
SOIL CLASSIFICATION AND BEST CROP
PREDICTION USING MACHINE LEARNING

Submitted in partial fulfillment of the

requirements for the award of

Bachelor of Engineering degree in Computer Science and Engineering

by

V.SUSHANTHREDDY (38110655)

T.VIVEKANANDA (38110654)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING SCHOOL

ENGINEERING SCHOOL OF COMPUTING

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV
GANDHI SALAI, CHENNAI - 600 119

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with “A” grade by NAAC

Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119

www.sathyabama.ac.in
DEPARTMENT OF COMPUTER SCIENCE OF ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of

V.SUSHANTH REDDY (38110655) and T.VIVEKANANDA(38110654) who

carried out the project entitled “SOIL CLASSIFICATION AND BEST CROP

PREDICTIION under my supervision from November 2020 to March 2021.

Internal Guide

Dr. A. JESSUDOSS M.E., Ph.D.

Head of the Department

Dr. S. Vigneshwari M.E., Ph.D., and Dr. L. Lakshmanan M.E., Ph.D.,

Internal Examiner External
Examiner

http://www.sathyabama.ac.in/

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks the o Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. I am grateful to them.

I convey my thanks to Dr. T.Sasikala M.E.,Ph.D., Dean, School of Computing

Dr.S.Vigneshwari M.E., Ph.D. and Dr.L.Lakshmanan M.E., Ph.D. , Heads

of the Department of Computer Science and Engineering for providing us necessary

support and details at the right time during the progressive reviews.

I would like to express my sincerend a deep sense of gratitude to my Project Guide

Dr. A. JESSUDOSS M.E., Ph.D., for her valuable guidance, suggestions

aconstant tha at encouragemethat nt paved way for the successful completion of

my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of

The Department of Computer Science and Engineering who were helpful

in many ways for the completion of the project

ABSTRACT

Agriculture is the backbone of Indian economy and livelihood to many people.

The use of computer science in the field of agriculture will potentially solve many problems

faced by farmers. Farmers often choose crops for their field based on their own experience

and instinct. This sometimes leads to loss and less yield. If the selection of crops is done with

productivity data of the entire region, it may lead to better results.However all the crops

cannot be cultivated in a particular soil. So the soil must be analysed and crops must be

suggested based on the type of soil. Many soil classification techniques involve testing in

laboratories whichmight not be affordable and available to all the farmers.

This work suggests an idea that is useful and easily accessible to all the farmers in

India without any need of hardware. A list of crops with their success rate will be suggested to

the farmer when the region of agriculture and soil image (used for agriculture) are given as

inputs. This list of crops are both profitable and produce more yield in that region.

The results obtained are promising. An accuracy of 94% is achieved in the soil

classification module.The success rate for the crops obtained are realistic with the agricultural

practices in the region. The web application developed is extremely user friendly and easy to

use by the farmers.

.

.

iv
TABLE OF CONTENTS

ABSTRACT - English iii

LIST OF FIGURES viii

LIST OF TABLES xi
LIST OF ABBREVIATIONS xii

1 INTRODUCTION 1

1.1 Motivation 1

1.2 Problem Statement. 2

1.3 Objectives 3

1.4 Overview of thesis 3

2 LITERATURE SURVEY 4

2.1 Soil Classification 4

2.1.1 SVM(Support Vector Machine) 4

2.1.2 Basic segmentation method 5

2.1.3 Transformation 5

2.1.4 Statistical Parameters 5

2.1.5 Working of the system. 6

2.2 Best Crop Prediction 6

2.2.1 Weighted K-NN 7

2.2.2 SVM 7

2.2.3 Bagged Tree 7

v

3 REQUIREMENTS ANALYSIS 9

3.1 Functional Requirements 9

3.2 Non-functional Requirements 10

3.2.1 Hardware Requirements 10

3.2.2 Software Requirements 10

4 SYSTEM DESIGN 11

4.1 Overall Architecture Diagram 11

4.2 Use case Diagram 13

4.3 Flow Diagram 14

5 MODULE DESIGN. 16

5.1 Soil Classification 16

5.2 Suitable Crop Suggestion 17

5.3 Best Crop Prediction 18

6 IMPLEMENTATION DETAILS 20

6.1 Soil Classification 20

6.1.1 Dataset description 20

6.1.2 CNN Model 20

6.1.3 Explanation of the layers. 26

6.1.4 Details of other models. 28

6.1.5 Output of other models 29

6.1.6 Comparison of the results 31

vi

6.2 Best crop prediction 31

6.2.1 Dataset description 31

6.2.2 Multiple linear regression 32

6.3 Web application in Django 39

7 RESULTS AND DISCUSSION 41

7.1 Snapshot of Results 41

7.2 Test Case 44

7.2.1 Red Soil 44

7.2.2 Black Soil 45

7.2.3 Alluvial Soil 46

7.2.4 Clay Soil 47

7.3 Performance Analysis 48

8 CONCLUSION 50

8.1 Conclusion 50

8.2 Future Work 50
REFERENCES 51

vii
LIST OF FIGURES

2.1. Bagged Tree 8

4.1. Overall Architecture Diagram 12

4.2. Use case diagram of web app 13

4.3. First part of Flow diagram of the web app 14

4.4. Second part of Flow diagram of the web app 15

5.1. Architecture of Custom CNN model 16

5.2. Crop suggestion module 17

5.3. Best crop prediction Architecture 19

6.1. Training code 21

6.2. CNN model summary 23

6.3. Training of CNN model. 23

6.4. Confusion matrix of the model 24

6.5. Training and validation loss graph 24

6.6. Training and validation accuracy graph 25

6.7. Testing the model with alluvial soil image 25

6.8. SVM soil classification 29 6.9. Lenet5 model summary .

. 29

viii
6.10. Alexnet model training 30

6.11. VGG16 soil classification 30

6.12. Multiple Regression Graph(1) 33

6.13. R2 score of production related multiple linear regression . . . 34

6.14. Multiple Regression Graph(2) 35

6.15. Multiple Regression Graph(3) 36

6.16. Multiple Regression Graph(4) 36

6.17. Multiple Regression Graph(5) 37

6.18. R2 score of import prediction 37

6.19. R2 score of export prediction 38

6.20. R2 score of production prediction 38

6.21. Django architecture 39

6.22. Urls.py 40

6.23. Initiation of django server 40

7.1. Input soil image page 41

7.2. Input region page 42

7.3. Type of soil in result page 42

7.4. Ranked crop list in result page 43

ix
7.5. Other crops suggested in result page 43

7.6. Result of Red soil in Nalanda 44

7.7. Result of Black soil in Haveri 45

7.8. Result of Alluvial soil in Nellore 46

x
LIST OF TABLES

Table 5.1. Crops suitable for each soil type 18

Table 6.1. Soil image dataset split up 20

Table 6.2. Details of other algorithms implemented 28

Table 6.3. Comparison of the implemented algorithms 31

Table 7.1. Evaluation scores 48

Table 7.2. R2 scores of Multiple linear regression 49

xi
LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

GPS Global Positioning System

K-NN K-Nearest Neighbors

PH Power of Hydrogen

RGB Red Green Blue

SRDI Soil Resources Development Institute

SVM Support Vector Machine

VGG 16

Visual Geometry Group 16 xii

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Agriculture is the primary source of livelihood for about 58% of the population of

India. Continuous efforts have been taken to develop this sector as the whole nation depends

on it for food. For thousands of years, we have been practicing agriculture but still, it

remained underdeveloped for a long time. After the green revolution, we became

self-sufficient and started exporting our surplus to other countries.

Earlier we used to depend completely on monsoon for the cultivation of food grains

but now we have constructed dams, canals, tube-wells, and pump-sets. Also, we now have a

better variety of fertilizers, pesticides, and seeds, which help us to grow more food in

comparison to what we produce during old times. With the advancement of technology,

advanced equipment, better irrigation facilities agriculture started improving. Furthermore,

our agriculture sector has grown stronger than many countries and we are the largest exporter

of many food grains.

In recent years, farmers are suffering financially and are facing many hardships. This

is due to various reasons such as urbanisation, globalisation, pollution, water scarcity, less

rainfall, low fertility of soil, drastic climatic changes, political and economic reasons, poverty,

lack of technological assistance etc.

Addressing their needs through technology is the need of the hour.

Though we have very less to contribute to improvise the natural factors to help agriculture,

we have a lot to contribute to this sector through computer science and technology. Internet of

Things(IoT), Artificial Intelligence, smart agriculture, Agricultural Engineering, Irrigation

Engineering are some of the fields that contributed to the development of agriculture in recent

years.

With large scale increase in the availability of data, machine learning, deep learning,

big data analytics can help in solving various problems. Machine learning has emerged with

big data technologies and high-performance computing to create new opportunities for data

intensive science in the multi-disciplinary agritechnologies domain. The works can be

1

categorized as (a) crop management, including applications on yield prediction, disease

detection, weed detection crop quality, and species recognition; (b) livestock management,

including applications on animal welfare and livestock production; (c) water management;

and (d) soil management. By applying machine learning to sensor data, farm management

systems are evolving into real time artificial intelligence enabled programs that provide rich

recommendations and insights for farmer decision support and action.

There are many ways to suggest crops suitable for a farm land. It can be based on the

climate or soil or the crop that produces high profit in that region. We want to suggest crops

considering all these factors. We also want soil classification to be done easily with android

camera images so that the laboratory tests can be avoided to identify the type.

1.2 PROBLEM STATEMENT

While analysing the various problems faced by farmers,choosing crops for their land

appears to be a concerning problem.Crops must be chosen not only based on the soil and

climate but also on various other factors like usage of the crop in the particular area, cost,

revenue, how much the crop is exported or imported. In this project, our aim is to suggest

crops to farmers such that it leads to maximum production and profit.The problem statement

is to provide a user friendly application that classifies the soil into four types

(Alluvial,Black,Clay,Red) with a simple camera image and suggests the best crops which will

give higher yield and profit.

1.3 OBJECTIVES

● To classify soil image into one of the four categories precisely (red, alluvial, black, clay).

● To implement different models and find the best suitable model for soil image

classification.

● To suggest crops for a region considering weather and past production and profit rate.

● To give success rate for each crop cultivable in that soil and region

2

1.4 OVERVIEW OF THESIS

Chapter 2 elaborates on the related work in soil classification and crop suggestion

domain. The issues in the previous work are analysed and it has been rectified. The

requirements of the system (both functional and non-functional) are identified and specified

in Chapter 3. The architecture diagram, use case diagram and activity diagram for the entire

project is given in Chapter 4. In chapter 5, all the three modules in the project are discussed

elaborately. The implementation of the system, the intermediate outcomes, evaluation are

specified in Chapter 6. Results, screenshots and test cases are given in Chapter 7. In chapter

8, conclusion and future work of our project are specified.

CHAPTER 2

LITERATURE SURVEY

3

2.1 SOIL CLASSIFICATION

Srunitha K, S.Padmavathi created a soil classification model that uses Support

Vector Machine based classification.Almost all countries export their products, Countries

which export agricultural products depend on soil characteristics.Hence classifying soil,

based on their characteristics is very important to reduce the product quantity loss.The nature

of soil is influenced by many factors. Some of them are power of hydrogen (PH),

Exchangeable sodium percentage, moisture content etc. depending on their amount in soil

they show different characteristics and that varies for different region. The manual

segmentation and classification methods are time consuming, require efficient people and

expensive also .With the emerging of image processing and machine learning we can

efficiently classify the soil sample in to groups and hence we can automate the classification

process.Soil classification includes steps like image acquisition, image pre processing, feature

extraction and classification.

2.1.1 SVM(Support Vector Machine)

SVM models are mainly used for analyzing the data for regression and classification.

For a set of training examples it belongs to either one of the two categories, a support vector

machine algorithm for training generates a model which tells the new thing falls into which

category by a non-probabilistic binary classifier.

The SVM model is the depiction of points in space which are mapped.

Thus, the data of different types are separated by as wide as possible.
2.1.2 BASIC SEGMENTATION METHOD

The segmentation process splits the region of interest from that of non-interest

regions.A two class classifier is required for classifying pixels in feature space considering

segmentation as a two class problem. Method of segmentation includes,

1) Training data with one or a few images having objects. Traditional segmentation or by

manually foreground and background regions are splitted. Pixels in objects are marked

using I and I-which produces RGB color histogram. Color values are also marked.

2) Prepare for SVM the training data,

(xi,yi) , + + +l,if Xi€[. xi is -1,if X,EI. +- Xi€[VI , yi= a color vector.

4

2.1.3 TRANSFORMATION

The transformation phase includes color quantization,low pass filter and gabor

filter techniques.In color quantization they create a new image visually similar to that of the

original image. Thus, it reduces the distinct colors used in the original image. Then a

low-pass filter passes frequency below the cutoff frequency and attenuates the higher

frequency. The attenuated frequency depends on the filter design.For the extraction of

features from an image Gabor filter with different frequencies are useful. In image processing

a 2-D Gabor filter is used for feature extraction especially while doing segmentation and

analyzing texture.

2.1.4 STATISTICAL PARAMETERS

1) Mean = Neighboring/Total

2) Std=√Mean
2.1.5 WORKING OF THE SYSTEM

1. Applying the transformation (includes low mask filter, color quantization , histogram) to

the original image.

2. Using statistical measures to analyse the color ,texture and shape.

3. Finding the distance with Euclidean distance formula.

The classifications of non-sandy soils are better classified with SVM.

2.2 BEST CROP PREDICTION

Sk Al Rahman, Kaushik Mitra, S.M. et al used dataset, collected from 500 soil

series in Bangladesh which is identified by Soil Resources Development Institute (SRDI).Soil

series means group of soils which is formed from the same kind of parent materials and

remains under the similar conditions of drainage, vegetation time and climate. It also has the

same patterns of soil horizons with differentiating properties.Each type of soil can have

different kinds of features and different kinds of crops grow on different types of soils. We

need to know the features and characteristics of various soil types to understand which crops

grow better in certain soil types.The main purpose of the proposed work is to create a suitable

model for classifying various kinds of soil series data along with suitable crops suggestions

for certain 5 areas of certain Upazila of Bangladesh. Here, Several machine learning

5

algorithms such as weighted k-Nearest Neighbor (k-NN), Bagged Trees and Gaussian kernel

based Support Vector Machines (SVM) are used for soil classification.The method involves

two phases: training phase and testing phase. Two datasets are used: Soil dataset and crop

dataset. Soil dataset contains class labeled chemical features of soil which include salinity,pH

values and iron,magnesium content etc. This system mainly uses three methods namely,

Weighted K-NN, Gaussian Kernel based SVM, and Bagged Tree.

2.2.1 WEIGHTED K-NN

It is a refinement of the k-NN classification algorithm.It weighs the contribution of

each of the k neighbors according to their distance to the query point, giving greater weight

wi to closer neighbors. It makes use of all training examples not just k if weighting is

used.The algorithm then becomes a global one.

The only disadvantage is that the algorithm will run more slowly.

2.2.2 SVM

SVM is a supervised machine learning algorithm which works based on the concept of

decision planes that defines decision boundaries. A decision boundary separates the objects of

one class from the object of another class. Kernel function is used to separate non-linear data

by transforming input to a higher dimensional space.

The Gaussian radial basis function kernel is used in this method.

2.2.3 BAGGED TREE

Here they have used a bagged decision tree ensemble classifier which consists of 30

trees. Bagging generates a set of models each trained on a random sampling of the data. The

predictions from those models are aggregated to produce the final prediction using averaging.

6

Fig 2.1.Bagged Tree

They used two-third of the samples collected for training the model and the rest are

used for testing.In their research,they worked with soils series of six upazillas of Khulna

district, Bangladesh. Upazillas are:‘Rupsha’, ‘Dighalia’,

‘Fultola’, ‘Koyra’, ‘Dakop’,‘Terokhada’. There are a total of 15 soil series in this 6

Upazillas.In our work, we have worked with 4 soil classes;they are

Alluvial,Black,Clay and Red.

The soil classification accuracy and also the recommendation of crops for specific soil

provided by this model is more appropriate than many existing methods.One of the

drawbacks of the model is they have restricted it to soil types only to few districts.

CHAPTER 3
REQUIREMENTS ANALYSIS

3.1 FUNCTIONAL REQUIREMENTS

Below are the functional requirements of this project.

● The system must enable the user to upload images of any type and quality.

7

● Time taken to load the website must be less.

● Website must be user-friendly.

● The flow of the process must be well defined and clear for naive users.

● The system must be able to classify soil images taken even from simple android

mobile phones.

● Soil images must be classified more accurately.

● Time taken for image classification must be less.

● System must be able to differentiate crops present/absent in the dataset.

● Crops that are not present in the dataset can be suggested to the users as other

options. ● The suggestion and success rate calculation must be fast.

3.2 NON-FUNCTIONAL REQUIREMENTS

The non-functional requirements are the hardware and software that a user needs to have

in order to effectively use this system for his/her advantage.

3.2.1 Hardware Requirements

The hardware requirements for this project for user includes

● Intel i5 or i7 processor

● 4-8 GB RAM

● For big dataset, 16GB RAM is required

● At Least 20GB of free space in hard disk

3.2.2 Software Requirements

The software requirements includes :

● 64 bit Window 8 or 10

● Python 3.x

● Django

● Tensorflow 3.x

8

● Other python libraries like numpy, keras, seaborn etc

CHAPTER 4

SYSTEM DESIGN

4.1 OVERALL ARCHITECTURE DIAGRAM

The overall Architecture diagram for the proposed system is shown in Fig 4.1.

The proposed work is split into different processing phases namely Soil

Classification, Suitable Crop Suggestion and Best Crop Prediction. These working phases

execute in the depicted flow to produce the list of crops with success rate as output from the

input soil image and region.

The Soil Classification module is designed to classify the different types of soil using a

deep learning model.This model inputs soil images from the user and states the type of the soil

as output. The output is one of the following: Alluvial soil, Red soil, Black soil, Clay soil.

9

The Suitable Crop Suggestion module gets the type of soil from the previous model as

input and gives the suitable crops cultivable in that area. This module provides a list of

suitable crops for the soil type fetched from the database or local storage.

The Best Crop Prediction module aims to find the crops that are best for their

region,so that the farmers can get a maximum profit by cultivating these crops. This model is

fed with the list of crops from the previous model, and it will output a list of best crops and

success rate of those crops. The model is trained using data for the past 10 years collected

from various trusted sources. The success rate of the crop is predicted based on the following

parameters present in the dataset which include Imports & exports ,Production,Production per

unit area and Gross production value of the crop in the past 10 years.

Fig 4.1. Overall Architecture Diagram

10

4.2 USE CASE DIAGRAM

Fig 4.2.Use case diagram of web app

11

4.3 FLOW DIAGRAM

Fig 4.3. First part of Flow diagram of the web app

12

Fig 4.4. Second part of Flow diagram of the web app

CHAPTER 5

13

MODULE DESIGN

5.1 SOIL CLASSIFICATION

In this model, the aim is to classify the different types of soil using a deep learning

model. This model inputs soil images from the user and states the type of the soil as output.

We used SVM and CNN architectures like LeNet, AlexNet, VGG 16, ResNet for soil image

classification and evaluated the accuracy of each of the classifiers. The CNN model that

produced the highest accuracy was chosen for the soil classification. The models are trained

with the Kaggle soilnet dataset that includes 903 images of four soil types, namely red,

alluvial, black and clay.

Fig 5.1. Architecture of Custom CNN model
The CNN architecture depicted in Fig 5.1 is built with conventional layer by layer

feature extraction techniques.There are three convolutional layers with ReLU activation function

followed by max pooling. Then the feature map is flattened. Finally there are three fully

connected layers with ReLU activation function. Dropouts are added to avoid overfitting. The

final dense layer has softmax activation function.

14

5.2 SUITABLE CROP SUGGESTION

As shown in Fig 5.2, the type of soil from the previous model is used to decide

the suitable crops cultivable in that area. This module provides a list of suitable crops

for the soil type fetched from local storage. This list was collected from authorised

sources. Table 5.1 shows the list of crops for the four types of soil.

Database

Fig 5.2. Crop suggestion module
Table 5.1. Crops suitable for each soil type

TYPE OF SOIL CROPS

Alluvial soil
Wheat, Rice, Jute, Coconut, Sugarcane, Pulses, Oilseed,
Groundnut.

Red soil
Wheat, Cotton, Pulses, Coconut, Tobacco, Millets, Oilseed,
Potato, Groundnut, Rice, Orchards.

Black soil
Cotton, Pulses, Soyabean, Millets, Linseed, Tobacco, Barley,
Sugarcane, Rice.

15

Clay soil Wheat, Rice, Sorghum, Jowar, Groundnut.

5.3 BEST CROP PREDICTION

The aim of this model is to find the crops that are best for their region, so that

the farmers can get a maximum profit by cultivating these crops. This model is fed

with the list of crops from the previous model, the region as input and it will output a

list of best crops and success rate of those crops. The model is trained using data for

the past 10 years collected from various trusted sources. Algorithms used will be

customized using multiple linear regression and customized K fold method.

The success rate of the crop is predicted based on the following parameters present in the

dataset:

● Imports & exports of the crop in the past 10 years

● Production of the crop in the past 10 years

● Production per unit area of the crop in the past 10 years, for the concerned area

● Gross production value of the crop in the past 10 years

Fig 5.3. Best crop prediction Architecture

16

Ten different multiple linear regressions are done to predict various

parameters like imports, exports, gross production, production per unit area and

production. These regressions are done beforehand and the predicted values are

stored in separate csv files. These values are used in future calculations of success

rate.

CHAPTER 6

IMPLEMENTATION DETAILS

6.1 SOIL CLASSIFICATION

6.1.1 Dataset Description

The dataset is obtained from the following kaggle URL.

https://www.kaggle.com/omkargurav/soil-classification-image-data

The data set consists of 903 RGB images labelled as "Alluvial Soil", "Red

Soil", "Clay Soil", "Black Soil".

The number of images in each category are given in table 6.1.

17

https://www.kaggle.com/omkargurav/soil-classification-image-data

Table 6.1. Soil image dataset split up

Alluvial Black Red Clay Total

Train 175 212 184 144 715

Test 48 47 46 47 188

6.1.2 CNN Model

In deep learning, a convolutional neural network is a class of deep neural networks,

most commonly applied to analyzing visual imagery. While there are many predefined CNN

models available, a custom CNN model has been developed to accommodate for the soil

images dataset.

Due to the low number of images in the dataset, data augmentation is done. Then the

CNN model is created and trained using the training dataset. The number of epochs for

training is varying since callback early function is used. Hence if there

is no more improvement in the loss parameter, the epochs are terminated. Maximum

number of epochs is fixed as 100.

Images are converted to 244 X 244 size with RGB color values. The colors are

retained as they are important in soil classification. Adam optimisers are used to adjust the

18

weight parameters. Accuracy is monitored with Sparse categorical cross entropy function.

The training code is shown in Fig 6.1.

Fig 6.1. Training code

While testing, the images are converted to 244 X 244 size and predicted with the model

created.

The CNN architecture is as follows:

1) First Convolutional layer is added with 32 filters of 3X3 size with Relu activation

function.

2) 32 feature maps are generated from this layer each of size 242X242. 3) Max
pooling layer is added with pool size 2X2

4) The above layer generates 32 feature maps of size 121X121.

5) Second Convolutional layer with 64 filters of 3X3 size with Relu activation function.

6) 64 feature maps are generated from this layer each of size 119X119.

7) Max pooling layer is added with pool size 2X2

8) The above layer generates 64 feature maps of size 59X59.

9) 30% of the above connections are dropped out to avoid overfitting.

10) Third Convolutional layer with 128 filters of 3X3 size with Relu activation function.

11) 128 feature maps are generated from this layer each of size 57X57.

12) Max pooling layer is added with pool size 2X2

13) The above layer generates 128 feature maps of size 28X28.

14) 20% of the above connections are dropped out to avoid overfitting.

15) The above 28X28X128 output is flattened into a one dimensional array of size 100352.

16) A fully connected layer of output size 256 and Relu activation function is added.

17) 15% of the above connections are dropped out.

18) A fully connected layer of output size 128 and Relu activation function is added.

19

19) 1% of the above connections are dropped out.

20) A final fully connected layer with four output classes(4 soil types) is added with softmax

activation function.

The summary of our CNN model is given in Fig 6.2.

Fig 6.2. CNN model summary

Fig 6.3. Training of CNN model

20

Fig 6.4. Confusion matrix of the model

Fig 6.5. Training and validation loss graph

21

Fig 6.6. Training and validation accuracy graph

Fig 6.7. Testing the model with alluvial soil image
6.1.3 Explanation of the layers

2D convolutional layer

22

The input of the 2D convolutional layer is 3 dimensional. A convolution is the simple

application of a filter to an input that results in an activation. Repeated application of the

same filter to an input results in a map of activations called a feature map, indicating the

locations and strength of a detected feature in an input. A convolution is a linear operation

that involves the multiplication of a set of weights with the input.

Dense layer

Dense layer is the regular deeply connected neural network layer. Dense layer does the

below operation on the input and returns the output.

output = activation(dot(input, kernel) + bias) where,

● input represent the input data

● kernel represent the weight data

● dot represent numpy dot product of all input and its corresponding weights ● bias

represent a biased value used in machine learning to optimize the model ● activation

represents the activation function.

Dropout

It refers to dropping out units (hidden and visible) in a neural network. It is a simple way

to prevent neural networks from overfitting.

Flatten layer

Flattening is converting the data into a 1-dimensional array for inputting it to the next

layer.

Maximum Pooling layer

It is a pooling operation that calculates the maximum value in each patch of each feature

map.

ReLU activation function

23

It stands for Rectified Linear Unit.

It returns the modulus value.

Softmax activation function

Softmax function is used as the activation function in the output layer of neural network

models that predict a multinomial probability distribution.

6.1.4 Details of other models

Table 6.2. Details of other algorithms implemented

Algorithm Details

SVM

Supervised learning model in which images are converted into 2 arrays
for processing.

24

VGG16

It consists of two 2D convolutional layers followed by average pooling
layers. Finally there are three fully connected dense layers. The first two
have tanh activation function and last one has softmax activation
function.

Alexnet

AlexNet contains eight layers. The first five were convolutional layers,
some of them followed by max-pooling layers, and the last three were
fully connected layers.

Lenet5
It is a network with 16 layers which have the trainable parameters.

There are also other layers like Max pool layer which do not have the

trainable parameters. Similar to

AlexNet, it has only 3x3 convolutions.

6.1.5 Outputs of other models

Fig 6.8. SVM soil classification

25

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolutional_neural_network#Pooling_layer

Fig 6.9. Lenet5 model summary

Fig 6.10. Alexnet model training

26

Fig 6.11. VGG16 soil classification
6.1.6 Comparison of the results

Table 6.3. Comparison of the implemented algorithms

ALGORITHM ACCURACY FINDINGS

CNN 0.94
Conventional layer by layer feature extraction
resulted in high accuracy.

SVM 0.83
SVM for image classification is better than

CNN only when there is less data

VGG 16 0.82 It is quite slow and occupies more space.

AlexNet 0.58

Due to the large number of parameters, it suffered
from overfitting.

27

Lenet5 0.73
It is the oldest CNN architecture and the
performance is not better than new models

6.2 BEST CROP PREDICTION

6.2.1 Dataset description

The dataset is obtained from the following Github link:

https://github.com/amanparmar17/Cultivo/tree/master/datasets

The data set consists of:

● Details of the 11 crops selected.
● District wise crops total to 309 in number.

● Information about area harvested, yield and production of 10-11 crops(required for the

main analysis and prediction) for 10 years.

● Details of import, export, production quantity of 10 crops in India.

● Data about production, import quantity, export quantity, domestic supply, feed, seed, food,

food supply quantity, protein supply,fat supply about 10-11 crops for 10 yrs.

● Information about gross production value,net production value for 10-11 crops for 10

years.

6.2.2 Multiple linear regression

Multiple linear regression refers to a statistical technique that is used to predict the

outcome of a variable based on the value of two or more variables.The variable that we want to

predict is known as the dependent variable, while the variables we use to predict the value of

the dependent variable are known as independent.

Multiple Linear Regression for our dataset

1) Gross production and Net production dataset:

It consists of the following 6 variables:

● Gross_Production_Value_current_million_SLC

28

https://github.com/amanparmar17/Cultivo/tree/master/datasets
https://corporatefinanceinstitute.com/resources/knowledge/terms/dependent-variable/

● Gross_Production_Value_constant_2004_2006_1000_dollar

● Net_Production_Value_constant_2004_2006_1000_dollar

● Gross_Production_Value_constant_2004_2006_million_SLC

● Gross_Production_Value_current_million_US_dollar

● Gross_Production_Value_constant_2004_2006_million_US_dollar We
will keep one variable as a dependent variable and other 5 variables as independent
variables. We will repeat the following process for all the six combinations of
independent and dependent variables.

For each crop:

dependent variable is predicted by linear regression

mean is calculated.

All the predicted and calculated means are stored for each crop in a separate csv file.

Scatter plots :

Dependent variable is scattered (dots) and independent variables are used to draw the

plots (lines) in the graph. The following are multi-dimensional graphs(6 dimensions). Hence only

the dependent and independent variables are specified for easier understanding.

Fig 6.12 Multiple Linear Regression(1)

Scatter plot of Gross production Prediction

29

Fig 6.13 R2 score of production related multiple linear regression

2) Production and area dataset:

For each district:

For each crop:

Dependent variable is production per unit area

Independent variable is area

Predicted production/area’s mean is calculated(pred_mean)

Production/area’ mean is calculated(org_mean)

Pred_mean and org_mean are stored in a separate csv file.

30

Fig 6.14. Multiple Regression Graph(2)

Dependent variable : Production per unit area

Independent variable : Area
3) Import, export and production dataset:

For each crop:

Independent variable is seed

Dependent variable is production

Production(pred_prod) is predicted and mean is calculated.

For each crop:

Independent variables are stock, export, domestic, production

Dependent variable is import

Import(pred_import) is predicted and mean is calculated.

For each crop:

Independent variables are production, imports, stock, seed

Dependent variable is export

Export(pred_export) is predicted and mean is calculated.

For each crop, mean is calculated for import, export and production(original means).

The original means and predicted means are stored in a separate csv file.

31

Fig 6.15. Multiple Regression Graph(3)

Dependent variable : Import

Independent variables : stock, export, domestic, production

Fig 6.16. Multiple Regression Graph(4)

Dependent variable : Export

Independent variables : production, imports, stock, seed

Fig 6.17. Multiple Regression Graph(5)

Dependent variable : production

Independent variables : seed

32

Fig 6.18 R2 score of import prediction

Fig 6.19 R2 score of export prediction

Fig 6.20 R2 score of production prediction

33

Final calculation:

p1 = predicted production per unit area mean / original production per unit area mean

p2 = predicted gross production mean / original gross production mean p3 =

predicted exports mean / original exports mean p4 = predicted imports mean / original imports

mean p5 = predicted production mean / original production mean mean final = (p1 + p2 + p3 +

p4 + p5)/5 success rate % = mean final X 100

6.3 WEB APPLICATION IN DJANGO

Django is an open source web development framework in python. Django is useful to

create ML based web applications easily because of its effectiveness in running python scripts. It

consists of 3 main components: model, view and templates.

Fig 6.21. Django architecture

Template

The Template is a presentation layer which handles the User Interface part completely. In

this web application, there are 3 main web pages namely input soil image, input region and result

page. Result page displays 3 output components such as classified soil type, ranked crop list and

other crop suggestions.

View

34

The View is used to execute the business logic and interact with a model to carry data and

render a template. In this web app, view links the output from the soil classification module,

fetches the crop list accordingly and sends it to the crop prediction module. It also executes

machine learning(Multiple linear regression) and deep learning(CNN) for crop prediction and soil

classification respectively.

Other settings in Django

These are the urls created for the website.

Fig 6.22 Urls.py

The web application runs without any issues and the server is initiated.

35

● Precision

● Recall

● F-measure

Table 7.1. Evaluation scores of implemented models

C N N A l e x n e t L e n e t 5 V G G 1 6 S V M

A c c u r a c y 0 . 9 4 0 . 5 8 0 . 7 3 0 . 8 2 0 . 8 3

P re c i s i o n 0 . 9 1 0 . 5 3 0 . 7 8 0 . 8 1 0 . 8 5

R e c a l l 0 . 9 3 0 . 5 2 0 . 7 5 0 . 8 6 0 . 8 4
F
-

me
a s u re

0
. 9 2 0. 4 9

0
. 7 5

0
. 8 3

0
. 8 4

● R-Squared

36

Table 7.2. R2 scores of Multiple linear regression

Linear Regression R2 score

Gross production 0.999

Production per unit area 0.614

Imports 0.479

Exports 0.468

Production 0.734

37

CHAPTER 8

CONCLUSION

8.1 CONCLUSION

Soil images are classified accurately. Soil image classification works well for real time

images. Crops with success rate are calculated taking all the mentioned parameters like

export, import, production per unit area etc into account. The developed website is extremely

user-friendly with simple and clear migrations. Most of the calculations are done beforehand

to reduce the latency to the users. We strongly believe that the developed system solves the

problem of choosing suitable crops for their fields by farmers.

8.2 FUTURE WORK

While the developed system takes only soil type to determine the crops suitable, it

might be more realistic if the weather and climatic conditions are also considered to make the

decision. Instead of manual entry of a region, GPS technology can be used to determine the

location. With the availability of the type of soil in a particular region, the usage of images to

find the type of soil can be eliminated. The website can be extended as a complete guide to

farmers including the fertilizers, pesticides to be used etc.

38

REFERENCES

[1] Abimala, T., Sashya, S.F. and Sripriya, K., (2020), ‘Soil Classification and

Crop Suggestion using Image Processing’, International Journal on Computing, pp.

3544.

[2] Barman, U. and Choudhury, R.D., (2020), ‘Soil texture classification using multi class

support vector machines’. Information Processing in Agriculture, 7(2), pp.318-332.

[3] Bhattacharya, Biswanath, and Dimitri P. Solomatine., (2006), ‘Machine learning in

soil classification’, IEEE International Joint Conference on Neural Networks

,pp.186-195.

[4] Devi, M. P. K., Anthiyur, U., and Shenbagavadivu, M. S., (2016).’ Enhanced Crop

Yield Prediction and Soil Data Analysis Using Data Mining’.

International Journal of Modern Computer Science, 4(6).

[5] Rahman, S.A.Z., Mitra, K.C. and Islam, S.M., (2018), ‘Soil classification using

machine learning methods and crop suggestions based on soil series’.

21st IEEE International Conference of Computer and Information Technology, pp.
1-4.

39

[6] Ramesh, D., Vardhan, B. V., (2013), ‘Data mining techniques and applications to

agricultural yield data’. International journal of advanced research in computer and

communication engineering, 2(9), pp.3477-3480.

[7] Saranya, N., Mythili, A., (2020), ‘Classification of Soil and Crop Suggestion Using

Machine Learning Techniques’.International Journal of Engineering Research &

Technology, pp.671-673.

[8] Srunitha.k, Dr.S.Padmavathi, (2016), ‘Performance of SVM Classifier For

Image Based Soil Classification’. International conference on Signal

Processing,Communication,Power and Embedded System, pp.411-414.

[9] Suresh, G., (2021), ‘Efficient Crop Yield Recommendation System Using

Machine Learning For Digital Farming’. International Journal of Modern

Agriculture, 10(1), pp. 906-914.

[10] Zhang, X., Younan, N.H., and O'Hara, C.G., (2005), ‘Wavelet domain statistical

hyperspectral soil texture classification’. IEEE Transactions on geoscience and remote

sensing, 43(3), pp.615-618.

40

CODE

import os

from re import template

import MySQLdb

from flask import Flask, session, url_for, redirect, render_template, r
equest, abort, flash

from database import db_connect,user_reg,user_loginact,user_uploa
d,user_viewimages

from database import db_connect,image_info,view_pred

from database import db_connect

from werkzeug.utils import secure_filename

app = Flask(__name__)

app.secret_key = os.urandom(24)

@app.route("/")

def FUN_root():

 return render_template("index.html")

@app.route("/index.html")

def logout():

 return render_template("index.html")

@app.route("/register.html")

41

def reg():

 return render_template("register.html")

@app.route("/login.html")

def login():

 return render_template("login.html")

@app.route("/upload.html")

def up():

 return render_template("upload.html")

@app.route("/viewdata.html")

def up1():

 return render_template("viewdata.html")

---register----------------------------

@app.route("/regact", methods = ['GET','POST'])

def registeract():

 if request.method == 'POST':

 id="0"

 status = user_reg(id,request.form['username'],request.form['pass
word'],request.form['mobile'],request.form['address'])

 if status == 1:

 return render_template("login.html",m1="sucess")

 else:

 return render_template("register.html",m1="failed")

#--Login------------------------------

42

@app.route("/loginact", methods=['GET', 'POST'])

def useract():

 if request.method == 'POST':

 status = user_loginact(request.form['username'], request.form['p
assword'])

 print(status)

 if status == 1:

 session['username'] = request.form['username']

 return render_template("userhome.html", m1="sucess")

 else:

 return render_template("login.html", m1="Login Failed")

#---Upload Image---------------------

@app.route("/upload", methods = ['GET','POST'])

def upload():

 if request.method == 'POST':

 id="0"

 status = user_upload(id,request.form['name'],request.form['image
'])

 if status == 1:

 return render_template("upload.html",m1="sucess")

 else:

 return render_template("upload.html",m2="failed")

#--------------------------------------View Images---------------------------

@app.route("/viewimage.html")

def viewimages():

 data = user_viewimages(session['username'])

43

 print(data)

 return render_template("viewimage.html",user = data)

#---------------------------------------Track-----------------------------------

@app.route("/track")

def track():

 name = request.args.get('name')

 iname = request.args.get('iname')

 data = image_info(iname)

 print("dddddddddddddddddddddddddddd")

 print(data)

 # data = v_image(data)

 # print("dddddddddddddddddddddddddddd")

 # print(data)

 return render_template("viewdata.html",m1="sucess",data=data)

#------------------------------------Predict-------------------------------------

@app.route("/predict", methods = ['GET','POST'])

def predict1():

 if request.method == 'POST':

 Soiltype = request.form['Soiltype']

 n = int(request.form['n'])

 p = int(request.form['p'])

 k = int(request.form['k'])

 ph = float(request.form['ph'])

44

 temp = int(request.form['temp'])

 import pandas as pd

 import numpy as np

 optimum = pd.read_excel("optimum2.xlsx", 'newData')

 #price = pd.read_excel("optimum2.xlsx", 'pricePerhr')

 optimum['N'] = optimum.N.astype(float)

 optimum['P'] = optimum.P.astype(float)

 optimum['K'] = optimum.K.astype(float)

 optimum['TEMPERATURE'] = optimum.TEMPERATURE.asty
pe(float)

 X = optimum.drop("CLASS",axis=1)

 y = optimum.CLASS

 from sklearn.neighbors import KNeighborsClassifier

 clf = KNeighborsClassifier(n_neighbors=3)

 clf.fit(X,y)

 columns = ['N','P','K','pH','TEMPERATURE']

 values = np.array([n ,p ,k, ph , temp])

 pred = pd.DataFrame(values.reshape(-1, len(values)),columns=c
olumns)

 # print(pred.dtype)

 print(pred)

 prediction = clf.predict(pred)

 print(prediction)

 #prediction=1

 data=view_pred(prediction[0])

 return render_template('crops.html',data=data)

45

--Update Item-------------------

if __name__ == "__main__":

 app.run(debug=True, host='127.0.0.1', port=5000)

Database.py:

import sqlite3

import hashlib

import datetime

import MySQLdb

from flask import session

from datetime import datetime

from tensorflow.keras.preprocessing.image import ImageDataGener
ator

from tensorflow.keras.applications import VGG16

from tensorflow.keras.layers import AveragePooling2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Input

46

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import to_categorical

from sklearn.preprocessing import LabelBinarizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from imutils import paths

import matplotlib.pyplot as plt

import numpy as np

import argparse

import cv2

import os

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGener
ator

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

import numpy as np

import os

import numpy as np

import cv2

import natsort

import xlwt

import datetime

from tensorflow.keras.preprocessing.image import load_img, img_to
_array

47

def db_connect():

 _conn = MySQLdb.connect(host="localhost", user="root",

 passwd="root", db="logo")

 c = _conn.cursor()

 return c, _conn

-------------------------------register--

def user_reg(id,username, password, mobile, address,):

 try:

 c, conn = db_connect()

 print(id,username, password,

 mobile, address)

 j = c.execute("insert into register (id,username,password,mobile
,address) values ('"+id+"','"+username +

 "','"+password+"','"+mobile+"','"+address+"')")

 conn.commit()

 conn.close()

 print(j)

 return j

 except Exception as e:

 print(e)

 return(str(e))

-------------------------------------Login -----------------------------------

def user_loginact(username, password):

48

 try:

 c, conn = db_connect()

 j = c.execute("select * from register where username='" +

 username+"' and password='"+password+"'")

 data = c.fetchall()

 print(data)

 for a in data:

 session['uname'] = a[0]

 c.fetchall()

 conn.close()

 return j

 except Exception as e:

 return(str(e))

#-------------------------------------Upload Image---------------------------

def user_upload(id,name, image):

 try:

 c, conn = db_connect()

 print(name,image)

 username = session['username']

 j = c.execute("insert into upload (id,name,image,username) valu
es ('"+id+"','"+name+"','"+image +"','"+username +"')")

 conn.commit()

 conn.close()

 print(j)

 return j

 except Exception as e:

 print(e)

49

 return(str(e))

#---------------------------------------View Images--------------------------

def user_viewimages(username):

 c, conn = db_connect()

 c.execute("select * from upload where username='"+username +"'
")

 result = c.fetchall()

 conn.close()

 print("result")

 return result

#------------------------------------Track--------------------------------------

def view_pred(prediction):

 c, conn = db_connect()

 c.execute("Select * From crop where id='"+str(prediction)+"'")

 result = c.fetchall()

 conn.close()

 print("result")

 return result

--Update Items------------------

def image_info(image_path):

 classes = {0:"Alluvial",1:"Black",2:"Clay",3:"Red"}

50

dimensions of our images

 img_width, img_height = 224,224

load the model we saved

 model = load_model('soilnew.h5')

predicting images

#img = image.load_img('MRICOVID/Train/covid/1.jpg', target_size
=(img_width, img_height))

 image = load_img(image_path,target_size=(224,224))

 image = img_to_array(image)

 image = image/255

 image = np.expand_dims(image,axis=0)

#model = load_model('soilnew.h5')

 result = np.argmax(model.predict(image))

 prediction = classes[result]

 print(prediction)

 print("ddddddddddddddddddddddddddddddddd")

 print(image_path)

 #result="Alluvial"

 c, conn = db_connect()

 c.execute("SELECT * FROM soilcrop WHERE soiltype ='"+predi
ction+"' ORDER BY RAND() LIMIT 1")

 result = c.fetchall()

 conn.close()

 print("result")

 return result

51

if __name__ == "__main__":

 print(db_connect())

Image_Search.py:

from tensorflow.keras.layers import Input,Lambda,Dense,Flatten

from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGener
ator

from tensorflow.keras.models import Sequential

import numpy as np

from glob import glob

import matplotlib.pyplot as plt

IMAGE_SIZE = [224,224]

train_path = "Landmark/Train/"

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255,horizontal_flip
=True,zoom_range=0.2,validation_split=0.15)

training_set = train_datagen.flow_from_directory(

52

 train_path,target_size=(224,224), batch_size=32,class_mode='c
ategorical',

 subset='training')

validation_set = train_datagen.flow_from_directory(

 train_path,target_size=(224,224), batch_size=32,class_mode='c
ategorical',shuffle = True,

 subset='validation')

from tensorflow.keras.applications import VGG19

from tensorflow.keras.layers import GlobalAveragePooling2D,Drop
out

We are initialising the input shape with 3 channels rgb and weight
s as imagenet and include_top as False will make to use our own custom inputs

mv = VGG19(input_shape=IMAGE_SIZE+[3],weights='imagenet',i
nclude_top=False)

for layers in mv.layers:

 layers.trainable = False

if u want to add more folders and train then change number 4 to 5
or 6 based on folders u have to train

x = Flatten()(mv.output)

prediction = Dense(4,activation='softmax')(x)

53

In[7]:

model = Model(inputs=mv.input,outputs=prediction)

model.summary()

import tensorflow as tf

class myCallback(tf.keras.callbacks.Callback):

 def on_epoch_end(self,epoch,logs={}):

 if(logs.get('loss')<=0.05):

 print("\nEnding training")

 self.model.stop_training = True

initiating the myCallback function

callbacks = myCallback()

Let us compile the model with Adam optimizer and loss function
categorical_crossentropy and metrics as categorical_accuracy

from tensorflow.keras.optimizers import Adam

model.compile(optimizer=Adam(lr=0.0001),loss='categorical_crosse
ntropy',metrics=['categorical_accuracy'])

history = model.fit(training_set,

 validation_data=validation_set,

 epochs=50,

 verbose=1,

 steps_per_epoch=len(training_set),

 validation_steps=len(validation_set),

 callbacks = [callbacks]

)

acc = history.history['categorical_accuracy']

val_acc = history.history['val_categorical_accuracy']

54

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(len(acc))

import matplotlib.pyplot as plt

plt.plot(epochs,acc)

plt.plot(epochs,val_acc)

plt.title("Training and validation Accuracy")

plt.figure()

plt.plot(epochs,loss)

plt.plot(epochs,val_loss)

plt.title("Training and validation Loss")

plt.figure()

model.save("VGG-19.h5")

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

import numpy as np

dimensions of our images

img_width, img_height = 224,224

load the model we saved

model = load_model('VGG-19.h5')

predicting images

img = image.load_img('FruitsDB/Test/Low_quality_Apple/1.jpg', tar
get_size=(img_width, img_height))

x = image.img_to_array(img)

55

x = np.expand_dims(x, axis=0)

classes = model.predict(x)

print (classes)

OUTPUT SCREEN SHOOTS

1.

56

57

58

59

60

THANK YOU

61

