
CONVERSION OF SIGN LANGUAGE INTO SPEECH OR
TEXT USING CNN

Submitted in partial fulfillment of the requirements for

the award of
Bachelor of Engineering degree in Computer Science and Engineering

By

Jebakani C. (38110215)
Rishitha S.P. (38110461)

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,
CHENNAI - 600 119

MARCH-2022

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of Jebakani C (REG

NO: 38110215), Rishitha S.P. (REG NO: 38110461) who have done Project work

as a team who carried out the project entitled ―CONVERSION OF SIGN

LANGUAGE INTO SPEECH OR TEXT USING CNN‖ under my supervision from

November 2021 to April 2022.

 Internal Guide
 Ms. AISHWARYA R M.E.,

 Head of the Department

Dr. L. Lakshmanan M.E., Ph.D.,

Dr.S.Vigneshwari M.E., Ph.D.,

Submitted for Viva voce Examination held on

Internal Examiner External Examiner

 DECLARATION

We Jebakani C (REG NO: 38110215) and Rishitha S.P. (REG NO: 38110461)

hereby declare that the Project Report entitled “CONVERSION OF SIGN

LANGUAGE INTO SPEECH OR TEXT USING CNN‖ done by me under the

guidance of Ms. AISHWARYA R M.E., is submitted in partial fulfillment of the

requirements for the award of Bachelor of Engineering degree in Computer

Science and Engineering

 DATE:

PLACE: SIGNATURE OF THE CANDIDATE

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for

completing it successfully. I am grateful to them.

I convey my thanks to Dr. T. Sasikala M.E., Ph.D, Dean, School of Computing Dr.

L. Lakshmanan M.E., Ph.D. , and Dr.S.Vigneshwari M.E., Ph.D. Heads of the

Department of Computer Science and Engineering for providing me necessary

support and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project

Guide Ms. Aishwarya R. M.E., for her valuable guidance, suggestions and

constant encouragement paved way for the successful completion of my project

work.

I wish to express my thanks to all Teaching and Non-teaching staff members of

the Department of Computer Science and Engineering who were helpful in

many ways for the completion of the project.

ABSTRACT

Exchange of words among the community is one of the essential mediums of

survival. These people communicate using "Sign Language" among their

communities which has its own meaning, grammar and lexicons, and it may not be

comprehensible for every other individual. Our proposed methodology focuses on

creating a vision-based application that interprets the sign language into

understandable speech or text on an embedded device and this is done using

deep learning techniques and machine learning algorithms. The dataset has been

split into training data and test data in the ratio 9:1. This work involves CNN, IoT

and Python Language.

Keywords—Convolutional Neural Network, Raspberry pi, Indian Sign Language,

hand gesture recognition.

i

LIST OF FIGURES

Figure no. Name of the Figure Page no.

1.1 Phases of pattern recognition 3

2.1 Layers involved in CNN 21

2.2 Architecture of Sign Language recognition System 27

3.1 Sample dataset from train set 31

3.2 Sample dataset from test set 31

3.6.1 Data flow Diagram 39

3.6.2 Use Case Diagram 46

3.6.4 Class Diagram 49

3.6.5 Sequence Diagram 52

3.6.7 State Chart Diagram 53

ii

TABLE OF CONTENT

CHAPTER NO. TITLE PAGE NO

1 INTRODUCTION

2 LITERATURE SURVEY

2.1 Survey Walk Through 7

2.1.1 Tensor Flow 7

2.1.2 Opencv 7

2.1.3 keras 11

2.1.4 numpy 13

2.1.5 Neural Networks 15

2.2 Existing Models 22

2.3 Proposed System 26

3 METHODOLOGY AND

IMPLEMENTATION

3.1 Training Module 28

1.1 Image Processing 1

1.2 Sign Language 2

1.3 Sign Language And Hand Gesture 4

Recognition

1.4 Motivation 5

1.5 Problem Statement 5

i

i

i

3.6 D

e
signs

 3.6.1 Dataflow Diagram UML 41

 3.6.2 Usecase Diagram 44

 3.6.3 Class Diagram 48

 3.6.4 Sequence Diagram 49

 3.6.5 State chart Diagram 52

3.7 System Requirements

3.7.1 Software requirements 54

3.7.2 Hardware requirements 54

3.8 Processing Module 54

3.9 Streaming Module 56

3.10 Performance Measure

3.10.1 Precision 57

3.10.2 Recall 57

3.10.3 Support 57

3.10.4 F1 score 57

4 RESULT AND FUTURE WORKS

3.1.1 Pre-Processing 28

3.2 Algorithm 32

3.3 Segmentation 33

3.4 Convolution Neural Networks 34

3.5 Testing Module 37

4.1 Results 58

iv

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion and Future work 59

 7 APPENDIX

a) Sample code 61

b) Screenshots 68

v

1

CHAPTER 1

 INTRODUCTION

Speech impaired people use hand signs and gestures to

communicate. Normal people face difficulty in understanding their

language. Hence there is a need of a system which recognizes the

different signs, gestures and conveys the information to the normal

people. It bridges the gap between physically challenged people and

normal people.

1.1 IMAGE PROCESSING

Image processing is a method to perform some operations on an

image, in order to get an enhanced image or to extract some useful

information from it. It is a type of signal processing in which input is an

image and output may be image or characteristics/features associated

with that image. Nowadays, image processing is among rapidly

growing technologies. It forms core research area within engineering

and computer science disciplines too.

Image processing basically includes the following three steps:

• Importing the image via image acquisition tools.

• Analysing and manipulating the image.

• Output in which result can be altered image or report that is based on

• image analysis.

There are two types of methods used for image processing namely,

analogue and digital image processing. Analogue image processing

can be used for the hard copies like printouts and photographs. Image

analysts use various fundamentals of interpretation while using these

visual techniques. Digital image processing techniques help in

manipulation of the digital images by using computers. The three

general phases that all types of data have to undergo while using

2

digital technique are pre- processing, enhancement, and display,

information extraction.

Digital image processing:

Digital image processing consists of the manipulation of images using

digital computers. Its use has been increasing exponentially in the last

decades. Its applications range from medicine to entertainment,

passing by geological processing and remote sensing. Multimedia

systems, one of the pillars of the modern information society, rely

heavily on digital image processing.

Digital image processing consists of the manipulation of those finite

precision numbers. The processing of digital images can be divided

into several classes: image enhancement, image restoration, image

analysis, and image compression. In image enhancement, an image is

manipulated, mostly by heuristic techniques, so that a human viewer

can extract useful information from it.

Digital image processing is to process images by computer. Digital

image processing can be defined as subjecting a numerical

representation of an object to a series of operations in order to obtain

a desired result. Digital image processing consists of the conversion of

a physical image into a corresponding digital image and the extraction

of significant information from the digital image by applying various

algorithms.

Pattern recognition: On the basis of image processing, it is

necessary to separate objects from images by pattern recognition

technology, then to identify and classify these objects through

technologies provided by statistical decision theory. Under the

conditions that an image includes several objects, the pattern

recognition consists of three phases, as shown in Fig.

3

 Fig1.1: Phases of pattern recognition

The first phase includes the image segmentation and object separation.

In this phase, different objects are detected and separate from other

background. The second phase is the feature extraction. In this phase,

objects are measured. The measuring feature is to quantitatively

estimate some important features of objects, and a group of the

features are combined to make up a feature vector during feature

extraction. The third phase is classification. In this phase, the output is

just a decision to determine which category every object belongs to.

Therefore, for pattern recognition, what input are images and what

output are object types and structural analysis of images. The

structural analysis is a description of images in order to correctly

understand and judge for the important information of images.

1.2 SIGN LANGUAGE

It is a language that includes gestures made with the hands and other

body parts, including facial expressions and postures of the body.It

used primarily by people who are deaf and dumb. There are many

different sign languages as, British, Indian and American sign

languages. British sign language (BSL) is not easily intelligible to users

of American sign Language (ASL) and vice versa .

A functioning signing recognition system could provide a chance for

the inattentive communicate with non-signing people without the

necessity for an interpreter. It might be wont to generate speech or

4

text making the deaf more independent. Unfortunately there has not

been any system with these capabilities thus far. during this project

our aim is to develop a system which may classify signing accurately.

American Sign Language (ASL) is a complete, natural language that

has the same linguistic properties as spoken languages, with grammar

that differs from English. ASL is expressed by movements of the

hands and face. It is the primary language of many North Americans

who are deaf and hard of hearing, and is used by many hearing

people as well.

1.3 SIGN LANGUAGE AND HAND GESTURE
 RECOGNITION

The process of converting the signs and gestures shown by the user

into text is called sign language recognition. It bridges the

communication gap between people who cannot speak and the

general public. Image processing algorithms along with neural

networks is used to map the gesture to appropriate text in the training

data and hence raw images/videos are converted into respective text

that can be read and understood.

Dumb people are usually deprived of normal communication with

other people in the society. It has been observed that they find it really

difficult at times to interact with normal people with their gestures, as

only a very few of those are recognized by most people. Since people

with hearing impairment or deaf people cannot talk like normal people

so they have to depend on some sort of visual communication in most

of the time. Sign Language is the primary means of communication in

the deaf and dumb community. As like any other language it has also

got grammar and vocabulary but uses visual modality for exchanging

information. The problem arises when dumb or deaf people try to

express themselves to other people with the help of these sign

language grammars. This is because normal people are usually

unaware of these grammars. As a result it has been seen that

communication of a dumb person are only limited within his/her family

5

or the deaf community. The importance of sign language is

emphasized by the growing public approval and funds for international

project. At this age of Technology the demand for a computer based

system is highly demanding for the dumb community. However,

researchers have been attacking the problem for quite some time now

and the results are showing some promise. Interesting technologies

are being developed for speech recognition but no real commercial

product for sign recognition is actually there in the current market. The

idea is to make computers to understand human language and

develop a user friendly human computer interfaces (HCI). Making a

computer understand speech, facial expressions and human gestures

are some steps towards it. Gestures are the non-verbally exchanged

information. A person can perform innumerable gestures at a time.

Since human gestures are perceived through vision, it is a subject of

great interest forcomputer vision researchers. The project aims to

determine human gestures by creating an HCI. Coding of these

gestures into machine language demands a complex programming

algorithm. In our project we are focusing on Image Processing and

Template matching for better output generation.

1.4 MOTIVATION

The 2011 Indian census cites roughly 1.3 million people with

―hearingimpairment‖. In contrast to that numbers from India‘s National

Association of the Deaf estimates that 18 million people –roughly 1

per cent of Indian population are deaf. These statistics formed the

motivation for our project. As these speech impairment and deaf

people need a proper channel to communicate with normal people

there is a need for a system. Not all normal people can understand

sign language of impaired people. Our project hence is aimed at

converting the sign language gestures into text that is readable for

normal people

1.5 PROBLEM STATEMENT

 Speech impaired people use hand signs and gestures to communicate.

6

Normal people face difficulty in understanding their language. Hence

there is a need of a system which recognizes the different signs,

gestures and conveys the information to the normal people. It bridges

the gap between physically challenged people and normal people.

1.6 ORGANISATION OF THESIS

The book is organised as follows:

Part 1: The various technologies that are studied are introduced and

the problem statement is stated alongwith the motivation to our

project.

Part 2: The Literature survey is put forth which explains the various

other works and their technologies that are used for Sign Language

Recognition.

Part 3: Explains the methodologies in detail, represents the

architecture and algorithms used.

Part 4: Represents the project in various designs.

Part 5: Provides the experimental analysis, the code involved and the results
obtained.

Part 6: Concludes the project and provides the scope to which the

project can be extended.

.

7

CHAPTER 2

 LITERATURE SURVEY

2.1 SURVEY WALKTHROUGH:

The domain analysis that we have done for the project mainly

involved understanding the neural networks

2.1.1 TensorFlow:

TensorFlow is a free and open-source software library for dataflow and

differentiable programming across a range of tasks. It is a symbolic

math library, and is also used for machine learning applications such

as neural networks. It is used for both research and production at

Google.

Features: TensorFlow provides stable Python (for version 3.7 across

all platforms) and C APIs; and without API backwards compatibility

guarantee: C++, Go, Java, JavaScript and Swift (early release). Third-

party packages are available for C#, Haskell Julia, MATLAB,R, Scala,

Rust, OCaml, and Crystal."New language support should be built on

top of the C API. However, not all functionality is available in C yet."

Some more functionality is provided by the Python API.

Application: Among the applications for which TensorFlow is the

foundation, are automated image-captioning software, suchas

DeepDream.

2.1.2 Opencv:

OpenCV (Open Source Computer Vision Library) is a library of

programming functions mainly aimed at real-time computer vision.[1]

Originally developed by Intel, it was later supported by Willow Garage

8

then Itseez (which was later acquired by Intel[2]). The library is cross-

platform and free for use under the open-source BSD license.

OpenCV's application areas include:

 2D and 3D feature toolkits

 Egomotion estimation

 Facial recognition system

 Gesture recognition

 Human–computer interaction (HCI)

 Mobile robotics

 Motion understanding

 Object identification

 Segmentation and recognition

Stereopsis stereo vision: depth perception from 2 cameras

 Structure from motion (SFM).

 Motion tracking

 Augmented reality

To support some of the above areas, OpenCV includes a statistical

machine learning library that contains:

 Boosting

 Decision tree learning

 Gradient boosting trees

 Expectation-maximization algorithm

 k-nearest neighbor algorithm

 Naive Bayes classifier

 Artificial neural networks

 Random forest

 Support vector machine (SVM)

 Deep neural networks (DNN)

9

AForge.NET, a computer vision library for the Common Language

Runtime (.NET Framework and Mono).

ROS (Robot Operating System). OpenCV is used as the primary

vision package in ROS.

VXL, an alternative library written in C++.

Integrating Vision Toolkit (IVT), a fast and easy-to-use C++ library with

an optional interface to OpenCV.

CVIPtools, a complete GUI-based computer-vision and image-

processing software environment, with C function libraries, a COM-

based DLL, along with two utility programs for algorithm development

and batch processing.

OpenNN, an open-source neural networks library

written in C++. List of free and open source

software packages

 OpenCV Functionality

 Image/video I/O, processing, display (core, imgproc, highgui)

 Object/feature detection (objdetect, features2d, nonfree)

 Geometry-based monocular or stereo computer vision

(calib3d, stitching, videostab)

 Computational photography (photo, video, superres)

 Machine learning & clustering (ml, flann)

 CUDA

acceleration (gpu)

10

Image-Processing:

Image processing is a method to perform some operations on an

image, in order to get an enhanced image and or to extract some

useful information from it.

If we talk about the basic definition of image processing then ―Image

processing is the analysis and manipulation of a digitized image,

especially in order to improve its quality‖.

Digital-Image :

An image may be defined as a two-dimensional function f(x, y), where

x and y are spatial(plane) coordinates, and the amplitude of fat any

pair of coordinates (x, y) is called the intensity or grey level of the

image at that point.

In another word An image is nothing more than a two-dimensional

matrix (3-D in case of coloured images) which is defined by the

mathematical function f(x, y) at any point is giving the pixel value at

that point of an image, the pixel value describes how bright that pixel

is, and what colour it should be.

Image processing is basically signal processing in which input is an

image and output is image or characteristics according to requirement

associated with that image.

Image processing basically includes the

following three steps : Importing the image

Analysing and manipulating the image

11

Output in which result can be altered image or report that is based

on image analysis Applications of Computer Vision:

Here we have listed down some of major domains where Computer

Vision is heavily used.

 Robotics Application

 Localization − Determine robot location automatically

 Navigation

 Obstacles avoidance

 Assembly (peg-in-hole, welding, painting)

 Manipulation (e.g. PUMA robot manipulator)

 Human Robot Interaction (HRI) − Intelligent robotics to interact

with and serve people

 Medicine Application

 Classification and detection (e.g. lesion or cells classification

and tumor detection)

 2D/3D segmentation

 3D human organ reconstruction (MRI or ultrasound)

 Vision-guided robotics surgery

 Industrial Automation Application

 Industrial inspection (defect detection)

 Assembly

 Barcode and package label reading

 Object sorting

 Document understanding (e.g. OCR)

 Security Application

 Biometrics (iris, finger print, face recognition)

 Surveillance − Detecting certain suspicious activities or behaviors

 Transportation Application

 Autonomous vehicle

 Safety, e.g., driver vigilance monitoring

12

2.1.3 Keras:

Keras is an open-source neural-network library written in

Python. It is capable of running on top of TensorFlow, Microsoft

Cognitive Toolkit, R, Theano, or PlaidML. Designed to enable fast

experimentation with deep neural networks, it focuses on being user-

friendly, modular, and extensible. It was developed as part of the

research effort of project ONEIROS (Open-ended Neuro-Electronic

Intelligent Robot Operating System), and its primary author and

maintainer is François Chollet, a Google engineer. Chollet also is the

author of the XCeption deep neural network model.

Features: Keras contains numerous implementations of commonly

used neural- network building blocks such as layers, objectives,

activation functions, optimizers, anda host of tools to make working

with image and text data easier to simplify the

coding necessary for writing deep neural network code. The code is

hosted on GitHub, and community support forums include the GitHub

issues page, and a Slack channel.

In addition to standard neural networks, Keras has support for

convolutional and recurrent neural networks. It supports other

common utility layers like dropout, batch normalization, and pooling.

Keras allows users to productize deep models on smartphones (iOS

and Android), on the web, or on the Java Virtual Machine. It also

allows use of distributed training of deep-learning models on clusters

of Graphics processing units (GPU) and tensor processing units (TPU)

principally in conjunction with CUDA.

Keras applications module is used to provide pre-trained model for

deep neural networks. Keras models are used for prediction, feature

13

extraction and fine tuning. This chapter explains about Keras

applications in detail.

Pre-trained models

Trained model consists of two parts model Architecture and model

Weights. Model weights are large file so we have to download and

extract the feature from ImageNet database. Some of the popular pre-

trained models are listed below,

 ResNet

 VGG16

 MobileNet

 InceptionResNetV2

 InceptionV3

2.1.4 Numpy:

NumPy (pronounced /ˈnʌmpaɪ/ (NUM-py) or sometimes /ˈnʌmpi/ (NUM-pee))

is a library for the Python programming language, adding support for

large, multi- dimensional arrays and matrices, along with a large

collection of high-level mathematical functions to operate on these

arrays. The ancestor of NumPy, Numeric, was originally created by

Jim Hugunin with contributions from several other developers. In

2005, Travis Oliphant created NumPy by incorporating features of the

competing Numarray into Numeric, with extensive modifications.

NumPy is open- source software and has many contributors.

Features: NumPy targets the CPython reference implementation of

Python, which is a non-optimizing bytecode interpreter. Mathematical

algorithms written for this version of Python often run much slower

than compiled equivalents. NumPy addresses the slowness problem

partly by providing multidimensional arrays and functions and

operators that operate efficiently on arrays, requiring rewriting some

14

code, mostly inner loops using NumPy.

Using NumPy in Python gives functionality comparable to MATLAB

since they are both interpreted,and they both allow the user to write

fast programs as long as most operations work on arrays or matrices

instead of scalars. In comparison, MATLAB boasts a large number of

additional toolboxes, notably Simulink, whereas NumPy is intrinsically

integrated with Python, a more modern and complete programming

language. Moreover, complementary Python packages are available;

SciPy is a library that adds more MATLAB-like functionality and

Matplotlib is aplotting package that providesMATLAB-like plotting

functionality. Internally, both MATLAB and NumPy rely on BLAS and

LAPACK for efficient linear algebra computations.

Python bindings of the widely used computer vision library OpenCV

utilize NumPy arrays to store and operate on data. Since images with

multiple channels are simply represented as three-dimensional arrays,

indexing, slicing or masking with other arrays are very efficient ways to

access specific pixels of an image. The NumPy array as universal

data structure in OpenCV for images, extracted feature points, filter

kernels and many more vastly simplifies the programming workflow

and debugging.

Limitations: Inserting or appending entries to an array is not as trivially

possible as it is with Python's lists. The np.pad(...) routine to extend

arrays actually creates new arrays of the desired shape and padding

values, copies the given array into the new one and returns it.

NumPy'snp.concatenate([a1,a2]) operation does not actually link the

two arrays but returns a new one, filled with the entries from both given

arrays in sequence. Reshaping the dimensionality of an array with

np.reshape(...) is only possible as long as the number of elements in

the array does not change. These circumstances originate from the

fact that NumPy's arrays must be views on contiguous memory

buffers. A replacement package called Blaze attempts to overcome

15

this limitation.

Algorithms that are not expressible as a vectorized operation will

typically run slowly because they must be implemented in "pure

Python", while vectorization may increase memory complexity of some

operations from constant to linear, because temporary arrays must be

created that are as large as the inputs. Runtime compilation of

numerical code has been implemented by several groups to avoid

these problems; open source solutions that interoperate with NumPy

include scipy.weave, numexpr and Numba. Cython and Pythran are

static-compiling alternatives to these.

2.1.5 Neural Networks:

A neural network is a series of algorithms that endeavors to

recognize underlying relationships in a set of data through a process

that mimics the way the human brain operates. In this sense, neural

networks refer to systems of neurons, either organic or artificial in

nature. Neural networks can adapt to changing input; so the network

generates the best possible resultwithout needing to redesign the

output criteria. The concept of neural networks, which has its roots in

artificial intelligence, is swiftly gaining popularity in the development of

trading systems.

A neural network works similarly to the human brain‘s neural network.

A ―neuron‖ in a neural network is a mathematical function that collects

and classifies information according to a specific architecture. The

network bears a strong resemblance to statistical methods such as

curve fitting and regression analysis.

A neural network contains layers of interconnected nodes. Each node

is a perceptron and is similar to a multiple linear regression. The

perceptron feeds the signal produced by a multiple linear regression

16

into an activation function that may be nonlinear.

In a multi-layered perceptron (MLP), perceptrons are arranged in

interconnected layers. The input layer collects input patterns. The

output layer has classifications or output signals to which input patterns

may map. Hidden layers fine-tune the input weightings until the neural

network‘s margin of error is minimal. It is hypothesized that hidden

layers extrapolate salient features in the input data that have predictive

power regarding the outputs. This describes feature extraction, which

accomplishes a utility similar to statistical techniques such as principal

component analysis.

Areas of Application

Followings are some of the areas, where ANN is being used. It

suggests that ANN has an interdisciplinary approach in its

development and applications.

Speech Recognition

Speech occupies a prominent role in human-human interaction.

Therefore, it is natural for people to expect speech interfaces with

computers. In the present era, for communication with machines,

humans still need sophisticated languages which are difficult to learn

and use. To ease this communication barrier, a simple solution could

be, communication in a spoken language that is possible for the

machine to understand.

Great progress has been made in this field, however, still such kinds of

systems are facing the problem of limited vocabulary or grammar

along with the issue of retraining of the system for different speakers in

different conditions. ANN is playing a major role in this area. Following

ANNs have been used for speech recognition −

Multilayer networks

17

Multilayer networks with recurrent

connections Kohonen self-

organizin feature map

The most useful network for this is Kohonen Self-Organizing feature

map, which has its input as short segments of the speech

waveform. It will map the same kind of phonemes as the output

array, called feature extraction technique. After extracting the features,

with the help of some acoustic models as back-end processing, it will

recognize the utterance.

Character Recognition

It is an interesting problem which falls under the general area of

Pattern Recognition. Many neural networks have been developed for

automatic recognition of handwritten characters, either letters or digits.

Following are some ANNs which have been used for character

recognition −

Multilayer neural networks such as Backpropagation

neural networks. Neocognitron

Though back-propagation neural networks have several hidden layers,

the pattern of connection from one layer to the next is localized.

Similarly, neocognitron also has several hidden layers and its training

is done layer by layer for such kind of applications.

Signature Verification Application

Signatures are one of the most useful ways to authorize and

authenticate a person in legal transactions. Signature verification

technique is a non-vision based technique.

18

For this application, the first approach is to extract the feature or rather

the geometrical feature set representing the signature. With these

feature sets, we have to train the neural networks using an efficient

neural network algorithm. This trained neural network will classify the

signature as being genuine or forged under the verification stage.

Human Face Recognition

It is one of the biometric methods to identify the given face. It is a

typical task because of the characterization of ―non-face‖ images.

However, if a neural network is well trained, then it can be divided into

two classes namely images having faces and images that do not have

faces.

First, all the input images must be preprocessed. Then, the

dimensionality of that image must be reduced. And, at last it must be

classified using neural network training algorithm. Following neural

networks are used for training purposes with preprocessed image −

Fully-connected multilayer feed-forward neural network trained with the help of

back- propagation algorithm.

For dimensionality reduction, Principal Component

Analysis PCA is used. Deep Learning:

Deep-learning networks are distinguished from the more

commonplace single-hidden- layer neural networks by their depth; that

is, the number of node layers through which data must pass in a

multistep process of pattern recognition.

Earlier versions of neural networks such as the first perceptrons were

shallow, composed of one input and one output layer, and at most one

hidden layer in between. More than three layers (including input and

19

16

output) qualifies as ―deep‖ learning. So deep is not just a buzzword to

make algorithms seem like they read Sartre and listen to bands you

haven‘t heard of yet. It is a strictly defined term that means more than

one hidden layer.

In deep-learning networks, each layer of nodes trains on a distinct set

of features based on the previous layer‘s output. The further you

advance into the neural net, the more complex the features your

nodes can recognize, since they aggregate and recombine features

from the previous layer.

This is known as feature hierarchy, and it is a hierarchy of increasing

complexity and abstraction. It makes deep-learning networks capable

of handling very large, high- dimensional data sets with billions of

parameters that pass through nonlinear functions.

 Above all, these neural nets are capable of discovering latent

structures within unlabeled, unstructured data, which is the vast

majority of data in the world. Another word for unstructured data is

raw media; i.e. pictures, texts, video and audio recordings. Therefore,

one of the problems deep learning solves best is in processing and

clustering the world‘s raw, unlabeled media, discerning similarities and

anomalies in data that no human has organized in a relational

database or ever put a name to.

For example, deep learning can take a million images, and cluster

them according to their similarities: cats in one corner, ice breakers in

another, and in a third all the photos of your grandmother. This is the

basis of so-called smart photo albums.

Deep-learning networks perform automatic feature extraction without

human intervention, unlike most traditional machine-learning

algorithms. Given that feature extraction is a task that can take teams

of data scientists years to accomplish, deep learning is a way to

circumvent the chokepoint of limited experts. It augments the powers

20

of small data science teams, which by their nature do not scale.

When training on unlabeled data, each node layer in a deep network

learns features automatically by repeatedly trying to reconstruct the

input from which it draws its samples, attempting to minimize the

difference between the network‘s guesses and the probability

distribution of the input data itself. Restricted Boltzmann machines, for

examples, create so-called reconstructions in this manner.

In the process, these neural networks learn to recognize correlations

between certain relevant features and optimal results – they draw

connections between feature signals and what those features

represent, whether it be a full reconstruction, or with labeled data.

A deep-learning network trained on labeled data can then be applied

to unstructured data, giving it access to much more input than

machine-learning nets.

Convolution neural network:

Convolutional neural networks (CNN) is a special architecture of

artificial neural networks, proposed by Yann LeCun in 1988. CNN uses

some features of the visual cortex. One of the most popular uses of this

architecture is image classification. For example Facebook uses CNN

for automatic tagging algorithms, Amazon — for generating product

recommendations and Google — for search through among users‘

photos.

Instead of the image, the computer sees an array of pixels. For

example, if image size is 300 x 300. In this case, the size of the array

will be 300x300x3. Where 300 is width, next 300 is height and 3 is

RGB channel values. The computer is assigned a value from 0 to 255

to each of these numbers. Тhis value describes the intensity of the

pixel at each point.

21

To solve this problem the computer looks for the characteristics of the

baselevel. In human understanding such characteristics are for example

the trunk or large ears. For the computer, these characteristics are

boundaries or curvatures. And then through the groups of convolutional

layers the computer constructs more abstract concepts.In more detail:

the image is passed through a series of convolutional, nonlinear,

pooling layers and fully connected layers, and then generates the

output.

Applications of convolution neural network:

Decoding Facial Recognition:

Facial recognition is broken down by a convolutional neural network

into the following major components -

 Identifying every face in the picture

 Focusing on each face despite external factors, such as light, angle,
pose, etc.

 Identifying unique features

 Comparing all the collected data with already existing data in the

database to match a face with a name.

A similar process is followed for scene labeling as well. Analyzing Documents:
Convolutional neural networks can also be used for document analysis. This

is not just useful for handwriting analysis, but also has a major stake in

recognizers. For a machine to be able to scan an individual's writing, and

then compare that to the wide database it has, it must execute almost a

million commands a minute. It is said with the use of CNNs and newer

models and algorithms, the error rate has been brought down to a

minimum of 0.4% at a character level, though it's complete testing is yet to

be widely seen.

22

 Fig2.1: Layers involved in CNN

2.1.6 EXISTING SYSTEM

In Literature survey we have gone through other similar works

that are implemented in the domain of sign language recognition.The

summaries of each of the project works are mentioned below

A Survey of Hand Gesture Recognition Methods in Sign

Language Recognition

Sign Language Recognition (SLR) system, which is required to

recognize sign languages, has been widely studied for years.The

studies are based on various input sensors, gesture segmentation,

extraction of features and classifcation methods.This paper aims to

analyze and compare the methods employed in the SLR systems,

classi cations methods that have been used, and suggests the most

promising method for future research. Due to recent advancement in

classifcationmethods, many of the recent proposed works mainly

contribute on the classifcation methods, such as hybrid method and

Deep Learning. This paper focuses on the classifcation methodsused

in prior Sign Language Recognition system. Based on our

review, HMM- based approaches have been explored extensively in

prior research, including its modifcations.

This study is based on various input sensors, gesture segmentation,

extraction of features and classification methods. This paper aims to

23

analyze and compare the methods employed in the SLR systems,

classifications methods that have been used, and suggests the most

reliable method for future research. Due to recent advancement in

classification methods, many of the recently proposed works mainly

contribute to the classification methods, such as hybrid method and

Deep Learning. Based on our review, HMM-based approaches have

been explored extensively in prior research, including its

modifications.Hybrid CNN-HMM and fully Deep Learning approaches

have shown promising results and offer opportunities for further

exploration.

Communication between Deaf-Dumb People and

Normal People

Chat applications have become a powerful mediathat assist people to

communicate in different languages witheach other. There are lots of

chat applications that are useddifferent people in different languages

but there are not such achat application that has facilitate to

communicate with signlanguages. The developed system isbased on

Sinhala Sign language. The system has included fourmain components

as text messages are converted to sign messages, voice messages

are converted to sign messages, signmessages are converted to text

messages and sign messages areconverted to voice messages.

Google voice recognition API hasused to develop speech character

recognition for voice messages.The system has been trained for the

speech and text patterns by usingsome text parameters and signs of

Sinhala Sign language isdisplayed by emoji. Those emoji and signs

that are included inthis system will bring the normal people more close

to the disabled people. This is a 2 way communication system but it

uses pattern of gesture recognition which is not very realiable in

getting appropriate output.

A System for Recognition of Indian Sign Language for

Deaf People using Otsu’s Algorithm

24

In this paper we proposed some methods,through which the

recognition of the signs becomes easy forpeoples while

communication. And the result of thosesymbols signs will be

converted into the text. In this project,we are capturing hand gestures

through webcam andconvert this image into gray scale image. The

segmentationof gray scale image of a hand gesture is performed

usingOtsu thresholdingalgorithm.. Total image level is dividedinto two

classes one is hand and other is background. Theoptimal threshold

value is determined by computing theratio between class variance and

total class variance. Tofind the boundary of hand gesture in image

Canny edgedetection technique is used.In Canny edge detection we

used edge based segmentation and threshold based

segmentation.Then Otsu‘s algorithm is used because of its simple

calculation and stability.This algorithm fails, when the global

distribution of the target and background vary widely.

Intelligent Sign Language Recognition Using Image
Processing

Computer recognition of sign language is an important research

problem for enabling communication with hearing impaired people.

This project introduces an efficient and fast algorithm for identification

of the number of fingers opened in a gesture representing an alphabet

of the Binary Sign Language. The system does not require the hand to

be perfectly aligned to the camera. The project uses image processing

system to identify, especially English alphabetic sign language used by

the deaf people to communicate. The basic objective of this project is

to develop a computer based intelligent system that will enable dumb

people significantly to communicate with all other people using their

natural hand gestures. The idea consisted of designing and building

up an intelligent system using image processing, machine learning

and artificial intelligence concepts to take visual inputs of sign

language‘s hand gestures and generate easily recognizable form of

outputs. Hence the objective of this project is to develop an intelligent

system which can act as a translator between the sign language and

25

the spoken language dynamically and can make the communication

between people with hearing impairment and normal people both

effective and efficient. The system is we are implementing for Binary

sign language but it can detect any sign language with prior image

processing

Sign Language Recognition Using Image Processing

One of the major drawback of our society is the barrier that is created

between disabled or handicapped persons and the normal person.

Communication is the only medium by which we can share our

thoughts or convey the message but for a person with disability (deaf

and dumb) faces difficulty in communication with normal person. For

many deaf and dumb people , sign language is the basic means of

communication. Sign language recognition (SLR) aims to interpret sign

languages automatically by a computer in order to help the deaf

communicate with hearing society conveniently. Our aim is to design a

system to help the person who trained the hearing impaired to

communicate with the rest of the world using sign language or hand

gesture recognition techniques. In this system, feature detection and

feature extraction of hand gesture is done with the help of SURF

algorithm using image processing. All this work is done using

MATLAB software. With the help of this algorithm, a person can easily

trained a deaf and dumb.

Sign Language Interpreter using Image Processing and

Machine Learning

Speech impairment is a disability which affects one‘s ability to speak

and hear. Such individuals use sign language to communicate with

other people. Although it is an effective form of communication, there

remains a challenge for people who do not understand sign language

to communicate with speech impaired people. The aim of this paper is

to develop an application which will translate sign language to English

in the form of text and audio, thus aiding communication with sign

26

language. The application acquires image data using the webcam of

the computer, then it is preprocessed using a combinational algorithm

and recognition is done using template matching. The translation in

the form of text is then converted to audio. The database used for this

system includes 6000 images of English alphabets. We used 4800

images for training and 1200 images for testing. The system produces

88% accuracy.

Hand Gesture Recognition based on Digital Image

Processing using MATLAB

This research work presents a prototype system that helps to

recognize hand gesture to normal people in order to communicate

more effectively with the special people. Aforesaid research work

focuses on the problem of gesture recognition in real time that sign

language used by the community of deaf people. The problem

addressed is based on Digital Image Processing using Color

Segmentation, Skin Detection, Image Segmentation, Image Filtering,

and Template Matching techniques. This system recognizes gestures

of ASL (American Sign Language) including the alphabet and a subset

of its words.

GESTURE RECOGNITION SYSTEM

Communication plays a crucial part in human life. It encourages a man

to pass on his sentiments, feelings and messages by talking,

composing or by utilizing some other medium. Gesture based

communication is the main method for Communication for the

discourse and hearing weakened individuals. Communication via

gestures is a dialect that utilizations outwardly transmitted motions that

consolidates hand signs and development of the hands, arms, lip

designs, body developments and outward appearances, rather than

utilizing discourse or content, to express the individual's musings.

Gestures are the expressive and important body developments that

27

speaks to some message or data. Gestures are the requirement for

hearing and discourse hindered, they pass on their message to

others just with the assistance of motions. Gesture Recognition

System is the capacity of the computer interface to catch, track and

perceive the motions and deliver the yield in light of the caught signals.

It enables the clients to interface with machines (HMI) without the any

need of mechanical gadgets. There are two sorts of sign recognition

methods: image- based and sensor- based strategies. Image based

approach is utilized as a part of this project that manages

communication via gestures motions to distinguish and track the signs

and change over them into the relating discourse and content.

2.2 PROPOSED SYSTEM

Our proposed system is sign language recognition system

using convolution neural networks which recognizes various hand

gestures by capturing video and converting it into frames. Then the

hand pixels are segmented and the image it obtained and sent for

comparison to the trained model. Thus our system is more robust in

getting exact text labels of letters.

2.2.1 System Architecture

28

Fig2.2 Architecture of Sign Language recognition System

CHAPTER 3

METHODOLOGY

3.1 TRAINING MODULE:

Supervised machine learning:It is one of the ways of machine

learning where the model is trained by input data and expected output

data. Тo create such model, it is necessary to go through the following

phases:

29

1. model construction

2. model training

3. model testing

4. model evaluation

Model construction: It depends on machine learning algorithms.

In this projectscase, it was neural networks.Such an agorithm looks

like:

1. begin with its object: model = Sequential()

2. then consist of layers with their types: model.add(type_of_layer())

3. after adding a sufficient number of layers the model is compiled. At

this moment Keras communicates with TensorFlow for construction of

the model. During model compilation it is important to write a loss

function and an optimizer algorithm. It looks like:

 model.comile(loss= ‗name_of_loss_function‘,

 optimizer= ‗name_of_opimazer_alg‘) The loss function shows the

accuracy of each prediction made by the model.

Before model training it is important to scale data for their further use.

Model training:

After model construction it is time for model training. In this

phase, the model is trained using training data and expected output for

this data. It‘s look this way: model.fit(training_data, expected_output).

Progress is visible on the console when the script runs. At the end it

will report the final accuracy of the model.

Model Testing:

During this phase a second set of data is loaded. This data set

has never been seen by the model and therefore it‘s true accuracy will

be verified. After the model training is complete, and it is understood

that the model shows the right result, it can.

be saved by: model.save(―name_of_file.h5‖). Finally, the saved model

can be used in the real world. The name of this phase is model

30

evaluation. This means that the model can be used to evaluate new

data.

3.1.1 Preprocess
Uniform aspect ratio

Understanding aspect ratios:An aspect ratio is a proportional

relationship between an image's width and height. Essentially, it

describes an image's shape.Aspect ratios are written as a formula of

width to height, like this: For example, a square image has an aspect

ratio of 1:1, since the height and width are the same. The image could

be 500px × 500px, or 1500px × 1500px, and the aspect ratio would

still be 1:1.As another example, a portrait-style image might have a

ratio of 2:3. With this aspect ratio, the height is 1.5 times longer than

the width. So the image could be 500px

× 750px, 1500px × 2250px, etc.

Cropping to an aspect ratio

Aside from using built in site style options , you may want to manually

crop an image to a certain aspect ratio. For example, if you use

product images that have same aspect ratio, they'll all crop the same

way on your site. 7

Option 1 - Crop to a pre-set shape

Use the built-in Image Editor to crop images to a specific shape. After

opening the editor, use the crop tool to choose from preset aspect

ratios.

Option 2 - Custom dimensions

To crop images to a custom aspect ratio not offered by our built-

in Image Editor, use a third-party editor. Since images don‘t need to

have the samedimensions to have the same aspect ratio, it‘s better to

crop them to a specific ratio than to try to matchtheir exact dimensions.

For best results, crop the shorter side based on the longer side.

• For instance, if your image is 1500px × 1200px, and you want an

aspect ratio of 3:1, crop the shorter side to make the image 1500px ×

31

500px.

• Don't scale up the longer side; this can make your image blurry.

Image scaling:

• In compuer graphics and digital imaging , image scaling refers to the

resizing of a digital image. In video technology, the magnification of

digital

material is known as upscaling or resolution enhancement .

• When scaling a vector graphic image, the graphic

primitives that make up the image can be scaled using

geometric transformations, with no loss

of image quality. When scaling a raster graphics image, a new image with

a higher or lower number of pixels must be generated. In the case of

decreasing the pixel number (scaling down) this usually results in

avisible quality loss. From the standpoint of digital signal processing,

the scaling of raster graphics is a two- dimensional example of

sample-rate conversion, the conversion of a discrete signal from a

sampling rate (in this case the local sampling rate) to another.

DATASETS USED FOR TRAINING AND TESTING

32

Fig3.1: Sample dataset from train set

 Fig3.2: Sample dataset from test set

3.2 ALGORITHM

HISTOGRAM CALCULATION:

Histograms are collected counts of data organized into a set of predefined bins

When we say data we are not restricting it to be intensity value. The
data collected can be whatever feature you find useful to describe
your image.

Let's see an example. Imagine that a Matrix contains information of

an image (i.e. intensity in the range 0−255):

33

What happens if we want to count this data in an organized way?

Since we know that the range of information value for this case is 256

values, we can segment our range in subparts (called bins) like:

[0,255]=[0,15]∪[16,31]∪....∪[240,255]range=bin1∪bin2∪ . ∪binn=15

and we can keep count of the number of pixels that fall in the range of each
bini

BackPropogation: Back-propagation is the essence of neural net

training. It is the method of fine-tuning the weights of a neural net

based on the error rate obtained in the previous epoch (i.e., iteration).

Proper tuning of the weights allows you to reduce error rates and to

make the model reliable by increasing its generalization.

Backpropagation is a short form for "backward propagation of errors."

It is a standard method of training artificial neural networks. This

method helps to calculate the gradient of a loss function with respects

to all the weights in the network.

Optimizer(Adam): Adam can be looked at as a combination

ofRMSprop and Stochastic Gradient Descent with momentum. It uses

the squared gradients to scale the learning rate like RMSprop and it

takes advantage of momentum by using moving average of the

gradient instead of gradient itself like SGD with momentum. Adam is

an adaptive learning rate method, which means, it computes individual

learning rates for different parameters. Its name is derived from

adaptive moment estimation, and the reason it‘s called that is because

Adam uses estimations of first and second moments of gradient to

adapt the learning rate for each weight of the neural network. Now,

what is moment ? N-th moment of a random variable is defined as the

expected value of that variable to the power of n. More formally:

Loss Function(categorical cross entrophy): Categorical

crossentropy is a loss function that is used for single label

categorization. This is when only onecategory isapplicable for each

data point. In other words, an example can belong to one class only.

34

Note. The block before the Target block must use the activation function
Softmax.

3.3 SEGMENTATION

Image segmentation is the process of partitioning a digital image into

multiple segments(sets of pixels, also known as image objects). The

goal of segmentation is to simplify and/or change the representation of

an image into something that is more meaningful and easier to

analyse.Modern image segmentation techniques are powered by deep

learning technology. Here are several deep learning architectures

used for segmentation:

Why does Image Segmentation even matter?

If we take an example of Autonomous Vehicles, they need sensory

input devices like cameras, radar, and lasers to allow the car to

perceive the world around it, creating a digital map. Autonomous

driving is not even possible without object detection which itself

involves image classification/segmentation.

How Image Segmentation works

Image Segmentation involves converting an image into a collection of

regions of pixels that are represented by a mask or a labeled image.

By dividing an image into segments, you can process only the

important segments of the image instead of processing the entire

image. A common technique is to look for abrupt discontinuities in

pixel values, which typically indicate edges that define a

region.Another common approach is to detect similarities in the regions

of an image. Some techniques that follow this approach are region

growing, clustering, and thresholding. A variety of other approaches to

perform image segmentation have been developed over the years

using domain-specific knowledge to effectively solve segmentation

problems in specific application areas.

3.4 CLASSIFICATION :CONVOLUTION NEURAL NETWORK

Image classification is the process of taking an input(like a

35

picture) and outputting its class or probability that the input is a

particular class. Neural networks are applied in the following steps:

1) One hot encode the data: A one-hot encoding can be applied to the

integer representation. This is where the integer encoded variable is

removed and a new binary variable is added for each unique integer

value.

2) Define the model: A model said in a very simplified form is nothing

but a function that is used to take in certain input, perform certain

operation to its beston the given input (learning and then

predicting/classifying) and produce the suitable output.

3) Compile the model: The optimizer controls the learning rate. We will

be using ‗adam‘ as our optmizer. Adam is generally a good optimizer

to use for many cases. The adam optimizer adjusts the learning rate

throughout training. The learning rate determines how fast the optimal

weights for the model are calculated. A smaller learning rate may lead

to more accurate weights (up to a certain point), but the time it takes to

compute the weights will be longer.

4) Train the model: Training a model simply means learning

(determining) good values for all the weights and the bias from labeled

examples. In supervised learning, a machine learning algorithm builds

a model by examining many examples and attempting to find a model

that minimizes loss; this process is called empirical risk minimization.

5) Test the model

A convolutional neural network convolves learned featured with input

data and uses 2D convolution layers.

Convolution Operation:

In purely mathematical terms, convolution is a function derived

from two given functions by integration which expresses how the

shape of one is modified by the other.

Convolution formula:

36

Here are the three elements that enter into the convolution operation:

• Input image

• Feature detector

• Feature map

Steps to apply convolution layer:

• You place it over the input image beginning from the top-left

corner within the borders you see demarcated above, and then you

count the number of cells in which the feature detector matches the

input image.

• The number of matching cells is then inserted in the top-left

cell of the feature map

• You then move the feature detector one cell to the right and

do the same thing. This movement is called a and since we are moving

the feature detector one cell at time, that would be called a stride of

one pixel.

• What you will find in this example is that the feature detector's

middle-left cell with the number 1 inside it matches the cell that it is

standing over inside the input image. That's the only matching cell, and

so you write ―1‖ in the next cell in the feature map, and so on and so

forth.

• After you have gone through the whole first row, you can then

move it over to the next row and go through the same process.

There are several uses that we gain from deriving a feature map.

These are the most important of them: Reducing the size of the input

image, and you should know that the larger your strides (the

movements across pixels), the smaller your feature map.

Relu Layer:

Rectified linear unit is used to scale the parameters to non

negativevalues.We get pixel values as negative values too . Inthis

layer we make them as 0‘s. The purpose of applying the rectifier

function is to increase the non-linearity in our images. The reason we

want to do that is that images are naturally non-linear. The rectifier

37

serves to break up the linearity even further in order to make up for

the linearity that we might impose an image when we put it through

the convolution operation. What the rectifier function does to an image

like this is remove all the black elements from it, keeping only those

carrying a positive value (the grey and white colors).The essential

difference between the non-rectified version of the image and the

rectified one is the progression of colors. After we rectify the image,

you will find the colors changing more abruptly. The gradual change is

no longer there. That indicates that the linearity has been disposed of.

Pooling Layer:

The pooling (POOL) layer reduces the height and width of the input. It

helps reduce computation, as well as helps make feature detectors

more invariant to its position in the input This process is what provides

the convolutional neural network with the ―spatial variance‖ capability.

In addition to that, pooling serves to minimize the size of the images as

well as the number of parameters which, in turn, prevents an issue of

―overfitting‖ from coming up. Overfitting in a nutshell is when you create

an excessively complex model in order to account for the

idiosyncracies we just mentioned The result ofusing a pooling layer

and creating down sampled or pooled feature maps is a summarized

version of the features detected in the input. They are useful as small

changes in the location of the feature in the input detected by the

convolutional layer will result in a pooled feature map with the

feature in the same location. Thiscapability added by pooling is called

the model‘s invariance to local translation.

Fully Connected Layer:

The role of the artificial neural network is to take this data and

combine the features into a wider variety of attributes that make the

convolutional network more capable of classifying images, which is the

whole purpose from creating a convolutional neural network. It has

neurons linked to each other ,and activates if it identifies patterns and

sends signals to output layer .the outputlayer gives output class based

38

on weight values, For now, all you need to know is that the loss

function informs us of how accurate our network is, which we then use

in optimizing our network in order to increase its effectiveness. That

requires certain things to be altered in our network. These include the

weights (the blue lines connecting the neurons, which are basically the

synapses), and the feature detector since the network often turns out

to be looking for the wrong features and has to be reviewed multiple

times for the sake of optimization.This full connection process

practically works as follows:

• The neuron in the fully-connected layer detects a certain feature; say, a
nose.

• It preserves its value.

• It communicates this value to the classes trained images.

3.5 TESTING

The purpose of testing is to discover errors. Testing is a

process of trying to discover every conceivable fault or weakness in a

work product.

It provides a way to check the functionality of components, sub

assemblies, assemblies and/or a finished product. It is the process of

exercising software with the intent of ensuring that the software

system meets its requirements and user expectations and does not fail

in an unacceptable manner.

Software testing is an important element of the software quality

assurance and represents the ultimate review of specification, design

and coding. The increasing feasibility of software as a system and the

cost associated with the software failures are motivated forces for

well planned through testing.

Testing Objectives:

There are several rules that can serve as testing objectives they are:

 Testing is a process of executing program with the intent of finding an
error.

 A good test case is the one that has a high probability of

39

finding an undiscovered error.

Types of Testing:

In order to make sure that the system does not have errors,

the different levels of testing strategies that are applied at different

phases of software development are :

Unit Testing:

Unit testing is done on individual models as they are

completed and becomes executable. It is confined only to the

designer's requirements. Unit testing is different from and should be

preceded by other techniques, including:

 Inform Debugging

 Code Inspection

Black Box testing

In this strategy some test cases are generated as input

conditions that fully execute all functional requirements for the

program.

This testing has been used to find error in the

following categories: Incorrect or missing functions

 Interface errors

 Errors in data structures are external database access

 Performance error

 Initialisation and termination of errors

 In this testing only the output is checked for correctness

 The logical flow of data is not checked

White Box testing

In this the test cases are generated on the logic of each

module by drawing flow graphs of that module and logical decisions

are tested on all the cases.

40

It has been used to generate the test cases in the following cases:

 Guarantee that all independent paths have been executed

 Execute all loops at their boundaries and within their operational
bounds.

 Execute internal data structures to ensure their validity.

Integration Testing

Integration testing ensures that software and subsystems

work together a whole. It test the interface of all the modules to make

sure that the modules behave properly when integrated together. It is

typically performed by developers, especially at the lower, module to

module level. Testers become involved in higher levels

System Testing

Involves in house testing of the entire system before delivery to the

user. The aim is to satisfy the user the system meets all requirements

of the client‘s specifications. It is conducted by the testing organization

if a company has one. Test data may range from and generated to

production.

Requires test scheduling to plan and organize:

 Inclusion of changes/fixes.

 Test data to use

One common approach is graduated testing: as system testing

progresses and (hopefully) fewer and fewer defects are found, the

code is frozen for testing for increasingly longer time periods.

Acceptance Testing

It is a pre-delivery testing in which entire system is

tested at client‘s site on real world data to find errors.

 User Acceptance
Test (UAT)

―Beta testing‖: Acceptance testing in the customer environment.

41

Requirements

traceability:

 Match requirements to test cases.

 Every requirement has to be cleared by at least one test case.

 Display in a matrix of requirements vs. test cases.

id Test case Input

description

Expected

output

Test status

1

Loadind model

Initializing

trained

 mode

l and load it

into ON

Loaded

model without

errors

pass

2

Converting

video to

frames

Capturing

video

 an

d converting

 it

into frames

Image frames

of captured

video stream

pass

3

Recognize

hand gesture

Image frame

that contains

hand object

label

Pass

Table3.1: verification of testcases

3.6 DESIGN

Dataflow Diagram

The DFD is also known as bubble chart. It is a simple graphical

42

formalism that can be used to represent a system in terms of the input

data to the system, various processing carried out on these data, and

the output data is generated by the system. It maps out the flow of

information for any process or system, how data is processed in terms

of inputs and outputs. It uses defined symbols like rectangles, circles

and arrows to show data inputs, outputs, storage points and the routes

between each destination. They can be used to analyse an existing

system or model of a new one. A DFD can often visually ―say‖ things

that

would be hard to explain in words and they work for both technical

and non- technical. There are four components in DFD:

1. External Entity

2. Process

3. Data Flow

4. data Store

1) External Entity:

It is an outside system that sends or receives data, communicating with

the system. They are the sources and destinations of information

entering and leaving the system. They might be an outside

organization or person, a computer system or a business system. They

are known as terminators, sources and sinks or actors. They are

typically drawn on the edges of the diagram. These are sources and

destinations of the system‘s input and output.

Representation:

2) Process:

It is just like a function that changes the data, producing an output. It might

perform computations for sort data based on logic or direct the

dataflowbased on business rules

Representation:

43

3) Data Flow:

A dataflow represents a package of information flowing between two

objects in the data-flow diagram, Data flows are used to model the

flow of information into the system, out of the system and between the

elements within the system.

Representation:

4) Data Store:

These are the files or repositories that hold information for later use,

such as a database table or a membership form. Each data store

receives a simple label.

Representation:

Fig3.6.1:Dataflow Diagram for Sign Language Recognition

44

3.6.1 UML DIAGRAMS

UML stands for Unified Modeling Language. Taking SRS

document of analysis as input to the design phase drawn UML

diagrams. The UML is only language so is just one part of the

software development method. The UML is process independent,

although optimally it should be used in a process that should be

driven, architecture-centric, iterative, and incremental. The UML is

language for visualizing, specifying, constructing, documenting the

articles in a software- intensive system. It is based on diagrammatic

representations of software components.

A modeling language is a language whose vocabulary and rules

focus on the conceptual and physical representation of the system. A

modeling language such as the UML is thus a standard language for

software blueprints.

The UML is a graphical language, which consists of all interesting

systems. There are also different structures that can transcend what

can be represented in a programming language.

These are different diagrams in UML.

3.6.2 Use Case Diagram

Use Case during requirement elicitation and analysis to

represent the functionality of the system. Use case describes a

function by the system that yields a visible result for an actor. The

identification of actors and use cases result in the definitions of the

boundary of the system i.e., differentiating the tasks accomplished by

the system and the tasks accomplished by its environment. The actors

are outside the boundary of the system, whereas the use cases are

inside the boundary of the system. Use case describes the behaviour

of the system as seen from the actor‘s point of view. It describes the

45

function provided by the system as a set of events that yield a visible

result for the actor.

Purpose of Use Case Diagrams

The purpose of use case diagram is to capture the dynamic aspect of

a system. However, this definition is too generic to describe the

purpose, as other four diagrams (activity, sequence, collaboration,

and Statechart) also have the same purpose. We will look into some

specific purpose, which will distinguish it from other four diagrams.

Use case diagrams are used to gather the requirements of a system

including internal and external influences. These requirements are

mostly design requirements. Hence, when a system is analyzed to

gather its functionalities, use cases are prepared and actors are

identified.

When the initial task is complete, use case diagrams are modelled to

present the outside view.

In brief, the purposes of use case diagrams can be said

to be as follows − Used to gather the requirements of a

system.

Used to get an outside view of a system.

Identify the external and internal factors

influencing the system. Show the interaction

among the requirements are actors.

How to Draw a Use Case Diagram?

Use case diagrams are considered for high level requirement analysis

of a system. When the requirements of a system are analyzed, the

functionalities are captured in use cases.

We can say that use cases are nothing but the system functionalities

46

written in an organized manner. The second thing which is relevant to

use cases are the actors. Actors can be defined as something that

interacts with the system.

Actors can be a human user, some internal applications, or may be

some external applications. When we are planning to draw a use case

diagram, we should have the following items identified.

Functionalities to be

represented as use case

Actors

Relationships among the use cases and actors.

Use case diagrams are drawn to capture the functional requirements

of a system. After identifying the above items, we have to use the

following guidelines to draw an efficient use case diagram

The name of a use case is very important. The name should be

chosen in such a way so that it can identify the functionalities

performed.

Give a suitable name for actors.

Show relationships and dependencies clearly in the diagram.

Do not try to include all types of relationships, as the main purpose of

the diagram is to identify the requirements.

Use notes whenever required to clarify some important points.

47

 Fig 3.6.2: Usecase diagram of sign language recognition System

48

 Table 3.6.3: Usecase Scenario for sign language recognition system

3.6.3 Class Diagram

Class diagrams model class structure and contents using

design elements such as classes, packages and objects. Class

diagram describe the different perspective when designing a system-

conceptual, specification and implementation. Classes are composed

49

of three things: name, attributes, and operations. Class diagram also

display relationships such as containment, inheritance, association

etc. The association relationship is most common relationship in a

class diagram. The association shows the relationship between

instances of classes.

How to Draw a Class Diagram?

Class diagrams are the most popular UML diagrams used for

construction of software applications. It is very important to learn the

drawing procedure of class diagram.

Class diagrams have a lot of properties to consider while drawing but

here the diagram will be considered from a top level view.

Class diagram is basically a graphical representation of the static view

of the system and represents different aspects of the application. A

collection of class diagrams represent the whole system.

The following points should be remembered while drawing a class diagram −

The name of the class diagram should be meaningful to describe the

aspect of the system.

Each element and their relationships should be identified in

advance. Responsibility (attributes and methods) of each class

should be clearly identified

For each class, minimum number of properties should be specified, as

unnecessary properties will make the diagram complicated.

Use notes whenever required to describe some aspect of the

diagram. At the end of the drawing it should be understandable to the

developer/coder.

Finally, before making the final version, the diagram should be drawn

on plain paper and reworked as many times as possible to make it

correct.

50

Fig 3.6.4: Class diagram of sign language recognition system

3.6.4 Sequence Diagram

Sequence diagram displays the time sequence of the objects

participating in the interaction. This consists of the vertical

dimension(time) and horizontal dimension (different objects).

Objects: Object can be viewed as an entity at a particular point in time

with specific value and as a holder of identity.

A sequence diagram shows object interactions arranged in time

sequence. It depicts the objects and classes involved in the scenario

and the sequence of messages exchanged between the objects

needed to carry out the functionality of the scenario. Sequence

diagrams are typically associated with use case realizations in the

51

Logical View of the system under development. Sequence diagrams

are sometimes called event diagrams or event scenarios.

A sequence diagram shows, as parallel vertical lines (lifelines),

different processes or objects that live simultaneously, and, as

horizontal arrows, the messages exchanged between them, in the

order in which they occur. This allows the specification of simple

runtime scenarios in a graphical manner.

If the lifeline is that of an object, it demonstrates a role. Leaving the

instance name blank can represent anonymous and unnamed

instances.

Messages, written with horizontal arrows with the message name

written above them, display interaction. Solid arrow heads represent

synchronous calls, open arrow heads represent asynchronous

messages, and dashed lines represent reply messages. If a caller

sends a synchronous message, it must wait until the message is done,

such as invoking a subroutine. If a caller sends an asynchronous

message, it can continue processing and doesn‘t have to wait for a

response. Asynchronous calls are present in multithreaded

applications, event-driven applications and in message-oriented

middleware. Activation boxes, or method-call boxes, are opaque

rectangles drawn on top of lifelines to represent that processes are

being performed in response to the message (ExecutionSpecifications

in UML).

Objects calling methods on themselves use messages and add new

activation boxes on top of any others to indicate a further level of

processing. If an object is destroyed (removed from memory), an X is

drawn on bottom of the lifeline, and the dashed line ceases to be

drawn below it. It should be the result of a message, either from the

object itself, or another.

A message sent from outside the diagram can be represented by a

message originating from a filled-in circle (found message in UML) or

from a border of the sequence diagram (gate in UML).

52

UML has introduced significant improvements to the capabilities of

sequence diagrams. Most of these improvements are based on the

idea of interaction fragmentswhich represent smaller pieces of an

enclosing interaction. Multiple interaction fragments are combined to

create a variety of combined fragments, which are then used to model

interactions that include parallelism, conditional branches, optional

interactions

Fig3.6.5: Sequence diagram of sign language recognition system

53

4.1.1 State Chart

A state chart diagram describes a state machine which shows

the behaviour of classes. It shows the actual changes in state not

processes or commands that create those changes and is the dynamic

behaviour of objects over time by model1ing the life cycle of objects of

each class.

It describes how an object is changing from one state to another state.

There are mainly two states in State Chart Diagram:1. Initial State 2.

Final-State. Some of the components of State Chart Diagram are:

State: It is a condition or situation in life cycle of an object during

which it‘s satisfies same condition or performs some activity or waits

for some event.

Transition: It is a relationship between two states indicating that object

in first state performs some actions and enters into the next state or

event.

Event: An event is specification of significant occurrence that has a

location in time andspace

.

54

Fig:3.6.7 :State Chart diagram of sign language recognition system

3.7 SYSTEM REQUIREMENTS

3.7.1 Software Requirements

There are several software requirements that must be met for software to function

on a computer, including resources requirements and prerequisites. The minimal

requirements are as follows,

 Raspian OS

 Anaconda with Spyder

3.7.2 Hardware Requirements

The most common set of requirements defined by any operating system or

software application is the physical computer resources, also known as hardware.

The minimal hardware requirements are as follows,

55

 Raspberry Pi B+

 Camera Module

 8 GB SD Card

3.8 PROCESSING MODULE

Raspberry Pi is a small single-board computers developed in the United Kingdom

by the Raspberry Pi Foundation. The organization behind the Raspberry Pi

consists of two arms. The first two models were developed by the Raspberry Pi

Foundation. The Raspberry Pi hardware has evolved through several versions that

feature variations in memory capacity and peripheral- device support.

The Raspberry Pi device looks like a motherboard, with the mounted chips and

ports exposed (something you'd expect to see only if you opened up your

computer and looked at its internal boards), but it has all the components you need

to connect input, output, and storage devices and start computing.

Raspberry Pi is a low-cost, basic computer that was originally intended to help

spur interest in computing among school-aged children. The Raspberry Pi is

contained on a single circuit board and features ports for:

 HDMI

 USB 2.0

 Composite video

 Analog audio

 Internet

 SD Card

The computer runs entirely on open-source software and gives students the ability

to mix and match software according to the work they wish to do.

The Raspberry Pi debuted in February 2012. The group behind the computer's

development - the Raspberry Pi Foundation - started the project to make

computing fun for students, while also creating interest in how computers work at a

basic level. Unlike using an encased computer from a manufacturer, the

Raspberry Pi shows the essential guts behind the plastic. Even the software, by

virtue of being open- source, offers an opportunity for students to explore the

underlying code-if they wish. The Raspberry Pi is believed to be an ideal learning

tool, in that it is cheap to make, easy to replace and needs only a keyboard and a

TV to run. These same strengths also make it an ideal product to jumpstart

56

computing in the developing world. The quad-core Raspberry Pi 3 is both faster

and more capable than its predecessor, the Raspberry Pi 2. For those interested in

benchmarks, the Pi 3's CPU--the board's main processor--has roughly 50-60

percent better performance in 32-bit mode than that of the Pi 2, and is 10x faster

than the original single-core Raspberry Pi.

Fig 3.8: Processing Module

Compared to the original PI, real-world applications will see performance increase

of between 2.5x for single threaded applications and more than 20x when video

playback is accelerated by the chip's NEON engine. Unlike its predecessor, the

new board is capable of playing 1080p MP4 video at 60 frames per second (with a

bit rate of about 5400Kbps), boosting the Pi's media centre credentials. That's not

to say, however, that all video will playback this smoothly, with performance

dependent on the source video, the player used and bitrate. The Pi 3 also supports

wireless internet out of the box, with built- in Wi-Fi and Bluetooth. The latest board

can also boot directly from a USB-attached hard drive or pen drive, as well as

supporting booting from a network-attached file system, using PXE, which is useful

for remotely updating a Pi and for sharing an operating system image between

multiple machines.

3.9 STREAMING MODULE

An USB camera is a video camera that feeds or streams its image in real time to

or through a computer to a computer network. When "captured" by the computer,

the video stream may be saved, viewed or sent on to other networks travelling

through systems such as the internet, and e-mailed as an attachment. When sent

https://en.wikipedia.org/wiki/Video_camera
https://en.wikipedia.org/wiki/Streaming_media
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network

57

to a remote location, the video stream may be saved, viewed or on sent there.

Unlike an IP camera (which connects using Ethernet or Wi-Fi), a webcam is

generally connected by a USB cable, or similar cable, or built into computer

hardware, such as laptops.

The term ―USB‖ camera (a clipped compound) may also be used in its original

sense of a video camera connected to the USB continuously for an

indefinite time, rather than for a particular session, generally supplying a view for

anyone who visits its web page over the Internet. Some of them, for example,

those used as online cameras, are expensive, rugged professional video cameras.

Fig 3.9: USB Camera

3.10 PERFORMANCE MEASURE

Performance measures are used to evaluate the network performance of the

proposed model. This work uses accuracy, precision, recall and f1-score as

performance measure, which are formulated.

PRECISION

Precision, used in document retrievals, may be defined as the number of correct

documents returned by our ML model. We can easily calculate it by confusion

matrix with the help of following formula

RECALL

Recall may be defined as the number of positives returned by our ML model. We
can easily calculate it by confusion matrix with the help of following formula.

SUPPORT

https://en.wikipedia.org/wiki/IP_camera
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Clipped_compound
https://en.wikipedia.org/wiki/Video_camera
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Professional_video_camera
https://en.wikipedia.org/wiki/Professional_video_camera

58

Support may be defined as the number of samples of the true response that lies
in each class of target values.

F1 SCORE

This score will give us the harmonic mean of precision and recall. Mathematically,
F1 score is the weighted average of the precision and recall. The best value of F1
would be 1 and worst would be 0. We can calculate F1 score with the help of
following formula

F1 = 2 * (precision * recall) / (precision + recall)

F1 score is having equal relative contribution of precision and recall.

We can use classification_report function of sklearn.metrics to get the
classification report of our classification model.

59

CHAPTER 4

RESULTS

4.1 RESULTS

Our proposed methodology‘s execution has been examined on the test data

which was distinct from the training data set. The testing process involves

43,200 image samples of different hand signals. All these images were

simultaneously updated into our proposed model to come up with accurate

results. Our expected result is to obtain a text which is the translation of the

sign language given as an input. Our model will anticipate all the hand

gestures of the Indian Sign Language. To achieve an efficient result. The

estimated accuracy of our proposed system is more than 95% even in a

multiplex lighting environment which is considered an adequate result as of

now for real-time interpretation.

60

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS AND FUTURE WORK

The proposed a prototype model can recognize and classify the Indian Sign

Language using the deep structured learning techniques called CNN. We

observe that the CNN model gives the highest accuracy due to the advanced

techniques. From the process, we can conclude that CNN is an efficient

technique to categorize hand gestures with high degree of accuracy. In the

future work, we would like to expand the dialects for a few more sign

languages and our response time can also be improved.

61

REFERENCES

[1] Vijayalakshmi, P., & Aarthi, M. (2016, April). Sign language to speech conversion. In 2016 International Conference on
Recent Trends in Information Technology (ICRTIT) (pp. 1-6). IEEE.

[2] NB, M. K. (2018). Conversion of sign language into text. International Journal of Applied Engineering Research, 13(9),
7154-7161.

[3] Masood, S., Srivastava, A., Thuwal, H. C., & Ahmad, M. (2018). Real-time sign language gesture (word) recognition from
video sequences using CNN and RNN. In Intelligent Engineering Informatics (pp. 623-632). Springer, Singapore.

[4] Apoorv, S., Bhowmick, S. K., & Prabha, R. S. (2020, June). Indian sign language interpreter using image processing and
machine learning. In IOP Conference Series: Materials Science and Engineering (Vol. 872, No. 1, p. 012026). IOP
Publishing.

[5] Kaushik, N., Rahul, V., & Kumar, K. S. (2020). A Survey of Approaches for Sign Language Recognition
System. International Journal of Psychosocial Rehabilitation, 24(01).

[6] Kishore, P. V. V., & Kumar, P. R. (2012). A video-based Indian sign language recognition system (INSLR) using wavelet
transform and fuzzy logic. International Journal of Engineering and Technology, 4(5), 537.

[7] Dixit, K., & Jalal, A. S. (2013, February). Automatic Indian sign language recognition system. In 2013 3rd IEEE
International Advance Computing Conference (IACC) (pp. 883-887). IEEE.

[8] Das, A., Yadav, L., Singhal, M., Sachan, R., Goyal, H., Taparia, K., ... & Trivedi, G. (2016, December). Smart glove for
Sign Language communications. In 2016 International Conference on Accessibility to Digital World (ICADW) (pp. 27-31).
IEEE.

[9] Sruthi, R., Rao, B. V., Nagapravallika, P., Harikrishna, G., & Babu, K. N. (2018). Vision-Based Sign Language by Using
MATLAB. International Research Journal of Engineering and Technology (IRJET), 5(3).

[10] Kumar, A., & Kumar, R. (2021). A novel approach for ISL alphabet recognition using Extreme Learning
Machine. International Journal of Information Technology, 13(1), 349-357.

[11] Maraqa, M., & Abu-Zaiter, R. (2008, August). Recognition of Arabic Sign Language (Arce) using recurrent neural
networks. In 2008 First International Conference on the Applications of Digital Information and Web Technologies
(ICADIWT) (pp. 478-481). IEEE.

[12] Masood, S., Srivastava, A., Thuwal, H. C., & Ahmad, M. (2018). Real-time sign language gesture (word) recognition from
video sequences using CNN and RNN. In Intelligent Engineering Informatics (pp. 623-632). Springer, Singapore.

[13] Camgoz, N. C., Hadfield, S., Koller, O., Ney, H., & Bowden, R. (2018). Neural sign language translation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7784-7793).

[14] Cheng, K. L., Yang, Z., Chen, Q., & Tai, Y. W. (2020, August). Fully convolutional networks for continuous sign language
recognition. In European Conference on Computer Vision (pp. 697-714). Springer, Cham.

[15] Dabre, K., & Dholay, S. (2014, April). The machine learning model for sign language interpretation using webcam images.
In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications
(CSCITA) (pp. 317-321). IEEE.

[16] Taskiran, M., Killioglu, M., & Kahraman, N. (2018, July). A real-time system for recognition of American sign language
by using deep learning. In 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (pp. 1-
5). IEEE.

[17] Khan, S. A., Joy, A. D., Asaduzzaman, S. M., & Hossain, M. (2019, April). An efficient sign language translator device
using convolutional neural network and customized ROI segmentation. In 2019 2nd International Conference on
Communication Engineering and Technology (ICCET) (pp. 152-156). IEEE.

[18] Nair, A. V., & Bindu, V. (2013). A review on Indian sign language recognition. International journal of computer
applications, 73(22).

[19] Kumar, D. M., Bavanraj, K., Thavananthan, S., Bastiansz, G. M. A. S., Harshanath, S. M. B., & Alosious, J. (2020,
December). EasyTalk: A Translator for Sri Lankan Sign Language using Machine Learning and Artificial Intelligence.
In 2020 2nd International Conference on Advancements in Computing (ICAC) (Vol. 1, pp. 506-511). IEEE.

[20] Kumar, A., Madaan, M., Kumar, S., Saha, A., & Yadav, S. (2021, August). Indian Sign Language Gesture Recognition in
Real-Time using Convolutional Neural Networks. In 2021 8th International Conference on Signal Processing and
Integrated Networks (SPIN) (pp. 562-568). IEEE.

[21] Manikandan, K., Patidar, A., Walia, P., & Roy, A. B. (2018). Hand gesture detection and conversion to speech and text.
arXiv preprint arXiv:1811.11997.

[22] Misra, S., Singha, J., & Laskar, R. H. (2018). Vision-based hand gesture recognition of alphabets, numbers, arithmetic
operators and ASCII characters to develop a virtual text-entry interface system. Neural Computing and Applications, 29(8),
117-135.

[23] Hoste, L., Dumas, B., & Signer, B. (2012, May). SpeeG: a multimodal speech-and gesture-based text input solution. In
Proceedings of the International working conference on advanced visual interfaces (pp. 156-163).

[24] Buxton, W., Fiume, E., Hill, R., Lee, A., & Woo, C. (1983). Continuous hand-gesture driven input. In Graphics Interface
(Vol. 83, pp. 191-195).

[25] Kunjumon, J., & Megalingam, R. K. (2019, November). Hand gesture recognition system for translating indian sign
language into text and speech. In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)
(pp. 14-18). IEEE.

[26] Dardas, N. H., & Georganas, N. D. (2011). Real-time hand gesture detection and recognition using bag-of-features and
support vector machine techniques. IEEE Transactions on Instrumentation and measurement, 60(11), 3592-3607.

[27] Köpüklü, O., Gunduz, A., Kose, N., & Rigoll, G. (2019, May). Real-time hand gesture detection and classification using
convolutional neural networks. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2019) (pp. 1-8). IEEE.

[28] Francke, H., Ruiz-del-Solar, J., & Verschae, R. (2007, December). Real-time hand gesture detection and recognition using
boosted classifiers and active learning. In Pacific-Rim Symposium on Image and Video Technology (pp. 533-547).
Springer, Berlin, Heidelberg.

[29] Zhang, Q., Chen, F., & Liu, X. (2008, July). Hand gesture detection and segmentation based on difference background
image with complex background. In 2008 International Conference on Embedded Software and Systems (pp. 338-343).
IEEE.

[30] Mazhar, O., Navarro, B., Ramdani, S., Passama, R., & Cherubini, A. (2019). A real-time humanrobot interaction
framework with robust background invariant hand gesture detection. Robotics and Computer-Integrated Manufacturing, 60,
34-48.

[31] Liu, W., Li, X., Jia, Z., Yan, H., & Ma, X. (2017). A three-dimensional triangular vision-based contouring error detection
system and method for machine tools. Precision Engineering, 50, 85-98.

[32] Cohen, C. J., Beach, G., & Foulk, G. (2001, October). A basic hand gesture control system for PC applications. In
Proceedings 30th Applied Imagery Pattern Recognition Workshop (AIPR 2001). Analysis and Understanding of Time
Varying Imagery (pp. 74-79). IEEE.

[33] Reifinger, S., Wallhoff, F., Ablassmeier, M., Poitschke, T., & Rigoll, G. (2007, July). Static and dynamic hand-gesture
recognition for augmented reality applications. In International Conference on Human-Computer Interaction (pp. 728-737).
Springer, Berlin, Heidelberg.

62

[34] Kurakin, A., Zhang, Z., & Liu, Z. (2012, August). A real time system for dynamic hand gesture recognition with a depth
sensor. In 2012 Proceedings of the 20th European signal processing conference (EUSIPCO) (pp. 1975-1979). IEEE.

[35] Plouffe, G., & Cretu, A. M. (2015). Static and dynamic hand gesture recognition in depth data using dynamic time
warping. IEEE transactions on instrumentation and measurement, 65(2), 305- 316.

[36] Ghotkar, A. S., Khatal, R., Khupase, S., Asati, S., & Hadap, M. (2012, January). Hand gesture recognition for indian sign
language. In 2012 International Conference on Computer Communication and Informatics (pp. 1-4). IEEE.

[37] Dutta, K. K., & GS, A. K. (2015, December). Double handed Indian Sign Language to speech and text. In 2015 Third
International Conference on Image Information Processing (ICIIP) (pp. 374-377). IEEE.

[38] Dixit, K., & Jalal, A. S. (2013, February). Automatic Indian sign language recognition system. In 2013 3rd IEEE
International Advance Computing Conference (IACC) (pp. 883-887). IEEE.

[39] Nair, A. V., & Bindu, V. (2013). A review on Indian sign language recognition. International journal of computer
applications, 73(22).

[40] Rajam, P. S., & Balakrishnan, G. (2011, September). Real time Indian sign language recognition system to aid deaf-dumb
people. In 2011 IEEE 13th international conference on communication technology (pp. 737-742). IEEE.

APPENDICES

(a)SAMPLE CODE

Training and validation

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import os

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from sklearn.model_selection import train_test_split

from tensorflow.keras.utils import to_categorical

import cv2

import pydot

def load_dataset(directory):

 images = []

 labels = []

 for idx, label in enumerate(uniq_labels):

 for file in os.listdir(directory+'/'+label):

 filepath = directory + '/' +label +'/' +file

 img = cv2.resize(cv2.imread(filepath), (50, 50))

63

 images.append(img)

 labels.append(idx)

 images = np.asarray(images)

 labels = np.asarray(labels)

 return images, labels

def display_images(x_data, y_data, title, display_label = True):

 x, y = x_data, y_data

 fig, axes = plt.subplots(5, 8, figsize = (18, 5))

 fig.subplots_adjust(hspace= 0.5, wspace=0.5)

 fig.suptitle(title, fontsize=18)

 for i, ax in enumerate(axes.flat):

 ax.imshow(cv2.cvtColor(x[i], cv2.COLOR_BGR2RGB))

 if display_label:

 ax.set_xlabel(uniq_labels[y[i]])

 ax.set_xticks([])

 ax.set_yticks([])

 plt.show()

#loading_dataset into X_pre and Y_pre

data_dir = r'D:\final year main project\1Indian sign Language\sample_creation'

uniq_labels = sorted(os.listdir(data_dir))

X_pre, Y_pre = load_dataset(data_dir)

print(X_pre.shape, Y_pre.shape)

#spliting dataset into 80% train, 10% validation and 10% test data

X_train, X_test, Y_train, Y_test = train_test_split(X_pre, Y_pre, test_size = 0.8)

X_test, X_eval, Y_test, Y_eval = train_test_split(X_test, Y_test, test_size = 0.5)

64

print("Train images shape", X_train.shape, Y_train.shape)

print("Test images shape", X_test.shape, Y_test.shape)

print("Evaluate image shape", X_eval.shape, Y_eval.shape)

display_images(X_train, Y_train, 'Samples from Train Set')

display_images(X_test, Y_test, 'Samples from Test set')

display_images(X_eval, Y_eval, 'Samples from validation set')

Y_train = to_categorical(Y_train)

Y_test = to_categorical(Y_test)

Y_eval = to_categorical(Y_eval)

X_train = X_train / 255

X_test = X_test/255

X_eval = X_eval/255

model = tf.keras.Sequential([

 tf.keras.layers.Conv2D(16, (3,3), activation = 'relu', input_shape=(50, 50, 3)),

 tf.keras.layers.Conv2D(16, (3,3), activation = 'relu'),

 tf.keras.layers.Conv2D(16, (3,3), activation= 'relu'),

 tf.keras.layers.MaxPool2D((2,2)),

 tf.keras.layers.Conv2D(32, (3,3), activation = 'relu'),

 tf.keras.layers.Conv2D(32, (3,3), activation = 'relu'),

 tf.keras.layers.Conv2D(32, (3,3), activation = 'relu'),

 tf.keras.layers.MaxPool2D((2,2)),

 tf.keras.layers.Conv2D(64, (3,3), activation = 'relu'),

 tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

 tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

 tf.keras.layers.Flatten(),

65

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dense(1, activation='softmax')

])

model.summary()

model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics=['accuracy'])

history = model.fit(X_train, Y_train, epochs=20, validation_data=(X_eval, Y_eval))

#testing

model.evaluate(X_test, Y_test)

model.save(r'D:\final year main project\1Indian sign Language\test_train.h5')

#summarize history for accuracy

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

main.py

import cv2

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import os

66

model = tf.keras.models.load_model(r'D:\final year main project\1Indian sign
Language\test_train.h5')

model.summary()

data_dir = r'D:\final year main project\1Indian sign Language\dataset'

labels = sorted(os.listdir(data_dir))

labels[-1] = 'Nothing'

print(labels)

cap = cv2.VideoCapture(0)

while(True):

 _ , frame = cap.read()

 cv2.rectangle(frame, (100, 100), (400, 400), (0, 255, 0), 5)

 roi = frame[100:400, 100:400]

 img = cv2.resize(roi, (50, 50))

 cv2.imshow('Output', roi)

 img = img/255

 prediction = model.predict(img.reshape(1, 50, 50, 3))

 char_index = np.argmax(prediction)

 confidence = round(prediction[0, char_index]*100, 1)

 predicted_char = labels[char_index]

 font = cv2.FONT_HERSHEY_TRIPLEX

 fontScale = 1

 color = (0, 255, 255)

 thickness = 2

 if confidence > 98:

67

 msg = predicted_char +', Conf: '+str(confidence) +' %'

 cv2.putText(frame, msg, (80, 80), font, fontScale, color, thickness)

 print(predicted_char)

 cv2.imshow('Output1', frame)

 if cv2.waitKey(2) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

(b)OUTPUT SCREENSHOTS

(a) Experimental outcomes

68

(b) Training accuracy

(c) Structure of network

69

(d) Output in windows

(e) Output in Raspian OS

70

PLAGIARISM REPORT

