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ABSTRACT 

 

 

 
Intrusion detection systems (IDSs) are currently drawing a great amount of interest as a 

key part of system defense. IDSs collect network traffic information from some point 

on the network or computer system and then use this information to secure the network. 

To distinguish the activities of the network traffic that the intrusion and normal is very 

difficult and to need much time consuming. An analyst must review all the data that 

large and wide to find the sequence of intrusion on the network connection. Therefore, 

it needs a way that can detect network intrusion to reflect the current network traffics. 

In this study, a novel method to find intrusion characteristic for IDS using genetic 

algorithm machine learning of data mining technique was proposed. Method used to 

generate of rules is classification by Genetic algorithm of decision tree. These rules can 

determine of intrusion characteristics then to implement in the genetic algorithm as 

prevention.so that besides detecting the existence of intrusion also can execute by doing 

deny of intrusion as prevention. 
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INTRODUCTION 

Chapter 1 

 

Approaches for intrusion detection can be broadly divided into two types: misuse detection and 

anomaly detection. In misuse detection system, all known types of attacks (intrusions) can be 

detected by looking into the predefined intrusion patterns in system audit traffic. In case of 

anomaly detection, the system first learns a normal activity profile and then flags all system events 

that do not match with the already established profile. The main advantage of the misuse detection 

is its capability for high detection rate with a difficulty in finding the new or unforeseen attacks. 

The advantage of anomaly detection lies in the ability to identify the novel (or unforeseen) attacks 

at the expense of high false positive rate. Network monitoring-based machine learning techniques 

have been involved in diverse fields. Using bi-directional long-short-term-memory neural 

networks, a social media network monitoring system is proposed for analyzing and detecting 

traffic accidents. 

The proposed method retrieves traffic-related information from social media (Facebook and 

Twitter) using query-based crawling: this process collects sentences related to any traffic events, 

such as jams, road closures, etc. Subsequently, several pre-processing techniques are carried out, 

such as steaming, tokenization, POS tagging and segmentation, in order to transform the retrieved 

data into structured form. Thereafter, the data are automatically labeled as ‘traffic‘ or ‘non-traffic‘, 

using a latent Dirichlet allocation (LDA) algorithm. Traffic- labeled data are analyzed into three 

types; positive, negative, and neutral. The output from this stage is a sentence labeled according 

to whether it is traffic or non-traffic, and with the polarity of that traffic sentence (positive, 

negative or neutral). Then, using the bag-of-words (BoW) technique, each sentence is 

transformed into a one-hot encoding representation in order to feed it to the Bi-directional LSTM 

neural network (Bi-LSTM). After the learning process, the neural networks perform multi-class 

classification using the softmax layer in order to classify the sentence in terms of location, traffic 

event and polarity types. The proposed method compares different classical machine learning and 

advanced deep learning approaches in terms of accuracy, F-score and other criteria. 

 

EXISTING SYSTEM: 
Today network has become an essential part of public infrastructures with the inception of public 

and private cloud computing. The traditional networking approach has become too complex. This 

complexity has resulted in a barrier for creating new and innovative services within a single data 

center, difficulties in interconnecting data centers, interconnection within enterprises, and bigger 

barrier in the continued growth of the Internet in general. 

 

PROBLEM STATEMENT: 

 

 To distinguish the activities of the network traffic that the intrusion and normal is very 

difficult and to need much time consuming.
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 An analyst must review all the data that large and wide to find the sequence of intrusion on 

the network connection.

 It needs a way that can detect network intrusion to reflect the current network traffics.

 Combination of IDS and firewall so-called the IPS, so that besides detecting the existence of 

intrusion also can execute by doing deny of intrusion as prevention.

 

Chapter 2 
 

 Designing a Network Intrusion Detection System Based on Machine 

Learning for Software Defined Networks 
 

Abstract: 

Software-defined Networking (SDN) has recently developed and been put forward as a promising 

and encouraging solution for future internet architecture. Managed, the centralized and controlled 

network has become more flflexible and visible using SDN. On the other hand, these advantages 

bring us a more vulnerable environment and dangerous threats, causing network breakdowns, 

systems paralysis, online banking frauds and robberies. These issues have a significantly 

destructive impact on organizations, companies or even economies. Accuracy, high performance 

and real-time systems are essential to achieve this goal successfully. Extending intelligent 

machine learning algorithms in a network intrusion detection system (NIDS) through a software- 

defined network (SDN) has attracted considerable attention in the last decade. Big data 

availability, the diversity of data analysis techniques, and the massive improvement in the 

machine learning algorithms enable the building of an effective, reliable and dependable system 

for detecting different types of attacks that frequently target networks. This study demonstrates 

the use of machine learning algorithms for traffic monitoring to detect malicious behavior in the 

network as part of NIDS in the SDN controller. Different classical and advanced tree-based 

machine learning techniques, Decision Tree, Random Forest and XGBoost are chosen to 

demonstrate attack detection. The NSL-KDD dataset is used for training and testing the proposed 

methods; it is considered a benchmarking dataset for several state-of-the-art approaches in NIDS. 

Several advanced preprocessing techniques are performed on the dataset in order to extract the 

best form of the data, which produces outstanding results compared to other systems. Using just 

five out of 41 features of NSL-KDD, a multi-class classification task is conducted by detecting 

whether there is an attack and classifying the type of attack (DDoS, PROBE, R2L, and U2R), 

accomplishing an accuracy of 95.95%. 

 

Introduction 

A network intrusion detection system is a process for discovering the existence of malicious or 

unwanted packets in the network. This process is done using real-time traffic monitoring to find 

out if any unusual behavior is present in the network or not. Big data, powerful computation 

facilities, and the expansion of the network size increase the demand for the required tasks that 

should be carried out simultaneously in real-time. Therefore, NIDS should be careful, accurate, 
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and precise in monitoring, which has not been the case in the traditional methods. On the other 

hand, the rapid increase in the accuracy of machine learning algorithms is highly impressive. Its 

introduction relies on the increasing demand for improved performance on different types of 

network. However, software defined network (SDN) implementation of the network-based 

intrusion detection system (NIDS) has opened a frontier for its deployment, considering the 

increasing scope and typology of security risks of modern networks. The rapid growth in the 

volume of network data and connected devices carries inherent security risks. The adoption of 

technologies such as the Internet of Things (IoT), artificial intelligence (AI), and quantum 

computing, has increased the threat level, making network security challenging and necessitating 

a new paradigm in its implementation. Various attacks have overwhelmed previous approaches 

(classified into signature-based intrusion detection systems and anomaly-based intrusion 

detection systems, increasing the need for advanced, adaptable and resilient security 

implementation. For this reason, the traditional network design platform is being transformed into 

the evolving SDN implementation Monitoring data and analyzing it over time are essential to the 

process of predicting future events, such as risks, attacks and diseases. The more details are 

formed, discovered and documented through analyzing very large-scale data, the more saved 

resources, as well as the working environment, will remain normal without any variations. Big 

data analytics (BDA) research in the supply chain becomes the secret of a protector for managing 

and preventing risks. BDA for humanitarian supply chains can aid the donors in their decision of 

what is appropriate in situations such as disasters, where it can improve the response and 

minimize human suffering and deaths. BDA and data monitoring using machine learning can help 

in identifying and understanding the interrelationships between the reasons, difficulties, obstacles 

and barriers that guide organizations in taking the most efficient and accurate decisions in risk 

management processes. This could impact entire organizations and countries, producing a hugely 

significant improvement in the process. Network monitoring-based machine learning techniques 

have been involved in diverse fields. Using bi-directional long-short-term-memory neural 

networks, a social media network monitoring system is proposed for analyzing and detecting 

traffic accidents.The proposed method retrieves traffic-related information from social media 

(Facebook and Twitter) using query-based crawling: this process collects sentences related to any 

traffic events, such as jams, road closures, etc. Subsequently, several pre-processing techniques 

are carried out, such as steaming, tokenization, POS tagging and segmentation, in order to 

transform the retrieved data into structured form. Thereafter, the data are automatically labeled 

as ‘traffic‘ or ‘non-traffic‘, using a latent Dirichlet allocation (LDA) algorithm.Traffic- labeled 

data are analyzed into three types; positive, negative, and neutral. The output from this stage is a 

sentence labeled according to whether it is traffic or non-traffic,and with the polarity of that traffic 

sentence (positive, negative or neutral). Then, using the bag-of-words (BoW) technique, each 

sentence is transformed into a one-hot encoding representation in order to feed it to the Bi- 

directional LSTM neural network (Bi-LSTM). After the learning process, the neural networks 

perform multi-class classification using the softmax layer in order to classify the sentence in terms 

of location, traffic event and polarity types. The proposed method compares different classical 

machine learning and advanced deep learning approaches in terms of accuracy, F-score and other 

criteria. Many initiatives and workshops have been conducted in order to improve and develop 

the healthcare systems using machine learning, such as [12]. In these workshops several proposed 
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machine algorithms have been used, such as K Nearest-Neighbors, logistic regression, K-means 

clustering, Random Forest (RF) etc, together with deep learning algorithms such as CNN, RNN, 

fully connected layer and auto-encoder. These varieties of techniques allow the researchers to 

deal with several data types, such as medical imaging,history, medical notes, video data, etc. 

Therefore, different topics and applications are introduced, with significant performance results 

such as causal inference, in investigations of Covid-19, disease prediction, such as disorders and 

heart diseases. Using intelligent ensemble deep learning methods, healthcare monitoring is 

carried out for prediction of heart diseases. Real-time health status monitoring can prevent and 

predict any heart attacks before occurrence. For disease prediction, the proposed ensemble deep 

learning approach achieved a brilliant accuracy performance score of 98.5%. The proposed model 

takes two types of data that are transferred and saved on an online cloud database. The first is the 

data transferred from the sensors; these sensors have been placed in different places on the body 

in order to extract more than 10 different types of medical data. The second type is the daily 

electronic medical records from doctors, which includes various types of data, such as smoking 

history, family diseases, etc. The features are fused using the feature fusion Framingham Risk 

factors technique, which executes two tasks at a time, fusing the data together, and then extracting 

a fused and informative feature from this data. Then different pre-processing techniques are used 

to transform the data into a structured and well-prepared form, such as normalization, missing 

values filtering and feature weighting. Subsequently, an ensemble deep learning algorithm starts 

which learns from the data in order to predict whether a heart disease will occur or the threat is 

absent. IDS refers to a mechanism capable of identifying or detecting intrusive activities. In a 

broader view, this encompasses all the processes used in the discovery of unauthorized uses of 

network devices or computers. This is achieved through software designed specifically to detect 

unusual or abnormal activities. IDS can be classified according to several surveys and sources in 

the literature into four types (HIDS, NIDS, WIDS, NBA). NIDS is an inline or passive-based 

intrusion detection technique. The scope of its detection targets network and host levels. The only 

architecture that fits and works with NIDS is the managed network. The advantage of using NIDS 

is that it costs less and is quicker in response, since there is no need to maintain sensor 

programming at the host level. The performance of monitoring the traffic is close to real-time; 

NIDS can detect attacks as they occur. However, it has the following limited features. It does not 

indicate if such attacks are successful or not: it has restricted visibility inside the host machine. 

There is also no effective way to analyze encrypted network traffic to detect the type of attack. 

Moreover, NIDS may have difficulty capturing all packets in a large or busy network. Thus, it 

may fail to recognize an attack launched during a period of high traffic. SDN provides a novel 

means of network implementation, stimulating the development of a new type of network security 

application. It adopts the concept of programmable networks through the deployment of logically 

centralized management. The network deployment and configuration are virtualized to simplify 

complex processes, such as orchestration, network optimization, and traffic engineering. It creates 

a scalable architecture that allows sufficient and reliable services based on certain types of traffic. 

The global view approach to a network enhances flow-level control of the underlying layers. 

Implementing NIDS over SDN becomes a major effective security defense mechanism for 

detecting network attacks from the network entry point. NIDS has been implemented and 

investigated for decades to achieve optimal efficiency. It represents an application or device for 
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monitoring network traffic for suspicious or malicious activity with policy violations. Such 

activities include malware attacks, untrustworthy users, security breaches, and DDoS. NIDS 

focuses on identifying anomalous network traffic or behavior; its efficiency means that network 

anomaly is adequately implemented as part of the security implementation. Since it is nearly 

impossible to prevent threats and attacks, NIDS will ensure early detection and mitigation. 

However, the advancement in NIDS has not instilled sufficient confidence among practitioners, 

since most solutions still use less capable, signature-based techniques. This study aims to increase 

the focus on several points: 

 choosing the right algorithm for the right tasks depends on the data types, size and 

network behavior and needs. 

 Implementing the optimized development process by preparing and selecting the 

benchmark dataset in order to build a promising system in NIDS. 

 Analyzing the data, finding, shaping, and engineering the important features, using 

several preprocessing techniques by stacking them together with an intelligent order to 

find the best accuracy with the lowest amount of data representation and size. 

 Proposing an integration and complete development process using those algorithms and 

techniques from the selection of dataset to the evaluation of the algorithms using a 

different metric. Which can be extended to other NIDS applications. 

 

This study enhances the implementation of NIDS by deploying different machine learning 

algorithms over SDN. Tree-based machine learning algorithms (XGBoost, randomforest (RF), 

and decision tree (DT)) were implemented to enhance the monitoring and accuracy performance 

of NIDS. The proposed method will be trained on network traffic packet data, collected from 

large-scale resources and servers called NSL-KDD dataset to perform two tasks at a time by 

detecting whether there is an attack or not and classifying the type of attack. This study enhances 

the implementation of NIDS by deploying machine learning over SDN. Tree-based machine 

learning algorithms (XGBoost, random forest (RF), and decision tree (DT)) are proposed to 

enhance NIDS. The proposed method will be trained on network traffic packet data, collected 

from large-scale resources and servers, called the NSL-KDD dataset to perform two tasks at a 

time by detecting whether there is an attack or not and classifying the type of attack. 

 

Background and Related Work: 

Integrating machine learning algorithms into SDN has attracted significant attention. 
In, a solution was proposed that solved the issues in KDD Cup 99 by performing an extensive 

experimental study, using the NSL-KDD dataset to achieve the best accuracy in intrusion 

detection. The experimental study was conducted on five popular and efficient machine learning 

algorithms (RF, J48, SVM, CART, and Naïve Bayes). The correlation feature selection algorithm 

was used to reduce the complexity of features, resulting in 13 features only in the NSL-KDD 

dataset. This study tests the NSL-KDD dataset‘s performance for real-world anomaly detection 

in network behavior. Five classic machine learning models RF, J48, SVM, CART, and Naïve 

Bayes were trained on all 41 features against the five normal types of attacks, DOS, probe, U2R, 

and R2L to achieve average accuracies of 97.7%, 83%, 94%, 85%, and 70% for each algorithm, 
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respectively. The same models were trained again using the reduced 13 features to achieve 

average accuracies of 98%, 85%, 95%, 86%, and 73% for each model. In, a deep neural network 

model was proposed to find and detect intrusions in the SDN. The NSL-KDD dataset was used 

to train and test the model. The neural network was constructed with five primary layers, one 

input layer with six inputs, three hidden layers with (12, 6, 3) neurons, and one output layer with 

2D dimensions. The proposed method was trained on six features chosen from 41 features in the 

NSL-KDD dataset, which are basic and traffic features that can easily be obtained from the SDN 

environment. The proposed method calculates the accuracy, precision and recall, achieving an 

F1-score of 0.75. A second evaluation was conducted on seven classic machine learning models 

(RF, NB, NB Tree, J48, DT, MLP, and SVM) proposed in and the model achieved sixth place 

out of eight. The same author extended the approach using a gated recurrent unit neural network 

(GRU-RNN) for SDN anomaly detection, achieving accuracy up to 89%. In addition, the Min- 

Max normalization technique is used for feature scaling to improve and boost the learning process. 

The SVM classifier, integrated with the principal component analysis (PCA) algorithm, was used 

for an intrusion detection application. The NSL-KDD dataset is used in this approach to train and 

optimize the model for detecting abnormal patterns. A Min-Max normalization technique was 

proposed to solve the diversity data scale ranges with the lowest misclassification errors. The 

PCA algorithm is selected as a statistical technique to reduce the NSL-KDD dataset‘s complexity, 

reducing the number of trainable parameters that needed to be learned. The nonlinear radial basis 

function kernel was chosen for SVM optimization. Detection rate (DR), false alarm rate (FAR), 

and correlation coefficient metrics were chosen to evaluate the proposed model, with an overall 

average accuracy of 95% using 31 features in the dataset. In [32], an extreme gradient-boosting 

(XGBoost) classifier was used to distinguish between two attacks, i.e., normal and DoS. The 

detection method was analyzed and conducted over POX SDN, as a controller, which is an SDN 

open-source platform for prototyping and developing a technique based on SDN. Mininet was 

used to emulate the network topology to simulate real-time SDN-based cloud detection. Logistic 

regression was selected as a learning algorithm, with a regularization term penalty to prevent 

overfitting. The XGBoost term was added and combined with the logistic regression algorithm 

to boost the computations by constructing structure trees. The dataset used in this approach was 

KDD Cup 1999, while 400 K samples were selected for constructing the training set. Two types 

of normalization techniques were used; one with a logarithmic-based technique and one with a 

Min-Max-based technique. The average overall accuracy for XGBoost, compared to RF and SVM, 

was 98%, 96%, 97% respectively. Based on DDoS attack characteristics, a detection system was 

simulated with the Mininet and flfloodlight platform using the SVM algorithm [5]. The proposed 

method categorizes the characteristics into six tuples, which are calculated from the packet 

network. These characteristics are the speed of the source IP (SSIP), the speed of the source port, 

the standard deviation of flflow packets, the deviation of flflow bytes (SDFB), the speed of flow 

entries, and the ratio of pair-flflow. Based on the calculated statistics from the SVM classifier‘s 

six characteristics, the current network state is normal or attack. Attack flow (AF), DR, and FAR 

were chosen to achieve an average accuracy of 95%. In TSDL a model with two stages of deep 

neural networks was designed and proposed for NIDS, using a stacked auto-encoder, integrated 

with softmax in the output layer as a classifier. TSDL was designed and implemented for Multi- 

class classification of attack detection. Down-sampling and other preprocessing techniques were 
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performed over different datasets in order to improve the detection rate, as well as the monitoring 

efficiency. The detection accuracy for UNSW-NB15 was 89.134%. Different models of neural 

networks, such as variational auto-encoder, seq2seq structures using Long-ShortTerm-Memory 

(LSTM) and fully connected networks were proposed in [34] for NIDS. The proposed approach 

was designed and implemented to differentiate between normal and attack packets in the network, 

using several datasets, such as NSL-KDD, UNSW NB15, KYOTO-HONEYPOT, and 

MAWILAB. A variety of preprocessing techniques have been used, such as one-hot-encoding, 

normalization, etc., for data preparation, feature manipulation and selection and smooth training 

in neural networks. Those factors are designed mainly, but not only, to enable the neural networks 

to learn complex features from different scopes of a single packet. Using 4 hidden layers, a deep 

neural network model [35] was illustrated and implemented on KDD cup99 for monitoring 

intrusion attacks. Feature scaling and encoding were used for data preprocessing and lower data 

usage. More than 50 features were used to perform this task on different datasets. Therefore, 

complex hardware GPUs were used in order to handle this huge number of features with lower 

training time. A supervised [36] adversarial auto-encoder neural network was proposed for NIDS. 

It combined GANS and a variational auto-encoder. GANS consists of two different neural 

networks competing with each other, known as the generator and the discriminator. The result of 

the competition is to minimize the objective function as much as possible, using the Jensen- 

Shannon minimization algorithm. The generator tries to generate fake data packets, while the 

discriminator determined whether this data is real or fake; in other words, it checks if that packet 

is an attack or normal. In addition, the proposed method integrates the regularization penalty with 

the model structure for overfitting control behavior. The results were reasonable in the detection 

rate of U2RL and R2L but lower in others. Multi-channel deep learning of features for NIDS was 

presented in [37], using AE involving CNN, two fully connected layers and the output to the 

softmax classifier. The evaluation is done over three different datasets; KDD cup99, UNSW- 

NB15 and CICIDS, with an average accuracy of 94%. The proposed model provides effective 

results; however, the structure and the characteristics of the attack were not highlighted clearly. 

The proposed method enhances the implementation of NIDS by deploying machine learning over 

SDN. It introduces a machine learning algorithm for network monitoring within the NIDS 

implementation on the central controller of the SDN. In this paper, enhanced tree-based machine 

learning algorithms are proposed for anomaly detection. Using only five features, a multi-class 

classification task is conducted by detecting whether there is an attack or not and classifying the 

type of attack. 

3. Proposed Method 

In this section, we discuss and explain each component and its role in the NIDS architecture. As 

shown in Figure 1, the SDN architecture can be divided into three main layers, as follows: 

 

System Architecture Layers 
NIDS component architecture is constructed in three main parts as follows: 

• The infrastructure layer consists of two main parts: hardware and software components. 

The hardware components are devices such as routers and switches. The software 

components are those components that interface with the hardware, such as Open Flow 

switches. 
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• The control layer is an intelligent network controller, such as an SDN controller. The 

control layer is the layer responsible for regulating actions and traffic data management by 

establishing or denying every network flow. 

• The application layer is the one that performs all network management tasks. These 

tasks can be performed using an SDN controller and NIDS. 

 

Proposed NIDS Scenario 
Attacks are created by an attacker and delivered through the internet. NIDS is deployed over the 

SDN controller. As NIDS listens to the network and actively compares all traffic against 

predefined attack signatures, it detects the attacker‘s scanning attempts. It sends an alert to 

administrators through its control, and the connections will be blocked due to specific rules in the 

firewall or routers. 

 

 
 

Evaluation 

This section presents a generalized flowchart of the proposed method. The dataset,pre-processing 

techniques, and proposed machine learning algorithms will be presented and discussed. 

 

Generalized Block Diagram 

In this subsection, a generalized block diagram is presented and discussed. As shown, the NSL- 

KDD dataset is used. Data analysis, feature engineering, and other preprocessing techniques are 

conducted to train the model, using the best hyperparameters, with only five features. Tree-based 

algorithms are used for the multi-class classification task. The processed data enter the algorithm 

and are classified as to whether they constitute an attack or are normal; then, the type of attack 

will be analyzed to see which category it belongs to, and action is taken accordingly. 

 

Dataset Overview 

The KDD Cup is the leading data mining competition in the world. The NSL-KDD 

dataset was proposed to solve many issues represented in the KDD Cup 1999 dataset. 

Many researchers have used the NSL-KDD dataset to develop and evaluate the NIDS problem. 

The dataset includes all types of attacks. The dataset has 41 features, categorized into three main 

types (basic feature, content-based, and traffic-based features) and labeled as either normal or 

attack, with the attack type precisely categorized. The categories can be classified into four main 

groups, with a brief description of each attack type and its impact. 

 

Training Features 

As stated in the previous subsection, the dataset has 41 features labeled as either normal or attack 

with the precise attack category. After experimental trials, five features were selected out of the 

41 features in the NSL-KDD dataset, which have the most impact and effect on algorithm- 

learning performance. Presents the selected five features with a brief description. 

 

Results and Discussion 
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To evaluate the performance of NIDS in terms of accuracy (AC), different metrics were used; 

precision (P), recall (R), and F-measure (F). These metrics can be calculated using confusion 

matrix parameters: true positive (the number of anomalous instances that are correctly classified); 

false positive (the number of normal instances that are incorrectly classified as anomalous); true 

negative (the number of normal instances that are correctly classified); and false negative (the 

number of anomalous instances that are incorrectly classified as normal). A good NIDS must 

achieve high DR and FAR. Accuracy (AC): This is the percentage of correctly classified network 

activities. Precision (P): The percentage of predicted anomalous instances that are actual 

anomalous instances; the higher P, the lower FAR. . Recall (R): the percentage of predicted attack 

instances versus all attack instances presented. F-measure (F): measuring the performance of 

NIDS using the harmonic mean of the P and R. We aim to achieve a high F-score.We compare 

XGBoost against the other two tree- based methods, RF and DT. Using the test set, which includes 

the four types of attacks as discussed. Three different evaluation metrics are computed; F-score, 

precision and recall.XGBoost ranked first in the evaluation, with an F1-score of 95.55%, while 

RF and DT achieved 94.6% and 94.5%, respectively. For precision, XGBoost outperformed RF 

and DT with a score of 92%, while RF and DT scored 90% and 90.2% respectively. Finally, for 

Recall, our proposed method with XGBoost proves its stability with a score of 98% while for RF 

and DT, the results were 82%, and 85%, respectively. From these results, the proposed model 

with XGBoost performs with high precision and high recall, which means that the classifier 

returns accurate results and high precision, while, at the same time, returning a majority of all 

positive results (it‘s an attack and the classifier detects that it‘s an attack), which means high 

recall. 

Finally, we evaluate the proposed method using an accuracy analysis against seven classical 

machine learning algorithms, in addition to the deep neural network. The proposed method 

achieves an accuracy of 95.55%, while the second-best accuracy performance is 82.02 for the NB 

tree, showing a significant difference between the accuracy of our proposed method and the other 

approaches. This evaluation confirms that the proposed method is accurate and robust, even 

compared against other algorithms. This shows how the unambiguous steps in our approach are 

reliable, effective and authoritative.We conclude that the proposed method achieves a verifiable 

result using several techniques. For the precise literature and comparison, we carefully chose the 

NSL-KDD data set, which is considered one of the most powerful benchmark datasets. Several 

procedures of data statistics, cleaning and verification are performed on the dataset, which are 

very important in order to produce a smooth learning process with no obstacles, such as over- or 

under-fitting issues. This stage ensures that the proposed model has unified data and increases the 

value of data, which helps in decision-making. Feature normalization and selection clarifies the 

path for clear selection and intelligent preferences, using only 5 features. Subsequently, more 

detailed exploration and various comparisons are carried out, based on three machine learning 

algorithms, i.e., DT, RF, and XGBoost, in order to test their performance with different criteria 

and then select the best performing algorithm for our task. This shows that the selection is 

dependably proven and technically verified. 

 

Conclusions and Future Work 
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NIDS in SDN-based machine learning algorithms has attracted significant attention in the last 

two decades because of the datasets and various algorithms proposed in machine learning, using 

only limited features for better detection of anomalies better and more efficient network security. 

In this study, the benchmarking dataset NSL-KDD is used for training and testing. Feature 

normalization, feature selection and data preprocessing techniques are used in order to improve 

and optimize the algorithm‘s performance for accurate prediction, as well as to facilitate a smooth 

training process with minimal time and resources. To select the appropriate algorithm, we 

compare three classical tree-based machine learning algorithms; Random Forest, Decision Trees 

and XGBoost. We examine them using a variety of evaluation metrics to find the disadvantages 

and advantages of using one or more. Using six different evaluation metrics, the proposed 

XGBoost model outperformed more than seven algorithms used in NIDS. The proposed method 

focused on detecting anomalies and protecting the SDN platform from attacks in real-time 

scenarios. The proposed methods performed two tasks simultaneously; to detect if there is an 

attack or not, and to determine the type of attack (Dos, probe, U2R, R2L). In future studies, more 

evaluation metrics will be carried out. We plan to implement the approach using several deep 

neural network algorithms, such as Auto-Encoder, Generative Adversarial Networks, and 

Recurrent neural networks, such as GRU and LSTM.These techniques have been proven in the 

literature to allow convenient anomaly detection approaches in NIDS applications. Also, we plan 

to compare these algorithms against each other and integrate one or more neural network 

architectures to extract more details of how we can implement an efficient anomaly detection 

system in NIDS, with lower consumption of time and resources. In addition, for a more solid 

basis for comparison, several benchmarking cyber security datasets, such as NSL-KDD, UNSW- 

NB15, CIC-IDS2017 will be conducted, in order to make sure that the selection of the proposed 

algorithm is not biased in any situation. These various datasets are generated in different 

environments and conditions, so more complex features will be available, more generalized 

attacks will be covered and the accuracy of the proposed algorithm will significantly increase, 

which could lead to a state-of-the art approach. 
 

 A Deep Learning Approach for Network Intrusion DetectionSystem 
Introduction: 

Network Intrusion Detection Systems (NIDSs) are essential tools for the network system 

administrators to detect various security breaches inside an organization‘s network. An NIDS 

monitors and analyzes the network traffic entering into or exiting from the network devices of an 

organization and raises alarms if an intrusion is observed. Based on the methods of intrusion 

detection, NIDSs are categorized into two classes: i) signature (misuse) based NIDS (SNIDS), 

and ii) anomaly detection based NIDS (ADNIDS). In SNIDS, e.g. Snort, attack signatures are 

preinstalled in the NIDS. A pattern matching is performed for the traffic against the installed 

signatures to detect an intrusion in the network. In contrast, an ADNIDS classifies network traffic 

as an intrusion when it observes a deviation from the normal traffic pattern. SNIDS is effective 

in the detection of . known attacks and shows high detection accuracy with less false-alarm rates. 

However, its performance suffers during detection of unknown or new attacks due to the 

limitation of attack signatures that can be installed beforehand in an IDS. ADNIDS, on the other 

hand, is well-suited for the detection of unknown and new attacks. Although ADNIDS produces 
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high false-positive rates, its theoretical potential in the identification of novel attacks has caused 

its wide acceptance among the research community. There are primarily two challenges that arise 

while developing an efficient and flexible NIDS for unknown future attacks. First, proper feature 

selections from the network traffic dataset for anomaly detection is difficult. The features selected 

for one class of attack may not work well for other categories of attacks due to continuously 

changing and evolving attack scenarios. Second, unavailability of labeled traffic dataset from real 

networks for developing an NIDS. Immense efforts are required to produce such a labeled dataset 

from the raw network traffic traces collected over a period or in real-time. Additionally, to 

preserve the confidentiality of the internal organizational network structure as well as the privacy 

of various users, network administrators are reluctant towards reporting any intrusion that might 

have occurred in their networks. Various machine learning techniques have been used to develop 

ADNIDSs, such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), Naive- 

Bayesian (NB), Random Forests (RF), and Self-Organized Maps (SOM). The NIDSs are 

developed as classifiers to differentiate the normal traffic from the anomalous traffic. Many 

NIDSs perform a feature selection task to extract a subset of relevant features from the traffic 

dataset to enhance classification results. Feature selection helps in the elimination of the 

possibility of incorrect training through the removal of redundant features and noises. Recently, 

deep learning based methods have been successfully applied in audio, image, and speech 

processing applications. These methods aim to learn a good feature representation from a large 

amount of unlabeled data and subsequently apply these learned features on a limited amount of 

labeled data in a supervised classification. The labeled and unlabeled data may come from 

different distributions. However, they must be relevant to each other. It is envisioned that the 

deep learning based approaches can help to overcome the challenges of developing an efficient 

NIDS. We can collect unlabeled network traffic data from different network sources and a good 

feature representation from these datasets using deep learning techniques can be obtained. These 

features can, then, be applied for supervised classification to a small, but labeled traffic dataset 

consisting of normal as well as anomalous traffic records. The traffic data for labeled dataset can 

be collected in a confined, isolated and private network environment. With this motivation, we 

use self-taught learning, a deep learning technique based on sparse auto encoder and soft-max 

regression, to develop an NIDS. We verify the usability of the self-taught learning based NIDS 

by applying on NSL-KDD intrusion dataset, an improved version of the benchmark dataset for 

various NIDS evaluations - KDD Cup 99. We provide a comparison of our current work with 

other techniques as well. Towards this end, our paper is organized into four sections. In Section 

2, we discuss a few closely related work. Section 3 presents an overview of self-taught learning 

and the NSL-KDD dataset. We discuss our results and comparative analysis in Section 4 and 

finally conclude our paper with future work direction in Section 5. 2. 

 

RELATED WORK : 

This section presents various recent accomplishments in this area. It should be noted that we only 

discuss the work that have used the NSL-KDD dataset for their performance bench marking. 

Therefore, any dataset referred from this point forward should be considered as NSL-KDD. This 

approach allows a more accurate comparison of work with other found in the literature. Another 

limitation is the use of training data for both training and testing by most work. Finally, we discuss 
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a few deep learning based approaches that have been tried so far for similar kind of work. One of 

the earliest work found in literature used ANN with enhanced resilient back-propagation for the 

design of such an IDS. This work used only the training dataset for training (70%), validation 

(15%) and testing (15%). As expected, use of unlabeled data for testing resulted in a reduction of 

performance. A more recent work used J48 decision tree classifier with 10-fold cross-validation 

for testing on the training dataset. This work used a reduced feature set of 22 features instead of 

the full set of 41 features. A similar work evaluated various popular supervised tree-based 

classifiers and found that Random Tree model performed best with the highest degree of accuracy 

along with a reduced false alarm rate. Many 2-level classification approaches have also been 

proposed. One such work used Discriminative Multinomial Naive Bayes (DMNB) as a base 

classifier and Nominal-to Binary supervised filtering at the second level along with 10-fold cross 

validation for testing. This work was further extended to use Ensembles of Balanced Nested 

Dichotomies (END) at the first level and Random Forest at the second level. As expected, this 

enhancement resulted in an improved detection rate and a lower false positive rate. Another 2- 

level implementation used principal component analysis (PCA) for the feature set reduction and 

then SVM (using Radial Basis Function) for final classification, resulted in a high detection 

accuracy with only the training dataset and full 41 features set. A reduction in features set to 23 

resulted in even better detection accuracy in some of the attack classes, but the overall 

performance was reduced. The authors improved their work by using information gain to rank 

the features and then a behaviorbased feature selection to reduce the feature set to 20. This 

resulted in an improvement in reported accuracy using the training dataset. The second category 

to look at, used both the training and test dataset. An initial attempt in this category used fuzzy 

classification with genetic algorithm and resulted in a detection accuracy of 80%+ with a low 

false positive rate. Another important work used unsupervised clustering algorithms and found 

that the performance using only the training data was reduced drastically when test data was also 

used . A similar implementation using the k-point algorithm resulted in a slightly better detection 

accuracy and lower false positive rate, using both training and test datasets. Another less popular 

technique, OPF (optimumpath forest) which uses graph partitioning for feature classification, was 

found to demonstrate a high detection accuracy within one-third of the time compared to 

SVMRBF method. We observed a deep learning approach with Deep Belief Network (DBN) as 

a feature selector and SVM as a classifier in. This approach resulted in an accuracy of 92.84% 

when applied on training data. Our current work could be easily compared to this work due to the 

enhancement of approach over this work and use of both the training and test dataset in our work. 

A similar, however, semi-supervised learning approach has been used in. The authors used real- 

world trace for training and evaluated their approach on real-world and KDD Cup 99 traces. Our 

approach is different from them in the sense that we use NSL-KDD dataset to find deep learning 

applicability in NIDS implementation. Moreover, the feature learning task is completely 

unsupervised and based on sparse autoencoder in our approach. We recently observed a sparse 

autoencoder based deep learning approach for network traffic identification in. The authors 

performed TCP based unknown protocols identification in their work instead of network intrusion 

detection 

 

Self-Taught Learning: 
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Self-taught Learning (STL) is a deep learning approach that consists of two stages for the 

classification. First, a good feature representation is learnt from a large collection of unlabeled 

data, xu, termed as Unsupervised Feature Learning (UFL). In the second stage, this learnt 

representation is applied to labeled data, xl, and used for the classification task. Although the 

unlabeled and labeled data may come from different distributions, there must be relevance among 

them. Figure 1 shows the architecture diagram of STL. There are different approaches used for 

UFL, such as Sparse Auto encoder, Restricted Boltzmann Machine (RBM), K-Means Clustering, 

and Gaussian Mixtures. We use sparse auto encoder based feature learning for our work due to 

its relatively easier implementation and good performance. A sparse autoencoder is a neural 

network consists of an input, a hidden, and an output layers. The input and output layers contain 

N nodes, and the hidden layer contains K nodes. The target values at the output layer are set equal 

to the input values, i.e., ˆxi = xi The sparse auto encoder network finds the optimal values for 

weight matrices, W ∈ <K×N and V ∈ <N×K, and bias vectors, b1 ∈ <K×1 and b2 ∈ <N×1 , using 

back-propagation algorithm while trying to learn the approximation of the identity function, i.e., 

output ˆx similar to x [18]. Sigmoid function, g(z) = 1 1+e−z , is used for the activation, hW,b of 

the nodes in the hidden and output layers: hW,b(x) = g(W x + b) (1) J = 1 2m Xm i=1 kxi − xˆik 

2 + λ 2 ( X k,n W2 + X n,k V 2 + X k b1 2 + X n b2 2 ) + β XK j=1 KL(ρkρˆj ) (2) The cost 

function to be minimized in sparse auto encoder using back-propagation is represented by Eq. (2). 

The first term is the average of sum-of-square error terms for all m input data. The second term 

is a weight decay term, with λ as weight decay parameter, to avoid the over-fitting in training. 

The last term in the equation is sparsity penalty term that puts a constraint into the hidden layer 

to maintain a low average activation values, and expressed as KullbackLeibler (KL) divergence 

shown in Eq. (3): KL(ρkρˆj ) = ρlog ρ ρˆj + (1 − ρ)log 1 − ρ 1 − ρˆj (3) where ρ is a sparsity 

constraint parameter ranges from 0 to 1 and β controls the sparsity penalty term. The KL(ρkρˆj ) 

attains a minimum value when ρ = ˆρj , where ˆρj denotes the average activation value of hidden 

unit j over all training inputs x. Once we learn optimal values for W and b1 by applying the sparse 

autoencoder on unlabeled data, xu, we evaluate the feature representation a = hW,b1 (xl) for the 

labeled data, (xl, y). We use this new features representation, a, with the labels vector, y, for the 

classification task in the second stage. We use soft-max regression for the classification task 

 

NSL-KDD Dataset: 

As discussed earlier, we used NSL-KDD dataset in our work. The dataset is an improved and 

reduced version of the KDD Cup 99 dataset . The KDD Cup dataset was prepared using the 

network traffic captured by 1998 DARPA IDS evaluation program. The network traffic includes 

normal and different kinds of attack traffic, such as DoS, Probing, user-to-root (U2R), and root- 

to-local (R2L). The network traffic for training was collected for seven weeks followed by two 

weeks of traffic collection for testing in raw tcpdump format. The test data contains many attacks 

that were not injected during the training data collection phase to make the intrusion detection 

task realistic. It is believed that most of the novel attacks can be derived from the known attacks. 

Finally, the training and test data were processed into the datasets of five million and two million 

TCP/IP connection records, respectively. The KDD Cup dataset has been widely used as a 

benchmark dataset for many years in the evaluation of NIDS. One of the major drawback with 

the dataset is that it contains an enormous amount of redundant records both in the training and 
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test data. It was observed that almost 78% and 75% records are redundant in the training and test 

dataset, respectively. This redundancy makes the learning algorithms biased towards the frequent 

attack records and leads to poor classification results for the infrequent, but harmful records. The 

training and test data were classified with the minimum accuracy of 98% and 86% respectively 

using a very simple machine learning algorithm. It made the comparison task difficult for various 

IDSs based on different learning algorithms. NSL-KDD was proposed to overcome the limitation 

of KDD Cup dataset. The dataset is derived from the KDD Cup dataset. It improved the previous 

dataset in two ways. First, it eliminated all the redundant records from the training and test data. 

Second, it partitioned all the records in the KDD Cup dataset into various difficulty levels based 

on the number of learning algorithms that can correctly classify the records. Further, it selected 

the records by random sampling of the distinct records from different difficulty levels in a fraction 

that is inversely proportional to their fractions in the distinct records. The multi-steps processing 

of KDD Cup dataset made the total records statistics reasonable in the NSL-KDD dataset. 

Moreover, these enhancements made the evaluation of various machine learning techniques 

realistic. Each record in the NSL-KDD dataset consists of 41 features1 and is labeled with either 

normal or a particular kind of attack. These features include basic features derived directly from 

a TCP/IP connection, traffic features accumulated in a window interval, either time, e.g. two 

seconds, or a number of connections, and content features extracted from the application layer 

data of connections. Out of 41 features, three are nominal, four are binary, and remaining 34 are 

continuous. The training data contains 23 traffic classes that include 22 classes of attack and one 

normal class. The test data contains 38 traffic classes that include 21 attack classes from the 

training data, 16 novel attacks, and one normal class. These attacks are also grouped into four 

categories based on the purpose they serve. These categories are DoS, Probing, U2R, and R2L. 

Table-1 shows the statistics of records for the training and test data for normal and different attack 

classes. 

 

NIDS Implementation: 

As discussed in the previous section, the dataset contains different kinds of attributes with 

different values. We pre process the dataset before applying self-taught learning on it. Nominal 

attributes are converted into discrete attributes using 1-to-n encoding. In addition, there is one 

attribute, num outbound cmds, in the dataset whose value is always 0 for all the records in the 

training and test data. We eliminated this attribute from the dataset. The total number of attributes 

become 121 after performing the steps mentioned above. The values in the output layer during 

the feature learning phase is computed by the sigmoid function that gives values between 0 and 

1. Since the output layer values are identical to the input layer values in this phase, it results in 

normalization of the values at the input layer in the range of. To obtain this, we perform max-min 

normalization on the new attributes list. With the new attributes, we use the NSL-KDD training 

data without labels for feature learning using sparse autoencoder for the first stage of self-taught 

learning. In the second stage, we apply the newly learned features representation on the training 

data itself for the classification using soft-max regression. In our implementation, both the 

unlabeled and labeled data for feature learning and classifier training come from the same source, 

i.e., NSL-KDD training data. 
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Performance Evaluation: 

We implemented the NIDS for three different types of classification: a) Normal and anomaly (2- 

class), b) Normal and four different attack categories (5-class), and c) Normal and 22 different 

attacks (23-class). We have evaluated classification accuracy for all types. However, precision, 

recall, and f-measure values are evaluated in the case of 2-class and 5- class classification. We 

have computed the weighted values of these metrics in the case of 5-class classification. 

 

Results and Discussion: 

As discussed in Section 2, there are two approaches applied for the evaluation of NIDSs. In the 

most widely used approach, the training data is used for both training and testing either using n- 

fold cross-validation or splitting the training data into training, cross-validation, and test sets. 

NIDSs based on this approach achieved very high accuracy and less false-alarm rates. The second 

approach uses the training and test data separately for the training and testing. Since the training 

and test data were collected in different environments, the accuracy obtained using the second 

approach is not as high as in the first approach. Therefore, we emphasize on the results of the 

second approach in our work for accurate evaluation of NIDS. However, we present the results 

of the first approach as well for completeness. We describe our NIDS implementation before 

discussing the results. 

 

 
 

Conclusion: 

We proposed a deep learning based approach for developing an efficient and flexible NIDS. A 

sparse auto encoder and soft-max regression based NIDS was implemented. We used the 

benchmark network intrusion dataset - NSL-KDD to evaluate anomaly detection accuracy. We 

observed that the proposed NIDS performed very well compared to previously implemented 

NIDSs for the normal/anomaly detection when evaluated on the test data. The performance can 

be further enhanced by applying techniques such as Stacked Auto encoder, an extension of sparse 

auto encoder in deep belief nets, for unsupervised feature learning, and NB-Tree, Random Tree, 

or J48 for further classification. It was noted that the latter techniques performed well when 

applied directly on the dataset. In future, we plan to implement a real-time NIDS for actual 

networks using deep learning technique. Additionally, on-the-go feature learning on raw network 

traffic headers instead of derived features can be another high impact research in this area. 

 

 Intrusion Preventing System using Intrusion Detection System Decision 

Tree Data Mining 
 

Abstract: 

Problem statement: To distinguish the activities of the network traffic that the intrusion and 

normal is very difficult and to need much time consuming. An analyst must review all the data 

that large and wide to find the sequence of intrusion on the network connection. Therefore, it 

needs a way that can detect network intrusion to reflect the current network traffics. 
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Approach: In this study, a novel method to find intrusion characteristic for IDS using decision 

tree machine learning of data mining technique was proposed. Method used to generate of rules 

is classification by ID3 algorithm of decision tree. 

Results: These rules can determine of intrusion characteristics then to implement in the firewall 

policy rules as prevention. 

Conclusion: Combination of IDS and firewall so-called the IPS, so 
that besides detecting the existence of intrusion also can execute by doing deny of intrusion as 

prevention. 

 

INTRODUCTION 

With the global Internet connection, network security has gained significant attention in research 

and industrial communities. Due to the increasing threat of network attacks, firewalls have 

become important elements of the security policy is generally. Firewall can be allow or deny 

access network packet, but firewall cannot detect intrusion or attack, so to need intrusion detection 

and then implemented to firewall is access control systems as prevention. Intrusion detection are 

also considered as a complementary solution to firewall technology by recognizing attacks against 

the network that are missed by the firewall. Firewall and IDS represent an old stuff terminology 

in the field of IT security. Firewall is good for protection a system and network and can 

minimization risk of attack to network. IDS can detect existence intrusion or attack. The joining 

ability of IDS and firewalls, that is socalled IPS. That is a functioning tool to detect intrusion and 

then denying by firewall for prevention. For each type of network traffics, there are one or more 

different rules. Every network packet, which arrives at firewall, must be check against defined 

rules until a matching rule found. The packet will be then allow or banned access to the network, 

depending on the action specified in the matching rule. Each rule identifies specific type of 

network traffic. Characteristics to reflect the current of network traffics can observe from network 

traffic logs as human pattern recognize. This Study focus on some methods to prevention from 

attempt intrusion to find intrusion characteristics in the network traffic as IDS then 

implementation to firewall policy rules as prevention. To find rules of intrusion characteristics 

using decision tree machine learning data mining. Method used to generate of rules is 

classification by ID3 algorithm of decision tree. It is an efficient and optimized to make the rules 

filtering in firewall. 

 

Theoretical background: 

Intrusion Detection System (IDS): Intrusion detection can be performed manually or 

automatically. Manual intrusion detection might take place by examining log files or other 

evidence for signs of intrusions, including network traffic. A system that performs automated 

intrusion detection is called an Intrusion Detection System (IDS). IDS play a vital role in ensuring 

the security of modern computer installations. Such systems are need in order to detect hostile 

activity and to respond appropriately. As networks continue to expand and become more exposed 

to a diversity of sources, both hostile and benign, IDS need to be able to deal with a large and 

ever-increasing flow of alerts and events. Therefore, automatic procedures for detecting and 

responding to intrusion are becoming increasingly essential. 
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Firewall rules: 

A firewall security policy is a list of ordered filtering rules that define the actions performed on 

packets that satisfy specific conditions. Before to develop rules filtering by using packet filter, 

anything have to be considered beforehand how far demarcation which will be applied, because 

more and more demarcation applied hence increases the search time and space requirements of 

the packet filtering process[1] and consequences to make downhill performance progressively. 

This matter because every incoming network packet and go out the network checked 

beforehand by rules alternately until matching rule found in firewall. Firewall rules can limit to 

access the connection of pursuant to parameter: source IP, destination IP, source port, destination 

port, protocol and others[8,10] . Following example of firewall rules in Fig. 1. Firewall rule of 

above explaining to enhance the order by the end of chain (A) for the traffic of incoming to 

firewall (INPUT) by source IP address (-s) 203.230.206.5 with the type protocol (-p) tcp to 

destination IP address (-d) 10.10.15.7 and destination port (--dport) 80 hence done by action (-j) 

dropped (DROP) by firewall. 

 

Log files: 

Log files can give an idea about what the different parts of system are doing. Logs can show what 

is going right and what is going wrong. Log files can provide a useful profile activity. From a 

security standpoint, it is crucial to be able to distinguish normal activity from the activity of 

someone to attack server or network. 

Log files are useful for three reasons: 
• Log files help with troubleshooting system problems and understanding what is happening on 

the system 

• Logs serve as an early warning for both system and security events 
• Logs can be indispensable in reconstructing events, whether determined an intrusion has 

occurred and performing the follow-up forensic investigation or 

just profiling normal activity 

Decision tree of data mining: 

Decision tree is a technique in classification method of data mining for learning patterns from 

data and using these patterns for classification. Decision tree are structures used to classify and 

data and with and common and attributes and as Each decision tree represents a rule, which 

categorizes data according to these attributes. 

Where each node (nonleaf node) denotes a test on an attribute, each branch represent an outcome 

of the test and each leaf node or terminal node holds a class label. The topmost node in a tree is 

the root node. A decision tree classifier is one of the most widely need supervised learning 

methods used for data exploration. It is easy to interpret and can be represented as if-then-else 

rules. This classifier works well on noisy data. A decision tree aids in data exploration in the 

following manner: 

• It reduces a volume of data by transformation into a more compact form that preserves the 

essential characteristics and provides an accurate summary 

• It discovers whether the data contains well separated classes of objects, such that the classes can 

be interpreted meaningfully in the context of a substantive theory 
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• It maps data in the form the leaves to its root. This may used to predict the outcome for a new 

data or Query. 

 

MATERIALS AND METHODS: 

This research using decision tree a technique of data mining machine learning to find the intrusion 

characteristics for intrusion detection. Algorithm is used ID3 to construct Decision tree. Network 

traffic logs as data training that describes the human behavior 

in network traffics as intrusive activities and normal activities. The results of decision tree training 

will get rules of intrusion characteristics then these rules to implement in the firewall rules as 

prevention. Determining occurrence of intrusion or normal 

activities at network traffic log can be conducted with two way of that is: 
• Observe manually activities network traffic in log files. Example, application software of log 

files is syslog, syslog_ng, tcpdump and others. Pattern 

found to see intrusion through log seen modestly, for example there are some times trying to 

access using login or password failed, trying port scan, abundant ping, delivery of abundant 

package by repeat 

• Using software as a means of assists functioning as Network Intrusion Detection System (NIDS) 

able to determine intrusion activities or normal activities, for example snort software 

 

RESULTS: 

Collect and extract log files of intrusive activities and normal activities become five of parameter 

as attributes and belongs to a class ‗Yes‘ or ‗No‘ of intrusive for the data training of decision tree. 

The parameter is IP address source, IP address destination, 

port source, port destination and protocol . Applying Decision Tree to Find Intrusion 

Characteristic: Suppose train a decision tree. 

 

Implementation to firewall rules: 

The examples of extract rule of tree decision representing characteristic of intrusion earn 

implementation into firewall rules .Do not forget to every rule there is a TCP protocol. Firewall 

policy rules above representing preventive action, where every network packet with criteria like 

rules firewall above will DROP. 

 

 
 

CONCLUSION: 

Network traffic logs to describe patterns of behavior in network traffic accident with intrusive or 

normal activity. Decision tree technique is good for the intrusion characteristic of the network 

traffic logs for IDS and implemented in the firewall as prevention. The both of this combination 

is called IPS. The other hand, this technique is also good efficiency and optimize rule for the 

firewall rules such as avoid redundancy. 
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 A Deep Learning Approach to Network Intrusion Detection 

Abstract: 

Network Intrusion Detection Systems (NIDS) play a crucial role in defending computer networks. 

However, there are concerns regarding the feasibility and sustainability of current approaches 

when faced with the demands of modern networks. More specifically, these concerns relate to the 

increasing levels of required human interaction and the decreasing levels of detection accuracy. 

This paper presents a novel deep learning technique for intrusion detection, which addresses these 

concerns. We detail our proposed non-symmetric deep auto-encoder (NDAE) for unsupervised 

feature learning. Furthermore, we also propose our novel deep learning classification model 

constructed using stacked NDAEs. Our proposed classifier has been implemented in GPU- 

enabled TensorFlow and evaluated using the benchmark KDD Cup ‘99 and NSL-KDD datasets. 

Promising results have been obtained from our model thus far, demonstrating improvements over 

existing approaches and the strong potential for use in modern NIDSs. 

 

INTRODUCTION: 

one of the major challenges in network security is the provision of a robust and effective Network 

Intrusion Detection System (NIDS). Despite the significant advances in NIDS technology, the 

majority of solutions still operate using less-capable signature-based techniques, as opposed to 

anomaly detection techniques. There are several reasons for this reluctance to switch, including 

the high false error 

rate (and associated costs), difficulty in obtaining reliable training data, longevity of training data 

and behavioural dynamics of the system. The current situation will reach a point whereby reliance 

on such techniques leads to ineffective and inaccurate detection. The specifics of this challenge 

are to create a widely-accepted anomaly detection technique capable of overcoming limitations 

induced by the ongoing 

changes occurring in modern networks. We are concerned with three main limitations, which 

contribute to this network security challenge. The first is the drastic growth in the volume of 

network data, which is set to continue. This growth can be predominantly attributed to increasing 

levels of connectivity, the popularity of the 

Internet of Things and the extensive adoption of cloud based services. Dealing with these volumes 

requires techniques that can analyse data in an increasingly rapid, efficient and effective manner. 

The second cause is the in-depth monitoring and granularity required to improve effectiveness 

and accuracy. NIDS analysis needs to be more detailed and contextually-aware, which means 

shifting away from ab 

stract and high-level observations. For example, behavioural changes need to be easily 

attributable to specific elements of a network, e.g. individual users, operating system versions or 

protocols. The final cause is the number of different 

traversing through modern networks. This is possibly the most significant challenge and 

introduces high-levels of difficulty and complexity when attempting to differentiate between 

normal and abnormal behaviour. It increases the difficulty in establishing an accurate norm and 

widens the scope for potential exploitation or 
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zero-day attacks. In recent years, one of the main focuses within NIDS research has been the 

application of machine learning and shallow learning techniques such as Naive Bayes, Decision 

Trees and Support Vector Machines (SVM) [1]. By enlarge, 

the application of these techniques has offered improvements in detection accuracy. However, 

there are limitations with these techniques, such as the comparatively high level of human expert 

interaction required; expert knowledge is needed to process data e.g. identifying useful data and 

patterns. Not only is this a labour intensive and expensive process but it is also error prone [2]. 

Similarly, a vast quantity of training data is required for operation (with associated time 

overheads), which can become challenging in a heterogeneous and dynamic environment. To 

address the above limitations, a research area currently receiving substantial interest across 

multiple domains is that of deep learning. This is an advanced subset of machine learning, which 

can overcome some of the limitations of shallow learning. Thus far, initial deep learning research 

has demonstrated that its superior layer-wise feature learning can better or at least match the 

performance of shallow learning techniques. It is capable of facilitating a deeper analysis of 

network data and faster identification of any anomalies.In this paper, we propose a novel deep 

learning model to enable NIDS operation within modern networks. The model we propose is a 

combination of deep and shallow learning, capable of correctly analysing a wide-range of network 

traffic. More specifically, we combine the power of stacking our proposed non-symmetric deep 

auto-encoder (NDAE) (deep-learning) and the accuracy and speed of Random Forest 

(RF)(shallow learning). We have practically evaluated our model using GPU-enabled 

TensorFlow and obtained promising results from analysing the KDD Cup ‘99 and NSL-KDD 

datasets. We are aware of the limitations of these datasets but they remain widely-used 

benchmarks amongst similar works, enabling us to draw direct comparisons. This paper offers 

the following novel contributions: 

• A new NDAE technique for unsupervised feature learning, which unlike typical auto-encoder 

approaches provides non-symmetric data dimensionality reduction. Hence, our technique is able 

to facilitate improved classification results when compared with leading methods such as Deep 

Belief Networks (DBNs). 

• A novel classifier model that utilises stacked NDAEs and the RF classification algorithm. By 

combining both deep and shallow learning techniques to exploit 

their respective strengths and reduce analytical over heads. We are able to better or at least match 

results from similar research, whilst significantly reducing the training time. The remainder of 

this paper is structured as follows. Section 2 presents relevant background information. Section 

3 examines existing research. Section 4 specifies our proposed solution, which is subsequently 

evaluated in Section 5. Section 6 discusses our findings from the evaluation. Finally the paper 

concludes in Section 7. 

BACKGROUND 

In this section, we will provide background information necessary to understand our motivations 

and the concepts behind the model proposed in this paper. 

NIDS challenges 

Network monitoring has been used extensively for the purposes of security, forensics and 

anomaly detection. However, recent advances have created many new obstacles for NIDSs. Some 

of the most pertinent issues include: 
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• Volume - The volume of data both stored and passing through networks continues to increase. 

It is forecast that by 2020, the amount of data in existence will top 44ZB [4]. As such, the traffic 

capacity of modern networks has drastically increased to facilitate the volume of traffic observed. 

Many modern backbone links are now operating at wirespeeds of 100Gbps or more. To 

contextualise this, a 100Gbps 

link is capable of handling 148,809,524 packets per second [5]. Hence, to operate at wirespeed, 

a NIDS would need to be capable of completing the analysis of a packet within 6.72ns. Providing 

NIDS at such a speed is difficult and ensuring satisfactory levels of accuracy, effectiveness and 

efficiency also presents a significant challenge. 

• Accuracy - To maintain the aforementioned levels of accuracy, existing techniques cannot be 

relied upon. Therefore, greater levels of granularity, depth and contextual understanding are 

required to provide a more holistic and accurate view.Unfortunately, 

this comes with various financial, computational and time costs. 

• Diversity - Recent years have seen an increase in the number of new or customised protocols 

being utilised in modern networks. This can be partially attributed to the number of devices with 

network and/or Internet connectivity. As a result, it is be 

coming increasingly difficult to differentiate between normal and abnormal traffic and/or 

behaviours. 

• Dynamics - Given the diversity and flflexibility of modern networks, the behaviour is dynamic 

and difficult to predict. In turn, this leads to difficulty in establishing a reliable behavioural norm. 

It also raises concerns as to the lifespan of learning models. 

• Low-frequency attacks - These types of attacks have often thwarted previous anomaly 

detection techniques, including artificial intelligence approaches.The problem stems from 

imbalances in the training dataset, meaning that NIDS offer weaker detection precision when 

faced with these types of low frequency attacks. 

• Adaptability - Modern networks have adopted many new technologies to reduce their reliance 

on static technologies and management styles. Therefore, there is more widespread usage of 

dynamic technologies such as containerisation, virtualisation 

and Software Defined Networks. NIDSs will need to be able to adapt to the usage of such 

technologies and the side effects they bring about. 

 

Deep Learning 

Deep learning is an advanced sub-field of machine learning,which advances Machine Learning 

closer to Artificial Intelligence. It facilitates the modelling of complex relationships and concepts 

using multiple levels of representation. 

Supervised and unsupervised learning algorithms are used to construct successively higher levels 

of abstraction, defined using the output features from lower levels. 

 

• Auto-encoder 

A popular technique currently utilised within deep learning research is auto-encoders, which is 

utilised by our proposed solution (detailed in Section 4). An auto-encoder is an unsupervised 

neural network-based feature extraction algorithm, which learns the best parameters required to 



30  

reconstruct its output as close to its input as possible. One of it desirable characteristics is the 

capability to provide more a powerful and non-linear generalisation than Principle Component 

Analysis (PCA). This is achieved by applying backpropagation and setting the target values to be 

equal to the inputs. In other words, it is trying to learn an approximation to the identity function. 

An auto-encoder typically has an input layer, output layer (with the same dimension as the input 

layer) and a hidden layer. This hidden layer normally has a smaller dimension than that of the 

input (known as an undercomplete or sparse auto-encoder). An example of an auto-encoder.Most 

researchers use auto-encoders as a nonlinear transformation to discover interesting data 

structures,by imposing other constraints on the network, and compare the results with those of 

PCA (linear transformation). These 

methods are based on the encoder-decoder paradigm. The input is first transformed into a 

typically lower-dimensional space (encoder), and then expanded to reproduce the initial data 

(decoder). Once a layer is trained, its code is fed to the next, to better model highly non-linear 

dependencies in the input. This paradigm focuses on reducing the dimensionality of input data. 

To achieve this, there is a special layer 

- the code layer, at the centre of the deep auto-encoder structure. This code layer is used as a 

compressed feature vector for classification or for combination within a stacked auto-encoder. 

Deep learning can be applied to auto-encoders, whereby the hidden layers are the simple concepts 

and multiple hidden layers are used to provide depth, in a technique 

known as a stacked auto-encoder. This increased depth can reduce computational costs and the 

amount of required training data, as well as yielding greater degrees of accuracy. The output from 

each hidden layer is used as the input for a progressively higher level. Hence, the first layer of a 

stacked auto-encoder usually learns first-order features in raw input. The second layer usually 

learns second-order features relating to patterns in the appearance of the first order features. 

Subsequent higher layers learn higher-order features. An illustrative example of a stacked auto- 

encoder. Here, the superscript numbers refer to the hidden layer identity and the subscript 

numbers signify the dimension for that layer. 

 

EXISTING WORK : 

Deep learning is garnering significant interest and its application is being investigated within 

many research domains, such as: healthcare; automotive design; manufacturing and law 

enforcement. There are also several existing works within the domain of NIDS. In this section, 

we will discuss the most current notable works.Dong and Wang undertook a literary and 

experimental comparison between the use of specific traditional NIDS techniques and deep 

learning methods [1]. The authors concluded that the deep learning-based methods offered 

improved detection accuracy across a range of sample sizes and traffic anomaly types. The 

authors also demonstrated that problems associated with imbalanced datasets can be overcome 

by using oversampling for which, they used the Synthetic Minority Oversampling Technique 

(SMOTE).Zhao presented a state-of-the-art survey of deep learning applications within machine 

health monitoring.They experimentally compared conventional machine learning methods 

against four common deep learning methods 

(auto-encoders, Restricted Boltzmann Machine (RBM), Convolutional Neural Network (CNN) 

and Recurrent Neural Network (RNN). Their work concluded that deep learning methods offer 
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better accuracy than conventional methods. Our literature review identified several proposed deep 

learning methods specifically for NIDSs. 

Alrawashdeh and Purdy [18] proposed using a RBM with one hidden layer to perform 

unsupervised feature reduction. The weights are passed to another RBM to produce 

a DBN. The pre-trained weights are passed into a fine tuning layer consisting of a Logistic 

Regression classifier (trained with 10 epochs) with multi-class soft-max. The proposed solution 

was evaluated using the KDD Cup ‘99 dataset. The authors claimed a detection rate of 97.90% 

and a false negative rate of 2.47%. This is an improvement over results claimed by authors of 

similar papers.The work by Kim et al. [19] aspired to specifically target advanced persistent 

threats. They propose a Deep Neural Network (DNN) using 100 hidden units, combined with the 

Rectified Linear Unit activation function and the ADAM optimiser. Their approach was 

implemented on a GPU using TensorFlow, and evaluated using the KDD data set. The authors 

claimed an average accuracy rate of 99%, and summarised that both RNN and Long Short-Term 

Memory (LSTM) models are needed for improving future defences. 

Javaid et al. [20] propose a deep learning based approach to building an effective and flflexible 

NIDS. Their method is referred to as self-taught learning (STL), which combines a sparse auto- 

encoder with softmax regression. They have implemented their solution and evaluated it against 

the benchmark NSL-KDD dataset. The authors claim some promising levels of classification 

accuracy in both binary 

and 5-class classification. Their results show that their 5-class classification achieved an average 

f-score of 75.76%. Potluri and Diedrich [21] propose a method using 41 features and their DNN 

has 3 hidden layers (2 auto-encoders and 1 soft-max). The results obtained were mixed, those 

focusing on fewer classes were more accurate than those with more classes. The authors attributed 

this to insufficient training data for some classes.Cordero et al. [22] proposed an unsupervised 

method to learn models of normal network flflows. They use RNN, auto-encoder and the dropout 

concepts of deep learning.The exact accuracy of their proposed method evaluated is not fully 

disclosed.Similarly, Tang et al. [23] also propose a method to monitor network flflow data. The 

paper lacked details about its exact algorithms but does present an valuation using the NSL-KDD 

dataset, which the authors claim gave an accuracy of 75.75% using six basic features. Kang and 

Kang [24] proposed the use of an unsupervised DBN to train parameters to initialise the DNN, 

which yielded improved classification results (exact details of the approach are not clear). Their 

evaluation shows improved performance in terms of classification errors. Hodo et al. [25] have 

produced a comprehensive taxonomy and survey on notable NIDSs approaches that utilise deep 

and shallow learning. They have also aggregated some of the most pertinent results from these 

works. In addition, there is other relevant work, including the DDoS detection system proposed 

by Niyaz et al. [26]. They propose a deep learning-based DDoS detection system for a software 

defined network (SDN). Evaluation is performed using custom generated traffic traces. The 

authors claim to 

have achieved binary classification accuracy of 99.82% and 8-class classification accuracy of 

95.65%. However, we feel that drawing comparisons with this paper would be unfair due to the 

contextual difference of the dataset. Specifically, 

benchmark KDD datasets cover different distinct categories of attack, whereas the dataset used 

in this paper focuses on subcategories of the same attack. You et al. [16] propose an automatic 
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security auditing tool for short messages (SMS). Their method is based upon the RNN model. 

The authors claimed that their evaluations resulted in an accuracy rate of 92.7%, thus improving 

existing classification methods (e.g. SVM and Naive Bayes). Wang et al. [27] propose an 

approach for detecting 

malicious JavaScript. Their method uses a 3 layer SdA with linear regression. It was evaluated 

against other classifier techniques, showing that it had the highest true positive rate but the second 

best false positive rate.The work by Hou et al. [3] outlines their commercial Android malware 

detection framework, Deep4MalDroid. Their method involves the use of stacked auto-encoders 

with best accuracy resulting from 3 layers. The 10-fold cross validation was used, showing that 

in comparison to shallow learning, their approach offers improved detection performance.Lee et 

al. [28] propose a deep-learning approach to fault monitoring in semiconductor manufacturing. 

They use a Stacked de-noising Auto-encoder (SdA) approach to provide an unsupervised learning 

solution. A comparison with conventional methods has demonstrated that throughout different 

use cases the approach increases accuracy by up to 14%. in different use cases. They also 

concluded that among the SdAs analysed (1-4 layers) those with 4 layers produced the best results. 

The findings from our literature review have shown that despite the high detection accuracies 

being achieved, there is still room for improvement. Such weaknesses include the reliance on 

human operators, long training times, inconsistent or average accuracy levels and the heavy 

modification of datasets (e.g. balancing or profiling). The area is still in an infantile stage, with 

most researchers still experimenting on combining various algorithms (e.g. training, optimisation, 

activation and classification) and layering approaches to produce the most accurate and efficient 

solution for a specific dataset. Hence, we believe the model and work presented in this paper will 

be able to make a valid contribution to the current pool of knowledge. 

 

PROPOSED METHODOLOGY 

• Non-symmetric deep auto-encoder: 

Decreasing the reliance on human operators is a crucial requirement for future-proofing NIDSs. 

Hence, our aim is to devise a technique capable of providing reliable unsupervised feature 

learning, which can improve upon the performance and accuracy of existing techniques.This 

paper introduces our NDAE, which is an auto 

encoder featuring non-symmetrical multiple hidden layers.Fundamentally, this involves the 

proposed shift from the encoder-decoder paradigm (symmetric) and towards utilising just the 

encoder phase (non-symmetric). The reasoning behind this is that given the correct learning 

structure, it is be possible to reduce both computational and time overheads, with minimal impact 

on accuracy and efficiency. NDAE can be used as a hierarchical unsupervised feature extractor 

that scales well to accommodate high-dimensional inputs. It learns non-trivial features using a 

similar training strategy to that of a typical auto-encoder. 

 

• Stacked non-symmetric deep auto-encoders: 

Due to the data that we envisage this model using,we have designed the model to handle large 

and complex datasets (further details on this are provided in 6). Despite the 42 features present in 

the KDD Cup ‘99 and NSL-KDD datasets being comparatively small, we maintain that it provides 

a benchmark indication as to the model‘s capability. However, the classification power of stacked 
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auto encoders with a typical soft-max layer is relatively weak compared to other discriminative 

models including RF, KNN and SVM. Hence, we have combined the deep learning power of our 

stacked NDAEs with a shallow learning classifier. For our shallow learning classifer, we have 

decided upon using Random Forest. Current comparative research such as that by Choudhury and 

Bhowal, and Anbar et al.shows that RF is one of the best algorithms for intrusion detection. These 

are findings that were replicated by our own initial tests. Additionally, there are many examples 

of current intrusion detection research also utilising RF is basically an ensemble learning method, 

the principle of which is to group ‗weak learners‘ to form a ‗strong learner‘ . In this instance, 

numerous individual decision trees (the weak learners) are combined to form a forest. RF can be 

considered as the bagging (records are selected at random with replacement from the original 

data) of these un-pruned decision trees, with a random selection of features at each split. It boasts 

advantages such as low levels of bias, robustness to outliers and overfitting correction, all of 

which would be useful in a NIDS scenario. In our model, we train the RF classifier using the 

encoded representations learned by the stacked NDAEs to classify network traffic into normal 

data and known attacks. In deep learning research, the exact structure of a model dictates its 

success. Currently, researchers are unable to explain what makes a successful deep learning 

structure. The exact structure of our model has resulted from experimented with numerous 

structural compositions to achieve the best results. 

 

EVALUATION & RESULTS: 

Similar to most existing deep learning research, our proposed classification model (Section 4.2) 

was implemented using TensorFlow. All of our evaluations were performed using GPU-enabled 

TensorFlow running on a 64-bit Ubuntu 16.04 LTS PC with an Intel Xeon 3.60GHz processor, 

16 GBRAM and an NVIDIA GTX 750 GPU. 

To perform our evaluations, we have used the KDD Cup‘99 and NSL-KDD datasets. Both of 

these datasets are considered as benchmarks within NIDS research. Furthermore,using these 

datasets assists in drawing comparisons with existing methods and research.Throughout this 

section, we will be using the metrics 

defined below: 
• True Positive (TP) - Attack data that is correctly clas 

sified as an attack. 

• False Positive (FP) - Normal data that is incorrectly 

classified as an attack. 

• True Negative (TN) - Normal data that is correctly 

classified as normal. 

• False Negative (FN) - Attack data that is incorrectly 

classified as normal. 

 

Datasets 

This paper utilises the KDD Cup ‘99 and NSL-KDD benchmark datasets. Both of which have 

been used extensively in IDS research involving traffic with both normal and abnormal 

connections. 

5.1.1 KDD Cup ’99 
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The KDD Cup ‘99 dataset was used in DARPA‘s IDS evaluation program. The data consists of 

4 gigabytes-worth of compressed tcpdump data resulting from 7 weeks of 

network traffic. This can be processed into about 5 million connection records, each with about 

100 bytes. It consists of approximately 4,900,000 single connection vectors each of which 

contains 41 features. These include Basic features (e.g.protocol type, packet size), Domain 

knowledge features (e.g.number of failed logins) and timed observation features (e.g.% of 

connections with SYN errors). Each vector is labelled as either normal or as an attack It is 

common practice to use 10% of the full size dataset, as this provides a suitable representation 

with reduced computational requirements. This 10% subset is produced and disseminated 

alongside the original dataset. In this paper, we use the 10% (herein referred to as KDD Cup ‘99) 

subset, 

which contains 494,021 training records and 311,029 testing records. The KDD Cup ‘99 dataset 

needs pre-processing to be successfully utilised with our proposed stacked NDAE model. This is 

because our model operates using only numeric 

values but one record in the dataset has a mixture of numeric and symbolic values, so a data 

transformation was needed to convert them. In addition integer values also need 

normalisation as they were mixed with flfloating point values between 0 and 1, which would 

make learning difficult. 

NSL-KDD 

The newer NSL-KDD dataset, which was produced by Tavallaee et al. to overcome the inherent 

problems of the KDD ‘99 data set, which are discussed in. Although, this new version of the 

dataset still suffers from some of the problems discussed by McHugh in and may not be a perfect 

representation of existing real networks. Most 

current NIDS research still uses this dataset, so we believe it remains an effective benchmark to 

help researchers compare different methods. The NSL-KDD dataset is fundamentally the same 

structure as the KDD Cup ‘99 dataset (i.e. it has 22 attack patterns or normal traffic, and fields 

for 41 features). We will be using the whole NSL-KDD dataset for our evaluations, some of the 

attack patterns have been high 

lighted. This indicates attack patterns that contain less than 20 occurrences in the dataset. 20 is 

the minimum threshold required for accurate levels of training and evaluation. So, for this paper 

these attacks have been omitted. One of the most prominent techniques currently used within 

deep learning research is DBNs.One notable publication on the technique is by Alrawashdeh and 

Purdy, where the authors propose the use of a DBN model for NIDSs. 

 

DISCUSSION 

Our evaluations show that our proposed stacked NDAE model has produced a promising set of 

results. 

Class KDD Cup ‟99 Classification 

With regards to the KDD Cup ‘99 dataset evaluation, the results show that our model is able to 

offer an average accuracy of 97.85%. more specifically, the results show that our accuracy is 

better than or comparable with the work in, in 3 out of 5 classes. It is also a significant 

improvement on other deep learning methods such as However, it is noted that the results for 

―R2L‖ and ―U2L‖ attack classes are anomalous. The stacked NDAE model requires greater 
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amounts of data to learn from. Unfortunately, due to the smaller number of training datum 

available, the results 

achieved are less stable. Despite this, it is evident from the performance analysis that our model 

can offer improved precision, recall and F-score, especially for larger classes. Furthermore, our 

model managed to produce these comparable performance results, whilst consistently reducing 

the required training time by an average of 97.72%. 

 

Class NSL-KDD Classification 

With regards to the NSL-KDD dataset, we can see from the results that throughout all of the 

measures our model yields superior level of performance in 3 of the 5 classes. Notably, the model 

offered a total accuracy rate of 85.42%, which improves upon the DBN model by just under 5%. 

It also offered a 4.84% reduction in the false alarm rate. The results also re-emphasise the point 

made, that our model doesn‘t handle smaller classes (―R2L‖ and ―U2R‖) as well. Another 

important factor is that the time required to train our model is drastically reduced, yielding an 

average time saving of 78.19% against DBN. This is of critical importance particularly for 

application in a NIDS. 

 

Class NSL-KDD Classification 

The results from the 13-Class classification evaluate demonstrate that our model was able to offer 

a 3.8% improvement on its own accuracy simply by using a more granular dataset. This supports 

our claim that the model is able to work more effectively with larger and complex datasets. 

Furthermore, the larger dataset gives a better insight into the weakness in our model. As it can be 

seen from the results, there is a direct correlation between the size of the training datasets for each 

label and the accuracy/error rates. This supports our observation that the smaller classes (in this 

case ―back‖, ―guess password‖, ―tear drop‖ and ―warez client‖) yield lower levels of accuracy 

using our model. However, it must also be noted that the larger classes 

yielded consistently high rates throughout all of the performance measures. 

 

Comparison with Related Works: 

We have also compared the results from our stacked NDAE model against the results obtained 

from similar deep learning-based NIDSs. In, the authors claim their 5-class classification of the 

NSL-KDD dataset produced an f-score of 75.76%. Their recall and precision results are not listed 

but the bar charts show them to be around 69% and 83% respectively. Our model has produced 

superior results by offering f-score of 

87.37%, recall of 85.42% and precision of 100.00%. Tang et al. claim that their Deep Neural 

Network (DNN) approach achieved an accuracy of 75.75% when performing a 5-class 

classification of the NSL-KDD dataset. This is result is lower than our achieved accuracy of 

85.42%. Whilst classifying the KDD Cup ‘99 dataset, Kim et al. claim they have achieved an 

accuracy of accuracy of 96.93%. Also Gao et al. claim their deep learning DBN model achieved 

an accuracy of 93.49%. Both of these results 

are less than the 97.85% accomplished by our model. These comparisons show that our model‘s 

results are very promising when compared to other current deep learning-based methods. 

Conclusion & Future Work: 
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In this paper, we have discussed the problems faced by existing NIDS techniques. In response to 

this we have proposed our novel NDAE method for unsupervised feature 

learning. We have then built upon this by proposing a novel classification model constructed from 

stacked NDAEs and the RF classification algorithm. We have implemented our proposed model 

in TensorFlow and performed extensive valuations on its capabilities. For our evaluations we 

have utilised the benchmark KDD Cup ‘99 and NSL-KDD datasets and achieved very promising 

results. Our results have demonstrated that our approach offers high levels of accuracy, precision 

and recall together with reduced training time. Most notably, we have compared our stacked 

NDAE model against the mainstream DBN technique. These comparisons have demonstrated 

that our model offers up to a 5% improvement in accuracy and train 

ing time reduction of up to 98.81%. Unlike most previous work, we have evaluated the 

capabilities of our model based on both benchmark datasets, revealing a consistent level of 

classification accuracy. Although our model has achieved the above promising results, we 

acknowledge that it is not perfect and there is further room for improvement.In our future work, 

the first avenue of exploration for improvement will be to assess and extend the capability of our 

model to handle zero-day attacks. We will then look to expand upon our existing evaluations by 

utilising real world backbone network traffic to demonstrate the merits of the extended model. 
 

 

  Chapter 3  

 
Existing System: 

 Today network has become an essential part of public infrastructures with the inception of 

public and private cloud computing.

 The traditional networking approach has become too complex.
 This complexity has resulted in a barrier for creating new and innovative services within a 

single data center, difficulties in interconnecting data centers, interconnection within 

enterprises, and bigger barrier in the continued growth of the Internet in general.

 
 

Problem Statement: 

 To distinguish the activities of the network traffic that the intrusion and normal is very 

difficult and to need much time consuming.

 An analyst must review all the data that large and wide to find the sequence of intrusion on 

the network connection.

 It needs a way that can detect network intrusion to reflect the current network traffics.
 Combination of IDS and firewall so-called the IPS, so that besides detecting the existence of 

intrusion also can execute by doing deny of intrusion as prevention.

 

Proposed System : 

 Genetic algorithm is one of the most commonly used machine learning approach in the field 

of intrusion detection, which consists of its  natural selection.
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 Decision node represents to testing a single attribute of the given instances whereas the leaf 

node presents the idea about whether the output of a classifier falls in to either normal or 

intrusion (any of the possible attacks) category during the classification phase.

 a novel method to find intrusion characteristic for IDS using decision tree machine learning 

of data mining technique was proposed.Method used to generate of rules is classification by 

genetic algorithm of decision tree.

 

Advantages: 

 Intrusion detection can be performed manually or automatically.

 IDS need to be able to deal with a large and ever-increasing flow of alerts and events.

 Using Decision trees is more essential.automatic procedures for detecting and responding to 

intrusion are becoming increasingly essential.

 
 

Block diagram: 
 

 

 

 

Flow diagram: 
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Decision tree 

Introduction 

Till now we have learned about linear regression, logistic regression, and they were 

pretty hard to understand. Let‘s now start with Decision tree‘s and I assure you this is 

probably the easiest algorithm in Machine Learning. There‘s not much mathematics 

involved here. Since it is very easy to use and interpret it is one of the most widely 

used and practical methods used in Machine Learning. 

 

What is a Decision Tree? 
 

It is a tool that has applications spanning several different areas. Decision trees can be 

used for 

classification as well as regression problems. The name itself suggests that it uses a 

flowchart like a tree structure to show the predictions that result from a series of feature-

based splits. It starts with a root 

node and ends with a decision made by leave. Before learning more about decision trees 

let‘s get familiar with some of the terminologies. 

Root Nodes – It is the node present at the beginning of a decision tree from this node the 

population starts dividing according to various features. 
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Decision Nodes – the nodes we get after splitting the root nodes are called Decision 

Node 

 

Leaf Nodes – the nodes where further splitting is not possible are called leaf nodes or 

terminal nodes 

 

Sub-tree – just like a small portion of a graph is called sub-graph similarly a sub- 

section of this decisiontree is called sub-tree. 

Pruning – is nothing but cutting down some nodes to stop overfitting. 
 

Example of a decision tree. 
 

Let‘s understand decision trees with the help of an example. 
Decision trees are upside down which means the root is at the top and then this root is 

split into various several nodes. Decision trees are nothing but a bunch of if-else 

statements in layman terms. It checks if the condition is true and if it is then it goes 

to the next node attached to that decision. 

Did you notice anything in the above flowchart? We see that if  the weather is cloudy 

then we must go to play. Why didn‘t it split more? Why did it stop there? 
 

To answer this question, we need to know about few more concepts like entropy, 

information gain, and Gini index. But in simple terms, I can say here that the output for 

the training dataset is always yes for cloudy weather, since there is no disorderliness 

here we don‘t need to split the node further. 

The goal of machine learning is to decrease uncertainty or disorders from the dataset and 

for this, we use decision trees. 

Now you must be thinking how do I know what should be the root node? what should 

be the decision node? when should I stop splitting? To decide this, there is a metric 

called ―Entropy‖ which is the amount of uncertainty in the dataset. 

 

Entropy: 
 

Entropy is nothing but the uncertainty in our dataset or measure of disorder. Let me try 

to explain this with the help of an example. 

Suppose you have a group of friends who decides which movie they can watch together 

on Sunday. There are 2 choices for movies, one is “Lucy” and the second is “Titanic” 

and now everyone has to tell their choice. After everyone gives their answer we see that 
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“Lucy” gets 4 votes and “Titanic” gets 5 votes. Which movie do we watch now? Isn‘t 

it hard to choose 1 movie now because the votes for both the movies are somewhat equal. 

This is exactly what we call disorderness, there is an equal number of votes for both 

the movies, and we can‘t really decide which movie we should watch. It would have 

been much easier if the votes for ―Lucy‖ were 8 and for ―Titanic‖ it was 2. Here we 

could easily say that the majority of votes are for ―Lucy‖ hence everyone will be 

watching this movie. 

In a decision tree, the output is mostly ―yes‖ or ―no‖ The formula for Entropy is shown below: 
 

How do Decision Trees use Entropy? 

 

Now we know what entropy is and what is its formula, Next, we need to know that 

how exactly does it work in this algorithm. 

Entropy basically measures the impurity of a node. Impurity is the degree of 

randomness; it tells how random our data is. A pure sub-split means that either you 

should be getting ―yes‖, or you should be getting ―no‖. 

Suppose feature 1 had 8 yes and 4 no, after the split feature 2 get 5 yes and 2 no 

whereas feature 3 gets 3 yes and 2 no. 
 

We see here the split is not pure, why? Because we can still see some negative classes 

in both the feature. In order to make a decision tree, we need to calculate the impurity 

of each split, and when the purity is 100% we make it as a leaf node. To check the 

impurity of feature 2 and feature 3 we will take the help for Entropy 

We can clearly see from the tree itself that feature 2 has low entropy or more purity than 

feature 3 since feature 2 has more ―yes‖ and it is easy to make a decision here. 

Always remember that the higher the Entropy, the lower will be the purity and the 

higher will be the impurity. 

As mentioned earlier the goal of machine learning is to decrease the uncertainty or 

impurity in the dataset, here by using the entropy we are getting the impurity of a feature 

or a particular node, we don‘t know if the parent entropy or the entropy of a particular 

node has decreased or not. 

For this, we bring a new metric called ―Information gain‖ which tells us how much the 

parent entropy has decreased after splitting it with some feature. 
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Information Gain: 
 

Information gain measures the reduction of uncertainty given some feature and it is also 
a deciding factor for which attribute should be selected as a decision node or root node. It is 
just entropy of the full dataset – entropy of the dataset given some feature. 
Let‘s see how our decision tree will be made using these 2 features. We‘ll use 

information gain to decide which feature should be the root node and which feature 

should be placed after the split. 

When to stop splitting? 

 

You must be asking this question to yourself that when do we stop growing our tree? 

Usually, real-world datasets have a large number of features, which will result in a large 

number of splits, which in turn gives a huge tree. Such trees take time to build and can 

lead to overfitting. That means the tree will give very good accuracy on the training dataset 

but will give bad accuracy in test data. 

There are many ways to tackle this problem through hyperparameter tuning. We can 

set the maximum depth of our decision tree using the max_depth parameter. The more 

the value of max_depth, the more complex your tree will be. The training error will off-

course decrease if we increase the max_depth value but when our test data comes into 

the picture, we will get a very bad accuracy. Hence you need a value thatwill not overfit 

as well as underfit our data and for this, you can use GridSearchCV. 

Another way is to set the minimum number of samples for each spilt. It is denoted by 

min_samples_split. Here we specify the minimum number of samples required to do 

a spilt. For example, we can use a minimum of 10 samples to reach a decision. That 

means if a node has less than 10 samples then using this parameter, we can stop the 

further splitting of this node and make it a leaf node. There are more hyperparameters 

such as : 

min_samples_leaf – represents the minimum number of samples required to be in the 

leaf node. The more you increase the number, the more is the possibility of overfitting. 

max_features – it helps us decide what number of features to consider when 

 

looking for the best split. To read more about these hyperparameters Pruning 
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It is another method that can help us avoid overfitting. It helps in improving the performance 

of the tree by cutting the nodes or sub-nodes which are not significant. There are mainly 2 

ways for pruning: 

 
(i) Pre-pruning – we can stop growing the tree earlier, which means we can 

prune/remove/cut a node if ithas low importance while growing the tree. 

(ii) Post-pruning – once our tree is built to its depth, we can start pruning the nodes 

based on their significance. 

 

Endnotes 
 

To summarize, in this article we learned about decision trees. On what basis the tree 

splits the nodes and how to can stop overfitting. why linear regression doesn‘t work 

in the case of classification problems. In the next article, I will explain Random forests, 

which is again a new technique to avoid overfitting. 

 
Genetic Algorithm 

Let‘s get back to the example we discussed above and summarize what we did. 
 

1. Firstly, we defined our initial population as our countrymen. 

2. We defined a function to classify whether is a person is good or bad. 
3. Then we selected good people for mating to produce their off-springs. 

4. And finally, these off-springs replace the bad people from the population and this process 

repeats. 
 

This is how genetic algorithm actually works, which basically tries to mimic the human evolution 

to some extent. So to formalize a definition of a genetic algorithm, we can say that it is an 

optimization technique, which tries to find out such values of input so that we get the best output 

values or results. The working of a genetic algorithm is also derived from biology, which is as 

shown in the image below. 
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Steps Involved in Genetic Algorithm: 

 Initialisation

 Fitness Function
 Selection

 Crossover
 Mutation

 

Application of Genetic Algorithm: 

Feature Selection 

 
Every time you participate in a data science competition, how do you select features that are 

important in prediction of the target variable? You always look at the feature importance of some 

model, and then manually decide the threshold, and select the features which have importance 

above that threshold. 

 

Is there any better way to deal with this kind of situations? Actually one of the most advanced 

algorithms for feature selection is genetic algorithm. 

 

The method here is completely same as the one we did with the knapsack problem. 

 
We will again start with the population of chromosome, where each chromosome will be binary 

string. 1 will denote ―inclusion‖ of feature in model and 0 will denote ―exclusion‖ of feature in 

the model. 

 

And another difference would be that the fitness function would be changed. The fitness function 

here will be our accuracy metric of the competition. The more accurate our set of chromosome in 

predicting value, the more fit it will be. 

 

I suppose, you would now be thinking is there any use of such tough tasks. I will not answer this 

question now, rather let us look at the implementation of it using TPOT library and then you 

decide this. 

 

Implementation using TPOT library 

 
First, let‘s take a quick view on the TPOT (Tree-based Pipeline Optimisation Technique) which 

is build upon scikit-learn library. 

 

A basic pipeline structure is shown in the image below. 
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So the highlighted grey section in the image above is automated using TPOT. This automation is 

achieved using genetic algorithm.So, without going deep into this, let‘s directly try to implement 

it.For using TPOT library, you first have to install some existing python libraries on which TPOT 

is build. So let us quickly install them. 

Applications in Real World: 

 Engineering Design
 Robotics.

 

End Notes 

I hope that now you have gain enough understanding about what genetic algorithm is and also 

how to implement it using TPOT library. But this knowledge is not enough, if you don‘t apply it 

somewhere. So try to implement it whether in any real world application or in a data science 

competition. 

Hardware requirements: 

 

 System: Pentium i3 Processor.

 Hard Disk: 500 GB.

 Monitor : 15‘‘ LED

 Input Devices : Keyboard, Mouse
 Ram : 2 GB

 
 

Software requirements: 

 

 Operating System: Windows 10.

 Coding Language : Python
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Chapter 4 
 

 

Machine learning 

What are the 7 steps of machine learning? 

7 Steps of Machine Learning 

• Step 1: Gathering Data. ... 

• Step 2: Preparing that Data. ... 

• Step 3: Choosing a Model. ... 

• Step 4: Training. ... 

• Step 5: Evaluation. ... 

• Step 6: Hyper parameter Tuning. ... 

• Step 7: Prediction. 

Introduction: 

In this blog, we will discuss the workflow of a Machine learning project this includes all the 

steps required to build the proper machine learning project from scratch. 

We will also go over data pre-processing, data cleaning, feature exploration and feature 

engineering and show the impact that it has on Machine Learning Model Performance. We will 

also cover a couple of the pre-modelling steps that can help to improve the model performance. 

Python Libraries that would be need to achieve the task: 

1. Numpy 

2. Pandas 

3. Sci-kit Learn 
4. Matplotlib 

Understanding the machine learning workflow 
We can define the machine learning workflow in 3 stages. 

Gathering data 

Data pre-processing 

Researching the model that will be best for the type of data 

Training and testing the model 

Evaluation 
Okay but first let‘s start from the basics 

What is the machine learning Model? 

The machine learning model is nothing but a piece of code; an engineer or data scientist makes it 

smart through training with data. So, if you give garbage to the model, you will get garbage in 

return, i.e. the trained model will provide false or wrong prediction 



46  

1. Gathering Data 

The process of gathering data depends on the type of project we desire to make, if we want to 

make an ML project that uses real-time data, then we can build an IoT system that using 

different sensors data. The data set can be collected from various sources such as a file, database, 

sensor and many other such sources but the collected data cannot be used directly for performing 

the analysis process as there might be a lot of missing data, extremely large values, unorganized 

text data or noisy data. Therefore, to solve this problem Data Preparation is done. 

We can also use some free data sets which are present on the internet. Kaggle and UCI Machine 

learning Repository are the repositories that are used the most for making Machine learning 

models. Kaggle is one of the most visited websites that is used for practicing machine learning 

algorithms, they also host competitions in which people can participate and get to test their 

knowledge of machine learning. 

2. Data pre-processing 
Data pre-processing is one of the most important steps in machine learning. It is the most 

important step that helps in building machine learning models more accurately. In machine 

learning, there is an 80/20 rule. Every data scientist should spend 80% time for data per- 

processing and 20% time to actually perform the analysis. 

What is data pre-processing? 

Data pre-processing is a process of cleaning the raw data i.e. the data is collected in the real 

world and is converted to a clean data set. In other words, whenever the data is gathered from 

different sources it is collected in a raw format and this data isn‘t feasible for the analysis. 

Therefore, certain steps are executed to convert the data into a small clean data set, this part of 

the process is called as data pre-processing. 

Why do we need it? 

As we know that data pre-processing is a process of cleaning the raw data into clean data, so that 

can be used to train the model. So, we definitely need data pre-processing to achieve good 

results from the applied model in machine learning and deep learning projects.Most of the real- 

world data is messy, some of these types of data are: 

1. Missing data: Missing data can be found when it is not continuously created or due to 

technical issues in the application (IOT system). 

2. Noisy data: This type of data is also called outliners, this can occur due to human errors 

(human manually gathering the data) or some technical problem of the device at the time of 

collection of data. 

3. Inconsistent data: This type of data might be collected due to human errors (mistakes with 

the name or values) or duplication of data. 

Three Types of Data 

1. Numeric e.g. income, age 

2. Categorical e.g. gender, nationality 

3. Ordinal e.g. low/medium/high 

How can data pre-processing be performed? 

These are some of the basic pre — processing techniques that can be used to convert raw data. 
1. Conversion of data: As we know that Machine Learning models can only handle numeric 

features, hence categorical and ordinal data must be somehow converted into numeric features. 
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2. Ignoring the missing values: Whenever we encounter missing data in the data set then we can 

remove the row or column of data depending on our need. This method is known to be efficient 

but it shouldn‘t be performed if there are a lot of missing values in the dataset. 

3. Filling the missing values: Whenever we encounter missing data in the data set then we can 

fill the missing data manually, most commonly the mean, median or highest frequency value is 

used. 

4. Machine learning: If we have some missing data then we can predict what data shall be present 

at the empty position by using the existing data. 

5. Outliers detection: There are some error data that might be present in our data set that deviates 

drastically from other observations in a data set. [Example: human weight = 800 Kg; due to 

mistyping of extra 0] 

Researching the model that will be best for the type of data 
Our main goal is to train the best performing model possible, using the pre-processed data. 

 

 

 

 

 

 

 

 

 

 

 

 

 
MACHINE LEARNING CLASSIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Supervised 

Learning: 
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In Supervised learning, an AI system is presented with data which is labelled, which means that 

each data tagged with the correct label.The supervised learning is categorized into 2 other 

categories which are ―Classification‖ and ―Regression‖. 

Classification: 

Classification problem is when the target variable is categorical (i.e. the output could be 

classified into classes — it belongs to either Class A or B or something else). 

A classification problem is when the output variable is a category, such as ―red‖ or ―blue‖ , 

―disease‖ or ―no disease‖ or ―spam‖ or ―not spam‖. 

 

 
 

As shown in the above representation, we have 2 classes which are plotted on the graph i.e. red 

and blue which can be represented as ‗setosa flower‘ and ‗versicolor flower‘, we can image the 

X-axis as ther ‗Sepal Width‘ and the Y-axis as the ‗Sepal Length‘, so we try to create the best fit 

line that separates both classes of flowers. 

These some most used classification algorithms. 

• K-Nearest Neighbor 

• Naive Bayes 

• Decision Trees/Random Forest 

• Support Vector Machine 

• Logistic Regression 

 

Regression: 

While a Regression problem is when the target variable is continuous (i.e. the output is 

numeric). 
 
 

As shown in the above representation, we can imagine that the graph‘s X-axis is the ‗Test 

scores‘ and the Y-axis represents ‗IQ‘. So we try to create the best fit line in the given graph so 

that we can use that line to predict any approximate IQ that isn‘t present in the given data.These 

some most used regression algorithms. 

Linear Regression 

Support Vector Regression 
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Decision Tress/Random Forest 

Gaussian Progresses Regression 

Ensemble Methods 

Unsupervised Learning: 

The unsupervised learning is categorized into 2 other categories which are ―Clustering‖ and 

―Association‖. 

Clustering: 
A set of inputs is to be divided into groups. Unlike in classification, the groups are not known 

beforehand, making this typically an unsupervised task. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods used for 
clustering are: 

Gaussian mixtures 

K-Means Clustering 

Boosting 

Hierarchical Clustering 

K-Means Clustering 

Spectral Clustering 

Overview of models under categories: 
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4. Training and testing the model on data 
For training a model we initially split the model into 3 three sections which are ‗Training 

data‘ ,‗Validation data‘ and ‗Testing data‘.You train the classifier using ‗training data set‘, 

tune the parameters using ‗validation set‘ and then test the performance of your classifier on 

unseen ‗test data set‘. An important point to note is that during training the classifier only the 

training and/or validation set is available. The test data set must not be used during training the 

classifier. The test set will only be available during testing the classifier. 

 

 
 

Training set: 

The training set is the material through which the computer learns how to process information. 

Machine learning uses algorithms to perform the training part. A set of data used for learning, 

that is to fit the parameters of the classifier. 

Validation set: 

Cross-validation is primarily used in applied machine learning to estimate the skill of a machine 

learning model on unseen data. A set of unseen data is used from the training data to tune the 

parameters of a classifier. 
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Once the data is 

divided into the 3 given segments we can start the training process. 

In a data set, a training set is implemented to build up a model, while a test (or validation) set is 

to validate the model built. Data points in the training set are excluded from the test (validation) 

set. Usually, a data set is divided into a training set, a validation set (some people use ‗test set‘ 

instead) in each iteration, or divided into a training set, a validation set and a test set in each 

iteration.The model uses any one of the models that we had chosen in step 3/ point 3. Once the 

model is trained we can use the same trained model to predict using the testing data i.e. the 

unseen data. Once this is done we can develop a confusion matrix, this tells us how well our 

model is trained. A confusion matrix has 4 parameters, which are ‗True positives‟, „True 

Negatives‟, „False Positives‟ and ‗False Negative‟. We prefer that we get more values in the 

True negatives and true positives to get a more accurate model. The size of the Confusion 

matrix completely depends upon the number of classes. 

True positives : These are cases in which we predicted TRUE and our predicted output is 

correct. 

True negatives : We predicted FALSE and our predicted output is correct. 
False positives : We predicted TRUE, but the actual predicted output is FALSE. 

False negatives : We predicted FALSE, but the actual predicted output is TRUE. 

We can also find out the accuracy of the model using the confusion matrix. 

Accuracy = (True Positives +True Negatives) / (Total number of classes) 
i.e. for the above example: 

Accuracy = (100 + 50) / 165 = 0.9090 (90.9% accuracy) 
5. Evaluation 

Model Evaluation is an integral part of the model development process. It helps to find the best 

model that represents our data and how well the chosen model will work in the future.To 
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improve the model we might tune the hyper-parameters of the model and try to improve the 

accuracy and also looking at the confusion matrix to try to increase the number of true positives 

and true negatives. 

Conclusion 

In this blog, we have discussed the workflow a Machine learning project and gives us a basic 

idea of how a should the problem be tackled. 

 

Machine Learning Work Flow 

 
The machine learning model is nothing but a piece of code; an engineer or data 

scientist makes it smart through training with data. So, if you give garbage to the 

model, you will get garbage in return, i.e. the trained model will provide false or 

wrong prediction. 

We can define the machine learning workflow in below. 
 

 

 

 
 

1. Data Collection 

2. Data pre-processing 

3. Future Extraction 

4. Model Training 

5. Testing Model 

6. Evaluation 

7. Prediction 

 
Data Collection 

 
Collecting data allows you to capture a record of past events so that we can use data 

analysis to find recurring patterns. 

KDD datasets: 
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The KDD data set is a well-known benchmark in the research of Intrusion 

Detection techniques. A lot of work is going on for the improvement of intrusion 

detection strategies while the research on the data used for training and testing the 

detection model is equally of prime concern because better data quality can improve 

offline intrusion detection. This paper presents the analysis of KDD data set with 

respect to four classes which are Basic, Content, Traffic and Host in which all data 

attributes can be categorized. 

 

 
Data Pre-Processing 

 
Data pre-processing is a process of cleaning the raw data i.e. the data is collected in 

the real world and is converted to a clean data set. In other words, whenever the data is 

gathered from different sources it is collected in a raw format and this data isn‘t 

feasible for the analysis. Therefore, certain steps are executed to convert the data into 

a small clean data set, this part of the process is called as data pre-processing. 

 
Feature Extraction: 

This is done to reduce the number of attributes in the dataset hence providing 

advantages like speeding up the training and accuracy improvements. 

 
Model training: 

A training model is a dataset that is used to train an ML algorithm. It consists of the 

sample output data and the corresponding sets of input data that have an influence on 

the output. 
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Testing model: 

In this module we test the trained machine learning model using the test dataset. 

Quality assurance is required to make sure that the software system works according 

to the requirements. Were all the features implemented as agreed? Does the program 

behave as expected? All the parameters that you test the program against should be 

stated in the technical specification document. 

 
Performance Evaluation: 

In this module, we evaluate the performance of trained machine learning model using 

performance evaluation criteria such as F1 score, accuracy and classification error. 

Performance Evaluation is defined as a formal and productive procedure to measure 

an employee‘s work and results based on their job responsibilities. It is used to gauge 

the amount of value added by an employee in terms of increased business revenue, in 

comparison to industry standards and overall employee return on investment (ROI). 

 
Prediction: 

The algorithm will generate probable values for an unknown variable for each record 

in the new data, allowing the model builder to identify what that value will most likely 

be. The word ―prediction‖ can be misleading. In some cases, it really does mean that 

you are predicting a future outcome, such as when you‘re using machine learning to 

determine the next best action in a marketing campaign. 

 

Chapter 5 
 

5.1 RESULT 
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cks 

4.2   Attacks 

4.2.1    Training dataset 

S. No Types of Atta Count 

1 All Attacks 4019 

2 Normal Attack s 1589 
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4.2.2 
 

 

 

 
Testing All Attacks 
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 All Attackks Plot graph 
 
 

 
 Normal Attacks Testing 
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 Normal Attacks Plot Graph 
 

 

 

 

 

5.2 Code 

Dataset.py 

 

import pyshark 

import time 

import random 

class Packet: 

packet_list = list() 
def initiating_packets(self): 

self.packet_list.clear() 

capture = pyshark.LiveCapture(interface="Wi-Fi") 
for packet in capture.sniff_continuously(packet_count=25): 
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try: 
if "<UDP Layer>" in str(packet.layers) and "<IP Layer>" in str(packet.layers): 

self.packet_list.append(packet) 

elif "<TCP Layer>" in str(packet.layers) and "<IP Layer>" in str(packet.layers): 

self.packet_list.append(packet) 

except: 
print(f"No Attribute name 'ip' {packet.layers}") 

def udp_packet_attributes(self,packet): 

attr_list = list() 

a1 = packet.ip.ttl 

a2 = packet.ip.proto 
a3 = self. get_service(packet.udp.port, packet.udp.dstport) 

a4 = packet.ip.len 

a5 = random.randrange(0,1000) 

a6 = self. get_land(packet,a2) 

a7 = 0 

a8, a10, a11 = self. get_count_with_same_and_diff_service_rate(packet.udp.dstport, a3) 

#23, 29, 30 

a9, a12 = self.__get_srv_count_and_srv_diff_host_rate(packet.ip.dst, a3) #24, 31 

a13, a15, a16 = self. get_dst_host_count(packet.ip.dst, a3) # 32,34,35 

a14, a17, a18 = self. get_dst_host_srv_count(packet.udp.port, packet.udp.dstport, 

packet.ip.dst) #33, 36, 37 

attr_list.extend((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18)) 

return self.get_all_float(attr_list) 
 

def tcp_packet_attributes(self,packet): 

attr_list = list() 

a1 = packet.ip.ttl #duration 

a2 = packet.ip.proto #protocol 

a3 = self. get_service(packet.tcp.port, packet.tcp.dstport) # service 

a4 = packet.ip.len 

a5 = random.randrange(0,1000) 

a6 = self. get_land(packet,a2) 

a7 = packet.tcp.urgent_pointer 

a8, a10, a11 = self. get_count_with_same_and_diff_service_rate(packet.tcp.dstport, a3) 

#23, 29, 30 

a9, a12 = self.__get_srv_count_and_srv_diff_host_rate(packet.ip.dst, a3) #24, 31 

a13, a15, a16 = self. get_dst_host_count(packet.ip.dst, a3) # 32,34,35 

a14, a17, a18 = self. get_dst_host_srv_count(packet.tcp.port, packet.tcp.dstport, 

packet.ip.dst) #33, 36, 37 

attr_list.extend((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18)) 

return self.get_all_float(attr_list) 
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def get_service(self,src_port,dst_port): 

services = [80,443,53] 

if int(src_port) in services: 

return int(src_port) 

elif int(dst_port) in services: 

return int(dst_port) 

else: 

return 53 
 

def get_land(self,packet, protocol): 

if int(protocol) == 6: 

if(packet.ip.dst == packet.ip.src and packet.tcp.port == packet.tcp.dstport): 

return 1 

else: 

return 0 

elif int(protocol) == 17: 
if(packet.ip.dst == packet.ip.src and packet.udp.port == packet.udp.dstport): 

return 1 

else: 
return 0 

 

 

def get_count_with_same_and_diff_service_rate(self,dst_port, service): #23, 29, 30 

count = 0 
packet_with_same_service = 0 

for p in self.packet_list: 

if "<UDP Layer>" in str(p.layers): 

if (p.udp.dstport == dst_port): 

count+=1 

if (self. get_service(p.udp.port, p.udp.dstport) == service): 

packet_with_same_service+=1 

elif "<TCP Layer>" in str(p.layers): 

if (p.tcp.dstport == dst_port): 

count+=1 

if (self. get_service(p.tcp.port, p.tcp.dstport) == service): 

packet_with_same_service+=1 

same_service_rate=0.0 

diff_service_rate = 1.0 

if not count==0: # To avoid zero divison error 

same_service_rate = ((packet_with_same_service*100)/count)/100 

diff_service_rate = diff_service_rate-same_service_rate 

return (count, same_service_rate, diff_service_rate) 
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def get_srv_count_and_srv_diff_host_rate(self,dst_ip, service): #24, 31 

diff_dst_ip = 0 

service_count = 0 

for p in self.packet_list: 

if "<UDP Layer>" in str(p.layers): 
if (self. get_service(p.udp.port, p.udp.dstport) == service): 

service_count+=1 

if not (p.ip.dst == dst_ip): # not added 

diff_dst_ip+=1 

elif "<TCP Layer>" in str(p.layers): 

if (self. get_service(p.tcp.port, p.tcp.dstport) == service): 

service_count+=1 

if not (p.ip.dst == dst_ip): # not added 

diff_dst_ip+=1 

srv_diff_host_rate = 0.0 

if not(service_count == 0): 
srv_diff_host_rate = ((diff_dst_ip*100)/service_count)/100 

return (service_count, srv_diff_host_rate) 
 

def get_dst_host_count(self,dst_ip, service): #32, 34, 35 
same_dst_ip = 0 

same_service=0 

for p in self.packet_list: 

if(p.ip.dst == dst_ip): 

same_dst_ip+=1 

if "<UDP Layer>" in str(p.layers): 
if (self. get_service(p.udp.port, p.udp.dstport) == service): 

same_service+=1 

elif "<TCP Layer>" in str(p.layers): 
if (self. get_service(p.tcp.port, p.tcp.dstport) == service): 

same_service+=1 

dst_host_same_srv_rate = 0.0 

dst_host_diff_srv_rate = 1.0 

if not same_dst_ip==0: 

dst_host_same_srv_rate = ((same_service*100)/same_dst_ip)/100 

dst_host_diff_srv_rate = dst_host_diff_srv_rate-dst_host_same_srv_rate 

return (same_dst_ip, dst_host_same_srv_rate, dst_host_diff_srv_rate) 
 

def get_dst_host_srv_count(self,src_port, dst_port, dst_ip): #33, 36, 37 

dst_host_srv_count = 0 

same_src_port = 0 
diff_dst_ip = 0 

for p in self.packet_list: 
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import Population 

import random 

 
 

class GAAlgorithm(): 

 

def init (self,train_dataset, test_dataset, population_size, mutation_rate,gene_length=18): 

self.train_dataset = train_dataset 

self.test_dataset = test_dataset 

self.population_size = population_size 

self.mutation_rate = mutation_rate 

 
 

GAAlogrithm.py 
 

if "<UDP Layer>" in str(p.layers): 

if (p.udp.dstport == dst_port): 

dst_host_srv_count+=1 

if (p.udp.port == src_port): 

same_src_port+=1 

if not (p.ip.dst == dst_ip): 

diff_dst_ip+=1 

# same destination port 

# same src port 
 

# different destination Ip 

elif "<TCP Layer>" in str(p.layers): 

if (p.tcp.dstport == dst_port): 

dst_host_srv_count+=1 

if (p.tcp.port == src_port): 

same_src_port+=1 

if not (p.ip.dst == dst_ip): 

diff_dst_ip+=1 

dst_host_same_src_port_rate = 0.0 

dst_host_srv_diff_host_rate = 0.0 

if not dst_host_srv_count==0: 

# same destination port 

# same src port 
 

#different destination ip 

dst_host_same_src_port_rate = ((same_src_port*100)/dst_host_srv_count)/100 

dst_host_srv_diff_host_rate = ((diff_dst_ip*100)/dst_host_srv_count)/100 

return (dst_host_srv_count, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate) 

def get_all_float(self,l): 
 

all_float = list() 

for x in l: 

all_float.append(round(float(x),1)) 

return all_float 
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import random 

import string 

import pandas 

from classifier import DecisionTree 

class Individual: 

chromosome = list() 

fitness = 0 

def init (self, train_dataset, test_dataset, gene_length=18): 

self.gene_length=int(gene_length) 

 
 

Individual.py 
 

self.gene_length = int(gene_length) 
self.population = Population.Population(self.train_dataset, self.test_dataset, 

self.population_size, self.gene_length) 

 

def initialization(self): 

self.population.initialize_population() 

 

def calculate_fitness(self): 

self.population.calculate_fitness() 

 

def selection(self): 

parents = list() 

end = int(self.population_size/2) 

no_of_parents = int(self.population_size/2) 

for x in range(no_of_parents): 

p1 = random.randint(0,end-1) 
p2 = random.randint(end,self.population_size-1) 

parents.append([p1,p2]) 

return parents 
def cross_over(self,parents): 

self.population.cross_over(parents) 

 

def mutation(self): 

self.population.mutation(self.mutation_rate) 

 

def clear_population(self): 

self.population.clear_population() 
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self.chromosome = [random.randint(0,1) for x in range(self.gene_length)] 

self.train_dataset = train_dataset 

self.test_dataset = test_dataset 

self.gene_length = gene_length 
 

 

def calculate_fitness(self): 
header = list(string.ascii_lowercase[0:(self.gene_length+1)]) 

kdd_train = pandas.read_csv(self.train_dataset, names=header) 

kdd_test = pandas.read_csv(self.test_dataset, names=header) 

selected_index= [header[x] for x, y in enumerate(self.chromosome) if y==1] 

var_train, res_train = kdd_train[selected_index], kdd_train[header[18]] 

var_test, res_test = kdd_test[selected_index], kdd_test[header[18]] 

self.fitness = self. get_fitness(var_train, res_train, var_test, res_test)*100 
 

def get_fitness(self,var_train, res_train, var_test, res_test): 

return DecisionTree.get_fitness(var_train, res_train, var_test, res_test) 
 

 

Packet.py 
 

import pyshark 

import random 

class Packet: 

packet_list = list() #list is declare 

def initiating_packets(self): 

self.packet_list.clear() 

capture = pyshark.LiveCapture(interface="Wi-Fi") 
for packet in capture.sniff_continuously(packet_count=25): 

try: 

if "<UDP Layer>" in str(packet.layers) and "<IP Layer>" in str(packet.layers): 

self.packet_list.append(packet) 

elif "<TCP Layer>" in str(packet.layers) and "<IP Layer>" in str(packet.layers): 

self.packet_list.append(packet) 

except: 

print(f"No Attribute name 'ip' {packet.layers}") 

def udp_packet_attributes(self,packet): 

attr_list = list() 

a1 = packet.ip.ttl 

a2 = packet.ip.proto 

a3 = self. get_service(packet.udp.port, packet.udp.dstport) 

a4 = packet.ip.len 

a5 = random.randrange(0,1000) 
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a6 = self. get_land(packet,a2) 

a7 = 0 # urgent pointer not exist in udp layer 
a8, a10, a11 = self. get_count_with_same_and_diff_service_rate(packet.udp.dstport, a3) 

#23, 29, 30 

a9, a12 = self.__get_srv_count_and_srv_diff_host_rate(packet.ip.dst, a3) #24, 31 

a13, a15, a16 = self. get_dst_host_count(packet.ip.dst, a3) # 32,34,35 

a14, a17, a18 = self. get_dst_host_srv_count(packet.udp.port, packet.udp.dstport, 

packet.ip.dst) #33, 36, 37 

attr_list.extend((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18)) 

return self.get_all_float(attr_list) 
 

def tcp_packet_attributes(self,packet): 

attr_list = list() 

a1 = packet.ip.ttl #duration 

a2 = packet.ip.proto #protocol 
a3 = self. get_service(packet.tcp.port, packet.tcp.dstport) # service 

a4 = packet.ip.len #Src - byte 

a5 = random.randrange(0,1000) #dest_byte 

a6 = self. get_land(packet,a2) #land 

a7 = packet.tcp.urgent_pointer #urgentpoint 
a8, a10, a11 = self. get_count_with_same_and_diff_service_rate(packet.tcp.dstport, a3) 

#23, 29, 30 

a9, a12 = self.__get_srv_count_and_srv_diff_host_rate(packet.ip.dst, a3) #24, 31 

a13, a15, a16 = self. get_dst_host_count(packet.ip.dst, a3) # 32,34,35 

a14, a17, a18 = self. get_dst_host_srv_count(packet.tcp.port, packet.tcp.dstport, 

packet.ip.dst) #33, 36, 37 

attr_list.extend((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18)) 

return self.get_all_float(attr_list) # convert every attribute to float data type 
 

def get_service(self,src_port,dst_port): 

services = [80,443,53] 

if int(src_port) in services: 

return int(src_port) 

elif int(dst_port) in services: 

return int(dst_port) 

else: 

return 53 
 

def get_land(self,packet, protocol): 

if int(protocol) == 6: 

if(packet.ip.dst == packet.ip.src and packet.tcp.port == packet.tcp.dstport): 

return 1 

else: 
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return 0 

elif int(protocol) == 17: 
if(packet.ip.dst == packet.ip.src and packet.udp.port == packet.udp.dstport): 

return 1 

else: 
return 0 

 

 

def get_count_with_same_and_diff_service_rate(self,dst_port, service): #23, 29, 30 

count = 0 

packet_with_same_service = 0 

for p in self.packet_list: 

if "<UDP Layer>" in str(p.layers): 

if (p.udp.dstport == dst_port): #same destination port 

count+=1 

if (self. get_service(p.udp.port, p.udp.dstport) == service): # same service 

packet_with_same_service+=1 

elif "<TCP Layer>" in str(p.layers): 

if (p.tcp.dstport == dst_port): 

count+=1 
if (self. get_service(p.tcp.port, p.tcp.dstport) == service): 

packet_with_same_service+=1 

same_service_rate=0.0 

diff_service_rate = 1.0 

if not count==0: 

same_service_rate = ((packet_with_same_service*100)/count)/100 

diff_service_rate = diff_service_rate-same_service_rate 

return (count, same_service_rate, diff_service_rate) 
 

def get_srv_count_and_srv_diff_host_rate(self,dst_ip, service): #24, 31 

diff_dst_ip = 0 

service_count = 0 

for p in self.packet_list: 

if "<UDP Layer>" in str(p.layers): 
if (self. get_service(p.udp.port, p.udp.dstport) == service): # same service 

service_count+=1 

if not (p.ip.dst == dst_ip): # different destination ip if udp 

diff_dst_ip+=1 

elif "<TCP Layer>" in str(p.layers): 

if (self. get_service(p.tcp.port, p.tcp.dstport) == service): 

service_count+=1 

if not (p.ip.dst == dst_ip): # # different destination ip if tcp 

diff_dst_ip+=1 
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srv_diff_host_rate = 0.0 

if not(service_count == 0): 
srv_diff_host_rate = ((diff_dst_ip*100)/service_count)/100 

return (service_count, srv_diff_host_rate) 
 

def get_dst_host_count(self,dst_ip, service): #32, 34, 35 
same_dst_ip = 0 

same_service=0 

for p in self.packet_list: 

if(p.ip.dst == dst_ip): # same destination ip 

same_dst_ip+=1 

if "<UDP Layer>" in str(p.layers): 
if (self. get_service(p.udp.port, p.udp.dstport) == service): # same service if udp 

same_service+=1 

elif "<TCP Layer>" in str(p.layers): 

if (self. get_service(p.tcp.port, p.tcp.dstport) == service): # same service if tcp 

same_service+=1 

dst_host_same_srv_rate = 0.0 
dst_host_diff_srv_rate = 1.0 

if not same_dst_ip==0: 

dst_host_same_srv_rate = ((same_service*100)/same_dst_ip)/100 

dst_host_diff_srv_rate = dst_host_diff_srv_rate-dst_host_same_srv_rate 

return (same_dst_ip, dst_host_same_srv_rate, dst_host_diff_srv_rate) 
 

def get_dst_host_srv_count(self,src_port, dst_port, dst_ip): #33, 36, 37 

dst_host_srv_count = 0 

same_src_port = 0 

diff_dst_ip = 0 
for p in self.packet_list: 

if "<UDP Layer>" in str(p.layers): 
if (p.udp.dstport == dst_port): # same destination port 

dst_host_srv_count+=1 

if (p.udp.port == src_port): # same src port 

same_src_port+=1 

if not (p.ip.dst == dst_ip): # different destination Ip 

diff_dst_ip+=1 
 

elif "<TCP Layer>" in str(p.layers): 

if (p.tcp.dstport == dst_port): # same destination port 

dst_host_srv_count+=1 

if (p.tcp.port == src_port): # same src port 

same_src_port+=1 

if not (p.ip.dst == dst_ip): #different destination ip 
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# Change testing panel to avoid segmentation fault 

from PyQt5 import QtCore, QtGui, QtWidgets 

from PyQt5.QtGui import QIcon, QPixmap 

from PyQt5.QtWidgets import 

qApp,QFileDialog,QMessageBox,QMainWindow,QDialog,QDialogButtonBox,QVBoxLayout, 

QHeaderView, QMessageBox 

import os 

import time 

import pyshark 

import matplotlib.pyplot as plt 

import threading 

import packet as pack 

import GAAlgorithm 

import Preprocess as data 

import classifier 

 
 

class Ui_MainWindow(object): 

def init (self): 

self.tree_classifier = classifier.DecisionTree() 

self.packet = pack.Packet() 

self.trained = False 

self.stop = False 

self.threadActive = False 

 
 

 

ABNIDS.py 
 

diff_dst_ip+=1 

dst_host_same_src_port_rate = 0.0 

dst_host_srv_diff_host_rate = 0.0 

if not dst_host_srv_count==0: 

dst_host_same_src_port_rate = ((same_src_port*100)/dst_host_srv_count)/100 

dst_host_srv_diff_host_rate = ((diff_dst_ip*100)/dst_host_srv_count)/100 

return (dst_host_srv_count, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate) 
 

def get_all_float(self,l): 

all_float = list() 

for x in l: 

all_float.append(round(float(x),1)) 

return all_float 
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self.pause = False 

def plot_graph(self): 

x = ['Normal','DoS','Prob'] 

normal,dos,prob = self.tree_classifier.get_class_count() 

y = [normal,dos,prob] 

plt.bar(x,y,width=0.3,label="BARCHART") 

plt.xlabel('Classes') 

plt.ylabel('Count') 

plt.title('Graph Plotting') 

plt.legend() 

plt.show() 
 

def train_model(self): 

try: 

train_dataset, train_dataset_type = QFileDialog.getOpenFileName(MainWindow, 

"Select Training Dataset","","All Files (*);;CSV Files (*.csv)") 

if train_dataset: 

os.chdir(os.path.dirname(train_dataset)) 

test_dataset, test_dataset_type = QFileDialog.getOpenFileName(MainWindow, 

"Select Testing Dataset","","All Files (*);;CSV Files (*.csv)") 

if train_dataset and test_dataset: 

generation = 0 

train_dataset = data.Dataset.refine_dataset(train_dataset, "Train Preprocess.txt") 
 

test_dataset = data.Dataset.refine_dataset(test_dataset, "Test Preprocess.txt") 

#Start Genetic Algorithm 

ga = 

GAAlgorithm.GAAlgorithm(train_dataset,test_dataset,population_size=5,mutation_rate=65) 

ga.initialization() # if error occur due to invalid dataset population needs to be clear to 

avoid append of new population 

ga.calculate_fitness() 

while(ga.population.max_fitness<93 and generation<1): 

print(f"Generation = {generation}") 

generation+=1 

parents = ga.selection() 

ga.cross_over(parents) 

ga.mutation() 

ga.calculate_fitness() 

max_fitest = ga.population.max_fittest 

max_fitness = round(ga.population.max_fitness,1) 

self.tree_classifier.train_classifier(train_dataset,max_fitest) 

self.trained = True 

ga.clear_population() 
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self.progressBar.setProperty("value", 100) 

self.showdialog('Model train',f'Model trained successfully',1) 
 

except: 

try: 

ga.clear_population() 

except: 

print("Err 00") 

finally: 

self.showdialog('Model train','Model trained unsuccessfully',2) 
 

 

def static_testing(self): 

if self.isModelTrained(): 

if (self.threadActive): 

self.showdialog('Warning','Please stop currently testing',3) 

else: 

test_dataset, train_dataset_type = QFileDialog.getOpenFileName(MainWindow, 

"Select Testing Dataset","","All Files (*);;CSV Files (*.csv)") 

if test_dataset: 

try: 

test_dataset = data.Dataset.refine_dataset(test_dataset, "Test Dataset.txt") 

t1 = threading.Thread(target=self.static_testing_thread, name = 'Static testing', 

args=(test_dataset,)) 

t1.start() 

self.threadActive = True 

except: 

self.showdialog('Error','Invalid Dataset',2) 

else: 

self.showdialog('Warning','Model not trained',3) 
 

def static_testing_thread(self,dataset): 

row = 0 

self.reset_all_content() 
with open(dataset,"r") as file: 

for line in file.readlines(): 

try: 

line = line.split(',') 
result, result_type = self.tree_classifier.test_dataset(line) 

self.insert_data(line,result,result_type,row) 
 

row+=1 

if self.pause: 
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while(self.pause): 

pass 

if self.isStop(): 

self.stop=False 

break 

time.sleep(0.05) 

except: 

print("Err") 

self.threadActive = False 
 

 

def realtime_testing(self): 

if self.isModelTrained(): 

if (self.threadActive): 

self.showdialog('Warning','Please stop currently testing',3) 

else: 

t2 = threading.Thread(target=self.realtime_testing_thread, name = 'Realtime testing') 

t2.start() 

self.threadActive = True 

else: 

self.showdialog('Warning','Model not trained',3) 

def realtime_testing_thread(self): 

self.reset_all_content() 

self.packet.initiating_packets() 

t1 = time.time() 

attr_list = list() 
capture = pyshark.LiveCapture(interface='Wi-Fi') 

row = 0 

try: 

for p in capture.sniff_continuously(): 

try: 

if "<UDP Layer>" in str(p.layers) and "<IP Layer>" in str(p.layers): 

attr_list = self.packet.udp_packet_attributes(p) 

result, result_type = self.tree_classifier.test_dataset(attr_list) 

self.insert_data(attr_list,result,result_type,row) 

print(attr_list) 

row+=1 

elif "<TCP Layer>" in str(p.layers) and "<IP Layer>" in str(p.layers): 

attr_list = self.packet.tcp_packet_attributes(p) 

result, result_type = self.tree_classifier.test_dataset(attr_list) 

self.insert_data(attr_list,result,result_type,row) 

print(attr_list) 

row+=1 
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if (time.time()-t1) > 5 and not self.isStop: # 5Seconds 

print("Updateing List") 

self.packet.initiating_packets() 

t1 = time.time() 

if self.pause: 

while(self.pause): 

pass 

if self.isStop(): 

self.stop=False 

break 

except : 
print("Err") 

except : 

print("Error in loooooop") 
 

def pause_resume(self): 

if self.pause: 

self.pause = False 

self.btn_start.setText("Pause") 

else: 

self.pause = True 

self.btn_start.setText("Resume") 
 

 

def save_log_file(self): 

log = self.tree_classifier.get_log() 
url = QFileDialog.getSaveFileName(None, 'Save Log', 'untitled', "Text file (*.txt);;All 

Files (*)") 

if url[0]: 

try: 

name = url[1] 

url = url[0] 

with open(url, 'w') as file: 

file.write(log) 

self.showdialog('Saved',f'File saved as {url}',1) 

except: 

self.showdialog('Error','File not saved',2) 
 

def stop_capturing_testing(self): 

if self.pause: 

self.pause = False 

self.btn_start.setText('Pause') 

if not self.stop: 
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self.stop = True 

if self.threadActive: 

self.threadActive = False 

def reset_all_content(self): 

if self.pause: 

self.pause = False 

self.btn_start.setText('Pause') 

self.stop=False 

self.tree_classifier.reset_class_count() 

self.panel_capturing.clearContents() 

self.panel_capturing.setRowCount(0) 

self.panel_result.clearContents() 

self.panel_result.setRowCount(0) 

self.panel_testing.clear() 
 

 

def insert_data(self,line,result,result_type,row): 

self.panel_capturing.insertRow(row) 

for column, item in enumerate(line[0:4:1]): 

self.panel_capturing.setItem(row,column,QtWidgets.QTableWidgetItem(str(item))) 

self.panel_capturing.scrollToBottom() 

self.panel_testing.clear() 

self.panel_testing.addItem(str(line[0:4:1])) 

if not result==0: 

result_row = self.panel_result.rowCount() 

self.panel_result.insertRow(result_row) 

x = [row+1, line[1], line[2], result_type] 

for column, item in enumerate(x): 
 

self.panel_result.setItem(result_row,column,QtWidgets.QTableWidgetItem(str(item))) 

self.panel_result.scrollToBottom() 
 

def clickexit(self): 
buttonReply = QMessageBox.question(MainWindow, 'Exit', "Are ou sure to exit?", 

QMessageBox.Yes | QMessageBox.No, QMessageBox.No) 

if buttonReply == QMessageBox.Yes: 

if self.threadActive: 

self.pause = False 

self.stop = True 

qApp.quit() 

else: 

print('No clicked.') 
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def isStop(self): 

return self.stop 

def showdialog(self,title,text, icon_type): 

msg = QMessageBox() 

if icon_type==1: 

msg.setIcon(QMessageBox.Information) 

elif icon_type==2: 

msg.setIcon(QMessageBox.Critical) 

elif icon_type==3: 

msg.setIcon(QMessageBox.Warning) 

msg.setText(text) 

msg.setWindowTitle(title) 

msg.setStandardButtons(QMessageBox.Ok) 

msg.buttonClicked.connect(self.msgbtn) 

retval = msg.exec_() 
 

def msgbtn(self): 

self.progressBar.setProperty("value", 0) 

def isModelTrained(self): 

return self.trained 

def setupUi(self, MainWindow): 

MainWindow.setObjectName("MainWindow") 

path = os.path.dirname(os.path.abspath( file )) 

MainWindow.setWindowIcon(QtGui.QIcon(os.path.join(path,'icon.png'))) 

MainWindow.resize(908, 844) 

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, 

QtWidgets.QSizePolicy.Preferred) 

sizePolicy.setHorizontalStretch(0) 

sizePolicy.setVerticalStretch(0) 

sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) 

MainWindow.setSizePolicy(sizePolicy) 

MainWindow.setIconSize(QtCore.QSize(30, 30)) 

self.centralwidget = QtWidgets.QWidget(MainWindow) 

self.centralwidget.setObjectName("centralwidget") 

self.gridLayout = QtWidgets.QGridLayout(self.centralwidget) 

self.gridLayout.setObjectName("gridLayout") 

spacerItem = QtWidgets.QSpacerItem(10, 10, QtWidgets.QSizePolicy.Expanding, 

QtWidgets.QSizePolicy.Minimum) 

self.gridLayout.addItem(spacerItem, 1, 0, 1, 1) 

spacerItem1 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Minimum, 
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QtWidgets.QSizePolicy.Maximum) 

self.gridLayout.addItem(spacerItem1, 4, 1, 1, 1) 

spacerItem2 = QtWidgets.QSpacerItem(20, 10, QtWidgets.QSizePolicy.Minimum, 

QtWidgets.QSizePolicy.Fixed) 

self.gridLayout.addItem(spacerItem2, 6, 1, 1, 1) 

self.horizontalLayout_2 = QtWidgets.QHBoxLayout() 

self.horizontalLayout_2.setObjectName("horizontalLayout_2") 

spacerItem3 = QtWidgets.QSpacerItem(15, 10, QtWidgets.QSizePolicy.Ignored, 

QtWidgets.QSizePolicy.Minimum) 

self.horizontalLayout_2.addItem(spacerItem3) 

self.btn_start = QtWidgets.QPushButton(self.centralwidget) 
 

self.btn_start.setObjectName("btn_start") 

self.btn_start.setText('Pause') 

self.btn_start.clicked.connect(self.pause_resume) 

self.horizontalLayout_2.addWidget(self.btn_start) 
 

# #################################################### 
self.btn_pause = QtWidgets.QPushButton(self.centralwidget) 

self.btn_pause.setText("Stop Capturing/Testing") 
 

self.btn_pause.setObjectName("btn_pause") 

self.btn_pause.clicked.connect(self.stop_capturing_testing) 

self.horizontalLayout_2.addWidget(self.btn_pause) 

self.gridLayout.addLayout(self.horizontalLayout_2, 8, 1, 1, 1) 

self.horizontalLayout = QtWidgets.QHBoxLayout() 

self.horizontalLayout.setObjectName("horizontalLayout") 

# ##################################################### 

self.btn_modeltrain = QtWidgets.QPushButton(self.centralwidget) 

self.btn_modeltrain.setText("Train Model") 
 

self.btn_modeltrain.setObjectName("btn_modeltrain") 

self.btn_modeltrain.clicked.connect(self.train_model) 

self.horizontalLayout.addWidget(self.btn_modeltrain) 

# ###################################################### 

self.btn_statictesting = QtWidgets.QPushButton(self.centralwidget) 

self.btn_statictesting.setText("Static Testing") 
 

self.btn_statictesting.setObjectName("btn_statictesting") 

self.btn_statictesting.clicked.connect(self.static_testing) 

self.horizontalLayout.addWidget(self.btn_statictesting) 

# ###################################################### 
self.btn_realtimetesting = QtWidgets.QPushButton(self.centralwidget) 
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self.btn_realtimetesting.setText("") 
 

 

self.btn_realtimetesting.setObjectName("") 

self.btn_realtimetesting.clicked.connect(self.realtime_testing) 

self.horizontalLayout.addWidget(self.btn_realtimetesting) 
 

# ###################################################### 

self.btn_savelog = QtWidgets.QPushButton(self.centralwidget) 

self.btn_savelog.setText("Save Log") 

icon5 = QtGui.QIcon() 
 

self.btn_savelog.setObjectName("btn_savelog") 

self.btn_savelog.clicked.connect(self.save_log_file) 

self.horizontalLayout.addWidget(self.btn_savelog) 
 

# ###################################################### 

self.btn_graph = QtWidgets.QPushButton(self.centralwidget) 

self.btn_graph.setText("Plot Graph") 
 

self.btn_graph.setObjectName("btn_graph") 

self.btn_graph.clicked.connect(self.plot_graph) 

self.horizontalLayout.addWidget(self.btn_graph) 
 

# ###################################################### 

self.btn_exit = QtWidgets.QPushButton(self.centralwidget) 

self.btn_exit.setText("Exit") 
 

 

self.btn_exit.setObjectName("btn_exit") 

self.btn_exit.clicked.connect(self.clickexit) 

self.horizontalLayout.addWidget(self.btn_exit) 

# ###################################################### 

self.gridLayout.addLayout(self.horizontalLayout, 3, 1, 1, 2) 
spacerItem4 = QtWidgets.QSpacerItem(20, 10, QtWidgets.QSizePolicy.Minimum, 

QtWidgets.QSizePolicy.Fixed) 

self.gridLayout.addItem(spacerItem4, 8, 1, 1, 1) 
spacerItem5 = QtWidgets.QSpacerItem(20, 10, QtWidgets.QSizePolicy.Minimum, 

QtWidgets.QSizePolicy.Fixed) 

self.gridLayout.addItem(spacerItem5, 0, 1, 1, 1) 

self.panel_capturing = QtWidgets.QTableWidget(self.centralwidget) 

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, 

QtWidgets.QSizePolicy.Preferred) 
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sizePolicy.setHorizontalStretch(10) 

sizePolicy.setVerticalStretch(0) 

sizePolicy.setHeightForWidth(self.panel_capturing.sizePolicy().hasHeightForWidth()) 

self.panel_capturing.setSizePolicy(sizePolicy) 

self.panel_capturing.setRowCount(0) 

self.panel_capturing.setColumnCount(4) 

self.panel_capturing.setObjectName("panel_capturing") 

item = QtWidgets.QTableWidgetItem() 

self.panel_capturing.setHorizontalHeaderItem(0, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_capturing.setHorizontalHeaderItem(1, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_capturing.setHorizontalHeaderItem(2, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_capturing.setHorizontalHeaderItem(3, item) 

self.gridLayout.addWidget(self.panel_capturing, 4, 1, 4, 1) 

self.label = QtWidgets.QLabel(self.centralwidget) 

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, 

QtWidgets.QSizePolicy.Fixed) 

sizePolicy.setHorizontalStretch(0) 

sizePolicy.setVerticalStretch(0) 

sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) 

self.label.setSizePolicy(sizePolicy) 

self.label.setLayoutDirection(QtCore.Qt.LeftToRight) 

self.label.setAutoFillBackground(False) 

self.label.setText("") 

path = os.path.dirname(os.path.abspath( file )) 

path = path + r'\icons' 

self.label.setPixmap(QtGui.QPixmap(os.path.join(path,'logo.jpg'))) 

self.label.setScaledContents(True) 

self.label.setAlignment(QtCore.Qt.AlignCenter) 

self.label.setObjectName("label") 

self.gridLayout.addWidget(self.label, 1, 1, 1, 1) 

spacerItem6 = QtWidgets.QSpacerItem(10, 20, QtWidgets.QSizePolicy.Minimum, 

QtWidgets.QSizePolicy.Fixed) 

self.gridLayout.addItem(spacerItem6, 2, 1, 1, 1) 

self.panel_testing = QtWidgets.QListWidget(self.centralwidget) 

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, 

QtWidgets.QSizePolicy.Preferred) 

sizePolicy.setHorizontalStretch(0) 

sizePolicy.setVerticalStretch(0) 

sizePolicy.setHeightForWidth(self.panel_testing.sizePolicy().hasHeightForWidth()) 

self.panel_testing.setSizePolicy(sizePolicy) 
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self.panel_testing.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) 

self.panel_testing.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAsNeeded) 

self.panel_testing.setObjectName("panel_testing") 

self.gridLayout.addWidget(self.panel_testing, 9, 1, 1, 1) 

self.progressBar = QtWidgets.QProgressBar(self.centralwidget) 

self.progressBar.setProperty("value", 0) 

self.progressBar.setObjectName("progressBar") 

self.gridLayout.addWidget(self.progressBar, 10, 1, 1, 2) 

# # 
 

self.panel_result = QtWidgets.QTableWidget(self.centralwidget) 

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, 

QtWidgets.QSizePolicy.Preferred) 

sizePolicy.setHorizontalStretch(10) 

sizePolicy.setVerticalStretch(0) 

sizePolicy.setHeightForWidth(self.panel_result.sizePolicy().hasHeightForWidth()) 

self.panel_result.setSizePolicy(sizePolicy) 

self.panel_result.setRowCount(0) 

self.panel_result.setColumnCount(4) 

self.panel_result.setObjectName("panel_result") 

item = QtWidgets.QTableWidgetItem() 

self.panel_result.setHorizontalHeaderItem(0, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_result.setHorizontalHeaderItem(1, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_result.setHorizontalHeaderItem(2, item) 

item = QtWidgets.QTableWidgetItem() 

self.panel_result.setHorizontalHeaderItem(3, item) 

self.gridLayout.addWidget(self.panel_result, 4,2,6,1) 

# # 

MainWindow.setCentralWidget(self.centralwidget) 

self.menubar = QtWidgets.QMenuBar(MainWindow) 

self.menubar.setGeometry(QtCore.QRect(0, 0, 908, 26)) 

self.menubar.setObjectName("menubar") 

self.menuFile = QtWidgets.QMenu(self.menubar) 

self.menuFile.setObjectName("menuFile") 

self.menuAbout = QtWidgets.QMenu(self.menubar) 

self.menuAbout.setObjectName("menuAbout") 

MainWindow.setMenuBar(self.menubar) 

self.statusbar = QtWidgets.QStatusBar(MainWindow) 

self.statusbar.setObjectName("statusbar") 

MainWindow.setStatusBar(self.statusbar) 

self.actionNew = QtWidgets.QAction(MainWindow) 
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self.actionNew.setObjectName("actionNew") 

self.actionOpen = QtWidgets.QAction(MainWindow) 

self.actionOpen.setObjectName("actionOpen") 

self.actionExit = QtWidgets.QAction(MainWindow) 

self.actionExit.setObjectName("actionExit") 

self.actionHelp = QtWidgets.QAction(MainWindow) 

self.actionHelp.setObjectName("actionHelp") 

self.menuFile.addAction(self.actionNew) 

self.menuFile.addAction(self.actionOpen) 

self.menuFile.addSeparator() 

self.menuFile.addAction(self.actionExit) 

self.actionExit.triggered.connect(qApp.quit) 

self.menuAbout.addAction(self.actionHelp) 

self.menubar.addAction(self.menuFile.menuAction()) 

self.menubar.addAction(self.menuAbout.menuAction()) 
 

self.retranslateUi(MainWindow) 

QtCore.QMetaObject.connectSlotsByName(MainWindow) 
 

def retranslateUi(self, MainWindow): 

_translate = QtCore.QCoreApplication.translate 

MainWindow.setWindowTitle(_translate("MainWindow", "Intrusion Detection")) 

self.btn_start.setStatusTip(_translate("MainWindow", "Pause/Resume")) 

self.btn_pause.setStatusTip(_translate("MainWindow", "Stop")) 

self.btn_modeltrain.setStatusTip(_translate("MainWindow", "Train Model")) 

self.btn_statictesting.setToolTip(_translate("MainWindow", "Stactic Testing")) 

self.btn_statictesting.setStatusTip(_translate("MainWindow", "Static Testing")) 
 

self.btn_savelog.setToolTip(_translate("MainWindow", "Real Time Capturing")) 

self.btn_savelog.setStatusTip(_translate("MainWindow", "Real Time Capturing")) 

self.btn_graph.setStatusTip(_translate("MainWindow", "Graph")) 

self.btn_exit.setStatusTip(_translate("MainWindow", "Exit")) 

item = self.panel_capturing.horizontalHeaderItem(0) 

item.setText(_translate("MainWindow", "Duration")) 

item = self.panel_capturing.horizontalHeaderItem(1) 

item.setText(_translate("MainWindow", "Protocol")) 

item = self.panel_capturing.horizontalHeaderItem(2) 

item.setText(_translate("MainWindow", "Service")) 

item = self.panel_capturing.horizontalHeaderItem(3) 

item.setText(_translate("MainWindow", "Src_Bytes")) 

# # 

item = self.panel_result.horizontalHeaderItem(0) 

item.setText(_translate("MainWindow", "Packet #")) 
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item = self.panel_result.horizontalHeaderItem(1) 

item.setText(_translate("MainWindow", "Protocol")) 

item = self.panel_result.horizontalHeaderItem(2) 

item.setText(_translate("MainWindow", "Service")) 

item = self.panel_result.horizontalHeaderItem(3) 

item.setText(_translate("MainWindow", "Class")) 

# # 

self.menuFile.setTitle(_translate("MainWindow", "File")) 

self.menuAbout.setTitle(_translate("MainWindow", "About")) 

self.actionNew.setText(_translate("MainWindow", "New")) 

self.actionOpen.setText(_translate("MainWindow", "Open")) 

self.actionExit.setText(_translate("MainWindow", "Exit")) 

self.actionHelp.setText(_translate("MainWindow", "Help")) 
 

 

if  name == "__main ": 

import sys 

app = QtWidgets.QApplication(sys.argv) 

MainWindow = QtWidgets.QMainWindow() 

ui = Ui_MainWindow() 

ui.setupUi(MainWindow) 

MainWindow.show() 

sys.exit(app.exec_()) 

 

 
 

Conclusion: 

Network traffic logs to describe patterns of behavior in network traffic accident with intrusive or 

normal activity. Decision tree technique is good for the intrusion characteristic of the network 

traffic logs for IDS and implemented in the genetic algorithm as prevention.The other hand, this 

technique is also good efficiency and optimize rule for the firewall rules such as avoid redundancy. 
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Detection of Attacks (DoS, Probe) Using Genetic Algorithm 

 
A. Venkata Srinadh Reddy1, B. Prasanth Reddy2, L. Sujihelen3 

1, 2, 3 Department of Computer Science and Engineering 

Sathyabama Institute of Science and Technology, Chennai. 

 

 
ABSTARCT: 

 
The entrance framework (IDS) is right now exceptionally fascinating as a significant piece of 

framework security. The IDS gathers traffic data from the line or framework and afterward 

involves it for better security. Assaults are typically truly challenging and tedious to isolate 

street exercises. To screen the organization association, the examiner should survey all data, 

enormous and wide. Subsequently, an organization search strategy is expected to decide the 

recurrence of traffic. In this review, another strategy for looking for IDS identifiers was created 

utilizing a technique for concentrating on information mining procedures from a calculation 

machine. The technique used to set the principles is to sort the choice tree and calculation. 

These guidelines can be utilized to decide the idea of the assault and afterward apply it to the 

hereditary calculation for avoidance, so that as well as distinguishing the assault, it is feasible 

to find ways to forestall the assault and deny the assault. 

 

Keywords- Intrusion detection, K-Nearest Neighbor, Naive Bayes, Decision Trees, Support 

Vector Machine, Prediction 
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INTRODUCTION 

 
Input techniques can be partitioned into two kinds: 

misconstruing and deformity location. A wide 

range of known (irresistible) assaults can be 

distinguished by evaluating the normal interruption 

pace of the framework for checking the means of 

misconception. In the case of something surprising 

occurs, the framework initially learns the ordinary 

profile and afterward records every one of the 

components of the framework that don't match the 

set up profile. The principle advantage of discovery 

is the maltreatment of the capacity to identify new 

or surprising assaults at high rates, making it hard 

to distinguish. 

The upside   of   having   the   option   to   identify 
uncommon things is the capacity to recognize new 

(or startling) assaults that convey many advantages. 

Procedures dependent on innovation pipelines 

utilized in different ventures. We give general data 

to the investigation of traffic data and for the 

location of street mishaps utilizing the significant 

distance-course of-the-street 

The proposed technique utilizes tests dependent on 

the issue of eliminating traffic data via online 

media (Facebook and Twitter): this movement 

gathers sentences connected with all traffic 

exercises, for example, traffic stops or street 

terminations. The quantity of starting handling 

strategies is presently executed. breathing, signal 

presentation, POS signal, partition, and so forth to 

change the data acquired in the inherent structure. 

The information is then consequently shown as 

"traffic" or "traffic" utilizing the latent Dirichlet 

allocation (LDA) calculation. Vehicle enrollment 

data is isolated into three kinds; great, terrible and 

impartial. The response to this classification is the 

expression   enraptured    (positive, negative, or 

unbiased) as for street sentences, contingent upon 

whether or not it is traffic. The bag-of-words (BoW) 

is presently used to change each sentence over to a 

solitary hot code to take care of bi-directional 

LSTM organizations (Bi-LSTM). In the wake of 

preparing, a multi-stage muscle network utilizes 

softmax to arrange sentences as indicated by area, 

vehicle experience, and sort of polarization. The 

proposed strategy contrasts the preparation of 

various machines and the high-level preparing 

techniques as far as precision, F scores, and 

different standards. 
 

LITERATURE REVIEW 

Designing a Network Intrusion Detection 

System Based on Machine Learning for 

Software Defined Networks 

 

Software-defined Networking (SDNs) have as of 

late been created as a feasible and promising 

answer for the eventual fate of the Internet. 

Networks are made due, incorporated, and 

observed and adjusted utilizing SDN. These 

advantages, then again, bring us ecological dangers, 

for example, network crashes, framework 

incapacities, internet banking misrepresentation, 

and robbery. These issues can detrimentally affect 

families, organizations, and the economy. Truth, 

superior execution, and the genuine framework are 

fundamental to accomplishing this objective. The 

extension of wise AI calculations into the network 

intrusion detection system (NIDS) through a 

software-defined network (SDN) has been 

extremely invigorating over the previous decade. 

The accessibility of data, the distinction in 

information investigation, and the many advances 

in AI calculations assist us with making a superior, 

more dependable, and solid framework for 

distinguishing the various sorts of organization 

assaults. The review was essential for the NIDS 

SDN survey. 
 

A Deep Learning Approach for Network 

Intrusion Detection System 

 

Network Intrusion Detection Systems (NIDSs) are 

a significant device for network framework 

overseers to decide network security. NIDS screens 

and examines approaching and active calls from 

family network gadgets and cautions assuming that 

entrance is identified. As far as access control, 

NIDS is separated into two classifications: I) NIDS 

(SNIDS) based mark (abuse), and ii) NIDS 

(ADNIDS) based secrecy location. SNIDS and 

Drinking put assault marks first in NIDS. The 

helpful plan is made of against slip vehicle to 

permit admittance to the organization. Interestingly, 

ADNIDS permits network traffic to stream in when 

it is going to split away from typical traffic. 

Significant in characterizing SNIDS. notable, 

notable assault, non-salvage assault. Nonetheless, 

its unmistakable makes it extremely challenging to 

distinguish obscure or new assaults on the grounds 

that the marks of pre-introduced assaults on the 

IDS are decreased. However, ADNIDS is critical 

to be familiar with obscure and new assaults. In 

spite of the fact that ADNIDS estimates its 
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adequacy well, its capacity to identify new assaults 

has prompted its far and wide acknowledgment. 

There are two issues that function admirably in the 

advancement of NIDS: gentle and direct assaults. 

Above all else, the strategy for choosing the right 

traffic information from the informational index 

line is hard to distinguish peculiarities. Because of 

steady vacillations and changes, the capacities 

chose at a similar assault level may not be 

reasonable for other assault classes. Second, there 

is an absence of a bunch of traffic information from 

the genuine line of NIDS improvement. It requires 

a ton of work to separate a bunch of genuine or 

ongoing recorded information from the crude line 

of the gathered way. 

 

Intrusion Preventing System using Intrusion 

Detection System Decision Tree Data Mining 

 
With worldwide availability, network security has 

become more associated with innovative work. As 

the quantity of assaults builds, the firewall has 

turned into a significant security strategy issue 

overall. Firewalls can be permitted or denied over 

the organization, however since firewalls can't be 

recognized or assaulted, signing in and applying to 

a firewall is a method for controlling how you 

forestall it. Access location Firewall innovation is 

viewed as an extra answer for identify interruptions 

in an organization without a firewall. Firewalls and 

IDS address the old as far as data innovation 

security. A firewall is great for ensuring 

frameworks and networks and lessens the danger of 

organization assaults. IDS can identify endurance 

or assault. Capacity to interface IDS and firewalls 

called IPS. That is the fair thing to do, and it should 

end there. There are at least one distinct standard 

for every retailer. Each organization parcel that 

arrives at the firewall should be tried by 

characterized rules until an appropriate rule is 

found. Under current law, bundles will be 

permitted or restricted from arriving at the line. 

Every law determines a particular kind of vehicle. 

The points of interest of how the pipeline will be 

sold should be visible from the lines of vehicles 

from people's perspective. This review plans to try 

not to attempt to sign in to look for Internet-based 

substance, like IDS, and afterward implementing 

firewall rules like impeding. Need to find out about 

our information mining machine security strategy. 

The technique used to make the standard is to rank 

the ID3 calculation by tree endorsement. It's a 

decent and great practice to implement firewalls. 

 
A Deep Learning Approach to Network 

Intrusion Detection 

 

The Network Access System (NIDS) assumes a 

significant part in ensuring PC organizations. Be 

that as it may, there are worries about the 

accessibility and maintainability of current 

innovation to meet present day network necessities. 

Specifically, these worries are connected with the 

increment in individuals' level of correspondence 

and the lessening in their level of information. This 

paper presents new top to bottom examination 

techniques to comprehend and resolve these issues. 

We plainly characterize non-standard encoder 

(NDAE) prerequisites for the investigation of 

uncontrolled items. Furthermore, we suggest a top 

to bottom investigation of the classes made 

utilizing the NDAE. Our proposals were carried out 

in GPU-TensorFlow and assessed utilizing the 

KDD Cup '99 scale and the NSL-KDD 

informational index. 

 

EXISTING SYSTEM: 

 
 Today, pipelines have turned into a 

significant piece of public foundation and 

the computation of public or private mists. 

 Techniques Traditional organization 

network has turned into a test. 

 These troubles have forestalled the 

foundation of new and forward-thinking 

administrations in a similar organization, 

making it hard to associate organizations, 

business associations, and the Internet 

overall. 

 

Problem Statement: 

 
 Attacks are truly challenging, typical, and 

tedious to isolate street exercises. 

 Utilizes Analysts need to think about 

enormous and wide-going data to screen the 

seriousness of pipelines. 

 Technique The strategy used to recognize 

the pipelines is expected to decide the 

progression of traffic. 

 Associating a firewall to an IDS, otherwise 

called an IDS, can distinguish an assault, 

however can likewise keep it from 

assaulting. 
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Proposed System: 
 

 Hereditary Algorithms are one of the most 

generally utilized techniques for AI as far 

as availability. 

 Cold The choice sheet looks at the test to 

one of the qualities of a specific case, while 

the leaf shows the possibility of whether the 

result is in the ordinary or typical period of 

the assault (potentially a potential assault). 

 Strategy A better approach to observe IDS 

tokens utilizing an authentication tree. A 

strategy for AI has been given. The 

technique utilized in lawmaking is to sort 

the choice tree and calculation. 

 
Advantages: 

 
 Attack location should be possible 

physically or consequently. 

 IDS should have the option to adapt to the 

hours of development and exposure. 

 It is vital to utilize a choice tree. 

Understanding programmed assaults and 

how to react is turning out to be 

progressively significant. 

 

 

 

 

 

 

 

 

 

 

 

 

FLOW DIAGRAM: 
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HARDWARE REQUIREMENTS: 

 
 System : Pentium i3 Processor. 

 HDD : 500 GB. 

 Screen : 15‘‘ LED 

 Devices : Keyboard, Mouse 

 Random Access Memory: 2 GB 

 
SOFTWARE REQUIREMENTS: 

 
 Software : Windows 10. 

 Language : Python 

 

 

 

 

 

 

 

BLOCK DIAGRAM: 

 
absolute most broadly utilized calculations. 

• K-Neighbor 

• Blameless Bays 

• Choice tree/Natural woodland 

• Support for vector machines 

• Intercession 

Decision tree 

Introduction 

Up until this point, we have figured out how to go 

this way and that, and it has been hard to 

comprehend. Presently how about we start with 

"Tree Decision", I guarantee you it very well may 

be a straightforward calculation in Machine 

Learning. There aren't so numerous here. It is one 

of the most broadly utilized and commonsense 

strategies for AI since it is not difficult to utilize 

and clarify. 
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What is a Decision Tree? 

 
It is an instrument with applications running in 

better places. The testament tree can be utilized in 

similar class as obsolete issues. The actual name 

recommends that it utilizes plans, for example, 

trees to show prescience from the request in which 

things are isolated. It begins at the root and finishes 

with the choice to get away. Before we study the 

choice tree, how about we investigate a few words. 

Root Nodes The top of this hub is toward the start 

of the choice tree, and the public starts to isolate it 

as indicated by different elements. 

Decision Nodes - The gatherings we see 

subsequent to isolating the root are called 

Resolutions 

Leaf Nodes - an indivisible head called a leaf or 

leaf 

Sub-tree - 33% of the sub-tree plan, a large 

portion of the exactness of the sub-tree. 

Pruning - There is nothing to do except for 

remove the head to quit trying too hard. 

 
MODULES: 

 
 Dataset collection 

 Data Cleaning 

 Feature Extraction 

 Model training 

 Testing model 

 Performance Evaluation 

 Prediction 

 

 
Dataset collection: 

 
Informational index assortment: 

Information assortment can assist you with 

tracking down ways of following previous 

occasions utilizing information examination to 

record them. This permits you to foresee the way 

and make prescient models utilizing AI devices to 

anticipate future changes. Since the prescient 

model is just pretty much as great as the data 

acquired, the most effective way to gather 

information is to further develop execution. The 

data ought to be faultless (garbage, open air 

squander) and ought to incorporate data about the 

work you are doing. For instance, a non- 

performing advance may not profit from the sum 

got, yet may profit from gas costs over the long run. 

In this module, we gather data from the kaggle data 

set. These figures contain data on yearly contrasts. 

 
Data cleaning: 

Data cleanliness is a significant piece of all AI 

exercises. The data cleanliness of this module is 

expected for the arrangement of information for the 

annihilation and transformation of wrong, 

inadequate, deluding or misdirecting data. You can 

utilize it to look for data. Discover what cleaning 

you can do. 

 
Feature Extraction: 

 
This is done to lessen the quantity of capacities in 

the informational index, which will accelerate 

preparing and increment proficiency. 

In AI, picture acknowledgment, and picture 

handling, mining starts at the front line of estimated, 

useful data (ascribes) pointed toward guaranteeing, 

adjusting, following, and normalizing data, and 

now and again prompting more prominent 

clearness. Take out the properties related with 

aspect decrease 

On the off chance that the calculation's feedback is 

excessively enormous, it won't be handled, and 

assuming it is suspected to be excessively huge 

(like estimating one foot and meter, or rehashing 

the picture displayed in pixels), it tends to be 

switched. properties (likewise called vector 

properties). 

Characterize the initial segment, called highlight 

choice. The chose things ought to contain data 

about the data got so they can fill the ideal role 

utilizing this portrayal rather than complete data. 

 
Model training: 

 
An illustration of this preparation is the 

informational collection used to prepare the ML 

calculation. It comprises of significant info 

definitions that influence information inspecting 

and yield. 
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The preparation model is utilized to utilize the 

information through the result and result change 

calculations. The aftereffects of this connection 

will be utilized to alter the layout. 

This strategy for assault is designated "matching 

model". Information preparing definition or 

informational collection approval is significant for 

demonstrating. 

Plan language preparing is a method for giving data 

about the ML calculation and assist with deciding 

and become familiar with the best significance of 

every one of its highlights. There are many kinds 

of AI, the majority of which are controlled and 

uncontrolled. 

 
Testing model: 

 
In this module, we test an AI machine planned 

utilizing research information 

Quality protection is needed to make the product 

framework work appropriately. All chances settled 

upon? Does the program fill in true to form? All 

program testing standards should be remembered 

for the specialized detail. 

What's more, programming testing can uncover 

every one of the defects and shortcomings that have 

happened during improvement. Once the 

application is delivered, you don't need your clients 

to come to your home together. Various kinds of 

tests just take into account recognition of blunders 

during activity. 

 
Performance Evaluation: 

 
In this module, we audit the presentation of an AI 

framework utilizing execution assessment 

measures, for example, F1 scores, exactness, and 

arrangement mistake. 

At the point when the model performs inadequately, 

we change the AI to further develop execution. 

Execution examination is characterized as a norm 

and productive method for estimating 

representative execution dependent on worker 

obligations. It is utilized to gauge the worth of 

representatives by expanding their business pay 

contrasted with industry and all out venture (ROI). 

All associations that have taken in the specialty of 

"mutual benefit" depend on the presentation of 

their workers dependent on an exhibition 

examination framework to continually survey and 

assess the presentation of its representatives. 

In a perfect world, workers are evaluated yearly 

upon the arrival of the occasion, in view of 

advancement or compensation increment. 

Execution examination plays an immediate part to 

play in giving input to workers to all the more 

likely comprehend their principles. 

 
Prediction: 

 
Consistency "alludes to the outcomes subsequent 

to preparing the calculation on the historical 

backdrop of the set and carrying out it when you 

expect the chance of a specific outcome, for 

example, deciding whether the client will remain 

for 30 days. 

The worth-based calculation can be changed for 

each new thing composed, permitting the author to 

decide the worth that is destined to be. 

"Speculation" can be misdirecting. Now and then, 

this implies foreseeing the future, like utilizing a 

machine to decide the following game-plan. 

In different cases, "prescience" is connected, for 

instance, in the event that the item has as of now 

been created. 

For this situation, the move has as of now been 

made, however it will assist you with giving input 

on whether it is satisfactory and to make a proper 

move. 

In this module, we utilize an organized, AI 

technique to decide whether the patient will 

respond to a portion of the inquiries. 

 
RESULT: 

 
Train and Test the dataset 
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After 

 

 

 

 

 

 

completion of training and testing the KDD dataset, 

now dataset which contain the attacks undergoes 

for static testing. After completion of testing it 

shows the attacks data in plot graph. 

 

 

 

 

 

 

 

Now, 

we 

can 

static 

 

 

 

 

 

 

testing of the normal dataset for attacks 
 

classification 

CONCLUSION: 

 
Detours depict personal conduct standards that 

happen during street mishaps and typical exercises. 

The tree managing method is the most ideal to the 

working of the IDS access street and is executed in 

the hereditary calculation of avoidance. Then again, 

this innovation functions admirably and maintains 

a strategic distance from over-the-top guidelines, 

like firewalls. 
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