

Malicious Attacks Detection Using Machine
Learning

Submitted in partial fulfillment of the requirements for

the award of

Bachelor of Engineering Degree in Computer Science and Engineering

By

 YEMIREDDY CHAITANYA

(38110092)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

MARCH -2022

i

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of

YEMIREDDY CHAITANYA (Reg.no:38110092) who carried out the

project entitled ―Malicious Attacks Detection Using Machine Learning‖

under my supervision from JUNE 2021 to NOVEMBER 2021

Internal Guide

Dr. A. Jesudoss, M.E., Ph.D.,

Head of the Department

(Dr.S Vigneshwari & Dr.L.Lakshmanan)

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

(Ms.Yogitha) (Dr.Mathivanan)

ii

DECLARATION

I YEMIREDDY CHAITANYA here by declare that the Project Report entitled

“MALICIOUS ATTACKS DETECTION USING MACHINE LEARNING ” done by

me under the guidance of Dr.A.Jesudoss,ME.,Ph.D., is submitted in partial

fulfillment of the requirements for the award of Bachelor of Engineering in

Computer Science.

DATE:6th March 2022

PLACE:Chennai SIGNATURE OF THE CANDIDATE

iii

iv

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board Of Management of

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY for their kind

encouragement in doing this project and for completing it successfully. I am grateful to

them.

I convey my thanks to Dr.T.Sasikala M.E.,Ph.D, Dean, School of Computing,

Dr.S.Vigneshwari M.E.,Ph.D and Dr.L.Lakshmanan M.E.,Ph.D., Heads of the

Department of Computer Science and Engineering for providing me necessary support

and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my project guide

Dr.A.Jesudoss M.E.,Ph.D for her valuable guidance, suggestions and constant

encouragement paved way for the successful completion of my project.

I wish to express my thanks to all teaching and non-teaching staff members of

Department of Computer Science and Engineering who were helpful in many ways for

the completion of the project.

v

ABSTRACT

Bot detection using machine learning (ML), with network flow-level features, has

been extensively studied in the literature. However, existing flow-based

approaches typically incur a high computational overhead and do not completely

capture the network communication patterns, which can expose additional aspects

of malicious hosts. Recently, bot detection systems that leverage communication

graph analysis using ML have gained attention to overcome these limitations.

A graph-based approach is rather intuitive, as graphs are true representation of

network communications. In this paper, we propose BotChase, a two-phased

graph-based bot detection system that leverages both unsupervised and

supervised ML. The first phase prunes presumable benign hosts, while the second

phase achieves bot detection with high precision. Our prototype implementation of

BotChase detects multiple types of bots and exhibits robustness to zero-day

attacks. It also accommodates different network topologies and is suitable for

large-scale data. Compared to the state-of-the-art, BotChase outperforms an end-

to-end system that employs flow-based features and performs particularly well in

an online setting.

vi

TABLE OF CONTENTS

CHAPTER

NO

TITLE PAGE

NO

 ABSTRACT V

LIST OF FIGURES ix

LIST OF ABBREVIATIONS X

1 INTRODUCTION 1

1.1. OVERVIEW 2

1.2. OBJECTIVE 2

1.3. SCOPE 2

2 LITERATURE SURYEY 3

3 METHODOLOGY 10

3.0 EXISTING SYSTEM 10

3.1 EXISTING SYSTEM

DISADVANRAGES

10

 3.2 PROPOSED WORK 10

3..3 SUPERVISED LEARNING 11

3.3.1 DECISION TREE 11

3.4 UNSUPERVISED LEARNING 11

3.4.1 K-MEANS 11

3.5 ADVANTAGES 14

vii

TABLE OF CONTENTS

CHAPTER

NO

TITLE PAGE

NO

 3.6 SOFTWARE AND

HARDWARE

14

 3.7 SYSTEM STUDY 15

3.7.1 ECONOMICAL

FEASIBILITY

15

 3.7.2 ECHNICAL FEASIBILITY 15

3.7.3 SOCIAL FEASIBILITY 15

CHAPTER DATA FLOW

DIAGRAM

16

 3.8.1 INTRODUCTION TO UML 18

3.8.2 GOAL OF UML 18

3.9 UML DIAGRAM 18

3.9.1 USE CASE DIAGRAM 19

3.9.2 CLASS DIAGRAM 20

3.9.3 OBJECT DIAGRAM 21

3.9.4 STATE DIAGRAM 21

3.9.5 ACTIVITY DIAGRAM 23

3.9.6 SEQUENCE DIAGRAM 24

3.9.7 COLLABORATION

DIAGRAM

24

 3.9.8 COMPONENT DIAGRAM 25

viii

CHAPTER

NO

TITLE PAGE

NO

 3.9.9 DEPLOYMENT DIAGRAM 26

3.10 MODULES 26

3.10.1 ALGORITHM 28

4 RESULTS AND DISCUSSION

PERFORMANCE ANALYSIS

30

5 SUMMARY AND CONCLUSION 30

REFERENCE APPENDICES 31

A.SCREENSHOTS 33

B.SOUREC CODE 37

C.PLAGARISM REPORT 39

ix

LIST OF FIGURES

FIGURE NO NAME OF THE FIGURE PAGE NO

1 SYSTEM ARCHITECTURE 16

2

DATA FLOW DIAGRAM

24

3

USE CASE DIAGRAM

19

4

CLASS DIAGRAM

19

5

OBJECT DIAGRAM

20

6

STATE DIAGRAM

21

7

ACTIVITY DIAGRAM

23

8

SEQUENCE DIAGRAM

24

9

COLLABORATION DIAGRAM

25

10

COMPONENT DIAGRAM

25

11

DEPLOYMENT DIAGRAM

26

x

LIST OF ABBREVIATIONS

MATLAB Matrix Laboratory

PD

Pandas

NLTK

Natural Language Tool Kit
Computing

NX Networkx

TTK

Tkinter

xi

1

CHAPTER 1

INTRODUCTION

Now a days everyone is storing their information in their systems. Here comes a

problem in providing security to their systems. On other hand cyber-attacks are also

increasing randomly which can hack your personal data like photos, social media and

chats. Bot attacks increased worldwide. There are also some servers getting hacked

which contains data of some lakhs people, where hacking a server is equal to

hacking some lakhs people data.

Botnet is also a type of cyber-attack which is a collection of internet-connected

devices, where these devices are called as bot. By using this bots the attacker can

also hack a big servers. These bots all together called as bot army. Botnet can make

time-consuming tasks easier because of its army. Botnet also perform helpful tasks

people are using it for malicious works. It is also a source of many malicious

activities. The different models of botnet are Client/Server .There are many types in

botnet like centralized, client-server, decentralized and peer-to-peer models and

attacks such as DDoS, phishing, cryptojacking, snooping, bricking, Brute force and

spambots. Common Botnet actions are Email spam, Financial breach, Targeted

intrusions. A bot herder can do a collective of hijacked devices by using remote

commands. Once your machine is infected, it becomes a bot, you may not even

know. Botnet leads to Financial theft, Informational theft, Sabotage of services,

Selling access to other criminals. The 3 main components of botnet are the bots,

Botnet attacks has been increased in the recent years at the same time different

types of Botnet detection frameworks are also increased.

The hacker can access the device only when his application was in the device. Once

his application started running in the device then he can steal, change or destroy

information. The hacker can also steal money, username and passwords. The hacker

can also change your confidential data. Also install and run any application in your

system he want. All the devices which are connected to the internet can be hacked

by the hacker. The more targeted devices like desktop and laptops which runs on

Windows OS or macOS. Mobiles are next target devices as more people are using by

connecting them to the internet. Recent years connecting devices to the internet has

increased rapidly botnets also create from connected devices has become more

noted.

First the hacker will start by injecting the malware infection to your device. some

download links to the target device to hack the device. For example Trojan Horse

(Happy New Year! Click here to see magic). If the owner of the device does not know

about whether the download link is an attacker link and if he click on the link then the

hacker application will get download in the device and sit around wait for command

from the main system (hacker system). Now the hacker can access everything from

his device. In order not to get attacked by hackers he should know all the malware

links, so he can save his device from hacker. To stay away from malware links his

device should able to find the malware links or prevent the initial infection or identify

2

an existing infection. Botnet attacks are hard to detect. Preventing botnet attacks is

more difficult. Yet we can still take certain measures to prevent botnet attacks.

1.1 OVERVIEW

Cyberattacks are on the rise these days. Many systems are getting infected by

attacks to overcome these attacks, In the past, we used signature-based research.

However, as technology developed, attacks became more sophisticated and we used

k-means and decision trees to see how many bots were targeted and how many were

not. If there is an attack, we will find how many bots were attacked or detected and

we will give the number.

1.2 OBJECTIVE

A botnet is a collection of bots, agents in compromised hosts, controlled by

botmasters via command and control (C2) channels. A malevolent adversary controls

the bots through botmaster, which could be distributed across several agents that

reside within or outside the network. Hence, bots can be used for tasks ranging from

distributed denial-of-service (DDoS), to massive-scale spamming, to fraud and

identify theft. While bots thrive for different sinister purposes, they exhibit a similar

behavioral pattern when studied up-close. The intrusion kill-chain dictates the

general phases a malicious agent goes through in-order to reach and infest its target.

1.3 SCOPE

For this phase in BotChase, we evaluate four SL techniques, namely DT, LR, SVM

and FNN. We use DT with Gini instance split rule algorithm, LR without

regularization, and SVM with the Gaussian kernel and a soft margin penalty of 1.

Moreover, NN is configured to use cross entropy as an error function and 10 hidden

layers of 1000 units each. The DT classifier shows the best performance with the

small dataset, as depicted in Table IV. It successfully detects all bots in the test

dataset, with only a single FP out of the 366871 benign hosts. In contrast, all other

classifiers are lackluster and unable to recall even a single bot from the dataset. We

believe this is because all classifiers, except DT, rely on gradient-descent for

errorcorrection. This implies that every single node in the dataset will affect the end-

hypothesis function. Thus, with a dataset that is unbalanced, the hypothesis will be

biased towards the benign hosts, which is the case for LR, SVM and FNN.

3

 CHAPTER 2

LITERATURE SURVEY

2.1 Effective Botnet Detection Through Neural Networks on Convolutional

Features(Shao-Chien Chen, Yi-Ruei Chen, Wen-Guey Tzeng)

ABSTRACT: Botnet is one of the major threats on the Internet for committing

cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams,

etc. It is a challenging issue to detect modern botnets that are continuously improving

for evading detection. In this paper, we propose a machine learning based botnet

detection system that is shown to be effective in identifying P2P botnets. Our

approach extracts convolutional version of effective flow-based features, and trains a

classification model by using a feed-forward artificial neural network. The

experimental results show that the accuracy of detection using the convolutional

features is better than the ones using the traditional features. It can achieve 94.7% of

detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets.

Furthermore, our system provides an additional confidence testing for enhancing

performance of botnet detection. It further classifies the network traffic of insufficient

confidence in the neural network. The experiment shows that this stage can increase

the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.

2.2 An approach for host based botnet detection system

AUTHORS: Yulia ALEKSIEVA, Hristo VALCHANOV, Veneta ALEKSIEVA.

ABSTRACT: Most serious occurrence of modern malware is Botnet. Botnet is a

rapidly evolving problem that is still not well understood and studied. One of the main

goals for modern network security is to create adequate techniques for the detection

and eventual termination of Botnet threats. The article presents an approach for

implementing a host-based Intrusion Detection System for Botnet attack detection.

The approach is based on a variation of a genetic algorithm to detect anomalies in a

case of attacks. An implementation of the approach and experimental results are

presented.

2.3 Towards using transfer learning for Botnet Detection

AUTHORS: Prapa Rattadilok, Basil Alothman

ABSTRACT: Botnet Detection has been an active research area over the last

decades. Researchers have been working hard to develop effective techniques to

detect Botnets. From reviewing existing approaches it can be noticed that many of

them target specific Botnets. Also, many approaches try to identify any Botnet activity

by analysing network traffic. They achieve this by concatenating existing Botnet

datasets to obtain larger datasets, building predictive models using these datasets

and then employing these models to predict whether network traffic is safe or

harmful. The problem with the first approaches is that data is usually scarce and

costly to obtain. By using small amounts of data, the quality of predictive models will

always be questionable. On the other hand, the problem with the second approaches

is that it is not always correct to concatenate datasets containing network traffic from

different Botnets. Datasets can have different distributions which means they can

downgrade the predictive performance of machine learning models. Our idea is

4

instead of concatenating datasets, we propose using transfer learning approaches

tocarefully decide what data to use. Our hypothesis is ―Predictive Performance can

be improved by using transfer learning techniques across datasets containing

network traffic from different Botnets‖.

2.4 Development of an Intrusion Detection System Using a Botnet with the R

Statistical Computing System

AUTHORS: Takashi Yamanoue, Junya Murakami

ABSTRACT: Development of an intrusion detection system, which tries to detect

signs of technology of malware, is discussed. The system can detect signs of

technology of malware such as peer to peer (P2P) communication, DDoS attack,

Domain Generation Algorithm (DGA), and network scanning. The system consists of

beneficial botnet and the R statistical computing system. The beneficial botnet is a

group of Wiki servers, agent bots and analyzing bots. The script in a Wiki page of the

Wiki server controls an agent bot or an analyzing bot. An agent bot is placed between

a LAN and its gateway. It can capture every packet between hosts in the LAN and

hosts behind the gateway from the LAN. An analyzing bot can be placed anywhere in

the LAN or WAN if it can communicate with the Wiki server for controlling the

analyzing bot. The analyzing bot has R statistical computing system and it can

analyze data which is collected by agent bots.

2.5 An efficient botnet detection system for P2P botnet

AUTHORS: M. Thangapandiyan, P. M. Rubesh Anand

ABSTRACT: Peer-to-Peer (P2P) botnets are exploited by the botmasters for their

resiliency against the take down efforts. As the modern botnets are stealthier, the

traditional botnet detection approaches are not suitable for the botnet detection. In

this paper, an efficient botnet detection system is proposed for detecting the P2P

botnet. The proposed botnet detection system estimates the flow export using

NetFlow protocol. The packet flow is analyzed using three main components namely,

Exporter, Collector, and Analyzer. The exporter captures the packet and monitors the

contents of the packet. The collector captures the flow traffic and the analyzer

component initiates an automated analysis of traffic with the captured packet

information. The packet flow information is collected by virtual interface and physical

probe. The virtual interface is used for collecting the malicious traffic information

between the Virtual Machines (VMs) and the physical probe gathers malicious traffic

information between the network bridges connecting VMs. The information collected

from these techniques are analyzed for detecting the botnets in inter VM and intra

VM. Compared to the existing Dendritic Cell Algorithm (DCA), the proposed VM

based botnet detection system has minimal time consumption, increased detection

speed, and higher attack prevention ratio.

2.6 Overview of Botnet Detection Based on Machine Learning

AUTHORS: Xiaxin Dong, Jianwei Hu ,Yanpeng Cui

ABSTRACT: With the rapid development of the information industry, the applications

of Internet of things, cloud computing and artificial intelligence have greatly affected

people's life, and the network equipment has increased with a blowout type. At the

same time, more complex network environment has also led to a more serious

5

network security problem. The traditional security solution becomes inefficient in the

new situation. Therefore, it is an important task for the security industry to seek

technical progress and improve the protection detection and protection ability of the

security industry. Botnets have been one of the most important issues in many

network security problems, especially in the last one or two years, and China has

become one of the most endangered countries by botnets, thus the huge impact of

botnets in the world has caused its detection problems to reset people's attention.

This paper, based on the topic of botnet detection, focuses on the latest research

achievements of botnet detection based on machine learning technology. Firstly, it

expounds the application process of machine learning technology in the research of

network space security, introduces the structure characteristics of botnet, and then

introduces the machine learning in botnet detection. The security features of these

solutions and the commonly used machine learning algorithms are emphatically

analyzed and summarized. Finally, it summarizes the existing problems in the

existing solutions, and the future development direction and challenges of machine

learning technology in the research of network space security.

2.7 Botnet and P2P Botnet Detection Strategies: A Review

AUTHORS: Jitender Kumar , Himanshi Dhayal

ABSTRACT: Among various network attacks, botnet led attacks are considered as

the most serious threats. A botnet, i.e., the network of compromised computers is

able to perform large scale illegal activities such as Distributed Denial of Service

attacks, click fraud, bitcoin mining etc. These attacks are considered as the major

concern now-a-days. In this paper, we present a comprehensive review of botnets,

their lifecycle and types. We also discuss the peer-to-peer botnet detection

techniques' behaviors using various latest detection techniques.

2.8 Botnet Detection Using Recurrent Variational Autoencoder

AUTHORS: Jeeyung Kim, Alex Sim, Jinoh Kim, Kesheng Wu

ABSTRACT: Botnet detection is an active research topic as botnets are a source of

many malicious activities, including distributed denial-of-service (DDoS), click-fraud,

spamming, and crypto-mining attacks. However, it is getting more complicated to

identify botnets due to the continuous evolution of botnet software and families that

harness new types of devices and attack vectors. Recent studies employing machine

learning (ML) showed improved performance to detect botnets to some extent, but

they are still limited and ineffective with the lack of sequential pattern analysis, which

is a key to detect various classes of botnets. In this paper, we propose a novel botnet

detection method, built upon Recurrent Variational Autoencoder (RVAE), that

effectively captures sequential characteristics of botnet anomalies. We validate the

feasibility of the proposed method with the CTU-13 dataset that have been widely

employed for botnet detection studies, and show that our method is at least

comparable to existing techniques in terms of detection accuracy. In addition, our

experimental results show that the proposed method can detect previously unseen

botnets by utilizing sequential patterns of network traffic. We will also show how our

method can detect botnets in the streaming mode, which is the essential requirement

to perform real-time, on-line detection.

6

2.9 Sonification of Network Traffic for Detecting and Learning About Botnet Behavior

AUTHORS: Mohamed Debashi, Paul Vickers

ABSTRACT: Today's computer networks are under increasing threat from malicious

activity. Botnets (networks of remotely controlled computers, or ―bots‖) operate in

such a way that their activity superficially resembles normal network traffic which

makes their behavior hard to detect by current intrusion detection systems (IDS).

Therefore, new monitoring techniques are needed to enable network operators to

detect botnet activity quickly and in real time. Here, we show a sonification technique

using the SoNSTAR system that maps characteristics of network traffic to a real-time

soundscape enabling an operator to hear and detect botnet activity. A case study

demonstrated how using traffic log files alongside the interactive SoNSTAR system

enabled the identification of new traffic patterns characteristic of botnet behavior and

subsequently the effective targeting and real-time detection of botnet activity by a

human operator. An experiment using the 11.39 GiB ISOT botnet data set, containing

labeled botnet traffic data, compared the SoNSTAR system with three leading

machine learning-based traffic classifiers in a botnet activity detection test. SoNSTAR

demonstrated greater accuracy (99.92%), precision (97.1%), and recall (99.5%) and

much lower false positive rates (0.007%) than the other techniques. The knowledge

generated about characteristic botnet behaviors could be used in the development of

future IDSs.

2.10 Analysis of Machine Learning Algorithms for IoT Botnet

AUTHOR: Umang Garg, Vaibhav Kaushik, Anushka Panwar, Neha Gupta

ABSTRACT: The Internet of Things (IoT) gains a lot of popularity day-by-day due to

their everlasting availability and ease. As the popularity of IoT increases, it also

attracts hackers which try to take advantage of the vulnerability of IoT devices. An

Intrusion Detection System (IDS) is an intelligence-based system that can investigate

or detect the intrusion in the IoT botnet and check the state of software and hardware

executing in the network. Once the intrusion is detected, it may generate an alarm to

alert the administrator or send some alert message to the owner. In the last decade,

there are several IDSs available which can detect the intrusion. But the major

problems with the existing IDSs like accuracy rate, generation of the false alarm, and

fewer chances of detection of unknown attacks. To deal with the above problems,

some machine learning techniques have been involved by researchers. These

techniques can differentiate between the normal and abnormal behavior of the user's

data or network traffic with high accuracy. In this paper, we summarize and classify

the machine learning algorithms that can be used in IDS with their metrics,

parameters. Then, a case study is implemented with the UNSW-NB15 dataset that

has realistic network traffic with frequently used machine learning techniques. After

that, a comparison will be done and displayed by using an accuracy percentage table

and a bar chart. Finally, some challenges and future scope of the machine learning

techniques in the improvement of IDS will be discussed.

2.11 An enhancing framework for botnet detection using generative adversarial

networks

AUTHORS: Chuanlong Yin, Yuefei Zhu, Shengli Liu, Jinlong Fei, Hetong Zhang

7

ABSTRACT: The botnet, as one of the most formidable threats to cyber security, is

often used to launch large-scale attack sabotage. How to accurately identify the

botnet, especially to improve the performance of the detection model, is a key

technical issue. In this paper, we propose a framework based on generative

adversarial networks to augment botnet detection models (Bot-GAN). Moreover, we

explore the performance of the proposed framework based on flows. The

experimental results show that Bot-GAN is suitable for augmenting the original

detection model. Compared with the original detection model, the proposed approach

improves the detection performance, and decreases the false positive rate, which

provides an effective method for improving the detection performance. In addition, it

also retains the primary characteristics of the original detection model, which does

not care about the network payload information, and has the ability to detect novel

botnets and others using encryption or proprietary protocols.

2.12 A Survey on Botnet Detection Techniques

AUTHOR: Shivani Gaonkar, Nandini Fal Dessai, Jenny Costa

ABSTRACT: Due to the increased rate of internet usage, security problems have also

increased. One of the serious threats in network security are Botnets. A Botnet is

defined as a collection of various bots that Botmaster controls through the Command

and Control (C&C) channel. During recent times, different technologies and

techniques have been proposed to track the detection of botnets. This paper

summarizes different techniques to detect different botnets. General bot detection

and IoT-bot detection techniques are separately explained. UNSW-NB15 datasets

have been used in training and testing of the proposed model. A real-time IoT-Bot

detection using deep learning algorithm is proposed in this paper. Wireshark is used

to capture a package from network traffic.

2.13 Analysis of Botnet Domain Names for IoT Cybersecurity

AUTHOR: Wanting Li, Jian Jin, Jong-Hyouk Lee

ABSTRACT: Botnets are widespread nowadays with the expansion of the Internet

and commonly occur in many cyber-attacks, resulting in serious threats to network

services and users' properties. With the rapid development of the Internet of Things

(IoT) applications, the botnet can easily make use of IoT devices for larger-scale

attacks. Domain name system (DNS) is widely used by the botnet to establish the

connection between bots and their corresponding command-and-control (C&C). In

order to avoid the track of the C&C through the DNS information, some sophisticated

schemes are used by the botnet and fast-flux is a typical one. In this paper, the

activities of Rustock botnet domain names which just use the fast-flux as the

connection method between bots and C&C, are deeply analyzed from multiple

aspects. Besides, we extract 32 special features of Rustock domain named querying

traffic. Then multiple popular classifiers are adopted in order to pick the malicious

domain names out from the DNS traffic using those 32 features. The work of this

paper aims to provide guidance for future botnet detection based on real statics and

experiments.

2.14 Email Shape Analysis for Spam Botnet Detection

8

AUTHOR: Paul Sroufe, Santi Phithakkitnukoon, Ram Dantu, Joao Cangussu

ABSTRACT: Botnets have become the major sources of spamming, which generates

massive unwanted traffic on networks. An effective detection mechanism can greatly

mitigate the problem. In this paper, we present a novel botnet detection mechanism

based on the email "shape" analysis that relies on neither content nor reputation

analysis. Shape is our new way of characterizing an email by mimicking human visual

inspection. A set of email shapes are derived and then used to generate a botnet

signature. Our preliminary results show greater than 80% classification accuracy

(without considering email content or reputation analysis). This work investigates the

discriminatory power of email shape, for which we believe will be a significant

complement to other existing techniques such as a network behavior analysis.

2.15 Bot Detection via IoT Environment

AUTHOR: Im Y. Jung, Jae J. Jang, Jae-geun Moon

Abstract: Many users do not realize whether their devices become bots or not. There

are many security accidents due to malicious bots. To solve this problem, we propose

a monitor system composed of IoT devices to detect bots.

2.16 Detection Method of DNS-based Botnet Communication Using Obtained NS

Record History

AUTHOR: Katsuyoshi Iida, Yong Jin, Hikaru Ichise

ABSTRACT: To combat with botnet, early detection of the botnet communication and

fast identification of the bot-infected PCs is very important for network administrators.

However, in DNS protocol, which appears to have been used for botnet

communication recently, it is difficult to differentiate the ordinary domain name

resolution and suspicious communication. Our key idea is that the most of domain

name resolutions first obtain the corresponding NS (Name Server) record from

authoritative name servers in the Internet, whereas suspicious communication may

omit the procedures to hide their malicious activities. Based on this observation, we

propose a detection method of DNS basis botnet communication using obtained NS

record history. Our proposed method checks whether the destined name server (IP

address) of a DNS query is included in the obtained NS record history to detect the

botnet communications

2.17 Botnet detection using software defined networking

AUTHOR: Udaya Wijesinghe, Udaya Tupakula, Vijay Varadharajan

ABSTRACT: Software Defined Networking (SDN) is considered as a new approach

promising simplified network management by providing a programmable interface.

The idea of SDN is based on the separation of control plane from the data plane in

networking devices. This is achieved by having the network intelligence centralised in

what is called as SDN controller. In this paper we propose techniques for botnet

detection in networks using SDN. The SDN controller makes use of generic

templates for capturing the traffic flow information from the OpenFlow switches and

makes use of this information for detecting bots. We will show that our model can

detect a range of bots including IRC, HTTP and peer-to-peer bots.

2.18 DGA Bot Detection with Time Series Decision Trees

9

AUTHOR: Anaël Bonneton, Daniel Migault, Stephane Senecal, Nizar Kheir

ABSTRACT: This paper introduces a behavioral model for botnet detection that

leverages the Domain Name System (DNS) traffic in large Internet Service Provider

(ISP) networks. More particularly, we are interested in botnets that locate and

connect to their command and control servers thanks to Domain Generation

Algorithms (DGAs). We demonstrate that the DNS traffic generated by hosts

belonging to a DGA botnet exhibits discriminative temporal patterns. We show how to

build decision tree classifiers to recognize these patterns in very little computation

time. The main contribution of this paper is to consider whole time series to represent

the temporal behavior of hosts instead of aggregated values computed from the time

series. Our experiments are carried out on real world DNS traffic collected from a

large ISP.

2.19 An analysis of network traffic classification for botnet detection

AUTHOR: Matija Stevanovic, Jens Myrup Pedersen

ABSTRACT: Botnets represent one of the most serious threats to the Internet

security today. This paper explores how network traffic classification can be used for

accurate and efficient identification of botnet network activity at local and enterprise

networks. The paper examines the effectiveness of detecting botnet network traffic

using three methods that target protocols widely considered as the main carriers of

botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. We

propose three traffic classification methods based on capable Random Forests

classifier. The proposed methods have been evaluated through the series of

experiments using traffic traces originating from 40 different bot samples and diverse

non-malicious applications. The evaluation indicates accurate and time-efficient

classification of botnet traffic for all three protocols. The future work will be devoted to

the optimization of traffic analysis and the correlation of findings from the three

analysis methods in order to identify compromised hosts within the network.

2.20 Botnet Domain Name Detection based on machine learning

AUTHOR: Baoping Yan, Guanggang Geng, Zhiwei Yan, Jian Jin

ABSTRACT: Domain Name System (DNS) is a fundamental component of today's

Internet: it provides mappings between domain names used by people and the

corresponding IP addresses required by network protocols. However, the open and

fundamental characteristics of DNS are recently used by the botnet for the

communication between bots and C&C. In this paper, we select six kinds of special

features of botnet domain querying traffic based on the deep studies of the DNS log.

Then three popular classifiers are adopted in order to pick the malicious domains

outfrom the DNS traffic using those features.

10

 CHAPTER 3

METHODOLOGY

3.1 EXISTING SYSTEM

In existing flow-based approaches typically incur a high computational overhead and

do not completely capture the network communication patterns, which can expose

additional aspects of malicious hosts. Recently, bot detection systems that leverage

communication graph analysis using ML have gained attention to overcome these

limitations. A graph-based approach is rather intuitive, as graphs are true

representation of network communications.

3.1.1 EXISTING SYSTEM DISADVANTAGE

• Do not completely capture the network communication patterns, which can expose

additional aspects of malicious hosts.

3.2 PROPOSED WORK

In this paper, we propose BotChase, an anomaly-, graph-based bot detection

system, which is protocol agnostic, i.e., it detects bots regardless of the protocol.

BotChase employs graph-based features in a two phased ML approach, which is

robust to zero-day attacks, spatially stable, and suitable for large datasets.We

evaluate the BotChase prototype system in an online setting that recurrently trains

and tests the ML models with new data. We also leverage the Hoeffding Adaptive

Tree (HAT) classifier for incremental learning. This is crucial to account for changes

in network traffic and host behavior.

Cyberattacks are on the rise these days. Many systems are getting infected by

attacks to overcome these attacks, In the past, we used signature-based research.

However, as technology developed, attacks became more sophisticated and we used

k-means and decision trees to see how many bots were targeted and how many were

not. If there is an attack, we will find how many bots were attacked or detected and

we will give the number.

LIMITATIONS

Botnet detection has been an active area of research that has generated a

substantial body of work. Common botnet detection approaches are passive. They

assume successful intrusions and focus on identifying infected hosts (bots) or

detecting C2 communications, by analyzing system logs and network data, using

signature- or anomaly-based techniques. Signature-based techniques have

commonly been used to detect pre-computed hashes of existing malware in hosts

and/or network traffic. They are also used to isolate IRC-based bots by detecting bot-

11

like IRC nicknames and to identify C2-related DNS requests by detecting C2-like

domain names. Metadata such as regular expressions based on packet content and

target IP occurrence tuples is an example of what could be employed in a signature

and pattern detection algorithm. More generally, signature-based techniques have

been employed to identify C2 by comparison with known C2 communication patterns

extracted from observed C2 traffic, and infected hosts by comparison with static

profiles and behaviours of known bots.

In the application CTU-13 dataset is used form kaggle Upload ctu-13 dataset button

,it open the files.There we select the dataset click on open. After uploading the

dataset on screen it display the path from where we are taking dataset , dataset size

Also displays total rows and total columns, showing the Start Time, Duration, Protoc ,

SrcAddrress,Sport,Dire,DstAddress,Dport,State,sTos,dTos,TotalPackets,TotalBytes,

SrcBytes,Label and also the rows and columns in side square braces.

Apply k-means to separate bot and benign data from the data set. It gives us the

dataset size before removing benign records, i.e (total rows and columns). gives the

dataset size after removing the benign records, i.e (total rows and columns) By using

k-means we separated the Bot and Benign data.

When we have a look at the CMD there it show as generated bot graph points On UI

it shoes the number of nodes , number of edges, number of graph created , between-

Ness centrality for all IP address or node. Here ip address nothing but nodes,

Execution time, clustering time calculation, alpha centrality time calculation Alpha

Centrality time.

After clicking on it, Normalizing features process completed & below are some

sample records out out- degree-weight in-degree-wt outdegree ,indegree bot bc

lcc ac. All the values of it which are normalized, Normalized & transformed data

saved inside normalize_data. csv file, as well as we can have a look at the CMD

there it show as features normalization module 100 percent done and shoes the

record in it.

It shows Normalized data loading to decision tree classifier Total dataset size to build

model.Model training records size, Model testing records size, Decision Tree

Accuracy , Decision Tree Precision , Decision Tree Recall ,True -Pos , False-

Pos,True-Neg, False-Neg.we have test 20 % of data, and training 80% of data .

The Accuracy of this model is 99%.

3.3 SUPERVISED LEARNING

A method of teaching machine learning labeled data by hand is called supervised

learning. its already know output of the algorithm before it start working on it, example

classifying a dataset in CTU-13, here it matches the input to output, here we will train

12

the data and and tested the data , once algorithm is well trained, it is tested using the

new data when it comes to unsupervised learning the training phase is big because

the machine is only given the input,it has to figure out the output on its own, so there

is no supervisor here or there’s is no mentor over here.

3.4 UNSUPERVISED LEARNING

Unsupervised learning involves the machine learning without any guidance in the

form of unlabeled data.Here it forms as groups for example in this project like attack

and non-attack, the only difference is it Cant add the labels, it understands how the

cluster groups separate .Types of problems: Association ,clustering: separating on

based Anomaly The detection of unusual activities can be used for detecting

suspicious activity and the reinforcement of these activities is what we call

reinforcement learning now.In unsupervised learning we must find patterns in data

and keep exploring the data until it reaches the output. Observing patterns and

extracting insights in unsupervised approaches is all about figuring out how to get the

output, since the algorithm is only given input, it must find ways to gain insights from

data by finding trends and associations, mapping the known input to known outputs.

3.4.1 K-means

It’s a technique most of us do in our daily life, for example like group of people

sharing tableClustering is the process of dispersing datasets into groups consisting of

similar data points. For example: k-means clustering. Exclusive clustering is hard

clustering, where points/items belong only to one cluster.

Descion tree: (supervised)

Descion tree it can be used as both supervised and unsupervised, but in this project

we are using decision tree as supervised algorithm. It has a root that grows as a

number of different options is increased, similar to decision trees. A decision tree is a

visual representation of all possible solutions based on many conditions. and the

condition now, here we will split the dataset into different subsets will become the

input to child, the goal is produce the purest possible distribution of the labels at each

nodes

In this project we are using k-means and desicion tree algorithms for building this

projecte.

To execute the project we have to click on run , then the CMD opens which shows

the path of project where it located, after that the user interface opens, splits of 2

screens one screen contains buttons Other side it shows the executed functions

output.

CHAPTER

A. Upload CTU Dataset

B. Apply KMEANS to separate Bot & Benign Data

13

C. Run Flow Ingestion & Graph Transformation

D. Features Extraction & Normalization

E. Run Decision Tree Algorithm

F. View Graph

G. Exit

First open the application then run in the command prompt User Interface (UI) is

displayed. On UI you will have some buttons like Upload CTU Dataset, Apply

KMEANS to separate Bot & Benign Data, Run Flow Ingestion & Graph

Transformation, Features Extraction & Normalization, Run Decision Tree Algorithm,

View Graph, Exit. Click on the first button i.e Upload CTU Dataset, then some

datasets are displayed. Select one among them and click open. It gives the dataset

size like total rows, total columns and also dataset samples. Then click on the second

button i.e Apply KMEANS to separate Bot & Benign Data. It gives you the information

about dataset size before removing the benign records and after removing the benign

records. This button will apply k means algorithm to the dataset and separate as two

clusters namely bot and benign and will remove the benign records from the set. Then

click on the third button i.e Run Flow Ingestion & Graph Transformation. It gives the

information like number of nodes, number of edges and betweenness. Then click on

the the fourth button Features Extraction & Normalization. It complete the Normalizing

features process and display some sample records. Then click on the Run Decision

Tree Algorithm. It display information like Decision Tree Accuracy, Decision Tree

Precision, Decision Tree Recall, True Positive, False Positive, True Negative, False

Negative. Then you can select number of nodes to draw graph. After selecting the

nodes you can click on View Graph to display the graph. The graph displays the

cluster. Last you will find a exit button to exit from the UI. Click on the exit to close the

interface. If you want to find botnet attacks from other datasets, then you can again

upload a new dataset in the upload button and repeat the steps like applying k means,

then click Run Flow Ingestion & Graph Transformation, then feature extraction and

normalization and apply run decision tree algorithm.

14

3.5 Advantage

• It also accommodates different network topologies and is suitable for large-scale

data.

• Compared to the state-of-the-art, BotChase outperforms an end-to-end system that

employs flow-based features and performs particularly well in an online setting.

3.6 SOFTWARE AND HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

The functional requirements or the overall description documents include the product

perspective and features, operating system and operating environment, graphics

requirements, design constraints and user documentation.

The appropriation of requirements and implementation constraints gives the general

overview of the project in regards to what the areas of strength and deficit are and

how to tackle them.

• Python idel 3.7 version (or)

• Anaconda 3.7 (or)

• Jupiter (or)

• Google colab

HARDWARE REQUIREMENTS

Minimum hardware requirements are very dependent on the particular software being

developed by a given Enthought Python / Canopy / VS Code user. Applications that

need to store large arrays/objects in memory will require more RAM, whereas

applications that need to perform numerous calculations or tasks more quickly will

require a faster processor.

•Operating system: windows, linux

•Processor: minimum intel i3

• Ram

•Hard disk : minimum 250gb

15

3.7 SYSTEM STUDY

FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is

put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out. This

is to ensure that the proposed system is not a burden to the company. For feasibility

analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

• ECONOMICAL FEASIBILITY

• TECHNICAL FEASIBILITY

• SOCIAL FEASIBILITY

3.7.1 Economical Feasibility

This study is carried out to check the economic impact that the system will have on

the organization. The amount of fund that the company can pour into the research

and development of the system is limited. The expenditures must be justified. Thus

the developed system as well within the budget and this was achieved because most

of the technologies used are freely available. Only the customized products had to be

purchased.

3.7.2 Technical Feasibility

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on

the available technical resources. This will lead to high demands on the available

technical resources. This will lead to high demands being placed on the client. The

developed system must have a modest requirement, as only minimal or null changes

are required for implementing this system.

3.7.3 Social Feasibility

The aspect of study is to check the level of acceptance of the system by the

user. This includes the process of training the user to use the system efficiently. The

user must not feel threatened by the system, instead must accept it as a necessity.

The level of acceptance by the users solely depends on the methods that are

employed to educate the user about the system and to make him familiar with it. His

level of confidence must be raised so that he is also able to make some constructive

criticism, which is welcomed, as he is the final user of the system.

16

Fig 1 .SYSTEM ARCHITECTURE

3.8 DATA FLOW DIAGRAM:

1.The DFD is also called as bubble chart. It is a simple graphical formalism that can

be used to represent a system in terms of input data to the system, various

processing carried out on this data, and the output data is generated by this system.

2.The data flow diagram (DFD) is one of the most important modeling tools. It is used

to model the system components. These components are the system process, the

data used by the process, an external entity that interacts with the system and the

information flows in the system.

3. DFD shows how the information moves through the system and how it is modified

by a series of transformations. It is a graphical technique that depicts information flow

and the transformations that are applied as data moves from input to output.

4. DFD is also known as bubble chart. A DFD may be used to represent a system at

any level of abstraction. DFD may be partitioned into levels that represent increasing

information flow and functional detail.

17

User

Yes NO
Check

Fig 2 DATA FLOW DIAGRAM:

UML DIAGRAMS

Upload Student Dataset

Preprocess Dataset

Clustering the data

DBSCAN Clustering

KMean Clustering

Visualize Clusters

Display Anomalous Student ID's

End process

Model Generation

Unauthorized

user

18

3.8.1 Introduction To UML

The Unified Modeling Language (UML) is a standard language for specifying,

visualizing, constructing, and documenting the artifacts of software systems, as well

as for business modeling and other non-software systems. The UML represents a

collection of best engineering practices that have proven successful in the modeling

of large and complex systems. The UML is a very important part of developing

objects oriented software and the software development process. The UML uses

mostly graphical notations to express the design of software projects. Using the UML

helps project teams communicate, explore potential designs, and validate the

architectural design of the software.

3.8.2 Goals of UML

. The primary goals in the design of the UML were:

• Provide users with a ready-to-use, expressive visual modeling language so they

can develop and exchange meaningful models.

• Provide extensibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the OO tools market.

• Support higher-level development concepts such as collaborations, frameworks,

patterns and components.

• Integrate best practices.

Why we use UML?

As the strategic value of software increases for many companies, the industry looks

for techniques to automate the production of software and to improve quality and

reduce cost and time-to-market. These techniques include component technology,

visual programming, patterns and frameworks. Businesses also seek techniques to

manage the complexity of systems as they increase in scope and scale. In particular,

they recognize the need to solve recurring architectural problems, such as physical

distribution, concurrency, replication, security, load balancing and fault tolerance.

Additionally, the development for the World Wide Web, while making some things

simpler, has exacerbated these architectural problems. The Unified Modeling

Language (UML) was designed to respond to these needs.

3.9 UML Diagram

The underlying premise of UML is that no one diagram can capture the different

elements of a system in its entirety. Hence, UML is made up of nine diagrams that

can be used to model a system at different points of time in the software life cycle of

a system.

The nine UML diagrams are:

19

3.9.1 Use case diagram:

The use case diagram is used to identify the primary elements and processes that

form the system. The primary elements are termed as "actors" and the processes are

called "use cases." The use case diagram shows which actors interact with each use

case.

Fig 3: Use case diagram

20

3.9.2 Class diagram:

The class diagram is used to refine the use case diagram and define a detailed

design of the system. The class diagram classifies the actors defined in the use case

diagram into a set of interrelated classes. The relationship or association between the

classes can be either an "is-a" or "has-a" relationship. Each class in the class

diagram may be capable of providing certain functionalities. These functionalities

provided by the class are termed "methods" of the class. Apart from this, each class

may have certain "attributes" that uniquely identify the class.

FIG.4 CLASS DIAGRAM

21

3.9.3 Object diagram:

The object diagram is a special kind of class diagram. An object is an instance of a

class. This essentially means that an object represents the state of a class at a given

point of time while the system is running. The object diagram captures the state of

different classes in the system and their relationships or associations at a given point

of time.

FIG 5:OBJECT DIAGRAM

3.9.4 State diagram:

A state diagram, as the name suggests, represents the different states that objects in

the system undergo during their life cycle. Objects in the system change states in

response to events. In addition to this, a state diagram also captures the transition of

the object's state from an initial state to a final state in response to events affecting

the system.

22

FIG 6:STATE DIAGRAM

23

3.9.5 Activity diagram:

The process flows in the system are captured in the activity diagram. Similar to a

state diagram, an activity diagram also consists of activities, actions, transitions, initial

and final states, and guard conditions.

FIG 7:ACTIVITY DIAGRAM

24

3.9.6 Sequence diagram:

A sequence diagram represents the interaction between different objects in the

system. The important aspect of a sequence diagram is that it is time-ordered. This

means that the exact sequence of the interactions between the objects is represented

step by step. Different objects in the sequence diagram interact with each other by

passing "messages".

FIG 8:SEQUENCE DIAGRAM

3.9.7 Collaboration diagram:

A collaboration diagram groups together the interactions between different objects.

The interactions are listed as numbered interactions that help to trace the sequence

of the interactions. The collaboration diagram helps to identify all the possible

interactions that each object has with other objects.

25

FIG 9:COLLABORATION DIAGRAM

3.9.8 Component diagram:

The component diagram represents the high-level parts that make up the system.

This diagram depicts, at a high level, what components form part of the system and

how they are interrelated. A component diagram depicts the components culled after

the system has undergone the development or construction phase.

FIG 10: COMPONENT DIAGRAM

26

3.9.9 Deployment diagram:

The deployment diagram captures the configuration of the runtime elements of the

application. This diagram is by far most useful when a system is built and ready to be

deployed.

FIG 11: DEPLOYMENT DIAGRAM

3.10 Modules:

 Upload CTU Dataset

 Apply KMEANS to separate Bot & Benign Data

 Run Flow Ingestion & Graph Transformation

 Features Extraction & Normalization

 Run Decision Tree Algorithm

 Exit

A .Uploading ctu-13 datset

Upload ctu-13 dataset button ,it open the files there we select the dataset click on

open, after uploading the dataset on screen it shows the path from where we are

taking dataset , dataset size, by mentioning total rows and total columns, and

showing the StartTime, Duration, Protoc ,Srcorce-Addrress

,Sport,Dire,DstAddress,Dport,State,sTos,dTos,TotalPackets,TotalBytes,SrurceBytes,

Label and also the rows and columns in side square braces.

B. Apply k-means to separate bot and benign data:

Apply k-means to separate bot and benign data from the data set , it gives us the

dataset size before removing benign records total rows and columns, and also it

gives the dataset size after removing the benign records total rows and columns by

using k-means we separate there data.

27

C. RunFlow Integration and graph transformation

After clicking on run flow integration it shoes two screens extract which we need to

close ,when we have a look at the CMD there it show as generated bot graph points

, on ui it shoes the number nodes , number of edges, number of graph created ,

between-Ness centrality for all IP address or node , here ip address nothing but

nodes, Execution time, clustering time calculation, alpha centrality time calculation

Alpha Centrality time.

D. Features Extraction and normalization:

After clicking on it, Normalizing features process completed & below are some

sample records out out- degree-weight in-degree-wt outdegree ,indegree bot bc

lcc ac, all the values of it which are normalized, Normalized & transformed data

saved inside normalize_data.csv file, as well as we can have a look at the CMD there

it show as features normalization module 100 percent done and shoes the record in

it.

E. Run Decision Tree Algorithm

It shows Normalized data loading to decision tree classifier, Total dataset size to build

model, Model training records size, Model testing records size, Decision Tree

Accuracy , Decision Tree Precision ,Decision Tree Recall ,True -Positive ,False-

Positive ,True-Negative , False-Negative . we have test 20 % of data, and training

80% of data .The Accuracy of this model is 99%.

F. View Graph

In the final module there will be input textbox where we can enter some number into

it , so that it generate the graph after clicking on the view graph.it pop up another

screen shoes all the ip address and its connections. After completing the whole

project clicking on exit we exit from the GUI interface.

G. EXIT

Clicking on exit button we will exit from GUI interface.come out of project.

28

3.10.1 Algorithm:

k-Means, Density-Based Spatial Clustering (DBScan) and SOM, Decision Tree,

Feed-forward Neural Network (FNN), Logistic Regression (LR) and Support Vector

Machine (SVM).

• k-Means—The k-Means clustering algorithm attempts to find an optimal assignment

of nodes to k pre-determined clusters, such that the sum of the pairwise distance

from the cluster mean is minimized. k-Means is static, it results in the same cluster

composition for a given dataset across different runs of the algorithm, with the same

number of clusters and iterations. Assume k is set to the cardinality of the label set.

Idealistically, there should be a clean assignment of hosts to corresponding clusters.

However, in reality, some benign hosts exhibit an outlier behavior. For example,

network nodes that host webservers and public APIs will depict a huge amount of

data and connections, thus impacting ID, IDW, OD and ODW. Therefore, depending

on the dataset, altering k may adversely affect clustering performance.

• Density-Based Spatial Clustering (DBScan)—Unlike kMeans, DBScan does not

require the parameter k, the predetermined number of clusters. In contrast, it

computes the clusters and assignment of nodes according to a rigid set of density-

based rules. DBScan requires a pair of parameters: (i) p, the minimum number of

points required to be assigned as core points, and (ii) e, the minimum distance

required to detect points as neighbors. DBScan classifies points as core, edge or

noise, where core points must have p points in their neighborhood with a distance

less than e. Otherwise, if the point is reachable via e distance from at least one of the

core points, it is considered an edge. The remaining points are considered noise and

are not clustered. That is, points are not forcefully assigned to clusters as some

points may just be noise. Therefore, DBScan is capable of detecting non-linearly

separable clusters.

• Self-Organizing Map (SOM)—A SOM is a special purpose artificial neural network

that applies competitive learning instead of error-correction. It is frequently used for

dimensionality reduction and clusters similar data. However, the notion of similarity in

SOM is looser than that of k-Means and DBScan. In SOM, neurons are pushed

towards the data points for a certain number of iterations. It uses the best matching

unit to determine the winner neuron and updates its weights accordingly.

Furthermore, SOMs also apply a learning radius that affects all the other neurons,

when a close-by neuron is updated. The number of neurons also play an important

role in clustering. Higher number of neurons result in dispersion of nodes away from

a single cluster. Importantly, the same logic applies to k-Means, hence the classifier

with the best assignment must be selected, according to the objectives outlined in

this phase. 2) Phase 2: Phase 1 separates the dataset between nodes that are inside

and outside the benign cluster. All the nodes, ideally small, that reside outside the

benign cluster are input to Phase 2 for further classification. Optimally, all the bots

29

should be outside the benign cluster, regardless of whether or not they are co-located

in the same cluster. Depending on the amount of hosts outside the benign cluster, the

supervised learning (SL) classifiers used in this phase will exhibit different results.

The primary objective in this phase is to maximize recall. Recall is a measure of how

many bots are recalled correctly i.e., do not go unnoticed. It is proportional to the

number of true positives (TPs) and inversely proportional to false negatives (FNs).

Various SL classifiers can be deployed in this phase to achieve this objective, such

as logistic regression (LR), support vector machine (SVM), feed-forward neural

network (FNN) and decision tree (DT).

• Logistic Regression (LR) and Support Vector Machine (SVM)—LR focuses on

binary classification of its input, based on a sigmoid function. Input features are

coupled with corresponding weights and fed into the function. Once a threshold p is

defined, usually 0.5 for the logistic function, it establishes the differentiator between

positive and negative points. Unlike LR, SVM is a non-probabilistic model for

classification. It is not restricted to linearly separable datasets. There are various

methods of computing SVM, including the renowned gradient-descent algorithm.

• Feed-forward Neural Network (FNN)—FNNs are artificial neural networks that do

not contain any cyclic dependencies. For a given feed-forward network with multiple

layers, a feature vector is dispersed into the input layer, fed to the hidden layer of the

network, and then to its output layer. While the input layer is constrained by the

number of features exposed, the hidden and output layers are not. Every neuron may

rely on a separate activation function that shapes the output. Popular activation

functions for FNNs include identity, sigmoid, ReLU and binary step, among others.

FNNs and the previously mentioned SL techniques are online classifiers. An online

classifier is capable of incremental learning, as the weights associated with the

deployed perceptrons are not static. This makes FNNs an attractive candidate for

production-grade deployment.

• Decision Tree (DT)—DTs rely heavily on information entropy (IE) and gain to

conjure its conditional routing procedure. Generally, IE states how many bits are

needed to represent certain stochastic information in the dataset. By using DT,

information gain is maximized from the observed data and the taken path. After

training a DT, newly observed data points can be predicted. However, unlike all the

other classifiers, DTs are not online. That is, optimally retraining a DT must be done

from scratch. Recall the objective from Phase 1 i.e., minimize hosts outside the

benign cluster (HOB), while maximizing bots outside the benign cluster (BOB). This

results in a minimal training dataset for Phase 2. Also, it is expected that the resultant

training dataset from Phase 1 would be unbalanced, with a bias towards benign

hosts. This may prove problematic for LR, SVM and FNN in achieving high recall

rates.

30

CHAPTER 4

RESULTS AND DISCUSSION, PERFORMANCE ANALYSIS

The aim of this paper is to develop a user interface which can detect the Botnet

records based on graph. This application will detect Botnet records in the internet

connected system by using Machine learning algorithms and also detect the newly

attacks based on the graph which is plotted using the k means algorithm. Where as k

means is an unsupervised learning algorithm it will detect the newly created attacks

by the distance formula

The internet connected device owner can provide security to their systems by our

User Interface.

CHAPTER 5

SUMMARY AND CONCLUSIONS

In this paper, we propose Botnet detection, a system that is capable of efficiently

transforming network flows into an aggregated graph model. It leverages two ML

phases to differentiate bots from benign hosts. Botnet allows you to combination

community flows into graphical version based on network flow facts. In the primary

phase, SOM is used to make sure an Maximizing the benign clusters but maintaining

an acceptable compromise while alienating the malicious bots. Additionally, the

consequences show high TPs ,coffee FPs for DT. Without the F Norm, the effects of

the SOM have been made worse, i.E., fewer bots within the normal (bengin) cluster,

and the size of the benign cluster reduced. In addition to detecting bots that use one

of a kind protocols, BotChase is also capable to educate and infer ML fashions for

pass-network ML education is attacked by go-community. Graph-based totally

capabilities outperform go with the flow-based features in BotChase. Further,

BotChase outperforms an quit-to-cease device that is predicated on float-based

capabilities and compares favorably with the graph-based Bot detection. BotChase,

in web-primarily based surroundings, applies incremental learning using HAT. FNorm

requires longer to converge, however the model performs extremely nicely in its very

last country. Future research consciousness on tuning the classifiers, investigating

superior ensemble gaining knowledge of and feature engineering strategies, and

increasing FNorm to better degrees.

31

REFERENCES

Textbooks:

1.Programming Python, Mark Lutz

2.Head First Python, Paul Barry

3. Core Python Programming, R. Nageswara Rao

4. Learning with Python, Allen B. Downey

Journals:

[1]. Jay N. Paranjape ., Misha Mehra ., Jay N. Paranjape ., Vinay Joseph Ribeiro.,

― Improving ML Detection of IoT Botnets using Comprehensive Data and

Feature Sets ‖., 2021.

[2]. Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., ― Optimized

Random Forest Model for Botnet Detection Based on DNS Queries ‖ ., 2021.

[3]. Mrutyunjaya Panda ., Abd Allah A. Mousa, Aboul Ella Hassanien ., ― Developing

an Efficient Feature Engineering and Machine Learning Model for Detecting IoT-

Botnet Cyber Attacks ‖ ., 2021.

[4]. Kostas E. Psannis ., Vasileios A. Memos ., ― AI- Powered Honeypots for

Enhanced – IoT Botnet Detection ― .,2020.

5] Sina Hojjatinia ., Hadis Mohseni ., Sajad Hamzenejadi ., ― Android Botnet

Detection using Convolutional Neural Networks ‖, 2020.

[6]. Paul D. Yoo, Sami Muhaidat, Omar Y. Al-Jarrah ., Omar Alhussein ., Kwangjo

Kim., , Kamal Taha ., ― Data Randomization and Cluster- Based Partitioning for

Botnet Intrusion Detection ‖ ., 2015.

 [7]. Duc C. Le ., Nur Zincir-Heywood ., ― Learning From Evolving Network Data for

Dependable Botnet Detection ‖., 2020.

[8]. Khalid Alsubhi., Afnan Alharbi ., Khalid Alsubhi., ― Botnet Detection Approach

Using Graph-Based Machine Learning ‖., 2021.

32

[9] S. Sriram ., Mamoun Alazab ., R. Vinayakumar, .,Soman KP ― Network Flow

based IoT Botnet Attack Detection using Deep Learning ‖ ., 2020.

[10] Abdallah Moubayed ., MohammadNoor Injadat ., Abdallah Shami ., ― Detecting

Botnet Attacks in IoT Environments: An Optimized Machine Learning Approach

‖ ., 2021.

[11] . Sean Miller ., Curtis Busby-Earle ., ― The role of machine learning in botnet

detection ‖ ., 2017.

[12] Rafael L. Gomes ., Antonia Raiane S. Araujo Cruz ., Marcial P. Fernandez ., ―

An Intelligent Mechanism to Detect Cyberattack of Mirai Botnet in IoT Networks ‖ .,

2021.

[13] Stefano Secci ., Mathieu Bouet ., Agathe Blaise ., Vania Conan ., Stefano Secci

., ― Botnet Fingerprinting: A Frequency Distributions Scheme for Lightweight Bot

Detection ‖ ., 2020.

[14] Raouf Boutaba ., Mohammad A . Salahuddin ., Abbas Abou Daya ., Noura

Limam ., ― A Graph-Based Machine Learning Approach for Bot- Detection ‖ .,

2019.

[15] Madhuri Gurunathrao Desai ., Kun Suo ., Yong Shi ., ― IoT Bonet and Network

Intrusion Detection using Dimensionality Reduction and Supervised Machine

Learning ‖ ., 2020.

33

SCREENSHOTS:

Fig 2: GUI screen

Fig 3:CTU-13 dataset

34

Fig 4: K-means

Fig 5: RunFlow Integration and graph transformation

35

Fig 6: CMD graph build

Fig 7: Features Extraction and normalization

36

Fig 8: Run Decision Tree

 Fig 9: Graph

37

Source code:

font = ('times', 16, 'bold')

title = Label(main, text='Detection of bot Using Graph-Based Machine

Learning')

title.config(bg='LightGoldenrod1', fg='medium orchid')

title.config(font=font)

title.config(height=3, width=120)

title.place(x=0,y=5)

font1 = ('times', 12, 'bold')

text=Text(main,height=30,width=100)

scroll=Scrollbar(text)

text.configure(yscrollcommand=scroll.set)

text.place(x=400,y=100)

text.config(font=font1)

font1 = ('times', 12, 'bold')

uploadButton = Button(main, text="Upload Dataset", command=upload)

uploadButton.place(x=50,y=100)

uploadButton.config(font=font1)

kmeansButton = Button(main, text="Apply KMEANS to Separate Bot & Benign

Data", command=kmeans)

kmeansButton.place(x=50,y=150)

kmeansButton.config(font=font1)

transformButton = Button(main, text="Run Flow Ingestion & Graph

Transformation", command=graphTransform)

transformButton.place(x=50,y=200)

transformButton.config(font=font1)

normalizationButton = Button(main, text="Features Extraction &

Normalization", command=featuresNormalization)

normalizationButton.place(x=50,y=250)

38

normalizationButton.config(font=font1)

dtButton = Button(main, text="Run Decision Tree Algorithm",

command=decisionTree)

dtButton.place(x=50,y=300)

dtButton.config(font=font1)

graphselection_list = []

graphselection_list.append(10)

graphselection_list.append(20)

graphselection_list.append(30)

graphselection_list.append(40)

graphselection_list.append(50)

graphselection_list.append(60)

graphselection_list.append(70)

graphselection_list.append(80)

graphselection_list.append(90)

graphselection_list.append(100)

graphlist =

ttk.Combobox(main,values=graphselection_list,postcommand=lambda:

graphlist.configure(values=graphselection_list))

graphlist.place(x=50,y=350)

graphlist.current(0)

graphlist.config(font=font1)

graphButton = Button(main, text="View Graph", command=viewGraph)

graphButton.place(x=240,y=350)

graphButton.config(font=font1)

exitButton = Button(main, text="Exit", command=close)

exitButton.place(x=50,y=400)

exitButton.config(font=font1)

main.config(bg='OliveDrab2')

main.mainloop()

39

C. PLAGARISM REPORT

40

41

42

43

44

45

46

