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                                                                      ABSTRACT 

 

The number of people using mobile devices increasing day by day. SMS (short 

message service) is a text message service available in smartphones as well as basic 

phones. So, the traffic of SMS increased drastically. The spam messages also 

increased. The hackers try to send spam messages for their financial or business 

benefits like market growth, lottery ticket information, credit card information, etc. So, 

spam classification has special attention. In this paper, we applied various machine 

learning and deep learning techniques for SMS spam detection. we used a dataset to 

train the machine learning and deep learning models like LSTM and NB. The SMS 

spam collection data set is used for testing the method. The dataset is split into two 

categories for training and testing the research. Our experimental results have shown 

that our NB model outperforms previous models in spam detection with an accuracy of 

good.  
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  CHAPTER I 

INTRODUCTION 

1.2Jupyter 

 
Jupyter, previously known as IPython Notebook, is a web-based, interactive 

development environment. Originally developed for Python, it has since expanded to 

support over 40 other programming languages including Julia and R. 

Jupyter allows for notebooksto be written that contain text, live code, images, and 

equations. These notebooks can be shared, and can even be hosted on GitHubfor free. 

For each section of this tutorial, you can download a Juypter notebook that allows you 

to edit and experiment with the code and examples for each topic. Jupyter is part of the 

Anaconda distribution; it can be started from the command line using the jupyter 

command: 

 

1.2 Machine Learning 

 

We will now move on to the task of machine learning itself. In the following sections 

we will describe how to use some basic algorithms, and perform regression, 

classification, and clustering on some freely available medical datasets concerning 

breast cancer and diabetes, and we will also take a look at a DNA microarray dataset. 
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SciKit-Learn 

SciKit-Learn provides a standardised interface to many of the most commonly 

used machine learning algorithms, and is the most popular and frequently used library 

for machine learning for Python. As well as providing many learning algorithms, SciKit-

Learn has a large number of convenience functions for common preprocessing tasks 

(for example, normalisation or k-fold cross validation). 

SciKit-Learn is a very large software library.  

 

Clustering 

Clustering algorithms focus on ordering data together into groups. In general 

clustering algorithms are unsupervised—they require no y response variable as input. 

That is to say, they attempt to find groups or clusters within data where you do not know 

the label for each sample. SciKit-Learn have many clusteringalgorithms, but in this 

section we will demonstrate hierarchical clustering on a DNA expression microarray 

dataset using an algorithm from the SciPy library. 

We will plot a visualisation of the clustering using what is known as a dendrogram, also 

using the SciPy library. 

The goal is to cluster the data properly in logical groups, in this case into the cancer 

types represented by each sample‘s expression data. We do this using agglomerative 

hierarchical clustering, using Ward‘s linkage method: 
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1.4Classification 
 

weanalysed data that was unlabelled—we did not know to what class a sample 

belonged (known as unsupervised learning). In contrast to this, a supervised problem 

deals with labelled data where are aware of the discrete classes to which each sample 

belongs. When we wish to predict which class a sample belongs to, we call this a 

classification problem. SciKit-Learn has a number of algorithms for classification, in this 

section we will look at the Support Vector Machine. 

We will work on the Wisconsin breast cancer dataset, split it into a training set and a 

test set, train a Support Vector Machine with a linear kernel, and test the trained model 

on an unseen dataset. The Support Vector Machine model should be able to predict if a 

new sample is malignant or benign based on the features of a new, unseen sample: 
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You will notice that the SVM model performed very well at predicting the malignancy of 

new, unseen samples from the test set—this can be quantified nicely by printing a 

number of metrics using the classification report function. Here, the precision, recall, 

and F1 score (F1 = 2· precision·recall/precision+recall) for each class is shown. The 

support column is a count of the number of samples for each class. 

Support Vector Machines are a very powerful tool for classification. They work well in 

high dimensional spaces, even when the number of features is higher than the number 

of samples. However, their running time is quadratic to the number of samples so large 

datasets can become difficult to train. Quadratic means that if you increase a dataset in 

size by 10 times, it will take 100 times longer to train. 

Last, you will notice that the breast cancer dataset consisted of 30 features. This makes 

it difficult to visualize or plot the data. To aid in visualization of highly dimensional data, 

we can apply a technique called dimensionality reduction. 

 

Dimensionality Reduction 

Another important method in machine learning, and data science in general, is 

dimensionality reduction. For this example, we will look at the Wisconsin breast cancer 

dataset once again. The dataset consists of over 500 samples, where each sample has 

30 features. The features relate to images of a fine needle aspirate of breast tissue, and 

the features describe the characteristics of the cells present in the images. All features 
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are real values. The target variable is a discrete value (either malignant or benign) and 

is therefore a classification dataset. 

You will recall from the Iris example in Sect. 7.3 that we plotted a scatter matrix of the 

data, where each feature was plotted against every other feature in the dataset to look 

for potential correlations (Fig. 3). By examining this plot you could probably find features 

which would separate the dataset into groups. Because the dataset only had 4 features 

we were able to plot each feature against each other relatively easily. However, as the 

numbers of features grow, this becomes less and less feasible, especially if you 

consider the gene expression example in Sect. 9.4 which had over 6000 features. 

One method that is used to handle data that is highly dimensional is Principle 

Component Analysis, or PCA. PCA is an unsupervised algorithm for reducing the 

number of dimensions of a dataset. For example, for plotting purposes you might want 

to reduce your data down to 2 or 3 dimensions, and PCA allows 

you to do this by generating components, which are combinations of the original 

features, that you can then use to plot your data. 

PCA is an unsupervised algorithm. You supply it with your data, X, and you specify the 

number of components you wish to reduce its dimensionality to. This is known as 

transforming the data: 

 

 

 

Again, you would not use this model for new data—in a real world scenario, you would, 

for example, perform a 10-fold cross validation on the dataset, choosing the model 

parameters that perform best on the cross validation. This model would be much more 

likely to perform well on new data. At the very least, you would randomly select a 

subset, say 30% of the data, as a test set and train the model on the remaining 70% of 
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the dataset. You would evaluate the model based on the score on the test set and not 

on the training set 

. 

1.4.1 NEURAL NETWORKS AND DEEP LEARNING 

 

While a proper description of neural networks and deep learning is far beyond the scope 

of this chapter, we will however discuss an example use case of one of the most 

popular frameworks for deep learning: Keras4. 

In this section we will use Keras to build a simple neural network to classify 

theWisconsin breast cancer dataset that was described earlier. Often, deep learning 

algorithms and neural networks are used to classify images—convolutional neural 

networks are especially used for image related classification. However, 

they can of course be used for text or tabular-based data as well. In this  we will build a 

standard feed-forward, densely connected neural network and classify a text-based 

cancer dataset in order to demonstrate the framework‘susage. 

In this example we are once again using the Wisconsin breast cancer dataset, which 

consists of 30 features and 569 individual samples. To make it more challenging for the 

neural network, we will use a training set consisting of only 50% of the entire dataset, 

and test our neural network on the remaining 50% of the data. 

Note,Keras is not installed as part of the Anaconda distribution, to install it use pip: 

 

Keras additionally requires either Theano or TensorFlow to be installed. In the examples 

in this chapter we are using Theano as a backend, however the code will work 

identically for either backend. You can install Theano using pip, but it has a number of 
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dependencies that must be installed first. Refer to the Theano and TensorFlow 

documentation for more information [12]. 

Keras is a modular API. It allows you to create neural networks by building a stack of 

modules, from the input of the neural network, to the output of the neural network, piece 

by piece until you have a complete network. Also, Keras can be configured to use your 

Graphics Processing Unit, or GPU. This makes training neural networks far faster than if 

we were to use a CPU. We begin by importing Keras: 

 

We may want to view the network‘s accuracy on the test (or its loss on the training set) 

over time (measured at each epoch), to get a better idea how well it is learning. An 

epoch is one complete cycle through the training data. 

Fortunately, this is quite easy to plot as Keras‘ fit function returns a history object which 

we can use to do exactly this: 

 

This will result in a plot similar to that shown. Often you will also want to plot the loss on 

the test set and training set, and the accuracy on the test set and training set.  

Plotting the loss and accuracy can be used to see if you are over fitting (you experience 

tiny loss on the training set, but large loss on the test set) and to see when your training 

has plateaued. 
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PROBLEM STATEMENT: 

 
 

A number of major differences exist between spam-filtering in text messages and 

emails. Unlike emails, which have a variety of large datasets available, real databases 

for SMS spams are very limited. Additionally, due to the small length of text messages, 

the number of features that can be used for their classification is far smaller than the 

corresponding number in emails. Here, no header exists as well. Additionally, text 

messages are full of abbreviations and have much less formal language that what one 

would expect from emails. All of these factors may result in serious degradation in 

performance of major email spam filtering algorithms applied to short text messages. 

 

 
 
 
 
 
 
 
 
 
 
 
 

1.5 OBJECTIVE STATEMENT:  

 

Prediction of SMS spam has been an important area of research for a long time. the 

goal is to apply different machine learning algorithms to SMS spam classification 
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problem, compare their performance to gain insight and further explore the problem, 

and design an application based on one of these algorithms that can filter SMS spams 

with high accuracy. The current work proposes a gamut of machine learning and deep 

learning-based predictive models for accurately predicting the sms spam movement. 

The predictive power of the models is further enhanced by introducing the powerful 

deep learning-based long- and short-term memory (LSTM) network into the predictive 

framework.  

SCOPE OF THE PROJECT: 

1. The Proposed mode is based on the study of sms text data and technical 

indicators. Algorithm selects best free parameters combination for LSTM to avoid 

over-fitting and local minima problems and improve prediction accuracy.  

2. Our dataset consists of one large text file in which each line corresponds to a text 

message. Therefore, preprocessing of the data, extraction of features, and 

tokenization of each message is required. After the feature extraction, an initial 

analysis on the data is done using label encoder and then the models like naive 

Bayes (NB) algorithm and LSTM are used on next steps are for prediction. 

3. The two methods used to predict the spam messages that are Fundamental and 

technical analyses. .  

 

1.6 EXISTING SYSTEM 

 

Random Forest (RF) algorithm will used for classification of ham or spam during this 

phase. RF is averaging ensemble learning method that can be used for classification 

problem. This algorithm combines various decision tree models in order to eliminate the 

over fitting problem in decision trees. In RF algorithm, each tree is capable in providing 

its own prediction results, different from each other. As a result, each tree gives different 

performances, in which the average of their performances will be generalized and 

calculated. During the training phase, a set of decision trees will be constructed before 

they can operate on randomly selected features. Regardless, RF can work well with a 

large dataset with a variety of feature types, similar to binary, categorical and numerical. 

The algorithm works as follows diagram: for each tree in the forest, a bootstrap sample 

is selected from S where S (i) represents the ith bootstrap. A decision-tree is then learn 

using a modified decision-tree learning algorithm.  
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The algorithm is modified as follows: at each node of the tree, instead of examining all 

possible feature-splits, some subset of the features text f ⊆ F is selected randomly. 

where F is the set of Spam features. The node then splits on the best feature in f rather 

than F. In practice f is much, much smaller than F. Deciding on which feature to split is 

oftentimes the most computationally expensive aspect of decision tree learning. By 

narrowing the set of features, the speed up the learning of the tree is increase 

drastically.  

EXISTING TECHINIQUE: 

KNN and Random forest. 

TECHNIQUE DEFINITION: 

K-Nearest Neighbors (KNN)  

The KNN algorithm classifies new data based on the class of the k nearest neighbors. 

This paper uses the value of k as 6. The distance from neighbors can be calculated 

using various distance metrics, such as Euclidean distance, Manhattan distance (used 

in this paper), Minkowski distance, etc. The class of the new data may be decided by 

majority vote or by an inverse proportion to the distance computed. KNN is a non-

generalizing method, since the algorithm keeps all of its training data in memory, 

possibly transformed into a fast indexing structure such as a ball tree or a KD tree. 

 

Random Forest (RF): 

 

Random forest algorithm is a supervised learning algorithm that is developed to solve 

the problems of regression and classification. So, the main advantage of random forest 

is that they can handle both numerical and categorical data. Like other conventional 

algorithms decision tree algorithm creates a training model and that training model is 
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used to predict the value or class of the target label/variable but here this is done by 

learning decision rules inferred from previous training dataset. This algorithm makes 

use of tree structure in which the internal nodes also known as decision node refers to 

an attribute and each internal node has two or more leaf nodes which corresponds to a 

class label. The topmost node known as root node corresponds to the best predictor i.e. 

best attribute of the dataset. This algorithm splits the whole data-frame into parts or 

subsets and simultaneously a random forest is developed and the end result of this is a 

tree with leaf nodes, internal nodes and a root node. As the tree becomes more deep 

and more complex, then the model becomes more and more fit. 

 

1.6.1 DISADVANTAGES OF EXISTING SYSTEM 

 Accuracy is low. 

 Dataset selection is not correct 

  Feature extraction is not accurate 

 Complex structure, not easy to understand. 

 

 

 

 

1.6.2 LITERATURE SURVEY 

TITLE: SMS Spam Detection Based on Long Short-Term Memory and Gated Recurrent 

Unit 

Author: Pumrapee Poomka, Wattana Pongsena, Nittaya Kerdprasop, and Kittisak 

Kerdprasop 

YEAR: - 2019 

Abstract: 

An SMS spam is the message that hackers develop and send to people via mobile 

devices targeting to get their important information. For people who are ignorant, if they 

follow the instruction in the message and fill their important information, such as internet 
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banking account in a faked website or application, the hacker may get the information. 

This may lead to loss their wealth. The efficient spam detection is an important tool in 

order to help people to classify whether it is a spam SMS or not. In this research, we 

propose a novel SMS spam detection based on the case study of the SMS spams in 

English language using Natural Language Process and Deep Learning techniques. To 

prepare the data for our model development process, we use word tokenization, 

padding data, truncating data and word embedding to make more dimension in data. 

Then, this data is used to develop the model based on Long Short-Term Memory and 

Gated Recurrent Unit algorithms. The performance of the proposed models is compared 

to the models based on machine learning algorithms including Support Vector Machine 

and Naïve Bayes. The experimental results show that the model built from the Long 

Short-Term Memory technique provides the best overall accuracy as high as 98.18%. 

On accurately screening spam messages, this model shows the ability that it can detect 

spam messages with the 90.96% accuracy rate, while the error percentage that it 

misclassifies a normal message as a spam message is only 0.74%. 

TITLE: SMS Spam Message Detection using Term Frequency-Inverse 

Document Frequency and Random Forest Algorithm 

Author: Haslina Md Sarkan, Yazriwati Yahya, Suriani Mohd Sam 

YEAR: - 2019 

Abstract: 

The daily traffic of Short Message Service (SMS) keeps increasing. As a result, it leads to 

dramatic increase in mobile attacks such as spammers who plague the service with spam 

messages sent to the groups of recipients. Mobile spams are a growing problem as the number of 

spams keep increasing day by day even with the filtering systems. Spams are defined as 

unsolicited bulk messages in various forms such as unwanted advertisements, credit 

opportunities or fake lottery winner notifications. Spam classification has become more 

challenging due to complexities of the messages imposed by spammers. Hence, various methods 

have been developed in order to filter spams. In this study, methods of term frequency-inverse 

document frequency (TF-IDF) and Random Forest Algorithm will be applied on SMS spam 

message data collection. Based on the experiment, Random Forest algorithm outperforms other 

algorithms with an accuracy of 97.50% 
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TITLE: Spam Detection Approach for Secure Mobile Message Communication Using 

Machine Learning Algorithms 

Author: Shah Nazir,2 Habib Ullah Khan,3 and Amin Ul Haq 

YEAR: - 2020 

Abstract: 

The spam detection is a big issue in mobile message communication due to which 

mobile message communication is insecure. In order to tackle this problem, an accurate 

and precise method is needed to detect the spam in mobile message communication. 

We proposed the applications of the machine learning-based spam detection method 

for accurate detection. In this technique, machine learning classifiers such as Logistic 

regression (LR), K-nearest neighbor (K-NN), and decision tree (DT) are used for 

classification of ham and spam messages in mobile device communication. The SMS 

spam collection data set is used for testing the method. The dataset is split into two 

categories for training and testing the research. The results of the experiments 

demonstrated that the classification performance of LR is high as compared with K-NN 

and DT, and the LR achieved a high accuracy of 99%. Additionally, the proposed 

method performance is good as compared with the existing state-of-the-art methods. 

TITLE: SMS Spam Detection using Machine Learning and Deep Learning 

Techniques 

Author: Sridevi Gadde 

YEAR: - 2021 

Abstract: 

The number of people using mobile devices increasing day by day.SMS (short message 

service) is a text message service available in smartphones as well as basic phones. 

So, the traffic of SMS increased drastically. The spam messages also increased. The 

spammers try to send spam messages for their financial or business benefits like 

market growth, lottery ticket information, credit card information, etc. So, spam 

classification has special attention. In this paper, we applied various machine learning 

and deep learning techniques for SMS spam detection. we used a dataset from UCI and 

https://www.researchgate.net/scientific-contributions/Sridevi-Gadde-2190529961
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build a spam detection model. Our experimental results have shown that our LSTM 

model outperforms previous models in spam detection with an accuracy of 98.5%. We 

used python for all implementations. 

TITLE: SMS Spam Detection using Machine Learning Approach 

Author: Houshmand Shirani-Mehr, hshirani@stanford.edu 

YEAR: - 2019 

Abstract:  

Over recent years, as the popularity of mobile phone devices has increased, Short 

Message Service (SMS) has grown into a multi-billion dollars industry. At the same 

time, reduction in the cost of messaging services has resulted in growth in unsolicited 

commercial advertisements (spams) being sent to mobile phones. In parts of Asia, up to 

30% of text messages were spam in 2012. Lack of real databases for SMS spams, 

short length of messages and limited features, and their informal language are the 

factors that may cause the established email filtering algorithms to underperform in their 

classification. In this project, a database of real SMS Spams from UCI Machine 

Learning repository is used, and after preprocessing and feature extraction, different 

machine learning techniques are applied to the database. Finally, the results are 

compared and the best algorithm for spam filtering for text messaging is introduced. 

Final simulation results using 10-fold cross validation shows the best classifier in this 

work reduces the overall error rate of best model in original paper citing this dataset by 

more than half. 

1.7 PROPOSED SYSTEM 

 

Applying NB algorithm to the dataset using extracted features with different training set 

sizes. The performance in learning curve is evaluated by splitting the dataset into 70% 

training set and 30% test set. The NB algorithm shows good overall accuracy. 

We notice that the length of the text message (number of characters used) is a very 

good feature for the classification of spams. Sorting features based on their mutual 

information (MI) criteria shows that this feature has the highest MI with target labels. 

Additionally, going through the misclassified samples, we notice that text messages with 

length below a certain threshold are usually hams, yet because of the tokens 
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corresponding to the alphabetic words or numeric strings in the message they might be 

classified as spams.  

By looking at the learning curve, we see that once the NB is trained on features 

extracted, the training set error and test set error are close to each other. Therefore, we 

do not have a problem of high variance, and gathering more data may not result in 

much improvement in the performance of the learning algorithm. As the result, we 

should try reducing bias to improve this classifier. This means adding more meaningful 

features to the list of tokens can decrease the error rate, and is the option that is 

explored next. 

1.7.1 PROPOSED SYSTEM ADVANTAGES 

 

 Complexity is less compared to previous process 

 Ability to learn and extract complex features. 

 Accuracy is good 

 With its simplicity and fast processing time, the proposed algorithm gives better 

       execution time.      

 Both machine learning and deep learning technique is performed to predict the 

value effectively. 

 Prediction is accurate 
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Algorithms: 

LSTM (Long Short Term Memory): 

 

A special type of RNN, which can learn long-term dependence, is called Long-Short 

Term Memory (LSTM). LSTM enables RNN to remember long-term inputs. Contains 

information in memory, similar to computer memory. It is able to read, write and delete 

information in its memory. This memory can be seen as a closed cell, with a closed 

description, the cell decides to store or delete information. In LSTM, there are three 

gates: input, forget and exit gate. These gates determine whether new input (input gate) 

should be allowed, data deleted because it is not important (forget gate), or allow it to 

affect output at current timeline (output gate) 
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LSTM's are a special subset of RNN‘s that can capture context-specific temporal 

dependencies for long periods of time. Each LSTM neuron is a memory cell that can 

store other information i.e., it maintains its own cell state. While neurons in normal 

RNN‘s merely take in their previous hidden state and the current input to output a new 

hidden state, an LSTM neuron also takes in its old cell state and outputs its new cell 

state. 

1. Forget gate: The forget gateway determines when certain parts of the cell will be 

inserted with information that is more recent. It subtracts almost 1 in parts of the cell 

state to be kept, and zero in values to be ignored.  

2. Input gate : Based on the input (e.g., previous output o (t-1), input x (t), and the 

previous state of cell c (t-1)), this network category reads the conditions under which 

any information should be stored (or updated) in the state cell.  

3. Output gate: Depending on the input mode and the cell, this component determines 

which information is forwarded in the next location in the network.  

 

Thus, LSTM networks are ideal for exploring how variation in one unwanted sms can 

affect the users over a long period of time. They can also decide (in a dynamic fashion) 

for how long information about specific past trends in spam sms movement needs to be 

retained in order to more accurately predict future trends in the variation of spam sms. 

Advantages of LSTM : 

 

The main advantage of LSTM is its ability to read intermediate context. Each unit 

remembers details for a long or short period without explicitly utilizing the activation 

function within the recurring components. An important fact is that any cell state is 

repeated only with the release of the forget gate, which varies between 0 and 1. That is 

to say, the gateway for forgetting in the LSTM cell is responsible for both the hardware 

and the function of the cell state activation. Thus, the data from the previous cell can 

pass through the unchanged cell instead of explicitly increasing or decreasing in each 

step or layer, and the instruments can convert to their appropriate values over a limited 

time. This allows LSTM to solve a perishable gradient problem - because the amount 

stored in the memory cell is not converted in a recurring manner, the gradient does not 

end when trained to distribute backwards. 
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CHAPTER 2 

2.1 INTRODUCTION 

The increasing mobile phones become one of the attached companions for many 

individuals. With the explosive penetration of mobile devices and millions of people 

sending messages every day, Short Message Service (SMS) has become a multi-

million-dollar commercial industry with a value between 11.3 to 24.7 percent of the 

developing countries‘ Gross National Income (GNI) in the early year of 2013.  

As the utilization of mobile phone devices has become commonplace, Short Message 

Service (SMS) has grown into a multi-billion dollars commercial industry [2]. SMS is a 

text communication platform that allows mobile phone users to exchange short text 

messages (usually less than 160 seven-bit characters). It is the most widely used data 

application with an estimated 3.5 billion active users, or about 80% of all mobile phone 

subscribers at the end of 2010 [3]. As the popularity of the platform has increased, we 

have seen a surge in the number of unsolicited commercial advertisements sent to 

mobile phones using text messaging. SMS spam is still not as common as email spam, 

where in 2010 around 90% of emails was spam, and in North America it is still not a 

major problem, contributing to less than 1% of text messages exchanged as of 

December 2012. 

The spam increased in these days due more mobile devices deployed in environment 

for e-mail and message communication. Currently, 85% of mails and messages 

received by mobile users are spam. The cost of mails and messages are very low for 

senders but high for receipts of these messages. The cost paid some time by service 

providers and the cost of spam can be measured in the loss of human time and loss of 

important messages or mails. Due to these spam mails and messages, the values able 

e-mails and messages are affected because each user have limited Internet services, 

short time, and memory. 
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The dataset is a large text file, in which each line starts with the label of the message, 

followed by the text message string. After preprocessing of the data and extraction of 

features, machine learning techniques such as naive Bayes, SVM, and other methods 

are applied to the samples, and their performances are compared. Finally, the 

performance of best classifier from the project is compared against the performance of 

classifiers applied in the original paper citing this dataset. 

We proposed a spam detection method using machine learning algorithms such as NB 

(naïve Bayes) and LSTM  for classification of ham and spam messages. The SMS 

spam collection dataset was considered for testing of the current research. The dataset 

was divided into two categories: 30% for testing and 70% for training purpose for the 

predictive models. The evaluation metrics for performance such as specificity, accuracy, 

and sensitivity were considered evaluating the proposed study. The results obtained 

from experiments confirmed that the proposed research achieved high accuracy. 

 

2.2 DETAILED DIAGRAM 

2.2.1Front End Module Diagrams: 

    

 

2.2.2 Back End Module Diagrams: 
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2.3 SYSTEM SPECIFICATION: 

2.3.1 HARDWARE REQUIREMENTS: 

The hardware requirements may serve as the basis for a contract for the 

implementation of the system and should therefore be a complete and consistent 

specification of the whole system. They are used by software engineers as the starting 

point for the system design. It shows what the system does and not how it should be 

implemented 

 

PROCESSOR :   Intel I5 

RAM   : 4GB  

HARD DISK   : 40 GB 

 

2.3.2 SOFTWARE REQUIREMENTS: 

 

The software requirements document is the specification of the system. It should 

include both a definition and a specification of requirements. It is a set of what the 

system should do rather than how it should do it. The software requirements provide a 
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basis for creating the software requirements specification.  It is useful in estimating cost, 

planning team activities, performing tasks and tracking the team‘s and tracking the 

team‘s progress throughout the development activity. 

 

PYTHON IDE                            :   Anaconda Jupyter Notebook 

PROGRAMMING LANGUAGE  :  Python 

 

 

2.4 MODULE DESCRIPTION 

Data Collection: 

The public dataset of SMS labelled messages is obtained from UCI Machine Learning 

Repository. The dataset considered in the current research is available on kaggle, a 

machine learning repository. This study finds that there are only 5,574 labelled 

messages in the dataset, with 4827 of messages belong to ham messages while the 

other 747 messages belong to spam messages. Nonetheless, this dataset consists of 

two named columns starting with the message labels (ham or spam) followed by strings 

of text messages and three unnamed columns. 

It‘s time for a data analyst to pick up the baton and lead the way to machine learning 

implementation. The job of a data analyst is to find ways and sources of collecting 

relevant and comprehensive data, interpreting it, and analyzing results with the help of 

statistical techniques. 

 

The type of data depends on what you want to predict. 

 

There is no exact answer to the question ―How much data is needed?‖ because each 

machine learning problem is unique. In turn, the number of attributes data scientists will 

use when building a predictive model depends on the attributes‘ predictive value. 

 

‗The more, the better‘ approach is reasonable for this phase. Some data scientists 

suggest considering that less than one-third of collected data may be useful. It‘s difficult 

to estimate which part of the data will provide the most accurate results until the model 



29 
 

training begins. That‘s why it‘s important to collect and store all data — internal and 

open, structured and unstructured. 

 

The purpose of preprocessing is to convert raw data into a form that fits machine 

learning. Structured and clean data allows a data scientist to get more precise results from 

an applied machine learning model. The technique includes data formatting, cleaning, 

and sampling. 

Data formatting:The importance of data formatting grows when data is acquired from 

various sources by different people. The first task for a data scientist is to standardize 

record formats. A specialist checks whether variables representing each attribute are 

recorded in the same way. Titles of products and services, prices, date formats, and 

addresses are examples of variables. The principle of data consistency also applies to 

attributes represented by numeric ranges. 

 

Data cleaning: - This set of procedures allows for removing noise and fixing 

inconsistencies in data. A data scientist can fill in missing data using imputation 

techniques, e.g. substituting missing values with mean attributes. A specialist also detects 

outliers — observations that deviate significantly from the rest of distribution. If an 

outlier indicates erroneous data, a data scientist deletes or corrects them if possible. This 

stage also includes removing incomplete and useless data objects. 

 

Data anonymization: - Sometimes a data scientist must anonymize or exclude attributes 

representing sensitive information (i.e. when working with healthcare and banking data). 

 

Data sampling: - Big datasets require more time and computational power for analysis. If 

a dataset is too large, applying data sampling is the way to go. A data scientist uses this 

technique to select a smaller but representative data sample to build and run models 

much faster, and at the same time to produce accurate outcomes. 

Pre-processing is the first stage in which the unstructured data is converted into more 

structured data. Since keywords in SMS text messages are prone to be replaced by 

symbols. In this study, the stop word list remover for English language have been 

applied to eliminate the stop words in the SMS text messages. 

 

Natural Language Processing NLP  
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The input given by the user is processed through a number of stages to 

understand what the user is trying to say. Natural language processing (NLP) is 

the ability of a program to make use of the natural language spoken by a human 

and comprehend it‘s meaning. NLP is the study of the computational treatment of 

natural (human) language. The development of NLP is challenging because computers 

are used to of getting a highly structured input whereas natural language is highly 

complex and ambiguous with different linguistic structures and complex variables. NLP 

has various stages as follows:  

• Tokenisation( lexical analysis), also referred as segmentation involves breaking up a 

sentence or paragraph into tokens or individual words, numbers or meaning full 

phrases. Tokens can be thought of as a small part like a word is a token in a sentence 

and a sentence is a token in a paragraph. The words are separated with the help of 

word boundaries. English is space delimited hence, word boundaries are the space 

between ending of one word and starting of the next one. Example: ―I am suffering with 

fever!‖ The output after tokenisation would be: [ ‗I‘ ,‘am‘ , ‗suffering‘ , ‗with‘ , ‗ fever‘]  

• Syntactic analysis involves analysis of words for grammar and putting the words 

together in a manner which can show their relationship. This can be done with a data 

structure such as a parse tree or syntax tree. The tree is constructed with the rules of 

grammar of the language. If the input can be produced using the syntax tree the input is 

found to have correct syntax. For example the string ―I pick that have to‖ will be 

considered incorrect syntax.  

• Semantic analysis picks up the dictionary meaning of words and tries to understand 

the actual meaning of the sentence. It is the process of mapping syntactic structures 

with the actual or text independent meaning of the words. Strings like ―hot winter‖ will be 

disregarded.  

• Pragmatic analysis: Pragmatic investigation manages outside word information, which 

implies learning the outer to the archives and additionally inquiries. Pragmatics analysis 

that centers around what was portrayed reinterpreted by what it really implied, inferring 

the different parts of language that require true learning. 

 

 

Featuraization:- 

Featuraization is a way to change some form of data (text data, graph data, time-series 

data…) into a numerical vector. 

Featuraization is different from feature engineering. Feature engineering is just 

transforming the numerical features somehow so that the machine learning models 

work well. In feature engineering, features are already in the numerical form. Whereas 

in Featuraization data not need to be in the form of numerical vector. 
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The machine learning model cannot work with row text data directly. In the end, 

machine learning models work with numerical (categorical, real…) features. So it is 

import to change some type of data into numerical vector so that we can leverage the 

whole power of linear algebra (making the decision boundary between data points) and 

statistics tools with other types of data also. 

Feature extraction and selection is important for the discrimination of ham and spam in 

SMS text messages. For this phases TFIDF will be used. TFIDF is the often-weighting 

method used to in the Vector Space Model, particularly in IR domain including text 

mining. It is a statistical method to measure the important of a word in the document to 

the whole corpus. The term frequency is simply calculated in proportion to the number 

of occurrences a word appears in the document and usually normalized in positive 

quadrant between 0 and 1 to eliminate bias towards lengthy documents. To construct 

the index of terms in TFIDF, punctuation is removed, and all text are lowercase during 

tokenization. The first two letter TF or term frequency refers to how important if it occurs 

more frequently in a document. Therefore, the higher TF reflects to the more estimated 

that the term is significant in respective documents. Additionally, IDF or Inverse 

Document Frequency calculated on how infrequent a word or term is in the documents. 

The weighted value is estimated using the whole training dataset. The idea of IDF is 

that a word is not considered to be good candidate to represent the document if it is 

occurring frequently in the whole dataset as it might be the stop words or common 

words that is generic. Hence only infrequent words in contrast of the entire dataset is 

relevant for that documents. TF-IDF does not only assess the importance of words in 

the documents but it also evaluates the importance of words in document database or 

corpus. In this sense, the word frequency in the document will increase the weight of 

words proportionally but will then be offset by corpus‘s word frequency. This key 

characteristic of TF-IDF assumes that there are several words that appear more often 

compared to others in the document in general. 

 

 

Splitting of data 

After cleaning the data, data is normalized in training and testing the model. When data 

is spitted then we train algorithm on the training data set and keep test data set aside. 

This training process will produce the training model based on logic and algorithms and 
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values of the feature in training data. Basically aim of feature extraction is to bring all the 

values under same scale. 

A dataset used for machine learning should be partitioned into three subsets — training, 

test, and validation sets. 

Training set: -A data scientist uses a training set to train a model and define its optimal 

parameters — parameters it has to learn from data. 

Test set: - A test set is needed for an evaluation of the trained model and its capability 

for generalization. The latter means a model‘s ability to identify patterns in new unseen 

data after having been trained over a training data. It‘s crucial to use different subsets 

for training and testing to avoid model over fitting, which is the incapacity for 

generalization we mentioned above. 

 

Modeling:- 

During this stage, a data scientist trains numerous models to define which one of them 

provides the most accurate predictions. 

Model Testing:-  

The goal of this step is to develop the simplest model able to formulate a target value 

fast and well enough. A data scientist can achieve this goal through model tuning. 

That‘s the optimization of model parameters to achieve an algorithm‘s best 

performance. 

One of the more efficient methods for model evaluation and tuning is cross-validation  

Cross-validation: - Cross-validation is the most commonly used tuning method. It entails 

splitting a training dataset into ten equal parts (folds). A given model is trained on only 

nine folds and then tested on the tenth one (the one previously left out). Training 

continues until every fold is left aside and used for testing. As a result of model 

performance measure, a specialist calculates a cross-validated score for each set of 

hyper parameters. A data scientist trains models with different sets of hyper parameters 

to define which model has the highest prediction accuracy. The cross-validated score 

indicates average model performance across ten hold-out folds. Then a data science 
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specialist tests models with a set of hyper parameter values that received the best 

cross-validated score. There are various error metrics for machine learning tasks. 

NAIVE BAYES:  
 

Naive Bayes is a simple probabilistic classifier based on applying Bayes' theorem (or 

Bayes‘s rule) with strong independence (naive) assumptions. Parameter estimation for 

Naïve Bayes models uses the maximum likelihood estimation. It takes only one pass 

over the training set and is computationally very fast. 

 

  Bayes Rule  

A conditional probability is the likelihood of some conclusion, C, given some 

evidence/observation, D, where a dependence relationship exists between C and D.  

This probability is denoted as 

 (𝐶|𝐷) where, (𝐷/𝐶) = [(𝐷/𝐶)(𝐶)] /[𝑃(𝐷)]  

 

  NB Classifier  

Naïve Bayes classifier is one of the high detection approach for learning classification of 

text documents. Given a set of classified training samples, an application can learn from 

these samples, so as to predict the class of an unmet samples.  

The features (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4) which are present in sms are independent from each 

other. Every feature (1 ≤ 𝑖 ≤ 4) text binary value showing whether the particular property 

comes in sms. The probability is calculated that the given web belongs to a class 𝑟 (𝑟1 : 

spam and 𝑟2 :  

Ham) as follows:  

(𝑟1/𝑁) = ( (𝑟1) ∗ 𝑃(𝑁/𝑟𝑖))/𝑃(𝑁 )  

 

 

PERFORMANCE MATRICES: 

Data was divided into two portions, training data and testing data, both these portions 

consisting 70% and 30% data respectively. All these two algorithms were applied on 

same dataset using Enthought Canaopy and results were obtained.  
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Predicting accuracy is the main evaluation parameter that we used in this work. 

Accuracy can be defied using equation. Accuracy is the overall success rate of the 

algorithm. 

CONFUSION MATRIX: 
 

It is the most commonly used evaluation metrics in predictive analysis mainly because it 

is very easy to understand and it can be used to compute other essential metrics such 

as accuracy, recall, precision, etc. It is an NxN matrix that describes the overall 

performance of a model when used on some dataset, where N is the number of class 

labels in the classification problem. 

 

All predicted true positive and true negative divided by all positive and negative. True 

Positive (TP), True Negative (TN), False Negative (FN) and False Positive (FP) 

predicted by all algorithms are presented in table. 

 

True positive (TP) indicates that the positive class is predicted as a positive class, and 

the number of sample positive classes was actually predicted by the model.  

False negative indicates (FN) that the positive class is predicted as a negative class, 

and the number of negative classes in the sample was actually predicted by the model.  

False positive (FP) indicates that the negative class is predicted as a positive class, and 

the number of positive classes of samples was actually predicted by the model.  

True negative (TN) indicates that the negative class is predicted as a negative class, 

and the number of sample negative classes was actually predicted by the model. 

 

2.5 SYSTEM DESIGN: 
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Designing of system is the process in which it is used to define the interface, modules 

and data for a system to specified the demand to satisfy. System design is seen as the 

application of the system theory. The main thing of the design a system is to develop 

the system architecture by giving the data and information that is necessary for the 

implementation of a system. 

 

 

2.5.1 ARCHITECTURE DIAGRAM: 

 

2.5.2 DATA FLOW DIAGRAM: 

Data flow diagrams are used to graphically represent the flow of data in a business 

information system. DFD describes the processes that are involved in a system to 

transfer data from the input to the file storage and reports generation. Data flow 

diagrams can be divided into logical and physical. The logical data flow diagram 

describes flow of data through a system to perform certain functionality of a business. 

The physical data flow diagram describes the implementation of the logical data flow 
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2.5.3 USECASE DIAGRAM: 

Use case diagrams identify the functionalities provides by the use cases, the actors who 

interact with the system and the association between the actors and the functionalities. 

 

2.5.4 CLASS DIAGRAM: 

The class diagram is a static diagram. It represents the static view of an application. 

Class diagram is not only used for visualizing, describing and documenting different 

aspects of a system but also for constructing executable code of the software 

application 

 

2.5.5 SEQUENCE DIAGRAM: 

The sequence diagram of a system shows the entity interplay are ordered in the time 

order level. So, that it drafts the classes and object that are imply in the that plot and 

also the series of message exchange take place betwixt the body that need to be 

carried out by the purpose of that scenario. 
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2.5.6 ACTIVITY DIAGRAM: 

The Activity Diagram forms effective while modeling the functionality of the system. 

Hence this diagram reflects the activities, the types of flows between these activities 

and finally the response of objects to these activities.   
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2.5.7 STATE FLOW DIAGRAM: 

The below state chart diagram describes the flow of control from one state to another 

state (event) in the flow of the events from the creation of an object to its termination. 
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CHAPTER 3 

SOFTWARE SPECIFICATION 

3.1 GENERAL 

  ANACONDA 

It is a free and open-source distribution of the Python and R programming languages for 

scientific computing (data science, machine learning applications, large-scale data 

processing, predictive analytics, etc.), that aims to simplify package management and 

deployment. 

 Anaconda distribution comes with more than 1,500 packages as well as 

the Conda package and virtual environment manager. It also includes a GUI, Anaconda 

Navigator, as a graphical alternative to the Command Line Interface (CLI). 

The big difference between Conda and the pip package manager is in how package 

dependencies are managed, which is a significant challenge for Python data science 

and the reason Conda exists. Pip installs all Python package dependencies required, 

whether or not those conflict with other packages you installed previously.  

So your working installation of, for example, Google Tensorflow, can suddenly stop 

working when you pip install a different package that needs a different version of the 

Numpy library. More insidiously, everything might still appear to work but now you get 

different results from your data science, or you are unable to reproduce the same 

results elsewhere because you didn't pip install in the same order. 

Conda analyzes your current environment, everything you have installed, any version 

limitations you specify (e.g. you only want tensorflow>= 2.0) and figures out how to 

install compatible dependencies. Or it will tell you that what you want can't be done. Pip, 

by contrast, will just install the thing you wanted and any dependencies, even if that 

breaks other things.Open source packages can be individually installed from the 

Anaconda repository, Anaconda Cloud (anaconda.org), or your own private repository 

or mirror, using the conda install command. Anaconda Inc compiles and builds all the 

packages in the Anaconda repository itself, and provides binaries for Windows 32/64 bit, 

Linux 64 bit and MacOS 64-bit. You can also install anything on PyPI into a Conda 

environment using pip, and Conda knows what it has installed and what pip has 

https://en.wikipedia.org/wiki/Conda_(package_manager)
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installed. Custom packages can be made using the conda build command, and can be 

shared with others by uploading them to Anaconda Cloud, PyPI or other 

repositories.The default installation of Anaconda2 includes Python 2.7 and Anaconda3 

includes Python 3.7. However, you can create new environments that include any 

version of Python packaged with conda. 

 

 

 

Anaconda Navigator is a desktop Graphical User Interface (GUI) included in Anaconda 

distribution that allows users to launch applications and manage conda packages, 

environments and channels without using command-line commands. Navigator can 

search for packages on Anaconda Cloud or in a local Anaconda Repository, install them 

in an environment, run the packages and update them. It is available 

for Windows, macOS and Linux. 

The following applications are available by default in Navigator: 

 JupyterLab 

 Jupyter Notebook 

 QtConsole 

 Spyder 

 Glueviz 

https://en.wikipedia.org/wiki/Python_Package_Index
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Lab
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://qtconsole.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Spyder_(software)
http://glueviz.org/
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 Orange 

 Rstudio 

 Visual Studio Code 

Microsoft .NET is a set of Microsoft software technologies for rapidly building and 

integrating XML Web services, Microsoft Windows-based applications, and Web 

solutions. The .NET Framework is a language-neutral platform for writing programs that 

can easily and securely interoperate. There‘s no language barrier with .NET: there are 

numerous languages available to the developer including Managed C++, C#, Visual 

Basic and Java Script. The .NET framework provides the foundation for components to 

interact seamlessly, whether locally or remotely on different platforms. It standardizes 

common data types and communications protocols so that components created in 

different languages can easily interoperate. 

 ―.NET‖ is also the collective name given to various software components built upon the 

.NET platform. These will be both products (Visual Studio.NET and Windows.NET 

Server, for instance) and services (like Passport, .NET My Services, and so on). 

 Microsoft VISUAL STUDIO  is an Integrated Development Environment (IDE) 

from Microsoft. It is used to develop computer programs, as well as websites, web apps, 

web services and mobile apps. 

 

Python is a powerful multi-purpose programming language created by Guido van 

Rossum. It has simple easy-to-use syntax, making it the perfect language for someone 

trying to learn computer programming for the first time. Python features are: 

 Easy to code 

https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/Rstudio
https://en.wikipedia.org/wiki/Visual_Studio_Code
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 Free and Open Source 

 Object-Oriented Language 

 GUI Programming Support 

 High-Level Language 

 Extensible feature 

 Python is Portable language 

 Python is Integrated language 

 Interpreted  

 Large Standard Library 

 Dynamically Typed Language 

 

3.3 PYTHON: 

 Python is a powerful multi-purpose programming language created by Guido van 

Rossum. 

 It has simple easy-to-use syntax, making it the perfect language for someone 

trying to learn computer programming for the first time. 

Features Of Python : 

1.Easy to code: 

Python is high level programming language. Python is very easy to learn language as 

compared to other language like c, c#, java script, java etc. It is very easy to code in 

python language and anybody can learn python basic in few hours or days. It is also 

developer-friendly language. 

2. Free and Open Source: 

Python language is freely available at official website and you can download it from the 

given download link below click on the Download Python keyword. 

Since, it is open-source, this means that source code is also available to the public. So 

you can download it as, use it as well as share it. 

3.Object-Oriented Language: 

One of the key features of python is Object-Oriented programming. Python supports 

object oriented language and concepts of classes, objects encapsulation etc. 

4. GUI Programming Support: 

Graphical Users interfaces can be made using a module such as PyQt5, PyQt4, 

wxPython or Tk in python. 

PyQt5 is the most popular option for creating graphical apps with Python. 

5. High-Level Language: 

Python is a high-level language. When we write programs in python, we do not need to 

remember the system architecture, nor do we need to manage the memory. 
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6.Extensible feature: 

Python is a Extensible language. we can write our some python code into c or c++ 

language and also we can compile that code in c/c++ language. 

7. Python is Portable language: 

Python language is also a portable language. for example, if we have python code for 

windows and if we want to run this code on other platform such as Linux, Unix and Mac 

then we do not need to change it, we can run this code on any platform. 

8. Python is Integrated language: 

Python is also an Integrated language because we can easily integrated python with 

other language like c, c++ etc. 

9. Interpreted Language: 

Python is an Interpreted Language. because python code is executed line by line at a 

time. like other language c, c++, java etc there is no need to compile python code this 

makes it easier to debug our code. The source code of python is converted into an 

immediate form called bytecode. 

10. Large Standard Library: 

Python has a large standard library which provides rich set of module and functions so 

you do not have to write your own code for every single thing.There are many libraries 

present in python for such as regular expressions, unit-testing, web browsers etc. 

11. Dynamically Typed Language: 

Python is dynamically-typed language. That means the type (for example- int, double, 

long etc) for a variable is decided at run time not in advance.because of this feature we 

don‘t need to specify the type of variable. 

APPLICATIONS OF PYTHON : 

WEB APPLICATIONS 

 You can create scalable Web Apps using frameworks and CMS (Content 

Management System) that are built on Python. Some of the popular platforms for 

creating Web Apps are:Django, Flask, Pyramid, Plone, Django CMS. 

 Sites like Mozilla, Reddit, Instagram and PBS are written in Python. 

 

3.2.1 SCIENTIFIC AND NUMERIC COMPUTING 

 There are numerous libraries available in Python for scientific and numeric 

computing. There are libraries like:SciPy and NumPy that are used in general 

purpose computing. And, there are specific libraries like: EarthPy for earth 

science, AstroPy for Astronomy and so on. 

 Also, the language is heavily used in machine learning, data mining and deep 

learning. 
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3.2.2 CREATING SOFTWARE PROTOTYPES 

 Python is slow compared to compiled languages like C++ and Java. It might not 

be a good choice if resources are limited and efficiency is a must. 

 However, Python is a great language for creating prototypes. For example: You 

can use Pygame (library for creating games) to create your game's prototype 

first. If you like the prototype, you can use language like C++ to create the actual 

game. 

 

 

 

 

 

 3.2.3 GOOD LANGUAGE TO TEACH PROGRAMMING 

 Python is used by many companies to teach programming to kids It is a good language 

with a lot of features and capabilities. Yet, it's one of the easiest language to learn 

because of its simple easy-to-use system. 
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CHAPTER 4 

IMPLEMENTATION 

4.1 GENERAL 

Python is a program that was originally designed to simplify the implementation of numerical 

linear algebra routines. It has since grown into something much bigger, and it is used to 

implement numerical algorithms for a wide range of applications 

4.2 CODE IMPLEMENTATION  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import keras 

from sklearn.model_selection import train_test_split 

import seaborn as sns 

from wordcloud import WordCloud 

from sklearn.preprocessing import LabelEncoder 

import nltk 

import re 

from nltk.corpus import stopwords 

from nltk.stem import WordNetLemmatizer 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.metrics import accuracy_score,confusion_matrix 

nltk.download('punkt') 
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d=pd.read_csv(r'C:\Users\kbpra\Music\spam_detection\Dataset\spam.csv', 
encoding='latin-1') 

d.head() 

d 

df = d.iloc[:,0:2].values 

df = pd.DataFrame(df) 

df.columns=['Class','Text'] 

df.head() 

df.info() 

df.isna().sum() 

df.describe() 

Visualization 

ns = df["Class"].isin(['ham']).sum(axis=0) 

s = df["Class"].isin(['spam']).sum(axis=0) 

 

label=['Spam','Not Spam'] 

a = [s,ns] 

plt.pie(x=a,labels=label,autopct='%1.1f%%') 

plt.legend() 

plt.show() 

plt.figure(figsize=(12,8)) 

ax =sns.barplot(x=label,y=a) 

plt.title('Comparing number of spam messages to number of non spam 
messages') 

for p in ax.patches: 

    width, height = p.get_width(), p.get_height() 

    x, y = p.get_xy()  

    ax.annotate('{}'.format(height), (x +0.25, y + height + 0.8)) 



47 
 

plt.show 

 
<function matplotlib.pyplot.show(close=None, block=None)> 

Preprocessing 

def clean_data(text): 

    out = re.sub('[^a-zA-Z]', ' ', text)  

    out = out.lower()  

    out = out.split() 

    out = ' '.join(out) 

    return out 

def tokenize_word(text): 

    return nltk.word_tokenize(text) 

def remove_stopwords(text): 

    stop_words = set(stopwords.words("english")+['u','ur','r','n'])  

    filtered_text = [word for word in text if word not in stop_words] 

    return filtered_text 

def lemmatize_word(text): 

    lemmatizer = WordNetLemmatizer() 

    lemmas = [lemmatizer.lemmatize(word, pos ='v') for word in text] 

    return lemmas 

def get_processed_tokens(text): 

    text = clean_data(text) 

    text = tokenize_word(text) 

    text = remove_stopwords(text) 

    text = lemmatize_word(text) 

    return text 

nltk.download('stopwords') 
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nltk.download('wordnet') 

df['processed_text'] = df['Text'].apply(get_processed_tokens) 

 

df.head() 

corpus= [] 

for i in df["processed_text"]: 

    msg = ' '.join([row for row in i]) 

    corpus.append(msg) 

 

tfidf = TfidfVectorizer() 

X = tfidf.fit_transform(corpus).toarray() 

X.shape 

Word Cloud 

text = ' '.join(corpus) 

wc = WordCloud(background_color='black').generate(text) 

 

plt.figure(figsize=[15,20]) 

plt.title("WORD CLOUD") 

plt.axis("off") 

plt.imshow(wc,interpolation='bilinear') 

spam_corpus=[] 

for i in df[df['Class']=='spam']["processed_text"]: 

    msg = ' '.join([row for row in i]) 

    spam_corpus.append(msg) 

text1 = ' '.join(spam_corpus) 
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wc = WordCloud(background_color='black').generate(text1) 

plt.figure(figsize=[15,20]) 

plt.title("SPAM WORD CLOUD") 

plt.axis("off") 

plt.imshow(wc,interpolation='bilinear') 

not_spam_corpus=[] 

for i in df[df['Class']=='ham']["processed_text"]: 

    msg = ' '.join([row for row in i]) 

    not_spam_corpus.append(msg) 

text2 = ' '.join(not_spam_corpus) 

wc = WordCloud(background_color='black').generate(text2) 

plt.figure(figsize=[15,20]) 

plt.title("NOT SPAM WORD CLOUD") 

plt.axis("off") 

plt.imshow(wc,interpolation='bilinear') 

X 

X.shape 

y = df.iloc[:,0:1] 

print(y) 

y = df.iloc[:,0:1] 

print(y) 

print(X.shape,y.shape) 

Data Splitting 
x_train,x_test,y_train,y_test= train_test_split(X,y,test_size=0.2,random_state=42) 

x_train.shape 

x_test.shape 

y_train.shape 

y_train 
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Multinomial Naive Bayes 

from sklearn.naive_bayes import MultinomialNB 

nb = MultinomialNB(fit_prior=True) 

nb.fit(x_train,y_train) 

y_nb = nb.predict(x_test) 

cm_nb = confusion_matrix(y_test,y_nb) 

sns.heatmap(cm_nb,annot=True,robust=True) 

ac_nb = accuracy_score(y_test,y_nb) * 100 

print(ac_nb) 

K Nearest Neighbours 

from sklearn.neighbors import KNeighborsClassifier 

knn = KNeighborsClassifier() 

knn.fit(x_train,y_train) 

y_knn=knn.predict(x_test) 

cm_knn = confusion_matrix(y_test,y_knn) 

sns.heatmap(cm_knn,annot=True,fmt='.2f') 

ac_knn = accuracy_score(y_test,y_knn) * 100 

print(ac_knn) 

"""### Visualizing and Comparing the Accuracy Scores of the different Models""" 

 

ac = [ac_nb,ac_knn] 

label = ['Naive Bayes','K Nearest Neighbours'] 

plt.figure(figsize=(12,8)) 

 

ax = sns.barplot(x=label,y=ac) 
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plt.title('r2 score comparison among different regression 
models',fontweight='bold') 

for p in ax.patches: 

  width=p.get_width() 

  height=p.get_height() 

  x,y = p.get_xy() 

  ax.annotate('{:.3f}%'.format(height), (x+0.25, y+height+0.8)) 

 

plt.show() 

 
 

 

 

 

 

 

FRONT END CODE: 

 

#!/usr/bin/env python 

"""Django's command-line utility for administrative tasks.""" 

import os 

import sys 

 

 

def main(): 

    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'new_project.settings') 

    try: 

        from django.core.management import execute_from_command_line 

    except ImportError as exc: 
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        raise ImportError( 

            "Couldn't import Django. Are you sure it's installed and " 

            "available on your PYTHONPATH environment variable? Did you " 

            "forget to activate a virtual environment?" 

        ) from exc 

    execute_from_command_line(sys.argv) 

 

 

if __name__ == '__main__': 

    main() 

 

 

 

 

SCREENSHOT: 
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CHAPTER 5 

5.1 CONCLUSION AND REFERENCES 

The SMS spam message problem is plaguing almost every country and keeps 

increasing without a sign of slowing down as the number of mobile users increase in 

addition to cheap rates of SMS services. Therefore, this paper presents the spam 

filtering technique using various machine learning algorithms. Based on the experiment, 

TF-IDF with Nave bayes classification algorithm outperforms good compare to other 

algorithm like LSTM in terms of accuracy percentage. However, it is not enough to 

evaluate the performance based on the accuracy alone since the dataset is imbalanced. 

After some examinations, NB algorithm still manages to provide good precision and f-

measure with 0.98 of precision while 0.97 for f-measure. Different algorithms will 

provide different performances and results based on the features used. For future 

works, adding more features such as message lengths might help the classifiers to train 

data better and give better performance. 

FUTURE SCOPE: 

Future scope of this project will involve adding more feature parameter. The more the 

parameters are taken into account more will be the accuracy. The algorithms can also 

be applied for analyzing the contents of public comments and thus determine 
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patterns/relationships between the customer and the company. The use of traditional 

algorithms and data mining techniques can also help predict the corporation 

performance structure as a whole. In the future, we plan to integrate neural network with 

some other techniques such as genetic algorithm or fuzzy logic. Genetic algorithm can 

be used to identify optimal network architecture and training parameters. Fuzzy logic 

provides the ability to account for some uncertainty produced by the neural network 

predictions. Their uses in conjunction with neural network could provide an 

improvement for SMS spam prediction.  

APPLICATION: 

 It can used for company to prevent users using fake links. 

 Hacking can be prevented. 
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