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ABSTRACT

The combination of computer vision and natural language processing in Artificial
intelligence has sparked a lot of interest in research in recent years, thanks to the
advent of deep learning. The context of a photograph is automatically described in
English. When a picture is captioned, the computer learns to interpret the visual
information of the image using one or more phrases. The ability to analyze the state,
properties, and relationship between these objects is required for the meaningful
description generation process of high-level picture semantics. Using CNN -LSTM
architectural models on the captioning of a graphical image, we hope to detect things
and inform people via text messages in this research. To correctly identify the items,
the input image is first reduced to grayscale and then processed by a Convolution
Neural Network (CNN). The COCO Dataset 2017 was used. The proposed method
for blind individuals is intended to be expanded to include persons with vision loss to
speech messages to help them reach their full potential and to track their intellect. In
this project, we follow a variety of important concepts of image captioning and its
standard processes, as this work develops a generative CNN-LSTM model that
outperforms human baselines
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CHAPTER 1

INTRODUCTION

1.1 Introduction
Every day, we are bombarded with photos in our surroundings, on social
media, and in the news. Only humans are capable of recognizing photos. We
humans can recognize photographs without their assigned captions, but
machines require images to be taught first. The encoder-decoder architecture
of Image Caption Generator models uses input vectors to generate valid and
acceptable captions. This paradigm connects the worlds of natural language
processing and computer vision. It's a job of recognizing and evaluating the
image's context before describing everything in a natural language like
English.

Our approach is based on two basic models: CNN (Convolutional Neural
Network) and LSTM (Long Short-Term Memory). CNN is utilized as an
encoder in the derived application to extract features from the snapshot or
image, and LSTM is used as a decoder to organize the words and generate
captions. Image captioning can help with a variety of things, such as assisting
the visionless with text-to-speech through real-time input about the scenario
over a camera feed, and increasing social medical leisure by restructuring
captions for photos in social feeds as well as spoken messages.

Assisting children in recognizing chemicals is a step toward learning the
language. Captions for every photograph on the internet can result in faster
and more accurate authentic photograph exploration and indexing. Image
captioning is used in a variety of sectors, including biology, business, the
internet, and in applications such as self-driving cars wherein it could describe
the scene around the car, and CCTV cameras where the alarms could be
raised if any malicious activity is observed. The main purpose of this research
article is to gain a basic understanding of deep learning methodologies.
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1.1.2 Objective

1. The project aims to work on one of the ways to context a photograph in
simple English sentences using Deep Learning (DL).

2. The need to use CNN and LSTM instead of working with RNN

1.1.3 Scope
Our project extends and is being used in any large-scale business industry
and also small-scale business industry.

1.2 Statement Problem

In our world, information is considered valuable and some humans face a
serious problem regarding visualizing an image. We hence dig into this matter,
considering blindness as a major factor, and generate a sentence by allowing
users to upload or scan a visual image.

Advantage

● Recommendations in Editing Applications
● Assistance for visually impaired
● Social Media posts
● Self-Driving cars
● Robotics
● Easy to implement and connect to new data sources

Disadvantages

● Do not make intuitive feature observations on objects or actions in the
image

● Nor do they give an end-to-end mature general model to solve this
problem 
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CHAPTER 2

LITERATURE SURVEY

Literature survey is the most important step in the software development
process. Before developing the tool, it is necessary to determine the time
factor, economy, and company strength. Once these things are satisfied, then
the next step is to determine which operating system and language can be
used for developing the tool. Once the programmers start building the tool,
they programmers need a lot of external support. This support can be
obtained from senior programmers, books, or websites. Before building the
system, the above considerations are taken into account for developing the
proposed system.

The major part of the project development sector considers and fully surveys
all the required needs for developing the project. For every project, a
Literature survey is the most important sector in the software development
process. Before developing the tools and the associated designing it is
necessary to determine and survey the time factor, resource requirement,
manpower, economy, and company strength.

To improve and tailor the user experience on its products, photos use image
classification. Intraclass variation, occlusion, deformation, size variation,
perspective variation, and lighting are all frequent issues in computer vision
that are represented by the picture classification problem.

Methods that work well for picture classification are likely to work well for other
important computer vision tasks like detection, localization, and segmentation
as well.

Image captioning is a great illustration of this. Given an image, the image
captioning challenge is to generate a sentence description of the image. The
picture captioning problem is comparable to the image classification problem
in that it expects more detail and has a bigger universe of possibilities. Image
classification is used as a black box system in modern picture captioning
systems, therefore greater image classification leads to better captioned.

The image captioning problem is intriguing in and of itself because it brings
together two significant AI fields: computer vision and natural language
processing. An image captioning system demonstrates that it understands
both image semantics and natural language.
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Once these things are satisfied and fully surveyed, then the next step is to
determine about the software specifications in the respective system such as
what type of operating system the project would require, and what all the
necessary software is needed to proceed with the next step such as
developing the tools, and the associated operations.

To construct an image sentence, image classification is a key stage in the
object recognition and picture analysis process. The final output of the image
categorization phase might be a statement.

To date, a variety of image captioning techniques have been presented.
Several studies have been carried out in attempt to determine the best image
captioning technique. It's difficult to pick one approach as the finest of them all
because the results and accuracy are dependent on a variety of
circumstances.

In order to achieve the most accurate results, traditional approaches have
been constantly modified as well as new image captioning techniques
invented during the previous few decades.

Each caption generator technique has its own set of benefits and drawbacks.
The focus of the research today is on combining the desired qualities of
various techniques in order to boost efficiency.

Many high-level tasks, such as image classification, object detection, and,
more recently, semantic segmentation, have recently been proven to obtain
outstanding results using convolutional neural networks with many layers. A
two-stage technique is frequently used, especially for semantic segmentation.
Convolutional networks are trained in this way to offer good local pixel-wise
data for the second stage, which is often a more global graphical analysis
model.

We will use Long short-term memory (LSTM), which is a subset of RNNs, to
tackle the problem of Vanishing Gradient. The main goal of LSTM is to solve
the problem of Vanishing Gradients. The unique feature of LSTM is that it can
keep data values for long periods, allowing it to address the vanishing gradient
problem.
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When compared to applying RNN, the results revealed that using a mixture of
LSTM generated better outcomes.

CNNs employ multilayer convolution to accomplish feature engineering and
integrate these features internally, unlike traditional image recognition
algorithms. It also employs the pooling and fully connected (FC) layers, as
well as SoftMax.
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CHAPTER 3

AIM AND SCOPE OF PRESENT INVESTIGATION

3.1 Aim
Development of automatically describing an image with more than natural
language sentences which leads to faster information transfer.

3.2 Scope

The application of image captioning in deep learning and securing to become
common computing power is one of the main factors that led to techniques for
analysis of new and diverse digital data spreading information and response
toward users for quick understanding of information with just an image.

3.3 System Requirements

To be used efficiently, all computer software needs certain hardware
components or other software resourced to be present on a computer. These
prerequisites are known as computer system requirements and are often used
as guidelines as opposed to absolute rules. Most software defines two sets of
system requirements. Minimum and recommended. With the increasing
demand for higher processing power and resources in newer versions of
software, system requirements tend to increase over time. Industry analysts
suggest that this trend plays a bigger part in driving upgrades to exist
computer systems than technological advancements.
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CHAPTER 4

PROJECT IMPLEMENTATION, ALGORITHMS, AND
METHODOLOGY

4.1 Introduction

This project is loaded with CNN and LSTM which act as the platform to
generate the sentences from a simple image. This can be worked on all
applications.

4.2    Hardware Requirements

• System: i3 Processor
• Hard Disk: 500 GB.
• Monitor: 15’’LED
• Input Devices: Keyboard, Mouse
• Ram: 4GB.

4.3    Software Requirements

• Platform: Google Colab
• Coding Language:  Python

4.4   Working Explanation

1. A user uploads an image that they want to generate a caption for.
2. A gray-scale image is processed through CNN to identify the objects.
3. A gray-scale image is processed through CNN to identify the objects.
4. CNN scans images left-right, and top-bottom, and extracts important

image features.
5. By applying various layers like Convolutional, Pooling, Fully Connected,

and thus using activation function, we successfully extracted features of
every image.

6. It is then converted to LSTM.
7. Using the LSTM layer, we try to predict what the next word could be.
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8. Then the application proceeds to generate a sentence describing the
image

4.5 Algorithms
• Convolutional Neural Network
• Long Short-Term Memory

4.6 Overview on CNN

Convolutional Neural Network (CNN) is a type of deep learning model for
processing data that has a grid pattern, such as images.

● deep-learning CNN models to train and test, each input image will pass
through a series of convolution layers with filters (Kernals), Pooling, fully
connected layers (FC), and apply Softmax function to classify an object
with probabilistic values between 0 and 1.

● CNN's have unique layers called convolutional layers which separate
them from RNNs and other neural networks.

● Within a convolutional layer, the input is transformed before being
passed to the next layer. A CNN transforms the data by using filters.

4.6.1    CNN

Some advantages of CNN are:
● It works well for both supervised and unsupervised learning.
● Easy to understand and fast to implement.
● It has the highest accuracy among all algorithms that predicts images.
● Little dependence on pre-processing, decreasing the need for human

effort to develop its functionalities.
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4.7 Overview of LSTM

LSTM networks are a type of recurrent neural network capable of learning
order dependence in sequence prediction problems​ This is a behavior
required in complex problem domains like machine translation, speech
recognition, and more.
LSTMs are a complex area of deep learning. This is a behavior required in
complex problem domains like machine translation, speech recognition, and
more. LSTMs are a complex area of deep learning

4.7.1    LSTM

Some advantages of LSTM are:
● Provides us with a large range of parameters such as learning rates,

and input and output biases.
● The complexity to update each weight is reduced to O (1) with LSTMs.

4.8 CNN - LSTM Architecture Model

The CNN LSTM architecture involves using Convolutional Neural Network
(CNN) layers for feature extraction on input data combined with LSTMs to
support sequence prediction.
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CNN-LSTMs were developed for visual time series prediction problems and
the application of generating textual descriptions from sequence of image
(e.g., videos) Specifically, the problem of

● Activity Recognition: Generating a textual description of activity
demonstrated in a sequence of images.

● Image Description: Generating a textual description of a single image.
● Video Description: Generating a textual description of a sequence of

images.

This architecture was originally referred to as a Long-term Recurrent
Convolutional Network (LRCN) model, although we will use the more generic
name “CNN LSTM”

● CNN is used for extracting features from the image. We will use the
pre-trained model Xception.

● LSTM will use the information from CNN to help generate a description
of the image.

4.8.1    CNN-LSTM model
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4.9 Methodology

● Import Libraries
● Upload COCO (Common Objects and Contexts) Dataset 2017. (Data

Preprocessing)
● Apply CNN to identify the objects in the image.
● Preprocess and tokenize the captions.
● Use LSTM to predict the next word of the sentence.
● Make a Data Generator
● View Images with caption.

4.9.1    System Architecture
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4.9.2    Workflow Diagram
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results

The result of this program is going to be a user being allowed to generate a
caption for a visual image using Deep Learning, NLP, and Computer Vision.

5.1.1 Representation of What Image Captioning Is

5.2 Discussion

The Dataset that we used for our research is called "COCO Dataset 2017"
and is available online. The data was pre-processed to make it suitable for
future analysis and work. It consists of 12 main sorts of categories, each
with 80 potential sub-categories.

Each subcategory has a collection of photographs as well as five captions
for each one. The system performance was evaluated using the general
confusion matrix. All of the models' results are listed here, along with their
projections. Over the course of 30 iterations, a total of 130 iterations were
completed.
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CHAPTER 6

IMPLEMENTED SCREENSHOTS

6.1 Pip install

6.2 Load dataset1 & unzip
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6.3 Load dataset 2 & unzip

6.4 Install libraires
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6.5 Import Libraries

6.6 Import Libraries
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6.7 Find Categories

6.8 Find Sub-Categories
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6.9 Find no of images in sub-categories

6.10 Load random images
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6.11 Load images with segmented objects

6.12 Load images with segmented objects inside them

28



6.13 Load images with keypoints objects

6.14 Result for “Load images with keypoints objects”
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6.15 Load images with respective captions

6.16 Output 1 for “Load images with respective captions”
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6.17 Output 2 for “Load images with respective captions”

6.18 Prepare dataset
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6.19 Code to prepare dataset

6.20 Preprocess and tokenize the captions
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6.21 Preprocess and tokenize the captions

6.22 Explaining data generator
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6.23 Making data generator

6.24 Making data generator
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6.25 Train our model

6.26 Train our model (i.e., insert input path)
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6.27  Train our model
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6.28  Output for image input 1
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6.29 Output for image input 2
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6.30 Output for image input 3
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6.31 Output for image input 4
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6.32 Output for image input 5
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6.33  Output for image input 6
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CHAPTER 7

SUMMARY AND CONCLUSION

7.1    Summary

We combined all components of the image caption generation problem in this
overview, addressed the model framework proposed in recent years to handle the
description task, concentrated on the algorithmic essence of various attention
methods, and summarized how the attention mechanism is implemented. The huge
datasets and evaluation criteria that are regularly utilized in practice are summarized.
Despite the fact that image captioning can be used for image retrieval [92], video
caption [93, 94], and video movement [95], and a wide range of image caption
systems are currently available, experimental results suggest that this task still
requires higher performance systems and improvement.

7.2 Conclusion

The CNN-LSTM model was created to automatically generate captions for the
input images. This concept can be used in a wide range of situations. We
learned about the CNN model, and LSTM models, and how to overcome
previous limitations in the field of graphical image captioning by building a
CNN-LSTM model capable of scanning and extracting information from any
input image and transforming it into a single line sentence in natural language
English.

The algorithm attention and how the attention mechanism is used were the
main topics of discussion. I was able to successfully create a model that is a
major improvement above the earlier image caption generator.
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APPENDIX

SOURCE CODE:

!pip install CocoDataset==0.1.2

!wget

http://images.cocodataset.org/annotations/annotations_trainval2017.zip

!unzip /content/annotations_trainval2017.zip

!wget http://images.cocodataset.org/zips/train2017.zip

!unzip /content/train2017.zip

!wget http://images.cocodataset.org/zips/val2017.zip

!unzip /content/val2017.zip

!pip install pycocotools

from pycocotools.coco import COCO # COCO python library

import numpy as np

import skimage.io as io

import matplotlib.pyplot as plt

import pylab

import random

import string

import cv2

import os

from pickle import dump, load

import json

import nltk

nltk.download("stopwords")

from nltk.corpus import stopwords

import tensorflow as tf

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.layers import Embedding, LSTM, Dense,

Bidirectional, Input, Dropout, Attention

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.models import Sequential

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.applications.xception import Xception,

preprocess_input

from tensorflow.keras.preprocessing.image import load_img, img_to_array

from tensorflow.keras.utils import to_categorical

from keras.layers.merge import add

from tensorflow.keras.models import Model, load_model

from tqdm.notebook import tqdm
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pylab.rcParams['figure.figsize'] = (8.0, 10.0)

coco=COCO("../content/annotations/instances_train2017.json")

cats = coco.loadCats(coco.getCatIds())

maincategories = list(set([cat['supercategory'] for cat in cats]))

print("Number of main categories: ", len(maincategories))

print("List of main categories: ", maincategories)

subcategories = [cat['name'] for cat in cats]

print("Number of sub categories: ", len(subcategories))

print("List of sub categories: ", subcategories)

catIds = coco.getCatIds(catNms=subcategories)

subcategories_Ids = dict()

for i in range(0,len(subcategories)):

subcategories_Ids[subcategories[i]] = catIds[i]

print("Sub categories with IDs :",subcategories_Ids)

subcategories_imageIds = dict()

for i in range(0,len(catIds)):

imgIds = coco.getImgIds(catIds=catIds[i])

img = []

for j in imgIds:

img.append(j)

subcategories_imageIds[subcategories[i]] = img

print("Sub categories with Image IDs :",len(subcategories_imageIds))

length_dict = {key: len(value) for key, value in

subcategories_imageIds.items()}

print("Total images in each sub categories: ", length_dict)

train_cats = subcategories_imageIds['bicycle'] +

subcategories_imageIds['airplane']

imgIdss = coco.getImgIds(imgIds = train_cats)

print("Total Images: ", len(imgIdss))

fig = plt.gcf()

fig.set_size_inches(16, 16)

next_pix = imgIdss

random.shuffle(next_pix)

for i, img_path in enumerate(next_pix[0:12]):

sp = plt.subplot(4, 4, i + 1)

sp.axis('Off')
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img = coco.loadImgs(img_path)[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

plt.show()

fig = plt.gcf()

fig.set_size_inches(16, 16)

for i, img_path in enumerate(next_pix[0:12]):

sp = plt.subplot(4, 4, i + 1)

sp.axis('Off')

img = coco.loadImgs(img_path)[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds,

iscrowd=None)

anns = coco.loadAnns(annIds)

# print(anns)

coco.showAnns(anns)

plt.show()

annFile="../content/annotations/person_keypoints_train2017.json"

coco_kps=COCO(annFile)

fig = plt.gcf()

fig.set_size_inches(16, 16)

for i, img_path in enumerate(next_pix[0:12]):

sp = plt.subplot(4, 4, i + 1)

sp.axis('Off')

img = coco.loadImgs(img_path)[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

annIds = coco_kps.getAnnIds(imgIds=img['id'], catIds=catIds,

iscrowd=None)

anns = coco_kps.loadAnns(annIds)

coco_kps.showAnns(anns)

plt.show()
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annFile = "../content/annotations/captions_train2017.json"

coco_caps=COCO(annFile)

img = coco.loadImgs(next_pix[0])[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

annIds = coco_caps.getAnnIds(imgIds=img['id']);

anns = coco_caps.loadAnns(annIds)

coco_caps.showAnns(anns)

plt.show()

img = coco.loadImgs(next_pix[1])[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

annIds = coco_caps.getAnnIds(imgIds=img['id']);

anns = coco_caps.loadAnns(annIds)

coco_caps.showAnns(anns)

plt.show()

img = coco.loadImgs(next_pix[10])[0]

I = io.imread(img['coco_url'])

plt.imshow(I)

annIds = coco_caps.getAnnIds(imgIds=img['id']);

anns = coco_caps.loadAnns(annIds)

coco_caps.showAnns(anns)

plt.show()

print("Total images for training: ", len(imgIdss))

dataset = dict()

imgcaptions = []

for imgid in imgIdss:

img = coco.loadImgs(imgid)[0]

annIds = coco_caps.getAnnIds(imgIds=img['id']);

anns = coco_caps.loadAnns(annIds)

imgcaptions = []

for cap in anns:

# Remove punctuation

cap = cap['caption'].translate(str.maketrans('', '',

string.punctuation))

# Replace - to blank

cap = cap.replace("-"," ")

# Split string into word list and Convert each word into lower

case

cap = cap.split()

cap = [word.lower() for word in cap]
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# join word list into sentence and <start> and <end> tag to

each sentence which helps

# LSTM encoder-decoder model while training.

cap = '<start> ' + " ".join(cap) + ' <end>'

imgcaptions.append(cap)

dataset[img['coco_url']] = imgcaptions

print("Length of Dataset: ",len(dataset))

print(dataset['http://images.cocodataset.org/train2017/000000047084.jpg

'])

#dataset

from itertools import chain

flatten_list = list(chain.from_iterable(dataset.values()))

#[[1,3],[4,8]] = [1,3,4,8]

tokenizer = Tokenizer(oov_token='<oov>') # For those words which are

not found in word_index

tokenizer.fit_on_texts(flatten_list)

total_words = len(tokenizer.word_index) + 1

print("Vocabulary length: ", total_words)

print("Bicycle ID: ", tokenizer.word_index['bicycle'])

print("Airplane ID: ", tokenizer.word_index['airplane'])

print("Image features length: ", len(image_features))

image_features['http://images.cocodataset.org/train2017/000000047084.jp

g'].shape

def dict_to_list(descriptions):

all_desc = []

for key in descriptions.keys():

[all_desc.append(d) for d in descriptions[key]]

return all_desc

def max_length(descriptions):

desc_list = dict_to_list(descriptions)

return max(len(d.split()) for d in desc_list)

max_length = max_length(dataset)

max_length

#create input-output sequence pairs from the image description.

48



def data_generator(descriptions, features, tokenizer, max_length):

while 1:

for key, description_list in descriptions.items():

feature = features[key][0]

input_image, input_sequence, output_word =

create_sequences(tokenizer, max_length, description_list, feature)

yield ([input_image, input_sequence], output_word)

def create_sequences(tokenizer, max_length, desc_list, feature):

X1, X2, y = list(), list(), list()

# walk through each description for the image

for desc in desc_list:

# encode the sequence

seq = tokenizer.texts_to_sequences([desc])[0]

# split one sequence into multiple X,y pairs

for i in range(1, len(seq)):

# split into input and output pair

in_seq, out_seq = seq[:i], seq[i]

# pad input sequence

in_seq = pad_sequences([in_seq], maxlen=max_length)[0]

# encode output sequence

out_seq = to_categorical([out_seq],

num_classes=total_words)[0]

# store

X1.append(feature) # image features

X2.append(in_seq) # Caption input

y.append(out_seq) # Caption output

return np.array(X1), np.array(X2), np.array(y)

from tensorflow.keras.utils import plot_model

# define the captioning model

def define_model(total_words, max_length):

# features from the CNN model squeezed from 2048 to 256 nodes

inputs1 = Input(shape=(2048,))
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fe1 = Dropout(0.5)(inputs1)

fe2 = Dense(256, activation='relu')(fe1)

# LSTM sequence model

inputs2 = Input(shape=(max_length,))

se1 = Embedding(total_words, 256, mask_zero=True)(inputs2)

se2 = Dropout(0.5)(se1)

se3 = LSTM(256)(se2)

# Merging both models

decoder1 = add([fe2, se3])

decoder2 = Dense(256, activation='relu')(decoder1)

outputs = Dense(total_words, activation='softmax')(decoder2)

# tie it together [image, seq] [word]

model = Model(inputs=[inputs1, inputs2], outputs=outputs)

model.compile(loss='categorical_crossentropy', optimizer='adam')

# summarize model

print(model.summary())

plot_model(model, to_file='model.png', show_shapes=True)

return model

# train our model

print('Dataset: ', len(dataset))

print('Descriptions: train=', len(dataset))

print('Photos: train=', len(image_features))

print('Vocabulary Size:', total_words)

print('Description Length: ', max_length)

import numpy as np

from PIL import Image

import matplotlib.pyplot as plt

img_paths = ["../content/val2017/000000001761.jpg",

"../content/val2017/000000022396.jpg" ,

"../content/val2017/000000098520.jpg" ,

"../content/val2017/000000101762.jpg" ,

"../content/val2017/000000224051.jpg",

]

def extract_features(filename, model):

try:

image = Image.open(filename)
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except:

print("ERROR: Couldn't open image! Make sure the image path

and extension is correct")

image = image.resize((299,299))

image = np.array(image)

# for images that has 4 channels, we convert them into 3

channels

if image.shape[2] == 4:

image = image[..., :3]

image = np.expand_dims(image, axis=0)

image = image/127.5

image = image - 1.0

feature = model.predict(image)

return feature

def word_for_id(integer, tokenizer):

for word, index in tokenizer.word_index.items():

if index == integer:

return word

return None

def generate_desc(model, tokenizer, photo, max_length):

in_text = 'start'

for i in range(max_length):

sequence = tokenizer.texts_to_sequences([in_text])[0]

sequence = pad_sequences([sequence], maxlen=max_length)

pred = model.predict([photo,sequence], verbose=0)

pred = np.argmax(pred)

word = word_for_id(pred, tokenizer)

if word is None:

break

in_text += ' ' + word

if word == 'end':

break

return in_text

#max_length = 46

#model = load_model('./models/model_0.h5')

xception_model = Xception(include_top=False, pooling="avg")
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photo = extract_features(img_paths[0], xception_model)

img = Image.open(img_paths[0])

description = generate_desc(model, tokenizer, photo, max_length)

print("\n\n")

print(description)

plt.imshow(img)

photo = extract_features(img_paths[1], xception_model)

img = Image.open(img_paths[1])

description = generate_desc(model, tokenizer, photo, max_length)

print("\n\n")

print(description)

plt.imshow(img)

photo = extract_features(img_paths[2], xception_model)

img = Image.open(img_paths[2])

description = generate_desc(model, tokenizer, photo, max_length)

print("\n\n")

print(description)

plt.imshow(img)

photo = extract_features(img_paths[3], xception_model)

img = Image.open(img_paths[3])

description = generate_desc(model, tokenizer, photo, max_length)

print("\n\n")

print(description)

plt.imshow(img)

photo = extract_features(img_paths[4], xception_model)

img = Image.open(img_paths[4])

description = generate_desc(model, tokenizer, photo, max_length)

print("\n\n")

print(description)

plt.imshow(img)
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Abstract - The combination of computer vision and natural language processing in Artificial
intelligence has sparked a lot of interest in research in recent years, thanks to the advent of deep
learning. The context of a photograph is automatically described in English. When a picture is
captioned, the computer learns to interpret the visual information of the image using one or more
phrases. The ability to analyze the state, properties, and relationship between these objects is required
for the meaningful description generation process of high-level picture semantics. Using CNN -LSTM
architectural models on the captioning of a graphical image, we hope to detect things and inform
people via text messages in this research. To correctly identify the items, the input image is first
reduced to grayscale and then processed by a Convolution Neural Network (CNN). The COCO Dataset
2017 was used. The proposed method for blind individuals is intended to be expanded to include
persons with vision loss to speech messages to help them reach their full potential and to track their
intellect. In this study paper, we meticulously follow a variety of important concepts of image
captioning and its standard processes, as this work develops a generative CNN-LSTM model that
outperforms human baselines.

Key Words: CNN, LSTM, Image Captioning, Computer Vision, Natural Language Processing, Deep
Learning

1. INTRODUCTION

Every day, we are bombarded with photos in our surroundings, on social media, and in the news. Only humans
are capable of recognizing photos. We humans can recognize photographs without their assigned captions, but
machines require images to be taught first. The encoder-decoder architecture of Image Caption Generator
models uses input vectors to generate valid and acceptable captions. This paradigm connects the worlds of
natural language processing and computer vision. It's a job of recognizing and evaluating the image's context
before describing everything in a natural language like English. Our approach is based on two basic models:
CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory). CNN is utilized as an encoder in
the derived application to extract features from the snapshot or image, and LSTM is used as a decoder to
organize the words and generate captions. Image captioning can help with a variety of things, such as assisting
the visionless with text-to-speech through real-time input about the scenario over a camera feed, and
increasing social medical leisure by restructuring captions for photos in social feeds as well as spoken
messages. Assisting children in recognizing chemicals is a step toward learning the language. Captions for
every photograph on the internet can result in faster and more accurate authentic photograph exploration and
indexing. Image captioning is used in a variety of sectors, including biology, business, the internet, and in
applications such as self-driving cars wherein it could describe the scene around the car, and CCTV cameras
where the alarms could be raised if any malicious activity is observed. The main purpose of this research article
is to gain a basic understanding of deep learning methodologies.

2. ARCHITECTURE AND WORKING

1. Image Captioning Techniques

CNN-Convolutional Neural Systems (CNNs) are essential neural systems that can produce information
with a certain shape, such as a 2D lattice, and CNNs are useful when working with images. It analyses
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images from left to right, from corner to corner, to extract major highlights from the image, and then
combines the elements to define the image. It can handle images that have been interpreted, rotated,
scaled, and changed. The Convolutional neural system is a deep learning calculation that takes in a
picture of information, assigns value to distinct components/protests in the picture, and distinguishes
it from other pictures.

When compared to other order calculations, ConvNet's needed pre-handling is less. Even though channels are
hand-designed in rudimentary strategies, ConvNets is capable of learning these channels/highlights with proper
preparation. The curving system's shape is inspired by the way the visual cortex is organized and is similar to
the neural network design found within the human brain. Singular neurons respond to upgrades in a small area
of the visual field called the open field. The collection of such fields encompasses the totality of visual regions.

CNN: Architecture & Design When it comes to interpreting huge photos and videos, a pure primitive neural
network, in which all neurons in one layer merge with all neurons in the next layer, is inefficient. The range of
restriction using an acknowledged neural system for a regular size picture with multiple picture pieces called
pixels and 3-tone colors (RGB i.e. red color, green color, blue color) will be in the thousands, resulting in
overfitting.

Fig.1 CNN Architecture

CNN uses a 3D arrangement in which each adjustment of neurons breaks down a little area or "highlight" of the
picture to constrain effective quantities of constraints & recognition of the neural system on significant pieces of
the picture. Rather than all neurons skipping to the next brain layer, each group of neurons spends a significant
amount of time differentiating one aspect of the image, such as a nose, left ear, mouth, or leg. The final result is
a point of scope, demonstrating how plausible each of the skills is chosen as a member of the class.

Fig.2 Working of CNN

How does CNN work ?

As previously discussed, a fully connected neural network, in which every input in the preceding layers is
connected to every input in the following layers, is useful for the task at hand. Along these lines, CNN suggests
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that the neurons in a cell may be connected to a specific cell area before it, rather than all the neurons in a cell
in the same way.

This reduces the complexity of the neural network and the amount of computing power required. As seen on a
new computer, using a standard image with numbers at each pixel. When we compare two photos in general,
we look at the pixel values of each pixel. This technique only works when comparing two identical photos;
when comparing different images, the comparison fails. Image comparison is done piece by piece on CNN.

Fig.3 Feature map of CNN picture

The fundamental reason for utilizing the CNN method is that it is the only algorithm that accepts photographs
as input and draws a feature map based on the input pictures, i.e. classifying each pixel based on similarity
and differences. The CNN identifies the pixels and generates a feature map, which is a matrix. A feature map
is a grouping of comparable pixels into a distinct category. These matrices are crucial in determining the
essence of the object in the input image.

The first layer, Convolutional, and the second layer, Pooling, are practiced several times depending on the
image to obtain dense information about the image. Fully Connected is the third layer. This layer is responsible
for classification. It divides the pixels into groups based on their similarities and differences. Classification is
carried out to an extreme degree to extract the essence of the image and aid in the identification of objects,
people, and things, among other things.

Fig.4 Layers of the scanned picture
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These layers aid CNN in locating and identifying features in the image. The image of fixed length inputs is
turned into fixed-size outputs by extracting important features.

LSTM-Long Short Term Memory.LSTM is a critical component in the Deep Learning discipline of recurrent
neural networks. The unique feature of LSTM is that it can not only store the input data but also make
predictions about forthcoming datasets using its data. This LSTM network saves the data for a specific period
and then predicts or assigns future values to the data based on that. This is the primary reason why LSTM is
preferred over regular RNN.

Problem with RNNs (Recurrent Neural Networks)?

RNNs are a type of deep learning rule set that is used to cope with a variety of difficult or sophisticated
computer tasks such as item classification and speech recognition. RNNs are used to address a variety of
activities that occur in sequence, with each situation's knowledge based entirely on statistics from previous
scenarios.

To put it another way, we plan to favor RNNs with larger data sets and greater capabilities. This RNN may be
used to solve a variety of real-world issues, such as inventory forecasting and speech recognition
reinforcement. However, due to the Vanishing Gradient problem, RNNs are not used to solve real-world
problems.

Why LSTM over RNNs?

We will use Long short-term memory (LSTM), which is a subset of RNNs, to tackle the problem of Vanishing
Gradient. The main goal of LSTM is to solve the problem of Vanishing Gradients. The unique feature of LSTM
is that it can keep data values for long periods, allowing it to address the vanishing gradient problem.

2. Working

We shall summarise the two distinct architectures to automatically generate construct an image caption
generating model. It's also known as the CNN-LSTM model. So, to get the captions for the input photographs,
we'll use these two architectures.

CNN was used to extract the most important features from the input image. To do so, we've used Xception, a
pre-trained model for our consideration.

The LSTM has been utilized to store and analyze the data or features from the CNN model, as well as to assist
in the production of a good caption for the image.

Python was used to bring this art to life.

Fig.7 CNN-LSTM model

1. A gray-scale image is processed through CNN to identify the objects.
2. CNN scans images left-right, and top-bottom and extracts important image features. By applying various

layers like Convolutional, Pooling, Fully Connected, and thus using the activation function, we
successfully extracted features of every image.
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3. It is then converted to LSTM.
4. Using the LSTM layer we try to predict what the next word could be and then proceeds to generate a

sentence describing the image.

C. Accuracy
CNN is an extractor that extracts features from the given image.

The system accuracy will be measured using the standard equation.

3. RESULTS AND DISCUSSION

The Dataset that we used for our research is called "COCO Dataset 2017" and is available online. The data
was pre-processed to make it suitable for future analysis and work. It consists of 12 main sorts of categories,
each with 80 potential sub-categories.

Each subcategory has a collection of photographs as well as five captions for each one. The system
performance was evaluated using the general confusion matrix. All of the models' results are listed here,
along with their projections. Over the course of 30 iterations, a total of 130 iterations were completed.

4. CONCLUSION

The CNN-LSTM model was created to automatically generate captions for the input images. This concept can
be used in a wide range of situations. We learned about the CNN model, and LSTM models, and how to
overcome previous limitations in the field of graphical image captioning by building a CNN-LSTM model
capable of scanning and extracting information from any input image and transforming it into a single line
sentence in natural language English.

The algorithm attention and how the attention mechanism is used were the main topics of discussion. I was
able to successfully create a model that is a major improvement above the earlier image caption generator.

5. FUTURE SCOPE

I'd like to train our model on a larger dataset with a greater number of photographs in the future. The captions
generated should be in a range of languages. Larger datasets and alternative CNN architectures, such as
LeNet, AlexNet, GoogLeNet, ResNet, and others, were used to train and evaluate the model.

Also, I'd like to use this model with a bigger audience, including blind individuals and a CCTV crew. Using IoT
technology such as Arduino kits and cameras.
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