., “ Botnet Detection Approach
Using Graph-Based Machine Learning ”., 2021.

31

[9] S. Sriram ., Mamoun Alazab ., R. Vinayakumar, .,.Soman KP “ Network Flow
based loT Botnet Attack Detection using Deep Learning ” ., 2020.

[10] Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., “ Detecting
Botnet Attacks in [oT Environments: An Optimized Machine Learning Approach
" ., 2021.

[11] . Sean Miller ., Curtis Busby-Earle ., “ The role of machine learning in botnet
detection ” ., 2017.

[12] Rafael L. Gomes ., Antonia Raiane S. Araujo Cruz ., Marcial P. Fernandez ., “
An Intelligent Mechanism to Detect Cyberattack of Mirai Botnet in IoT Networks ” .,
2021.

[13] Stefano Secci ., Mathieu Bouet ., Agathe Blaise ., Vania Conan ., Stefano Secci
., . Botnet Fingerprinting: A Frequency Distributions Scheme for Lightweight Bot
Detection ” ., 2020.

[14] Raouf Boutaba ., Mohammad A . Salahuddin ., Abbas Abou Daya ., Noura

Limam ., “* A Graph-Based Machine Learning Approach for Bot- Detection ” .,
2019.

[15] Madhuri Gurunathrao Desai ., Kun Suo ., Yong Shi ., “ loT Bonet and Network

Intrusion Detection using Dimensionality Reduction and Supervised Machine
Learning ” ., 2020.

32

SCREENSHOTS:

' Detection of bot Using Graph-Based Machine Learing

Malicious attacks detection using Machine learning

e KEANS gt B B

Apply KMEANS to Separate Bot & Benign Data

A Type here to search

Fig 2: GUI screen

Open X
4 | « BotChase » BotChase » CTU-13-Dataset o O Search CTU-13-Dataset
Organize » New folder = M @
B Desktop # A Name = Status Date modified Tpe
& Downloads # ¥ capture20110810 e} 7/18/2014 1:32 AM BINETFLOW File
= Documents # [# capture20110815 © 7/18/2014 1:33 AM BINETFLOW File
Pictures # ¥ capture20110815-2 @ 7/18/2014 1:33 AM BINETFLOW File
|| 381100%4-CHAK capture20110816-2 @ 7/18/2014 1:34 AM BINETFLOW File
| BotChase ¥ capture20110816-3 @ 7/18/2014 1:35 AM BINETFLOW File
r‘ .
e | P e e
< 3. e
. Screenshots
>

Fig 3:CTU-13 dataset

33

Detection of bot Using Graph-Based Machine Learning

Malicious attacks detection using Machine learning

Upload Dataset Dataset size before removing benign records

Total Rows : 129832
Apply KMEANS to Separate Bot & Benign Data | Total Columns : 15

Run Flow Ingestion & Graph T f

| Dataset size after removing benign records

Total Rows : 1802
Features Extraction & Normalization l Total Columns : 15

Run Decision Tree Algorithm
10 ViewGraph

5

10:00

A Type here to search I . N @ & &P wor202 T

Fig 4: K-means

¢ Detection of bot Using Graph-Based Machine Learning - 6] .

(Gosel

Malicious attacks detection using Machine learning

Upload Dataset Number of nodes: 104

Number of edges: 95
Apply KMEANS to Separate Bot & Benign Data

Network graph created

R ow SeCoaps & l B: centrality time calculation for all ip address or nodes
F E ion & N lizati I Execution Time : 4.253601551055908

Clustering time calculation
Run Decision Tree Algorithm

Clustering Time : 0.008694171905517578

10 I vi
| View Graph Alpha Centrality time calculationAlpha Centrality Time : 0.011833667755126953
Exit

10:00

£ Type here to search gi . e Gl 8 & & w1202

Fig 5: RunFlow Integration and graph transformation

34

BR C\Windows\system32\cmd.exe — O *

Fig 6: CMD graph build

§ Detection of bot Using Graph-Based Machine Learning (m] X
Malicious attacks detection using Machine learning
Upload Dataset Normalizing features process completed & below are some sample records
out-degree-weight in-degree-weight out-degree in-degree bot bc lec ac
Apply KMEANS to Separate Bot & Benign Data 84.165 89 0.0 1 00 00.0 00011483
80.9 0 40 0 10 000 00.067794
94.63.149.152 0 198.0 0 10 000 00009277
S ¥ lag AR ‘ 94.63.150.52 0 241.0 0 120 000 00011195
60.190.223.75 0 36.0 0 60 000 00.002052

Features Extraction & Normalization ‘

Normalized & transformed data saved inside normalize_data.csv file

Run Decision Tree Algorithm ‘ |

10 View Graph ‘
i Exit
o
i
10:00
2 Type here to search o] e C g = w002 B

Fig 7: Features Extraction and normalization

35

Graph-based method for detecting bot attacks Using Machine Leaming

leted & below are seme sample records

Fig 8: Run Decision Tree

@ Detection of bot Using Graph-Based Machine Leaming 8]

209.8! 8.147
46. .120

P Type here to search

Fig 9: Graph

36

Source code:

font = (‘times’, 16, 'bold")

title = Label(main, text='"Detection of bot Using Graph-Based Machine
Learning')

title.config(bg="LightGoldenrodl’, fg="medium orchid")
title.config(font=font)

title.config(height=3, width=120)

title.place(x=0,y=5)

fontl = (‘times’, 12, 'bold")

text=Text(main,height=30,width=100)

scroll=Scrollbar(text)

text.configure(yscrollcommand=scroll.set)

text.place(x=400,y=100)

text.config(font=font1)

fontl = (‘times', 12, 'bold")

uploadButton = Button(main, text="Upload Dataset", command=upload)
uploadButton.place(x=50,y=100)

uploadButton.config(font=fontl)

kmeansButton = Button(main, text="Apply KMEANS to Separate Bot & Benign
Data", command=kmeans)
kmeansButton.place(x=50,y=150)

kmeansButton.config(font=fontl)

transformButton = Button(main, text="Run Flow Ingestion & Graph
Transformation”, command=graphTransform)
transformButton.place(x=50,y=200)

transformButton.config(font=fontl)

normalizationButton = Button(main, text="Features Extraction &
Normalization", command=featuresNormalization)

normalizationButton.place(x=50,y=250)

37

normalizationButton.config(font=font1)

dtButton = Button(main, text="Run Decision Tree Algorithm",
command=decisionTree)

dtButton.place(x=50,y=300)

dtButton.config(font=font1)

graphselection_list =[]

graphselection_list.append(10)

graphselection_list.append(20)

graphselection_list.append(30)

graphselection_list.append(40)

graphselection_list.append(50)

graphselection_list.append(60)

graphselection_list.append(70)

graphselection_list.append(80)

graphselection_list.append(90)

graphselection_list.append(100)

graphlist =
ttk.Combobox(main,values=graphselection_list,postcommand=lambda:
graphlist.configure(values=graphselection_list))
graphlist.place(x=50,y=350)

graphlist.current(0)

graphlist.config(font=fontl)

graphButton = Button(main, text="View Graph", command=viewGraph)
graphButton.place(x=240,y=350)

graphButton.config(font=fontl)

exitButton = Button(main, text="Exit", command=close)
exitButton.place(x=50,y=400)

exitButton.config(font=fontl)

main.config(bg="OliveDrab2")

main.mainloop()
38

C. PLAGARISM REPORT

Malicious Attacks Detection Using Machine
Learning

Chakravarma Sai Tejaswi', Yemireddy Chaitanya®, Jesudoss A (*)", Prayla Shyry*
U.G Students'?, Associate Professor’, Professor*

D of CSE, Sathyaly

Ly

Institute of Science and Technology,

Chennai, India
saitejaswi.chakravaram05@ gmail com, yemireddychaitanyaS69@gmail.com, jesudossas@ gmail com,
praylashyry cse @sathyabama ac.in

Abstract: — Botnet, which are used for
cybercrime, have recently become a powerful
threat on the Internet. Using machine
learning techniques, we have examined ways
to detect botnet. There are various types of
botnet attack, such as DDOS, spamming,
fraud, etc., that can be used by malicious
users to attack systems. In order to detect
such attacks, packet analysis signatures are
used and marked as normal or as human
attacks. In order to identify if a new request
packet is an attack or not, signatures will be
applied, and this method requires manual
effort and is updated every time a new attack
occurs., The author will utilise machine
learning algorithms in order to overcome the
above problem. Machine learning algorithms
will be used to train and create a model,
which will then be applied to new request data
to detect normal and abnormal actions, Using
the KMEANS algorithm, we will separate the
dataset into BOT and BENIGN records. In
this approach, we will use graph-based
features to extract features from the dataset.
Data will be sent to a graph, where each
address will be represented as a vertex, and
edge connections will be made between the
source and destination. Edge weights will be
calculated based on incoming and outgoing
link connections. To determine edge weights,
we will calculate between_ness centrality,
incoming edge weight, outgoing edge weight,
and alpha_centrality weight. We combine the
results from all these calculations into in-deg,
out-deg, in-deg wt, out_deg wi, clustering,
and alpha_centrality as features, If there are
@ high number of connections, then the label
will read "1" (BOT); if not, then "0"(normal).

Keywords :

Machine Learning (ML) GUI - application .,
decision tree ., K- mean clustering ., database .,
Graph ., botnet ., detection ., ctu-13 .

L INTRODUCTION
Now a days everyone is storing their information in
their systems. Here comes a problem in providing
security to their systems. On other hand cyber-
attucks are also increasing randomly which can
hack your personal data like photos, social media
and chats, Bot attacks increased worldwide, There
are also some servers getting hacked which
contains data of some lakhs people, where hacking
a server is equal to hacking some lakhs people data.
Botnet is also a type of cyber-attack which is a
collection of intemet-connected devices, where
these devices are called as bot. By using this bots
the attacker can also hack a big servers. These bots
all together called as bot army. Botnet can make
time-consuming tasks casier because of its amy.,
Botnet also perform helpful tasks like keeping track
of points during online game or managing
chatrooms, But most people are using it for
malicious works. It is also a source of many
malicious activities, The different models of botnet
are Client/Server model, Star Network Topology,
Multi-server Network Topology, Hicrarchical
Network Topology and Peer-tpPeer. There are
many types in botnet like centralized, client-sérver,
decentralized and peer-to-peer models and attacks
like distributed denial-of service (DDoS), phishing,
cryptojacking, snooping, bricking, Brute force and
spambots, Common Botnet actions are Email spam,
Financial breach, Targeted intrusions. A bot herder
can do a collective of hijacked devices by using
remote commands, Once your machine is infected,
it becomes a bot, you may not even know. Botnet
leads to Financial theft, Informational theft,

39

Sabotage of services, Selling access to other
criminals. The 3 main components of botnet are the
bots, the command and control servers(C&C) and
the botnet operator. Botnet attacks has been
increased in the recent years at the same time
different types of Botnet detection frameworks are
also increased.

The hacker can access the device only when his
application was in the device. Once his application
started running in the device then he can steal,
change or destroy information. The hacker can also
steal money, username and passwords. The hacker
can also change your confidential data. Also install
and run any application in your system he want.
All the devices which are connected to the internet
can be hacked by the hacker, The more targeted
devices like desktop and laptops which runs on
Windows OS or macOS. Mobiles are next target
devices as more people are using by connecting
them to the internet. Recent years connecting
devices to the internet has increased rapidly botnets
also create from connected devices has become
more noted.

First the hacker will start by injecting the malware
infection to your device, Then use techniques like
web downloads, popup ads, email attachments,
exploit kits a. Send some download links to the
target device to hack the device. For example
Trojan Horse (Happy New Year! Click here to see
magic). If the owner of the device does not know
about whether the download link is an attacker link
and if he click on the link then the hacker
application will get download in the device and sit
around wait for command from the main system
(hacker system). Now the hacker can access
everything from his device. In order not to get
attacked by hackers he should know all the
malware links, so he can save his device from
hacker. To stay away from malware links his
device should able to find the malware links or
prevent the initial infection or identify an existing
infection. Botnet attacks are hard to detect.
Preventing botnet attacks is more difficult. Yet we
can still take certain measures to prevent botnet
attacks.

The aim of our research is to explore new graph-
based features. A unsupervised algorithm k means
and a supervised algorithm Decision Tree were
used as classifiers.

II. RELATED WORk

Misha Mehra et al [1] has proposed a system to
detect Botnet in Linux systems because embedded
Linux is popular in recent loT devices and also
systems, they extracted 3 features for model In this
we understand how to extract features.

Abdallah Moubayed et al [2] has proposed a forest
model to detect Botnet, they designed a framework
based on ML using DNS, So we learnt how to
design framework from this project.

Mrutyunjaya Panda et al [3] has proposed efficient
feature extraction and ml model to detect Botnet,
here we learnt about the efficient feature extraction
for our project and also to select good ml model.
Afnan Alharbi et al [8] has proposed graph-based
Botnet detection, we learnt about graph from here
and also they used five filters for extracting
features we also learnt about that filter process
here.

MohammadNoor Injadat et al[10] proposed an
optimized approach to detect Botnet, we learnt
about optimization and also optimized decision tree
model here,

Antonia Raiane et al [12] intelligent mechanism to
detect Botnet, attacks related to scam, UDP learnt
about network attacks from here,

Vasileios et al [4] has proposed efficient detection
of Botnet and ML model training, we leamnt to
structure data in a good manner for good model
training .

Sina Hojjatinia et al [5] has proposed to detect
enhanced Botnet using ML model hybrid Artificial
Intelligence we learnt ML models here,

Duc C. Le et al [7] proposed a dependable botnet
detection from evolving network using genetic
programming, learnt about network in this project.
Sriram et al [9] proposed to detect botnet using
deep learning and network based flows and also
released benchmark dataset also used machine
learning models, designed a framework.

Agathe Blaise et al [13] proposed a technique to
detect Botnet the name is BotFP signature plays a
major role in this project and used supervised
algorithm,

Madhuri Gurunathra et al [15] proposed a Botnet
detection using supervised machine leaming
algorithms mainly focused on intrusions and other
type of networks using dimensionally reduction
technique.,

Abbas Abou Daya et al [14] has proposed a graph
based Botnet detection also used both supervised
and unsupervised algorithms from ML, we learnt
unsupervised algorithm from this project.

Sean Miller et al [11] defines the brief overview of
all ML algorithms which plays crucial role in
detecting Botnet and clearly understand about all
the ML algorithms in Botnet detection.

Omar Y, Al-Jarrah et al [6] proposed a Botnet
intrusion detection using RDPLM, leamt feature

40

selection technique from this project.

I, MOTIVATION
Cyberattacks are on the rise these days. Many
systems are getting infected by attacks to overcome
these attacks, In the past, we used signature-based
rescarch. However, as technology developed,
attacks became more sophisticated and we used k-
means and decision trees to see how many bots
were targeted and how many were not. If there is
an attack, we will find how many bots were
attacked or detected and we will give the number,

IV. PROPOSED SYSTEM
The proposed work is to detect bot based on graph.
Previously we have bot detection method but based
on signature, which can not detect the new attacks.
But our project can detect the newly generated
attacks as we are using kK means unsupervised
algorithm,

Here we used two machine leaming algorithms
supervised and unsupervised. K means from
unsupervised and decision tree from supervised.
Where k means can separate bot and benign,
Decision tree can give the accurate decision. We
also found the accuracy of the Decision tree
algorithm at last,

Supervised: A method of teaching machine
learning labeled data by hand is called supervised
learning. its already know output of the algorithm
before it start working on it, example classifying a
dataset in CTU-13, here it matches the input to
output, here we will train the data and and tested
the data , once algorithm is well trained, it is tested
using the new data when it comes to unsupervised
learning the training phase is big because the
machine is only given the input,it has to figure out
the output on its own, so there is no supervisor here
or there's is no mentor over here,

Cyberattacks are on the rise these days. Many
systems are getting infected by attacks to overcome
these attacks, In the past, we used signature-based
research, However, as technology developed,
attacks became more sophisticated and we used k-
means and decision trees to see how many bots
were targeted and how many were not,

If there is an attack, we will find how many bots
were attacked or detected and we will give the
number.In fig[1] it consist of different Components
like data bootstrap, model training,

Data-Bootstrap:

It consist of 4 internal components flow
gration, graph form, feature extraction,

Feature Normalization .

Model Training:

Here we under go two phases , phase 1 is
unsupervised , using k-means algorithm we
separate bots and benign, in phase 2 it under goes
supervised , using Decision tree algorithm to get
the accurate values, using this we train, 80% ,
trained 20% data is tested.

=
B =
=

SYSTEM ARCHITECTURE

Supervised learning:

All machine learning systems aim to predict an
outcome, However, the whole process of
supervised leaming is designed so that it can
directly predict the outcome, because it has well
defined training phase, on other hand. Since it has
already been trained, there is a direct feedback
mechanism in supervised leaming.

Types of problems: regression , classification

Unsupervised

Unsupervised learning involves the machine
learning without any guidance in the form of
unlabeled data Here it forms as groups for example
in this project like attack and non-attack, the only
difference is it Cant add the labels, it understands
how the cluster groups separate Types of
problems: Association clustering: separating on
based Anomaly The detection of unusual activities
can be used for detecting suspicious activity and
the reinforcement of these activities is what we call
reinforcement learning now.In unsupervised
learning we must find patterns in data and keep
exploring the data until it reaches the output,
Observing patterns and extracting insights in
unsupervised approaches is all about figuring out
how to get the output, since the algorithm is only
given input, it must find ways to gain insights from
data by finding trends and associations, mapping
the known input to known outputs,

K-means

It's a technique most of us do in our daily life, for
example like group of people sharing
tableClustering is the process of dispersing datasets
into groups consisting of similar data points. For

41

example: k-means clustering. Exclusive clustering
is hard clustering, where points/items belong only
to one cluster,

Descion tree: (supervised)

Descion tree it can be used as both supervised and
unsupervised, but in this project we are using
decision tree as supervised algorithm, It has a root
that grows as a number of different options is
increased, similar to decision trees, Based on many
different variables, a decision tree displays all
possible options. and the condition now, here we
will split the dataset into different subsets will
become the input to child, the goal is produce the
purest possible distribution of the labels at cach
nodes.

In this project we are using k-means and desicion
tree algorithms for building this projecte.

To execute the project we have to click on run ,
then the CMD opens which shows the path of
project where it located, after that the user interface
opens, splits of 2 screens one screen contains
buttons Other side it shows the executed functions
output,

CHAPTER

A. Upload CTU Dataset

B. Apply KMEANS to separate Bot &
Benign Data

C. Run How Ingestion & Graph
Transformation

D. Features Extraction & Normalization

E. Run Decision Tree Algorithm

F. View Graph

G. Exit

A Uploading ctu dataset

Click on “Upload ctu dataset™ button ,it displays a
set of datasets. Then choose a dataset from the
given sets and click on open button After uploading
the dataset on the screen, it display the path from
where we are taking dataset and dataset size.lt
displays total rows, total columns, Start Time,
Duration, Protoe, Srcorce-Address, Sport, Dire, Dst
Address, Dport, State, sTos, dTos, Total Puckets,
Total Bytes, SrurceBytes, Label and also the rows
and columns in side square braces.

B. Apply k-means to separate bot and
benign data:

Apply k-means to separate bot and benign data
from the data set , it gives us the dataset size before
removing benign records total rows and columns,
and also it gives the dataset size after removing the
benign records total rows and columns by using k-
means we separate there data.

C. RunFlow Integration and graph

transformation
After clicking on run flow integration it shoes two
screens extract which we need to close ,when we
have a look at the CMD there it show as gencrated
bot graph points , on ui it shoes the number nodes ,
number of edges, number of graph created |
between-Ness centrality for all IP address or node ,
here ip address nothing but nodes, Execution time,
clustering time calculation, alpha centrality time
calculation Alpha Centrality time.

D. Features Extraction and normalization:

After clicking on it, Normalizing features process
completed & below are some sample records out
out- degree-weight in-degree-wt outdegree
Jdndegree bot be lee ac, all the values of it which
are normalized, Normalized & transformed data
saved inside normalize_data.csy file, as well as we
can have a look at the CMD there it show as
e normalizati dule 100 percent done
and shoes the record in it.

E. Run Decision Tree Algorithm

It shows Normalized data loading to decision tree
classifier, Total dataset size to build model, Model
training records size, Model testing records size,
Decision Tree Accuracy , Decision Tree Precision ,
Decision Tree Recall True -Post , False- Post
JTrue-Nega, False-Nega . we have test 20 % of
data, and training 80% of data .The Accuracy of
this model is 99%.

F. View Graph

In the final module there will be input textbox
where we can enter some number into it , so that it
generate the graph after clicking on the view
graph.it pop up another screen shoes all the ip
address and its After pleting the
whole project clicking on exit we exit from the
GUI interface.

G.EXIT
Clicking on exit button we will exit from GUI
interface, come out of project.

V. RESULTS AND DISCUSSION

In Fig[2] click on ‘Upload CTU Dataset’ button
and upload dataset, In Fig[3] uploading first
capture file and now click on ‘Open’ button to
upload .In Fig(4] dataset contains total 2824636
records and cach record contains 15 columns and
below it I am displaying some dataset records. Now
click on ‘*Apply KMEANS to scparate Bot &
Benign Data’ button to remove benign records

In Fig[5] we can see dataset size before removing
benign records and after removing benign records.
By removing some benign records we can reduce
dataset size. Now click on ‘Run Flow Ingestion &

42

and to calculate metrics such as accuracy,

cte, In Fig[10] after normalization we got

records as 3174 with 7 columns (in_¢

out_degree, weight etc.) and application split t
into train size as 2539 and test size as 635,

After building train model we apply test records
accuracy as 99%. Below screen showing
ization progressing step.

43

Fig 8: Run Decision Tree

ate o

Fig 9: Graph

Fig 10: CMD

VI CONCLUSION
Botnet allows you to combination community
flows into graphical version based on network
flow facts, In the primary phase, SOM is used to
make sure an Maximizing the benign clusters but
maintaining an acceptable compromise while
alienating the malicious bots. Additionally, the
consequences show high TPs coffee FPs for DT.
Without the F Norm, the effects of the SOM have
been made worse, i fewer bots within the
normal (bengin) cluster, and the size of the benign
cluster reduced. In addition to detecting bots that
use one of a kind protocols, BotChase is also

capable to educate and infer ML fashions for pass-
network ML education is attacked by go-
community. Graph-based totally capabilities
outperform go with the flow-based features in
BotChase. Further, BotChase outperforms an quit-
to-cease device that is predicated on float-based
capabilities and compares favorably with the
graph-based Bot detection. BotChase, in web-
primarily based surroundings, applies incremental
learning using HAT, FNorm requires longer to
converge, however the model performs extremely
nicely in its very last country, Future rescarch
consciousness on tuning the classifiers,
investigating superior ensemble gaining knowledge
of and feature engineering strategies, and
increasing FNorm to better degrees.

VII. References

[1] Misha Mehra, Jay N. Paranjape and Vinay
Joseph Ribeiro, “Improving ML Detection of loT
Botnets using Comprehensive Data and Feature
Sets"”, 2021,

[2] Abdallah Moubayed, MohammadNoor Injadat
and Abdallah Shami, “Optimized Random Forest
Model for Botnet Detection Based on DNS
Queries”, 2021,

[3] Mrutyunjaya Panda, Abd Allah A. Mousa and
Aboul Ella Hassanien, “Developing an Efficient
Feature Engineering and Machine Learning Model
for Detecting IoT-Botnet Cyber Attacks™, 2021,

[4] Vasileios A. Memos and Kostas E. Psannis,
“Al-Powered Honeypots for Enhanced loT Botnet
Detection™,2020.

[5] Sina Hojjatinia, Sajad Hamzenejadi and Hadis
Mohseni , “"Android Botnet Detection using
Convolutional Neural Networks™ 2020,

[6] Omar Y. Al-Jarrah, Omar Alhussein, Paul D.
Yoo, Sami Muhaidat, Kamal Taha and Kwangjo
Kim, “Data Randomization and Cluster-Based
Partitioning for Botnet Intrusion Detection™, 2015

[71 Duc C. le and Nur Zincir-Heywood,
“Learning From Evolving Network Data for
Dependable Botnet Detection™, 2020

[8] Afnan Alharbt and Khalid Alsubhi, “Botnet
Detection Approach Using Graph-Based Machine
Learning”, 2021

[9] S. Sriram, R. Vinayakumar, Mamoun Alazab
and Soman KP “Network Flow based loT Botnet
Attack Detection using Deep Learning”™, 2020.

[10] MohammadNoor Injadat, Abdallah Moubayed
and Abdallah Shami, “Detecting Botnet Attacks in
loT Environments: An Optimized Machine

44

Leaming Approach™, 2021

[11] Sean Miller und Curtis Busby-Earle, “The role
of ch I in botnet ", 2017,

[12] Antonia Raisne S. Araujo Cruz, Rafscl L
Gomes and Marcial P, Fernandez, “An Intelligem
M ism 10 Detect Cyby ks of Mirai Botnet
in loT Networks™, 2021,

[13] Agathe Blaise, Mathicu Bouct, Vanm Conan
and Stefino Scoct, “Botnet Fingerprinting: A
Freg y Distributi for Lightweight
Bot Detection™, 2020.

[14] Abbas Abou Daya, Mohammad A
Salabuddin, Noura Limam and Raouf Boutaba, “A
Graph-Based Machine Learning Approach for Bot
Detection™, 2019,

[15] Madhun Gurunathrao Desai and Yong Shi,
Kun Suo, “loT Bonet and Network Intrusion
D using Di lity Rede and
Supervised Machine Leanmg”, 2020,

Malicious Attacks Detection Using Machine Learning

ORIGINALITY REPORT

2 B P Ose

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

www.crowdstrike.com 1 %

internet Solirce

45

Malicious Attacks Detection Using Machine Learning

ORIGINALITY REPORT

3 e o 0 Ox

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS
PRIMARY SOURCES
- www.crowdstrike.com
Internet Source 1 %
Afnan Alharbi, Khalid Alsubhi. "Botnet 1 %
Detection Approach Using Graph-Based
Machine Learning", IEEE Access, 2021
Publication
Submitted to New Jersey Institute of <1 %
Technology
Student Paper
Jun Zhao, Xudong Liu, Qiben Yan, Bo Lij, <1 %

Minglai Shao, Hao Peng. "Multi-attributed
heterogeneous graph convolutional network
for bot detection", Information Sciences, 2020

Publication

ijsrcseit.com
I‘rlnerne[Source < 1 %
E www.coursehero.com < 1
Internet Source %
Li Yang, Dimitrios Michael Manias, Abdallah <1 5%

Shami. "PWPAE: An Ensemble Framework for

Concept Drift Adaptation in loT Data
Streams", 2021 |IEEE Global Communications
Conference (GLOBECOM), 2021

Publication

B mdpi-res.com <1 9%

Internet Source

46

