
i

BUILDING A MODEL FOR LOAN

APPROVAL USING STACKING

MODEL

Submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering degree in Computer Science and Engineering

By

ANNAM POORNACHAND (Reg.No - 39110065)

GUNDALA ASISH PREETHAM (Reg.No - 39110097)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC | 12B Status by UGC | Approved by AICTE

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI - 600119

APRIL 2023

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of Annam Poornachand

(Reg.No - 39110065) and Gundala Asish Preetham (Reg.No - 39110097) who carried

out the Project Phase-2 entitled “BUILDING A MODEL FOR LOAN APPROVAL

USING STACKING MODEL” under my supervision from January 2023 to April 2023.

Internal Guide

Dr. S. Bangaru Kamatchi, M.E., Ph.D.

Head of the Department
Dr. L. LAKSHMANAN, M.E., Ph.D.

Submitted for Viva voce Examination held on 20.04.2023

Internal Examiner External Examiner

iii

DECLARATION

I, Annam Poornachand (Reg.No - 39110065), hereby declare that the Project

Phase-2 Report entitled “A STACKED MODEL FOR APPROVING BANK

LOANS” done by me under the guidance of Dr. S. Bangaru Kamatchi, M.E.,

Ph.D. is submitted in partial fulfillment of the requirements for the award of

Bachelor of Engineering degree in Computer Science and Engineering.

DATE:

PLACE: Chennai SIGNATURE OF THE CANDIDATE

iv

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to Board of Management of

SATHYABAMA for their kind encouragement in doing this project and for completing

it successfully. I am grateful to them.

I convey my thanks to Dr. T. Sasikala M.E., Ph. D, Dean, School of Computing,

Dr. L. Lakshmanan M.E., Ph.D., Head of the Department of Computer Science and

Engineering for providing me necessary support and details at the right time during the

progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide Dr.

S. Bangaru Kamatchi M.E., Ph. D, for her valuable guidance, suggestions and

constant encouragement paved way for the successful completion of my phase-2

project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the

Department of Computer Science and Engineering who were helpful in many ways

for the completion of the project.

v

ABSTRACT

Machine learning is playing a prominent role in current era. In this modernized

world almost all the applications are manipulated and controlled by machine

learning algorithms. By the use of historical data there are possibilities to predict

the future. Even though a number of researchers are working on various

machine learning, the performance and exactness of the algorithms still remains

as a challenge. This work focuses on the performance analysis of various

classification algorithms like Logistic Regression, Gaussian Naïve Bayes,

Decision Tree Classifier and Random Forest Classifier in terms of confusion

matrix, accuracy, precision, recall, f-measure etc., and performance

enhancement of those algorithms using stacking to predict the bank loan

approval status so we can overcome the need to depend on a single machine

learning model instead we can combine multiple models so to obtain a stacked

model which provides better predictions as compared to each individual model.

vi

TABLE OF CONTENTS

Chapter
No

TITLE Page No.

ABSTRACT v

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

1 INTRODUCTION 1

2

LITERATURE SURVEY

2.1 Inferences from Literature Survey

3

3 PROBLEM STATEMENT 4

4 DESCRIPTION OF PROPOSED SYSTEM

 4.1 Selected Methodology or process model 5

 4.2 Architecture / Overall Design of Proposed System 19

 4.4 Project Management Plan 20

5 IMPLEMENTATION DETAILS

 5.1 Development and Deployment Setup 12

 5.2 Algorithms 5

6 RESULTS AND DISCUSSION 16

7 CONCLUSION

 7.1 Conclusion 46

8 REFERENCES 48

9 APPENDIX 23

 A. SOURCE CODE 23-42

 B. SCREENSHOTS 44-45

 C. RESEARCH PAPER 46

.

vii

LIST OF FIGURES

FIGURE

NO
FIGURE NAME Page No.

4.1 Sigmoid Function 6

4.2 Decision tree 8

4.3 Random Forest Classifier 11

5.1 Stacking Architecture 12

5.2 Train Data and Test Data 13

5.3 Prediction from model_1 14

5.4 Prediction from 1,2 and 3 14

5.5 Train Data for Meta-Model 15

6.1 Confusion Matrix 16

7.1 Flowchart of Design 19

7.2 Flowchart of stacking 20

9.1 Interface for Prediction

44

9.2 Prediction for Eligible Borrower 44

9.3 Prediction for in Ineligible Borrower 45

viii

LIST OF ABBREVIATIONS

S.NO ABBREVIATION DEFINITION

1 ASM ATTRIBUTE SELECTION MEASURE

2 FN FALSE NEGATIVE

3 FP FALSE POSITIVE

4 ML MACHINE LEARNING

5 RL REINFORCEMENT LEARING

6 TN TRUE NEGATIVES

7 TR TRUE POSITIVE

1

CHAPTER 1

INTRODUCTION

Machine Learning is utilized to show machines how to handle the information all the

more efficiently. Once in a while in the wake of review the information, we can’t

decipher the example or concentrate data from the information. All things considered,

we apply machine learning. With the plenitude of data set accessible, the interest

for machine learning is in rise. Numerous businesses from drug to military apply

machine figuring out how to extricate applicable data. The present overwhelming

worldview for ML is to run a ML calculation on an offered dataset to produce a model.

The model is then connected, all things considered, and the assignments are

executed. This is valid for both supervised and unsupervised learning.

Major Machine Learning Types:

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

1.1 Supervised Learning:

In training data set contains the features with target values. This is likewise called

gaining from the models. This is generally composed as a lot of information (xi, ti),

where the sources of info are xi, the objectives are ti , ordered by running from 1 to

some maximum limit N.

1.1.1 Regression

Regression is a supervised learning approach considered when our target

value(ti) is a continuous value. It is a straight wat to deal with demonstrating

the connection between a scalar reaction (or dependent variable) and at

least one illustrate factors

(or independent).

2

1.1.2 Classification

Regression is a supervised learning approach considered when our target

value(ti) is a categorical value.

1.2 Unsupervised Learning:

Unsupervised learning is a lot harder on the grounds that here the model needs to

figure out how to perform indicated assignments without revealing to it how to perform

because the dataset will only have input features without any target values. Clustering

is one of the approaches to deal with unsupervised learning.

1.3. Reinforcement Learning (RL):

This learning lies between supervised and unsupervised learning. The calculation finds

told when the solution is wrong, yet does not get advised how to right it. It needs

to investigate and experiment with various potential outcomes until find the solution

right. RL sometime called learning with a commentator as a result of this screen scores

the appropriate response, however does not recommend upgrades.

3

CHAPTER 2

LITERATURE SURVEY

This chapter contains a list of literature review of previous research where it is

considered vital in development of this project. [1] With the plenitude of data set

accessible, the interest for machine learning is in rise. Numerous businesses from drug

to military apply machine figuring out how to extricate applicable data. Naive Bayes',

which can be amazingly quick in respect to other order calculations. [5] It takes a shot

at Bayes hypothesis of likelihood to foresee the class of unknown dataset. Regarding

Logistic Regression Tabachnick and Fidell (2013) recommend that as long relationship

coefficients among autonomous factors are under .90 the suspicion is met. At the Focal

point of the logistic regression examination is undertaking evaluating the log chances

of an occasion. In case of random forest, If one tree is extraordinary, various trees (a

forest) should be better, given that there is adequate combination between them. [4]

The most fascinating thing about the random forest is the habits in which that it makes

randomness from a standard dataset. In the essence, stacking makes prediction by

using a meta-model trained from a pool of base models — a pool of base models are

first trained using training data and asked to give their prediction; a different meta

model is then trained to use outputs from base models to give the final prediction. As

machine learning is a research intensive field constant performance and behavioral

analysis and striving to improve existing algorithms using innovative techniques or

developing new algorithms or approaches are mandatory.

4

CHAPTER 3

PROBLEM STATEMENT

In any machine learning based solution the basic approach involves taking the most

suitable machine learning algorithm and obtaining a model through training on

the well pre-processed dataset and then testing that model with the test data to

analyze it’s performance. Sometimes this model maybe underfitted or overfitted

which requires complex tuning process which may or may not improve model’s

performance. Hence using more than one algorithm and preparing multiple models

and then combining them using stacking approach in such a way that will improve

prediction capabilities of a stacked model as compared to individual model is

definitely a better choice. The main objective of the proposed system is to analyze

and enhance the performance of various machine learning classification

algorithms through extensive stacking. To Achieve such an objective problem

statement satisfying being a classification problem is considered.

Problem Statement: Whether a person will be approved for personal bank loan?

Target value: Yes (or) 1 if a person is approved to be granted by a personal loan.

No (or) 0 if a person is not approved to be granted by a personal loan.

The above target values specifies that the problem statement is a binary

classification problem, as there are only two possible categories or target labels.

5

CHAPTER 4

ALGORITHMS AND METHODOLOGY

4.1 Classification Algorithms

1.1 Logistic Regression

1.2 Decision Tree Classifier

1.3 Gaussian Naïve Bayes Classifier

1.4 Random Forest Classifier

4.1.1 Logistic Regression

Logistic regression is one of the most popular Machine Learning algorithms, which

comes under the Supervised Learning technique. It is used for predicting the

categorical dependent variable using a given set of independent variables.

Logistic regression predicts the output of a categorical dependent variable. Therefore,

the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or

1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the

probabilistic values which lie between 0 and 1.

Logistic Function (Sigmoid Function):

• The sigmoid function is a mathematical function used to map the predicted

values to probabilities.

• It maps any real value into another value within a range of 0 and 1.

• The value of the logistic regression must be between 0 and 1, which cannot go

beyond this limit, so it forms a curve like the "S" form. The S-form curve is called

the Sigmoid function or the logistic function.

6

• In logistic regression, we use the concept of the threshold value, which defines

the probability of either 0 or 1. Such as values above the threshold value tends

to 1, and a value below the threshold values tends to 0.

Figure 4.1 Sigmoid Function

Logistic Regression Equations

P (Y = 0 / X) = 1 / 1 + ez [max for class 0] [Equation 3.1]

P (Y = 1/ X) = ez/ 1 + ez [max for class 1] [Equation 3.2]

where z = woxo+w1x1+w2x2+……+wnxn [network sum] [Equation 3.3]

Y: target label [yes/no (or) 1/0]

X: sample

P(Y = 0 / X): probability that a sample X will belong to class 0

P(Y = 1 / X): probability that a sample X will belong to class 1

4.1.2 Decision Tree Classifier

• It is a Supervised Machine Learning where the data is continuously split

according to a certain parameter.

• In a decision tree, for predicting the class of the given dataset, the algorithm

starts from the root node of the tree. This algorithm compares the values of

root attribute with the record (real dataset) attribute and, based on the

comparison, follows the branch and jumps to the next node.

• For the next node, the algorithm again compares the attribute value with the

other sub-nodes and move further. It continues the process until it

7

reaches the leaf node of the tree. The complete process can be better

understood using the below algorithm:

Step-1: Begin the tree with the root node, says S, which contains the

complete dataset.

Step-2: Find the best attribute in the dataset using Attribute Selection

Measure(ASM).

Step-3: Divide the S into subsets that contains possible values for the best

attributes.

Step-4: Generate the decision tree node, which contains the best attribute.

Step-5: Recursively make new decision trees using the subsets of the dataset

created in step -3. Continue this process until a stage is reached where you

cannot further classify the nodes and called the final node as a leaf node.

• A Decision Tree consists of :

i) Nodes : Test for the value of a certain attribute.

ii) Edges/ Branch : Correspond to the outcome of a test and connect to

the next node or leaf.

iii) Leaf nodes : Terminal nodes that predict the outcome (represent class

labels or class distribution).

8

Figure 4.2 Decision Tree

ASM (Attribute Selection Measures)

While implementing a Decision tree, the main issue arises that how to select

the best attribute for the root node and for sub-nodes. So, to solve such

problems there is a technique which is called as Attribute selection measure

or ASM.

i) Information Gain

Information gain is the measurement of changes In entropy after the

segmentation of a dataset based on an attribute. It calculates how much

information a feature provides us about a class. According to the value of

information gain, we split the node and build the decision tree.A decision

tree algorithm always tries to maximize the value of information gain,

and a node/attribute having the highest information gain is split first. It

can be calculated using the below formula:

IG = Entropy(S)- [(Weighted Avg) *Entropy (each feature) [Equation 3.4]

9

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies

randomness in data. Entropy can be calculated as:

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no) [Equation 3.5]

4.1.3 Gaussian Naïve Bayes Classifier

Naïve Bayes classifier is constructed from Bayes Theorem with a assumption. Naïve

Bayes Classifier is a multi-class classifier.

According to the Bayes Theorem:

P(Y/X) = P(X/Y) P(Y) / P(X) [Equatio3.6]

Where

P(Y/X)= probability of Y occurring given evidence X has already occurred[posterior]

P(X/Y)= probability of X occurring given evidence Y has already occurred[likelihood]

P(X)= probability of X occurring [class prior probability]

P(Y)= probability of Y occurring [predictor prior probability]

Why Naïve?

In addition to the Naïve Bayes theorem we make a assumption that every

feature/attribute is independent of other features and every feature/attribute

contributes towards predicting target class. This is called as Conditional

Independence.

Hence we have:

P(Y/X)= P(x1/Y)* P(x2/Y)* P(x3/Y)*……… P(xn/Y)*P(Y) [Equation 3.7]

We consider Gaussian Naïve Bayes when our input features are of continuous

values instead of categorical.

To determine P(Xi/Yi) we us e probability density function[conditionalprobability]:

10

[Equation 3.8]

Where µ = ∑X/N [mean] [Equation 3.9]

σ s = √(∑(X-µ)2 /N-1) [Standard Deviation of samples] [Equation 3.10]

N= number of samples

4.1.4 Random Forest Classifier

Random Forest is a popular machine learning algorithm that belongs to the supervised

learning technique. It can be used for both Classification and Regression problems in

ML. It is based on the concept of ensemble learning, which is a process of combining

multiple classifiers to solve a complex problem and to improve the performance of

the model.

As the name suggests, "Random Forest is a classifier that contains a number of

decision trees on various subsets of the given dataset and takes the average to

improve the predictive accuracy of that dataset." Instead of relying on one decision

tree, the random forest takes the prediction from each tree and based on the

majority votes of predictions, and it predicts the final output.

The greater number of trees In the forest leads to higher accuracy and prevents

the problem of overfitting.

11

Figure 4.3 Random Forest Classifier

12

CHAPTER 5

STACKING

Stacking is an ensemble machine learning algorithm. It uses a meta-learning algorithm

to learn how best combine the predictions from two or more base machine learning

algorithms. The benefit of stacking is that it harnesses the capabilities of a range of

well performing models on a classification or regression task and make predictions

that have better performance than any single model in the ensemble.

Hence by using stacking we will be able to create a new classifier that hopefully

will give better accuracy compared to all other base models.

Figure 5.1 Stacking Architecture

13

5.1 UNDERSTANDING STACKING

In the essence, stacking makes prediction by using a meta-model trained from

a pool of base models — a pool of base models are first trained using training

data and asked to give their prediction; a different meta model is then trained

to use outputs from base models to give the final prediction. The process is

actually simple. To train a base model,

K-fold cross validation technique is used.

We can understand the stacking in 7 steps:

Step 1: You have Train Data and Test Data as shown in Fig 3.5. Assume we

are using 4-fold cross validation to train base models, the train_data is then

divided into 4 parts.

Figure 5.2 Train Data and Test Data

Step 2: Using the 4-part train_data, the 1st base model (assuming it’s a

decision tree) is fitted on 3 parts and predictions are made for the 4th part.

This is done for each part of the training data. At the end, all instance from

training data will have a prediction. This creates a new feature for train_data,

call it pred_m1 (predictions model 1) as shown in fig 3.6.

14

Figure 5.3 Prediction from model_1

Step 3: Step 2 is repeated for the 2nd model (e.g., GNB) and the 3rd model

(e.g., Random Forest). These will give two more predictions, pred_m2 and

pred_m3.

Figure 5.4 Prediction from model 1,2 and 3.

Step 4: Combine the above 3 prediction along with the actual target column

‘y’ from the train_data to obtain a dataset with predicted outcomes as input

features (from each model) and actual outcome from ‘y’.

15

Figure 5.5 Train_Data for Meta-Model

Step 5: Select you desired meta model for ex: Logistic Regression, and train this

model on the dataset created in step 4.

Step 6: The meta model(Logistic Regression) is now ready to predict if given a test

sample but if we observe we can’t directly provide our real input features to

the meta model as it’s trained on 3 features which are actually prediction from

different models. So, first we need to freshly initialize our base models(GNB, Decision

Tree, Random Forest) and train them on whole train_data without any k-folding.

Step 7: Predict the test data by using each base model and combine the predictions

as a single data frame. Give this data frame as a input to our meta- model for

prediction which finally will give our desired prediction.

16

CHAPTER 6

Performance Measures

Analysis o performance of models is very important to ensure the correctness of model.

Accuracy may provide good overview of how our model has performed but it isn’t

enough to analyze where our model is lagging, so we can put effort to overcome

those problems. Hence with using quality and different measures we can analyze

our model much better.

Confusion Matrix

A confusion matrix is a table that is often used to describe the performance of

a classification model (or "classifier") on a set of test data for which the true values

are known.

Figure 6.1 Confusion Matrix

In a confusion matrix the Actual values are represented along the rows whereas

the Predicted Values are represented along the columns.

 True Positive (TR) : these are the no of sample which are

predicted as positive and they are positive in real.

17

 True Negatives (TN): these are the no of sample which are

predicted as negative and they are negative in real.

 False Positive (FP): these are the no of sample which are

predicted as positive and they are negative in real.

 False Negative (FN): these are the no of sample which are

predicted as negative and they are positive in real.

From the confusion matrix we obtain different performance measure to sufficiently

analyze our model.

Accuracy = 𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 [Equation 3.11]

Sensitivity or Recall or True Positive Rate = 𝑻𝑷 [Equation 3.12]
𝑻𝑷+𝑭𝑵

Specificity or True Negative Error = 𝑻𝑵 [Equation 3.13]

Precision = 𝑻𝑷 [Equation 3.14]

F measure = 𝟐∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍 [Equation 3.15]
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍

Classification Error = 𝑬𝒓𝒓𝒐𝒓 = 𝑭𝑷 [Equation 3.16]

𝑻𝒐𝒕𝒂𝒍 𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵

• Hence for the successful implementation of the proposed system three

objectives must be reached as listed below and explained above :

1. Extensive Data Preprocessing Techniques.

2. Stacking for Model Enhancement.

3. Quality Performance Measures for proper model analysis.

18

• At the we are optimistic that our new model (stacking) would provide better

performance in most of the aspects (performance measures) compared

to all individual base models.

19

CHAPTER 7

Design

Figure 7.1 Flowchart of Design

20

Figure 7.2 Flowchart of Stacking

21

CHAPTER 8

HARDWARE AND SOFTWARE REQUIREMENTS

8.1 Software Requirements

• In this project we have use Jupyter Notebook which is integrated in Anaconda

Navigator Version 4.11.0.

• We have used Spyder IDE integrated in Anaconda Navigator to deploy

Machine

Learning models through Flask API.

• We also used a Web Browser to access Localhost port.

• We require basic machine learning classification algorithms (Random Forest

Classifier, Gaussian Naïve Bayes Classifier, Decision Tree Classifier and

Logistic Regression) and packages like (Pandas, NumPy, Matplotlib and

Seaborn).

8.2 Hardware Requirements

• Operating System with Windows 7 or above.

• RAM of 2 GB (Minimum)

• Hard Disk: 1 GB

• Processor: i3 or Above

8.3 Dataset

• https://www.kaggle.com/itsmesunil/bank-loan-modelling

http://www.kaggle.com/itsmesunil/bank-loan-modelling

22

CHAPTER 9

CODE IMPLEMENTATION

In this project, you will learn how to combine various machine learning classification

algorithms using stacking approach, so to obtain a better model that can predict

better as compared to individual models.

As we require to adopt a problem statement to implement a classification algorithm

we have taken “Bank Loan Approval” problem which a binary classification problem,

where a person will be either be approved for a personal loan or not.

Initially we take our desired classification algorithms whom we want to combine

which are called as our “Base Models”. In this project we have taken Random Forest

Classifier, Decision Tree Classifier, Gaussian Naïve Bayes Classifier and Gradient

Boosting Classifier as our base models. We perform stacking approach explained in

detail in section 6 on this 4 base models and hence obtain a train dataset for our

meta model which is in our case is Logistic Regression.

After we obtain a train dataset for our meta model we train our meta-model(Logistic

Regression) on that dataset. Now our meta model is trained and ready for

prediction.

But we can’t give our initial dataset directly as test data to meta-model because

metamodel is trained on four features that are the predictions from four base

models, not on features of our actual dataset. So, firstly we need to freshly create

our base model instances after training meta-model. Then, we have to train these

four new instances of base models with train data. Now our base models are

trained and ready for prediction.

To predict a sample first give it to base models as test sample. We get four predictions

from our four base models. Combine these 4 prediction into a single data frame

and then give this new sample as test data to our meta- model to obtain final

prediction.

To implement the project we will follow a general machine learning workflow.

23

9.1 Data Preprocessing

1. Import required packages.

2. Load the Dataset

3. Print the Dataframe

4. Check the Datatypes of all features

5. Data Cleaning

import pandas as pd

import numpy as np

import seaborn as sns

df = pd.read_csv('Bank_Data.csv')

df.head()

df.info()

24

Finding out null values in each column and dropping those records as the

count is less to affect the quality of dataset.

9.2. Data Visualization

By performing visualization, we can get the intuition about how each feature is

contributing

df.isnull().sum()

df=df.dropna()

df.isnull().sum()

sns.countplot(x='Education',hue='Loan_Status',data=df)

sns.countplot(x='Loan_Amount_Term',hue='Loan_Status',data=df)

sns.countplot(x='Married',hue='Loan_Status',data=df)

sns.countplot(x='Gender',hue='Loan_Status',data=df)

sns.countplot(x='Dependents',hue='Loan_Status',data=df)

sns.countplot(x='Self_Employed',hue='Loan_Status',data=df)

sns.countplot(x='Credit_History',hue='Loan_Status',data=df)

sns.countplot(x='Property_Area',hue='Loan_Status',data=df)

sns.displot(df['ApplicantIncome’]) sns.displot(df['CoapplicantIncome'])

25

26

From this visualization we get to know that all features play a prominent role in

deciding the target label, so we don’t need to drop any of the features except

Loan_ID as it doesn’t contribute.

9.3 Label Encoding

To make the work easy for the ML algorithms we will encode the values of feature

labels that are categorical but in string format into numeric category. For ex:

male as 0 and female as 1.

Credit History vs Loan Status

Applicant Income displot

Property Area vs Loan Status

CoApplicant Income displot

from sklearn.preprocessing import LabelEncoder

cols=['Gender','Married','Dependents','Education','Self_Employed’,

'Property_Area','Loan_Status’]

le=LabelEncoder() for col in cols:

df[col]=le.fit_transform(df[col])

27

9.4 Observing performance of Base Models

1. Splitting the data into features and target label.

2. Splitting the data into train-data and test-data.

3. Observe the performance of each base model before stacking.

i) Random Forest Classifier – Clearly overfitted as train accuracy is 100% and their

is big difference between train and test accuracy.

X=df.drop(columns=['Loan_ID','Loan_Status'],axis=1)

Y=df[['Loan_Status']]

from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test=train_test_split(X,y,test_size=0.2,stratify=y ,random_state=42)

from sklearn.ensemble

import RandomForestClassifier

model=RandomForestClassifier()

model.fit(X_train,Y_train)

yt_pred=model.predict(X_train)

accuracy_score(yt_pred,Y_train)//train

accuracy 1.0

y_pred=model.predict(X_test)

accuracy_score(y_pred,Y_test)//test accuracy

0.8125

28

ii) Decision Tree Classifier - Clearly overfitted as train accuracy is 100% and their is

big difference between train and test accuracy.

iii) Gaussian Naïve Bayes Classifier - Clearly not overfitted as train accuracy is 76%

and test accuracy is 80% and there is no big difference between train and test accuracy

but test accuracy is not that satisfactory.

iv) Gradient Boosting Classifier - Clearly not overfitted as train accuracy is 90% and

test accuracy is 84% and their is no big difference between train and test accuracy and

test accuracy is satisfactory.

from sklearn.naive_bayes

import GaussianNB

model3=GaussianNB()

model3.fit(X_train,Y_train)

yt_pred=model3.predict(X_train)

accuracy_score(yt_pred,Y_train) //train accuracy

0.796875

y_pred3=model3.predict(X_test)

accuracy_score(y_pred3,Y_test) //test accuracy

0.8020833333333334

from sklearn.tree

import DecisionTreeClassifier

model2=DecisionTreeClassifier()

model2.fit(X_train,Y_train)

yt_pred=model2.predict(X_train)

accuracy_score(yt_pred,Y_train)//train

accurcay 1.0

y_pred=model2.predict(X_test)

accuracy_score(y_pred,Y_test)//test accuracy

0.739583333333333

9.5. Perform Stacking.

i) Freshly Initialize Base Models.

ii) Split the data into Train data and Test data

iii) Perform K-Folding

from sklearn.ensemble

import GradientBoostingClassifier

model4=GradientBoostingClassifier()

model4.fit(X_train,Y_train)

yt_pred=model4.predict(X_train)

accuracy_score(yt_pred,Y_train)//train a

0.90625

y_pred4=model4.predict(X_test) accuracy_score(y_pred4, Y_test)

0.8333333333333334

model=RandomForestClassifier(n_estimators=5)

model2=DecisionTreeClassifier()

model3=GaussianNB()

model4=GradientBoostingClassifier()

X_train,X_test,Y_train,Y_test=train_test_split(X,y,test_size=0.25, stratify=y,

random_state=42)

from sklearn.model_selection import StratifiedKFold

def Stacking(model,train,y,n_fold):

folds=StratifiedKFold(n_splits=n_fold)

train_pred=np.empty((0,1),int)

for train_indices,val_indices in folds.split(train,y.values):

x_train,x_val=train.iloc[train_indices],train.iloc[val_indices]

29

30

iv) Combine the Predictions of 4 Base Models to get the train data for meta

model.

v) Train the meta-model [Logistic Regression] with train_data_meta.

vi) Freshly train your base models on train_data as we used same names for

models in checking performance before stacking and in K-Folding.

print(x_train,x_val)#x_val=x_test

y_train,y_val=y.iloc[train_indices],y.iloc[val_indices]

print(y_train,y_val)#y_val=y_test

model.fit(x_train,y_train)

train_pred=np.append(train_pred,model.predict(x_val))

print(train_pred)

return train_pred train_pred_1=Stacking(model=model,n_fold=5,train=X_train,y=Y_train)

train_pred_2=Stacking(model=model2,n_fold=5,train=X_train,y=Y_train)

train_pred_3=Stacking(model=model3,n_fold=5, train=X_train,y=Y_train)

train_pred_4=Stacking(model=model4,n_fold=5, train=X_train,y=Y_train)

train_pred_1=pd.DataFrame(train_pred_1)

train_pred_2=pd.DataFrame(train_pred_2)

train_pred_3=pd.DataFrame(train_pred_3)

train_pred_4=pd.DataFrame(train_pred_4)

train_data_meta =

pd.concat([train_pred_1,train_pred_2,train_pred_3,train_pred_4], axis=1)

print(train_data-meta)

from sklearn.linear_model import LogisticRegression

meta_model = LogisticRegression()

meta_model.fit(train_data_meta,Y_train)

31

vii) Predict the Test_data with trained based model and combine them to

prepare the test_data for our meta model.

viii) Test the meta-model (LR) with the test_res to get final predictions.

model= RandomForestClassifier()

model2= DecisionTreeClassifier()

model3= GaussianNB()

model4= GradientBoostingClassifier()

y1_pred= model.predict(X_test) y2_pred=

model2.predict(X_test) y3_pred=

model3.predict(X_test) y4_pred=

model4.predict(X_test) y1_pred=

pd.DataFrame(y1_pred) y2_pred=

pd.DataFrame(y2_pred) y3_pred=

pd.DataFrame(y3_pred) y4_pred=

pd.DataFrame(y4_pred)

test_res = pd.concat([y1_pred, y2_pred, y3_pred,y4_pred], axis=1)

print(test_res)

model.fit(X_train,Y_train)

model2.fit(X_train,Y_train)

model3.fit(X_train,Y_train)

model4.fit(X_train,Y_train)

32

Now that we have trained and tested our base models as well as meta model

a.k.a Stacked Model we can observe that Stacked model gave the better

accuracy as compared to each base model.

9.6 Dump the base models and meta-model.

9.7 Deploy the models using Flask-API.

i) Open Spyder IDE and create a project say ‘BankLoan’.

ii) Copy the dumped models from previous directory to this BankLoanFolder.

iii) Create two sub-folders inside BankLoan names ‘templates’ and ‘static’.

iv) The ‘static’ folder will contain the ‘index.html’ file, and ‘template’ will contain

‘CSS’ file for ‘index.html’.

v) Create a python file named ‘app.py’ inside the BankLoan Folder.

app.py

meta_model.score(test_res,Y_test)

import pickle

pickle.dump(meta_model,open('StackModel.pkl','wb'))

pickle.dump(model,open('model.pkl','wb'))

pickle.dump(model2,open('model2.pkl','wb'))

pickle.dump(model3,open('model3.pkl','wb'))

pickle.dump(model4,open('model4.pkl','wb'))

33

from flask import Flask, request, render_template

import pickle

app = Flask(name)

pickle_in=open('StackModel.pkl','rb')

p_model=open('model.pkl','rb')

p_model2=open('model2.pkl','rb')

p_model3=open('model3.pkl','rb')

p_model4=open('model4.pkl','rb')

stack_model=pickle.load(pickle_in)

model=pickle.load(p_model) model2=pickle.load(p_model2)

model3=pickle.load(p_model3)

model4=pickle.load(p_model4)

@app.route('/') def home(): return

render_template('index.html')

@app.route('/predict',methods=['POST']) def

predict():

'''

For rendering results on HTML GUI

'''

features = [x for x in request.form.values()]

Gender=features[5]

Married=features[6]

Dependents=features[7]

Education=features[8]

SelfEmployed=features[9]

PropertyArea=features[10]

CreditHistory=features[4]

ApplicantIncome=float(features[0])/10.0

CoapplicantIncome=float(features[1])/10.0

34

LoanAmount=float(features[3])/1000.0

Loan_Amount_Term=int(features[2])*30

p1=int(model.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applica

ntIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Proper

tyA rea]]))

p2=int(model2.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic

antIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Prop

erty Area]]))

p4=int(model4.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic

antIncoyArea]]))me,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHist

ory,Propert

prediction=stack_model.predict([[p1,p2,p3,p4]])

prediction_text=prediction,ai=features[0],ci=features[1],la=features[3],lt=featureturn

render_template('index.html',

res[2],ch=int(features[4]),gd=int(features[5]),mr=int(features[6]),dp=int(features[7]),ed

=int(features[8]),se=int(features[9]),pa=int(features[10]))

if name == " main ":

app.run(debug=True)

p3=int(model3.predict([[Gender,Married,Dependents,Education,SelfEmployed,Applic

antIncome,CoapplicantIncome,LoanAmount,Loan_Amount_Term,CreditHistory,Prop

ertyArea]]))

Index.html

<!DOCTYPE html>

<html >

<head>

<link rel="preconnect" href="https://fonts.googleapis.com">

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

<link

href="https://fonts.googleapis.com/css2?family=Khand:wght@600&family=Monda&di

splay=swap" rel="stylesheet">

<link rel="preconnect" href="https://fonts.googleapis.com">

<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

<link

href="https://fonts.googleapis.com/css2?family=Khand:wght@600&display=swap"

rel="stylesheet">

<link href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet'

type='text/css'>

<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'

type='text/css'>

<link href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet'

type='text/css'>

<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'

rel='stylesheet' type='text/css'>

<link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">

<title>Bank Loan Approval</title>

</head>

<body>

<div class="login">

<h1>   Predict Loan Approval</h1>

<div class="sam">

<form action="{{ url_for('predict')}}" method="post" class="fom">

<table >

<tr>

<td></td>

</tr>

35

https://fonts.googleapis.com/css2?family=Khand%3Awght%40600&family=Monda&di
https://fonts.googleapis.com/css2?family=Khand%3Awght%40600&display=swap

<tr>

<td></td>

</tr>

<tr>

<td><label>Applicant_Income</label></td>

<td class="colon"><label>:</label> </td>

<td><input id="ai" type="text" value="{{ai}}" name="Applicant_Income"

required="required" /></td>

</tr>

<tr>

<td><label>CoApplicant_Income</label></td>

<td class="colon"><label>:</label></td>

<td><input id="ci" type="text" value="{{ci}}" name="CoApplicant_Income"

required="required" /></td>

</tr>

<tr>

<td><label>Loan_Amount_Term</label></td>

<td class="colon"><label>:</label></td>

<td><input id="Term" type="text" value="{{lt}}" name="Term"

required="required" /></td>

</tr>

<tr>

<td><label>Loan_Amount</label></td>

<td class="colon"><label>:</label></td>

<td><input id="la" type="text" value="{{la}}" name="Loan_Amount"

required="required" /></td>

</tr>

<tr>

<td><label>Credit_History</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Credit" name="Credit" required="required" >

{% if ch == 1 %}

<option value="1" selected >Have Credit History</option>

<option value="0">Doesn't have Credit History</option>

{% else %}

<option value="1">Have Credit History</option>

36

<option value="0" selected>Doesn't have Credit History</option>

{% endif %}

</select>

</td>

</tr>

<tr>

<td><label>Gender</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Gender" name="Gender" required="required" >

{% if gd == 1 %}

<option value="1" selected>Male</option>

<option value="0">Female</option>

{% else %}

<option value="1">Male</option>

<option value="0" selected>Female</option>

{% endif %}

</select></td>

</tr>

<tr>

<td><label>Marital Status</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Marital" name="Marital" required="required" >

{% if mr == 1 %}

<option value="1" selected>Married</option>

<option value="0">Not Married</option>

{% else %}

<option value="1">Married</option>

<option value="0" selected>Not Married</option>

{% endif %}

</select></td>

</tr>

<tr>

<td><label>Dependents</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Dept" name="Dept" required="required" >

{% if dp == 0 %}

<option value="0" selected>0</option>

<option value="1">1</option>

<option value="2">2</option>

<option value="4">3+</option>

{% elif dp == 1 %}

<option value="0" >0</option>

<option value="1" selected>1</option>

<option value="2">2</option>

37

38

<option value="4">3+</option>

{% elif dp == 2 %}

<option value="0" >0</option>

<option value="1">1</option>

<option value="2" selected>2</option>

<option value="4">3+</option>

{% else %}

</select></td>

</tr>

<tr>

<td><label>Education</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Edu" name="Edu" required="required" >

{% if ed == 0 %}

<option value="0" selected>Graduate</option>

<option value="1">Under Graduate</option>

{% else %}

<option value="0">Graduate</option>

<option value="1" selected>Under Graduate</option>

{% endif %}

</select></td>

</tr>

<tr>

<td><label>Employment</label></td>

<td class="colon"><label>:</label></td>

<td><select id="Emp" name="Emp" required="required" >

{% if se == 1 %}

<option value="1" selected>Self Employed</option>

<option value="0">Not Self Employment</option>

{% else %}

<option value="1">Self Employed</option>

<option value="0" selected>Not Self Employment</option>

{% endif %}

</select></td>

</tr>

<tr>

<td> <label>Property_Area</label></td>

<td class="colon"><label>:</label></td>

<td><select id="PA" name="PA" required="required" >

{% if pa == 0 %}

<option value="0" selected>Rural</option>

<option value="2">Urban</option>

<option value="1">Semi-Urban</option>

{% elif pa == 2 %}

<option value="0">Rural</option>

<option value="2" selected>Urban</option>

<option value="1">Semi-Urban</option>

39

styles.css

{% else %}

<option value="0">Rural</option>

<option value="2">Urban</option>

<option value="1" selected>Semi-Urban</option>

{% endif %}

</select></td>

</tr>

<tr>

<td><button type="submit" class="btn btn-primary btn-block btn large"

>Predict</button></td>

<td class="colon"><label></label></td>

<td><button onclick="Reset()" class="btn btn-primary btn-block

btn large">Reset</button></td>

</tr>

<tr>

{% if prediction_text == 1 %}

<td style="text-align:center" colspan="3"><p class="tr">You are eligible for

Loan</p>

</td>

{% endif %}

{% if prediction_text == 0 %}

<td style="text-align:center" colspan="3"><p class="fr">You are not eligible

for Loan</p>

</td>

{% endif %}

</tr>

</table>

</form>

</div>

</div>

</body>

</html>

html { width: 100%; height:100%; }

label{

font-family:Monda;

}

body {

width: 100%;

height:100%;

font-family: 'Open Sans', sans-serif;

background-attachment:fixed;

background: linear-gradient(to bottom, #cc0066 0%, #0000cc 100%);

background-repeat:no-repeat;

background-size:cover;

background-attachment:fixed;

color: #fff;

font-size: 15px;

text-align:center;

letter-spacing:1.2px;

}

fom{

padding-top:10px;

padding-bottom:15px;

}

.sam{

background:rgba(0,0,0,0.3);

width:540px;

border-radius:15px;

}

td {

text-align: left;

padding-left:40px;

}

.login {

position: relative;

top: 30%;

left: 45%;

margin: -150px 0 0 -150px;

width:460px;

height:500px;

padding-top:20px;

}

.tr{

color:rgb(78,212,78);

font-size: 1.5em;

font-weight: bold;

}

.fr{

color:rgb(247,67,76);

font-size: 1.5em;

font-weight: bold;

}

40

.login h1 { color: #fff; text-shadow: 0 0 10px rgba(0,0,0,0.3); letter-spacing:1px;

text-align:center;display:inline;font-family:Khand;font-size:42px; }

input {

width: 200px;

margin-bottom: 10px;

background: rgba(0,0,0,0.3);

border: none;

outline: none;

padding: 10px;

font-size: 13px;

color: #fff;

text-shadow: 1px 1px 1px rgba(0,0,0,0.3);

border: 1px solid rgba(0,0,0,0.3);

border-radius: 4px;

box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px

rgba(255,255,255,0.2);

-webkit-transition: box-shadow .5s ease;

-moz-transition: box-shadow .5s ease;

-o-transition: box-shadow .5s ease;

-ms-transition: box-shadow .5s ease;

transition: box-shadow .5s ease;

}select{

width: 100%;

margin-bottom: 10px;

background: rgba(0,0,0,0.3);

border: none;

outline: none;

padding: 10px;

font-size: 13px;

color: #fff;

text-shadow: 1px 1px 1px rgba(0,0,0,0.3);

border: 1px solid rgba(0,0,0,0.3);

border-radius: 4px;

box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px

rgba(255,255,255,0.2);

-webkit-transition: box-shadow .5s ease;

41

42

vi) After writing the code we need to execute the project by opening the anaconda

prompt and enter command “python app.py”. The web application can be accessed

at port http://127.0.0.1:5000/ by entering port address in an standard browser.

-moz-transition: box-shadow .5s ease;

-o-transition: box-shadow .5s ease;

-ms-transition: box-shadow .5s ease;

transition: box-shadow .5s ease;

}

input:focus { box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px

rgba(255,255,255,0.2); }

select:focus{ box-shadow: inset 0 -5px 45px rgba(100,100,100,0.4), 0 1px 1px

rgba(255,255,255,0.2);}

43

9.8 Output

Fig 9.1 Interface for Prediction

Fig 9.2 Prediction for Eligible Borrower

44

Fig 9.3 Prediction for Ineligible Borrower

45

CONCLUSION

In this project we have tried to combine the knowledge of multiple machine learning

model through stacking, where we obtained a meta model that can perform

predictions on the predictions of base models. So, we have removed the

requirement of using a single machine learning algorithms that gives best

accuracy which may in turn be overfitted or underfitted as we have seen with our

base models.

Hence adding a extra layer that can give us prediction using the knowledge

of the meta-model that is gained from base models, we can do predictions with

a model that are not underfitted or overfitted. As a part of future work more

techniques like stacking that can combine the knowledge of various machine

learning models at more deep and core logical levels will lead to a very efficient

and robust machine learning models.

46

47

48

REFERENCES

[1] Ethem Alpaydin, “Introduction to Machine Learning” (Adaptive Computation and

Machine Learning Series)”, Third Edition, MIT Press, 2014.

[2] Stephen Marsland, “Machine Learning – An Algorithmic Perspective”, Second

Edition, Chapmanand Hall/CRC Machine Learning and Pattern Recognition

Series, 2014.

[3] Leo Breiman, Jerome H. Friedman, Richard A.Olshen and Charles J. Stone,

“Classification”.

[4] Tom M Mitchell, “Machine Learning”, First Edition, McGraw Hill Education, 2013.

[5] Min-Chun Yang, Chiun-Sheng Huang, “Whole breast lesion detection using naive

Bayes classifier for portable ultrasound”, Elsevier , computer science section, vol.

38, No.11, pp.1870-1880, 2012.

[6] “Regression Trees”. Wadsworth & Brooks, 1984.

[7] J. Ross Quinlan, “C4.5: Programs for Machine Learning . Morgan Kaufmann”,

1993.

[8] S.B. Kotsiantis, “Supervised Machine Learning: A Review of Classification

Techniques”, Informatica 31(2007).

[9] Jason Bell, “Machine learning – Hands on for Developers and Technical

Professionals”, First Edition , Wiley, 2014.

[10] Stacking and Blending–An Intuitive Explanation by Steven Yu [Online].

