
Prediction Of Phishing Website Using Machine

Learning

TABLE OF CONTENT

SL.NO TITLE PAGE.NO

01 ABSTRACT

02 EXISTING SYSTEM

2.1 DRAWBACKS

03

INTRODUCTION

3.1 DATA SCIENCE

3.2 ARTIFICIAL INTELLIGENCE

04 MACHINE LEARNING

05 PREPARING DATASET

06 PROPOSED SYSTEM

6.1 ADVANTAGES

07 LITERATURE SURVEY

08

SYSTEM STUDY

8.1 OBJECTIVES

8.2 PROJECT GOAL

8.3 SCOPE OF THE PROJECT

09 FEASIBILITY STUDY

10 LIST OF MODULES

11

PROJECT REQUIREMENTS

11.1 FUNCTIONAL REQUIREMENTS

11.2 NON-FUNCTIONAL REQUIREMENTS

12 ENVIRONMENT REQUIREMENT

13

SOFTWARE DESCRIPTION

13.1 ANACONDA NAVIGATOR

13.2 JUPYTER NOTEBOOK

14 PYTHON

15 SYSTEM ARCHITECTURE

16 WORKFLOW DIAGRAM

17 USECASE DIAGRAM

18 CLASS DIAGRAM

19 ACTIVITY DIAGRAM

20 SEQUENCE DIAGRAM

21 ER – DIAGRAM

22 MODULE DESCRIPTION

22.1 MODULE DIAGRAM

22.2 MODULE GIVEN INPUT EXPECTED

OUTPUT

23 DEPLOYMENT

24 HTML

25 CSS

26 CODING

27 CONCLUSION

28 FUTURE WORK

LIST OF FIGURES

SL.NO TITLE PAGE.NO

01 SYSTEM ARCHITECTURE

02 WORKFLOW DIAGRAM

03 USECASE DIAGRAM

04 CLASS DIAGRAM

05 ACTIVITY DIAGRAM

06 SEQUENCE DIAGRAM

07 ER – DIAGRAM

08 MODULE DIAGRAM

LIST OF SYSMBOLS

S.NO NOTATION

NAME

NOTATION DESCRIPTION

1. Class

Represents a

collection of

similar entities

grouped together.

2. Association

 NAME

Associations

represents static

relationships

between classes.

Roles represents

the way the two

classes see each

other.

3. Actor

It aggregates

several classes into

a single classes.

4. Aggregation

Interaction

between the system

and external

environment

5.
Relation(uses)

 uses

Used for additional

process

+ public

-private

protected

Class Name

-attribute

-attribute

+operation

+operation

+operation

Class A

Class B Class B

Class A

Class B Class A

Class A Class B

communication.

6. Relation

(extends)

 extends

Extends

relationship is used

when one use case

is similar to

another use case

but does a bit

more.

7. Communication

Communication

between various

use cases.

8. State

State of the

process.

9. Initial State

Initial state of the

object

10. Final state

Final state of the

object

11. Control flow

Represents various

control flow

between the states.

12. Decision box

Represents

decision making

process from a

constraint

13. Use case Interaction

between the system

and external

 State

Uses case

environment.

14. Component

Represents

physical modules

which is a

collection of

components.

15. Node

Represents

physical modules

which are a

collection of

components

16. Data

Process/State

 A circle in DFD

represents a state

or process which

has been triggered

due to some event

or action.

17. External entity Represents external

entities such as

keyboard, sensors

etc.

18. Transition

Represents

communication

that occurs

between processes.

19. Object Lifeline Represents the

vertical dimensions

that the object

communications.

20. Message Message

Represents the

message

exchanged.

1. Abstract:

The Internet has become an indispensable part of our life, However, It

also has provided opportunities to anonymously perform malicious activities

like Phishing. Phishers try to deceive their victims by social engineering or

creating mockup websites to steal information such as account ID, username,

password from individuals and organizations. Although many methods have

been proposed to detect phishing websites, Phishers have evolved their methods

to escape from these detection methods. One of the most successful methods for

detecting these malicious activities is Machine Learning. This is because most

Phishing attacks have some common characteristics which can be identified by

machine learning methods. In this paper, we compared the results of multiple

machine learning methods for predicting phishing websites.

2. Existing System:

 Existing CTI for phishing website detection methods can be

divided into three types: lookup systems, fraud cuebased methods, and deep

representation-based methods. The lookup system detects a phishing website by

―looking up‖ the website URL against a blacklist of phishing URLs and an

alarm is raised when the website‘s URL appears in the list. The blacklists are

classifiers (e.g., SVM, decision tree) and novel machine learning methods (e.g.,

statistical learning theory based methods, genre tree kernel methods and

recursive trust labeling algorithm) have been devised to detect phishing

websites. Similarly, website traffic based fraud cues requires to analyze the

website traffic within a period of time, making them hard to meet the real-time

detection requirement.

2.1 Disadvantages:

1. It takes more time to make the transfer learning if we want to change some

features and train the model.

2. They are not mentioning the Accuracy of the model.

3. The performance metrics like recall F1 score and comparison of machine

learning algorithm is not done.

4. The performance is not good and its get complicated for other networks.

3. INTRODUCTION

 Domain overview

3.1 Data Science

Data science is an interdisciplinary field that uses scientific methods,

processes, algorithms and systems to extract knowledge and insights from

structured and unstructured data, and apply knowledge and actionable insights

from data across a broad range of application domains.

The term "data science" has been traced back to 1974, when Peter

Naur proposed it as an alternative name for computer science. In 1996, the

International Federation of Classification Societies became the first conference

to specifically feature data science as a topic. However, the definition was still

in flux.

The term ―data science‖ was first coined in 2008 by D.J. Patil, and Jeff

Hammerbacher, the pioneer leads of data and analytics efforts at LinkedIn and

Facebook. In less than a decade, it has become one of the hottest and most

trending professions in the market.

Data science is the field of study that combines domain expertise,

programming skills, and knowledge of mathematics and statistics to extract

meaningful insights from data.

Data science can be defined as a blend of mathematics, business acumen,

tools, algorithms and machine learning techniques, all of which help us in

finding out the hidden insights or patterns from raw data which can be of major

use in the formation of big business decisions.

Data Scientist:

Data scientists examine which questions need answering and where to

find the related data. They have business acumen and analytical skills as well as

the ability to mine, clean, and present data. Businesses use data scientists to

source, manage, and analyze large amounts of unstructured data.

Required Skills for a Data Scientist:

 Programming: Python, SQL, Scala, Java, R, MATLAB.

 Machine Learning: Natural Language Processing, Classification, Clustering.

 Data Visualization: Tableau, SAS, D3.js, Python, Java, R libraries.

 Big data platforms: MongoDB, Oracle, Microsoft Azure, Cloudera.

3.2 ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) refers to the simulation of human intelligence

in machines that are programmed to think like humans and mimic their actions.

The term may also be applied to any machine that exhibits traits associated with

a human mind such as learning and problem-solving.

Artificial intelligence (AI) is intelligence demonstrated by machines, as

opposed to the natural intelligence displayed by humans or animals. Leading AI

textbooks define the field as the study of "intelligent agents" any system that

perceives its environment and takes actions that maximize its chance of

achieving its goals. Some popular accounts use the term "artificial intelligence"

to describe machines that mimic "cognitive" functions that humans associate

with the human mind, such as "learning" and "problem solving", however this

definition is rejected by major AI researchers.

Artificial intelligence is the simulation of human intelligence processes

by machines, especially computer systems. Specific applications of AI

include expert systems, natural language processing, speech recognition

and machine vision.

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Human_intelligence
https://en.wikipedia.org/wiki/Animal_cognition
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Human_mind

AI applications include advanced web search engines, recommendation

systems (used by Youtube, Amazon and Netflix), Understanding human

speech (such as Siri or Alexa), self-driving cars (e.g. Tesla), and competing at

the highest level in strategic game systems (such as chess and Go), As machines

become increasingly capable, tasks considered to require "intelligence" are

often removed from the definition of AI, a phenomenon known as the AI

effect. For instance, optical character recognition is frequently excluded from

things considered to be AI, having become a routine technology.

Artificial intelligence was founded as an academic discipline in 1956, and

in the years since has experienced several waves of optimism, followed by

disappointment and the loss of funding (known as an "AI winter"), followed by

new approaches, success and renewed funding. AI research has tried and

discarded many different approaches during its lifetime, including simulating

the brain, modeling human problem solving, formal logic, large databases of

knowledge and imitating animal behavior. In the first decades of the 21st

century, highly mathematical statistical machine learning has dominated the

field, and this technique has proved highly successful, helping to solve many

challenging problems throughout industry and academia.

The various sub-fields of AI research are centered around particular goals

and the use of particular tools. The traditional goals of AI research

include reasoning, knowledge representation, planning, learning, natural

language processing, perception and the ability to move and manipulate

objects. General intelligence (the ability to solve an arbitrary problem) is

among the field's long-term goals. To solve these problems, AI researchers use

versions of search and mathematical optimization, formal logic, artificial neural

networks, and methods based on statistics, probability and economics. AI also

draws upon computer science, psychology, linguistics, philosophy, and many

other fields.

The field was founded on the assumption that human intelligence "can be

so precisely described that a machine can be made to simulate it". This raises

philosophical arguments about the mind and the ethics of creating artificial

beings endowed with human-like intelligence. These issues have been explored

by myth, fiction and philosophy since antiquity. Science fiction

and futurology have also suggested that, with its enormous potential and power,

AI may become an existential risk to humanity.

As the hype around AI has accelerated, vendors have been scrambling to

promote how their products and services use AI. Often what they refer to as AI

is simply one component of AI, such as machine learning. AI requires a

foundation of specialized hardware and software for writing and training

machine learning algorithms. No one programming language is synonymous

with AI, but a few, including Python, R and Java, are popular.

In general, AI systems work by ingesting large amounts of labeled

training data, analyzing the data for correlations and patterns, and using these

patterns to make predictions about future states. In this way, a chatbot that is fed

examples of text chats can learn to produce life like exchanges with people, or

an image recognition tool can learn to identify and describe objects in images

by reviewing millions of examples.

AI programming focuses on three cognitive skills: learning, reasoning

and self-correction.

Learning processes. This aspect of AI programming focuses on

acquiring data and creating rules for how to turn the data into actionable

information. The rules, which are called algorithms, provide computing devices

with step-by-step instructions for how to complete a specific task.

Reasoning processes. This aspect of AI programming focuses on

choosing the right algorithm to reach a desired outcome.

Self-correction processes. This aspect of AI programming is designed to

continually fine-tune algorithms and ensure they provide the most accurate

results possible.

AI is important because it can give enterprises insights into their

operations that they may not have been aware of previously and because, in

some cases, AI can perform tasks better than humans. Particularly when it

comes to repetitive, detail-oriented tasks like analyzing large numbers of legal

documents to ensure relevant fields are filled in properly, AI tools often

complete jobs quickly and with relatively few errors.

Artificial neural networks and deep learning artificial intelligence

technologies are quickly evolving, primarily because AI processes large

amounts of data much faster and makes predictions more accurately than

humanly possible.

Natural Language Processing (NLP):

Natural language processing (NLP) allows machines to read

and understand human language. A sufficiently powerful natural language

processing system would enable natural-language user interfaces and the

acquisition of knowledge directly from human-written sources, such as

newswire texts. Some straightforward applications of natural language

processing include information retrieval, text mining, question

answering and machine translation. Many current approaches use word co-

occurrence frequencies to construct syntactic representations of text. "Keyword

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural-language_understanding
https://en.wikipedia.org/wiki/Natural-language_user_interface
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Question_answering
https://en.wikipedia.org/wiki/Question_answering
https://en.wikipedia.org/wiki/Machine_translation

spotting" strategies for search are popular and scalable but dumb; a search query

for "dog" might only match documents with the literal word "dog" and miss a

document with the word "poodle". "Lexical affinity" strategies use the

occurrence of words such as "accident" to assess the sentiment of a document.

Modern statistical NLP approaches can combine all these strategies as well as

others, and often achieve acceptable accuracy at the page or paragraph level.

Beyond semantic NLP, the ultimate goal of "narrative" NLP is to embody a full

understanding of commonsense reasoning. By 2019, transformer-based deep

learning architectures could generate coherent text.

4. MACHINE LEARNING

Machine learning is to predict the future from past data. Machine learning

(ML) is a type of artificial intelligence (AI) that provides computers with the

ability to learn without being explicitly programmed. Machine learning focuses

on the development of Computer Programs that can change when exposed to

new data and the basics of Machine Learning, implementation of a simple

machine learning algorithm using python. Process of training and prediction

involves use of specialized algorithms. It feed the training data to an algorithm,

and the algorithm uses this training data to give predictions on a new test data.

Machine learning can be roughly separated in to three categories. There are

supervised learning, unsupervised learning and reinforcement learning.

Supervised learning program is both given the input data and the corresponding

labeling to learn data has to be labeled by a human being beforehand.

https://en.wikipedia.org/wiki/Sentiment_analysis
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)

Unsupervised learning is no labels. It provided to the learning algorithm. This

algorithm has to figure out the clustering of the input data. Finally,

Reinforcement learning dynamically interacts with its environment and it

receives positive or negative feedback to improve its performance.

Data scientists use many different kinds of machine learning algorithms

to discover patterns in python that lead to actionable insights. At a high level,

these different algorithms can be classified into two groups based on the way

they ―learn‖ about data to make predictions: supervised and unsupervised

learning. Classification is the process of predicting the class of given data points.

Classes are sometimes called as targets/ labels or categories. Classification

predictive modeling is the task of approximating a mapping function from input

variables(X) to discrete output variables(y). In machine learning and statistics,

classification is a supervised learning approach in which the computer program

learns from the data input given to it and then uses this learning to classify new

observation. This data set may simply be bi-class (like identifying whether the

person is male or female or that the mail is spam or non-spam) or it may be

multi-class too. Some examples of classification problems are: speech

recognition, handwriting recognition, bio metric identification, document

classification etc.

Supervised Machine Learning is the majority of practical machine

learning uses supervised learning. Supervised learning is where have input

variables (X) and an output variable (y) and use an algorithm to learn the

https://www.geeksforgeeks.org/supervised-unsupervised-learning/

mapping function from the input to the output is y = f(X). The goal is to

approximate the mapping function so well that when you have new input data

(X) that you can predict the output variables (y) for that data. Techniques of

Supervised Machine Learning algorithms include logistic regression, multi-

class classification, Decision Trees and support vector machines etc.

Supervised learning requires that the data used to train the algorithm is already

labeled with correct answers. Supervised learning problems can be further

grouped into Classification problems. This problem has as goal the

construction of a succinct model that can predict the value of the dependent

attribute from the attribute variables. The difference between the two tasks is

the fact that the dependent attribute is numerical for categorical for

classification. A classification model attempts to draw some conclusion from

observed values. Given one or more inputs a classification model will try to

predict the value of one or more outcomes. A classification problem is when the

output variable is a category, such as ―red‖ or ―blue‖.

5. Preparing the Dataset :

The phishing problem is considered a vital issue industry especially e-banking

and e-commerce taking the number of online transactions involving payments.

We have identified different features related to legitimate and phishy websites

and collected 1353 different websites from difference sources. Phishing

websites were collected from Phishtank data archive which is a free community

site where users can submit, verify, track and share phishing data. The

legitimate websites were collected from Yahoo and starting point directories

using a web script developed in PHP. The PHP script was plugged with a

browser and we collected 548 legitimate websites out of 1353 websites. There is

702 phishing URLs, and 103 suspicious URLs.

When a website is considered SUSPICIOUS that means it can be either phishy

or legitimate, meaning the website held some legit and phishy features.

Attribute Information:

URL Anchor

Request URL

SFH

URL Length

Having

Prefix/Suffix

IP

Sub Domain

Web traffic

Domain age

Class

collected features hold the categorical values , Legitimate, Suspicious and

Phishy, these values have been replaced with numerical values 1,0 and -1

respectively.

6. Proposed System:

The proposed model is to build a machine learning model for anomaly

detection. Anomaly detection is an important technique for recognizing fraud

activities, suspicious activities, network intrusion, and other abnormal events

that may have great significance but are difficult to detect. The machine

learning model is built by applying proper data science techniques like variable

identification that is the dependent and independent variables. Then the

visualisation of the data is done to insights of the data .The model is build based

on the previous dataset where the algorithm learn data and get trained different

algorithms are used for better comparisons. The performance metrics are

calculated and compared.

Architecture of Proposed model

6.1 Advantages:

1. The anomaly detection can be automated process using the machine learning.

2. The Accuracy level of Machine Learning Algorithm Model is Calculated.

3. Performance metric are compared in order to get better model.

7. Literature survey:

General

 A literature review is a body of text that aims to review the critical points

of current knowledge on and/or methodological approaches to a particular topic.

It is secondary sources and discuss published information in a particular subject

area and sometimes information in a particular subject area within a certain time

period. Its ultimate goal is to bring the reader up to date with current literature

on a topic and forms the basis for another goal, such as future research that may

Data Processing

 Electrical Dataset

Test

dataset

Training

dataset

Classification ML

Algorithm
Model

be needed in the area and precedes a research proposal and may be just a simple

summary of sources. Usually, it has an organizational pattern and combines

both summary and synthesis.

 A summary is a recap of important information about the source, but a

synthesis is a re-organization, reshuffling of information. It might give a new

interpretation of old material or combine new with old interpretations or it

might trace the intellectual progression of the field, including major debates.

Depending on the situation, the literature review may evaluate the sources and

advise the reader on the most pertinent or relevant of them

Review of Literature Survey

Title : A Bio-Inspired Self-learning Coevolutionary Dynamic Multiobjective

Optimization Algorithm for Internet of Things Services

Author: Zhen Yang, Yaochu Jin, Fellow, and Kuangrong Hao, Member

Year : 2018

The ultimate goal of the Internet of Things (IoT) is to provide ubiquitous

services. To achieve this goal, many challenges remain to be addressed. Inspired

from the cooperative mechanisms between multiple systems in the human

being, this paper proposes a bio-inspired self-learning coevolutionary algorithm

(BSCA) for dynamic multiobjective optimization of IoT services to reduce

energy consumption and service time. BSCA consists of three layers. The first

layer is composed of multiple subpopulations evolving cooperatively to obtain

diverse Pareto fronts. Based on the solutions obtained by the first layer, the

second layer aims to further increase the diversity of solutions. The third layer

refines the solutions found in the second layer by adopting an adaptive gradient

refinement search strategy and dynamic optimization method to cope with

changing concurrent multiple service requests, thereby effectively improving

the accuracy of solutions. Experiments on agricultural IoT services in the

presence of dynamic requests under different distributions are performed based

on two service-providing strategies, i.e., single service and collaborative

service. The simulation results demonstrate that BSCA performs better than

four existing algorithms on IoT services, in particular for high-dimensional

problems. In this paper, a bio-inspired self-learning coevolutionary algorithm

(BSCA) having a three-layer progressive structure is presented for dynamic

multiobjective optimization of IoT services to minimize service costs and

service time. BSCA is inspired by the mechanisms found in human nervous,

endocrine and immune systems to quickly track the moving Pareto optimal

solutions in the presence of changing requests. The simulation results

demonstrate that the proposed algorithm is competitive in dynamic optimization

of agricultural IoT services. In practice, IoT service system may select one of

the extreme solutions or other Pareto optimal solutions on the front according to

the service strategy specified by the decision-maker.

Title : A Prediction Model of DoS Attack‘s Distribution Discrete Probability

Author: Wentao Zhao, Jianping Yin, Jun Long

Year : 2008

The process of prediction analysis is a process of using some method or

technology to explore or stimulate some unknown, undiscovered or complicated

intermediate processes based on previous and present states and then speculated

the results [5]. In an early warning system, accurate prediction of DoS attacks is

the prime aim in the network offence and defense task. Detection based on

abnormity is effective to detect DoS attacks. A various studies focused on DoS

attacks from different respects [2][6][10]. However, these methods required a

priori knowledge being a necessity and were difficult to discriminate between

normal burst traffics and flux of DoS attacks. Moreover, they also required a

large number of history records and can not make the prediction for such attacks

efficiently. Based on data from flux inspecting and intrusion detection, we

propose a prediction model of DOS attack‘s distribution discrete probability

based on clustering method of genetic algorithm and Bayesian method. Due to

various interference factors, the frequency of the DoS attack is considered to be

a random variable. And probability is an effective way to describe randomness

This paper begins with the relation exists between network traffic data

and the amount of DoS attack, and then proposes a clustering method based on

the genetic optimization algorithm to implement the classification of DoS attack

data. This method first gets the proper partition of the relation between the

network traffic and the amount of DoS attack based on the optimized clustering

and builds the prediction sub-models of DoS attack. Meanwhile, with the

Bayesian method, the calculation of the output probability corresponding to

each sub-model is deduced and then the distribution of the amount of DoS

attack in some range in future is obtained.

Title : Adversarial Examples: Attacks and Defenses for Deep Learning

Author: Xiaoyong Yuan , Pan He, Qile Zhu, and Xiaolin Li

With rapid progress and significant successes in a wide spectrum of

applications, deep learning is being applied in many safety-critical

environments. However, deep neural networks (DNNs) have been recently

found vulnerable to well-designed input samples called adversarial examples.

Adversarial perturbations are imperceptible to human but can easily fool DNNs

in the testing/deploying stage. The vulnerability to adversarial examples

becomes one of the major risks for applying DNNs in safety-critical

environments. Therefore, attacks and defenses on adversarial examples draw

great attention. In this paper, we review recent findings on adversarial examples

for DNNs, summarize the methods for generating adversarial examples, and

propose a taxonomy of these methods. Under the taxonomy, applications for

adversarial examples are investigated. We further elaborate on countermeasures

for adversarial examples. In addition, three major challenges in adversarial

examples and the potential solutions are discussed In this paper, we reviewed

the recent findings of adversarial examples in DNNs. We investigated the

existing methods for generating adversarial examples.10 A taxonomy of

adversarial examples was proposed. We also explored the applications and

countermeasures for adversarial examples. This paper attempted to cover the

state-of-the-art studies for adversarial examples in the DL domain. Compared

with recent work on adversarial examples, we analyzed and discussed the

current challenges and potential solutions in adversarial examples.

Title : Apriori Viterbi Model for Prior Detection of Socio-Technical Attacks

in a Social Network

Author: Preetish Ranjan, Abhishek Vaish

Year : 2014

 Social network analysis is a basic mechanism to observe the behavior of a

community in society. In the huge and complex social network formed using

cyberspace or telecommunication technology, the identification or prediction of

any kind of socio-technical attack is always difficult. This challenge creates an

opportunity to explore different methodologies, concepts and algorithms used to

identify these kinds of community on the basis of certain pattern, properties,

structure and trend in their linkage. This paper tries to find the hidden

information in huge social network by compressing it in small networks through

apriori algorithm and then diagnosed using viterbi algorithm to predict the most

probable pattern of conversation to be followed in the network and if this

pattern matches with the existing pattern of criminals, terrorists and hijackers

then it may be helpful to generate some kind of alert before crime. Due to

emergence of internet on mobile phone, the different social networks such as on

social networking sites, blogs, opinion, ratings, review, serial bookmarking,

social news, media sharing, Wikipedia led the people to disperse any kind of

information very easily. Rigorous analysis of these patterns can reveal some

very undisclosed and important information explicitly whether that person is

conducting malignant or harmless communications with a particular user and

may be a reason for any kind of socio technical attacks. From the above

simulation done on CDR, it may be concluded that if this kind of simulation

applied on networks based on the internet and if we are in the position to get the

data which could be transformed in transition and emission matrix then several

kind of prediction may be drawn which will be helpful to take our decisions.

Title : New Attack Scenario Prediction Methodology

Author: seraj Fayyad, cristoph meinel

Year : 2013

Intrusion detection system generates significant data about malicious activities

run against network. Generated data by IDS are stored in IDS database. This

data represent attacks scenarios history against network. Main goal of IDS

system is to enhance network defense technologies. Other techniques are also

used to enhance the defense of network such as Attack graph. Network attack

graph are used for many goals such as attacker next attack step prediction. In

this paper we propose a real time prediction methodology for predicting most

possible attack steps and attack scenarios. Proposed methodology benefits from

attacks history against network and from attack graph source data. it comes

without considerable computation overload such as checking of attack plans

library. It provides parallel prediction for parallel attack scenarios.

8. SYSTEM STUDY

8.1 Objectives

The goal is to develop a machine learning model for phishing website or not

Prediction, to potentially replace the updatable supervised machine learning

classification models by predicting results in the form of best accuracy by

comparing supervised algorithm

8.2 Project Goals

 Exploration data analysis of variable identification

 Loading the given dataset

 Import required libraries packages

 Analyze the general properties

 Find duplicate and missing values

 Checking unique and count values

 Uni-variate data analysis

 Rename, add data and drop the data

 To specify data type

 Exploration data analysis of bi-variate and multi-variate

 Plot diagram of pairplot, heatmap, bar chart and Histogram

 Method of Outlier detection with feature engineering

 Pre-processing the given dataset

 Splitting the test and training dataset

 Comparing the Decision tree and Logistic regression model and

random forest etc.

 Comparing algorithm to predict the result

 Based on the best accuracy

.

8.3 Scope of the Project

The main Scope is to detect the phishing website Prediction, which is a classic

text classification problem with a help of machine learning algorithm. It is

needed to build a model that can differentiate between phishing website OR not

9. Feasibility study:

Data Wrangling

In this section of the report will load in the data, check for cleanliness,

and then trim and clean given dataset for analysis. Make sure that the document

steps carefully and justify for cleaning decisions.

Data collection

The data set collected for predicting given data is split into Training set

and Test set. Generally, 7:3 ratios are applied to split the Training set and Test

set. The Data Model which was created using Random Forest, logistic, Decision

tree algorithms and Support vector classifier (SVC) are applied on the Training

set and based on the test result accuracy, Test set prediction is done.

Preprocessing

The data which was collected might contain missing values that may lead

to inconsistency. To gain better results data need to be preprocessed so as to

improve the efficiency of the algorithm. The outliers have to be removed and

also variable conversion need to be done.

Building the classification model

The prediction of phishing website, A high accuracy prediction model is

effective because of the following reasons: It provides better results in

classification problem.

 It is strong in preprocessing outliers, irrelevant variables, and a mix of

continuous, categorical and discrete variables.

 It produces out of bag estimate error which has proven to be unbiased in

many tests and it is relatively easy to tune with.

Construction of a Predictive Model

Machine learning needs data gathering have lot of past data‘s. Data

gathering have sufficient historical data and raw data. Before data pre-

processing, raw data can‘t be used directly. It‘s used to pre-process then, what

kind of algorithm with model. Training and testing this model working and

predicting correctly with minimum errors. Tuned model involved by tuned time

to time with improving the accuracy.

Process of dataflow diagram

10. List of Modules:

 Data Pre-processing

 Data Analysis of Visualization

 Comparing Algorithm with prediction in the form of best accuracy result

 Deployment Using Flask

11. Project Requirements

Data Gathering

Data Pre-Processing

Choose model

Train model

Prediction

Tune model

Test model

General:

Requirements are the basic constrains that are required to develop a

system. Requirements are collected while designing the system. The following

are the requirements that are to be discussed.

1. Functional requirements

2. Non-Functional requirements

3. Environment requirements

A. Hardware requirements

B. software requirements

11.1 Functional requirements:

The software requirements specification is a technical specification of

requirements for the software product. It is the first step in the requirements

analysis process. It lists requirements of a particular software system. The

following details to follow the special libraries like sk-learn, pandas, numpy,

matplotlib and seaborn.

11.2 Non-Functional Requirements:

Process of functional steps,

1. Problem define

2. Preparing data

3. Evaluating algorithms

4. Improving results

5. Prediction the result

12. Environmental Requirements:

1. Software Requirements:

Operating System : Windows

Tool : Anaconda with Jupyter Notebook

2. Hardware requirements:

Processor : Pentium IV/III

Hard disk : minimum 80 GB

RAM : minimum 2 GB

13. SOFTWARE DESCRIPTION

Anaconda is a free and open-source distribution of

the Python and R programming languages for scientific computing (data

science, machine learning applications, large-scale data processing, predictive

analytics, etc.), that aims to simplify package management and deployment.

Package versions are managed by the package management

system ―Conda‖. The Anaconda distribution is used by over 12 million users

and includes more than 1400 popular data-science packages suitable for

Windows, Linux, and MacOS. So, Anaconda distribution comes with more than

https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Package_management
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager

1,400 packages as well as the Conda package and virtual environment manager

called Anaconda Navigator and it eliminates the need to learn to install each

library independently. The open source packages can be individually installed

from the Anaconda repository with the conda install command or using the pip

install command that is installed with Anaconda. Pip packages provide many of

the features of conda packages and in most cases they can work together.

Custom packages can be made using the conda build command, and can be

shared with others by uploading them to Anaconda Cloud, PyPI or other

repositories. The default installation of Anaconda2 includes Python 2.7 and

Anaconda3 includes Python 3.7. However, you can create new environments

that include any version of Python packaged with conda.

13.1 ANACONDA NAVIGATOR

Anaconda Navigator is a desktop graphical user interface (GUI) included

in Anaconda® distribution that allows you to launch applications and easily

manage conda packages, environments, and channels without using command-

line commands. Navigator can search for packages on Anaconda.org or in a

local Anaconda Repository.

Anaconda. Now, if you are primarily doing data science work, Anaconda

is also a great option. Anaconda is created by Continuum Analytics, and it is

a Python distribution that comes preinstalled with lots of useful python libraries

for data science.

Anaconda is a distribution of the Python and R programming languages

for scientific computing (data science, machine learning applications, large-

scale data processing, predictive analytics, etc.), that aims to simplify package

management and deployment.

https://en.wikipedia.org/wiki/Conda_(package_manager)
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Python_Package_Index

In order to run, many scientific packages depend on specific versions of

other packages. Data scientists often use multiple versions of many packages

and use multiple environments to separate these different versions.

The command-line program conda is both a package manager and an

environment manager. This helps data scientists ensure that each version of

each package has all the dependencies it requires and works correctly.

Navigator is an easy, point-and-click way to work with packages and

environments without needing to type conda commands in a terminal window.

You can use it to find the packages you want, install them in an environment,

run the packages, and update them – all inside Navigator.

The following applications are available by default in Navigator:

 JupyterLab

 Jupyter Notebook

 Spyder

 PyCharm

 VSCode

 Glueviz

 Orange 3 App

 RStudio

 Anaconda Prompt (Windows only)

 Anaconda PowerShell (Windows only)

https://jupyterlab.readthedocs.io/en/stable/
https://jupyter.readthedocs.io/en/latest/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/documentation/
https://code.visualstudio.com/docs
http://glueviz.org/en/stable/
http://orange.biolab.si/docs/
http://docs.rstudio.com/

Anaconda Navigator is a desktop graphical user interface (GUI) included

in Anaconda distribution.

Navigator allows you to launch common Python programs and easily

manage conda packages, environments, and channels without using command-

line commands. Navigator can search for packages on Anaconda Cloud or in a

local Anaconda Repository.

Anaconda comes with many built-in packages that you can easily find

with conda list on your anaconda prompt. As it has lots of packages (many of

which are rarely used), it requires lots of space and time as well. If you have

enough space, time and do not want to burden yourself to install small utilities

like JSON, YAML, you better go for Anaconda.

Conda :

Conda is an open source, cross-platform, language-agnostic package

manager and environment management system

that installs, runs, and updates

packages and their dependencies. It was created for Python programs, but it can

package and distribute software for any language (e.g., R), including multi-

language projects. The conda package and environment manager is included in

all versions of Anaconda, Miniconda, and Anaconda Repository.

Anaconda is freely available, open source distribution of python and R

programming languages which is used for scientific computations. If you are

doing any machine learning or deep learning project then this is the best place

for you. It consists of many softwares which will help you to build your

machine learning project and deep learning project. these softwares have great

graphical user interface and these will make your work easy to do. you can also

use it to run your python script. These are the software carried by anaconda

navigator.

13.2 JUPYTER NOTEBOOK

This website acts as ―meta‖ documentation for the Jupyter ecosystem. It

has a collection of resources to navigate the tools and communities in this

ecosystem, and to help you get started.

Project Jupyter is a project and community whose goal is to "develop

open-source software, open-standards, and services for interactive computing

across dozens of programming languages". It was spun off from IPython in

2014 by Fernando Perez.

Notebook documents are documents produced by the Jupyter Notebook

App, which contain both computer code (e.g. python) and rich text elements

(paragraph, equations, figures, links, etc…). Notebook documents are both

human-readable documents containing the analysis description and the results

(figures, tables, etc.) as well as executable documents which can be run to

perform data analysis.

Installation: The easiest way to install the Jupyter Notebook App is installing a

scientific python distribution which also includes scientific python packages.

The most common distribution is called Anaconda

Running the Jupyter Notebook

Launching Jupyter Notebook App: The Jupyter Notebook App can be launched

by clicking on the Jupyter Notebook icon installed by Anaconda in the start

menu (Windows) or by typing in a terminal (cmd on Windows): ―jupyter

notebook‖

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app

This will launch a new browser window (or a new tab) showing

the Notebook Dashboard, a sort of control panel that allows (among other

things) to select which notebook to open.

When started, the Jupyter Notebook App can access only files within its

start-up folder (including any sub-folder). No configuration is necessary if you

place your notebooks in your home folder or subfolders. Otherwise, you need to

choose a Jupyter Notebook App start-up folder which will contain all the

notebooks.

Save notebooks: Modifications to the notebooks are automatically saved every

few minutes. To avoid modifying the original notebook, make a copy of the

notebook document (menu file -> make a copy…) and save the modifications

on the copy.

Executing a notebook: Download the notebook you want to execute and put it in

your notebook folder (or a sub-folder of it).

 Launch the jupyter notebook app

 In the Notebook Dashboard navigate to find the notebook: clicking on its

name will open it in a new browser tab.

 Click on the menu Help -> User Interface Tour for an overview of

the Jupyter Notebook App user interface.

 You can run the notebook document step-by-step (one cell a time) by

pressing shift + enter.

 You can run the whole notebook in a single step by clicking on the

menu Cell -> Run All.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#dashboard
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#dashboard
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app

 To restart the kernel (i.e. the computational engine), click on the

menu Kernel -> Restart. This can be useful to start over a computation

from scratch (e.g. variables are deleted, open files are closed, etc…).

Purpose: To support interactive data science and scientific computing across all

programming languages.

File Extension: An IPYNB file is a notebook document created by Jupyter

Notebook, an interactive computational environment that helps scientists

manipulate and analyze data using Python.

JUPYTER Notebook App:

The Jupyter Notebook App is a server-client application that allows

editing and running notebook documents via a web browser.

The Jupyter Notebook App can be executed on a local desktop requiring

no internet access (as described in this document) or can be installed on a

remote server and accessed through the internet.

In addition to displaying/editing/running notebook documents,

the Jupyter Notebook App has a ―Dashboard‖ (Notebook Dashboard), a

―control panel‖ showing local files and allowing to open notebook documents

or shutting down their kernels.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://www.google.com/search?q=project+jupyter+purpose&sa=X&ved=2ahUKEwin49vtmdjyAhXx4zgGHXSOCuwQ6BMoADAkegQINxAC&cshid=1630307847256010
https://www.google.com/search?q=interactive&stick=H4sIAAAAAAAAAONgVuLUz9U3MM0uyYpfxMqdmVeSWpSYXJJZlgoApkTFPhsAAAA&sa=X&ved=2ahUKEwin49vtmdjyAhXx4zgGHXSOCuwQmxMoATAkegQINxAD&cshid=1630307847256010
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-document
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#dashboard
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel

kernel: A notebook kernel is a ―computational engine‖ that executes the code

contained in a Notebook document. The ipython kernel, referenced in this

guide, executes python code. Kernels for many other languages exist (official

kernels).

When you open a Notebook document, the associated kernel is

automatically launched. When the notebook is executed (either cell-by-cell or

with menu Cell -> Run All), the kernel performs the computation and produces

the results.

Depending on the type of computations, the kernel may consume

significant CPU and RAM. Note that the RAM is not released until the kernel is

shut-down

Notebook Dashboard: The Notebook Dashboard is the component which is

shown first when you launch Jupyter Notebook App. The Notebook

Dashboard is mainly used to open notebook documents, and to manage the

running kernels (visualize and shutdown).

The Notebook Dashboard has other features similar to a file manager, namely

navigating folders and renaming/deleting files

Working Process:

 Download and install anaconda and get the most useful package for

machine learning in Python.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#id7
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-document
http://jupyter.readthedocs.org/en/latest/#kernels
http://jupyter.readthedocs.org/en/latest/#kernels
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-document
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#id8
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-app
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#notebook-document
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel

 Load a dataset and understand its structure using statistical summaries

and data visualization.

 Machine learning models, pick the best and build confidence that the

accuracy is reliable.

Python is a popular and powerful interpreted language. Unlike R, Python

is a complete language and platform that you can use for both research and

development and developing production systems. There are also a lot of

modules and libraries to choose from, providing multiple ways to do each task.

It can feel overwhelming.

The best way to get started using Python for machine learning is to complete a

project.

 It will force you to install and start the Python interpreter (at the very least).

 It will give you a bird‘s eye view of how to step through a small project.

 It will give you confidence, maybe to go on to your own small projects.

When you are applying machine learning to your own datasets, you are

working on a project. A machine learning project may not be linear, but it has a

number of well-known steps:

 Define Problem.

 Prepare Data.

 Evaluate Algorithms.

 Improve Results.

 Present Results.

The best way to really come to terms with a new platform or tool is to

work through a machine learning project end-to-end and cover the key steps.

Namely, from loading data, summarizing data, evaluating algorithms and

making some predictions.

Here is an overview of what we are going to cover:

1. Installing the Python anaconda platform.

2. Loading the dataset.

3. Summarizing the dataset.

4. Visualizing the dataset.

5. Evaluating some algorithms.

6. Making some predictions.

14. PYTHON

Introduction:

Python is an interpreted high-level general-purpose programming

language. Its design philosophy emphasizes code readability with its use

of significant indentation. Its language constructs as well as its object-

oriented approach aim to help programmers write clear, logical code for small

and large-scale projects.

Python is dynamically-typed and garbage-collected. It supports

multiple programming paradigms,

including structured (particularly, procedural), object-oriented and functional

programming. It is often described as a "batteries included" language due to its

comprehensive standard library.

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Code_readability
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Language_construct
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programmers
https://en.wikipedia.org/wiki/Type_system#DYNAMIC
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Programming_paradigms
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Standard_library

Guido van Rossum began working on Python in the late 1980s, as a

successor to the ABC programming language, and first released it in 1991 as

Python 0.9.0. Python 2.0 was released in 2000 and introduced new features,

such as list comprehensions and a garbage collection system using reference

counting. Python 3.0 was released in 2008 and was a major revision of the

language that is not completely backward-compatible. Python 2 was

discontinued with version 2.7.18 in 2020.

Python consistently ranks as one of the most popular programming

languages

History:

Python was conceived in the late 1980s

 by Guido van

Rossum at Centrum Wiskunde & Informatica (CWI) in the Netherlands as a

successor to ABC programming language, which was inspired

by SETL, capable of exception handling and interfacing with

the Amoeba operating system. Its implementation began in December

1989. Van Rossum shouldered sole responsibility for the project, as the lead

developer, until 12 July 2018, when he announced his "permanent vacation"

from his responsibilities as Python's Benevolent Dictator For Life, a title the

Python community bestowed upon him to reflect his long-term commitment as

the project's chief decision-maker. In January 2019, active Python core

developers elected a 5-member "Steering Council" to lead the project. As of

2021, the current members of this council are Barry Warsaw, Brett Cannon,

Carol Willing, Thomas Wouters, and Pablo Galindo Salgado.

Python 2.0 was released on 16 October 2000, with many major new

features, including a cycle-detecting garbage collector and support for Unicode.

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Centrum_Wiskunde_%26_Informatica
https://en.wikipedia.org/wiki/Netherlands
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/SETL
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Amoeba_(operating_system)
https://en.wikipedia.org/wiki/Benevolent_Dictator_For_Life
https://en.wikipedia.org/wiki/Cycle_detection
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Unicode

Python 3.0 was released on 3 December 2008. It was a major revision of

the language that is not completely backward-compatible. Many of its major

features were backported to Python 2.6.x and 2.7.x version series. Releases of

Python 3 include the 2 to 3 utility, which automates (at least partially) the

translation of Python 2 code to Python 3.

Python 2.7's end-of-life date was initially set at 2015 then postponed to

2020 out of concern that a large body of existing code could not easily be

forward-ported to Python 3. No more security patches or other improvements

will be released for it. With Python 2's end-of-life, only Python 3.6.x and later

are supported.

Python 3.9.2 and 3.8.8 were expedited

as all versions of Python

(including 2.7) had security issues, leading to possible remote code execution

and web cache poisoning.

Design Philosophy & Feature

Python is a multi-paradigm programming language. Object-oriented

programming and structured programming are fully supported, and many of its

features support functional programming and aspect-oriented

programming (including by meta-programming and meta-objects (magic

methods)). Many other paradigms are supported via extensions,

including design by contract and logic programming.

Python uses dynamic typing and a combination of reference counting and

a cycle-detecting garbage collector for memory management. It also features

dynamic name resolution (late binding), which binds method and variable

names during program execution.

Python's design offers some support for functional programming in

the Lisp tradition. It has filter, map and reduce functions; list

https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Backporting
https://en.wikipedia.org/wiki/End-of-life_(product)
https://en.wikipedia.org/wiki/End-of-life_(product)
https://en.wikipedia.org/wiki/Remote_code_execution
https://en.wikipedia.org/wiki/Cache_poisoning
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Metaobject
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Name_resolution_(programming_languages)
https://en.wikipedia.org/wiki/Late_binding
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/List_comprehension

comprehensions, dictionaries, sets, and generator expressions. The standard

library has two modules (itertools and functools) that implement functional

tools borrowed from Haskell and Standard ML.

The language's core philosophy is summarized in the document The Zen

of Python (PEP 20), which includes aphorisms such as:

 Beautiful is better than ugly.

 Explicit is better than implicit.

 Simple is better than complex.

 Complex is better than complicated.

 Readability counts.

Rather than having all of its functionality built into its core, Python was

designed to be highly extensible (with modules). This compact modularity has

made it particularly popular as a means of adding programmable interfaces to

existing applications. Van Rossum's vision of a small core language with a large

standard library and easily extensible interpreter stemmed from his frustrations

with ABC, which espoused the opposite approach.

Python strives for a simpler, less-cluttered syntax and grammar while

giving developers a choice in their coding methodology. In contrast to Perl's

"there is more than one way to do it" motto, Python embraces a "there should be

one— and preferably only one —obvious way to do it" design philosophy. Alex

Martelli, a Fellow at the Python Software Foundation and Python book author,

writes that "To describe something as 'clever' is not considered a compliment in

the Python culture."

https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/Zen_of_Python
https://en.wikipedia.org/wiki/Zen_of_Python
https://en.wikipedia.org/wiki/Aphorism
https://en.wikipedia.org/wiki/Extensibility
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/There_is_more_than_one_way_to_do_it
https://en.wikipedia.org/wiki/Alex_Martelli
https://en.wikipedia.org/wiki/Alex_Martelli
https://en.wikipedia.org/wiki/Fellow
https://en.wikipedia.org/wiki/Python_Software_Foundation

Python's developers strive to avoid premature optimization, and reject

patches to non-critical parts of the C-Python reference implementation that

would offer marginal increases in speed at the cost of clarity. When speed is

important, a Python programmer can move time-critical functions to extension

modules written in languages such as C, or use PyPy, a just-in-time

compiler. Cython is also available, which translates a Python script into C and

makes direct C-level API calls into the Python interpreter.

Python's developers aim to keep the language fun to use. This is reflected

in its name a tribute to the British comedy group Monty Python and in

occasionally playful approaches to tutorials and reference materials, such as

examples that refer to spam and eggs (a reference to a Monty Python sketch)

instead of the standard foo and bar.

A common neologism in the Python community is pythonic, which can

have a wide range of meanings related to program style. To say that code is

pythonic is to say that it uses Python idioms well, that it is natural or shows

fluency in the language, that it conforms with Python's minimalist philosophy

and emphasis on readability. In contrast, code that is difficult to understand or

reads like a rough transcription from another programming language is

called unpythonic.

Users and admirers of Python, especially those considered

knowledgeable or experienced, are often referred to as Pythonistas

Syntax and Semantics :

Python is meant to be an easily readable language. Its formatting is

visually uncluttered, and it often uses English keywords where other languages

use punctuation. Unlike many other languages, it does not use curly brackets to

https://en.wikipedia.org/wiki/Premature_optimization
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/PyPy
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Cython
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Spam_(Monty_Python)
https://en.wikipedia.org/wiki/Foobar
https://en.wikipedia.org/wiki/Neologism
https://en.wikipedia.org/wiki/Curly_bracket_programming_language

delimit blocks, and semicolons after statements are allowed but are rarely, if

ever, used. It has fewer syntactic exceptions and special cases than C or Pascal.

Indentation :

Main article: Python syntax and semantics & Indentation

Python uses whitespace indentation, rather than curly brackets or

keywords, to delimit blocks. An increase in indentation comes after certain

statements; a decrease in indentation signifies the end of the current block.

Thus, the program's visual structure accurately represents the program's

semantic structure. This feature is sometimes termed the off-side rule, which

some other languages share, but in most languages indentation does not have

any semantic meaning. The recommended indent size is four spaces.

Statements and control flow :

Python's statements include:

 The assignment statement, using a single equals sign =.

 The if statement, which conditionally executes a block of code, along with

else and elif (a contraction of else-if).

 The for statement, which iterates over an iterable object, capturing each

element to a local variable for use by the attached block.

 The while statement, which executes a block of code as long as its condition

is true.

 The Try statement, which allows exceptions raised in its attached code block

to be caught and handled by except clauses; it also ensures that clean-up

code in a finally block will always be run regardless of how the block exits.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Indentation
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Curly_bracket_programming_language
https://en.wikipedia.org/wiki/Block_(programming)
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/Assignment_(computer_science)

 The raise statement, used to raise a specified exception or re-raise a caught

exception.

 The class statement, which executes a block of code and attaches its local

namespace to a class, for use in object-oriented programming.

 The def statement, which defines a function or method.

 The with statement, which encloses a code block within a context manager

(for example, acquiring a lock before the block of code is run and releasing

the lock afterwards, or opening a file and then closing it), allowing resource-

acquisition-is-initialization (RAII) - like behavior and replaces a common

try/finally idiom.

 The break statement, exits from a loop.

 The continue statement, skips this iteration and continues with the next item.

 The del statement, removes a variable, which means the reference from the

name to the value is deleted and trying to use that variable will cause an

error. A deleted variable can be reassigned.

 The pass statement, which serves as a NOP. It is syntactically needed to

create an empty code block.

 The assert statement, used during debugging to check for conditions that

should apply.

 The yield statement, which returns a value from a generator function and

yield is also an operator. This form is used to implement co-routines.

 The return statement, used to return a value from a function.

 The import statement, which is used to import modules whose functions or

variables can be used in the current program.

https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Function_(computing)
https://en.wikipedia.org/wiki/Method_(computing)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/NOP_(code)
https://en.wikipedia.org/wiki/Generator_(computer_programming)#Python
https://en.wikipedia.org/wiki/Coroutine

The assignment statement (=) operates by binding a name as

a reference to a separate, dynamically-allocated object. Variables may be

subsequently rebound at any time to any object. In Python, a variable name is a

generic reference holder and does not have a fixed data type associated with it.

However, at a given time, a variable will refer to some object, which will have a

type. This is referred to as dynamic typing and is contrasted with statically-

typed programming languages, where each variable may only contain values of

a certain type.

Python does not support tail call optimization or first-class continuations,

and, according to Guido van Rossum, it never will.
[80][81]

 However, better

support for co-routine-like functionality is provided, by extending

Python's generators. Before 2.5, generators were lazy iterators; information was

passed uni-directionally out of the generator. From Python 2.5, it is possible to

pass information back into a generator function, and from Python 3.3, the

information can be passed through multiple stack levels.

Expressions :

Some Python expressions are similar to those found in languages such as

C and Java, while some are not:

 Addition, subtraction, and multiplication are the same, but the behavior of

division differs. There are two types of divisions in Python. They are floor

division (or integer division) // and floating-point /division. Python also uses

the ** operator for exponentiation.

 From Python 3.5, the new @ infix operator was introduced. It is intended to

be used by libraries such as NumPy for matrix multiplication.

 From Python 3.8, the syntax :=, called the 'walrus operator' was introduced.

It assigns values to variables as part of a larger expression.

https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Statically-typed
https://en.wikipedia.org/wiki/Statically-typed
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/First-class_continuations
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-AutoNT-55-80
https://en.wikipedia.org/wiki/Python_(programming_language)#cite_note-AutoNT-55-80
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Iterator
https://en.wikipedia.org/wiki/Expression_(computer_science)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Matrix_multiplication

 In Python, == compares by value, versus Java, which compares numerics by

value and objects by reference. (Value comparisons in Java on objects can

be performed with the equals() method.) Python's is operator may be used to

compare object identities (comparison by reference). In Python, comparisons

may be chained, for example A<=B<=C.

 Python uses the words and, or, not for or its boolean operators rather than

the symbolic &&, ||, ! used in Java and C.

 Python has a type of expression termed a list comprehension as well as a

more general expression termed a generator expression.

 Anonymous functions are implemented using lambda expressions; however,

these are limited in that the body can only be one expression.

 Conditional expressions in Python are written as x if c else y (different in

order of operands from the c ? x : y operator common to many other

languages).

 Python makes a distinction between lists and tuples. Lists are written as [1,

2, 3], are mutable, and cannot be used as the keys of dictionaries (dictionary

keys must be immutable in Python). Tuples are written as (1, 2, 3), are

immutable and thus can be used as the keys of dictionaries, provided all

elements of the tuple are immutable. The + operator can be used to

concatenate two tuples, which does not directly modify their contents, but

rather produces a new tuple containing the elements of both provided tuples.

Thus, given the variable t initially equal to (1, 2, 3), executing t = t + (4,

5) first evaluates t + (4, 5), which yields (1, 2, 3, 4, 5), which is then

assigned back to t, thereby effectively "modifying the contents" of t, while

conforming to the immutable nature of tuple objects. Parentheses are

optional for tuples in unambiguous contexts.

 Python features sequence unpacking wherein multiple expressions, each

evaluating to anything that can be assigned to (a variable, a writable

https://en.wikipedia.org/wiki/List_comprehension#Python
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/Lambda_(programming)
https://en.wikipedia.org/wiki/List_(computer_science)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Immutable

property, etc.), are associated in an identical manner to that forming tuple

literals and, as a whole, are put on the left-hand side of the equal sign in an

assignment statement. The statement expects an iterable object on the right-

hand side of the equal sign that produces the same number of values as the

provided writable expressions when iterated through and will iterate through

it, assigning each of the produced values to the corresponding expression on

the left.

 Python has a "string format" operator %. This functions analogously ton

printf format strings in C, e.g. ―spam=%s eggs=%d‖ % (―blah‖,2) evaluates

to ―spam=blah eggs=2‖. In Python 3 and 2.6+, this was supplemented by the

format() method of the str class, e.g. ―spam={0}

eggs={1}‖.format(―blah‖,2). Python 3.6 added "f-strings": blah = ―blah‖;

eggs = 2; f‗spam={blah} eggs={eggs}‘

 Strings in Python can be concatenated, by "adding" them (same operator as

for adding integers and floats). E.g. ―spam‖ + ―eggs‖ returns ―spameggs‖.

Even if your strings contain numbers, they are still added as strings rather

than integers. E.g. ―2‖ + ―2‖ returns ―2‖.

 Python has various kinds of string literals:

o Strings delimited by single or double quote marks. Unlike in Unix

shells, Perl and Perl-influenced languages, single quote marks and double

quote marks function identically. Both kinds of string use the backslash

(\) as an escape character. String interpolation became available in

Python 3.6 as "formatted string literals".

o Triple-quoted strings, which begin and end with a series of three single

or double quote marks. They may span multiple lines and function

like here documents in shells, Perl and Ruby.

o Raw string varieties, denoted by prefixing the string literal with an r .

Escape sequences are not interpreted; hence raw strings are useful where

https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Escape_character
https://en.wikipedia.org/wiki/String_interpolation
https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Raw_string

literal backslashes are common, such as regular

expressions and Windows-style paths. Compare "@-quoting" in C#.

 Python has array index and array slicing expressions on lists, denoted as

a[Key], a[start:stop] or a[start:stop:step]. Indexes are zero-based, and

negative indexes are relative to the end. Slices take elements from

the start index up to, but not including, the stop index. The third slice

parameter, called step or stride, allows elements to be skipped and reversed.

Slice indexes may be omitted, for example a[:] returns a copy of the entire

list. Each element of a slice is a shallow copy.

In Python, a distinction between expressions and statements is rigidly

enforced, in contrast to languages such as Common Lisp, Scheme, or Ruby.

This leads to duplicating some functionality. For example:

 List comprehensions vs. for-loops

 Conditional expressions vs. if blocks

 The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the

former is for expressions, the latter is for statements.

Statements cannot be a part of an expression, so list and other

comprehensions or lambda expressions, all being expressions, cannot contain

statements. A particular case of this is that an assignment statement such as a=1

cannot form part of the conditional expression of a conditional statement. This

has the advantage of avoiding a classic C error of mistaking an assignment

operator = for an equality operator == in conditions: if (c==1) {…} is

syntactically valid (but probably unintended) C code but if c=1: … causes a

syntax error in Python.

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Array_index
https://en.wikipedia.org/wiki/Array_slicing
https://en.wikipedia.org/wiki/Zero-based_numbering
https://en.wikipedia.org/wiki/Shallow_copy
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/List_comprehensions
https://en.wikipedia.org/wiki/Conditional_(programming)
https://en.wikipedia.org/wiki/Lambda_(programming)

Methods :

Methods on objects are functions attached to the object's class; the syntax

instance.method(argument) is, for normal methods and functions, syntactic

sugar for Class.method(instance, argument). Python methods have an explicit

self parameter access instance data, in contrast to the implicit self (or this) in

some other object-oriented programming languages (e.g., C++, Java, Objective-

C, or Ruby). Apart from this Python also provides methods, sometimes

called d-under methods due to their names beginning and ending with double-

underscores, to extend the functionality of custom class to support native

functions such as print, length, comparison, support for arithmetic operations,

type conversion, and many more.

Typing :

Python uses duck typing and has typed objects but untyped variable

names. Type constraints are not checked at compile time; rather, operations on

an object may fail, signifying that the given object is not of a suitable type.

Despite being dynamically-typed, Python is strongly-typed, forbidding

operations that are not well-defined (for example, adding a number to a string)

rather than silently attempting to make sense of them.

Python allows programmers to define their own types using classes,

which are most often used for object-oriented programming. New instances of

classes are constructed by calling the class (for example, SpamClass() or

EggsClass()), and the classes are instances of the metaclass type (itself an

instance of itself), allowing meta-programming and reflection.

Before version 3.0, Python had two kinds of classes: old-style and new-

style.

The syntax of both styles is the same, the difference being whether the

https://en.wikipedia.org/wiki/Method_(programming)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Instance_data
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Class_(computer_science)

class object is inherited from, directly or indirectly (all new-style classes inherit

from object and are instances of type). In versions of Python 2 from Python 2.2

onwards, both kinds of classes can be used. Old-style classes were eliminated in

Python 3.0.

The long-term plan is to support gradual typing and from Python 3.5, the syntax

of the language allows specifying static types but they are not checked in the

default implementation, CPython. An experimental optional static type checker

named mypy supports compile-time type checking.

15. System Architecture

16. Work flow diagram

Source Data

Data Processing and Cleaning

Testing

Dataset

Best Model by Accuracy

Finding phishing website or not

Classification ML Algorithms

Training

Dataset

Workflow Diagram

17. Use Case Diagram

Use case diagrams are considered for high level requirement analysis of a

system. So when the requirements of a system are analyzed the functionalities

are captured in use cases. So, it can say that uses cases are nothing but the

system functionalities written in an organized manner.

18. Class Diagram:

Class diagram is basically a graphical representation of the static view of

the system and represents different aspects of the application. So a collection of

class diagrams represent the whole system. The name of the class diagram

should be meaningful to describe the aspect of the system. Each element and

their relationships should be identified in advance Responsibility (attributes and

methods) of each class should be clearly identified for each class minimum

number of properties should be specified and because, unnecessary properties

will make the diagram complicated. Use notes whenever required to describe

some aspect of the diagram and at the end of the drawing it should be

understandable to the developer/coder. Finally, before making the final version,

the diagram should be drawn on plain paper and rework as many times as

possible to make it correct.

19. Activity Diagram:

Activity is a particular operation of the system. Activity diagrams are not

only used for visualizing dynamic nature of a system but they are also used to

construct the executable system by using forward and reverse engineering

techniques. The only missing thing in activity diagram is the message part. It

does not show any message flow from one activity to another. Activity diagram

is some time considered as the flow chart. Although the diagrams looks like a

flow chart but it is not. It shows different flow like parallel, branched,

concurrent and single.

20. Sequence Diagram:

Sequence diagrams model the flow of logic within your system in a

visual manner, enabling you both to document and validate your logic, and are

commonly used for both analysis and design purposes. Sequence diagrams are

the most popular UML artifact for dynamic modelling, which focuses on

identifying the behaviour within your system. Other dynamic modelling

techniques include activity diagramming, communication diagramming, timing

diagramming, and interaction overview diagramming. Sequence diagrams,

along with class diagrams and physical data models are in my opinion the most

important design-level models for modern business application development.

21. Entity Relationship Diagram (ERD)

http://agilemodeling.com/artifacts/activityDiagram.htm
http://agilemodeling.com/artifacts/communicationDiagram.htm
http://agilemodeling.com/artifacts/timingDiagram.htm
http://agilemodeling.com/artifacts/timingDiagram.htm
http://agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://agilemodeling.com/artifacts/classDiagram.htm
http://agiledata.org/essays/dataModeling101.html

An entity relationship diagram (ERD), also known as an entity

relationship model, is a graphical representation of an information system that

depicts the relationships among people, objects, places, concepts or events

within that system. An ERD is a data modeling technique that can help define

business processes and be used as the foundation for a relational database.

Entity relationship diagrams provide a visual starting point for database design

that can also be used to help determine information system requirements

throughout an organization. After a relational database is rolled out, an ERD can

still serve as a referral point, should any debugging or business process re-

engineering be needed later.

22. Module description:

Data Pre-processing

Validation techniques in machine learning are used to get the error rate of

the Machine Learning (ML) model, which can be considered as close to the true

error rate of the dataset. If the data volume is large enough to be representative

of the population, you may not need the validation techniques. However, in

real-world scenarios, to work with samples of data that may not be a true

representative of the population of given dataset. To finding the missing value,

duplicate value and description of data type whether it is float variable or

integer. The sample of data used to provide an unbiased evaluation of a model fit

on the training dataset while tuning model hyper parameters.

The evaluation becomes more biased as skill on the validation dataset is

incorporated into the model configuration. The validation set is used to evaluate

a given model, but this is for frequent evaluation. It as machine learning

https://searchdatamanagement.techtarget.com/definition/data-modeling
https://searchdatamanagement.techtarget.com/definition/relational-database

engineers use this data to fine-tune the model hyper parameters. Data collection,

data analysis, and the process of addressing data content, quality, and structure

can add up to a time-consuming to-do list. During the process of data

identification, it helps to understand your data and its properties; this knowledge

will help you choose which algorithm to use to build your model.

A number of different data cleaning tasks using Python‘s Pandas library

and specifically, it focus on probably the biggest data cleaning task, missing

values and it able to more quickly clean data. It wants to spend less time

cleaning data, and more time exploring and modeling.

Some of these sources are just simple random mistakes. Other times, there

can be a deeper reason why data is missing. It‘s important to understand

these different types of missing data from a statistics point of view. The type of

missing data will influence how to deal with filling in the missing values and to

detect missing values, and do some basic imputation and detailed statistical

approach for dealing with missing data. Before, joint into code, it‘s important to

understand the sources of missing data. Here are some typical reasons why data

is missing:

 User forgot to fill in a field.

 Data was lost while transferring manually from a legacy database.

 There was a programming error.

 Users chose not to fill out a field tied to their beliefs about how the results

would be used or interpreted.

Variable identification with Uni-variate, Bi-variate and Multi-variate analysis:

https://pandas.pydata.org/
https://www.dataoptimal.com/data-cleaning-with-python-2018/
https://en.wikipedia.org/wiki/Missing_data
https://github.com/matthewbrems/ODSC-missing-data-may-18/blob/master/Analysis%20with%20Missing%20Data.pdf

 import libraries for access and functional purpose and read the given

dataset

 General Properties of Analyzing the given dataset

 Display the given dataset in the form of data frame

 show columns

 shape of the data frame

 To describe the data frame

 Checking data type and information about dataset

 Checking for duplicate data

 Checking Missing values of data frame

 Checking unique values of data frame

 Checking count values of data frame

 Rename and drop the given data frame

 To specify the type of values

 To create extra columns

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : removing noisy data

Data Validation/ Cleaning/Preparing Process

Importing the library packages with loading given dataset. To analyzing

the variable identification by data shape, data type and evaluating the missing

values, duplicate values. A validation dataset is a sample of data held back from

training your model that is used to give an estimate of model skill while tuning

model's and procedures that you can use to make the best use of validation and

test datasets when evaluating your models. Data cleaning / preparing by rename

the given dataset and drop the column etc. to analyze the uni-variate, bi-variate

and multi-variate process. The steps and techniques for data cleaning will vary

from dataset to dataset. The primary goal of data cleaning is to detect and

remove errors and anomalies to increase the value of data in analytics and

decision making.

Exploration data analysis of visualization

Data visualization is an important skill in applied statistics and machine

learning. Statistics does indeed focus on quantitative descriptions and

estimations of data. Data visualization provides an important suite of tools for

gaining a qualitative understanding. This can be helpful when exploring and

getting to know a dataset and can help with identifying patterns, corrupt data,

outliers, and much more. With a little domain knowledge, data visualizations

can be used to express and demonstrate key relationships in plots and charts that

are more visceral and stakeholders than measures of association or significance.

Data visualization and exploratory data analysis are whole fields themselves and

it will recommend a deeper dive into some the books mentioned at the end.

Sometimes data does not make sense until it can look at in a visual form,

such as with charts and plots. Being able to quickly visualize of data samples

and others is an important skill both in applied statistics and in applied machine

learning. It will discover the many types of plots that you will need to know

when visualizing data in Python and how to use them to better understand your

own data.

 How to chart time series data with line plots and categorical quantities

with bar charts.

 How to summarize data distributions with histograms and box plots.

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : visualized data

Pre-processing refers to the transformations applied to our data before

feeding it to the algorithm. Data Preprocessing is a technique that is used to

convert the raw data into a clean data set. In other words, whenever the data is

gathered from different sources it is collected in raw format which is not

feasible for the analysis. To achieving better results from the applied model in

Machine Learning method of the data has to be in a proper manner. Some

specified Machine Learning model needs information in a specified format, for

example, Random Forest algorithm does not support null values. Therefore, to

execute random forest algorithm null values have to be managed from the

original raw data set. And another aspect is that data set should be formatted in

such a way that more than one Machine Learning and Deep Learning algorithms

are executed in given dataset.

False Positives (FP): A person who will pay predicted as defaulter. When

actual class is no and predicted class is yes. E.g. if actual class says this

passenger did not survive but predicted class tells you that this passenger will

survive.

False Negatives (FN): A person who default predicted as payer. When actual

class is yes but predicted class in no. E.g. if actual class value indicates that this

passenger survived and predicted class tells you that passenger will die.

True Positives (TP): A person who will not pay predicted as defaulter. These

are the correctly predicted positive values which means that the value of actual

class is yes and the value of predicted class is also yes. E.g. if actual class value

indicates that this passenger survived and predicted class tells you the same

thing.

True Negatives (TN): A person who default predicted as payer. These are the

correctly predicted negative values which means that the value of actual class is

no and value of predicted class is also no. E.g. if actual class says this passenger

did not survive and predicted class tells you the same thing.

Comparing Algorithm with prediction in the form of best accuracy result

It is important to compare the performance of multiple different machine

learning algorithms consistently and it will discover to create a test harness to

compare multiple different machine learning algorithms in Python with scikit-

learn. It can use this test harness as a template on your own machine learning

problems and add more and different algorithms to compare. Each model will

have different performance characteristics. Using resampling methods like cross

validation, you can get an estimate for how accurate each model may be on

unseen data. It needs to be able to use these estimates to choose one or two best

models from the suite of models that you have created. When have a new

dataset, it is a good idea to visualize the data using different techniques in order

to look at the data from different perspectives. The same idea applies to model

selection. You should use a number of different ways of looking at the

estimated accuracy of your machine learning algorithms in order to choose the

one or two to finalize. A way to do this is to use different visualization methods

to show the average accuracy, variance and other properties of the distribution

of model accuracies.

In the next section you will discover exactly how you can do that in

Python with scikit-learn. The key to a fair comparison of machine learning

algorithms is ensuring that each algorithm is evaluated in the same way on the

same data and it can achieve this by forcing each algorithm to be evaluated on a

consistent test harness.

In the example below 4 different algorithms are compared:

 Logistic Regression

 Random Forest

 Decision Tree Classifier

 Naive Bayes

The K-fold cross validation procedure is used to evaluate each algorithm,

importantly configured with the same random seed to ensure that the same splits

to the training data are performed and that each algorithm is evaluated in

precisely the same way. Before that comparing algorithm, Building a Machine

Learning Model using install Scikit-Learn libraries. In this library package have

to done preprocessing, linear model with logistic regression method, cross

validating by KFold method, ensemble with random forest method and tree with

decision tree classifier. Additionally, splitting the train set and test set. To

predicting the result by comparing accuracy.

Prediction result by accuracy:

Logistic regression algorithm also uses a linear equation with independent

predictors to predict a value. The predicted value can be anywhere between

negative infinity to positive infinity. It need the output of the algorithm to be

classified variable data. Higher accuracy predicting result is logistic regression

model by comparing the best accuracy.

True Positive Rate(TPR) = TP / (TP + FN)

False Positive rate(FPR) = FP / (FP + TN)

Accuracy: The Proportion of the total number of predictions that is correct

otherwise overall how often the model predicts correctly defaulters and non-

defaulters.

Accuracy calculation:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Accuracy is the most intuitive performance measure and it is simply a ratio of

correctly predicted observation to the total observations. One may think that, if

we have high accuracy then our model is best. Yes, accuracy is a great measure

but only when you have symmetric datasets where values of false positive and

false negatives are almost same.

Precision: The proportion of positive predictions that are actually correct.

Precision = TP / (TP + FP)

Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations. The question that this metric answer is of all

passengers that labeled as survived, how many actually survived? High

precision relates to the low false positive rate. We have got 0.788 precision

which is pretty good.

Recall: The proportion of positive observed values correctly predicted. (The

proportion of actual defaulters that the model will correctly predict)

Recall = TP / (TP + FN)

Recall(Sensitivity) - Recall is the ratio of correctly predicted positive

observations to the all observations in actual class - yes.

F1 Score is the weighted average of Precision and Recall. Therefore, this score

takes both false positives and false negatives into account. Intuitively it is not as

easy to understand as accuracy, but F1 is usually more useful than accuracy,

especially if you have an uneven class distribution. Accuracy works best if false

positives and false negatives have similar cost. If the cost of false positives and

false negatives are very different, it‘s better to look at both Precision and Recall.

General Formula:

F- Measure = 2TP / (2TP + FP + FN)

F1-Score Formula:

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

ALGORITHM AND TECHNIQUES

Algorithm Explanation

In machine learning and statistics, classification is a supervised learning

approach in which the computer program learns from the data input given to it

and then uses this learning to classify new observation. This data set may simply

be bi-class (like identifying whether the person is male or female or that the mail

is spam or non-spam) or it may be multi-class too. Some examples of

classification problems are: speech recognition, handwriting recognition, bio

metric identification, document classification etc. In Supervised Learning,

algorithms learn from labeled data. After understanding the data, the algorithm

determines which label should be given to new data based on pattern and

associating the patterns to the unlabeled new data.

Used Python Packages:

sklearn:

 In python, sklearn is a machine learning package which include a lot

of ML algorithms.

 Here, we are using some of its modules like train_test_split,

DecisionTreeClassifier or Logistic Regression and accuracy_score.

NumPy:

 It is a numeric python module which provides fast maths functions for

calculations.

 It is used to read data in numpy arrays and for manipulation purpose.

Pandas:

 Used to read and write different files.

 Data manipulation can be done easily with data frames.

Matplotlib:

 Data visualization is a useful way to help with identify the patterns

from given dataset.

 Data manipulation can be done easily with data frames.

Logistic Regression

It is a statistical method for analysing a data set in which there are one or

more independent variables that determine an outcome. The outcome is

measured with a dichotomous variable (in which there are only two possible

outcomes). The goal of logistic regression is to find the best fitting model to

describe the relationship between the dichotomous characteristic of interest

(dependent variable = response or outcome variable) and a set of independent

(predictor or explanatory) variables. Logistic regression is a Machine Learning

classification algorithm that is used to predict the probability of a categorical

dependent variable. In logistic regression, the dependent variable is a binary

variable that contains data coded as 1 (yes, success, etc.) or 0 (no, failure, etc.).

In other words, the logistic regression model predicts P(Y=1) as a function

of X. Logistic regression Assumptions:

 Binary logistic regression requires the dependent variable to be binary.

 For a binary regression, the factor level 1 of the dependent variable should

represent the desired outcome.

 Only the meaningful variables should be included.

 The independent variables should be independent of each other. That is,

the model should have little.

https://en.wikipedia.org/wiki/Logistic_regression

 The independent variables are linearly related to the log odds.

 Logistic regression requires quite large sample sizes.

Screen shots:

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : getting accuracy

Random Forest Classifier

Random forests or random decision forests are an ensemble learning

method for classification, regression and other tasks, that operate by constructing

a multitude of decision trees at training time and outputting the class that is the

mode of the classes (classification) or mean prediction (regression) of the

individual trees. Random decision forests correct for decision trees‘ habit of over

fitting to their training set. Random forest is a type of supervised machine

learning algorithm based on ensemble learning. Ensemble learning is a type of

learning where you join different types of algorithms or same algorithm

multiple times to form a more powerful prediction model. The random

forest algorithm combines multiple algorithm of the same type i.e. multiple

decision trees, resulting in a forest of trees, hence the name "Random Forest".

The random forest algorithm can be used for both regression and classification

tasks.

The following are the basic steps involved in performing the random forest

algorithm:

 Pick N random records from the dataset.

 Build a decision tree based on these N records.

 Choose the number of trees you want in your algorithm and repeat steps 1

and 2.

In case of a regression problem, for a new record, each tree in the forest predicts

a value for Y (output). The final value can be calculated by taking the average

of all the values predicted by all the trees in forest. Or, in case of a classification

problem, each tree in the forest predicts the category to which the new record

belongs. Finally, the new record is assigned to the category that wins the

majority vote.

Screen shots:

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : getting accuracy

Decision Tree Classifier

It is one of the most powerful and popular algorithm. Decision-tree

algorithm falls under the category of supervised learning algorithms. It works

for both continuous as well as categorical output variables. Assumptions of

Decision tree:

 At the beginning, we consider the whole training set as the root.

 Attributes are assumed to be categorical for information gain, attributes

are assumed to be continuous.

 On the basis of attribute values records are distributed recursively.

 We use statistical methods for ordering attributes as root or internal node.

Decision tree builds classification or regression models in the form of a

tree structure. It breaks down a data set into smaller and smaller subsets while at

https://www.geeksforgeeks.org/decision-tree/

the same time an associated decision tree is incrementally developed. A decision

node has two or more branches and a leaf node represents a classification or

decision. The topmost decision node in a tree which corresponds to the best

predictor called root node. Decision trees can handle both categorical and

numerical data. Decision tree builds classification or regression models in the

form of a tree structure. It utilizes an if-then rule set which is mutually exclusive

and exhaustive for classification. The rules are learned sequentially using the

training data one at a time. Each time a rule is learned, the tuples covered by the

rules are removed.

This process is continued on the training set until meeting a termination

condition. It is constructed in a top-down recursive divide-and-conquer manner.

All the attributes should be categorical. Otherwise, they should be discretized in

advance. Attributes in the top of the tree have more impact towards in the

classification and they are identified using the information gain concept. A

decision tree can be easily over-fitted generating too many branches and may

reflect anomalies due to noise or outliers.

Screen shots:

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : getting accuracy

Naive Bayes algorithm:

 The Naive Bayes algorithm is an intuitive method that uses the

probabilities of each attribute belonging to each class to make a

prediction. It is the supervised learning approach you would come up

with if you wanted to model a predictive modeling problem

probabilistically.

 Naive bayes simplifies the calculation of probabilities by assuming that

the probability of each attribute belonging to a given class value is

independent of all other attributes. This is a strong assumption but results

in a fast and effective method.

 The probability of a class value given a value of an attribute is called the

conditional probability. By multiplying the conditional probabilities

togeth er for each attribute for a given class value, we have a probability

of a data instance belonging to that class. To make a prediction we can

calculate probabilities of the instance belonging to each class and select

the class value with the highest probability.

 Naive Bayes is a statistical classification technique based on Bayes

Theorem. It is one of the simplest supervised learning algorithms.Naive

Bayes classifier is the fast, accurate and reliable algorithm. Naive Bayes

classifiers have high accuracy and speed on large datasets.

 Naive Bayes classifier assumes that the effect of a particular feature in a

class is independent of other features. For example, a loan applicant is

desirable or not depending on his/her income, previous loan and

transaction history, age, and location.

 Even if these features are interdependent, these features are still

considered independently. This assumption simplifies computation, and

that's why it is considered as naive. This assumption is called class

conditional independence.

Screen shots:

MODULE DIAGRAM

GIVEN INPUT EXPECTED OUTPUT

input : data

output : getting accuracy

23. Deployment

Flask (Web FrameWork) :

Flask is a micro web framework written in Python.

It is classified as a micro-framework because it does not require particular

tools or libraries.

It has no database abstraction layer, form validation, or any other

components where pre-existing third-party libraries provide common functions.

However, Flask supports extensions that can add application features as if

they were implemented in Flask itself.

Extensions exist for object-relational mappers, form validation, upload

handling, various open authentication technologies and several common

framework related tools.

Flask was created by Armin Ronacher of Pocoo, an international group of

Python enthusiasts formed in 2004. According to Ronacher, the idea was

originally an April Fool‘s joke that was popular enough to make into a serious

application. The name is a play on the earlier Bottle framework.

When Ronacher and Georg Brand created a bulletin board system written

in Python, the Pocoo projects Werkzeug and Jinja were developed.

In April 2016, the Pocoo team was disbanded and development of Flask

and related libraries passed to the newly formed Pallets project.

Flask has become popular among Python enthusiasts. As of

October 2020, it has second most stars on GitHub among Python web-

development frameworks, only slightly behind Django, and was voted the most

popular web framework in the Python Developers Survey 2018.

The micro-framework Flask is part of the Pallets Projects, and based on

several others of them.

Flask is based on Werkzeug, Jinja2 and inspired by Sinatra Ruby framework,

available under BSD licence. It was developed at pocoo by Armin Ronacher.

Although Flask is rather young compared to most Python frameworks, it holds a

great promise and has already gained popularity among Python web developers.

Let‘s take a closer look into Flask, so-called ―micro‖ framework for Python.

MODULE DIAGRAM

https://en.wikipedia.org/wiki/Armin_Ronacher
https://en.wikipedia.org/wiki/April_Fool%27s
https://en.wikipedia.org/wiki/Bottle_(web_framework)
https://en.wikipedia.org/wiki/Jinja_(template_engine)
https://en.wikipedia.org/wiki/GitHub
http://quintagroup.com/cms/python/jinja2
https://quintagroup.com/services/python

GIVEN INPUT EXPECTED OUTPUT

input : data values

output : predicting output

FEATURES:

Flask was designed to be easy to use and extend. The idea behind Flask

is to build a solid foundation for web applications of different complexity. From

then on you are free to plug in any extensions you think you need. Also you

are free to build your own modules. Flask is great for all kinds of projects. It's

especially good for prototyping. Flask depends on two external libraries: the

Jinja2 template engine and the Werkzeug WSGI toolkit.

Still the question remains why use Flask as your web application

framework if we have immensely powerful Django, Pyramid, and don‘t forget

web mega-framework Turbo-gears? Those are supreme Python web

frameworks BUT out-of-the-box Flask is pretty impressive too with its:

 Built-In Development server and Fast debugger

 integrated support for unit testing

 RESTful request dispatching

https://quintagroup.com/services/python/django
https://quintagroup.com/cms/python/pyramid
https://quintagroup.com/cms/python/turbogears
https://quintagroup.com/services/python/python-web-development.png
https://quintagroup.com/services/python/python-web-development.png
http://quintagroup.com/cms/python/flask

 Uses Jinja2 Templating

 support for secure cookies

 Unicode based

 Extensive Documentation

 Google App Engine Compatibility

 Extensions available to enhance features desired

Plus Flask gives you so much more CONTROL on the development

stage of your project. It follows the principles of minimalism and let you

decide how you will build your application.

 Flask has a lightweight and modular design, so it easy to transform it to the web

framework you need with a few extensions without weighing it down

 ORM-agnostic: you can plug in your favourite ORM e.g. SQLAlchemy.

 Basic foundation API is nicely shaped and coherent.

 Flask documentation is comprehensive, full of examples and well structured.

You can even try out some sample application to really get a feel of Flask.

 It is super easy to deploy Flask in production (Flask is 100% WSGI 1.0

compliant‖)

 HTTP request handling functionality

 High Flexibility

The configuration is even more flexible than that of Django, giving you plenty

of solution for every production need.

https://quintagroup.com/cms/python/jinja2
https://quintagroup.com/cms/python/sqlalchemy
http://www.python.org/dev/peps/pep-0333/

To sum up, Flask is one of the most polished and feature-rich micro

frameworks, available. Still young, Flask has a thriving community, first-class

extensions, and an elegant API. Flask comes with all the benefits of fast

templates, strong WSGI features, thorough unit testability at the web

application and library level, extensive documentation. So next time you are

starting a new project where you need some good features and a vast number of

extensions, definitely check out Flask.

Flask is an API of Python that allows us to build up web-applications. It

was developed by Armin Ronacher. Flask's framework is more explicit than

Django framework and is also easier to learn because it has less base code to

implement a simple web-Application

Flask is a micro web framework written in Python. It is classified as a

micro-framework because it does not require particular tools or libraries. It has

no database abstraction layer, form validation, or any other components where

pre-existing third-party libraries provide common functions.

Overview of Python Flask Framework Web apps are developed to

generate content based on retrieved data that changes based on a user‘s

interaction with the site. The server is responsible for querying, retrieving, and

updating data. This makes web applications to be slower and more complicated

to deploy than static websites for simple applications.

Flask is an excellent web development framework for REST API creation. It is

built on top of Python which makes it powerful to use all the python features.

Flask is used for the backend, but it makes use of a templating language called

Jinja2 which is used to create HTML, XML or other markup formats that are

returned to the user via an HTTP request.

Django is considered to be more popular because it provides many out of box

features and reduces time to build complex applications. Flask is a good start if

you are getting into web development. Flask is a simple, un-opinionated

framework; it doesn't decide what your application should look like developers

do.

Flask is a web framework. This means flask provides you with tools,

libraries and technologies that allow you to build a web application. This web

application can be some web pages, a blog, a wiki or go as big as a web-based

calendar application or a commercial website.

Advantages of Flask:

 Higher compatibility with latest technologies.

 Technical experimentation.

 Easier to use for simple cases.

 Codebase size is relatively smaller.

 High scalability for simple applications.

 Easy to build a quick prototype.

 Routing URL is easy.

 Easy to develop and maintain applications.

Framework Flask is a web framework from Python language. Flask

provides a library and a collection of codes that can be used to build websites,

without the need to do everything from scratch. But Framework flask still

doesn't use the Model View Controller (MVC) method.

 Flask-RESTful is an extension for Flask that provides additional support

for building REST APIs. You will never be disappointed with the time it takes

to develop an API. Flask-Restful is a lightweight abstraction that works with the

existing ORM/libraries. Flask-RESTful encourages best practices with minimal

setup.

Flask Restful is an extension for Flask that adds support for building

REST APIs in Python using Flask as the back-end. It encourages best practices

and is very easy to set up. Flask restful is very easy to pick up if you're already

familiar with flask.

Flask is a web framework for Python, meaning that it provides functionality for

building web applications, including managing HTTP requests and rendering

templates and also we can add to this application to create our API.

Start Using an API

1. Most APIs require an API key. ...

2. The easiest way to start using an API is by finding an HTTP client online, like

REST-Client, Postman, or Paw.

3. The next best way to pull data from an API is by building a URL from existing

API documentation.

The flask object implements a WSGI application and acts as the central

object. It is passed the name of the module or package of the application. Once

it is created it will act as a central registry for the view functions, the URL rules,

template configuration and much more.

The name of the package is used to resolve resources from inside the

package or the folder the module is contained in depending on if the package

parameter resolves to an actual python package (a folder with

an __init__.py file inside) or a standard module (just a .py file).

For more information about resource loading, see open resource().

Usually you create a Flask instance in your main module or in

the __init__.py file of your package.

Parameters

 rule (str) – The URL rule string.

 endpoint (Optional[str]) – The endpoint name to associate with the rule

and view function. Used when routing and building URLs. Defaults to

view_func.__name__.

 view_func (Optional[Callable]) – The view function to associate with

the endpoint name.

 provide_automatic_options (Optional[bool]) – Add the

OPTIONS method and respond to OPTIONS requests automatically.

 options (Any) – Extra options passed to the Rule object.

Return type -- None

https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.open_resource
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule
https://docs.python.org/3/library/constants.html#None

After_Request(f)

Register a function to run after each request to this object.

The function is called with the response object, and must return a

response object. This allows the functions to modify or replace the

response before it is sent.

If a function raises an exception, any remaining after

request functions will not be called. Therefore, this should not be used for

actions that must execute, such as to close resources.

Use teardown_request() for that.

Parameters:

f (Callable[[Response], Response])

Return type

Callable[[Response], Response]

after_request_funcs: t.Dict[AppOrBlueprintKey,

t.List[AfterRequestCallable]]

A data structure of functions to call at the end of each request, in

the format {scope: [functions]}. The scope key is the name of a blueprint

the functions are active for, or None for all requests.

To register a function, use the after_request() decorator.

https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.teardown_request
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Response
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Response
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Response
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Response
https://flask.palletsprojects.com/en/2.0.x/api/#flask.Flask.after_request

This data structure is internal. It should not be modified directly and

its format may change at any time.

app_context()

Create an AppContext. Use as a with block to push the context,

which will make current_app point at this application.

An application context is automatically pushed

by RequestContext.push() when handling a request, and when running a

CLI command. Use this to manually create a context outside of these

situations.

With app.app_context():

Init_db()

24. HTML Introduction

HTML stands for Hyper Text Markup Language. It is used to design web

pages using a markup language. HTML is the combination of Hypertext and

Markup language. Hypertext defines the link between the web pages. A markup

language is used to define the text document within tag which defines the

structure of web pages. This language is used to annotate (make notes for the

computer) text so that a machine can understand it and manipulate text

accordingly. Most markup languages (e.g. HTML) are human-readable. The

language uses tags to define what manipulation has to be done on the text.

Basic Construction of an HTML Page

These tags should be placed underneath each other at the top of every HTML

page that you create.

https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.AppContext
https://flask.palletsprojects.com/en/2.0.x/api/#flask.current_app
https://flask.palletsprojects.com/en/2.0.x/api/#flask.ctx.RequestContext.push

<!DOCTYPE html> — This tag specifies the language you will write on the

page. In this case, the language is HTML 5.

<html> — This tag signals that from here on we are going to write in HTML

code.

<head> — This is where all the metadata for the page goes — stuff mostly

meant for search engines and other computer programs.

<body> — This is where the content of the page goes.

Further Tags

Inside the <head> tag, there is one tag that is always included: <title>, but there

are others that are just as important:

<title>

This is where we insert the page name as it will appear at the top of

the browser window or tab.

<meta>

This is where information about the document is stored: character

encoding, name (page context), description.

Head Tag

<head>

<title>My First Webpage</title>

<meta charset="UTF-8">

<meta name="description" content="This field contains information about your

page. It is usually around two sentences long.">.

<meta name="author" content="Conor Sheils">

</header>

Adding Content

Next, we will make<body> tag.

The HTML <body> is where we add the content which is designed for viewing

by human eyes.

This includes text, images, tables, forms and everything else that we see on the

internet each day.

Add HTML Headings To Web Page

In HTML, headings are written in the following elements:

https://html.com/tags/heading/

 <h1>

 <h2>

 <h3>

 <h4>

 <h5>

 <h6>

As you might have guessed <h1> and <h2> should be used for the most

important titles, while the remaining tags should be used for sub-headings and

less important text.

Search engine bots use this order when deciphering which information

is most important on a page.

Creating Your Heading

Let‘s try it out. On a new line in the HTML editor, type:

<h1> Welcome To My Page </h1>

And hit save. We will save this file as ―index.html‖ in a new folder called

―my webpage.‖

Add Text In HTML

Adding text to our HTML page is simple using an element opened with

the tag <p> which creates a new paragraph. We place all of our regular text

inside the element <p>.

When we write text in HTML, we also have a number of other elements

we can use to control the text or make it appear in a certain way.

Add Links In HTML

As you may have noticed, the internet is made up of lots of links.

Almost everything you click on while surfing the web is a link takes you to

another page within the website you are visiting or to an external site.

Links are included in an attribute opened by the <a> tag. This element is the

first that we‘ve met which uses an attribute and so it looks different to

previously mentioned tags.

Google

Image Tag

In today‘s modern digital world, images are everything. The tag

has everything you need to display images on your site. Much like the <a>

anchor element, also contains an attribute.

The attribute features information for your computer regarding

the source, height, width and alt text of the image

25. CSS

CSS stands for Cascading Style Sheets. It is the language for describing

the presentation of Web pages, including colours, layout, and fonts, thus

making our web pages presentable to the users.CSS is designed to make style

sheets for the web. It is independent of HTML and can be used with any

XML-based markup language. Now let‘s try to break the acronym:

https://html.com/anchors-links/
https://html.com/tags/a/
http://www.google.com/
https://html.com/blog/100-legal-sources-free-stock-images/
https://html.com/tags/img/

 Cascading: Falling of Styles

 Style: Adding designs/Styling our HTML tags

 Sheets: Writing our style in different documents

CSS Syntax

Selector {

Property 1 : value;

Property 2 : value;

Property 3 : value;

}

For example:

h1

{

Color: red;

Text-align: center;

}

#unique

{

color: green;

}

 Selector: selects the element you want to target

 Always remains the same whether we apply internal or external

styling

 There are few basic selectors like tags, id‘s, and classes

 All forms this key-value pair

 Keys: properties(attributes) like color, font-size, background, width,

height,etc

 Value: values associated with these properties

CSS Comment

 Comments don‘t render on the browser

 Helps to understand our code better and makes it readable.

 Helps to debug our code

 Two ways to comment:

o Single line

CSS How-To

 There are 3 ways to write CSS in our HTML file.

o Inline CSS

o Internal CSS

o External CSS

 Priority order

o Inline > Internal > External

Inline CSS

 Before CSS this was the only way to apply styles

 Not an efficient way to write as it has a lot of redundancy

 Self-contained

 Uniquely applied on each element

 The idea of separation of concerns was lost

 Example:

<h3 style = ―color:red‖> Have a great day </h3>

<p style = ―color:green‖> I did this, I did that </p>

Internal CSS

 With the help of style tag, we can apply styles within the HTML file

 Redundancy is removed

 But the idea of separation of concerns still lost

 Uniquely applied on a single document

 Example:

<style>

H1{

Color:red;

}

</style>

<h3> Have a great day </h3>

External CSS

 With the help of <link> tag in the head tag, we can apply styles

 Reference is added

 File saved with .css extension

 Redundancy is removed

 The idea of separation of concerns is maintained

 Uniquely applied to each document

 Example:

<head>

<link rel= ―stylesheet‖ type= ―text/css‖ href= ―name of the CSS file‖>

</head>

h1{

color:red; //.css file

}

CSS Selectors

 The selector is used to target elements and apply CSS

 Three simple selectors

o Element Selector

o Id Selector

o Class Selector

 Priority of Selectors

CSS Colors

 There are different colouring schemes in CSS

 RGB-This starts with RGB and takes 3 parameter

 HEX-Hex code starts with # and comprises of 6 numbers which are

further divided into 3 sets

 RGBA-This starts with RGB and takes 4 parameter

CSS Background

 There are different ways by which CSS can have an effect on HTML

elements

 Few of them are as follows:

o Color – used to set the color of the background

o Repeat – used to determine if the image has to repeat or not

and if it is repeating then how it should do that

o Image – used to set an image as the background

o Position – used to determine the position of the image

o Attachment – It basically helps in controlling the

mechanism of scrolling.

CSS BoxModel

 Every element in CSS can be represented using the BOX model

 It allows us to add a border and define space between the content

 It helps the developer to develop and manipulate the elements

 It consists of 4 edges

o Content edge – It comprises of the actual content

o Padding edge – It lies in between content and border edge

o Border edge – Padding is followed by the border edge

o Margin edge – It is an outside border and controls the

margin of the element

26. Coding:

Module – 1

Pre-Processing

#import library packages

import pandas as pd

import numpy as np

In []:
import warnings

warnings.filterwarnings("ignore")

In []:
#Load given dataset

data = pd.read_csv("data.csv")

Before drop the given dataset:

In []:

data.head()

In []:
#shape

data.shape

After drop the given dataset:

In []:
df = data.dropna()

In []:
df.head()

In []:
#shape

df.shape

In []:
#columns

df.columns

In []:
#To describe the dataframe

df.describe()

In []:
#Checking datatype and information about dataset

df.info()

Checking duplicate values of dataframe

In []:
#Checking for duplicate data

df.duplicated()

In []:
sum(df.duplicated())

In []:
#Checking sum of missing values

In []:
df.SFH.unique()

In []:
df.popUpWidnow.unique()

In []:
df.SSLfinal_State.unique()

In []:
df.Request_URL.unique()

In []:

In []:
df.web_traffic.unique()

In []:
df.URL_Length.unique()

In []:
df.having_IP_Address.unique()

In []:
df.Result.unique()

In []:
df["Result"].value_counts()

In []:
df.corr()

In []:
from sklearn.preprocessing import LabelEncoder

var=['SFH', 'popUpWidnow', 'SSLfinal_State', 'Request_URL',

'URL_of_Anchor',

 'web_traffic', 'URL_Length', 'age_of_domain', 'having_IP_Address',

 'Result']

le=LabelEncoder()

for i in var:

 df[i]=le.fit_transform(df[i]).astype(int)

In []:
df.head()

Module – 2

Visualization

#import library packages

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

In []:
import warnings

warnings.filterwarnings('ignore')

In []:
data = pd.read_csv("data.csv")

In []:
df = data.dropna()

In []:
df.columns

In []:
#Histogram Plot of Age distribution

df["web_traffic"].hist(figsize=(10,8), color="red")

plt.title("web_traffic Distribution")

plt.xlabel("web_traffic")

plt.ylabel("No of web_traffic")

plt.show()

In []:
#Propagation by variable

def PropByVar(df, variable):

 dataframe_pie = df[variable].value_counts()

 ax = dataframe_pie.plot.pie(figsize=(10,10), autopct='%1.2f%%',

fontsize = 12)

 ax.set_title(variable + ' \n', fontsize = 15)

 return np.round(dataframe_pie/df.shape[0]*100,2)

PropByVar(df, 'Result')

In []:
#Propagation by variable

def PropByVar(df, variable):

 dataframe_pie = df[variable].value_counts()

 ax = dataframe_pie.plot.pie(figsize=(10,10), autopct='%1.2f%%',

fontsize = 12)

 ax.set_title(variable + ' \n', fontsize = 15)

 return np.round(dataframe_pie/df.hape[0]*100,2)

PropByVar(df, 'URL_Length')

In []:
#Propagation by variable

def PropByVar(df, variable):

 dataframe_pie = df[variable].value_counts()

 ax = dataframe_pie.plot.pie(figsize=(10,10), autopct='%1.2f%%',

fontsize = 12)

 ax.set_title(variable + ' \n', fontsize = 15)

 return np.round(dataframe_pie/dfshape[0]*100,2)

PropByVar(df, 'having_IP_Address')

In []:
fig, ax = plt.subplots(figsize=(15,6))

sns.boxplot(df.Result, ax =ax)

plt.title("Result distribution")

plt.show()

In []:
sns.pairplot(df)

plt.show()

In []:
fig, ax = plt.subplots(figsize=(15,6))

sns.violinplot(y = df['having_IP_Adress'], x = df['Result'], ax=ax)

plt.title("having_IP_Address and Result")

plt.show()

In []:
fig, ax = plt.subplots(figsize=(15,6))

sns.violinplot(y = df['Request_URL'], x = df['Result'], ax=ax)

plt.title("Request_URL and Result")

plt.show()

In []:
fig, ax = plt.subplots(figsize=(15,6))

sns.violinplot(y = df['SFH'], x = df['Result'], ax=ax)

plt.title("SFH and Result")

plt.show()

In []:
Heatmap plot diagram

fig, ax = plt.subplots(figsize=(15,10))

sns.heatmap(df.corr(), ax=ax, annot=True)

Spliting Train/Test:

In []:
#preprocessing, split test and dataset, split response variable

X = df.drop(labels='Result', axis=1)

#Response variable

y = df.loc[:,'Result']

In []:
#We'll use a test size of 30%. We also stratify the split on the response

variable, which is very important to do because there are so few fraudulent

transactions.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, random_state=1,

stratify=y)

print("Number of training dataset: ", len(X_tra

print("Number of test dataset: ", len(X_test))

print("Total number of dataset: ", len(X_train)+len(X_test))

In []:
def qul_No_qul_bar_plot(df, bygroup):

 dataframe_by_Group = pd.crosstab(df[bygroup], columns=df["Result"],

normalize = 'index')

 dataframe_by_Group = np.round((dataframe_by_Group * 100), decimals=2)

 ax = dataframe_by_Group.plot.bar(figsize=(15,7));

 vals = ax.get_yticks()

 ax.set_yticklabels(['{:3.0f}%'.format(x) for x in vals]);

 ax.set_xticklabels(dataframe_by_Group.index,rotation = 0, fontsize =

15);

 ax.set_title(' given attributes (%) (by ' + dataframe_by_Group

 ax.set_xlabel(dataframe_by_Group.index.name, fontsize = 12)

 ax.set_ylabel('(%)', fontsize = 12)

 ax.legend(loc = 'upper left',bbox_to_anchor=(1.0,1.0), fontsize= 12)

 rects = ax.patches

 # Add Data Labels

 for rect in rects:

 height = rect.get_height()

 ax.text(rect.get_x() + rect.get_width()/2,

 height + 2,

 str(height)+'%',

 ha='center',

 va='bottom',

 fontsize = 12)

 return dataframe_by_Group

In []:
qul_No_qul_bar_plot(df, 'having_IP_Address')

Module – 3

Logistic Regression Algorithm

#import library packages

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

In []:
import warnings

warnings.filterwarnings('ignore')

In []:
#Load given dataset

data = pd.read_csv("data.csv")

In []:
df=data.dropna()

In []:
df.columns

In []:
#According to the cross-validated MCC scores, the random forest is the

best-performing model, so now let's evaluate its performance on the test

set.

from sklearn.metrics import nfusion_matrix, classification_report,

matthews_corrcoef, cohen_kappa_score, accuracy_score,

average_precision_score, roc_auc_score

In []:
X = df.drop(labels='Result', axis=1)

#Response variable

y = df.loc[:,'Result']

In []:
 #We'll use a test size of 30%. We also stratify the split on the response

variable, which is very important to do because there are so few fraudulent

transactions.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1, stratify=y)

Logistic Regression :

In []:
from sklearn.metrics import accuracy_score, confusion_matrix

from sklearn.linear_model imLogisticRegression

from sklearn.model_selection import cross_val_score

logR= LogisticRegression()

logR.fit(X_train,y_train)

predictR = logR.predict(X_test)

print("")

print('Classification report of Logistic Regression Results:')

print("")

print(classification_report(y_t,predictR))

print("")

cm=confusion_matrix(y_test,predictR)

print('Confusion Matrix result of Logistic Regression is:\n',cm)

print("")

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

print("")

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

print("")

accuracy = cross_val_score(l, X, y, scoring='accuracy')

print('Cross validation test results of accuracy:')

print(accuracy)

#get the mean of each fold

print("")

print("Accuracy result of Logistic Regression is:",accuracy.mean() * 100)

LR=accuracy.mean() * 100

In []:
def graph():

 import matplotlib.pyplas plt

 data=[LR]

 alg="Logistic Regression"

 plt.figure(figsize=(5,5))

 b=plt.bar(alg,data,color=("b"))

 plt.title("Accuracy comparison of Heart Stroke",fontsize=15)

 plt.legend(b,data,fontsize=9)

In []:
graph()

In []:
TP = cm[0][0]

FP = cm[1][0]

FN = cm[1][1]

TN = cm[0][1]

print("True Positive :",TP)

print("True Negative :",TN)

print("False Positive :",FP)

print("False Negative :",FN)

print("")

TPR = TP/(TP+FN)

TNR = TN/(TN+FP)

FPR = FP/(FP+TN)

FNR = FN/(TP+FN)

print("True Positive Rate ,TPR)

print("True Negative Rate :",TNR)

print("False Positive Rate :",FPR)

print("False Negative Rate :",FNR)

print("")

PPV = TP/(TP+FP)

NPV = TN/(TN+FN)

print("Positive Predictive Value :",PPV)

print("Negative predictive value :",NPV)

In []:
def plot_confusion_matrix(title='Confusion matrix-LogisticRegression',

cmap=plt.cm.Blues):

 target_names=['Predict','Actual']

 plt.imshow(cm2, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(target_names))

 plt.xticks(tick_marks, target_names, rotation=45)

 plt.yticks(tick_marks, target_names)

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm2=confusion_matrix(y_test, predictR)

print('Confusion matrix-LogisticRegression:')

print(cm2)

plot_confusion_matrix(cm2)

Module – 4

Random Forest Algorithm

#import library packages

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

In []:
import warnings

warnings.filterwarnings('ignore')

In []:
#Load given dataset

data = pd.read_csv("data.csv")

In []:
df=data.dropna()

In []:
df.columns

In []:

#According to the cross-validated MCC scores, the random forest is the

best-performing model, so now let's evaluate its performance on the test

set.

from sklearn.metrics import confusion_matrix, classification_report,

matthews_corrcoef, cohen_kappa_score, accuracy_score,

average_precision_score, roc_auc_score

In []:
X = df.drop(labels='Result', axis=1)

#Response variable

y = df.loc[:,'Result']

In []:
#We'll use a test size of 30%. We also stratify the split on the response

variable, which is very important to do because there are so few fraudulent

transactions.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1, stratify=y)

RandomForestClassifier:

In []:
from sklearn.metrics import accuracy_score, confusion_matrix

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import cross_val_score

rfc = RandomForestClassifier()

rfc.fit(X_train,y_train)

predictR = rfc.predict(X_test)

print("")

print('Classification report of Random Forest Classifier Results:')

print("")

print(classification_report(y_test,predictR))

print("")

cm=confusion_matrix(y_test,predictR)

print('Confusion Matrix result of Random Forest Classifier is:\n',cm)

print("")

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

print("")

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

print("")

accuracy = cross_val_score(rfc, X, y, scoring='accuracy')

print('Cross validation test results of accuracy:')

print(accuracy)

#get the mean of each fold

print("")

print("Accuracy result of Random Forest Classifier is:",accuracy.mean() *

100)

LR=accuracy.mean() * 100

In []:

def graph():

 import matplotlib.pyplot as plt

 data=[LR]

 alg="Random Fores tClassifier"

 plt.figure(figsize=(5,5))

 b=plt.bar(alg,data,color=("b"))

 plt.title("Accuracy comparison of Heart Stroke",fontsize=15)

 plt.legend(b,data,fontsize=9)

In []:
graph()

In []:
TP = cm[0][0]

FP = cm[1][0]

FN = cm[1][1]

TN = cm[0][1]

print("True Positive :",TP)

print("True Negative :",TN)

print("False Positive :",FP)

print("False Negative :",FN)

print("")

TPR = TP/(TP+FN)

TNR = TN/(TN+FP)

FPR = FP/(FP+TN)

FNR = FN/(TP+FN)

print("True sitive Rate :",TPR)

print("True Negative Rate :",TNR)

print("False Positive Rate :",FPR)

print("False Negative Rate :",FNR)

print("")

PPV = TP/(TP+FP)

NPV = TN/(TN+FN)

print("Positive Predictive Value :",PPV)

print("Negative predictive value :",NPV)

In []:
def plot_confusn_matrix(cm2, title='Confusion matrix-

RandomForestClassifier', cmap=plt.cm.Blues):

 target_names=['Predict','Actual']

 plt.imshow(cm2, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(target_names))

 plt.xticks(tick_marks, target_names, rotation=45)

 plt.yticks(tick_marks, target_names)

 plt.tight_layt()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm2=confusion_matrix(y_test, predictR)

print('Confusion matrix-RandomForestClassifier:')

print(cm2)

plot_confusion_matrix(cm2)

In []:
import joblib

joblib.dump(rf.pkl')

Module – 5

Decision Tree Algorithm

#import library packages

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

In []:
import warnings

warnings.filterwarnings('ignore')

In []:
#Load given dataset

data = pd.read_csv("data.csv")

In []:
df=data.dropna()

In []:
df.columns

In []:
#According to the cross-validated MCC scores, the random forest is the

best-performing model, so now let's evaluate its performance on the test

set.

from sklearetrics import confusion_matrix, classification_report,

matthews_corrcoef, cohen_kappa_score, accuracy_score,

average_precision_score, roc_auc_score

In []:
X = df.drop(labels='Result', axis=1)

#Response variable

y = df.loc[:,'Result']

In []:
#We'll use a test size of 30%. We also stratify the split on the response

variable, which is very important to do because there are so few fraudulent

transactions.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1, stratify=y)

Decision Tree Classifier:

In []:
from sklearetrics import accuracy_score, confusion_matrix

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import cross_val_score

dtc = DecisionTreeClassifier()

dtc.fit(X_train,y_train)

predictR = dtc.predict(X_test)

print("")

print('Clification report of Decision Tree Classifier Results:')

print("")

print(classification_report(y_test,predictR))

print("")

cm=confusion_matrix(y_test,predictR)

print('Confusion Matrix result of Decision Tree Classifier is:\n',cm)

print("")

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

print("")

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Spficity : ', specificity)

print("")

accuracy = cross_val_score(dtc, X, y, scoring='accuracy')

print('Cross validation test results of accuracy:')

print(accuracy)

#get the mean of each fold

print("")

print("Accuracy result of Decision Tree Classifier is:",accuracy.mean() *

100)

LR=accuracy.mean() * 100

In []:
def graph():

 import matplotlib.pyplot as plt

 data=[LR]

 alg="Decision Tree Classifier "

 plt.figure(figsize=(5,5))

 b=plt.bar(alg,data,color=("b"))

 plt.titAccuracy comparison of Heart Stroke",fontsize=15)

 plt.legend(b,data,fontsize=9)

In []:
graph()

In []:
TP = cm[0][0]

FP = cm[1][0]

FN = cm[1][1]

TN = cm[0][1]

print("True Positive :",TP)

print("True Negative :",TN)

print("False Positive :",FP)

print("False Negative :",FN)

print("")

TPR = TP/(TP+FN)

TNR = TN/(TN+FP)

FPR = FP/(TN)

FNR = FN/(TP+FN)

print("True Positive Rate :",TPR)

print("True Negative Rate :",TNR)

print("False Positive Rate :",FPR)

print("False Negative Rate :",FNR)

print("")

PPV = TP/(TP+FP)

NPV = TN/(TN+FN)

print("Positive Predictive Value :",PPV)

print("Negative predictive value :",NPV)

In []:
def plot_confusion_matrix(cm2, title='Confusion matrix-

DecisionTreeClassifier', cmap=plt.cm.Blues):

 target_na=['Predict','Actual']

 plt.imshow(cm2, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(target_names))

 plt.xticks(tick_marks, target_names, rotation=45)

 plt.yticks(tick_marks, target_names)

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm2=confusion_matrix(y_test, predictR)

print('Confusion matrix-DecisionTreeClassifier:')

print(cm2)

plot_confusion_matrix(cm2)

Module – 6

Naïve Bayes Algorithm

#import library packages

import pandas pd

import matplotlib.pyplot as plt

import seaborn sns

import numpy np

In []:
import warnings

warnings.filterwarnings('ignore')

In []:
#Load given dataset

data = pd.read_csv("data.csv")

In []:
df = data.dropna()

In []:

df.columns

In []:
#According to the cross-validated MCC scores, the random forest is the

best-performing model, so now let's evaluate its performance on the test

set.

from sklearn.metrics import _matrix, classification_report,

matthews_corrcoef, cohen_kappa_score, accuracy_score,

average_precision_score, roc_auc_score

In []:
X = df.drop(labels='Result', axis=1)

#Response variable

y = df.loc[:,'Result']

In []:
#We'll use a test size of 30%. We also stratify the split on the response

variable, which is very important to do because there are so few fraudulent

transactions.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=1, stratify=y)

Naive Bayes:

In []:
from sklearn.metrics import accuracy_score, confusion_matrix

from sklearn.naive_bayes import NB

from sklearn.model_selection import cross_val_score

nb = GaussianNB()

nb.fit(X_train,y_train)

predictR = nb.predict(X_test)

print("")

print('Classification report of Naive Bayes Results:')

print("")

print(classification_report(y_test,predictR))

print("")

cm=confusion_matrix(y_test,predictR)

print('Confusion Matrix result of Naive Bayes is:\n',cm)

print("")

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])

print('Sensitivity : ', sensitivity)

print("")

specificity = cm[1,1]/(cm[1,0]+cm[1,1])

print('Specificity : ', specificity)

print("")

accuracy = cross_val_score(nb, X, y, scoring='accuracy')

print('Cross validation test results of accuracy:')

print(accuracy)

#get the mean of each fold

print("")

print("Accuracy result of Naive Bayes is:",accuracy.mean() * 100)

LR=accuracy.mean() * 100

In []:
def graph():

 import matplotlib.pyplot as plt

 data=[LR]

 alg="GaussianNB"

 plt.figure(figsize=(5,5))

 b=plt.bar(alg,data,color=("b"))

 plt.title("Accuracy comparison of Heart Stroke",fontsize=15)

 plt.legend(b,data,size=9)

In []:
graph()

In []:
TP = cm[0][0]

FP = cm[1][0]

FN = cm[1][1]

TN = cm[0][1]

print("True Positive :",TP)

print("True Negative :",TN)

print("False Positive :",FP)

print("False Negative :",FN)

print("")

TPR = TP/(TP+FN)

TNR = TN/(TN+FP)

FPR = FP/(FP+TN)

FNR = FN/(TP+FN)

print("True Positive Rate :",TPR)

print("True Negative Rate :",TNR)

print("False Positive Rate :",FPR)

print("False Negative Rate :",R)

print("")

PPV = TP/(TP+FP)

NPV = TN/(TN+FN)

print("Positive Predictive Value :",PPV)

print("Negative predictive value :",NPV)

In []:
def plot_confusion_matrix(cm2, title='Confusion matrix-Naive Bayes',

cmap=plt.cm.Blues):

 target_names=['Predict','Actual']

 plt.imshow(interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(target_names))

 plt.xticks(tick_marks, target_names, rotation=45)

 plt.yticks(tick_marks, target_names)

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

cm2=confusion_matrix(y_test, predictR)

print('Confusion matrix-Naive Bayes:')

print(cm2)

plot_confusion_matrix(cm2)

HTML Code:

<!DOCTYPE html>

<html >

<!--From https://codepen.io/frytyler/pen/EGdtg-->

<head>

 <meta charset="UTF-8">

 <title>TITLE</title>

<link rel="stylesheet" href="{{ url_for('static',

filename='css/bootstrap.min.css') }}">

 <link href='https://fonts.googleapis.com/css?family=Pacifico'

rel='stylesheet' type='text/css'>

<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'

type='text/css'>

<link href='https://fonts.googleapis.com/css?family=Hind:300'

rel='stylesheet' type='text/css'>

<link

href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'

rel='stylesheet' type='text/css'>

<style>

.back{

 background-image: url("{{ url_for('static', filename='image/img.jpg')

}}");

 background-repeat: no-repeat;

 background-attachment: fixed;

 background-size: 100% 100%;

}

.white{

color:white;

}

.space{

margin:10px 30px;

padding:10px 10px;

background: palegreen;

width:500px

}

.gap{

padding:10px 20px;

}

</style>

</head>

<body class="back">

 <div>

 <div class="jumbotron">

 <h1 style="text-align:center">PREDICTION OF PHISHING

NETWORK</h1>

 </div>

 <!-- Main Input For Receiving Query to our ML -->

 <form class="form-group" action="{{

url_for('predict')}}"method="post">

 <div class="row">

 <div class="gap col-md-6 ">

 <label class="white" for="">SFH</label>

 <input type="number" class="space form-control"

step="0.01" name="SFH" placeholder="SFH" required="required"

/>

 <label class="white" for="">POPUPWINDOW</label>

 <input type="number" class="space form-control"

step="0.01" name="POPUPWINDOW" placeholder="POPUPWINDOW"

required="required" />

 <label class="white" for="">SSLFINAL_STATE</label>

 <input type="number" class="space form-control"

step="0.01" name="SSLFINAL_STATE"

placeholder="SSLFINAL_STATE" required="required" />

 <label class="white" for="">REQUEST_URL</label>

 <input type="number" class="space form-control"

step="0.01" name="REQUEST_URL" placeholder="REQUEST_URL"

required="required" />

 <label class="white" for="">URL_OF_ANCHOR</label>

 <input type="number" class="space form-control"

step="0.01" name="URL_OF_ANCHOR"

placeholder="URL_OF_ANCHOR" required="required" />

 </div>

<div class="gap col-md-6">

 <label class="white" for="">WEB_TRAFFIC</label>

 <input type="number" class="space form-control"

step="0.01" name="WEB_TRAFFIC" placeholder="WEB_TRAFFIC"

required="required" />

 <label class="white" for="">URL_LENGTH</label>

 <input type="number" class="space form-control"

step="0.01" name="URL_LENGTH" placeholder="URL_LENGTH"

required="required" />

 <label class="white" for="">AGE_OF_DOMAIN</label>

 <input type="number" class="space form-control"

step="0.01" name="AGE_OF_DOMAIN"

placeholder="AGE_OF_DOMAIN" required="required" />

 <label class="white"

for="">HAVING_IP_ADDRESS</label>

 <input type="number" class="space form-control"

step="0.01" name="HAVING_IP_ADDRESS"

placeholder="HAVING_IP_ADDRESS" required="required" />

</div>

</div>

<div style="padding:2% 35%">

 <button type="submit" class="btn btn-success btn-block"

style="width:350px;padding:20px">Predict</button>

</div>

 </form>

Flask Deploy:

import numpy as np

from flask import Flask, request, jsonify, render_template

import pickle

import joblib

app = Flask(__name__)

model = joblib.load('rf.pkl')

@app.route('/')

def home():

 return render_template('index.html')

@app.route('/predict',methods=['POST'])

def predict():

 '''

 For rendering results on HTML GUI

 '''

 int_features = [(x) for x in request.form.values()]

 final_features = [np.array(int_features)]

 print(final_features)

 prediction = model.predict(final_features)

 print(prediction)

 output = prediction[0]

 if output == 1:

 return render_template('index.html', prediction_text='Legitimate')

 elif output== -1:

 return render_template('index.html', prediction_text='Suspicious')

 else:

 return render_template('index.html', prediction_text='Phishy')

 print(output)

screen shots:

27. Conclusion

The analytical process started from data cleaning and processing, missing

value, exploratory analysis and finally model building and evaluation. The best

accuracy on public test set is higher accuracy score will be find out. This

application can help to find the Prediction of phishing website or not.

28. Future Work

 phishing website or not prediction to connect with cloud model.

 To optimize the work to implement in Artificial Intelligence environment.

	3. INTRODUCTION
	Domain overview
	Machine learning is to predict the future from past data. Machine learning (ML) is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the developmen...
	Architecture of Proposed model

	Intrusion detection system generates significant data about malicious activities run against network. Generated data by IDS are stored in IDS database. This data represent attacks scenarios history against network. Main goal of IDS system is to enhanc...
	8. SYSTEM STUDY
	8.1 Objectives

	The goal is to develop a machine learning model for phishing website or not Prediction, to potentially replace the updatable supervised machine learning classification models by predicting results in the form of best accuracy by comparing supervised a...
	8.2 Project Goals
	 Exploration data analysis of variable identification
	 Uni-variate data analysis
	 Exploration data analysis of bi-variate and multi-variate
	 Method of Outlier detection with feature engineering
	 Comparing algorithm to predict the result
	Data Wrangling
	In this section of the report will load in the data, check for cleanliness, and then trim and clean given dataset for analysis. Make sure that the document steps carefully and justify for cleaning decisions.
	Machine learning needs data gathering have lot of past data’s. Data gathering have sufficient historical data and raw data. Before data pre-processing, raw data can’t be used directly. It’s used to pre-process then, what kind of algorithm with model. ...
	Installation: The easiest way to install the Jupyter Notebook App is installing a scientific python distribution which also includes scientific python packages. The most common distribution is called Anaconda

	Running the Jupyter Notebook
	Launching Jupyter Notebook App: The Jupyter Notebook App can be launched by clicking on the Jupyter Notebook icon installed by Anaconda in the start menu (Windows) or by typing in a terminal (cmd on Windows): “jupyter notebook”
	This will launch a new browser window (or a new tab) showing the Notebook Dashboard, a sort of control panel that allows (among other things) to select which notebook to open.
	When started, the Jupyter Notebook App can access only files within its start-up folder (including any sub-folder). No configuration is necessary if you place your notebooks in your home folder or subfolders. Otherwise, you need to choose a Jupyter No...
	Save notebooks: Modifications to the notebooks are automatically saved every few minutes. To avoid modifying the original notebook, make a copy of the notebook document (menu file -> make a copy…) and save the modifications on the copy.
	Executing a notebook: Download the notebook you want to execute and put it in your notebook folder (or a sub-folder of it).
	kernel: A notebook kernel is a “computational engine” that executes the code contained in a Notebook document. The ipython kernel, referenced in this guide, executes python code. Kernels for many other languages exist (official kernels).
	Notebook Dashboard: The Notebook Dashboard is the component which is shown first when you launch Jupyter Notebook App. The Notebook Dashboard is mainly used to open notebook documents, and to manage the running kernels (visualize and shutdown).
	Indentation :
	Main article: Python syntax and semantics & Indentation
	Statements and control flow :
	Expressions :
	Methods :
	Typing :

	15. System Architecture
	16. Work flow diagram

	24. HTML Introduction
	Basic Construction of an HTML Page
	Further Tags
	Adding Content
	Add HTML Headings To Web Page
	Creating Your Heading

	Add Links In HTML

	CSS Syntax
	CSS Comment
	CSS How-To
	CSS Selectors
	CSS Colors
	CSS BoxModel

	Module – 1

