
PROFESSIONAL TRAINING REPORT
at

Sathyabama Institute of Science and Technology
(Deemed to be University)

Submitted in partial fulfillment of the requirements for the award of Bachelor of Engineering

Degree in Computer Science and Engineering

By

NAME: BODAPATI SOHAN CHIDVILAS
(Reg. No.38110688)

NAME: VENKATA NAGA SAI RAKESH KAMISETTY
(Reg. No.38110635)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SCHOOL
OF COMPUTING

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY JEPPIAAR
NAGAR, RAJIV GANDHI SALAI,
CHENNAI – 600119, TAMILNADU

1

MAY 2022

2

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited with Grade “A” by NAAC

(Established under Section 3 of UGC Act, 1956)
JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI– 600119

www.sathyabamauniversity.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of BODAPATI SOHAN CHIDVILAS
(38110688), VENKATA NAGA SAI RAKESH KAMISETTY (38110635) who carried out the

project entitled “DIGITIZATION OF DATA FROM INVOICE USING OCR” under my

supervision from August 2021 to November 2021.

Internal Guide

Name: Dr. S. Revathy M.E., Ph.D.,

Head of the Department

Name: Dr. S. VIGNESHWARI M.E., Ph.D.,

Name: Dr. L. LAKSHMANAN M.E., Ph.D.,

Submitted for Viva voce Examination held on

3

http://www.sathyabamauniversity.ac.in/

Internal Examiner External Examiner

4

DECLARATION

I BODAPATI SOHAN CHIDVILAS and VENKATA NAGA SAI RAKESH KAMISETTY hereby declare that

the Project Report entitled DIGITIZATION OF DATA FROM INVOICE USING OCR done by me

under the guidance of Dr. S.Revathy M.E., Ph.D., (Internal) at cSoft Technologies (Company name and

address) is submitted in partial fulfillment of the requirements for the award of Bachelor of Engineering

degree in Computer Science and Engineering.

DATE: 09-11-2021 BODAPTI SOHAN CHIDVILAS
VENKATA NAGA SAI RAKESH KAMISETTY

PLACE: CHENNAI SIGNATURE OF THE CANDIDATE

5

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of SATHYABAMA for

their kind encouragement in doing this project and for completing it successfully. I am grateful to

them.

I convey my thanks to Dr. T.Sasikala M.E., Ph.D., Dean, School of Computing ,

Dr.S.Vigneshwari M.E., Ph.D., and Dr.L.Lakshmanan M.E., Ph.D., Heads of the Department

of Computer Science and Engineering for providing me necessary support and details at the

right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide Dr. S.Revathy
M.E., Ph.D., for his valuable guidance, suggestions and constant encouragement paved way for the

successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the Department
of Computer Science and Engineering who were helpful in many ways for the completion of

the project.

6

TRAINING CERTIFICATE

7

TRAINING CERTIFICATE

8

ABSTRACT

Optical Character Recognition (OCR) is a predominant aspect to transmute scanned
images and other visuals into text. Computer vision technology is extrapolated onto
the system to enhance the text inside the digitized image. This preliminary
provisional setup holds the invoice's information and converts it into JSON and CSV
configurations. This model can be helpful in divination based on knowledge
engineering and qualitative analysis in the nearing future. The existing system
contains data extraction and nothing more. In a paramount manner, image
pre-processing techniques like black and white, inverted, noise removal, grayscale,
thick font, and canny are applied to escalate the quality of the picture. With the
enhanced image, more OpenCV procedures are carried through. In the very next
step, three different OCRs are used: Keras OCR, Easy OCR, and Tesseract OCR,
out of which Tesseract OCR gives the precise result. After the initial steps, the
undesirable symbols (/t, /n) are cleared to get the escalated text as an output.
Eventually, a unique work that is highly accurate in giving JSON and CSV formats is
developed.

Impact statement— In our protrude, a front-end android app is developed which
takes input from the user and stores the output onto the database. The JSON and
CSV files can be viewed through an app by the end.

ABBREVATIONS

OCR – Optical Character Recognition
JSON - JavaScript Object Notation
CSV – Comma-separated values

9

TABLE OF CONTENTS

CHAPTER
No.

TITLE PAGE No

ABSTRACT

LIST OF ABBREVATIONS

7

7

1. INTRODUCTION 9

1.1 Project Statement 10

1.2 Project Justification 10

2. LITERATURE SURVEY 11

3. AIM AND SCOPE OF THE PRESENT
INVESTIGATION

22

4. EXPERIMENTAL OR MATERIALS AND 23
METHODS; ALGORITHMS USED

4.1 Language used 23

4.2 Python libraries used

4.3 Phases of work

23

5.

6.

RESULTS AND DISCUSSION, PERFORMANCE
ANALYSIS

5.1 Experimental results compared with in-use OCR
results

5.2 Subjective Results

5.3 Limitations

SUMMARY AND CONCLUSIONS

REFERENCES

APPENDIX

33

33

33

34

35

36

38

10

A. SCREENSHOTS
B. SOURCE CODE

38
43

CHAPTER 1

INTRODUCTION

Computer vision drew attention by swaying as a data- reliant stratified feature in
extraction methods.
Visualization technology has been imposed to decipher an image to make the
machine understand. Optical Character Recognition (OCR) automatically extracts
characters from the image and recognizes text quickly using an existential database.
OCR is a meticulous technology that comes up with legible recognition of inscribed or
in-written characters from images which will be further digitized in our apparatus.
Various procedures have been in use already. Despite this, the existing OCRs cannot
convert the text into the desired form that the end-user needs. In this current era,
OCR has been the most dominant technology. OCR can be used in an enchanting
number of ways apart from just extracting the text. They are shown in a different
dimension here.

Among the OCRs around globe, the least preferred is Keras OCR as it goes with line
segmentation. The other one is Easy OCR, a parasite of spaces. Finally, Tesseract
OCR is the best open-source choice as it can be corelated with python libraries
called pytesseract. Tesseract OCR extracts the text based on the invoice format. The
exact explanation of how tesseract OCR extracts the text form the image is inscribed
in section V under phase 4. The primary Python library used in our structure is
OpenCV, which helps the machine find objects in the image and make OCR work
efficiently. In this adorable framework, pdf or an image (JPG, JPEG, PNG) is taken as
input from the android app. If it is a pdf, it will be converted into a picture, then
pre-processing techniques (Black and white, no noise, Grayscale, thick font) have
been used to amplify the text. Textual content is a conduit where details are
confronted with a machine orderly to give a valid result. Multiple approaches are
there to extract text in many different ways with an OCR to get the most accurate
result. It has to be validated with a set of pre-trained images to get an efficient output.
Then the noise should be filtered from the photo to make the above statement work.
Below are the few processing methodologies for an image to be intensified under
OpenCV.
Thresholding is a form where the image will be segmented to understand the image
better. Several procedures have been applied like spatial to correspond with the
pixels and further computerize it to black and white for highlighting the words to bring

11

back the highest quality. The pivot OpenCV methodology also sharpens the image by
blurring the borders to make the essential fields stand out. Threshing also includes
smoothening where it evens rough side to blend the text. The text got from the OCR
may not be error-free. So, regular expressions have been used to clean the printed
characters further. The string format must be converted into a list by splitting it as a
ratio. In the concluded part of our setup, the cleaned text is converted into JSON and
CSV formats for better comprehension.
Here JavaScript Object Notation (JSON) is a format that will return the object from
the back-end server and edit cookies. Apart from the primary use, the web
developers mostly use it to deploy output onto the web page. Mainly, Key pair values
are generated and commonly known as dictionaries in python. CSV is a format where
a comma separates the values, and a tabular column is created, which returns as an
excel sheet. The basic idea of developing an app is to make it uncomplicated. A
rudimentary java file picker has been evolved to residue the complexity.

1.1 PROBLEM STATEMENT

It is observed that the performance of the computer vision degrades drastically under
the course of action. The results are also compared with existing computer vision
fooling approaches to evaluate the accuracy drop. We propose a primary
state-of-the-art performance using the solution in terms of the computer robustness
under OCR is observed in the experiments. No OCR in the world which can detect
only the specific contents with more than 80 percent accuracy which can convert it
into JSON or CSV.

1.2 PROJECT JUSTIFICATION

The necessity of this protrude is extracting the relevant data instead of unnecessary
matter. For instance, take medical bills, when we need only the tabular contents then
there is no OCR that can detect the tabular columns separately, that to with 80 %
accuracy and returning the output as JSON as well as csv. The main advantage of
JSON and CSV is that the end user need not enter contents as they will directly
return the particulars. Our methodology proves to be highly accurate while tested on
a variety of input images of bills and invoices. This course of action achieves an
increase in accuracy by 80%. The proposed approach can be used to improve the
robustness of Computer Vision.

12

CHAPTER 2

LITERATURE SURVEY

2.1 OCR text extraction

Abstract:

This research tries to find out a methodology through which any data from the
daily-use printed bills and invoices can be extracted. The data from these bills or
invoices can be used extensively later on - such as machine learning or statistical
analysis. This research focuses on extraction of final bill-amount, itinerary, date and
similar data from bills and invoices as they encapsulate an ample amount of
information about the users purchases, likes or dislikes etc. Optical Character
Recognition (OCR) technology is a system that provides a full alphanumeric
recognition of printed or handwritten characters from images. Initially, OpenCV has
been used to detect the bill or invoice from the image and filter out the unnecessary
noise from the image. Then intermediate image is passed for further processing
using Tesseract OCR engine, which is an optical character recognition engine.
Tesseract intends to apply Text Segmentation in order to extract written text in
various fonts and languages. Our methodology proves to be highly accurate while
tested on a variety of input images of bills and invoices.

2.2 Mixed-Initiative Approach to Extract Data from Pictures of Medical Invoice

Abstract:

Extracting data from pictures of medical records is a common task in the insurance
industry as the patients often send their medical invoices taken by smartphone
cameras. However, the overall process is still challenging to be fully automated
because of low image quality and variation of templates that exist in the status quo.
In this paper, we propose a mixed-initiative pipeline for extracting data from pictures
of medical invoices, where deep-learning-based automatic prediction models and
task-specific heuristics work together under the mediation of a user. In the user
study with 12 participants, we confirmed our mixed-initiative approach can
supplement the drawbacks of a fully automated approach within an acceptable
completion time. We further discuss the findings, limitations, and future works for
designing a mixed-initiative system to extract data from pictures of a complicated
table.

13

2.3 OCR for Data Retrieval: An analysis and Machine Learning Application
model for NGO social volunteering

Abstract:

With the increase in amount of information being made available in digital format,
information retrieval is a challenging task. Currently there exists a gap between
organizations, volunteers and NGOs for volunteering work. There has been an
upsurge of NGOs, non-profit events and corresponding independent volunteers or
organizations willing to interconnect especially during these pandemic times. There is
a need to fill this gap and connect the stakeholders minimizing the emergency
response times. This paper proposes a novel design and implementation of an OCR
based application for Automated NGO connect using machine learning. Phases
implemented include image de-noising, binarization, data extraction and data
conversion. The framework integrates deep learning-based Tesseract OCR with
image processing module and Data visualization module. The proposed model can
be extended to other application domains as well for research purposes.

2.4 Comparative Analysis of Text Extraction from Color Images using Tesseract
and OpenCV

Abstract:

Image-based Text Extraction has a growing requirement in today's generation.
Students, doctors, and engineers generate a lot of images every day. It is very
important to extract text from these images in a simple yet effective manner. We can
obtain useful information by testing these images. We aim is to summarize the visual
information and retrieve its content. The Optical Recognition System involves several
algorithms that fulfill this purpose. Text Extraction involves a lot of processes from
text detection, localization, segmentation and, text recognition. Tesseract is the most
optimized OCR Engine build by HP Labs and owned by Google. Text Detection
involves the recognition of text from desired input images. Text Localization involves
identifying the position of text on the images. Tesseract works pretty well on the
light-colored background but unable to recognize text on darker shades. We have
tried to apply various image processing techniques. This method will allow us to
recognize text from most types of background. We propose to provide methods for

14

easy text extraction. Track bar allows the user to adjust various parameters to extract
a required text from an Image. This method is gaining huge importance in years to
come. For Automation, we can use a set of image processing techniques such as
edge detection, filtering and, blurring for better results. A series of these steps will
enable us to extract text from images efficiently. This experiment compares the
optimized result by two methods for efficient Text Extraction.

2.5 Analysis of Image Classification for Text Extraction from Bills and Invoices

Abstract:

Optical Character Recognition (OCR) technology offers a complete alphanumeric
recognition of printed or handwritten characters from pictures such as scanned bills
and invoices. Intelligent extraction and storage of text in structured document serves
document analytics. The current research attempts to find a methodology through
which any information from the printed invoice can be extricated. The intermediate
image is passed over using an OCR engine for further processing. Segmentation
extracts written text in various fonts and languages. Image classification helps in
making a decision based on the classification results. This paper surveys these
techniques and compares them in terms of metrics, algorithm and results.

2.6 Text Orientation Detection Based on Multi Neural Network

Abstract:

Optical character recognition (OCR) is an important research area in the field of
pattern recognition, such as Vehicle License Plate Recognition. With it, we can
extract textual information from the images to facilitate digital processing. However,
most existing systems are designed to detect or recognize horizontal (or
near-horizontal) texts and can't be applied to recognize texts of varying orientations.
Text Orientation Detection is an important but challenging task. It can be used as a
pre-processing for previous researches, and allows them to be adapted to more
complex situations. Once we get angle of the text, we can use a series of
transformations to get horizontal text. Although this problem is a multiclass
classification, the results using common multiclass classification methods are not
ideal. Our algorithm is inspired by the human behavior of recognizing texts. In this
paper, we propose a new algorithm containing three neural networks to detect text
orientation. The first is for capturing the abstract information of text image, and
trained on multi-orientation, synthetic texts. Then the second is for evaluating the
correctness of meaning of texts and trained on horizontal texts. The output of these
two neural networks serves as the input to the last. In this way, the last neural
network can obtain information about the image of the text as well as its meaning,

15

and finally evaluate and output the angle of the text. According to the results, our
proposed method can guarantee a high accuracy of text orientation detection.

2.7 Data Extraction from Invoices Using Computer Vision

Abstract:

Management of invoices and maintaining their records for further processing
sometimes it is hectic and buying specially developed software is not worth for small
enterprises. The majority of the businesses has similar requirements and most of
them use the traditional management system like recording data manually and
maintaining hardcopies, a result, it consumes a lot of time as well as space. The
proposed system is a web-based application specially built for small businesses like
retailers and wholesalers. It is a standard business application made according to the
standard requirements of businesses. The prime objective is to make data available
for the user so that the user can access it anytime from anywhere and can modify it if
need. Considering availability and accessibility this web-based application will help to
achieve objectives. Our system focuses on the extraction of invoice data and
segregates it into different parts like Vendor name, Invoice number, item name, and
quantity. Our system tries to find out a better Management solution for auditing. We
have initially focus on image invoices. The proposed solution follows three main
steps preprocessing with the help of different OpenCV techniques and functions,
then the next step is data extraction with the help of OCR technology and
post-processing with the help of RegEx technology for better accuracy. The proposed
system is web based applications, specially build for small businesses like retailers
and wholesalers. It is a standard business application made according to the
standard requirements of businesses. The prime objective is to make data available
for the user so that the user can access it anytime from anywhere and can modify it if
need. Considering availability and accessibility, this web-based application will help
to achieve objectives.

2.8 Extraction of information from bill receipts using optical character
recognition

Abstract:

16

This paper presents an application of optical character recognition (OCR) which can
extract information from images of bills and receipts; store it as machine-processable
text; in an organized manner for ease of access. It can do this efficiently even in the
presence of watermarks on the bills or any shadows in the images of the bills. In
developing this application, OpenCV has been used for the processing of the images
and the Tesseract OCR engine has been used for optical character recognition and
text extraction. The image is first processed using OpenCV for the removal of any
shadows or watermarks present in it. For longer invoices, by employing the image
bifurcation process, the data can be easily extracted which was not possible earlier.
Furthermore, the processed image is passed on to the Tesseract OCR engine for the
retrieving of text present in it. The text is then searched for important information,
such as the total amount spent and the date on the receipt, using string processing.
2.9 Text extraction using OCR: A Systematic Review

Abstract:

In the digital era, almost everything is automated, and information is stored and
communicated in digital forms. However, there are several situations where the data
is not digitized, and it might become essential to extract text from those to store in
digitized form. The latest technology such as Text recognition software has
completely revolutionized the process of text extraction using Optical Character
Recognition. Therefore, this paper introduces the concept, explains the process of
extraction, presents the latest techniques, technologies, and current research in the
area. Such a review will help other researchers in the field to get an overview of the
technology.

2.10 Reagan: a low-level image processing network to restore compressed
images to the original quality of JPEG

Abstract:

Low-level image processing is mainly concerned with extracting descriptions (that are
usually represented as images themselves) from images. With the rapid development
of neural networks, many deep learning-based low-level image processing tasks
have shown outstanding performance. In this paper, we describe a unified deep
learning based approach for low-level image processing, in particular, image
denoising, image deblurring, and compressed image restoration. The proposed
method is composed of deep convolutional neural and conditional generative
adversarial networks. For the discriminator network, we present a new network
architecture with bi-skip connections to address hard training and details losing
issues. In the generative network, a multi-objective optimization is derived to solve
the problem of common conditions being non-identical. Through extensive
experiments on three low-level image processing tasks on both qualitative and

17

quantitative criteria, we demonstrate that our proposed method performs favorably
against all current state-of-the-art approaches.

2.11 Offline optical character recognition (OCR) method: An effective method
for scanned documents

Abstract:

Optical Character Recognition (OCR) is a major computer vision task by which
characters of image are detected and recognized by comparing to training set
images. Process of detecting character is one of the perplexing tasks in computer
vision. This is because of input image often not correctly aligned or because of noise.
This paper presents a complete Optical Character Recognition (OCR) system which
is worked for English character mostly for Calibri font. This system first corrects skew
of image if input image is not correctly aligned followed by noise reduction from input
image. This process is passed through line and character segmentation that are
passed into the recognition module and recognize characters. By experimenting with
a set of 50 images, average achievement is 92%, 98% is for Calibri font. Moreover,
the developed technique is computationally efficient and requires less time than other
Optical character recognition system.

2.13 Deep Statistical Analysis of OCR Errors for Effective Post-OCR
Processing

Abstract:

Post-OCR is an important processing step that follows optical character recognition
(OCR) and is meant to improve the quality of OCR documents by detecting and
correcting residual errors. This paper describes the results of a statistical analysis of
OCR errors on four document collections. Five aspects related to general OCR errors
are studied and compared with human-generated misspellings, including edit
operations, length effects, erroneous character positions, real-word vs. non-word
errors, and word boundaries. Based on the observations from the analysis we give
several suggestions related to the design and implementation of effective OCR
post-processing approaches.

2.14 Invoice Classification Using Deep Features and Machine Learning
Techniques

Abstract:

Invoices are issued by companies, banks and different organizations in different
forms including handwritten and machine-printed ones; sometimes, receipts are
included as a separated form of invoices. In current practice, normally, classifying

18

these types is done manually, since each needs a special kind of processing such as
making them suitable for optical character recognition systems (OCR). Classifying
the invoices manually to different categories is a hard and time-consuming task.
Therefore, we propose an automatic approach to classify invoices into three types:
handwritten, machine-printed and receipts. The proposed method is based on
extracting features using the deep convolutional neural network AlexNet. The
features are classified using various machine learning algorithms, namely including
Random Forests, K-nearest neighbors (KNN), and Naive Bayes. Different
cross-validation approaches are applied in the experiments to ensure the
effectiveness of the proposed solution. The best classification result was 98.4% (total
accuracy), which was achieved by the KNN, such an almost perfect performance
allows the proposed method to be used in practice as a preprocess for OCR
systems, or as a standalone application.

2.15 Android-Based Text Recognition on Receipt Bill for Tax Sampling System

Abstract:

Text is an element which provides information to the readers. However, not all text is
informative, some are still in need to be processed to generate information. In text
processing process, data is required to be inputted into the system. The input
process will be easier if the text is already in digital form. The main issue is when the
text is in the non-digital form such as in the form of image. This image should be
converted into a form which recognized by the machine. Therefore, an approach is
required to be able to identify the text on the images, in expectation to generate text
that can be processed by the machine. The method proposed for this research to
identify the text is Convolutional Neural Network. Before and after entering the
identification process, the input image will go through several pre-processing and
post-processing phases to select which text to be displayed as a result. The testing
process used images of receipt taken at the distance of 10cm and 12 cm. The result
showed the accuracy rates of the testing using images of receipt taken at the
distance of 10cm and 12 cm are 95% and 85% respectively.

2.16 A Proposed Approach for Character Recognition Using Document
Analysis with OCR

Abstract:

Data entry has been a hectic job since the era of data accumulation started.
Apparently, that is why there is a full-fledged career in data entry. Data entry method
varies with requirements. Early days of computers relied on punch cards and

19

gradually keyboards and mouse came into picture which we still use. Touchscreens
didn't take much time to replace the physical keyboard inputs and now as the result
of human intelligence and innovation, the era of the optical input is here. Where the
user does not even have to take the pain of thinking about entering data but can
simply use an optical reader or scanner to input data. Using the computational power
the individual elements like text, images, and special characters can be
distinguished. OCR-Optical Character Recognizer does the work. OCR works similar
to humans when it comes to character recognition as it maintains a database of
characters and compares all the scanned elements with the database which makes it
really simple to understand. This paper explains the working of an OCR in its
different stages. That study helps in finding the various drawbacks of the
conventional system. The paper also tells about how those shortcomings can be
eliminated and how a better OCR that is future ready can be achieved.

2.17 Identification of Optimal Optical Character Recognition (OCR) Engine for
Proposed System

Abstract:

A large number of research efforts have been put forward that attempts to transform
a document image to format understandable for machine so that it can recognize the
text or the information from the image. OCR i.e. Optical Character Recognition
provides a solution for this. OCR is software that converts printed text and images
into digitized form such that it can be manipulated by machine. OCR systems have
established a niche place in pattern recognition. OCR has two categories, online and
offline. The image of the scanned document goes through various stages like
preprocessing, segmentation, feature extraction, etc. in order to retrieve the
information from the image. OCR is also popular among the Android applications.
Tesseract is one of the most widely used open-source library for implementing OCR
in Android application.

2.18 Text Extraction from Bills and Invoices

Abstract:

This research tries to find out a methodology through which any data from the
daily-use printed bills and invoices can be extracted. The data from these bills or
invoices can be used extensively later on - such as machine learning or statistical
analysis. This research focuses on extraction of final bill-amount, itinerary, date and
similar data from bills and invoices as they encapsulate an ample amount of

20

information about the users purchases, likes or dislikes etc. Optical Character
Recognition (OCR) technology is a system that provides a full alphanumeric
recognition of printed or handwritten characters from images. Initially, OpenCV has
been used to detect the bill or invoice from the image and filter out the unnecessary
noise from the image. Then intermediate image is passed for further processing
using Tesseract OCR engine, which is an optical character recognition engine.
Tesseract intends to apply Text Segmentation in order to extract written text in
various fonts and languages. Our methodology proves to be highly accurate while
tested on a variety of input images of bills and invoices.

2.19 A different image content-based retrievals using OCR techniques

Abstract:

It is very difficult to retrieve image from large no of database which contain some
message on it. The OCR techniques are becoming very efficient techniques for
external and fast retrievals. The OCR technique search image based on data or text
written on image. It search image or message contain in the image OCR the
mechanical or electronic conversion of images of typed, handwritten or printed text,
whether from scanned document, a scene-photo. For that Tesseract will use. After
recognizing text from image by OCR, it will store that message in any file. After that
we used Boyer-Moore string search algorithm, for searching string stored in file.

2.20 Inter-App Communication between Android Apps Developed in
App-Inventor and Android Studio

Abstract:

Communications between mobile apps are an important aspect of mobile platforms.
Android is specifically designed with inter-app communication in mind and depends
on this to provide different platform specific functionalities. Android Apps can either
be designed with the help of Android SDK and using IDEs such as Android Studio or
by using a browser based platform called App Inventor. These two development
platforms provide their own technique for inter-app communication in the same
platform, however lack an established method of inter-app communication when
apps are developed using the two separate development platforms. This paper
provides the missing information required for the app communications and presents
the method for sending and receiving arguments between apps developed in these
two platforms. The paper also outlines the significance of the result, and examines
their limitations.

2.21 An efficient mixed noise removal technique from grayscale images using
noisy pixel modification technique

21

Abstract:

Removing or reducing noises from image is a very active research area in image
processing domain. This paper presents an efficient noise removal technique to
restore digital images corrupted by mixed noise, preserving image contents optimally.
The proposed filtering technique consists of two steps: the noisy pixel detection step
using fuzzy technique and the mixed noise filtering step. Noises addressed in this
method are a combination of salt and pepper noise and Gaussian noise. This method
reduces mixed noises considerably without compromising on edge sharpness.
Experimental results show that the proposed technique consistently outperforms
many existing fuzzy based algorithms while balancing the tradeoff between noise
reduction and detail preservation. Hence, this mixed noise removal technique finds
application in various segments of image processing like digital television, medical
image processing, digital camera, surveillance systems etc.

2.24 Construction of Statistical SVM based Recognition Model for Handwritten
Character Recognition

Abstract:

There are many applications of the handwritten character recognition (HCR)
approach still exist. Reading postal addresses in various states contains different
languages in any union government like India. Bank check amounts and signature
verification is one of the important application of HCR in the automatic banking
system in all developed countries. The optical character recognition of the documents
is comparing with handwriting documents by a human. This OCR is used for
translation purposes of characters from various types of files such as image, word
document files. The main aim of this research article is to provide the solution for
various handwriting recognition approaches such as touch input from the mobile
screen and picture file. The recognition approaches performing with various methods
that we have chosen in artificial neural networks and statistical methods so on and to
address nonlinearly divisible issues. This research article consisting of various
approaches to compare and recognize the handwriting characters from the image
documents. Besides, the research paper is comparing statistical approach support
vector machine (SVM) classifiers network method with statistical, template matching,
structural pattern recognition, and graphical methods. It has proved Statistical SVM

22

for OCR system performance that is providing a good result that is configured with
machine learning approach. The recognition rate is higher than other methods
mentioned in this research article. The proposed model has tested on a training
section that contained various stylish letters and digits to learn with a higher accuracy
level. We obtained test results of 91% of accuracy to recognize the characters from
documents. Finally, we have discussed several future tasks of this research further.

2.25 Capsule Network Algorithm for Performance Optimization of Text
Classification

Abstract:

In regions of visual inference, optimized performance is demonstrated by capsule
networks on structured data. Classification of hierarchical multi-label text is
performed with a simple capsule network algorithm in this paper. It is further
compared to support vector machine (SVM), Long Short Term Memory (LSTM),
artificial neural network (ANN), convolutional Neural Network (CNN) and other neural
and non-neural network architectures to demonstrate its superior performance. The
Blurb Genre Collection (BGC) and Web of Science (WOS) datasets are used for
experimental purpose. The encoded latent data is combined with the algorithm while
handling structurally diverse categories and rare events in hierarchical multi-label text
applications.

2.26 Twitter Sentiment Analysis Using Supervised Machine Learning

Abstract:

Sentiment analysis aims to extract opinions, attitudes, as well as emotions from
social media sites such as twitter. It has become a popular research area. The
primary focus of the conventional way of sentiment analysis is on textual data. Twitter
is the most renowned microblogging online networking site in which user posts
updates related to different topics in the form of tweets. In this paper, a labeled
dataset publicly available on Kaggle is used, and a comprehensive arrangement of
pre-processing steps that make the tweets increasingly manageable to normal
language handling strategies is structured. Since each example in the dataset is a
pair of tweets and sentiment. So, supervised machine learning is used. In addition,
sentiment analysis models based on naive Bayes, logistic regression, and support
vector machine are proposed. The main intention is to break down sentiments all the
more adequately. In twitter sentiment analysis, tweets are classified into positive
sentiment and negative sentiment. This can be done using machine learning
classifiers. Such classifiers will support a business, political parties, as well as
analysts, etc., and so evaluate sentiments about them. By using training, data

23

machine learning techniques correctly classify the tweets. So, this method doesn’t
require a database of words, and in this manner, machine learning strategies are
better and faster to perform sentiment analysis.

CHAPTER 3

AIM AND SCOPE OF THE PRESENT INVESTIGATION

My project aim is to convert the invoice tabular contents into JSON and CSV formats
with more than 95% accuracy. I achieved it through the basic image pre-processing
techniques like black and white, grayscale and no-noise. After the conversion I read
the characters from the invoice line by line using optical character recognition and
then identify the company name and headers. Then clean the original text by
removing all unnecessary characters. Based on the headers specific we are going to
proceed with the logic and converted the clean text to JSON and CSV formats with
100% accuracy.
The prominent features of our protrude includes:
After acquiring the cleaned text from OCR, wordings are reshaped into the desired
form, and then proceeded based on header-specific contents to convert it into JSON
or CSV formats, respectively. The entire apparatus is set down as an app to make it

24

well ordered. The app will provide CSV and JSON configurations about invoices by
giving the invoice number. The particulars may contain tabular contents and all the
vital parts present in the invoice, and also end-user can give the input till where he
needs the tabular contents [Table. 1].

CHAPTER 4

EXPERIMENTAL OR MATERIALS AND METHODS; ALGORITHMS USED

4.1 LANGUAGE USED:

● Python 3.9

● Java

4.2 PYTHON LIBRARIES USED:

● tesseract_OCR: this is used for specifying tesseract path (pip install
tesseract).

● numpy: default library (pip install numpy).
● cv2: (pip install opencv-python).

25

● pdf2image. Converts pdf format to image if the invoice is in pdf.

● Fuzzywuzzy: it makes the image diaphanous.

● copy: to remove replicates(deepcopy).

● re: It is used for cleaning text.

● Json and csv.

The study started with the fascinating computer vision technology, initialized with
OCR. The machine tries to understand objects present in the image with sublime
parasite OCR. Several papers are referred to understand how OCR works mainly.
After taking the ideology, the protrude is initialized using Tesseract OCR and got
more than eighty percent accuracy. The activity starts by taking pdf or image as an
input, further sent to a greater extent called image pre-processing. Will process the
text additionally to remove obscure characters and split it by line to simplify it. Then
will be converted into JSON and CSV. Finally, it can be viewed within the app.

Here are the in-detail recessions used:
A. Tesseract OCR

The most ranked and the best optical character recognition came into the public eye
in the late 90s. The Tesseract OCR extracts the text out of the bounds from the
respective image. This engine can be compatible with any source and is included in a
python library as pytesseract.

B. Python libraries
Starting with NumPy, it is used for manipulating pixels into an array. It will be
converted into collections for identification to an extent greater use.
cv2 is used for distinguishing the text present in the image by applying thresholding
methods.
Poppler library is used in our setup to convert pdf as an image to enhance the
standard. Link is provided to load in [Poppler].
Fuzzywuzzy makes the image diaphanous. The other significant use is to match the
strings inside a list.
Regular expressions are used to match and remove unwanted characters.
Deepcopy is used to remove duplicates.
JSON: is used in the server to return objects as a key pair value.
CSV can be easily stored on the database and understood by everyone.

Pre-processed images

Grayscale image:
Grayscale is the primary image processing technique that makes the base to other

26

https://drive.google.com/drive/folders/11Dp4OKoAZmPix1i98JKwp5e29_ArsE6N?usp=sharing

image processing methods and can further process to amplify the grade of the
content, as shown in fig. 4.1.

Fig 4.1: Grayscale image.

Inverted image:

Fig 4.2: Inverted image
Inverted is used to remove all the dispensable noise around the image and upscale
the color to take out the text illustrated in fig. 4.2.

Canny image:
Canny is mainly used to crop out the unessential content in the image. When the
image is unclear, this is a handy tool that comes in place and upgrades the picture,
as depicted in fig. 4.3.

27

Fig 4.3: Canny image

Black and white image:
Black and white image initially takes Grayscale as an input to make the text bold
and legible, as portrayed in fig. 4.4.
The entire pre-processing of the images is shown in flow chart.

Fig 4.4: Black and white image

A. File picker app
The app which runs on the apache server takes the input from the user, as
shown in sample Input can be in the form of a pdf or an image. XAMPP, which
provides apache to run the app is used. A laptop is turned into a XAMPP server,
which only works on a local area network. After taking the input, it will be
uploaded to the database and the local storage. The local storage gets the
information with the help of retrofit, which connects us with an HTTP request.

28

Fig 4.5: App interface

B. Database
The database used is MySQL. Eventually, the output will get stored inside MySQL
on which the server is running. The distinguished database used is cost- effective
and can keep it in local storage, making the python script much more accessible.

29

Fig 4.6: System local storage

C. PHP
The personal home page (PHP) script is a piece of cake to make our back-end
python code run with the help of a command shell to store the output for further
processing.

D. Python script, which runs on the back-end
Code is automated with PHP's help, which runs along with the app whenever the
input is obtained from the user. The command shell is opened up with the PHP
script's collateral running and tells us the exact time on how long the program ran.
The whole scenario depicts the complexity of the project in words. The forthcoming
section describes the phases implemented with the accrued libraries written above
to amalgamate the consequence.

4.3 Phases of work

PHASE 1. App enacts as a front-end

With the help of android tools, the fundamental file picker app takes the input in a pdf
or an image file. An app that runs on the XAMPP server takes the input and stores it
inside the database and the predominant storage on our laptop. Now, send the file to
the python script to lay a path for the coming procedures.

30

PHASE 2. PHP connected with a python script which runs as a back-end

Whenever the invoice is given to the app, it will be mechanized with the python
script. Along with the assistance of PHP, the command shell is opened
simultaneously and stores the file to automate the code.

Fig 4.7: OCR results

PHASE 3. Receiving the input and reading the text

If the input is in the form of a pdf, if it is an image, it will directly get into the
pre-processing phase. The initial step after getting the image is to digitize the
image to make the machine understand the text and compare it with the empirical
database to get a constitutional output. The program which will convert the image
into the necessary format is OpenCV.
OpenCV provides many resources before going into image processing. The most
crucial method is thresholding, where the image is contoured and converted into

31

binary format. The next step is to imply various image pre-processing for the image
got. The image needs to be converted into Grayscale to pave the way for the
remaining techniques. Essentially the image will go through inverted processing as
the accuracy is not good. The following methodology is noise removal, as it
discards the noise around and makes the picture look good.
Right after that, thick font and thin font are applied, which are not effectual, which
leads to abate in the accuracy. In the coming step, canny, which is good at edge
detection and contours is used. It tries to fan out unessential parts of the picture
and pass it on to the black and white to make by tesseract work on it.
After the image is converted into OpenCV format, image cleaning is employed,
which tries to improve the grade of the image for better results.
Finally, the image is passed on to the OCR to detect text.

Fig 4.8: Flow chart

32

PHASE 4. Tesseract OCR

As depicted in fig.7, out of the three OCRs, the Tesseract OCR is used, which is
the finest of all the remaining OCRs as it goes based on invoice format. Once
merged with python libraries, it is called the Pytesseract OCR and can be easily
turned with any non-proprietary library.
Tesseract OCR mainly works on recurrent neural network (RNN) called Forward
Long short-term memory which is a neural network subsystem customized as a line
recognizer of text as it is the best method. In a pictorial representation of how the
tesseract OCR uses long short-term memory network which is initiated in a forward
manner.
Firstly, it will identify each and every letter and compare it with the beam search
which goes sequentially one after the another. After the extraction, all the unwanted
symbols like \t will be coming up. In the further section, cleaning the text has been
discussed.

PHASE 5. Text cleaning and Table Detection

After getting the OCR text, this phase removes obscure characters with the help of
regular expressions. In the tertiary step, the text-based online segmentation is split.
As the cleaned text is in a string form, the text must be transformed into a list of
items. Succeeding the previous step, the header should be popped out based on
the fuzzy library, which helps to match the manual header. If the contents match
more than eighty percent, a ratio is set to take out the elements.
Preceding the above point, the text is segregated based on headers, the contents to
pop out are identified and a new list is created.
If the contents of the cleaned text match, this will go into the distributor-specific logic
to extract the table. After identifying header contents as shown in list created
picture, it will search for the keywords specified and place the table’s onset and
outcome. Another method is to determine based on serial number (S.I. No.). For
instance, it will take the final serial number of the tabular column and consider it as
the final numeric of the table leading to end of the table.
Suppose if the invoice does not contain the S.I. No, it will identify the keyword given
in the code and find the end of the table accordingly.

PHASE 6. Recreation of Table and Storing into JSON and CSV format

As portrayed in list created picture, the cleaned and extracted text will often be
different, and missing fields will be ignored. The underlined text in list created
picture is converted into the preferred configuration. This phase will match the
contents into specific columns based on company-specific logic.
Once the tables have been recreated, the contents will be saved as JSON and CSV
files, respectively. These files are formed with the help of JSON dump python library

33

by creating dictionary and zipping it further into a CSV with the assistance of JSON
dump along with CSV dictionary writer which is a module in python.
In order to create a dictionary, a specific logic to segregate the columns by creating
a range of keywords is written. This sorting works on similar formats if there are no
misplaced values. Handwritten characters can also be identified based on the
legibility.

PHASE 7. To view the contents using the app

The output will be stored inside the local storage where the PHP script is placed.
After receiving the outcome, it is uploaded to the XAMPP database through which
our operation is connected and formats can be viewed easily with an app. The App
should be discovered by the system to view the formats saved.

A. Algorithm
Step 1: Firstly, the invoice is taken from the end-user through an app that runs on
the XAMPP server. The source can be in pdf or an image format. Then, it is
converted into a processed image for more accuracy and stored in the database.
Step 2: In the second step, image processing techniques are applied and the best
one which suits is found. As the python script runs on the back-end, with the help of
PHP script, code can be connected to the java app.
Step 3: In the tertiary step, Tesseract OCR will come in place to extract the text
from the invoice and remove flawed characters to make it into a list.
Step 4: To identify the distributor, the header contents are used to segregate with
one another.
Step 5: Then, the end of the table is found with keywords and S.I. No.
Step 6: Finally, the table is extracted and converted into a JSON and CSV file.
Step 7: Contents can be finally viewed through the app.

34

Fig 4.8: System architecture

35

CHAPTER 5

RESULTS AND DISCUSSION, PERFORMANCE ANALYSIS

This segment summarizes the outcome of our protrude. Primarily, the results are
compared with the existing OCRs end product and bottom line to enhance the text's
conversion into JSON and CSV formats.

5.1 Experimental results compared with in-use OCR results
The existing OCRs have the outcome in the form of cleaned text and some other
focus on qualitative analysis with great accuracy. Major OCRs try to extract essential
fields present in the invoice as a potentially significant event, as shown in
Considering the gravity of the situation, an adamant result by turning text into a
desired form is given. With a ninety percent accuracy, the result is articulated.

5.2 Subjective results
The protrude is aggrandized with a qualitative idea of converting the text into JSON
and CSV formats, as portrayed in JSON and CSV formats. The JSON file can return
the particulars to the web page. As in JSON format key pair values are generated.
The other main thing is the comma-separated value (CSV) which shows the contents
of the invoice in a table as portrayed in CSV format. With the above result, this model
can be used in several ways for invoice data extraction. Table 1 explains about the
accuracy of the sample input. The accuracy precision is calculated based on
matching strings by taking sample text of each element in the table separately and
the OCR extracted text. Areas to address are: missing values, misprinted values and
misplaced values. Character accuracy is evaluated by the number of actual
characters with their positions which will split up by the aggregate of actual
characters to give the percentage value.

36

SI.No
Accuracy results for sample input

Input value OCR value Accuracy
percentage

1.
Headers
'Description of Goods HSN/SAC
Quantity Rate per Amount'

Headers
'Description of Goods HSN/SAC
Quantity Rate per Amount'

100%

2
Tabular contents
'GARBAGE BAG (LARGE) 12 Nos
45.00 Nos 540.00'

Tabular contents
'GARBAGE BAG LARGE 12 Nos
45.00 Nos 540.00'

98%

3 'Life Boy Soap 10rs 12 Nos 8.47 Nos
101.64'

'Life Boy Soap 10rs 12 Nos 8.47 Nos
101.64' 100%

4 'S Hypo Chloried 28289019 2.000
KGS 30.00 KGS 60.00'

'S Hypo Chloried 28289019 2.000 KGS
30.00 KGS 60.00' 100%

5 'Tide Powder1kg28 3402 4Nos.
83.05 Nos 332.20'

'Tide Powder1kg28 3402 4Nos. 83.050
Nos 332.20' 98%

6 'WHEEL POWDER 1KG 2 Nos
42.37 Nos 84.74'

'WHEELPOWDER 1KG 2 Nos 42.37
Nos 84.74' 98%

7 'Brooms 6 Nos 75.00 Nos 450.00 ' 'Brooms 6 Nos 75.00 Nos 450.00 ' 100%

Total Accuracy 99%

Table: 1 Accuracy analysis

5.3 LIMITATIONS:

● If any Handwritten text in invoice this will affect the dialectics of the program.
● When an image is Fuzzy.
● If OCR detects wrong text, then these dialectics will not work.

37

● If headroom is much bigger between the end of the table and keyword that we
are searching for in the invoice.

● Finally, if there are any misprinted values in the invoice, then the JSON will be
affected.

● Only erect pdf will work.

CHAPTER 6

SUMMARY AND CONCLUSIONS

In this fast-paced world, to match the needs of grieving people, An OCR is put
forward in this paper to extract the text inside the image. The affiliate Computer
vision technology tries to lend a helping hand which initializes this protrude. It uses
various image processing techniques like converting the given image into Grayscale
and then sending it to threshold the pixels. The tests are generated based on a
determined number of invoices. As far as the OCR is bothered, Tesseract is
considered, which gave us an appropriate result. Relinquish is observed initially, but
black and white gave us the conclusion with great accuracy. After that, the text is
cleaned with regular expressions to pass the text through phases. In the sequential
step, the reader gets into creating JSON and CSV configurations. The main limitation
is it only works on the format specified in the program and only restricted to English
language. To enhance the project further, an OCR needed to be structured to identify
spaces, and the text can be segregated based on distances. The next possible
solution is to enlarge and classify performance on several invoices. The main basis
can be taken form this paper to implement it for other languages but mostly bills will
be in the universal language itself. This experimental setup can be helpful for formats
similar to the sample invoice, as shown in sample invoice. With the help of an app, the
end-users can integrate with this module and ease their work.

38

REFERENCES

[1] Jiju, Alan, Shaun Tuscano, and Chetana Badgujar. "OCR text extraction."
International Journal of Engineering and Management Research 11.2 (2021): 83-86.
[2] Jung, Seokweon, et al. "Mixed-Initiative Approach to Extract Data from
Pictures of Medical Invoice." 2021 IEEE 14th Pacific Visualization Symposium
(PacificVis). IEEE, 2021.
[3] R. Sharma, P. Dave, and J. Chaudhary, "OCR for Data Retrieval: An analysis
and Machine Learning Application model for NGO social volunteering," 2021 Fifth
International Conference on I-SMAC (IoT in Social, Mobile, Analytics, and Cloud)
(I-SMAC), 2021, pp. 422-427, DOI: 10.1109/I- SMAC52330.2021.9640890.
[4] A. Revathi and N. A. Modi, "Comparative Analysis of Text Extraction from
Color Images using Tesseract and OpenCV," 2021 8th International Conference on
Computing for Sustainable Global Development (INDIACom), 2021, pp. 931- 936,
DOI: 10.1109/INDIACom51348.2021.00167.
[5] K. M. Yindumathi, S. S. Chaudhari and R. Aparna, "Analysis of Image
Classification for Text Extraction from Bills and Invoices," 2020 11th International
Conference on Computing, Communication and Networking Technologies (ICCCNT),

2020, pp. 1-6, DOI: 10.1109/ICCCNT49239.2020.9225564.
[6] Z. Zhou and L. Lin, "Text Orientation Detection Based on Multi Neural
Network," 2020 Chinese Automation Congress (CAC),2020, pp. 6175-6179,
DOI: 10.1109/CAC51589.2020.9327425.
[7] M. S. Satav, T. Varade, D. Kothavale, S. Thombare, and P. Lokhande, "Data
Extraction from Invoices Using Computer Vision," 2020 IEEE 15th International
Conference on Industrial and Information Systems (ICES), 2020, pp. 316-320, DOI:

39

10.1109/ICIIS51140.2020.9342722.
[8] V. Kumar, P. Kaware, P. Singh, R. Sonkusare and S. Kumar, "Extraction of
information from bill receipts using optical character recognition," 2020 International
Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 72-77,
DOI: 10.1109/ICOSEC49089.2020.9215246.
[9] R. Mittal and A. Garg, "Text extraction using OCR: A Systematic Review,"
2020 Second International Conference on Inventive Research in Computing
Applications (CIRCA), 2020, pp. 357-362, DOI:
10.1109/ICIRCA48905.2020.9183326.
[10] Zhu C, Chen Y, Zhang Y, Liu S, Li G (2019) Reagan: a low-level image
processing network to restore compressed images to the original quality of JPEG. In:
2019 Data Compression Conference (DCC). IEEE, pp 616.
[11]M. Rahman Majumder, B. Uddin Mahmud, B. Jahan, and
M. Alam, "Offline optical character recognition (OCR) method: An effective method
for scanned documents," 2019 22nd International Conference on Computer and
Information Technology (ICCIT), 2019, pp. 1-5, DOI:
10.1109/ICCIT48885.2019.9038593.
[12] _Android_Studio, http://developer.android.com/tools/studio/index.html.
[13] T. -T. -H. Nguyen, A. Jatowt, M. Coustaty, N. -V. Nguyen and A. Doucet, "Deep
Statistical Analysis of OCR Errors for Effective Post-OCR Processing," 2019
ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2019, pp. 29-38, DOI:
10.1109/JCDL.2019.00015.
[14] A. S. Tarawneh, A. B. Hassanat, D. Chetverikov, I. Lendak, and C. Verma,
"Invoice Classification Using Deep Features and Machine Learning Techniques,"
2019 IEEE Jordan International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), 2019, pp. 855-859, DOI:
10.1109/JEEIT.2019.8717504.
[15] R. F. Rahmat, D. Gunawan, S. Faza, N. Haloho, and E. B. Nababan,"
Android-Based Text Recognition on Receipt Bill for Tax Sampling System," 2018
Third International Conference on Informatics and Computing (ICIC), Palembang,
Indonesia, 2018, pp. 1-5, DOI: 10.1109/IAC.2018.8780416.
[16] H. Singh and A. Sachan, "A Proposed Approach for Character Recognition
Using Document Analysis with OCR," 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS), 2018, pp. 190-195, DOI:
10.1109/ICCONS.2018.8663011.
[17] M. G. Marne, P. R. Futane, S. B. Kolekar, A. D. Lakhadive, and S. K. Marathe,
"Identification of Optimal Optical Character Recognition (OCR) Engine for Proposed
System," 2018 Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA), 2018, 8585.
[18] H. Sidhwa, S. Kulshrestha, S. Malhotra and S. Virmani, "Text Extraction from
Bills and Invoices," 2018 International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), 2018, pp. 564-568, DOI:
10.1109/ICACCCN.2018.8748309.
[19] P. A. Wankhede and S. W. Mohod, "A different image content-based retrievals
using OCR techniques," 2017 International conference of Electronics,
Communication, and Aerospace Technology (ICECA), 2017, pp. 155-161, DOI:
10.1109/ICECA.2017.8212785.

40

[20] L. Allison and M. M. Fuad, "Inter-App Communication between Android Apps
Developed in App-Inventor and Android Studio," 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), 2016, pp.
17-18, DOI: 10.1109/MobileSoft.2016.018.
[21] Jayasree M. and N. K. Narayanan, "An efficient mixed noise removal
technique from grayscale images using noisy pixel modification technique," 2015
International Conference on Communications and Signal Processing (ICCSP), 2015,
pp. 0336-0339, DOI: 10.1109/ICCSP.2015.7322901.
[22] An Overview of the Tesseract OCR Engine - Research at Google.
https://research.google.com/pubs/archive/33418.pdf.
[23] OpenCV available at https://opencv.org/ accessed on Nov 2017.
[24] Hamdan, Yasir Babiker. "Construction of Statistical SVM based Recognition
Model for Handwritten Character Recognition." Journal of Information Technology 3,
no. 02 (2021): 92-107.
[25] Manoharan, J. Samuel. "Capsule Network Algorithm for Performance
Optimization of Text Classification." Journal of Soft Computing Paradigm (JSCP) 3,
no. 01 (2021): 1-9.
Yadav, Nikhil, Omkar Kudale, Aditi Rao, Srishti Gupta, and Ajitkumar Shitole. "Twitter
Sentiment Analysis Using Supervised Machine Learning." In Intelligent Data
Communication Technologies and Internet of Things: Proceedings of ICICI 2020, pp.
631-642. Springer Singapore, 2021.

APPENDIX:

A: Screenshots:-

Sample Invoice

41

https://research.google.com/pubs/archive/33418.pdf

Text extracted from OCR – Uncleaned text

42

43

Cleaned text:

JSON format:
44

CSV Format:

45

46

B: Source code:

ANDROID APP CODE:

MainActivity.java

package com.example.uploadingpddffilestoserver;

import androidx.annotation.Nullable;
import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Base64;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;

import retrofit2.Call;
import retrofit2.Callback;
import retrofit2.Response;

public class MainActivity extends AppCompatActivity {

private Button btnSelect, btnUpload;
private TextView textView;

private int REQ_PDF = 21;
private String encodedPDF;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

textView = findViewById(R.id.textView);
btnSelect = findViewById(R.id.btnSelect);
btnUpload = findViewById(R.id.btnUpload);

btnSelect.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

Intent chooseFile = new Intent(Intent.ACTION_GET_CONTENT);
chooseFile.setType("application/pdf");

chooseFile = Intent.createChooser(chooseFile, "Choose a
file");

startActivityForResult(chooseFile, REQ_PDF);

47

}
});

btnUpload.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

uploadDocument();
}

});

}

private void uploadDocument() {

Call<ResponsePOJO> call =
RetrofitClient.getInstance().getAPI().uploadDocument(encodedPDF);

call.enqueue(new Callback<ResponsePOJO>() {
@Override
public void onResponse(Call<ResponsePOJO> call,

Response<ResponsePOJO> response) {
Toast.makeText(MainActivity.this,

response.body().getRemarks(), Toast.LENGTH_SHORT).show();
}

@Override
public void onFailure(Call<ResponsePOJO> call, Throwable t) {

Toast.makeText(MainActivity.this, "file uploaded",
Toast.LENGTH_SHORT).show();

}
});

}

@Override
protected void onActivityResult(int requestCode, int resultCode,

@Nullable Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if(requestCode == REQ_PDF && resultCode == RESULT_OK && data !=
null){

Uri path = data.getData();

try {
InputStream inputStream =

MainActivity.this.getContentResolver().openInputStream(path);
byte[] pdfInBytes = new byte[inputStream.available()];
inputStream.read(pdfInBytes);
encodedPDF = Base64.encodeToString(pdfInBytes,

Base64.DEFAULT);

textView.setText("Document Selected");
btnSelect.setText("Change Document");

Toast.makeText(this, "Document Selected",
Toast.LENGTH_SHORT).show();

} catch (IOException e) {

48

e.printStackTrace();
}

}
}

}

MainActivity.xml:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="111dp"
android:orientation="vertical">

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="9dp"
android:orientation="horizontal">

<TextView
android:id="@+id/textView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="center"
android:text="Not Selected"
android:textColor="@android:color/background_dark"
android:textSize="18dp" />

<Button
android:id="@+id/btnSelect"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Select Document" />

</LinearLayout>

<Button
android:id="@+id/btnUpload"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="9dp"
android:text="Upload Document" />

49

</LinearLayout>

</RelativeLayout>

API.java

package com.example.uploadingpddffilestoserver;

import retrofit2.Call;
import retrofit2.http.Field;
import retrofit2.http.FormUrlEncoded;
import retrofit2.http.POST;

public interface Api {

@FormUrlEncoded
@POST("upload_document.php")
Call<ResponsePOJO> uploadDocument(

@Field("PDF") String encodedPDF
);

}

ResponsePOJO.java :

package com.example.uploadingpddffilestoserver;

public class ResponsePOJO {

private boolean status;
private String remarks;

public boolean isStatus() {

return status;
}

public String getRemarks() {
return remarks;

}
}

Retrofitclient.java:

package com.example.uploadingpddffilestoserver;

import retrofit2.Retrofit;
import retrofit2.converter.gson.GsonConverterFactory;

50

public class RetrofitClient {

private static final String
BASE_URL="http://192.168.1.7/Android%20Tutorials/";

private static RetrofitClient myClient;
private Retrofit retrofit;

private RetrofitClient(){
retrofit = new

Retrofit.Builder().baseUrl(BASE_URL).addConverterFactory(GsonConverterFactory
.create()).build();

}

public static synchronized RetrofitClient getInstance(){
if (myClient == null){

myClient = new RetrofitClient();
}
return myClient;

}

public Api getAPI(){
return retrofit.create(Api.class);

}

}

Code For uploading image:

MainActivity2.java

package com.example.uploadingpddffilestoserver;

import androidx.annotation.Nullable;
import androidx.appcompat.app.AppCompatActivity;

import android.content.Intent;
import android.graphics.Bitmap;
import android.net.Uri;
import android.os.Bundle;
import android.provider.MediaStore;
import android.util.Base64;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Toast;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

import retrofit2.Call;
import retrofit2.Callback;
import retrofit2.Response;

public class MainActivity2 extends AppCompatActivity {

int IMG_REQUEST = 21;

51

Bitmap bitmap;
ImageView imageView;
Button btnSelectImage, btnUploadImage;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

imageView = findViewById(R.id.imageView);
btnSelectImage = findViewById(R.id.btnSelectImage);
btnUploadImage = findViewById(R.id.btnUploadImage);

btnSelectImage.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

Intent intent = new Intent();
intent.setType("image/*");
intent.setAction(Intent.ACTION_GET_CONTENT);
startActivityForResult(intent, IMG_REQUEST);

}
});

btnUploadImage.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

uploadImage();
}

});

}

@Override
protected void onActivityResult(int requestCode, int resultCode,

@Nullable Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if(requestCode == IMG_REQUEST && resultCode == RESULT_OK && data !=
null){

Uri path = data.getData();

try {
bitmap =

MediaStore.Images.Media.getBitmap(getContentResolver(),path);
imageView.setImageBitmap(bitmap);

} catch (IOException e) {
e.printStackTrace();

}
}

}

private void uploadImage() {

ByteArrayOutputStream byteArrayOutputStream = new

52

ByteArrayOutputStream();
bitmap.compress(Bitmap.CompressFormat.JPEG,75,

byteArrayOutputStream);
byte[] imageInByte = byteArrayOutputStream.toByteArray();
String encodedImage =

Base64.encodeToString(imageInByte,Base64.DEFAULT);

Call<ResponseKOJO> call =
RetroClient.getInstance().getAP().uploadImage(encodedImage);

call.enqueue(new Callback<ResponseKOJO>() {
@Override
public void onResponse(Call<ResponseKOJO> call,

Response<ResponseKOJO> response) {
Toast.makeText(MainActivity2.this,

response.body().getRemarks(), Toast.LENGTH_SHORT).show();

if(response.body().isStatus()){

}else{

}
}

@Override
public void onFailure(Call<ResponseKOJO> call, Throwable t) {

Toast.makeText(MainActivity2.this, "image uploaded",
Toast.LENGTH_SHORT).show();

}
});

}

}

mainactivity2.xml:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center_horizontal"
android:orientation="vertical">

<ImageView
android:id="@+id/imageView"
android:layout_width="300dp"
android:layout_height="300dp"
android:layout_marginTop="33dp"
tools:srcCompat="@tools:sample/backgrounds/scenic" />

<Button
android:id="@+id/btnSelectImage"

53

android:layout_width="300dp"
android:layout_height="wrap_content"
android:text="Select Image" />

<Button
android:id="@+id/btnUploadImage"
android:layout_width="300dp"
android:layout_height="wrap_content"
android:text="Upload Image" />

</LinearLayout>
</RelativeLayout>

AP.java

package com.example.uploadingpddffilestoserver;

import retrofit2.Call;
import retrofit2.http.Field;
import retrofit2.http.FormUrlEncoded;
import retrofit2.http.POST;

public interface AP {
@FormUrlEncoded
@POST("upload_image.php")
Call<ResponseKOJO> uploadImage(

@Field("EN_IMAGE") String encodedImage
);

}

ResponseKojo.java:

package com.example.uploadingpddffilestoserver;

public class ResponseKOJO {
private boolean status;
private String remarks;

public boolean isStatus() {
return status;

}

public String getRemarks() {
return remarks;

}
}

Retro client.java

package com.example.uploadingpddffilestoserver;

import retrofit2.Retrofit;
import retrofit2.converter.gson.GsonConverterFactory;

public class RetroClient {

54

private static final String
BASE_URL="http://192.168.1.7/Android%20Tutorials/";

private static RetroClient myClient;
private Retrofit retrofit;

private RetroClient(){
retrofit=new

Retrofit.Builder().baseUrl(BASE_URL).addConverterFactory(GsonConverterFactory
.create()).build();

}

public static synchronized RetroClient getInstance(){
if (myClient==null){

myClient=new RetroClient();
}
return myClient;

}

public AP getAP(){
return retrofit.create(AP.class);

}

}

Upload document.php

<?php

 include 'db_config.php';

 $con = mysqli_connect($HOST, $USER, $PASSWORD, $DB_NAME);

 $encodedPDF = $_POST['PDF'];
 $command_exec = escapeshellcmd('python
C:\Users\MOHAN\Desktop\table-extraction\extract-invoice-data-master\main.py');
 $str_output = shell_exec($command_exec);
 echo $str_output;

 $pdfTitle = "myPDF";
 $pdfLocation = "documents/$pdfTitle.pdf";

 $sqlQuery = "INSERT INTO `documents`(`title`, `location`) VALUES
('$pdfTitle', '$pdfLocation')";

 if(mysqli_query($con, $sqlQuery)){

 file_put_contents($pdfLocation, base64_decode($encodedPDF));

 $result["status"] = TRUE;
 $result["remarks"] = "document uploaded successfully";

55

 }else{

 $result["status"] = FALSE;
 $result["remarks"] = "document uploading Failed";

 }

 mysqli_close($con);

 print(json_encode($result));

?>

Uploadimage.php

<?php

 include 'db_config.php';

 $con = mysqli_connect($HOST, $USER, $PASSWORD, $DB_NAME);

 $encodedImage = $_POST['EN_IMAGE'];
 $command_exec = escapeshellcmd('python
C:\Users\MOHAN\Desktop\table-extraction\extract-invoice-data-master\main.py');
 $str_output = shell_exec($command_exec);
 echo $str_output;

 $imageTitle = "myImage";
 $imageLocation = "documents/$imageTitle.jpg";

 $sqlQuery = "INSERT INTO `documents`(`title`, `location`) VALUES
('$imageTitle', '$imageLocation')";

 if(mysqli_query($con, $sqlQuery)){

 file_put_contents($imageLocation, base64_decode($encodedImage));

 $result["status"] = TRUE;
 $result["remarks"] = "Image Uploaded Successfully";

 }else{

 $result["status"] = FALSE;
 $result["remarks"] = "Image Uploading Failed";

 }

 mysqli_close($con);

 print(json_encode($result));

?>

56

Main.py

from tesseract_ocr import ocr
from preprocess import *
from pngcon import convo
from identify_company import identify_company
import numpy as np
import cv2
import time
from pathlib import Path

start_time = time.time()
file = r"C:\xampp\htdocs\Android Tutorials\documents\myPDF.pdf"

if (Path(file).suffix == '.pdf'):
 img = convo(file)
 opencvImage = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

else:
 opencvImage = cv2.imread(file)
print("Image conversion successful")

Getting the ocr
txt = ocr(blackandwhite(opencvImage))
print("ocrd successfully")

identify_company(txt=txt)
print("--- %s seconds ---" % (time.time() - start_time))

Pngcon.py

"""
This module is for converting the pdf to png and handle any rotation detection
"""

This method is used to convert the pdf
def convo(path):
 from pdf2image import convert_from_path

 images = convert_from_path(path,dpi= 500, poppler_path=r'C:\Program
Files\poppler-21.03.0\Library\bin')
 #images[0].save("sample.png",format = "PNG")

 return images[0]

57

Tesseract_ocr.py

'''
This is to detect and return the text
'''
def ocr(image):

 import pytesseract
 # Insert your pytesseract location here after installing
 pytesseract.tesseract.tesseract_cmd = r'C:\Program
Files\Tesseract-OCR\tesseract.exe'

 data = pytesseract.image_to_string(image, lang='eng',config='--psm 6')
 ##print(data)
 return (data)

Preprocess.py

'''
This contains methods to preprocess the images
Dilated image = no noise + thick font
eroded image = no noise +thin font
'''

import cv2
import numpy as np
from matplotlib import pyplot as plt

Converting to inverted image
def inverted(image):

 inverted_image = cv2.bitwise_not(image)
 #cv2.imshow(image)
 #cv2.imwrite('inverted.png',inverted_image)
 return cv2.bitwise_not(image)

Converting to gray scale
def grayscale(image):

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 #cv2.imshow(image)
 #cv2.imwrite('grayscale.png',image)
 return image

58

def canny(image):
 image = cv2.imread('jain.jpeg',0)
 edges = cv2.Canny(image,100,200)
 plt.subplot(121),plt.imshow(image,cmap = 'gray')
 plt.title('Original Image'), plt.xticks([]), plt.yticks([])
 plt.subplot(122),plt.imshow(edges,cmap = 'gray')
 plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
 # plt.show()
 # cv2.imwrite('canny.png',image)
 return image

Conveting to black and white
def blackandwhite(image):
 image = np.array(image)
 thresh, im_bw = cv2.threshold(grayscale(image), 200, 230,
cv2.THRESH_BINARY)

 #cv2.imshow("black and white",im_bw)
 #cv2.imwrite('bw.png',im_bw)
 #cv2.waitKey(0)
 return im_bw

Removing noise
def noise_removal(image):
 import numpy as np
 kernal = np.ones((1,1), np.uint8)
 image = cv2.dilate(image, kernal, iterations=1)
 kernal = np.ones((1,1), np.uint8)
 image = cv2.erode(image, kernal, iterations=1)
 image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernal)
 image = cv2.medianBlur(image, 3)

 #cv2.imshow(image)
 #cv2.imwrite('noise_removed.png',image)

 return (image)

Converting to thin font

def thin_font(image):
 import numpy as np
 image = cv2.bitwise_not(image)
 kernal = np.ones((2,2), np.uint8)
 image = cv2.erode(image, kernal, iterations=1)
 image = cv2.bitwise_not(image)

 #cv2.imshow(image)
 cv2.imwrite('thin_font.png',image)

 return (image)

Converting to thick font
def thick_font(image):

59

 import numpy as np
 image = cv2.bitwise_not(image)
 kernal = np.ones((2,2), np.uint8)
 image = cv2.dilate(image, kernal, iterations=1)
 image = cv2.bitwise_not(image)

 #cv2.imshow(image)
 cv2.imwrite('thick_font.png',image)

 return (image)

Identify_company.py

'''
Method to identify the company and call the needed module
'''

def identify_company(txt):

 from fuzzywuzzy import fuzz
 from jain import arrange_dump
 from unitron import unitron
 from table_extract import extract
 from sherays import Sheryas

 list_of_companies = ['SINo Particular Batch Expiry Date HSN/SAC Actual Qty
Billed Qty Rate Discount Amount','Description of Goods HSN/SAC Quantity Rate
per Amount',
 'MKTD NO. RATE AMOUNT']

 lst = []
 for i in list_of_companies:
 lst.append(fuzz.token_set_ratio(i.lower(),txt.lower()))

 i = lst.index(max(lst))

 table = extract(txt)
 print("Table extracted")

 if i == 0:
 table.pop(0)
 #print(table)
 unitron(table)

 elif i == 1:
 table.pop(0)
 arrange_dump(table)

 elif i == 2:

60

 table.pop(0)
 table.pop(1)
 Sheryas(table)

 return

Table_extract.py

'''
This module is used to clean the text and extract the table
'''

from os import replace

def Clean_Text(txt):

 import re
 output = re.sub(r'[^ \nA-Za-z0-9./]+', '', txt)

 return output.split('\n')

def find_heading(clean):
 from fuzzywuzzy import fuzz
 to_find = 'SINO SIND Description Particular HSN Rate Amount'
 starting = 0
 for t in clean:
 if (fuzz.token_set_ratio(to_find.lower(),t.lower())) > 70:
 starting = clean.index(t)

 return starting

def find_ending_serial(txt,loc):

 prev = 0
 t = ''

 for i in range(loc+1, len(txt)-1):
 temp = txt[i]

 if temp[0].isdigit() and int(temp[0]) == prev+1:

 #print('item detected',temp)
 prev = int(temp[0])
 t = temp
 else:

61

 continue
 return (txt.index(t))

def find_ending(txt):
 from fuzzywuzzy import fuzz

 to_find = ['Recieved','output','FLASH']
 lst = []
 highestacc = -1
 index = -1

 for i in to_find:
 for t in txt:
 lst.append(fuzz.token_set_ratio(i.lower(),t.lower()))

 if highestacc < max(lst):

 index = lst.index(max(lst))
 highestacc = max(lst)
 lst = []

 else:
 lst = []
 continue

 return index

def extract(txt):

 clean = Clean_Text(txt)
 print(clean)

 starting = find_heading(clean)
 ending = -1
 if 'SINo' in clean[starting] or 'SIND' in clean[starting] :
 #print('SERIAL EXECUTED')
 ending = find_ending_serial(clean,starting) +2

 else:
 #print('THE OTHER ONE EXECUTED')
 ending = find_ending(clean)

 #print(starting)
 #print(ending)

 # Extracting the rows of the table
 op = []

 for i in range(starting,ending-1):

62

 op.append(clean[i])
 return op

jain.py

''''
Rakesh
This module is to convert the rows of Jain Chemicals into a table and store
the json file
'''

'''From Reverse:
1 ---> n=len(headers) ---> 6

num[0] ---> n ---> headers[n-1]
num[1] ---> n-1 ---> headers[n-1-1]
num[2] ---> n-2 ---> headers[n-2-1]
num[3] ---> n-3 ---> headers[n-3-1]
num[4] ---> If it is a number then only insert or else leave it ---> n-4
num[4] ---> Concatenate the left out list elements and rev them ---> n-5
--->headers[n-5-1]

'''
import csv

def arrange_dump(contents):

 import json
 import copy
 from utilites import rev_sentence,listToString
 u=0
 # Intializing the needed elements
 heads = ['Description of Goods', 'HSN/SAC', 'Quantity', 'Rate', 'per',
'Amount']
 key_list = heads
 field_names = key_list
 headers = copy.deepcopy(heads)
 final = []
 file = open('Jain Chemicals.json','a')

 # Reverse sorting the list
 for i in contents:
 # Separating to individual contents
 temp = i.split(' ')
 temp = ' '.join(temp).split()
 #print(temp)
 if len(temp) == 0:
 continue

63

 # Merging the quantity column
 try:
 #print(temp.index('Nos'))
 index_pos = temp.index('Nos')
 except ValueError:
 #print(temp.index('KGS'))
 index_pos = temp.index('KGS')
 k=(temp[index_pos-1]+temp[index_pos])
 # print(k)
 n=index_pos
 del temp[n-1:n+1]
 temp.insert(n-1,k)
 #print(temp)
 temp.reverse()
 #Storing the reversed list
 final.append(temp)

 # Arrainging in cloumns and storing to file
 for st in final:

 n=len(headers)
 m=len(st)
 for i in range(n):
 if i==0:
 headers[n-1]=st[i]
 elif i==4:
 if st[i].isdigit():
 headers[n-i-1] = st[i]
 a=i+1
 else:
 headers[n-i-1] = " "
 a=i

 elif i==n-1:
 c=[]
 for i in range(a,m):
 c.append(st[i])
 y=listToString(c)
 w=rev_sentence(y)
 headers[0]=w

 else:
 headers[n-i-1] = st[i]

 dict_from_list = dict(zip(key_list, headers))
 cars=[]
 cp=dict_from_list.copy()
 cars.append(cp)

64

 with open('Names.csv', 'a') as csvfile:

 if u==0:
 writer = csv.DictWriter(csvfile, fieldnames = field_names)
 writer.writeheader()
 writer.writerows(cars)
 u=u+1
 else:
 writer = csv.DictWriter(csvfile, fieldnames = field_names)
 writer.writerows(cars)

 json.dump(dict_from_list,file,indent=4)

 file.close()
 print("Names.csv")

65

