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ABSTRACT 

 

 

Traditional farming is going out of date nowadays. Technologies are being 

introduced in the farming sector for the past decade and in recent years it is seen 

that the participation of deep learning and machine learning is playing an integral 

role in solving traditional problems. The introduction of new technology has 

increased the productivity of farmers and also increased the yields and quality of the 

crops too. Plant diseases are a serious concern for the consumers and the farmers 

too. It does not only carry some harmful bacteria within itself however it 

compromises the yield of the crops too. The identification of such plant diseases has 

been a continuous problem for cultivators and researchers. Deep learning-enabled 

developments in the field of computer vision have paved the path for computer-

assisted plant disease diagnosis. Deep Learning has achieved great success in the 

categorization of a number of plant diseases by exploiting its ability to recognize 

objects with the help of convolutional neural networks. Various deep learning 

algorithm like AlexNet and LeNet-5 is applied on a publicly available dataset 

(plantvillage dataset) so that the neural network can capture the various features of a 

specific disease and diagnose it accordingly using a human-like decision making skill  
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1. INTRODUCTION 

 

India being an agriculture country, about 70% of the population depends on it as 

their main source of income and food. Agriculture plays and important part of the 

Indian economy as it contributes about 17% of the total GDP. Farmers have wide 

range in selecting their crops and finding a suitable pesticide for it but in spite of 

all their efforts it can all be vain if they can‟t identify the disease plaguing their 

crops. Thus, disease on crops can significantly reduce the quality and quantity of 

agricultural products along with economical damage to the farmers. To 

successfully cultivate crops without incurring much loss we need to properly 

identify the disease and remedy it, this requires a lot of work and processing time 

as detecting each and every plant can be tedious can time consuming. To lessen 

the burden of the farmers along with their losses we propose the use of a system 

which can detect infected plants so that we can curb the spread of infection and 

diseases at an earlier step thus reducing losses and crop failure. 

 

In most cases symptoms like fungal infection and rot can be seen on the leaves, 

stem and fruit. This project provides an insight into how we deal with the problem 

and further discuss the challenges of our work and how we can improve upon it 

in future work. 

 

1.1 OUTLINE OF THE PROJECT 

 

Overview of the system: 

 Define a problem 

 Gathering image data set 

 Evaluating algorithms 

 Detecting results 

 

 

 

 

 

The steps involved in Building the data model is depicted below. 
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Fig 1: Data flow diagram for CNN model 

 

1.2 OBJECTIVE : 

 

Smart farming system using necessary infrastructure is an innovative technology 

that helps to improve the quality and quantity of agricultural production in the 

country. Disease in plants has long been one of the major threats to food 

security as it dramatically reduces the crop yield and compromises the quality. 

The identification of such diseases has been a significant challenge to cultivators 

and researchers. Deep learning-enabled developments in the field of computer 

vision have paved the path for computer-assisted plant disease diagnosis. Deep 

learning with convolutional neural networks (CNN) has achieved tremendous 

success in the categorization of a number of plant diseases by exploiting its 

ability to recognise objects, and the solution provides an efficient technique for 

detecting plant disease. Various CNN algorithm like AlexNet and LeNet-5 is 

applied on a publicly available dataset (plant village dataset) so that the neural 

network can capture the various features of specific disease and diagnose it 

accordingly using a human-like decision making skill.  

 

 

 

Data collection (Splitting Training set & Test) 

set) 

Building classification Model 

Pre Processing (Sequential) 

Prediction (Plant leaf disease  Prediction) 
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2. LITERATURE SURVEY 

 

 A literature review is a body of text that aims to review the critical points of 

current knowledge on and/or methodological approaches to a particular topic. It is 

secondary sources and discuss published information in a particular subject area 

and sometimes information in a particular subject area within a certain time period. 

Its ultimate goal is to bring the reader up to date with current literature on a topic and 

forms the basis for another goal, such as future research that may be needed in the 

area and precedes a research proposal and may be just a simple summary of 

sources. Usually, it has an organizational pattern and combines both summary and 

synthesis.  

 A summary is a recap of important information about the source, but a 

synthesis is a re-organization, reshuffling of information. It might give a new 

interpretation of old material or combine new with old interpretations or it might trace 

the intellectual progression of the field, including major debates. Depending on the 

situation, the literature review may evaluate the sources and advise the reader on 

the most pertinent or relevant of them. Loan default trends have been long studied 

from a socio-economic stand point. Most economics surveys believe in empirical 

modeling of these complex systems in order to be able to predict the loan default 

rate for a particular individual. The use of machine learning for such tasks is a trend 

which it is observing now. Some of the surveys to understand the past and present 

perspective of loan approval or not. 

 

 

REVIEW OF LITERATURE SURVEY 

Title: Yellow Rust Extraction in Wheat Crop based on Color Segmentation 

Techniques 

Author: Amina Khatra 

Year: December  2013 
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The presented work presents a color based segmentation techniques for 

extraction of yellow rust in whet crop images. Accurate segmentation of yellow rust in 

wheat crop images is very part of assessment of disease penetration into the wheat 

crop. And in turn to take the necessary preventive action for minimizing the crop 

damage. The jpeg images acquired from CCD camera are read into the matlab tool 

and a color-based segmentation algorithm is performed to segment the yellow rust. 

The segmentation of color is performed base on k-means algorithm. 

 

TITLE: Comparative study of Leaf Disease Diagnosis system using Texture features 

and Deep Learning Features 

AUTHOR: Ashwini T Sapka, Uday V Kulkarni 

YEAR: 2018 

 

The feature extraction technique plays a very critical and crucial role in 

automatic leaf disease diagnosis system. Many different feature extraction 

techniques are used by the researchers for leaf disease diagnosis which includes 

colour, shape, texture, HOG, SURF and SIFT features. Recently Deep Learning is 

giving very promising results in the field of computer vision. In this manuscript, two 

feature extraction techniques are discussed and compared. In first approach, the 

Gray Level Covariance Matrix(GLCM) is used which extracts 12 texture features for 

diagnosis purpose. In second appraoch, the pretrained deep learning model, Alexnet 

is used for feature extraction purpose. There are 1000 features extracted 

automatically with the help of this pretrained model. Here Backpropagation neural 

network (BPNN) is used for the classification purpose. It is observed that the deep 

learning features are more dominant as compared to the texture features. It gives 

93.85% accuracy which is much better than the texture feature extraction technique 

used here. 
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TITLE: VARIOUS PLANT DISEASES DETECTION USING IMAGE PROCESSING 

METHODS 

AUTHOR: Simranjeet Kaur, Geetanjali Babbar, Navneet Sandhu, Dr. Gagan Jindal 

YEAR:  June 2019 

Identification of plant leaf diseases is the preventive measure for the loss 

happened in the yield and the overall agriculture crop quantity. Basically, the studies 

of the plant diseases are defined by visualizing and observing patterns observed and 

engraved on the leaves. So, the disease detection of any plant prior to any 

hazardous impact becomes very crucial factor for viable agriculture. However, it is so 

difficult to detect, monitor and derive conclusions from the plant leaf diseases 

manually because, the costs emerging in the process demands huge amount of 

workdone, energy, expertize and last but not least the processing time. Therefore, 

image processing concepts comes handy and are used for disease detections.The 

detection process includes the phases such as, image acquisition, segmentation, 

image pre-processing, feature extraction from segments and then classification 

based on the results. This paper discusses the elementary methods that are being 

used for the plant disease detection based on the leaf images 

 

 

 

TITLE: Android Application of Wheat Leaf Disease Detection and Prevention using 

Machine Learning 

AUTHOR:  Sumit Nema, Bharat Mishra and Mamta Lambert 

YEAR: APR-2020 

 

Crop quality and production plays an important role in agriculture and farmer‟s 

life. Famer‟s income highly depends on crop quantity and quality in India. Wheat is 

the main crop in India. Wheat leaves diseases majorly affect the production rate as 
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well as farmer‟s profits. An android application has designed to detect the wheat 

plant leaf diseases in this work. Machine learning methods are easily applied and 

capable to quick recognizes these diseases. Simulation results show the 

effectiveness of the proposed method. Real time experiment in the wheat field 

nearby area of Madhya Pradesh also validates the results. 

 

TITLE:  WHEAT DISEASE DETECTION USING SVM CLASSIFIER 

AUTHOR: Er.Varinderjit Kaur , Dr.Ashish Oberoi 

YEAR: AUG 2018 

There are many types of diseases which are present in plants. To detect these 

diseases, patterns are required to recognize them. There are many types of 

pattern recognition algorithm which gives detection of disease with accuracy. 

Image processing Techniques for Wheat Disease Detection most important 

research areas in computer science for last few decades. Based on literature 

review, we conclude that the engineering and research community is doing lot of 

work on Wheat disease detection, but the application of this techniques to solve 

practical agricultural This paper presents a survey on SVM Classifier method that 

use digital image processing techniques to detect, quantify and classify plant 

diseases from digital images in the visible spectrum 

It reviews, and summaries various techniques used for classifying and detecting 

various bacterial, fungal and viral wheat leaf diseases. The classification techniques 

help in automating the detection of wheat leaf diseases and categorizing them 

centered on their morphological features. It focuses on identifying the wheat leaf 

diseases with CNN as classifier. It is also intended to focus on increasing the 

recognition rate and classification accuracy of severity of leaf diseases by using 

hybrid algorithms. 

Wheat‟s are considered to be important as they are the source of energy 

supply to mankind. plant diseases can affect the wheat leaf any time between 

sowing and harvesting which leads to huge loss on the production of crop and 

economical value of market. Therefore, wheat disease detection plays a vital role in 
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agricultural field. However, it requires huge manpower, more processing time and 

extensive knowledge about wheat diseases. Hence, machine learning is applied to 

detect diseases in wheat leaves as it analyzes the data from different aspects and 

classifies it into one of the predefined set of classes. The morphological features and 

properties like color, intensity and dimensions of the plant leaves are taken into 

consideration for classification. It presents an overview on various types of wheat 

diseases and different classification techniques in machine learning that are used for 

identifying diseases in different wheat leaves 

 

Drawback: 

 It has not focused on identifying other plant diseases with CNN as classifier. 

 It has not focused on increasing the recognition 

 

 

3. AIM AND SCOPE 

3.1 PROJECT GOAL 

To classify different plant diseases, we plan to design a deep learning system so 

that a person without expertise in software should also be able to use it easily. The 

proposed system is made to predict plant diseases using the leaves as an identifying 

factor. It explains the analysis of our methodology along with some of the feature 

engineering of the data. A large number of images is collected for each disease and 

is classified into database images and input images. The primary attributes of the 

leaves that are important are the shape and texture-oriented features. The figure 

provided below gives us an insight into the basic principle of our system along with 

an idea about how the system works. 
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3.2  SCOPE OF THE PROJECT 

 India is an agriculture-based country and about 70% of the population 

depends on it as their main source of income and food. Farmers have wide range in 

selecting their crops and finding a suitable pesticide for it but in spite of all their 

efforts it can all be vain if they can‟t identify the disease plaguing their crops. Thus 

disease on crops can significantly reduce the quality and quantity of agricultural 

products along with economical damage to the farmers. To successfully cultivate 

crops without incurring much loss we need to properly identify the disease and 

remedy it, this requires a lot of work and processing time as detecting each and 

every plant can be tedious can time consuming. To lessen the burden of the farmers 

along with their losses we propose the use of a system which can detect infected 

plants so that we can curb the spread of infection and diseases at an earlier step 

thus reducing losses and crop failure. 

 

In most cases symptoms like fungal infection and rot can be seen on the leaves, 

stem and fruit. This paper provides an insight into how we deal with the problem and 

further discuss the challenges of our work and how we can improve upon it in future 

work. 

So, to classify different plant diseases, we plan to design a deep learning 

system so that a person without expertise in software should also be able to use it 

easily. The proposed system is made to predict plant diseases using the leaves as 

an identifying factor. It explains the analysis of our methodology along with some of 

the feature engineering of the data. A large number of images is collected for each 

disease and is classified into database images and input images. The primary 

attributes of the leaves that are important are the shape and texture-oriented 

features. The figure provided below gives us an insight into the basic principle of our 

system along with an idea about how the system works. 
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3.3 OVERVIEW OF THE SYSTEM 

We have to import our data set using keras preprocessing image data 

generator function also we create size, rescale, range, zoom range, horizontal flip. 

Then we import our image dataset from folder through the data generator function. 

Here we set train, test, and validation also we set target size, batch size and class-

mode from this function and we have to train using our own created network by 

adding layers of CNN. 

 

 

Fig 2: Overview of the System 

 DFD(Data Flow Diagram) 

A data flow diagram (DFD) is a graphical representation of the "flow" of data 

through an information system, modeling its process aspects. A DFD is often used 

as a preliminary step to create an overview of the system without going into great 

detail, which can later be elaborated. DFDs can also be used for the visualization of 

data processing (structured design). A DFD shows what kind of information will be 

input to and output from the system, how the data will advance through the system, 

and where the data will be stored. It does not show information about process timing 

or whether processes will operate in sequence or in parallel, unlike a traditional 

structured flowchart which focuses on control flow, or a UML activity workflow 

diagram, which presents both control and data flows as a unified model. Data flow 

diagrams are also known as bubble charts. DFD is a designing tool used in the top 

down approach to Systems Design. Symbols and Notations Used in DFDs Using any 
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convention‟s DFD rules or guidelines, the symbols depict the four components of 

data flow diagrams. 

External entity: an outside system that sends or receives data, communicating with 

the system being diagrammed. They are the sources and destinations of information 

entering or leaving the system. They might be an outside organization or person, a 

computer system or a business system. They are also known as terminators, 

sources and sinks or actors. They are typically drawn on the edges of the diagram.  

Process: any process that changes the data, producing an output. It might perform 

computations, or sort data based on logic, or direct the data flow based on business 

rules.  

Data store: files or repositories that hold information for later use, such as a 

database table or a membership form.  

Data flow: the route that data takes between the external entities, processes and 

data stores. It portrays the interface between the other components and is shown 

with arrows, typically labeled with a short data name, like “Billing details.”  

DFD levels and layers A data flow diagram can dive into progressively more 

detail by using levels and layers, zeroing in on a particular piece. DFD levels are 

numbered 0, 1 or 2, and occasionally go to even Level 3 or beyond. The necessary 

level of detail depends on the scope of what you are trying to accomplish. DFD Level 

0 is also called a Context Diagram. It‟s a basic overview of the whole system or 

process being analyzed or modeled. It‟s designed to be an at-a-glance view, 

showing the system as a single high-level process, with its relationship to external 

entities. It should be easily understood by a wide audience, including stakeholders, 

business analysts, data analysts and developers.  

 

Level 0: 

 

 

 

Image 

leaf 

Disease 

Recognition 

Disease 

Classification 
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Level 1: 

 

 

 

Level 2: 

 

 

 

 

 

Level 3: 

 

 

Fig 3: Data Flow Diagram 

DESIGN ENGINEERING 

General 

Design is meaningful engineering representation of something that is to be 

built. Software design is a process design is the perfect way to accurately translate 

requirements in to a finished software product. Design creates a representation or 

model, provides detail about software data structure, architecture, interfaces and 

components that are necessary to implement a system. 
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Prediction 
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  leaf       
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4. METHODOLOGY 

Preprocessing and Training the model (CNN): The dataset is preprocessed such as 

Image reshaping, resizing and conversion to an array form. Similar processing is 

also done on the test image. A dataset consisting of about 10 different class of leaf, 

out of which any image can be used as a test image for the software.  

 

 

 

 

Fig 4: Methodology of the system 

The train dataset is used to train the model (CNN) so that it can identify the test 

image and the disease it has CNN has different layers that are Dense, Dropout, 

Activation, Flatten, Convolution2D, and MaxPooling2D. After the model is trained 

successfully, the software can identify the Plant leaf disease prediction image 

contained in the dataset. After successful training and preprocessing, comparison of 

the test image and trained model takes place to predict the Sign language. 

 

CNN Model steps: 

Conv2d: 

The 2D convolution is a fairly simple operation at heart: you start with a kernel, which 

is simply a small matrix of weights. This kernel “slides” over the 2D input data, 

performing an elementwise multiplication with the part of the input it is currently on, 

and then summing up the results into a single output pixel. 

The kernel repeats this process for every location it slides over, converting a 2D 

matrix of features into yet another 2D matrix of features. The output features are 

essentially, the weighted sums (with the weights being the values of the kernel itself) 

of the input features located roughly in the same location of the output pixel on the 

input layer. 

Raw image Build a sequential 

model 

 

CNN train 

 

Plant leaf disease 

prediction 

 

CNN Weights 
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Whether or not an input feature falls within this “roughly same location”, gets 

determined directly by whether it‟s in the area of the kernel that produced the output 

or not. This means the size of the kernel directly determines how many (or few) input 

features get combined in the production of a new output feature. 

This is all in pretty stark contrast to a fully connected layer. In the above example, we 

have 5×5=25 input features, and 3×3=9 output features. If this were a standard fully 

connected layer, you‟d have a weight matrix of 25×9 = 225 parameters, with every 

output feature being the weighted sum of every single input feature. Convolutions 

allow us to do this transformation with only 9 parameters, with each output feature, 

instead of “looking at” every input feature, only getting to “look” at input features 

coming from roughly the same location. Do take note of this, as it‟ll be critical to our 

later discussion. 

 

MaxPooling2D layer 

Downsamples the input along its spatial dimensions (height and width) by taking the 

maximum value over an input window (of size defined by pool_size) for each channel 

of the input. The window is shifted by strides along each dimension. 

The resulting output, when using the "valid" padding option, has a spatial shape 

(number of rows or columns) of: output_shape = math.floor((input_shape - pool_size) 

/ strides) + 1 (when input_shape >= pool_size) 

The resulting output shape when using the "same" padding option is: output_shape = 

math.floor((input_shape - 1) / strides) + 1 

 

Arguments 

• pool_size: integer or tuple of 2 integers, window size over which to take the 

maximum. (2, 2) will take the max value over a 2x2 pooling window. If only one 

integer is specified, the same window length will be used for both dimensions. 

• strides: Integer, tuple of 2 integers, or None. Strides values. Specifies how far 

the pooling window moves for each pooling step. If None, it will default to pool_size. 
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• padding: One of "valid" or "same" (case-insensitive). "valid" means no padding. 

"same" results in padding evenly to the left/right or up/down of the input such that 

output has the same height/width dimension as the input. 

• data_format: A string, one of channels_last (default) or channels_first. The 

ordering of the dimensions in the inputs. channels_last corresponds to inputs with 

shape (batch, height, width, channels) while channels_first corresponds to inputs with 

shape (batch, channels, height, width). It defaults to the image_data_format value 

found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be 

"channels_last". 

 

Input shape 

• If data_format='channels_last': 4D tensor with shape (batch_size, rows, cols, 

channels). 

• If data_format='channels_first': 4D tensor with shape (batch_size, channels, 

rows, cols). 

 

Output shape 

• If data_format='channels_last': 4D tensor with shape (batch_size, 

pooled_rows, pooled_cols, channels). 

• If data_format='channels_first': 4D tensor with shape (batch_size, channels, 

pooled_rows, pooled_cols). 

 

Flatten layer 

It is used to flatten the dimensions of the image obtained after convolving it. Dense: 

It is used to make this a fully connected model and is the hidden layer. Dropout: It is 

used to avoid over fitting on the dataset and dense is the output layer contains only 

one neuron which decide to which category image belongs. 
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Flatten is used to flatten the input. For example, if flatten is applied to layer having 

input shape as (batch_size, 2,2), then the output shape of the layer will be 

(batch_size, 4) 

Flatten has one argument as follows 

keras.layers.Flatten(data_format = None) 

data_format is an optional argument and it is used to preserve weight ordering when 

switching from one data format to another data format. It accepts either channels_last 

or channels_first as value. channels_last is the default one and it identifies the input 

shape as (batch_size, ..., channels) whereas channels_first identifies the input shape 

as (batch_size, channels, ...) 

Dense layer 

Dense implements the operation: output = activation(dot(input, kernel) + bias) where 

activation is the element-wise activation function passed as the activation argument, 

kernel is a weights matrix created by the layer, and bias is a bias vector created by 

the layer (only applicable if use_bias is True). These are all attributes of Dense. 

Note: If the input to the layer has a rank greater than 2, then Dense computes the dot 

product between the inputs and the kernel along the last axis of the inputs and axis 0 

of the kernel (using tf.tensordot). For example, if input has dimensions (batch_size, 

d0, d1), then we create a kernel with shape (d1, units), and the kernel operates along 

axis 2 of the input, on every sub-tensor of shape (1, 1, d1) (there are batch_size * d0 

such sub-tensors). The output in this case will have shape (batch_size, d0, units). 

Besides, layer attributes cannot be modified after the layer has been called once 

(except the trainable attribute). When a popular kwarg input_shape is passed, then 

keras will create an input layer to insert before the current layer. This can be treated 

equivalent to explicitly defining an InputLayer. 

 

Arguments 

• units: Positive integer, dimensionality of the output space. 



16 
 

• activation: Activation function to use. If you don't specify anything, no activation 

is applied (ie. "linear" activation: a(x) = x). 

• use_bias: Boolean, whether the layer uses a bias vector. 

• kernel_initializer: Initializer for the kernel weights matrix. 

• bias_initializer: Initializer for the bias vector. 

• kernel_regularizer: Regularizer function applied to the kernel weights matrix. 

• bias_regularizer: Regularizer function applied to the bias vector. 

• activity_regularizer: Regularizer function applied to the output of the layer (its 

"activation"). 

• kernel_constraint: Constraint function applied to the kernel weights matrix. 

• bias_constraint: Constraint function applied to the bias vector. 

 

Input shape 

N-D tensor with shape: (batch_size, ..., input_dim). The most common situation would 

be a 2D input with shape (batch_size, input_dim). 

 

Output shape 

N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape 

(batch_size, input_dim), the output would have shape (batch_size, units). 

 

Dropout layer 

The Dropout layer randomly sets input units to 0 with a frequency of rate at 

each step during training time, which helps prevent overfitting. Inputs not set to 0 are 

scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. 
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Note that the Dropout layer only applies when training is set to True such that 

no values are dropped during inference. When using model.fit, training will be 

appropriately set to True automatically, and in other contexts, you can set the kwarg 

explicitly to True when calling the layer. 

(This is in contrast to setting trainable=False for a Dropout layer. trainable does not 

affect the layer's behavior, as Dropout does not have any variables/weights that can 

be frozen during training.) 

 

Arguments 

 rate: Float between 0 and 1. Fraction of the input units to drop. 

 noise_shape: 1D integer tensor representing the shape of the binary dropout 

mask that will be multiplied with the input. For instance, if your inputs have 

shape (batch_size, timesteps, features) and you want the dropout mask to be 

the same for all timesteps, you can use noise_shape=(batch_size, 1, 

features). 

seed: A Python integer to use as random seed. 

 

 

Image Data Generator:  

It is that rescales the image, applies shear in some range, zooms the image and 

does horizontal flipping with the image. This Image Data Generator includes all 

possible orientation of the image.  

 

Training Process:  

train_datagen.flow_from_directory is the function that is used to prepare data 

from the train_dataset directory Target_size specifies the target size of the image. 

Test_datagen.flow_from_directory is used to prepare test data for the model and all 
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is similar as above. fit_generator is used to fit the data into the model made above, 

other factors used are steps_per_epochs tells us about the number of times the 

model will execute for the training data.  

 

Epochs:  

It tells us the number of times model will be trained in forward and backward pass.  

 

Validation process: 

Validation_data is used to feed the validation/test data into the model. 

Validation_steps denotes the number of validation/test samples. 

4.1 SYSTEM ARCHITECTURE: 

 

 

 

Fig 5: System Architecture 
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Fig 6: Workflow Diagram 
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4.1.1 USE CASE DIAGRAM: 

 

Fig 7: Use Case Diagram 

Use case diagrams are considered for high level requirement analysis of a 

system. So, when the requirements of a system are analyzed the functionalities are 

captured in use cases. So, it can say that uses cases are nothing but the system 

functionalities written in an organized manner. 

 

4.1.2. CLASS DIAGRAM: 

 

Fig 8: Class Diagram 
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Class diagram is basically a graphical representation of the static view of the 

system and represents different aspects of the application. So, a collection of class 

diagrams represent the whole system. The name of the class diagram should be 

meaningful to describe the aspect of the system. Each element and their 

relationships should be identified in advance Responsibility (attributes and methods) 

of each class should be clearly identified for each class minimum number of 

properties should be specified and because, unnecessary properties will make the 

diagram complicated. Use notes whenever required to describe some aspect of the 

diagram and at the end of the drawing it should be understandable to the 

developer/coder. Finally, before making the final version, the diagram should be 

drawn on plain paper and rework as many times as possible to make it correct. 

 

 

4.1.3. ACTIVITY DIAGRAM: 

 

Fig 9: Activity Diagram 

Activity is a particular operation of the system. Activity diagrams are not only 

used for visualizing dynamic nature of a system, but they are also used to construct 

the executable system by using forward and reverse engineering techniques. The 

only missing thing in activity diagram is the message part. It does not show any 

message flow from one activity to another. Activity diagram is some time considered 
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as the flow chart. Although the diagram looks like a flow chart but it is not. It shows 

different flow like parallel, branched, concurrent and single. 

4.1.4. SEQUENCE DIAGRAM: 

 

Fig 10: Sequence Diagram 

Sequence diagrams model the flow of logic within your system in a visual 

manner, enabling you both to document and validate your logic, and are commonly 

used for both analysis and design purposes. Sequence diagrams are the most 

popular UML artifact for dynamic modelling, which focuses on identifying the 

behavior within your system. Other dynamic modelling techniques include activity 

diagramming, communication diagramming, timing diagramming, and interaction 

overview diagramming. Sequence diagrams, along with class 

diagrams and physical data models are in my opinion the most important design-

level models for modern business application development. 

 

 

 

 

 

 

http://agilemodeling.com/artifacts/activityDiagram.htm
http://agilemodeling.com/artifacts/activityDiagram.htm
http://agilemodeling.com/artifacts/communicationDiagram.htm
http://agilemodeling.com/artifacts/timingDiagram.htm
http://agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://agilemodeling.com/artifacts/classDiagram.htm
http://agilemodeling.com/artifacts/classDiagram.htm
http://agiledata.org/essays/dataModeling101.html
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4.1.5. E.R – DIAGRAM 

 

 

Fig 11: E.R. Diagram 

An entity relationship diagram (ERD), also known as an entity relationship 

model, is a graphical representation of an information system that depicts the 

relationships among people, objects, places, concepts or events within that system. 

An ERD is a data modeling technique that can help define business processes and 

be used as the foundation for a relational database. Entity relationship diagrams 

provide a visual starting point for database design that can also be used to help 

determine information system requirements throughout an organization. After a 

relational database is rolled out, an ERD can still serve as a referral point, should 

any debugging or business process re-engineering be needed later. 

 

 

 

 

https://searchdatamanagement.techtarget.com/definition/data-modeling
https://searchdatamanagement.techtarget.com/definition/relational-database
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4.1.6. COLLABORATION DIAGRAM: 

 

Fig 12: Collaboration Diagram 

4.2 TYPES OF CNN: 

 AlexNet 

 LeNet 

 

4.2.1 ALEXNET: 

AlexNet is the name of a convolutional neural network which has had a large impact 

on the field of machine learning, specifically in the application of deep 

learning to machine vision. AlexNet was the first convolutional network which used 

GPU to boost performance. 

AlexNet architecture consists of 5 convolutional layers, 3 max-pooling 

layers, 2 normalization layers, 2 fully connected layers, and 1 softmax layer. Each 

convolutional layer consists of convolutional filters and a nonlinear activation 

function ReLU. The pooling layers are used to perform max pooling. 

 

 

 

 

https://www.mygreatlearning.com/blog/cnn-model-architectures-and-applications/
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Architecture of AlexNet: 

 

Fig 13: Architecture of AlexNet 

 

 

 

 



26 
 

Convolutional layers: 

Convolutional layers are the layers where filters are applied to the original 

image, or to other feature maps in a deep CNN. This is where most of the user-

specified parameters are in the network. The most important parameters are the 

number of kernels and the size of the kernels. 

Pooling layers: 

Pooling layers are similar to convolutional layers, but they perform a specific 

function such as max pooling, which takes the maximum value in a certain filter 

region, or average pooling, which takes the average value in a filter region. These are 

typically used to reduce the dimensionality of the network. 

Dense or Fully connected layers: 

Fully connected layers are placed before the classification output of a CNN 

and are used to flatten the results before classification. This is similar to the output 

layer of an MLP. 

 

4.2.2 LENET: 

LeNet was one among the earliest convolutional neural networks which 

promoted the event of deep learning. After innumerous years of analysis and plenty 

of compelling iterations, the end result was named LeNet. 

Architecture of LeNet-5: 

LeNet-5 CNN architecture is made up of 7 layers. The layer composition 

consists of 3 convolutional layers, 2 subsampling layers and 2 fully connected layers. 

 

 

https://www.analyticssteps.com/blogs/how-transfer-learning-done-neural-networks-and-convolutional-neural-networks
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Fig 14: Architecture of LeNet 

 

Convolutional layers: 

Convolutional layers are the layers where filters are applied to the original 

image, or to other feature maps in a deep CNN. This is where most of the user-

specified parameters are in the network. The most important parameters are the 

number of kernels and the size of the kernels. 

Pooling layers:  

Pooling layers are similar to convolutional layers, but they perform a specific 

function such as max pooling, which takes the maximum value in a certain filter 

region, or average pooling, which takes the average value in a filter region. These are 

typically used to reduce the dimensionality of the network. 
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Dense or Fully connected layers: 

Fully connected layers are placed before the classification output of a CNN and are 

used to flatten the results before classification. This is similar to the output layer of an 

MLP.  

 

5. COMPARISION AND ANALYSIS 

In this paper, we have discussed about the working of different types of Convnet and 

its implementation. The use of the relative variety of techniques gives us a decent 

perspective into the working of our model and helps us finalize on a particular 

algorithm by comparing them against each other. We measure the performance 

using metrics like the overall accuracy and loss against the training data and testing 

data. The overall accuracy we achieve at the end of the model training gives us a 

good idea of the performance, along with the graph of the overall accuracy as it 

progresses through the training also gives us an idea about the outliers and not just 

the end result. The graph provides us with the insights which we could not see 

clearly with just a glance over the module and presents us with more in-depth idea 

about how we progress through our data with all the deviations in our sight for better 

analysis of our model. 

To better understand the performance of the different algorithms we have used, the 

model loss and accuracy graph is given below. 
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Fig 15: ManualNet Metrics Graph 

In the initial phase we used a CNN which we made manually with layers and 

activation functions which we estimated were good for our data. The metrics tells us 

that at the end of our training we have a model accuracy of 92% which states that 

our model is performing very well for a deep learning model, but the initial outliers in 

our test data tells us that the model is having some problem achieving the desired 

results due to some discrepancy in our test data. 

 

Fig 16: AlexNet Metrics Graph 

 

To evaluate our initial model against other models which are available we made the 

use of AlexNet since its one of the most relevant models in the field of CNN. But as 

we train our model we learn that it does not converge on our desired results. The 

model loss on our test data keeps on increasing as we train our model and our 

model accuracy for the training data also flat lines with very little accuracy. This tells 

us that AlexNet is a very bad algorithm for our given data with both our test and train 

data not converging and flat lining with both of them parallel to each other. 
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Fig 17: LENet-5 Metrics Graph 

 

Since our second model gave no insight into our initial model, we make use of 

another popular Deep Learning model called LeNet-5. In this we can see that our 

model performs very well on our data and it as we progress through the training 

phase the model loss flatlines under 10%, also our model accuracy has a gradual 

increase as we crunch through our dataset and it flatlines above 95% as we come to 

the end of our model training. There are certain outliers in our test data, but we can 

rule it out as a discrepancy in our dataset as we had the same outlier in our initial 

model.  

 

At the end of our analysis we conclude that our initial model along with the final 

model i.e. LeNet-5 has worked as we desired. But at the end we choose LeNet-5 as 

our working model as it has a higher accuracy and lower loss percentage. In the 

initial model i.e., our ManualNet we have a model loss of around 25% which is not 

reliable in comparison to LeNet-5 which has an overall model loss of 5%. Thus, we 

conclude that LeNet-5 would be the best fit model for our final proposal. 
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6. SUMMARY  

After comparing and analyzing the above we deployed our model in Django 

framework and designed our web app using HTML and CSS. We have tried to 

design our interface in a way so that everyone can use the resource without having 

the proper about deep learning. The Choose button helps you in providing the input 

whereas the upload button starts the processing of the image. After successful 

importation of image, we get the result that the leaf is healthy or not. 

 

 

CONCLUSION 

 

The proposed system for classifying the different crop disease has a good accuracy 

and gives us a good result. The system has potential to reduce the burden of the 

farmers as well as researchers as it acts as an early detector for the crops. This 

application can also reduce the loss of crops as it can pre-emptively give warnings 

as well as help new farmers and researchers from making a mistake by double 

checking their doubts. Further, future iteration can add more diseases and better 

detection algorithm. 

In this project, a research to classify Plant leaf Disease Classification over 

static facial images using deep learning techniques was developed. This is a 

complex problem that has already been approached several times with different 

techniques. While good results have been achieved using feature engineering, this 

project focused on feature learning, which is one of DL promises. While feature 

engineering is not necessary, image pre-processing boosts classification accuracy. 

Hence, it reduces noise on the input data. Nowadays, Agriculture based AI Plant leaf 

disease includes is heavily required. The solution totally based on feature learning 

does not seem close yet because of a major limitation. Thus, leaf Disease 

classification could be achieved by means of deep learning techniques. 
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OUTPUT  

 

 

Fig 18: Output Classes 
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FUTURE WORK 

 

This work can be further improved by adding more data into our dataset. 

Furthermore, with the advancement and proposal of more algorithms we can 

improve our model and update it if required. Also, for our web application we can 

make it more interactive by providing important knowledge about the plant disease 

along with measures to prevent them. Lastly, making our model accessible to more 

people can make it such that they can further develop on our work. 
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7. APPENDICES: 

7.1 SOURCE CODE: 

To build a model for training and testing: 

importos 
importnumpyasnp# linear algebra 
importmatplotlib.pyplotasplt 
 

# Dl framwork - tensorflow, keras a backend  
importtensorflowastf 
importtensorflow.keras.backendasK 
fromtensorflow.keras.modelsimportModel,Sequential 
fromtensorflow.keras.layersimportInput,Dense,Flatten,Dropout,BatchNo
rmalization 
fromtensorflow.keras.layersimportConv2D,SeparableConv2D,MaxPool
2D,LeakyReLU,Activation 
fromtensorflow.keras.optimizersimportAdam 
fromtensorflow.keras.preprocessing.imageimportImageDataGenerator 
fromtensorflow.keras.callbacksimportModelCheckpoint,ReduceLROnPl
ateau,EarlyStopping 
fromIPython.displayimportdisplay 
fromosimportlistdir 
fromos.pathimportisfile,join 
fromPILimportImage 
importglob 
fromtensorflow.keras.preprocessing.imageimportImageDataGenerator 
fromtensorflow.keras.layersimportConvolution2D 
fromtensorflow.keras.layersimportMaxPooling2D 
fromtensorflow.keras.layersimportFlatten 
fromtensorflow.keras.layersimportDense 
 

importwarnings 
warnings.filterwarnings('ignore') 
 
dir_name_train_Apple leaf black rot = 'Dataset/train/Apple leaf black rot ' 

dir_name_train_Apple leaf Healthy = 'Dataset/train/Apple leaf Healthy' 
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dir_name_train_Cherry leaf Powdery mildew = 'Dataset/train/Cherry leaf 

Powdery mildew' 

dir_name_train_Cherry leaf Healthy = 'Dataset/train/Cherry leaf Healthy' 

dir_name_train_Grape leaf black rot = 'Dataset/train/Grape leaf black rot' 

dir_name_train_Grape leaf Healthy = 'Dataset/train/Grape leaf Healthy' 

dir_name_train_Peach leaf bacterial spot = 'Dataset/train/Peach leaf 

bacterial spot' 

dir_name_train_Peach leaf Healthy = 'Dataset/train/Peach leaf Healthy' 

dir_name_train_Strawberry leaf scorch = 'Dataset/train/Strawberry leaf 

scorch' 

dir_name_train_Strawberry leaf Healthy = 'Dataset/train/Strawberry leaf 

Healthy'  

defplot_images(item_dir,n=6): 
all_item_dir=os.listdir(item_dir) 
item_files=[os.path.join(item_dir,file)forfileinall_item_dir][:n] 
 
plt.figure(figsize=(80,40)) 
foridx,img_pathinenumerate(item_files): 
plt.subplot(7,n,idx+1) 
img=plt.imread(img_path) 
plt.imshow(img,cmap='gray') 
plt.axis('off') 
 
plt.tight_layout() 
 

defImages_details_Print_data(data,path): 
print(" ====== Images in: ",path) 
fork,vindata.items(): 
print("%s:\t%s"%(k,v)) 
 
defImages_details(path): 
files=[fforfinglob.glob(path+"**/*.*",recursive=True)] 
data={} 
data['images_count']=len(files) 
data['min_width']=10**100# No image will be bigger than that 
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data['max_width']=0 
data['min_height']=10**100# No image will be bigger than that 
data['max_height']=0 
 
 
forfinfiles: 
im=Image.open(f) 
width,height=im.size 
data['min_width']=min(width,data['min_width']) 
data['max_width']=max(width,data['max_height']) 
data['min_height']=min(height,data['min_height']) 
data['max_height']=max(height,data['max_height']) 
 
Images_details_Print_data(data,path) 
 

print("") 
print("Trainned data for Apple leaf black rot:") 
print("") 
Images_details(dir_name_train_Apple leaf black rot) 
print("") 
plot_images(dir_name_train_Apple leaf black rot, 10) 
 
print("") 
print("Trainned data for Apple leaf Healthy:") 
print("") 
Images_details(dir_name_train_Apple leaf Healthy) 
print("") 
plot_images(dir_name_train_Apple leaf Healthy, 10) 
 
print("") 
print("Trainned data for Cherry leaf Powdery mildew:") 
print("") 
Images_details(dir_name_train_Cherry leaf Powdery mildew) 
print("") 
plot_images(dir_name_train_Cherry leaf Powdery mildew, 10) 
 
print("") 
print("Trainned data for Cherry leaf Healthy:") 
print("") 
Images_details(dir_name_train_Cherry leaf Healthy) 
print("") 
plot_images(dir_name_train_Cherry leaf Healthy, 10) 
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print("") 
print("Trainned data for Grape leaf black rot:") 
print("") 
Images_details(dir_name_train_Grape leaf black rot) 
print("") 
plot_images(dir_name_train_Grape leaf black rot, 10) 
 
print("") 
print("Trainned data for Grape leaf Healthy:") 
print("") 
Images_details(dir_name_train_Grape leaf Healthy) 
print("") 
plot_images(dir_name_train_Grape leaf Healthy, 10) 
 
print("") 
print("Trainned data for Peach leaf bacterial spot:") 
print("") 
Images_details(dir_name_train_Peach leaf bacterial spot) 
print("") 
plot_images(dir_name_train_Peach leaf bacterial spot, 10) 
 
print("") 
print("Trainned data for Peach leaf Healthy:") 
print("") 
Images_details(dir_name_train_Peach leaf Healthy) 
print("") 
plot_images(dir_name_train_Peach leaf Healthy, 10) 
 
print("") 
print("Trainned data for Strawberry leaf scorch:") 
print("") 
Images_details(dir_name_train_Strawberry leaf scorch) 
print("") 
plot_images(dir_name_train_Strawberry leaf scorch, 10) 
 
print("") 
print("Trainned data for Strawberry leaf Healthy:") 
print("") 
Images_details(dir_name_train_Strawberry leaf Healthy) 
print("") 
plot_images(dir_name_train_Strawberry leaf Healthy, 10) 
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Classifier=Sequential() 
Classifier.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activatio
n='relu')) 
Classifier.add(MaxPooling2D(pool_size=(2,2))) 
Classifier.add(Flatten()) 
Classifier.add(Dense(38,activation='relu')) 
 

Classifier.add(Dense(4,activation='softmax')) 
Classifier.compile(optimizer='rmsprop',loss='categorical_crossentropy',m
etrics=['accuracy']) 
 

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True) 
test_datagen=ImageDataGenerator(rescale=1./255) 
 

training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(128,128),batch_size=32,class_mode='categorical') 
test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(1
28,128),batch_size=32,class_mode='categorical') 
 

img_dims=150 
epochs=10 
batch_size=32 
 

#### Fitting the model 
history=Classifier.fit_generator( 
training_set,steps_per_epoch=training_set.samples//batch_size, 
epochs=epochs, 
validation_data=test_set,validation_steps=test_set.samples//batch_size) 
 

defgraph(): 
#Plot training & validation accuracy values 
plt.plot(history.history['accuracy']) 
plt.plot(history.history['val_accuracy']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train','Test'],loc='upper left') 
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plt.show() 
 
# Plot training & validation loss values 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train','Test'],loc='upper left') 
plt.show() 
graph() 
 
 

Module 2: 

# Dl framwork - tensorflow, keras a backend  

import tensorflow as tf 

 
import tensorflow.keras.backend as K 

 
from tensorflow.keras.models import Model 

 
from tensorflow.keras.models import Sequential 

 
from tensorflow.keras.layers import Input 

 
from tensorflow.keras.layers import Dense 

 
from tensorflow.keras.layers import Flatten 

 
from tensorflow.keras.layers import Conv2D 

 
from tensorflow.keras.layers import MaxPooling2D 

 
from tensorflow.keras.layers import Dropout 

 
from tensorflow.keras.layers import LeakyReLU 

 
from tensorflow.keras.layers import Activation 
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from tensorflow.keras.optimizers import Adam 

 
from tensorflow.keras.preprocessing.image import 
ImageDataGenerator 

 
from tensorflow.keras.callbacks import ModelCheckpoint 

 
from tensorflow.keras.callbacks import ReduceLROnPlateau 

 
from tensorflow.keras.callbacks import EarlyStopping 

 
import warnings 
warnings.filterwarnings('ignore') 

 
model = Sequential() 
# 1st Convolutional Layer 
model.add(Conv2D(filters=96, input_shape=(224,224,3), 
kernel_size=(11,11), strides=(4,4), padding='valid')) 
model.add(Activation('relu')) 
# Max Pooling 
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
padding='valid')) 
# 2nd Convolutional Layer 
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), 
padding='valid')) 
model.add(Activation('relu')) 
# Max Pooling 
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
padding='valid')) 
# 3rd Convolutional Layer 
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 
padding='valid')) 
model.add(Activation('relu')) 
# 4th Convolutional Layer 
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), 
padding='valid')) 
model.add(Activation('relu')) 
# 5th Convolutional Layer 
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), 
padding='valid')) 
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model.add(Activation('relu')) 
# Max Pooling 
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), 
padding='valid')) 
# Passing it to a Fully Connected layer 
model.add(Flatten()) 
# 1st Fully Connected Layer 
model.add(Dense(4096, input_shape=(224*224*3,))) 
model.add(Activation('relu')) 
# Add Dropout to prevent overfitting 
model.add(Dropout(0.4)) 
# 2nd Fully Connected Layer 
model.add(Dense(4096)) 
model.add(Activation('relu')) 
# Add Dropout 
model.add(Dropout(0.4)) 
# 3rd Fully Connected Layer 
model.add(Dense(1000)) 
model.add(Activation('relu')) 
# Add Dropout 
model.add(Dropout(0.4)) 
# Output Layer 
model.add(Dense(4)) 
model.add(Activation('softmax')) 
model.summary() 
 
# Compile the model 
model.compile(loss = 'categorical_crossentropy', optimizer='adam', 
metrics=['accuracy']) 

 
train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True) 
test_datagen=ImageDataGenerator(rescale=1./255) 

 
training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(224,224),batch_size=32,class_mode='categorical') 
test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(2
24,224),batch_size=32,class_mode='categorical') 

 
img_dims = 150 
epochs = 1 
batch_size = 32 
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#### Fitting the model 
history = model.fit( 
           training_set, steps_per_epoch=training_set.samples // 
batch_size,  
           epochs=epochs,  
           validation_data=test_set,validation_steps=test_set.samples // 
batch_size) 

 
import matplotlib.pyplot as plt 

 
def graph(): 
#Plot training & validation accuracy values 
    plt.plot(history.history['accuracy']) 
    plt.plot(history.history['val_accuracy']) 
    plt.title('Model accuracy') 
    plt.ylabel('Accuracy') 
    plt.xlabel('Epoch') 
    plt.legend(['Train', 'Test'], loc='upper left') 
    plt.show() 
 
# Plot training & validation loss values 
    plt.plot(history.history['loss']) 
    plt.plot(history.history['val_loss']) 
    plt.title('Model loss') 
    plt.ylabel('Loss') 
    plt.xlabel('Epoch') 
    plt.legend(['Train', 'Test'], loc='upper left') 
    plt.show() 

graph() 

 
print("[INFO] Calculating model accuracy") 
scores = model.evaluate(test_set) 
print(f"Test Accuracy: {scores[1]*100}") 

 

Module 3: 

fromtensorflow.keras.callbacksimportModelCheckpoint,ReduceLROnPl
ateau,EarlyStopping 
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fromtensorflow.keras.modelsimportSequential 
 

fromtensorflow.keras.layersimportConvolution2D 
 

fromtensorflow.keras.layersimportMaxPooling2D 
 

fromtensorflow.keras.layersimportFlatten 
 

fromtensorflow.keras.layersimportDense 
 

importwarnings 
warnings.filterwarnings('ignore') 
 

Classifier=Sequential() 
 

Classifier.add(Convolution2D(32,3,3,input_shape=(225,225,3),activation
='relu')) 
Classifier.add(MaxPooling2D(pool_size=(2,2))) 
Classifier.add(Convolution2D(128,3,3,activation='relu')) 
Classifier.add(MaxPooling2D(pool_size=(2,2))) 
Classifier.add(Flatten()) 
Classifier.add(Dense(256,activation='relu')) 
Classifier.add(Dense(4,activation='softmax')) 
 
Classifier.compile(optimizer='rmsprop',loss='categorical_crossentropy',m
etrics=['accuracy']) 
Classifier.summary() 
 

fromtensorflow.keras.preprocessing.imageimportImageDataGenerator 
 

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True) 
 

test_datagen=ImageDataGenerator(rescale=1./255) 
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training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(225,225),batch_size=32,class_mode='categorical') 
 

test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(2
25,225),batch_size=32,class_mode='categorical') 
 

fromIPython.displayimportdisplay 
 

img_dims=150 
epochs=60 
batch_size=32 
 

Classifier.fit_generator(training_set,steps_per_epoch=training_set.sampl
es//batch_size, 
epochs=epochs, 
validation_data=test_set,validation_steps=test_set.samples//batch_size) 
 

 

importh5py 
 

Classifier.save('e.h5') 
 

fromkeras.modelsimportload_model 
 

model=load_model('e.h5') 
 

importnumpyasnp 
 

fromtensorflow.keras.preprocessingimportimage 
test_image=image.load_img('c5.jpg',target_size=(225,225)) 
 

importmatplotlib.pyplotasplt 
img=plt.imshow(test_image) 
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test_image=image.img_to_array(test_image) 
 

test_image=np.expand_dims(test_image,axis=0) 
 

result=model.predict(test_image) 
 

result 
 

prediction=result[0] 
 

classes=training_set.class_indices 
 

classes 
 

prediction=list(prediction) 
 

prediction 
 

classes=['Apple leaf black rot ','Apple leaf Healthy','Cherry leaf Powdery 

mildew','Cherry leaf Healthy','Grape leaf black rot','Grape leaf 

Healthy','Peach leaf bacterial spot','Peach leaf Healthy','Strawberry leaf 

scorch','Strawberry leaf Healthy'] 

    output = zip(classes, prediction) 

    output = dict(output) 

    if output['Apple leaf black rot '] == 1.0: 

        a="Apple leaf black rot " 

    elif output['Apple leaf Healthy'] == 1.0: 

        a="Apple leaf Healthy" 

    elif output['Cherry leaf Powdery mildew'] == 1.0: 

        a="Cherry leaf Powdery mildew" 
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    elif output['Cherry leaf Healthy'] == 1.0: 

        a="Cherry leaf Healthy" 

    elif output['Grape leaf black rot'] == 1.0: 

        a="Grape leaf black rot" 

    elif output['Grape leaf Healthy'] == 1.0: 

        a="Grape leaf Healthy" 

    elif output['Peach leaf bacterial spot'] == 1.0: 

        a="Peach leaf bacterial spot" 

    elif output['Peach leaf Healthy'] == 1.0: 

        a="Peach leaf Healthy" 

    elif output['Strawberry leaf scorch'] == 1.0: 

        a="Strawberry leaf scorch" 

    elif output['Strawberry leaf Healthy'] == 1.0: 

        a="Strawberry leaf Healthy" 

 

 

 

 

 

PyCharm: 

Views.py 

 

from django.shortcuts import render 

 

from django.http import HttpResponseRedirect 

from django.urls import reverse_lazy 

from django.views.generic import TemplateView 

from employee.forms import EmployeeForm 

 

from django.views.generic import DetailView 

from employee.models import Employee 
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class EmployeeImage(TemplateView): 

    form = EmployeeForm 

    template_name = 'emp_image.html' 

 

    def post(self, request, *args, **kwargs): 

        form = EmployeeForm(request.POST, request.FILES) 

 

        if form.is_valid(): 

            obj = form.save() 

 

            return HttpResponseRedirect(reverse_lazy('emp_image_display', 

kwargs={'pk': obj.id})) 

 

        context = self.get_context_data(form=form) 

        return self.render_to_response(context) 

 

    def get(self, request, *args, **kwargs): 

        return self.post(request, *args, **kwargs) 

 

class EmpImageDisplay(DetailView): 

    model = Employee 

    template_name = 'emp_image_display.html' 

    context_object_name = 'emp' 

 

 

def sign language(request): 

    result1 = Employee.objects.latest('id') 

    import numpy as np 

    import tensorflow as tf 

    from tensorflow import keras 

    import h5py 

    models = keras.models.load_model('C:/Users/SPIRO73-

PYTHON/Desktop/smb/Deep_Learning/Plant leaf disease 

prediction/Deploy/employee/e.h5') 

    from tensorflow.keras.preprocessing import image 

    test_image = image.load_img('C:/Users/SPIRO73-
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PYTHON/Desktop/smb/Deep_Learning/Plant leaf disease 

prediction/Deploy/media/' + str(result1), target_size=(225, 225)) 

    test_image = image.img_to_array(test_image) 

    test_image = np.expand_dims(test_image, axis=0) 

    result = models.predict(test_image) 

    prediction = result[0] 

    prediction = list(prediction) 

classes=['Apple leaf black rot ','Apple leaf Healthy','Cherry leaf Powdery 

mildew','Cherry leaf Healthy','Grape leaf black rot','Grape leaf 

Healthy','Peach leaf bacterial spot','Peach leaf Healthy','Strawberry leaf 

scorch','Strawberry leaf Healthy'] 

    output = zip(classes, prediction) 

    output = dict(output) 

    if output['Apple leaf black rot '] == 1.0: 

        a="Apple leaf black rot " 

    elif output['Apple leaf Healthy'] == 1.0: 

        a="Apple leaf Healthy" 

    elif output['Cherry leaf Powdery mildew'] == 1.0: 

        a="Cherry leaf Powdery mildew" 

    elif output['Cherry leaf Healthy'] == 1.0: 

        a="Cherry leaf Healthy" 

    elif output['Grape leaf black rot'] == 1.0: 

        a="Grape leaf black rot" 

    elif output['Grape leaf Healthy'] == 1.0: 

        a="Grape leaf Healthy" 

    elif output['Peach leaf bacterial spot'] == 1.0: 

        a="Peach leaf bacterial spot" 

    elif output['Peach leaf Healthy'] == 1.0: 
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        a="Peach leaf Healthy" 

    elif output['Strawberry leaf scorch'] == 1.0: 

        a="Strawberry leaf scorch" 

    elif output['Strawberry leaf Healthy'] == 1.0: 

        a="Strawberry leaf Healthy" 

    return render(request, "result.html", {"out": a}) 

 

 

 

emp_image.html 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

<meta charset="UTF-8"> 

<title>image upload example</title> 

</head> 

<style> 

  label 

{ 

font-size: 20px; 

color:purple; 

font-family:  Algerian; 

} 

body 

  { 

    background: url(../static/image/emo.png); 

    background-repeat: no-repeat; 

    background-position: center; 

    background-size: 100% 100%; 

    min-height: 100vh; 

} 

<!--  button--> 

<!--{--> 
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<!--font-size: 20px;--> 

<!--font-family:  wide latin;--> 

<!--color:black;--> 

<!--background-color: green;--> 

<!--  box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green;--> 

<!--}--> 

.button { 

  background-color: #4CAF50; /* Green */ 

  border: none; 

  color: white; 

  padding: 16px 32px; 

  text-align: center; 

  text-decoration: none; 

  display: inline-block; 

  font-size: 16px; 

  margin: 4px 2px; 

  transition-duration: 0.4s; 

  cursor: pointer; 

} 

.button1 { 

  background-color: white; 

  color: black; 

  border: 2px solid #4CAF50; 

} 

#ss 

{ 

font-size: 20px; 

color:#20fc03; 

background-color: black; 

font-family:  Times new roman; 

} 

.button1:hover { 

  background-color: #4CAF50; 

  color: white; 

} 

 

h2 
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{ 

font-size: 20px; 

color:black; 

background-color: white; 

font-family:  Times new roman; 

} 

a 

{ 

font-size: 20px; 

color:yellow; 

font-family:  Times new roman; 

} 

.alerts-border { 

    border: 4px #ff0000 dashed; 

 

    animation: blink 0.2s; 

    animation-iteration-count: infinite; 

} 

 

@keyframes blink { 50% { border-color:yellow ; } 

} 

button 

{ 

font-family: Algerian; 

font-size: 35px; 

font-weight: bold; 

} 

.alerts-border 

{ 

width:500px; 

margin-top:7%; 

margin-left:28%; 

padding: 10px 10px 10px 10px; 

</style> 

<body style="background-color: lightblue;"> 

<center><h2 class="blink_me">PLANT LEAF DISEASE PREDICTION 

USING DEEP LEARNING 
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ALGORITHM</h2></center><br><br><br><br> 

<div class=" alerts-border"style="  box-shadow: 0 19px 38px 

rgba(0,0,0,0.30), 0 15px 12px rgba(0,0,0,0.22);"> 

<div id="aa" class="card-

header"><h2>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&

nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n

bsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs

p;UPLOAD IMAGE HERE</h2></div> 

<div class="card-body"> 

<div class="login-form"> 

<form method = "post" enctype="multipart/form-data"> 

        {% csrf_token %}  

        {{ form.as_p }}  

<button class="button button1" type="submit">Upload</button> 

</form> 

</div> 

</div> 

</div> 

</body> 

</html> 

 

emp_image_display.html 

<!DOCTYPE html> 

<html> 

<style> 

  label 

{ 

font-size: 20px; 

color:red; 

font-family:  Algerian; 

} 

body 

  { 
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    background: url(../static/image/emo.gif)); 

    background-repeat: no-repeat; 

    background-position: center; 

    background-size: cover; 

    -webkit-background-size: cover; 

    -moz-background-size: cover; 

    -o-background-size: cover; 

    min-height: 100vh; 

} 

  button 

{ 

font-size: 20px; 

font-family:  wide latin; 

color:black; 

background-color: green; 

  box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green; 

} 

#ss 

{ 

font-size: 20px; 

color:#20fc03; 

background-color: black; 

font-family:  Times new roman; 

} 

h2 

{ 

font-size: 20px; 

color:black; 

background-color: white; 
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font-family:  Times new roman; 

} 

a 

{ 

font-size: 20px; 

color:#FA2204 ; 

font-family:  Times new roman; 

} 

.alerts-border { 

    border: 4px #ff0000 dashed; 

 

    animation: blink 0.2s; 

    animation-iteration-count: infinite; 

} 

@keyframes blink { 50% { border-color:yellow ; } 

} 

</style> 

<body> 

{% load static %} 

<center> 

<img src="{{emp.UPLOAD_PLANT LEAF DISEASE PREDICTION 

_IMAGE.url}}" alt="Smiley face" width="225" height="225"> 

<br> 

<a href="{% url 'sign language' %}">Result</a>&#160;&#160;&#160; 

<a href="{% url 'home' %}">Go Back!!!</a> 

</center> 

</body> 

</html> 
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result.html 

{% load static %} 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

<meta charset="UTF-8"> 

<title>PLANT LEAF DISEASE PREDICTION OUTPUT RESULT</title> 

</head> 

<style> 

  label 

{ 

font-size: 20px; 

color:red; 

font-family:  Algerian; 

} 

body 

  { 

    background: url(../static/image/emo1.png); 

    background-repeat: no-repeat; 

    background-position: center; 

    background-size: cover; 

    -webkit-background-size: cover; 

    -moz-background-size: cover; 

    -o-background-size: cover; 

    min-height: 100vh; 

} 

  button 

{ 

font-size: 20px; 

font-family:  wide latin; 

color:black; 

background-color: green; 

  box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green; 

} 

#ss 

{ 

font-size: 20px; 
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color:#20fc03; 

background-color: black; 

font-family:  Times new roman; 

} 

.blink_me { 

  animation: blinker 2s linear infinite; 

} 

@keyframes blinker { 

  50% { 

    opacity: 0; 

  } 

} 

h2 

{ 

background-color: #101010; 

font-family: Algerian; 

font-size: 33px; 

letter-spacing: 3px; 

color:#56ff00; 

} 

h1,h3 

{ 

font-family: Algerian; 

font-size: 33px; 

letter-spacing: 3px; 

color:red; 

} 

a 

{ 

font-size: 20px; 

color:black  ; 

font-family:  Times new roman; 

} 

</style> 

<body> 

<center><h2 class="blink_me">PLANT LEAF DISEASE PREDICTION 

USING ARTIFICIAL NEURAL 
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NETWORK</h2></center><br><br><br><br> 

<marquee 

direction="down"><center><b><h1>{{out}}</h1></b></center></marque

e> 

 

<h3><a href="{% url 'home' %}">Go Back!!!</a></h3> 

 

</body> 

</html> 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2 SCREENSHOTS: 

Apple leaf black rot  
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Apple leaf  Healthy 

 

Cherry leaf Powdery mildew 

 

Cherry leaf Healthy 

 

Grape leaf black rot 
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Grape leaf Healthy 

 

Peach leaf bacterial spot 

 

Peach leaf Healthy 

 

Strawberry leaf scorch 
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Strawberry leaf Healthy 

 

Fig 19: Dataset Screenshots 
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OUTPUT SCREENSHOTS: 

 

 

Fig 20: Output Screenshots 
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7.1  PUBLICATION AND PLAGIARISM REPORT  
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