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ABSTRACT 

 
Machine learning is playing a prominent role in current era. In this modernized 

world almost all the applications are manipulated and controlled by machine 

learning algorithms. By the use of historical data there are possibilities to predict 

the future. Even though a number of researchers are working on various 

machine learning, the performance and exactness of the algorithms still remains 

as a challenge. This work focuses on the performance analysis of various 

classification algorithms like Logistic Regression, Gaussian Naïve Bayes, 

Decision Tree Classifier and Random Forest Classifier in terms of confusion 

matrix, accuracy, precision, recall, f-measure etc., and performance 

enhancement of those algorithms using stacking to predict the bank loan 

approval status so we can overcome the need to depend on a single machine 

learning model instead we can combine multiple models so to obtain a stacked 

model which provides better predictions as compared to each individual model. 
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CHAPTER 1 

 
INTRODUCTION 

Machine Learning is utilized to show machines how to handle the information all the 

more efficiently. Once in a while in the wake of review the information, we can’t 

decipher the example or concentrate data from the information. All things considered, 

we apply machine learning. With the plenitude of data set accessible, the interest 

for machine learning is in rise. Numerous businesses from drug to military apply 

machine figuring out how to extricate applicable data. The present overwhelming 

worldview for ML is to run a ML calculation on an offered dataset to produce a model. 

The model is then connected, all things considered, and the assignments are 

executed. This is valid for both supervised and unsupervised learning. 

Major Machine Learning Types: 

 
1. Supervised Learning 

 
2. Unsupervised Learning 

 
3. Reinforcement Learning 

 
 
 

1.1 Supervised Learning: 

 
In training data set contains the features with target values. This is likewise called 

gaining from the models. This is generally composed as a lot of information (xi, ti), 

where the sources of info are xi, the objectives are ti , ordered by running from 1 to 

some maximum limit N. 

1.1.1 Regression 

 
Regression is a supervised learning approach considered when our target 

value(ti) is a continuous value. It is a straight wat to deal with demonstrating 

the connection between a scalar reaction (or dependent variable) and at 

least one illustrate factors 

(or independent). 
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1.1.2 Classification 

 
Regression is a supervised learning approach considered when our target 

value(ti) is a categorical value. 

 

1.2 Unsupervised Learning: 

 
 

Unsupervised learning is a lot harder on the grounds that here the model needs to 

figure out how to perform indicated assignments without revealing to it how to perform 

because the dataset will only have input features without any target values. Clustering 

is one of the approaches to deal with unsupervised learning. 

 

 
1.3. Reinforcement Learning (RL): 

 
 

This learning lies between supervised and unsupervised learning. The calculation finds 

told when the solution is wrong, yet does not get advised how to right it. It needs 

to investigate and experiment with various potential outcomes until find the solution 

right. RL sometime called learning with a commentator as a result of this screen scores 

the appropriate response, however does not recommend upgrades. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 
This chapter contains a list of literature review of previous research where it is 

considered vital in development of this project. [1] With the plenitude of data set 

accessible, the interest for machine learning is in rise. Numerous businesses from drug 

to military apply machine figuring out how to extricate applicable data. Naive Bayes', 

which can be amazingly quick in respect to other order calculations. [5] It takes a shot 

at Bayes hypothesis of likelihood to foresee the class of unknown dataset. Regarding 

Logistic Regression Tabachnick and Fidell (2013) recommend that as long relationship 

coefficients among autonomous factors are under .90 the suspicion is met. At the Focal 

point of the logistic regression examination is undertaking evaluating the log chances 

of an occasion. In case of random forest, If one tree is extraordinary, various trees (a 

forest) should be better, given that there is adequate combination between them. [4] 

The most fascinating thing about the random forest is the habits in which that it makes 

randomness from a standard dataset. In the essence, stacking makes prediction by 

using a meta-model trained from a pool of base models — a pool of base models are 

first trained using training data and asked to give their prediction; a different meta 

model is then trained to use outputs from base models to give the final prediction. As 

machine learning is a research intensive field   constant performance and behavioral 

analysis and striving to improve existing algorithms using innovative techniques or 

developing new algorithms or approaches are mandatory. 
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CHAPTER 3 

PROBLEM STATEMENT 

In any machine learning based solution the basic approach involves taking the most 

suitable machine learning algorithm and obtaining a model   through training on 

the well pre-processed dataset and then testing that model with the test data to 

analyze it’s performance. Sometimes this model maybe underfitted or overfitted 

which requires complex tuning process which may or may not improve model’s 

performance. Hence using more than one algorithm and preparing multiple models 

and then combining them using stacking approach in such a way that will improve 

prediction capabilities of a stacked model   as compared to individual    model is 

definitely a better   choice. The main objective of the proposed system is to analyze 

and enhance the performance of various machine learning classification 

algorithms through extensive stacking. To Achieve such an objective problem 

statement satisfying being a  classification  problem is considered. 

Problem Statement: Whether a person will be approved for personal bank loan? 

Target value: Yes (or) 1 if a person is approved to be granted by a personal loan. 

No (or) 0 if a person is not approved to be granted by a personal loan. 

 
 

The above target values specifies that the problem statement is a binary 

classification problem, as there are only two possible categories or target labels. 
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CHAPTER 4 

ALGORITHMS AND METHODOLOGY 

 

 
4.1 Classification Algorithms 

 
1.1 Logistic Regression 

 
1.2 Decision Tree Classifier 

 
1.3 Gaussian Naïve Bayes Classifier 

 
1.4 Random Forest Classifier 

 
 

4.1.1 Logistic Regression 

 

 
Logistic regression is one of the most popular Machine Learning algorithms, which 

comes under the Supervised Learning technique. It is used for predicting the 

categorical dependent variable using a given set of independent variables. 

Logistic regression predicts the output of a categorical dependent variable. Therefore, 

the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 

1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the 

probabilistic values which lie between 0 and 1. 

 
Logistic Function (Sigmoid Function): 

 

 
• The sigmoid function is a mathematical function used to map the predicted 

values to probabilities. 

• It maps any real value into another value within a range of 0 and 1. 

 
• The value of the logistic regression must be between 0 and 1, which cannot go 

beyond this limit, so it forms a curve like the "S" form. The S-form curve is called 

the Sigmoid function or the logistic function. 
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• In logistic regression, we use the concept of the threshold value, which defines 

the probability of either 0 or 1. Such as values above the threshold value tends 

to 1, and a value below the threshold values tends to 0. 

Figure 4.1 Sigmoid Function 
 

Logistic Regression Equations 
 

P (Y = 0 / X) = 1 / 1 + ez [max for class 0] [Equation 3.1] 

 
P (Y = 1/ X) = ez/ 1 + ez [max for class 1] [Equation 3.2] 

where z = woxo+w1x1+w2x2+……+wnxn [network sum] [Equation 3.3] 

Y: target label [yes/no (or) 1/0] 

X: sample 

P(Y = 0 / X): probability that a sample X will belong to class 0 

P(Y = 1 / X): probability that a sample X will belong to class 1 

 

4.1.2 Decision Tree Classifier 

 

• It is a Supervised Machine Learning where the data is continuously split 

according to a certain parameter. 

• In a decision tree, for predicting the class of the given dataset, the algorithm 

starts from the root node of the tree. This algorithm compares the values of 

root attribute with the record (real dataset) attribute and, based on the 

comparison, follows the branch and jumps to the next node. 

• For the next node, the algorithm again compares the attribute value with the 

other sub-nodes and move further. It continues the process until it 



7  

reaches the leaf node of the tree. The complete process can be better 

understood using the below algorithm: 

 
 

Step-1: Begin the tree with the root node, says S, which contains the 

complete dataset. 
 

Step-2: Find the best attribute in the dataset using Attribute Selection 

Measure(ASM). 
 

Step-3: Divide the S into subsets that contains possible values for the best 

attributes. 
 

Step-4: Generate the decision tree node, which contains the best attribute. 

 

Step-5: Recursively make new decision trees using the subsets of the dataset 

created in step -3. Continue this process until a stage is reached where you 

cannot further classify the nodes and called the final node as a leaf node. 

 

• A Decision Tree consists of : 

i) Nodes : Test for the value of a certain attribute. 
 

ii) Edges/ Branch : Correspond to the outcome of a test and connect to 

the next node or leaf. 

iii) Leaf nodes : Terminal nodes that predict the outcome (represent class 

labels or  class distribution). 
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Figure 4.2 Decision Tree 

 
 

 
ASM (Attribute Selection Measures) 

 

While implementing a Decision tree, the main issue arises that how to select 

the best attribute for the   root node and for sub-nodes. So, to solve such 

problems there is a technique which is called as Attribute selection measure 

or ASM. 

 

 
i) Information Gain 

 

Information gain is the measurement of changes In entropy after the 

segmentation of a dataset based on an attribute. It calculates how much 

information a feature provides us about a class. According to the value of 

information gain, we split the node and build the decision tree.A decision 

tree algorithm always tries to maximize   the   value   of information gain, 

and a node/attribute having the   highest   information gain is split  first. It 

can be calculated using the below formula: 

 
IG = Entropy(S)- [(Weighted Avg) *Entropy (each feature) [Equation 3.4] 
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Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies 

randomness in data. Entropy can be calculated as: 

 
Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no) [Equation 3.5] 

 
 
 

 
4.1.3 Gaussian Naïve Bayes Classifier 

 

 
Naïve Bayes classifier is constructed from Bayes Theorem with a assumption. Naïve 

Bayes Classifier is a multi-class classifier. 

According to the Bayes Theorem: 

 
P(Y/X) = P(X/Y) P(Y) / P(X)       [Equatio3.6] 

 
Where 

 
P(Y/X)= probability of Y occurring given evidence X has already occurred[posterior] 

P(X/Y)= probability of X occurring given evidence Y has already occurred[likelihood] 

P(X)= probability of X occurring [class prior probability] 

P(Y)= probability of Y occurring [predictor prior probability] 

Why Naïve? 

In addition to the Naïve Bayes theorem we make a assumption that every 

feature/attribute is independent of other features and every feature/attribute 

contributes towards predicting target class. This is called as Conditional 

Independence. 

Hence we have: 

 
P(Y/X)= P(x1/Y)* P(x2/Y)* P(x3/Y)*……… P(xn/Y)*P(Y) [Equation 3.7] 

 
We consider Gaussian Naïve Bayes when our input features are of continuous 

values instead of categorical. 

 

 
To determine P(Xi/Yi) we us e probability density function[conditionalprobability]: 
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[Equation 3.8] 
 
 

 

Where µ = ∑X/N [mean] [Equation 3.9] 

 
σ s = √(∑(X-µ)2 /N-1) [Standard Deviation of samples] [Equation 3.10] 

N= number of samples 

 
 

4.1.4 Random Forest Classifier 

 
Random Forest is a popular machine learning algorithm that belongs to the supervised 

learning technique. It can be used for both Classification and Regression problems in 

ML. It is based on the concept of ensemble learning, which is a process of combining 

multiple classifiers to solve a complex problem and to improve the performance of  

the model. 

As the name suggests, "Random Forest is a classifier that contains a number of 

decision trees on various subsets of the given dataset and   takes the average to 

improve the predictive accuracy of that dataset." Instead of relying on one decision 

tree, the random forest takes the prediction from each tree and based on  the  

majority votes of predictions, and  it predicts the  final output. 

The greater number of trees In the forest leads to higher accuracy and prevents 

the problem  of  overfitting. 
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Figure 4.3 Random Forest Classifier 
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CHAPTER 5 

STACKING 

Stacking is an ensemble machine learning algorithm. It uses a meta-learning algorithm 

to learn how best combine the predictions from two or more base machine learning 

algorithms. The benefit of stacking is that it harnesses the capabilities of a range of 

well performing models on a classification or regression task and make predictions 

that have better performance than any single model  in the ensemble. 

Hence by using stacking we will be able to create a new classifier that hopefully 

will give better accuracy compared  to all other base models. 

 
 

 

Figure 5.1 Stacking Architecture 
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5.1 UNDERSTANDING STACKING 
 

In the essence, stacking makes prediction by using a meta-model trained from 

a pool of base models — a pool of base models are first trained using training 

data and asked to give their prediction; a different meta model is then trained 

to use outputs from base models to give the final prediction. The process is 

actually simple. To train a base model, 

K-fold cross validation technique is used. 

We can understand the stacking in 7 steps: 

 
 

Step 1: You have Train Data and Test Data as shown in Fig 3.5. Assume we 

are using 4-fold cross validation to train base models, the train_data is then 

divided into 4 parts. 

 

 

Figure 5.2 Train Data and Test Data 

 

 
Step 2: Using the 4-part train_data, the 1st base model (assuming it’s a 

decision tree) is fitted on 3 parts and predictions are made for the 4th part. 

This is done for each part of the training data. At the end, all instance from 

training data will have a prediction. This creates a new feature for train_data, 

call it pred_m1 (predictions model 1) as shown in fig 3.6. 
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Figure 5.3 Prediction from model_1 

 
Step 3: Step 2 is repeated for the 2nd model (e.g., GNB) and the 3rd model 

(e.g., Random Forest). These will give two more predictions, pred_m2 and 

pred_m3. 

 

Figure 5.4 Prediction from model 1,2 and 3. 

 
Step 4: Combine the above 3 prediction along with the   actual   target column 

‘y’ from the train_data to obtain a dataset with predicted outcomes as input 

features (from each model) and actual outcome from ‘y’. 
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Figure 5.5 Train_Data for Meta-Model 

 
Step 5: Select you desired meta model for ex: Logistic Regression, and train this 

model on the dataset created in step 4. 

Step 6: The meta model(Logistic Regression) is now ready to predict if given a test 

sample but if we observe we can’t directly provide our real   input features to 

the meta model as it’s trained on 3 features which are actually prediction from 

different models. So, first we need to freshly initialize our base models(GNB, Decision 

Tree, Random Forest) and train them on whole train_data without any k-folding. 

Step 7: Predict the test data by using each base model and combine the predictions 

as a single data frame. Give this data frame as a input to our meta- model for 

prediction which finally will give our desired prediction. 
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CHAPTER 6 

 
Performance Measures 

 
Analysis o performance of models is very important to ensure the correctness of model. 

Accuracy may provide good overview of how our model has performed but it isn’t 

enough to analyze where our model is lagging, so we can put effort to overcome 

those problems. Hence with using quality and different measures we can analyze  

our model much better. 

 

 
Confusion Matrix 

 
A confusion matrix is a table that is often used to describe the performance of 

a classification model (or "classifier") on a set of test data for which the true values 

are known. 

 

 
 

Figure 6.1 Confusion Matrix 

 
In a confusion matrix the Actual values are represented along the rows whereas 

the Predicted Values are represented along the columns. 

 

 
 True Positive (TR) : these are the no of sample which are 

predicted as positive and they are positive in real. 
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 True Negatives (TN): these are the no of sample which are 

predicted as negative and they are  negative in real. 

 False Positive (FP): these are the no of sample which are 

predicted as positive and they are negative in  real. 

 False Negative (FN): these are the no of sample which are 

predicted as negative and they are  positive  in real. 

From the confusion matrix we obtain different performance measure to sufficiently 

analyze our model. 

 

Accuracy =  𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 [Equation 3.11] 

 

Sensitivity or Recall or True Positive Rate = 𝑻𝑷 [Equation 3.12] 
𝑻𝑷+𝑭𝑵 

 
 

Specificity or True Negative Error = 𝑻𝑵 [Equation 3.13] 

 

 
Precision = 𝑻𝑷 [Equation 3.14] 

 

F measure = 𝟐∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍 [Equation 3.15] 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍 

 

Classification Error = 𝑬𝒓𝒓𝒐𝒓 = 𝑭𝑷 [Equation 3.16] 

𝑻𝒐𝒕𝒂𝒍   𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 
 
 
 

• Hence for the successful implementation of the proposed system three 

objectives must be  reached  as listed below and explained  above : 

 
 
 
 

1. Extensive Data Preprocessing Techniques. 
 

2. Stacking for Model Enhancement. 
 

3. Quality Performance Measures for proper model analysis. 
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• At the we are optimistic that our new model (stacking) would provide better 

performance in most    of    the aspects (performance measures) compared 

to all individual base models. 
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CHAPTER 7 

 
Design 

 

 

 
Figure 7.1 Flowchart of Design 
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Figure 7.2 Flowchart of Stacking 
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CHAPTER 8 
 

HARDWARE AND SOFTWARE REQUIREMENTS 

 
8.1 Software Requirements 

 

• In this project we have use Jupyter Notebook which is integrated in Anaconda 

Navigator Version 4.11.0. 

• We have used Spyder IDE integrated in Anaconda Navigator to deploy 

Machine 

Learning models through Flask API. 

 

• We also used a Web Browser to access Localhost port. 

 
• We require basic machine learning classification algorithms (Random Forest 

Classifier, Gaussian Naïve Bayes Classifier, Decision Tree Classifier and 

Logistic Regression) and packages like (Pandas, NumPy, Matplotlib and 

Seaborn). 

8.2 Hardware Requirements 

 
• Operating System with Windows 7 or above. 

 
• RAM of 2 GB (Minimum) 

 
• Hard Disk: 1 GB 

 
• Processor: i3 or Above 

 
8.3 Dataset 

 
• https://www.kaggle.com/itsmesunil/bank-loan-modelling 

http://www.kaggle.com/itsmesunil/bank-loan-modelling
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CHAPTER 9 

 

CODE IMPLEMENTATION 

 
In this project, you will learn how to combine various machine learning classification 

algorithms using stacking approach, so to obtain a better model that can predict 

better as compared to individual models. 

As we require to adopt a problem statement to implement a classification algorithm 

we have taken “Bank Loan Approval” problem which a binary classification problem, 

where a person will be either be approved   for   a personal loan or not. 

Initially we take our desired classification algorithms whom we want   to combine 

which are called as our “Base Models”. In this project we have taken Random Forest 

Classifier, Decision Tree Classifier, Gaussian Naïve Bayes Classifier and Gradient 

Boosting Classifier as our base models. We perform stacking approach explained in 

detail in section 6 on this 4 base models and hence obtain a train dataset for our 

meta model which is in our case is Logistic Regression. 

After we obtain a train dataset for our meta model we train our meta-model( Logistic 

Regression) on that dataset. Now our meta model is   trained   and ready for  

prediction. 

But we can’t give our initial dataset directly as test data to meta-model because 

metamodel is trained on four features that are the predictions from four base 

models, not on features of our actual dataset. So, firstly we need to freshly create 

our base model instances after training meta-model. Then, we have to train these 

four new instances of base models with train data. Now our base  models are 

trained and ready for  prediction. 

To predict a sample first give it to base models as test sample. We get four predictions 

from our four base models. Combine these 4 prediction   into a single data frame 

and then give this new sample as test data to our meta- model to obtain final 

prediction. 

To implement the project we will follow a general machine learning workflow. 
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9.1 Data Preprocessing 
 

1. Import required packages. 
 

 

2. Load the Dataset 
 

 

3. Print the Dataframe 
 

 
 
 
 
 
 
 
 
 

4. Check the Datatypes of all features 
 

 

 
 
 
 

5. Data Cleaning 

import pandas as pd 

import numpy as np 

import seaborn as sns 

df = pd.read_csv('Bank_Data.csv') 

df.head() 

df.info() 
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Finding out null values in each column and dropping those records as the 

count is less to affect  the quality  of dataset. 

 

 
 

 
 
 
 
 
 
 
 
 
 

 

9.2. Data Visualization 

By performing visualization, we can get the intuition about how each feature is 

contributing 

 

df.isnull().sum() 

df=df.dropna() 

df.isnull().sum() 

sns.countplot(x='Education',hue='Loan_Status',data=df) 

sns.countplot(x='Loan_Amount_Term',hue='Loan_Status',data=df) 

sns.countplot(x='Married',hue='Loan_Status',data=df) 

sns.countplot(x='Gender',hue='Loan_Status',data=df) 

sns.countplot(x='Dependents',hue='Loan_Status',data=df) 

sns.countplot(x='Self_Employed',hue='Loan_Status',data=df) 

sns.countplot(x='Credit_History',hue='Loan_Status',data=df) 

sns.countplot(x='Property_Area',hue='Loan_Status',data=df) 

sns.displot(df['ApplicantIncome’]) sns.displot(df['CoapplicantIncome']) 
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From this visualization we get to know that all features play a prominent role in 

deciding the target label, so we don’t need to drop any of the features except 

Loan_ID  as it doesn’t contribute. 

 
 

9.3 Label Encoding 

To make the work easy for the ML algorithms we will encode the values of feature 

labels that are categorical but in string format into numeric category. For ex: 

male as 0 and female as 1. 

 

Credit History vs Loan Status 

Applicant Income displot 

Property Area vs Loan Status 

CoApplicant Income displot 

from sklearn.preprocessing import LabelEncoder 

cols=['Gender','Married','Dependents','Education','Self_Employed’, 

'Property_Area','Loan_Status’] 

le=LabelEncoder() for col in cols: 

df[col]=le.fit_transform(df[col]) 
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9.4 Observing performance of Base Models 

1. Splitting the data into features and target label. 
 

 

 

 

2. Splitting the data into train-data and test-data. 

 

3. Observe the performance of each base model before stacking. 

i) Random Forest Classifier – Clearly overfitted as train accuracy is 100% and their 

is big difference between train and test accuracy. 

X=df.drop(columns=['Loan_ID','Loan_Status'],axis=1) 

Y=df[['Loan_Status']] 

from sklearn.model_selection import train_test_split 

X_train,X_test,Y_train,Y_test=train_test_split(X,y,test_size=0.2,stratify=y ,random_state=42) 

from sklearn.ensemble 

import RandomForestClassifier 

model=RandomForestClassifier() 

model.fit(X_train,Y_train) 

yt_pred=model.predict(X_train) 

accuracy_score(yt_pred,Y_train)//train 

accuracy 1.0 

y_pred=model.predict(X_test) 

accuracy_score(y_pred,Y_test)//test accuracy 

0.8125 
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ii) Decision Tree Classifier - Clearly overfitted as train accuracy is 100% and their is 

big difference between train and test accuracy. 

iii) Gaussian Naïve Bayes Classifier - Clearly not overfitted as train accuracy is 76% 

and test accuracy is 80% and there is no big difference between train and test accuracy 

but test accuracy is not that satisfactory. 

 
 
 

iv) Gradient Boosting Classifier - Clearly not overfitted as train accuracy is 90% and 

test accuracy is 84% and their is no big difference between train and test accuracy and 

test accuracy is satisfactory. 

from sklearn.naive_bayes 

import GaussianNB 

model3=GaussianNB() 

model3.fit(X_train,Y_train) 

yt_pred=model3.predict(X_train) 

accuracy_score(yt_pred,Y_train) //train accuracy 

0.796875 

y_pred3=model3.predict(X_test) 

accuracy_score(y_pred3,Y_test) //test accuracy 

0.8020833333333334 

from sklearn.tree 

import DecisionTreeClassifier 

model2=DecisionTreeClassifier() 

model2.fit(X_train,Y_train) 

yt_pred=model2.predict(X_train) 

accuracy_score(yt_pred,Y_train)//train 

accurcay 1.0 

y_pred=model2.predict(X_test) 

accuracy_score(y_pred,Y_test)//test accuracy 

0.739583333333333 



 

 
 
 
 
 

 
 

 

9.5. Perform Stacking. 

i) Freshly Initialize Base Models. 
 

 

ii) Split the data into Train data and Test data 
 
 

 

iii) Perform K-Folding 

from sklearn.ensemble 

import GradientBoostingClassifier 

model4=GradientBoostingClassifier() 

model4.fit(X_train,Y_train) 

yt_pred=model4.predict(X_train) 

accuracy_score(yt_pred,Y_train)//train a 

0.90625 

y_pred4=model4.predict(X_test) accuracy_score(y_pred4, Y_test) 

0.8333333333333334 

model=RandomForestClassifier(n_estimators=5) 

model2=DecisionTreeClassifier() 

model3=GaussianNB() 

model4=GradientBoostingClassifier() 

X_train,X_test,Y_train,Y_test=train_test_split(X,y,test_size=0.25, stratify=y, 

random_state=42) 

 

from sklearn.model_selection import StratifiedKFold 

def Stacking(model,train,y,n_fold): 

folds=StratifiedKFold(n_splits=n_fold) 

train_pred=np.empty((0,1),int) 

for train_indices,val_indices in folds.split(train,y.values): 

x_train,x_val=train.iloc[train_indices],train.iloc[val_indices] 
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iv) Combine the Predictions of 4 Base Models to get the train data for meta 

model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

v) Train the meta-model [Logistic Regression] with train_data_meta. 
 

 

vi) Freshly train your base models on train_data as we used same names for 

models in checking performance before stacking and in K-Folding. 

print(x_train,x_val)#x_val=x_test 

y_train,y_val=y.iloc[train_indices],y.iloc[val_indices] 

print(y_train,y_val)#y_val=y_test 

model.fit(x_train,y_train) 

train_pred=np.append(train_pred,model.predict(x_val)) 

print(train_pred) 

return train_pred train_pred_1=Stacking(model=model,n_fold=5,train=X_train,y=Y_train) 

train_pred_2=Stacking(model=model2,n_fold=5,train=X_train,y=Y_train) 

train_pred_3=Stacking(model=model3,n_fold=5, train=X_train,y=Y_train) 

train_pred_4=Stacking(model=model4,n_fold=5, train=X_train,y=Y_train) 

train_pred_1=pd.DataFrame(train_pred_1) 

train_pred_2=pd.DataFrame(train_pred_2) 

train_pred_3=pd.DataFrame(train_pred_3) 

train_pred_4=pd.DataFrame(train_pred_4) 

train_data_meta = 

pd.concat([train_pred_1,train_pred_2,train_pred_3,train_pred_4], axis=1) 

print(train_data-meta) 

from sklearn.linear_model import LogisticRegression 

meta_model = LogisticRegression() 

meta_model.fit(train_data_meta,Y_train) 
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vii) Predict the Test_data with trained based model and combine them to 

prepare the test_data for our meta model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

viii) Test the meta-model (LR) with the test_res to get final predictions. 

 
model= RandomForestClassifier() 

model2= DecisionTreeClassifier() 

model3= GaussianNB() 

model4= GradientBoostingClassifier() 

y1_pred= model.predict(X_test) y2_pred= 

model2.predict(X_test) y3_pred= 

model3.predict(X_test) y4_pred= 

model4.predict(X_test) y1_pred= 

pd.DataFrame(y1_pred) y2_pred= 

pd.DataFrame(y2_pred) y3_pred= 

pd.DataFrame(y3_pred) y4_pred= 

pd.DataFrame(y4_pred) 

test_res = pd.concat([y1_pred, y2_pred, y3_pred,y4_pred], axis=1) 

print(test_res) 

model.fit(X_train,Y_train) 

model2.fit(X_train,Y_train) 

model3.fit(X_train,Y_train) 

model4.fit(X_train,Y_train) 
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Now that we have trained and tested our base models as well as  meta model 

a.k.a Stacked Model we can observe that Stacked model gave the better 

accuracy as compared to each base model. 

 
 
 

 
9.6 Dump the base models and meta-model. 

 

 

9.7 Deploy the models  using Flask-API. 

 

 
i) Open Spyder IDE and create a project say ‘BankLoan’. 

 
ii) Copy the dumped models from previous directory to this BankLoanFolder. 

 
iii) Create two sub-folders inside BankLoan names ‘templates’ and ‘static’. 

iv) The ‘static’ folder will contain the ‘index.html’ file, and ‘template’ will contain 

‘CSS’ file for ‘index.html’. 

v) Create a python file named ‘app.py’ inside the BankLoan Folder. 

 
 
 
 
 

 
app.py 

meta_model.score(test_res,Y_test) 

import pickle 

pickle.dump(meta_model,open('StackModel.pkl','wb')) 

pickle.dump(model,open('model.pkl','wb')) 

pickle.dump(model2,open('model2.pkl','wb')) 

pickle.dump(model3,open('model3.pkl','wb')) 

pickle.dump(model4,open('model4.pkl','wb')) 
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from flask import Flask, request, render_template 

import pickle 

 
app = Flask( name   ) 

 

pickle_in=open('StackModel.pkl','rb') 

p_model=open('model.pkl','rb') 

p_model2=open('model2.pkl','rb') 

p_model3=open('model3.pkl','rb') 

p_model4=open('model4.pkl','rb') 

stack_model=pickle.load(pickle_in) 

model=pickle.load(p_model) model2=pickle.load(p_model2) 

model3=pickle.load(p_model3) 

model4=pickle.load(p_model4) 

 
@app.route('/') def home(): return 

render_template('index.html') 

 
@app.route('/predict',methods=['POST']) def 

predict(): 

''' 

For rendering results on HTML GUI 

''' 

features = [ x for x in request.form.values()] 

Gender=features[5] 

Married=features[6] 

Dependents=features[7] 

Education=features[8] 

SelfEmployed=features[9] 

PropertyArea=features[10] 

CreditHistory=features[4] 

ApplicantIncome=float(features[0])/10.0 

CoapplicantIncome=float(features[1])/10.0 
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LoanAmount=float(features[3])/1000.0 

Loan_Amount_Term=int(features[2])*30 

 
 
 
 

p1=int(model.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applica 

ntIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Proper 

tyA rea]])) 

 
p2=int(model2.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic 

antIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Prop 

erty Area]])) 

 
 

 

p4=int(model4.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic 

antIncoyArea]]))me,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHist 

ory,Propert 

 

prediction=stack_model.predict([[p1,p2,p3,p4]]) 

 
 
 

 
prediction_text=prediction,ai=features[0],ci=features[1],la=features[3],lt=featureturn 

render_template('index.html', 

res[2],ch=int(features[4]),gd=int(features[5]),mr=int(features[6]),dp=int(features[7]),ed 

=int(features[8]),se=int(features[9]),pa=int(features[10])) 
 

if    name == " main ": 

app.run(debug=True) 

p3=int(model3.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic 

antIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Prop 

ertyArea]])) 



 

 

Index.html  
 

<!DOCTYPE html> 

<html > 

<head> 

<link rel="preconnect" href="https://fonts.googleapis.com"> 

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> 

<link 

href="https://fonts.googleapis.com/css2?family=Khand:wght@600&family=Monda&di 

splay=swap" rel="stylesheet"> 

<link rel="preconnect" href="https://fonts.googleapis.com"> 

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> 

<link 

href="https://fonts.googleapis.com/css2?family=Khand:wght@600&display=swap" 

rel="stylesheet"> 

<link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet' 

type='text/css'> 

<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' 

type='text/css'> 

<link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet' 

type='text/css'> 

<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300' 

rel='stylesheet' type='text/css'> 

<link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}"> 

<title>Bank Loan Approval</title> 

</head> 

<body> 

<div class="login"> 

<h1>&emsp;&emsp;&ensp;Predict Loan Approval</h1><br/><br/> 

 
 

<div class="sam"> 

<form action="{{ url_for('predict')}}" method="post" class="fom"> 

<table > 

<tr> 

<td></td> 

</tr> 
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<tr> 

<td></td> 

</tr> 

<tr> 

<td><label>Applicant_Income</label></td> 

<td class="colon"><label>:</label>&nbsp;&nbsp;</td> 

<td><input id="ai" type="text" value="{{ai}}" name="Applicant_Income" 

required="required" /></td> 

</tr> 

<tr> 

<td><label>CoApplicant_Income</label></td> 

<td class="colon"><label>:</label></td> 

<td><input id="ci" type="text" value="{{ci}}" name="CoApplicant_Income" 

required="required" /></td> 

</tr> 

<tr> 

<td><label>Loan_Amount_Term</label></td> 

<td class="colon"><label>:</label></td> 

<td><input id="Term" type="text" value="{{lt}}" name="Term" 

required="required" /></td> 

</tr> 

<tr> 

<td><label>Loan_Amount</label></td> 

<td class="colon"><label>:</label></td> 

<td><input id="la" type="text" value="{{la}}" name="Loan_Amount" 

required="required" /></td> 

</tr> 

<tr> 

<td><label>Credit_History</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Credit" name="Credit" required="required" > 

{% if ch == 1 %} 

<option value="1" selected >Have Credit History</option> 

<option value="0">Doesn't have Credit History</option> 

{% else %} 

<option value="1">Have Credit History</option> 
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<option value="0" selected>Doesn't have Credit History</option> 

{% endif %} 

 

 
</select> 

</td> 

</tr> 

<tr> 

<td><label>Gender</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Gender" name="Gender" required="required" > 

{% if gd == 1 %} 

<option value="1" selected>Male</option> 

<option value="0">Female</option> 

{% else %} 

<option value="1">Male</option> 

<option value="0" selected>Female</option> 

{% endif %} 

</select></td> 

</tr> 

<tr> 

<td><label>Marital Status</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Marital" name="Marital" required="required" > 

{% if mr == 1 %} 

<option value="1" selected>Married</option> 

<option value="0">Not Married</option> 

{% else %} 

<option value="1">Married</option> 

<option value="0" selected>Not Married</option> 

{% endif %} 

</select></td> 

</tr> 

<tr> 

<td><label>Dependents</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Dept" name="Dept" required="required" > 

{% if dp == 0 %} 

<option value="0" selected>0</option> 

<option value="1">1</option> 

<option value="2">2</option> 

<option value="4">3+</option> 

{% elif dp == 1 %} 

<option value="0" >0</option> 

<option value="1" selected>1</option> 

<option value="2">2</option> 
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<option value="4">3+</option> 

{% elif dp == 2 %} 

<option value="0" >0</option> 

<option value="1">1</option> 

<option value="2" selected>2</option> 

<option value="4">3+</option> 

{% else %} 

</select></td> 

</tr> 

<tr> 

<td><label>Education</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Edu" name="Edu" required="required" > 

{% if ed == 0 %} 

<option value="0" selected>Graduate</option> 

<option value="1">Under Graduate</option> 

{% else %} 

<option value="0">Graduate</option> 

<option value="1" selected>Under Graduate</option> 

{% endif %} 

</select></td> 

</tr> 

<tr> 

<td><label>Employment</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="Emp" name="Emp" required="required" > 

{% if se == 1 %} 

<option value="1" selected>Self Employed</option> 

<option value="0">Not Self Employment</option> 

{% else %} 

<option value="1">Self Employed</option> 

<option value="0" selected>Not Self Employment</option> 

{% endif %} 

</select></td> 

</tr> 

<tr> 

<td> <label>Property_Area</label></td> 

<td class="colon"><label>:</label></td> 

<td><select id="PA" name="PA" required="required" > 

{% if pa == 0 %} 

<option value="0" selected>Rural</option> 

<option value="2">Urban</option> 

<option value="1">Semi-Urban</option> 

{% elif pa == 2 %} 

<option value="0">Rural</option> 

<option value="2" selected>Urban</option> 

<option value="1">Semi-Urban</option> 
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styles.css 
 

 
{% else %} 

<option value="0">Rural</option> 

<option value="2">Urban</option> 

<option value="1" selected>Semi-Urban</option> 

{% endif %} 

</select></td> 

</tr> 

<tr> 

<td><button type="submit" class="btn btn-primary btn-block btn large" 

>Predict</button></td> 

<td class="colon"><label></label></td> 

<td><button onclick="Reset()" class="btn btn-primary btn-block 

btn large">Reset</button></td> 

</tr> 

<tr> 

{% if prediction_text == 1 %} 

<td style="text-align:center" colspan="3"><p class="tr">You are eligible for 

Loan</p> 

</td> 

{% endif %} 

{% if prediction_text == 0 %} 

<td style="text-align:center" colspan="3"><p class="fr">You are not eligible 

for Loan</p> 

</td> 

{% endif %} 

</tr> 

</table> 

</form> 

</div> <br/><br/> 

</div> <br/><br/> 

</body> 

</html> 

html { width: 100%; height:100%; } 

label{ 

font-family:Monda; 

} 

body { 

width: 100%; 

height:100%; 



 

font-family: 'Open Sans', sans-serif; 

background-attachment:fixed; 

background: linear-gradient(to bottom, #cc0066 0%, #0000cc 100%); 

background-repeat:no-repeat; 

background-size:cover; 

background-attachment:fixed; 

color: #fff; 

font-size: 15px; 

text-align:center; 

letter-spacing:1.2px; 

} 

fom{ 

padding-top:10px; 

padding-bottom:15px; 

} 

.sam{ 

background:rgba(0,0,0,0.3); 

width:540px; 

border-radius:15px; 

} 

td { 

text-align: left; 

padding-left:40px; 

} 

.login { 

position: relative; 

top: 30%; 

left: 45%; 

margin: -150px 0 0 -150px; 

width:460px; 

height:500px; 

padding-top:20px; 

} 

.tr{ 

color:rgb(78,212,78); 

font-size: 1.5em; 

font-weight: bold; 

} 

.fr{ 

color:rgb(247,67,76); 

font-size: 1.5em; 

font-weight: bold; 

} 
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.login h1 { color: #fff; text-shadow: 0 0 10px rgba(0,0,0,0.3); letter-spacing:1px; 

text-align:center;display:inline;font-family:Khand;font-size:42px; } 

input { 

width: 200px; 

margin-bottom: 10px; 

background: rgba(0,0,0,0.3); 

border: none; 

outline: none; 

padding: 10px; 

font-size: 13px; 

color: #fff; 

text-shadow: 1px 1px 1px rgba(0,0,0,0.3); 

border: 1px solid rgba(0,0,0,0.3); 

border-radius: 4px; 

box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px 

rgba(255,255,255,0.2); 

-webkit-transition: box-shadow .5s ease; 

-moz-transition: box-shadow .5s ease; 

-o-transition: box-shadow .5s ease; 

-ms-transition: box-shadow .5s ease; 

transition: box-shadow .5s ease; 

}select{ 

width: 100%; 

margin-bottom: 10px; 

background: rgba(0,0,0,0.3); 

border: none; 

outline: none; 

padding: 10px; 

font-size: 13px; 

color: #fff; 

text-shadow: 1px 1px 1px rgba(0,0,0,0.3); 

border: 1px solid rgba(0,0,0,0.3); 

border-radius: 4px; 

box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px 

rgba(255,255,255,0.2); 

-webkit-transition: box-shadow .5s ease; 
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vi) After writing the code we need to execute the project by opening the anaconda 

prompt and enter command “python app.py”. The web application can be accessed 

at port http://127.0.0.1:5000/ by entering port address in an standard browser. 

 
 

-moz-transition: box-shadow .5s ease; 

-o-transition: box-shadow .5s ease; 

-ms-transition: box-shadow .5s ease; 

transition: box-shadow .5s ease; 

} 

input:focus { box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px 

rgba(255,255,255,0.2); } 

select:focus{ box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px 

rgba(255,255,255,0.2);} 
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9.8 Output 

 

Fig 9.1 Interface for Prediction 
 

 

Fig 9.2 Prediction for Eligible Borrower 
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Fig 9.3 Prediction for Ineligible Borrower 
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CONCLUSION 

 

 
In this project we have tried to combine the knowledge of multiple machine learning 

model through stacking, where we obtained a meta model that can perform 

predictions on the predictions of base models. So, we have removed the 

requirement of using a single   machine learning   algorithms that   gives best 

accuracy which may in turn be overfitted or underfitted as we have seen with our 

base models. 

Hence adding a extra layer that can give us prediction using the knowledge 

of the meta-model that is gained from base models, we can do predictions with 

a model that are not underfitted or overfitted. As a part of future work more 

techniques like stacking that can combine the knowledge of various machine 

learning models at more deep and core logical levels will lead to a very efficient 

and robust machine learning models. 



46  

 
 
 

 



47  

 
 

 

 



48  

REFERENCES 

 
[1] Ethem Alpaydin, “Introduction to Machine Learning” (Adaptive Computation and 

Machine Learning Series)”, Third Edition, MIT Press, 2014. 

 
[2] Stephen Marsland, “Machine Learning – An Algorithmic Perspective”, Second 

Edition, Chapmanand Hall/CRC Machine Learning and Pattern Recognition 

Series, 2014. 

 
[3] Leo Breiman, Jerome H. Friedman, Richard A.Olshen and Charles J. Stone, 

“Classification”. 

 
[4] Tom M Mitchell, “Machine Learning”, First Edition, McGraw Hill Education, 2013. 

 
[5] Min-Chun Yang, Chiun-Sheng Huang, “Whole breast lesion detection using naive 

Bayes classifier for portable ultrasound”, Elsevier , computer science section, vol. 

38, No.11, pp.1870-1880, 2012. 

 
[6] “Regression Trees”. Wadsworth & Brooks, 1984. 

 
 

[7] J. Ross Quinlan, “C4.5: Programs for Machine Learning . Morgan Kaufmann”, 

1993. 

 
[8] S.B. Kotsiantis, “Supervised Machine Learning: A Review of Classification 

Techniques”, Informatica 31(2007). 

 
[9] Jason Bell, “Machine learning – Hands on for Developers and Technical 

Professionals”, First Edition , Wiley, 2014. 

 
[10] Stacking and Blending–An Intuitive Explanation by Steven Yu [Online]. 



 

 


