
Plant Disease Detection and Classification by Deep Learning

Submitted in partial fulfillment of the requirements for the award of Bachelor of

Engineering Degree in Computer Science and Engineering

by

KH BIKASH SINGHA (Reg No: 38110251)

KRITI ANAND (Reg No: 38110271)

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV GANDHI SALAI, CHENNAI - 600 119

APRIL 2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of KH BIKASH

SINGHA (Reg No: 38110251) and KRITI ANAND (Reg No: 38110271) who carried

out the project entitled “Plant Disease Detection and Classification by Deep

Learning” under my supervision from December 2021 to March 2022.

Internal Guide

Dr. A. Christy, M.C.A., Ph.D.

Head of the Department

Dr. S. VIGNESHWARI, M.E., Ph.D

Submitted for Viva voce Examination held on _____________

Internal Examiner External Examiner

DECLARATION

I, KH BIKASH SINGHA hereby declare that the project report entitled “Plant

Disease Detection and Classification by Deep Learning” was done by me

underthe guidance of Dr.A.Christy is submitted in partial fulfillment of the

requirementsfor the award of Bachelor of Engineering Degree in Computer Science

and Engineering.

DATE: 31/03/2022

PLACE: Chennai SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to the Board of Management of

Sathyabama for their kind encouragement in doing this project and for completing it

successfully. I am grateful to them.

I convey my thanks to Dr. T. Sasikala, M.E., Ph.D, Dean, School of Computing, Dr.

S. Vigneshwari, M.E., Ph.D. and Dr. L. Lakshmanan, M.E., Ph.D.,Heads of the

Department of Computer Science and Engineering for providing me necessary

support and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide

Dr.A.Christy for his valuable guidance, suggestions and constant encouragement

paved the way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many

ways for the completion of the project

ABSTRACT

Traditional farming is going out of date nowadays. Technologies are being

introduced in the farming sector for the past decade and in recent years it is seen

that the participation of deep learning and machine learning is playing an integral

role in solving traditional problems. The introduction of new technology has

increased the productivity of farmers and also increased the yields and quality of the

crops too. Plant diseases are a serious concern for the consumers and the farmers

too. It does not only carry some harmful bacteria within itself however it

compromises the yield of the crops too. The identification of such plant diseases has

been a continuous problem for cultivators and researchers. Deep learning-enabled

developments in the field of computer vision have paved the path for computer-

assisted plant disease diagnosis. Deep Learning has achieved great success in the

categorization of a number of plant diseases by exploiting its ability to recognize

objects with the help of convolutional neural networks. Various deep learning

algorithm like AlexNet and LeNet-5 is applied on a publicly available dataset

(plantvillage dataset) so that the neural network can capture the various features of a

specific disease and diagnose it accordingly using a human-like decision making skill

TABLE OF CONTENT

SL.NO TITLE PAGE.NO

01. INTRODUCTION

1.1 OUTLINE OF THE PROJECT

1.2 OBJECTIVES

1

1

2

02. LITERATURE SURVEY 3-7

03. AIM AND SCOPE

3.1 PROJECT GOAL

3.2 SCOPE OF THE PROJECT

3.3 OVERVIEW OF THE SYSTEM

7

7

8

9-11

04. METHODOLOGY

4.1 SYSTEM ARCHITECTURE

4.2 TYPES OF CNN

12

18-23

23-27

05. COMPARISION AND ANALYSIS 27-29

06. SUMMARY, CONCLUSION AND FUTURE WORK 30-32

07. APPENDICES

7.1 SOURCE CODE

7.2 SCREENSHOTS

7.3 PUBLICATION AND PLAGIARISM REPORT

7.4 REFERENCE

32

32-55
56-59
60-61
62-63

LIST OF FIGURES

SL.NO TITLE PAGE.NO

1. DATAFLOW DIAGRAM 2

2. SYSTEM ARCHITECTURE 18

3. WORKFLOW DIAGRAM 19

4. USECASE DIAGRAM 19

5. CLASS DIAGRAM 20

6. ACTIVITY DIAGRAM 21

7. SEQUENCE DIAGRAM 21

8. E.R – DIAGRAM 22

9. COLLABORATION DIAGRAM 23

LIST OF SYSMBOLS

 NOTATION

S.NO NAME NOTATION DESCRIPTION

1.

Class

Represents a

collection of similar

entities grouped

together.

2.

Association

NAME

Associations

represents static

relationships between

classes. Roles

representsthe way the

two classes see each

other.

3.

 Actor

It aggregates several

+ public

-private

protected

Class Name

-attribute

-attribute

+operation

+operation

+operation

Class B Class A

Class A Class B

classes into a single

classes.

4.

Aggregation

Interaction between

the system and

external environment

5.

 Relation

 (uses)

uses

Used for additional

process

communication.

6.

Relation

(extends)

EXTENDS

Extends relationship is

used when one use

case is similar to

another use case but

does a bit more.

7.

Communication

Communication

between various use

cases.

Class A Class A

Class B Class B

8.

State

State of the processs.

9.

Initial State

Initial state of the

object

10.

Final state

F inal state of the

object

11.

Control flow

Represents various

control flow between

the states.

12.

Decision box

Represents decision

making process from a

constraint

 13.

Usecase

Interact ion between

the system and

 State

Usescase

14.

Component

Represents physical

modules which is a

collection of

components.

15.

Node

Represents physical

modules which are a

collection of

components.

16.

Data

Process/State

A circle in DFD

represents a state or

process which has

been triggered due to

some event or acion.

17.

External

entity

Represents external

entities such as

keyboard,sensors,etc.

 external environment.

18. Transition

Represents

communication that

occurs between

processes.

19.

Object

Lifeline

Represents the vertical

dimensions that the

object

communications.

 20.

Message

Message

Represents the

message exchanged.

1

1. INTRODUCTION

India being an agriculture country, about 70% of the population depends on it as

their main source of income and food. Agriculture plays and important part of the

Indian economy as it contributes about 17% of the total GDP. Farmers have wide

range in selecting their crops and finding a suitable pesticide for it but in spite of

all their efforts it can all be vain if they can‟t identify the disease plaguing their

crops. Thus, disease on crops can significantly reduce the quality and quantity of

agricultural products along with economical damage to the farmers. To

successfully cultivate crops without incurring much loss we need to properly

identify the disease and remedy it, this requires a lot of work and processing time

as detecting each and every plant can be tedious can time consuming. To lessen

the burden of the farmers along with their losses we propose the use of a system

which can detect infected plants so that we can curb the spread of infection and

diseases at an earlier step thus reducing losses and crop failure.

In most cases symptoms like fungal infection and rot can be seen on the leaves,

stem and fruit. This project provides an insight into how we deal with the problem

and further discuss the challenges of our work and how we can improve upon it

in future work.

1.1 OUTLINE OF THE PROJECT

Overview of the system:

 Define a problem

 Gathering image data set

 Evaluating algorithms

 Detecting results

The steps involved in Building the data model is depicted below.

2

Fig 1: Data flow diagram for CNN model

1.2 OBJECTIVE :

Smart farming system using necessary infrastructure is an innovative technology

that helps to improve the quality and quantity of agricultural production in the

country. Disease in plants has long been one of the major threats to food

security as it dramatically reduces the crop yield and compromises the quality.

The identification of such diseases has been a significant challenge to cultivators

and researchers. Deep learning-enabled developments in the field of computer

vision have paved the path for computer-assisted plant disease diagnosis. Deep

learning with convolutional neural networks (CNN) has achieved tremendous

success in the categorization of a number of plant diseases by exploiting its

ability to recognise objects, and the solution provides an efficient technique for

detecting plant disease. Various CNN algorithm like AlexNet and LeNet-5 is

applied on a publicly available dataset (plant village dataset) so that the neural

network can capture the various features of specific disease and diagnose it

accordingly using a human-like decision making skill.

Data collection (Splitting Training set & Test)

set)

Building classification Model

Pre Processing (Sequential)

Prediction (Plant leaf disease Prediction)

3

2. LITERATURE SURVEY

 A literature review is a body of text that aims to review the critical points of

current knowledge on and/or methodological approaches to a particular topic. It is

secondary sources and discuss published information in a particular subject area

and sometimes information in a particular subject area within a certain time period.

Its ultimate goal is to bring the reader up to date with current literature on a topic and

forms the basis for another goal, such as future research that may be needed in the

area and precedes a research proposal and may be just a simple summary of

sources. Usually, it has an organizational pattern and combines both summary and

synthesis.

 A summary is a recap of important information about the source, but a

synthesis is a re-organization, reshuffling of information. It might give a new

interpretation of old material or combine new with old interpretations or it might trace

the intellectual progression of the field, including major debates. Depending on the

situation, the literature review may evaluate the sources and advise the reader on

the most pertinent or relevant of them. Loan default trends have been long studied

from a socio-economic stand point. Most economics surveys believe in empirical

modeling of these complex systems in order to be able to predict the loan default

rate for a particular individual. The use of machine learning for such tasks is a trend

which it is observing now. Some of the surveys to understand the past and present

perspective of loan approval or not.

REVIEW OF LITERATURE SURVEY

Title: Yellow Rust Extraction in Wheat Crop based on Color Segmentation

Techniques

Author: Amina Khatra

Year: December 2013

4

The presented work presents a color based segmentation techniques for

extraction of yellow rust in whet crop images. Accurate segmentation of yellow rust in

wheat crop images is very part of assessment of disease penetration into the wheat

crop. And in turn to take the necessary preventive action for minimizing the crop

damage. The jpeg images acquired from CCD camera are read into the matlab tool

and a color-based segmentation algorithm is performed to segment the yellow rust.

The segmentation of color is performed base on k-means algorithm.

TITLE: Comparative study of Leaf Disease Diagnosis system using Texture features

and Deep Learning Features

AUTHOR: Ashwini T Sapka, Uday V Kulkarni

YEAR: 2018

The feature extraction technique plays a very critical and crucial role in

automatic leaf disease diagnosis system. Many different feature extraction

techniques are used by the researchers for leaf disease diagnosis which includes

colour, shape, texture, HOG, SURF and SIFT features. Recently Deep Learning is

giving very promising results in the field of computer vision. In this manuscript, two

feature extraction techniques are discussed and compared. In first approach, the

Gray Level Covariance Matrix(GLCM) is used which extracts 12 texture features for

diagnosis purpose. In second appraoch, the pretrained deep learning model, Alexnet

is used for feature extraction purpose. There are 1000 features extracted

automatically with the help of this pretrained model. Here Backpropagation neural

network (BPNN) is used for the classification purpose. It is observed that the deep

learning features are more dominant as compared to the texture features. It gives

93.85% accuracy which is much better than the texture feature extraction technique

used here.

5

TITLE: VARIOUS PLANT DISEASES DETECTION USING IMAGE PROCESSING

METHODS

AUTHOR: Simranjeet Kaur, Geetanjali Babbar, Navneet Sandhu, Dr. Gagan Jindal

YEAR: June 2019

Identification of plant leaf diseases is the preventive measure for the loss

happened in the yield and the overall agriculture crop quantity. Basically, the studies

of the plant diseases are defined by visualizing and observing patterns observed and

engraved on the leaves. So, the disease detection of any plant prior to any

hazardous impact becomes very crucial factor for viable agriculture. However, it is so

difficult to detect, monitor and derive conclusions from the plant leaf diseases

manually because, the costs emerging in the process demands huge amount of

workdone, energy, expertize and last but not least the processing time. Therefore,

image processing concepts comes handy and are used for disease detections.The

detection process includes the phases such as, image acquisition, segmentation,

image pre-processing, feature extraction from segments and then classification

based on the results. This paper discusses the elementary methods that are being

used for the plant disease detection based on the leaf images

TITLE: Android Application of Wheat Leaf Disease Detection and Prevention using

Machine Learning

AUTHOR: Sumit Nema, Bharat Mishra and Mamta Lambert

YEAR: APR-2020

Crop quality and production plays an important role in agriculture and farmer‟s

life. Famer‟s income highly depends on crop quantity and quality in India. Wheat is

the main crop in India. Wheat leaves diseases majorly affect the production rate as

6

well as farmer‟s profits. An android application has designed to detect the wheat

plant leaf diseases in this work. Machine learning methods are easily applied and

capable to quick recognizes these diseases. Simulation results show the

effectiveness of the proposed method. Real time experiment in the wheat field

nearby area of Madhya Pradesh also validates the results.

TITLE: WHEAT DISEASE DETECTION USING SVM CLASSIFIER

AUTHOR: Er.Varinderjit Kaur , Dr.Ashish Oberoi

YEAR: AUG 2018

There are many types of diseases which are present in plants. To detect these

diseases, patterns are required to recognize them. There are many types of

pattern recognition algorithm which gives detection of disease with accuracy.

Image processing Techniques for Wheat Disease Detection most important

research areas in computer science for last few decades. Based on literature

review, we conclude that the engineering and research community is doing lot of

work on Wheat disease detection, but the application of this techniques to solve

practical agricultural This paper presents a survey on SVM Classifier method that

use digital image processing techniques to detect, quantify and classify plant

diseases from digital images in the visible spectrum

It reviews, and summaries various techniques used for classifying and detecting

various bacterial, fungal and viral wheat leaf diseases. The classification techniques

help in automating the detection of wheat leaf diseases and categorizing them

centered on their morphological features. It focuses on identifying the wheat leaf

diseases with CNN as classifier. It is also intended to focus on increasing the

recognition rate and classification accuracy of severity of leaf diseases by using

hybrid algorithms.

Wheat‟s are considered to be important as they are the source of energy

supply to mankind. plant diseases can affect the wheat leaf any time between

sowing and harvesting which leads to huge loss on the production of crop and

economical value of market. Therefore, wheat disease detection plays a vital role in

7

agricultural field. However, it requires huge manpower, more processing time and

extensive knowledge about wheat diseases. Hence, machine learning is applied to

detect diseases in wheat leaves as it analyzes the data from different aspects and

classifies it into one of the predefined set of classes. The morphological features and

properties like color, intensity and dimensions of the plant leaves are taken into

consideration for classification. It presents an overview on various types of wheat

diseases and different classification techniques in machine learning that are used for

identifying diseases in different wheat leaves

Drawback:

 It has not focused on identifying other plant diseases with CNN as classifier.

 It has not focused on increasing the recognition

3. AIM AND SCOPE

3.1 PROJECT GOAL

To classify different plant diseases, we plan to design a deep learning system so

that a person without expertise in software should also be able to use it easily. The

proposed system is made to predict plant diseases using the leaves as an identifying

factor. It explains the analysis of our methodology along with some of the feature

engineering of the data. A large number of images is collected for each disease and

is classified into database images and input images. The primary attributes of the

leaves that are important are the shape and texture-oriented features. The figure

provided below gives us an insight into the basic principle of our system along with

an idea about how the system works.

8

3.2 SCOPE OF THE PROJECT

 India is an agriculture-based country and about 70% of the population

depends on it as their main source of income and food. Farmers have wide range in

selecting their crops and finding a suitable pesticide for it but in spite of all their

efforts it can all be vain if they can‟t identify the disease plaguing their crops. Thus

disease on crops can significantly reduce the quality and quantity of agricultural

products along with economical damage to the farmers. To successfully cultivate

crops without incurring much loss we need to properly identify the disease and

remedy it, this requires a lot of work and processing time as detecting each and

every plant can be tedious can time consuming. To lessen the burden of the farmers

along with their losses we propose the use of a system which can detect infected

plants so that we can curb the spread of infection and diseases at an earlier step

thus reducing losses and crop failure.

In most cases symptoms like fungal infection and rot can be seen on the leaves,

stem and fruit. This paper provides an insight into how we deal with the problem and

further discuss the challenges of our work and how we can improve upon it in future

work.

So, to classify different plant diseases, we plan to design a deep learning

system so that a person without expertise in software should also be able to use it

easily. The proposed system is made to predict plant diseases using the leaves as

an identifying factor. It explains the analysis of our methodology along with some of

the feature engineering of the data. A large number of images is collected for each

disease and is classified into database images and input images. The primary

attributes of the leaves that are important are the shape and texture-oriented

features. The figure provided below gives us an insight into the basic principle of our

system along with an idea about how the system works.

9

3.3 OVERVIEW OF THE SYSTEM

We have to import our data set using keras preprocessing image data

generator function also we create size, rescale, range, zoom range, horizontal flip.

Then we import our image dataset from folder through the data generator function.

Here we set train, test, and validation also we set target size, batch size and class-

mode from this function and we have to train using our own created network by

adding layers of CNN.

Fig 2: Overview of the System

 DFD(Data Flow Diagram)

A data flow diagram (DFD) is a graphical representation of the "flow" of data

through an information system, modeling its process aspects. A DFD is often used

as a preliminary step to create an overview of the system without going into great

detail, which can later be elaborated. DFDs can also be used for the visualization of

data processing (structured design). A DFD shows what kind of information will be

input to and output from the system, how the data will advance through the system,

and where the data will be stored. It does not show information about process timing

or whether processes will operate in sequence or in parallel, unlike a traditional

structured flowchart which focuses on control flow, or a UML activity workflow

diagram, which presents both control and data flows as a unified model. Data flow

diagrams are also known as bubble charts. DFD is a designing tool used in the top

down approach to Systems Design. Symbols and Notations Used in DFDs Using any

10

convention‟s DFD rules or guidelines, the symbols depict the four components of

data flow diagrams.

External entity: an outside system that sends or receives data, communicating with

the system being diagrammed. They are the sources and destinations of information

entering or leaving the system. They might be an outside organization or person, a

computer system or a business system. They are also known as terminators,

sources and sinks or actors. They are typically drawn on the edges of the diagram.

Process: any process that changes the data, producing an output. It might perform

computations, or sort data based on logic, or direct the data flow based on business

rules.

Data store: files or repositories that hold information for later use, such as a

database table or a membership form.

Data flow: the route that data takes between the external entities, processes and

data stores. It portrays the interface between the other components and is shown

with arrows, typically labeled with a short data name, like “Billing details.”

DFD levels and layers A data flow diagram can dive into progressively more

detail by using levels and layers, zeroing in on a particular piece. DFD levels are

numbered 0, 1 or 2, and occasionally go to even Level 3 or beyond. The necessary

level of detail depends on the scope of what you are trying to accomplish. DFD Level

0 is also called a Context Diagram. It‟s a basic overview of the whole system or

process being analyzed or modeled. It‟s designed to be an at-a-glance view,

showing the system as a single high-level process, with its relationship to external

entities. It should be easily understood by a wide audience, including stakeholders,

business analysts, data analysts and developers.

Level 0:

Image

leaf

Disease

Recognition

Disease

Classification

11

Level 1:

Level 2:

Level 3:

Fig 3: Data Flow Diagram

DESIGN ENGINEERING

General

Design is meaningful engineering representation of something that is to be

built. Software design is a process design is the perfect way to accurately translate

requirements in to a finished software product. Design creates a representation or

model, provides detail about software data structure, architecture, interfaces and

components that are necessary to implement a system.

Test image

Training dataset

Disease

Prediction
Feature

extraction

plant leaf disease

prediction

Training dataset

Testing dataset

CNN Model

 leaf

disease

prediction

Dense

CNN

CNN

Model

Classified plant

leaf disease
Plant leaf

Feature

12

4. METHODOLOGY

Preprocessing and Training the model (CNN): The dataset is preprocessed such as

Image reshaping, resizing and conversion to an array form. Similar processing is

also done on the test image. A dataset consisting of about 10 different class of leaf,

out of which any image can be used as a test image for the software.

Fig 4: Methodology of the system

The train dataset is used to train the model (CNN) so that it can identify the test

image and the disease it has CNN has different layers that are Dense, Dropout,

Activation, Flatten, Convolution2D, and MaxPooling2D. After the model is trained

successfully, the software can identify the Plant leaf disease prediction image

contained in the dataset. After successful training and preprocessing, comparison of

the test image and trained model takes place to predict the Sign language.

CNN Model steps:

Conv2d:

The 2D convolution is a fairly simple operation at heart: you start with a kernel, which

is simply a small matrix of weights. This kernel “slides” over the 2D input data,

performing an elementwise multiplication with the part of the input it is currently on,

and then summing up the results into a single output pixel.

The kernel repeats this process for every location it slides over, converting a 2D

matrix of features into yet another 2D matrix of features. The output features are

essentially, the weighted sums (with the weights being the values of the kernel itself)

of the input features located roughly in the same location of the output pixel on the

input layer.

Raw image Build a sequential

model

CNN train

Plant leaf disease

prediction

CNN Weights

13

Whether or not an input feature falls within this “roughly same location”, gets

determined directly by whether it‟s in the area of the kernel that produced the output

or not. This means the size of the kernel directly determines how many (or few) input

features get combined in the production of a new output feature.

This is all in pretty stark contrast to a fully connected layer. In the above example, we

have 5×5=25 input features, and 3×3=9 output features. If this were a standard fully

connected layer, you‟d have a weight matrix of 25×9 = 225 parameters, with every

output feature being the weighted sum of every single input feature. Convolutions

allow us to do this transformation with only 9 parameters, with each output feature,

instead of “looking at” every input feature, only getting to “look” at input features

coming from roughly the same location. Do take note of this, as it‟ll be critical to our

later discussion.

MaxPooling2D layer

Downsamples the input along its spatial dimensions (height and width) by taking the

maximum value over an input window (of size defined by pool_size) for each channel

of the input. The window is shifted by strides along each dimension.

The resulting output, when using the "valid" padding option, has a spatial shape

(number of rows or columns) of: output_shape = math.floor((input_shape - pool_size)

/ strides) + 1 (when input_shape >= pool_size)

The resulting output shape when using the "same" padding option is: output_shape =

math.floor((input_shape - 1) / strides) + 1

Arguments

• pool_size: integer or tuple of 2 integers, window size over which to take the

maximum. (2, 2) will take the max value over a 2x2 pooling window. If only one

integer is specified, the same window length will be used for both dimensions.

• strides: Integer, tuple of 2 integers, or None. Strides values. Specifies how far

the pooling window moves for each pooling step. If None, it will default to pool_size.

14

• padding: One of "valid" or "same" (case-insensitive). "valid" means no padding.

"same" results in padding evenly to the left/right or up/down of the input such that

output has the same height/width dimension as the input.

• data_format: A string, one of channels_last (default) or channels_first. The

ordering of the dimensions in the inputs. channels_last corresponds to inputs with

shape (batch, height, width, channels) while channels_first corresponds to inputs with

shape (batch, channels, height, width). It defaults to the image_data_format value

found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be

"channels_last".

Input shape

• If data_format='channels_last': 4D tensor with shape (batch_size, rows, cols,

channels).

• If data_format='channels_first': 4D tensor with shape (batch_size, channels,

rows, cols).

Output shape

• If data_format='channels_last': 4D tensor with shape (batch_size,

pooled_rows, pooled_cols, channels).

• If data_format='channels_first': 4D tensor with shape (batch_size, channels,

pooled_rows, pooled_cols).

Flatten layer

It is used to flatten the dimensions of the image obtained after convolving it. Dense:

It is used to make this a fully connected model and is the hidden layer. Dropout: It is

used to avoid over fitting on the dataset and dense is the output layer contains only

one neuron which decide to which category image belongs.

15

Flatten is used to flatten the input. For example, if flatten is applied to layer having

input shape as (batch_size, 2,2), then the output shape of the layer will be

(batch_size, 4)

Flatten has one argument as follows

keras.layers.Flatten(data_format = None)

data_format is an optional argument and it is used to preserve weight ordering when

switching from one data format to another data format. It accepts either channels_last

or channels_first as value. channels_last is the default one and it identifies the input

shape as (batch_size, ..., channels) whereas channels_first identifies the input shape

as (batch_size, channels, ...)

Dense layer

Dense implements the operation: output = activation(dot(input, kernel) + bias) where

activation is the element-wise activation function passed as the activation argument,

kernel is a weights matrix created by the layer, and bias is a bias vector created by

the layer (only applicable if use_bias is True). These are all attributes of Dense.

Note: If the input to the layer has a rank greater than 2, then Dense computes the dot

product between the inputs and the kernel along the last axis of the inputs and axis 0

of the kernel (using tf.tensordot). For example, if input has dimensions (batch_size,

d0, d1), then we create a kernel with shape (d1, units), and the kernel operates along

axis 2 of the input, on every sub-tensor of shape (1, 1, d1) (there are batch_size * d0

such sub-tensors). The output in this case will have shape (batch_size, d0, units).

Besides, layer attributes cannot be modified after the layer has been called once

(except the trainable attribute). When a popular kwarg input_shape is passed, then

keras will create an input layer to insert before the current layer. This can be treated

equivalent to explicitly defining an InputLayer.

Arguments

• units: Positive integer, dimensionality of the output space.

16

• activation: Activation function to use. If you don't specify anything, no activation

is applied (ie. "linear" activation: a(x) = x).

• use_bias: Boolean, whether the layer uses a bias vector.

• kernel_initializer: Initializer for the kernel weights matrix.

• bias_initializer: Initializer for the bias vector.

• kernel_regularizer: Regularizer function applied to the kernel weights matrix.

• bias_regularizer: Regularizer function applied to the bias vector.

• activity_regularizer: Regularizer function applied to the output of the layer (its

"activation").

• kernel_constraint: Constraint function applied to the kernel weights matrix.

• bias_constraint: Constraint function applied to the bias vector.

Input shape

N-D tensor with shape: (batch_size, ..., input_dim). The most common situation would

be a 2D input with shape (batch_size, input_dim).

Output shape

N-D tensor with shape: (batch_size, ..., units). For instance, for a 2D input with shape

(batch_size, input_dim), the output would have shape (batch_size, units).

Dropout layer

The Dropout layer randomly sets input units to 0 with a frequency of rate at

each step during training time, which helps prevent overfitting. Inputs not set to 0 are

scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged.

17

Note that the Dropout layer only applies when training is set to True such that

no values are dropped during inference. When using model.fit, training will be

appropriately set to True automatically, and in other contexts, you can set the kwarg

explicitly to True when calling the layer.

(This is in contrast to setting trainable=False for a Dropout layer. trainable does not

affect the layer's behavior, as Dropout does not have any variables/weights that can

be frozen during training.)

Arguments

 rate: Float between 0 and 1. Fraction of the input units to drop.

 noise_shape: 1D integer tensor representing the shape of the binary dropout

mask that will be multiplied with the input. For instance, if your inputs have

shape (batch_size, timesteps, features) and you want the dropout mask to be

the same for all timesteps, you can use noise_shape=(batch_size, 1,

features).

seed: A Python integer to use as random seed.

Image Data Generator:

It is that rescales the image, applies shear in some range, zooms the image and

does horizontal flipping with the image. This Image Data Generator includes all

possible orientation of the image.

Training Process:

train_datagen.flow_from_directory is the function that is used to prepare data

from the train_dataset directory Target_size specifies the target size of the image.

Test_datagen.flow_from_directory is used to prepare test data for the model and all

18

is similar as above. fit_generator is used to fit the data into the model made above,

other factors used are steps_per_epochs tells us about the number of times the

model will execute for the training data.

Epochs:

It tells us the number of times model will be trained in forward and backward pass.

Validation process:

Validation_data is used to feed the validation/test data into the model.

Validation_steps denotes the number of validation/test samples.

4.1 SYSTEM ARCHITECTURE:

Fig 5: System Architecture

19

Fig 6: Workflow Diagram

Source images

Testing

Dataset

Prediction of Plant leaf disease

CNN algorithm

Training

Dataset

20

4.1.1 USE CASE DIAGRAM:

Fig 7: Use Case Diagram

Use case diagrams are considered for high level requirement analysis of a

system. So, when the requirements of a system are analyzed the functionalities are

captured in use cases. So, it can say that uses cases are nothing but the system

functionalities written in an organized manner.

4.1.2. CLASS DIAGRAM:

Fig 8: Class Diagram

21

Class diagram is basically a graphical representation of the static view of the

system and represents different aspects of the application. So, a collection of class

diagrams represent the whole system. The name of the class diagram should be

meaningful to describe the aspect of the system. Each element and their

relationships should be identified in advance Responsibility (attributes and methods)

of each class should be clearly identified for each class minimum number of

properties should be specified and because, unnecessary properties will make the

diagram complicated. Use notes whenever required to describe some aspect of the

diagram and at the end of the drawing it should be understandable to the

developer/coder. Finally, before making the final version, the diagram should be

drawn on plain paper and rework as many times as possible to make it correct.

4.1.3. ACTIVITY DIAGRAM:

Fig 9: Activity Diagram

Activity is a particular operation of the system. Activity diagrams are not only

used for visualizing dynamic nature of a system, but they are also used to construct

the executable system by using forward and reverse engineering techniques. The

only missing thing in activity diagram is the message part. It does not show any

message flow from one activity to another. Activity diagram is some time considered

22

as the flow chart. Although the diagram looks like a flow chart but it is not. It shows

different flow like parallel, branched, concurrent and single.

4.1.4. SEQUENCE DIAGRAM:

Fig 10: Sequence Diagram

Sequence diagrams model the flow of logic within your system in a visual

manner, enabling you both to document and validate your logic, and are commonly

used for both analysis and design purposes. Sequence diagrams are the most

popular UML artifact for dynamic modelling, which focuses on identifying the

behavior within your system. Other dynamic modelling techniques include activity

diagramming, communication diagramming, timing diagramming, and interaction

overview diagramming. Sequence diagrams, along with class

diagrams and physical data models are in my opinion the most important design-

level models for modern business application development.

http://agilemodeling.com/artifacts/activityDiagram.htm
http://agilemodeling.com/artifacts/activityDiagram.htm
http://agilemodeling.com/artifacts/communicationDiagram.htm
http://agilemodeling.com/artifacts/timingDiagram.htm
http://agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://agilemodeling.com/artifacts/classDiagram.htm
http://agilemodeling.com/artifacts/classDiagram.htm
http://agiledata.org/essays/dataModeling101.html

23

4.1.5. E.R – DIAGRAM

Fig 11: E.R. Diagram

An entity relationship diagram (ERD), also known as an entity relationship

model, is a graphical representation of an information system that depicts the

relationships among people, objects, places, concepts or events within that system.

An ERD is a data modeling technique that can help define business processes and

be used as the foundation for a relational database. Entity relationship diagrams

provide a visual starting point for database design that can also be used to help

determine information system requirements throughout an organization. After a

relational database is rolled out, an ERD can still serve as a referral point, should

any debugging or business process re-engineering be needed later.

https://searchdatamanagement.techtarget.com/definition/data-modeling
https://searchdatamanagement.techtarget.com/definition/relational-database

24

4.1.6. COLLABORATION DIAGRAM:

Fig 12: Collaboration Diagram

4.2 TYPES OF CNN:

 AlexNet

 LeNet

4.2.1 ALEXNET:

AlexNet is the name of a convolutional neural network which has had a large impact

on the field of machine learning, specifically in the application of deep

learning to machine vision. AlexNet was the first convolutional network which used

GPU to boost performance.

AlexNet architecture consists of 5 convolutional layers, 3 max-pooling

layers, 2 normalization layers, 2 fully connected layers, and 1 softmax layer. Each

convolutional layer consists of convolutional filters and a nonlinear activation

function ReLU. The pooling layers are used to perform max pooling.

https://www.mygreatlearning.com/blog/cnn-model-architectures-and-applications/

25

Architecture of AlexNet:

Fig 13: Architecture of AlexNet

26

Convolutional layers:

Convolutional layers are the layers where filters are applied to the original

image, or to other feature maps in a deep CNN. This is where most of the user-

specified parameters are in the network. The most important parameters are the

number of kernels and the size of the kernels.

Pooling layers:

Pooling layers are similar to convolutional layers, but they perform a specific

function such as max pooling, which takes the maximum value in a certain filter

region, or average pooling, which takes the average value in a filter region. These are

typically used to reduce the dimensionality of the network.

Dense or Fully connected layers:

Fully connected layers are placed before the classification output of a CNN

and are used to flatten the results before classification. This is similar to the output

layer of an MLP.

4.2.2 LENET:

LeNet was one among the earliest convolutional neural networks which

promoted the event of deep learning. After innumerous years of analysis and plenty

of compelling iterations, the end result was named LeNet.

Architecture of LeNet-5:

LeNet-5 CNN architecture is made up of 7 layers. The layer composition

consists of 3 convolutional layers, 2 subsampling layers and 2 fully connected layers.

https://www.analyticssteps.com/blogs/how-transfer-learning-done-neural-networks-and-convolutional-neural-networks

27

Fig 14: Architecture of LeNet

Convolutional layers:

Convolutional layers are the layers where filters are applied to the original

image, or to other feature maps in a deep CNN. This is where most of the user-

specified parameters are in the network. The most important parameters are the

number of kernels and the size of the kernels.

Pooling layers:

Pooling layers are similar to convolutional layers, but they perform a specific

function such as max pooling, which takes the maximum value in a certain filter

region, or average pooling, which takes the average value in a filter region. These are

typically used to reduce the dimensionality of the network.

28

Dense or Fully connected layers:

Fully connected layers are placed before the classification output of a CNN and are

used to flatten the results before classification. This is similar to the output layer of an

MLP.

5. COMPARISION AND ANALYSIS

In this paper, we have discussed about the working of different types of Convnet and

its implementation. The use of the relative variety of techniques gives us a decent

perspective into the working of our model and helps us finalize on a particular

algorithm by comparing them against each other. We measure the performance

using metrics like the overall accuracy and loss against the training data and testing

data. The overall accuracy we achieve at the end of the model training gives us a

good idea of the performance, along with the graph of the overall accuracy as it

progresses through the training also gives us an idea about the outliers and not just

the end result. The graph provides us with the insights which we could not see

clearly with just a glance over the module and presents us with more in-depth idea

about how we progress through our data with all the deviations in our sight for better

analysis of our model.

To better understand the performance of the different algorithms we have used, the

model loss and accuracy graph is given below.

29

Fig 15: ManualNet Metrics Graph

In the initial phase we used a CNN which we made manually with layers and

activation functions which we estimated were good for our data. The metrics tells us

that at the end of our training we have a model accuracy of 92% which states that

our model is performing very well for a deep learning model, but the initial outliers in

our test data tells us that the model is having some problem achieving the desired

results due to some discrepancy in our test data.

Fig 16: AlexNet Metrics Graph

To evaluate our initial model against other models which are available we made the

use of AlexNet since its one of the most relevant models in the field of CNN. But as

we train our model we learn that it does not converge on our desired results. The

model loss on our test data keeps on increasing as we train our model and our

model accuracy for the training data also flat lines with very little accuracy. This tells

us that AlexNet is a very bad algorithm for our given data with both our test and train

data not converging and flat lining with both of them parallel to each other.

30

Fig 17: LENet-5 Metrics Graph

Since our second model gave no insight into our initial model, we make use of

another popular Deep Learning model called LeNet-5. In this we can see that our

model performs very well on our data and it as we progress through the training

phase the model loss flatlines under 10%, also our model accuracy has a gradual

increase as we crunch through our dataset and it flatlines above 95% as we come to

the end of our model training. There are certain outliers in our test data, but we can

rule it out as a discrepancy in our dataset as we had the same outlier in our initial

model.

At the end of our analysis we conclude that our initial model along with the final

model i.e. LeNet-5 has worked as we desired. But at the end we choose LeNet-5 as

our working model as it has a higher accuracy and lower loss percentage. In the

initial model i.e., our ManualNet we have a model loss of around 25% which is not

reliable in comparison to LeNet-5 which has an overall model loss of 5%. Thus, we

conclude that LeNet-5 would be the best fit model for our final proposal.

31

6. SUMMARY

After comparing and analyzing the above we deployed our model in Django

framework and designed our web app using HTML and CSS. We have tried to

design our interface in a way so that everyone can use the resource without having

the proper about deep learning. The Choose button helps you in providing the input

whereas the upload button starts the processing of the image. After successful

importation of image, we get the result that the leaf is healthy or not.

CONCLUSION

The proposed system for classifying the different crop disease has a good accuracy

and gives us a good result. The system has potential to reduce the burden of the

farmers as well as researchers as it acts as an early detector for the crops. This

application can also reduce the loss of crops as it can pre-emptively give warnings

as well as help new farmers and researchers from making a mistake by double

checking their doubts. Further, future iteration can add more diseases and better

detection algorithm.

In this project, a research to classify Plant leaf Disease Classification over

static facial images using deep learning techniques was developed. This is a

complex problem that has already been approached several times with different

techniques. While good results have been achieved using feature engineering, this

project focused on feature learning, which is one of DL promises. While feature

engineering is not necessary, image pre-processing boosts classification accuracy.

Hence, it reduces noise on the input data. Nowadays, Agriculture based AI Plant leaf

disease includes is heavily required. The solution totally based on feature learning

does not seem close yet because of a major limitation. Thus, leaf Disease

classification could be achieved by means of deep learning techniques.

32

OUTPUT

Fig 18: Output Classes

33

FUTURE WORK

This work can be further improved by adding more data into our dataset.

Furthermore, with the advancement and proposal of more algorithms we can

improve our model and update it if required. Also, for our web application we can

make it more interactive by providing important knowledge about the plant disease

along with measures to prevent them. Lastly, making our model accessible to more

people can make it such that they can further develop on our work.

34

7. APPENDICES:

7.1 SOURCE CODE:

To build a model for training and testing:

importos
importnumpyasnp# linear algebra
importmatplotlib.pyplotasplt

Dl framwork - tensorflow, keras a backend
importtensorflowastf
importtensorflow.keras.backendasK
fromtensorflow.keras.modelsimportModel,Sequential
fromtensorflow.keras.layersimportInput,Dense,Flatten,Dropout,BatchNo
rmalization
fromtensorflow.keras.layersimportConv2D,SeparableConv2D,MaxPool
2D,LeakyReLU,Activation
fromtensorflow.keras.optimizersimportAdam
fromtensorflow.keras.preprocessing.imageimportImageDataGenerator
fromtensorflow.keras.callbacksimportModelCheckpoint,ReduceLROnPl
ateau,EarlyStopping
fromIPython.displayimportdisplay
fromosimportlistdir
fromos.pathimportisfile,join
fromPILimportImage
importglob
fromtensorflow.keras.preprocessing.imageimportImageDataGenerator
fromtensorflow.keras.layersimportConvolution2D
fromtensorflow.keras.layersimportMaxPooling2D
fromtensorflow.keras.layersimportFlatten
fromtensorflow.keras.layersimportDense

importwarnings
warnings.filterwarnings('ignore')

dir_name_train_Apple leaf black rot = 'Dataset/train/Apple leaf black rot '

dir_name_train_Apple leaf Healthy = 'Dataset/train/Apple leaf Healthy'

35

dir_name_train_Cherry leaf Powdery mildew = 'Dataset/train/Cherry leaf

Powdery mildew'

dir_name_train_Cherry leaf Healthy = 'Dataset/train/Cherry leaf Healthy'

dir_name_train_Grape leaf black rot = 'Dataset/train/Grape leaf black rot'

dir_name_train_Grape leaf Healthy = 'Dataset/train/Grape leaf Healthy'

dir_name_train_Peach leaf bacterial spot = 'Dataset/train/Peach leaf

bacterial spot'

dir_name_train_Peach leaf Healthy = 'Dataset/train/Peach leaf Healthy'

dir_name_train_Strawberry leaf scorch = 'Dataset/train/Strawberry leaf

scorch'

dir_name_train_Strawberry leaf Healthy = 'Dataset/train/Strawberry leaf

Healthy'

defplot_images(item_dir,n=6):
all_item_dir=os.listdir(item_dir)
item_files=[os.path.join(item_dir,file)forfileinall_item_dir][:n]

plt.figure(figsize=(80,40))
foridx,img_pathinenumerate(item_files):
plt.subplot(7,n,idx+1)
img=plt.imread(img_path)
plt.imshow(img,cmap='gray')
plt.axis('off')

plt.tight_layout()

defImages_details_Print_data(data,path):
print(" ====== Images in: ",path)
fork,vindata.items():
print("%s:\t%s"%(k,v))

defImages_details(path):
files=[fforfinglob.glob(path+"**/*.*",recursive=True)]
data={}
data['images_count']=len(files)
data['min_width']=10**100# No image will be bigger than that

36

data['max_width']=0
data['min_height']=10**100# No image will be bigger than that
data['max_height']=0

forfinfiles:
im=Image.open(f)
width,height=im.size
data['min_width']=min(width,data['min_width'])
data['max_width']=max(width,data['max_height'])
data['min_height']=min(height,data['min_height'])
data['max_height']=max(height,data['max_height'])

Images_details_Print_data(data,path)

print("")
print("Trainned data for Apple leaf black rot:")
print("")
Images_details(dir_name_train_Apple leaf black rot)
print("")
plot_images(dir_name_train_Apple leaf black rot, 10)

print("")
print("Trainned data for Apple leaf Healthy:")
print("")
Images_details(dir_name_train_Apple leaf Healthy)
print("")
plot_images(dir_name_train_Apple leaf Healthy, 10)

print("")
print("Trainned data for Cherry leaf Powdery mildew:")
print("")
Images_details(dir_name_train_Cherry leaf Powdery mildew)
print("")
plot_images(dir_name_train_Cherry leaf Powdery mildew, 10)

print("")
print("Trainned data for Cherry leaf Healthy:")
print("")
Images_details(dir_name_train_Cherry leaf Healthy)
print("")
plot_images(dir_name_train_Cherry leaf Healthy, 10)

37

print("")
print("Trainned data for Grape leaf black rot:")
print("")
Images_details(dir_name_train_Grape leaf black rot)
print("")
plot_images(dir_name_train_Grape leaf black rot, 10)

print("")
print("Trainned data for Grape leaf Healthy:")
print("")
Images_details(dir_name_train_Grape leaf Healthy)
print("")
plot_images(dir_name_train_Grape leaf Healthy, 10)

print("")
print("Trainned data for Peach leaf bacterial spot:")
print("")
Images_details(dir_name_train_Peach leaf bacterial spot)
print("")
plot_images(dir_name_train_Peach leaf bacterial spot, 10)

print("")
print("Trainned data for Peach leaf Healthy:")
print("")
Images_details(dir_name_train_Peach leaf Healthy)
print("")
plot_images(dir_name_train_Peach leaf Healthy, 10)

print("")
print("Trainned data for Strawberry leaf scorch:")
print("")
Images_details(dir_name_train_Strawberry leaf scorch)
print("")
plot_images(dir_name_train_Strawberry leaf scorch, 10)

print("")
print("Trainned data for Strawberry leaf Healthy:")
print("")
Images_details(dir_name_train_Strawberry leaf Healthy)
print("")
plot_images(dir_name_train_Strawberry leaf Healthy, 10)

38

Classifier=Sequential()
Classifier.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activatio
n='relu'))
Classifier.add(MaxPooling2D(pool_size=(2,2)))
Classifier.add(Flatten())
Classifier.add(Dense(38,activation='relu'))

Classifier.add(Dense(4,activation='softmax'))
Classifier.compile(optimizer='rmsprop',loss='categorical_crossentropy',m
etrics=['accuracy'])

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True)
test_datagen=ImageDataGenerator(rescale=1./255)

training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(128,128),batch_size=32,class_mode='categorical')
test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(1
28,128),batch_size=32,class_mode='categorical')

img_dims=150
epochs=10
batch_size=32

Fitting the model
history=Classifier.fit_generator(
training_set,steps_per_epoch=training_set.samples//batch_size,
epochs=epochs,
validation_data=test_set,validation_steps=test_set.samples//batch_size)

defgraph():
#Plot training & validation accuracy values
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train','Test'],loc='upper left')

39

plt.show()

Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train','Test'],loc='upper left')
plt.show()
graph()

Module 2:

Dl framwork - tensorflow, keras a backend

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.models import Model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import LeakyReLU

from tensorflow.keras.layers import Activation

40

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing.image import
ImageDataGenerator

from tensorflow.keras.callbacks import ModelCheckpoint

from tensorflow.keras.callbacks import ReduceLROnPlateau

from tensorflow.keras.callbacks import EarlyStopping

import warnings
warnings.filterwarnings('ignore')

model = Sequential()
1st Convolutional Layer
model.add(Conv2D(filters=96, input_shape=(224,224,3),
kernel_size=(11,11), strides=(4,4), padding='valid'))
model.add(Activation('relu'))
Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))
2nd Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1),
padding='valid'))
model.add(Activation('relu'))
Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))
3rd Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),
padding='valid'))
model.add(Activation('relu'))
4th Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),
padding='valid'))
model.add(Activation('relu'))
5th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),
padding='valid'))

41

model.add(Activation('relu'))
Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))
Passing it to a Fully Connected layer
model.add(Flatten())
1st Fully Connected Layer
model.add(Dense(4096, input_shape=(224*224*3,)))
model.add(Activation('relu'))
Add Dropout to prevent overfitting
model.add(Dropout(0.4))
2nd Fully Connected Layer
model.add(Dense(4096))
model.add(Activation('relu'))
Add Dropout
model.add(Dropout(0.4))
3rd Fully Connected Layer
model.add(Dense(1000))
model.add(Activation('relu'))
Add Dropout
model.add(Dropout(0.4))
Output Layer
model.add(Dense(4))
model.add(Activation('softmax'))
model.summary()

Compile the model
model.compile(loss = 'categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True)
test_datagen=ImageDataGenerator(rescale=1./255)

training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(224,224),batch_size=32,class_mode='categorical')
test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(2
24,224),batch_size=32,class_mode='categorical')

img_dims = 150
epochs = 1
batch_size = 32

42

Fitting the model
history = model.fit(
 training_set, steps_per_epoch=training_set.samples //
batch_size,
 epochs=epochs,
 validation_data=test_set,validation_steps=test_set.samples //
batch_size)

import matplotlib.pyplot as plt

def graph():
#Plot training & validation accuracy values
 plt.plot(history.history['accuracy'])
 plt.plot(history.history['val_accuracy'])
 plt.title('Model accuracy')
 plt.ylabel('Accuracy')
 plt.xlabel('Epoch')
 plt.legend(['Train', 'Test'], loc='upper left')
 plt.show()

Plot training & validation loss values
 plt.plot(history.history['loss'])
 plt.plot(history.history['val_loss'])
 plt.title('Model loss')
 plt.ylabel('Loss')
 plt.xlabel('Epoch')
 plt.legend(['Train', 'Test'], loc='upper left')
 plt.show()

graph()

print("[INFO] Calculating model accuracy")
scores = model.evaluate(test_set)
print(f"Test Accuracy: {scores[1]*100}")

Module 3:

fromtensorflow.keras.callbacksimportModelCheckpoint,ReduceLROnPl
ateau,EarlyStopping

43

fromtensorflow.keras.modelsimportSequential

fromtensorflow.keras.layersimportConvolution2D

fromtensorflow.keras.layersimportMaxPooling2D

fromtensorflow.keras.layersimportFlatten

fromtensorflow.keras.layersimportDense

importwarnings
warnings.filterwarnings('ignore')

Classifier=Sequential()

Classifier.add(Convolution2D(32,3,3,input_shape=(225,225,3),activation
='relu'))
Classifier.add(MaxPooling2D(pool_size=(2,2)))
Classifier.add(Convolution2D(128,3,3,activation='relu'))
Classifier.add(MaxPooling2D(pool_size=(2,2)))
Classifier.add(Flatten())
Classifier.add(Dense(256,activation='relu'))
Classifier.add(Dense(4,activation='softmax'))

Classifier.compile(optimizer='rmsprop',loss='categorical_crossentropy',m
etrics=['accuracy'])
Classifier.summary()

fromtensorflow.keras.preprocessing.imageimportImageDataGenerator

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zo
om_range=0.2,horizontal_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

44

training_set=train_datagen.flow_from_directory('dataset/Train',target_siz
e=(225,225),batch_size=32,class_mode='categorical')

test_set=test_datagen.flow_from_directory('dataset/Test',target_size=(2
25,225),batch_size=32,class_mode='categorical')

fromIPython.displayimportdisplay

img_dims=150
epochs=60
batch_size=32

Classifier.fit_generator(training_set,steps_per_epoch=training_set.sampl
es//batch_size,
epochs=epochs,
validation_data=test_set,validation_steps=test_set.samples//batch_size)

importh5py

Classifier.save('e.h5')

fromkeras.modelsimportload_model

model=load_model('e.h5')

importnumpyasnp

fromtensorflow.keras.preprocessingimportimage
test_image=image.load_img('c5.jpg',target_size=(225,225))

importmatplotlib.pyplotasplt
img=plt.imshow(test_image)

45

test_image=image.img_to_array(test_image)

test_image=np.expand_dims(test_image,axis=0)

result=model.predict(test_image)

result

prediction=result[0]

classes=training_set.class_indices

classes

prediction=list(prediction)

prediction

classes=['Apple leaf black rot ','Apple leaf Healthy','Cherry leaf Powdery

mildew','Cherry leaf Healthy','Grape leaf black rot','Grape leaf

Healthy','Peach leaf bacterial spot','Peach leaf Healthy','Strawberry leaf

scorch','Strawberry leaf Healthy']

 output = zip(classes, prediction)

 output = dict(output)

 if output['Apple leaf black rot '] == 1.0:

 a="Apple leaf black rot "

 elif output['Apple leaf Healthy'] == 1.0:

 a="Apple leaf Healthy"

 elif output['Cherry leaf Powdery mildew'] == 1.0:

 a="Cherry leaf Powdery mildew"

46

 elif output['Cherry leaf Healthy'] == 1.0:

 a="Cherry leaf Healthy"

 elif output['Grape leaf black rot'] == 1.0:

 a="Grape leaf black rot"

 elif output['Grape leaf Healthy'] == 1.0:

 a="Grape leaf Healthy"

 elif output['Peach leaf bacterial spot'] == 1.0:

 a="Peach leaf bacterial spot"

 elif output['Peach leaf Healthy'] == 1.0:

 a="Peach leaf Healthy"

 elif output['Strawberry leaf scorch'] == 1.0:

 a="Strawberry leaf scorch"

 elif output['Strawberry leaf Healthy'] == 1.0:

 a="Strawberry leaf Healthy"

PyCharm:

Views.py

from django.shortcuts import render

from django.http import HttpResponseRedirect

from django.urls import reverse_lazy

from django.views.generic import TemplateView

from employee.forms import EmployeeForm

from django.views.generic import DetailView

from employee.models import Employee

47

class EmployeeImage(TemplateView):

 form = EmployeeForm

 template_name = 'emp_image.html'

 def post(self, request, *args, **kwargs):

 form = EmployeeForm(request.POST, request.FILES)

 if form.is_valid():

 obj = form.save()

 return HttpResponseRedirect(reverse_lazy('emp_image_display',

kwargs={'pk': obj.id}))

 context = self.get_context_data(form=form)

 return self.render_to_response(context)

 def get(self, request, *args, **kwargs):

 return self.post(request, *args, **kwargs)

class EmpImageDisplay(DetailView):

 model = Employee

 template_name = 'emp_image_display.html'

 context_object_name = 'emp'

def sign language(request):

 result1 = Employee.objects.latest('id')

 import numpy as np

 import tensorflow as tf

 from tensorflow import keras

 import h5py

 models = keras.models.load_model('C:/Users/SPIRO73-

PYTHON/Desktop/smb/Deep_Learning/Plant leaf disease

prediction/Deploy/employee/e.h5')

 from tensorflow.keras.preprocessing import image

 test_image = image.load_img('C:/Users/SPIRO73-

48

PYTHON/Desktop/smb/Deep_Learning/Plant leaf disease

prediction/Deploy/media/' + str(result1), target_size=(225, 225))

 test_image = image.img_to_array(test_image)

 test_image = np.expand_dims(test_image, axis=0)

 result = models.predict(test_image)

 prediction = result[0]

 prediction = list(prediction)

classes=['Apple leaf black rot ','Apple leaf Healthy','Cherry leaf Powdery

mildew','Cherry leaf Healthy','Grape leaf black rot','Grape leaf

Healthy','Peach leaf bacterial spot','Peach leaf Healthy','Strawberry leaf

scorch','Strawberry leaf Healthy']

 output = zip(classes, prediction)

 output = dict(output)

 if output['Apple leaf black rot '] == 1.0:

 a="Apple leaf black rot "

 elif output['Apple leaf Healthy'] == 1.0:

 a="Apple leaf Healthy"

 elif output['Cherry leaf Powdery mildew'] == 1.0:

 a="Cherry leaf Powdery mildew"

 elif output['Cherry leaf Healthy'] == 1.0:

 a="Cherry leaf Healthy"

 elif output['Grape leaf black rot'] == 1.0:

 a="Grape leaf black rot"

 elif output['Grape leaf Healthy'] == 1.0:

 a="Grape leaf Healthy"

 elif output['Peach leaf bacterial spot'] == 1.0:

 a="Peach leaf bacterial spot"

 elif output['Peach leaf Healthy'] == 1.0:

49

 a="Peach leaf Healthy"

 elif output['Strawberry leaf scorch'] == 1.0:

 a="Strawberry leaf scorch"

 elif output['Strawberry leaf Healthy'] == 1.0:

 a="Strawberry leaf Healthy"

 return render(request, "result.html", {"out": a})

emp_image.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>image upload example</title>

</head>

<style>

 label

{

font-size: 20px;

color:purple;

font-family: Algerian;

}

body

 {

 background: url(../static/image/emo.png);

 background-repeat: no-repeat;

 background-position: center;

 background-size: 100% 100%;

 min-height: 100vh;

}

<!-- button-->

<!--{-->

50

<!--font-size: 20px;-->

<!--font-family: wide latin;-->

<!--color:black;-->

<!--background-color: green;-->

<!-- box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green;-->

<!--}-->

.button {

 background-color: #4CAF50; /* Green */

 border: none;

 color: white;

 padding: 16px 32px;

 text-align: center;

 text-decoration: none;

 display: inline-block;

 font-size: 16px;

 margin: 4px 2px;

 transition-duration: 0.4s;

 cursor: pointer;

}

.button1 {

 background-color: white;

 color: black;

 border: 2px solid #4CAF50;

}

#ss

{

font-size: 20px;

color:#20fc03;

background-color: black;

font-family: Times new roman;

}

.button1:hover {

 background-color: #4CAF50;

 color: white;

}

h2

51

{

font-size: 20px;

color:black;

background-color: white;

font-family: Times new roman;

}

a

{

font-size: 20px;

color:yellow;

font-family: Times new roman;

}

.alerts-border {

 border: 4px #ff0000 dashed;

 animation: blink 0.2s;

 animation-iteration-count: infinite;

}

@keyframes blink { 50% { border-color:yellow ; }

}

button

{

font-family: Algerian;

font-size: 35px;

font-weight: bold;

}

.alerts-border

{

width:500px;

margin-top:7%;

margin-left:28%;

padding: 10px 10px 10px 10px;

</style>

<body style="background-color: lightblue;">

<center><h2 class="blink_me">PLANT LEAF DISEASE PREDICTION

USING DEEP LEARNING

52

ALGORITHM</h2></center>

<div class=" alerts-border"style=" box-shadow: 0 19px 38px

rgba(0,0,0,0.30), 0 15px 12px rgba(0,0,0,0.22);">

<div id="aa" class="card-

header"><h2> &

nbsp; &n

bsp; &nbs

p;UPLOAD IMAGE HERE</h2></div>

<div class="card-body">

<div class="login-form">

<form method = "post" enctype="multipart/form-data">

 {% csrf_token %}

 {{ form.as_p }}

<button class="button button1" type="submit">Upload</button>

</form>

</div>

</div>

</div>

</body>

</html>

emp_image_display.html

<!DOCTYPE html>

<html>

<style>

 label

{

font-size: 20px;

color:red;

font-family: Algerian;

}

body

 {

53

 background: url(../static/image/emo.gif));

 background-repeat: no-repeat;

 background-position: center;

 background-size: cover;

 -webkit-background-size: cover;

 -moz-background-size: cover;

 -o-background-size: cover;

 min-height: 100vh;

}

 button

{

font-size: 20px;

font-family: wide latin;

color:black;

background-color: green;

 box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green;

}

#ss

{

font-size: 20px;

color:#20fc03;

background-color: black;

font-family: Times new roman;

}

h2

{

font-size: 20px;

color:black;

background-color: white;

54

font-family: Times new roman;

}

a

{

font-size: 20px;

color:#FA2204 ;

font-family: Times new roman;

}

.alerts-border {

 border: 4px #ff0000 dashed;

 animation: blink 0.2s;

 animation-iteration-count: infinite;

}

@keyframes blink { 50% { border-color:yellow ; }

}

</style>

<body>

{% load static %}

<center>

<img src="{{emp.UPLOAD_PLANT LEAF DISEASE PREDICTION

_IMAGE.url}}" alt="Smiley face" width="225" height="225">

Result

Go Back!!!

</center>

</body>

</html>

55

result.html

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>PLANT LEAF DISEASE PREDICTION OUTPUT RESULT</title>

</head>

<style>

 label

{

font-size: 20px;

color:red;

font-family: Algerian;

}

body

 {

 background: url(../static/image/emo1.png);

 background-repeat: no-repeat;

 background-position: center;

 background-size: cover;

 -webkit-background-size: cover;

 -moz-background-size: cover;

 -o-background-size: cover;

 min-height: 100vh;

}

 button

{

font-size: 20px;

font-family: wide latin;

color:black;

background-color: green;

 box-shadow: 5px 5px blue, 10px 10px red, 15px 15px green;

}

#ss

{

font-size: 20px;

56

color:#20fc03;

background-color: black;

font-family: Times new roman;

}

.blink_me {

 animation: blinker 2s linear infinite;

}

@keyframes blinker {

 50% {

 opacity: 0;

 }

}

h2

{

background-color: #101010;

font-family: Algerian;

font-size: 33px;

letter-spacing: 3px;

color:#56ff00;

}

h1,h3

{

font-family: Algerian;

font-size: 33px;

letter-spacing: 3px;

color:red;

}

a

{

font-size: 20px;

color:black ;

font-family: Times new roman;

}

</style>

<body>

<center><h2 class="blink_me">PLANT LEAF DISEASE PREDICTION

USING ARTIFICIAL NEURAL

57

NETWORK</h2></center>

<marquee

direction="down"><center><h1>{{out}}</h1></center></marque

e>

<h3>Go Back!!!</h3>

</body>

</html>

7.2 SCREENSHOTS:

Apple leaf black rot

58

Apple leaf Healthy

Cherry leaf Powdery mildew

Cherry leaf Healthy

Grape leaf black rot

59

Grape leaf Healthy

Peach leaf bacterial spot

Peach leaf Healthy

Strawberry leaf scorch

60

Strawberry leaf Healthy

Fig 19: Dataset Screenshots

61

OUTPUT SCREENSHOTS:

Fig 20: Output Screenshots

62

7.1 PUBLICATION AND PLAGIARISM REPORT

63

64

7.3 REFERENCE:

1. Simraneet Kaur, Getanajali Babar, Navneet Sandhu, Dr. Gagan Jindal,

„Various Plant disease detection using Image Processing Methods‟,June

2019.

2. Er. Varinderjit Kaur,Dr. Ashish Oberoi , „Wheat disease detection using svm

classifier‟ , Aug 2018.

3. Barbedo, „Plant Disease Identification from individual lesions spots using deep

learning‟, Apr 2019.

4. K. Naga Subramanian, A.K. Singh, A. Singh, S. Sarkar and Ganpath

Subramanian, “Usefullness of interpretability methods to explain deep

learning-based plant stress phenotyping”, jul 2020.

5. W. Yang, C. Yang, Z. Hao, C. Xie, and M. Li, „„Diagnosis of plant cold damage

based on hyperspectral imaging and convolutional neural network,‟‟ IEEE

Access, vol. 7, pp. 118239–118248, 2019.

6. K. Nagasubramanian, S. Jones, A. K. Singh, S. Sarkar, A. Singh, and B.

Ganapathysubramanian, „„Plant disease identification using explainable 3D

deep learning on hyperspectral images”.

7. N. Zhang, G. Yang, Y. Pan, X. Yang, L. Chen, and C. Zhao, „„A review of

advanced technologies and development for hyperspectral-based plant

disease detection in the past three decades,‟‟ Remote Sens., vol. 12, no. 19,

Sep. 2020, Art. no. 3188.

8. J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, „„Using deep

transfer learning for image-based plant disease identification,‟‟ Comput.

Electron. Agricult., vol. 173, Jun. 2020, Art. no. 105393.

9. M. Agarwal, A. Singh, S. Arjaria, A. Sinha, and S. Gupta, „„ToLeD: Tomato

leaf disease detection using convolution neural network,‟‟ Procedia Comput.

Sci., vol. 167, pp. 293–301, Jan. 2020.

10. G. Hu, H. Wu, Y. Zhang, and M. Wan, „„A low shot learning method for tea

leaf‟s disease identification,‟‟ Comput. Electron. Agricult., vol. 163, Aug. 2019,

Art. no. 104852.

11. D. Das and C. S. G. Lee, „„A two-stage approach to few-shot learning for

image recognition,‟‟ IEEE Trans. Image Process., vol. 29, no. 5, pp. 3336–

3350, Dec. 2020.

12. J.-H. Li, L.-J. Lin, and K. Tian, „„Detection of leaf diseases of balsam pear in

the field based on improved faster R-CNN,‟‟ Trans. Chin. Soc. Agricult. Eng.,

vol. 36, no. 12, pp. 179–185, Jun. 2020.

13. K. Nagasubramanian, A. K. Singh, A. Singh, S. Sarkar, and B.

Ganapathysubramanian, „„Usefulness of interpretability methods to explain

deep learning-based plant stress phenotyping,‟‟ Comput. Sci., vol. 4, pp. 18–

32, Jul. 2020

14. J. G. A. Barbedo, „„Plant disease identification from individual lesions and

spots using deep learning,‟‟ Biosyst. Eng., vol. 180, pp. 96–107, Apr. 2019.

65

15. S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, „„New perspectives on plant

disease characterization based on deep learning,‟‟ Comput. Electron.

Agricult., vol. 170, Mar. 2020, Art. no. 105220.

16. X.-R. Li, S.-Q. Li, and B. Liu, „„Apple leaf disease detection method based on

improved faster R-CNN,‟‟ Comput. Eng., vol. 46, no. 11, pp. 59–64, Nov.

2020.

17. J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, „„Using deep

transfer learning for image-based plant disease identification,‟‟ Comput.

Electron. Agricult., vol. 173, Jun. 2020, Art. no. 105393.

18. S.-N. Ren, Y. Sun, H.-Y. Zhang, and L.-X. Guo, „„Plant disease identification

for small sample based on one-shot learning,‟‟ Jiangsu J. Agricult. Sci., vol.

35, no. 5, pp. 1061–1067, May 2019.

