
I

CHATBOT SYSTEM FOR COLLEGE ENQUIRY USING
KNOWLEDGEABLE DATABASE

Submitted in partial fulfilment of the requirements for the award of

Bachelor of Engineering degree in Computer Science and Engineering

By

GOOTY JOSHI NAGA VENKATA AKHILESH YADAV (REG NO: 39110343)

YASWANTH HANUMANTHU (REG NO: 39110365)

DEPARTMENT OF COMPUTER SCIENCE SCHOOL OF ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade “A” by NAAC | 12B Status

by UGC | Approved by AICTE

 JEPPIAAR NAGAR, RAJIV GANDHISALAI,

 CHENNAI – 600119

 APRIL-2023

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the Bonafide work of Gooty

Joshi Naga Venkata Akhilesh Yadav (39110343) and Yaswanth

Hanumanthu (39110365) who carried out the project Phase-2 entitled

“CHATBOT SYSTEM FOR COLLEGE ENQUIRY USING

KNOWLEDGEABLE DATABASE” under my supervision from Jan 2023

to April 2023.

Internal Guide

 Dr. P. Asha, M.E., Ph.D

Head of the Department

Dr L. Lakshmanan, M.E., Ph.D

 20.04.2023
Submitted for Viva voce Examination held on

Internal Examiner External Examiner

iii

DECLARATION

I, Gooty Joshi Naga Venkata Akhilesh Yadav (39110343), hereby declare

that the project report entitled “CHATBOT SYSTEM FOR COLLEGE ENQUIRY

USING KNOWLEDGEABLE DATABASE” done by us under the guidance of Dr.

P. Asha, M.E., Ph.D is submitted in partial fulfilment of the requirements for the

award of Bachelor of Engineering Degree in Computer Science and Engineering.

 DATE:20.04.2023

 PLACE: CHENNAI SIGNATURE OF THE CANDIDATE

iv

ACKNOWLEDGEMENT

We are pleased to acknowledge my sincere thanks to the Board of

Management of SATHYABAMA for their kind encouragement in doing this

project and for completing it successfully. We are grateful to them.

We convey our thanks to Dr. T. Sasikala, M.E., PhD, Dean, School of

Computing, Dr. L. Lakshmanan, M.E., PhD, Head of the Department of

Computer Science and Engineering, for providing us with necessary

support and details at the right time during the progressive reviews.

We would like to express our sincere and deep sense of gratitude to my

project guide, Dr. P. Asha, M.E., Ph.D, for her valuable guidance,

suggestions, and constant encouragement, which paved the way for the

successful completion of our project work.

We wish to express our thanks to all Teaching and Non-teaching staff

members of the Department of Computer Science and Engineering who

were helpful in many ways for the completion of the project.

v

 ABSTRACT

A chatbot, usually referred to as a chatterbot, attempts to have a conversation with

a person. When a question is posed, the system has the ability to detect sentences

and select the proper answer. The response principle is the matching of the user's

input phrase. The current technical project involves building a professional system

for a college help desk employing an android-based chatbot, artificial intelligence

technology, and virtual assistance (human-machine communication), then sending

that natural language to a server. Chatbot systems have become increasingly

popular for automating interactions with users and providing information in various

domains, including college enquiries. In this paper, we propose a chatbot system

for college enquiry using a knowledgeable database. The system utilizes a

knowledgeable database that contains relevant information about the college, such

as courses, faculty, campus facilities, and admissions procedures. The system

employs various algorithms, including rule-based, retrieval-based, natural language

processing (NLP), and machine learning algorithms, to understand and respond to

user queries in a context-aware manner. The rule-based algorithms provide

predefined rules and patterns for handling specific intents or frequently asked

questions, while the retrieval-based algorithms search the knowledgeable database

for relevant information.

vi

 TABLE OF CONTENTS

Chapter

No
TITLE Page No.

ABSTRACT v

LIST OF FIGURES ix

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

1 INTRODUCTION 1

 1.1 General Information 1

 1.2 Problem statement 3

 1.3 Objectives 4

 1.4 System Architecture 5

 1.5 Statement Scope 6

 1.6 Natural Language Processing 7

2 LITERATURE SURVEY 10

 2.2 Open problems in existing system 12

 2.3 Inferences from literature survey 13

3 REQUIREMENT ANALYSIS 15

 3.1
Software and Hardware Requirements

Specification Document
15

 3.2 System Use case 15

vii

4 DESCRIPTION OF PROPOSED SYSTEM 17

 4.1 Study of the Project 17

 4.2 Existing Methodology 18

 4.3 Proposed Methodology 23

 4.4 Project Task Set/Project Management Plan 25

5 IMPLEMENTATION DETAILS 26

 5.1 Development and Deployment Setup 26

 5.2 Algorithms 29

 5.3 Module Implementation 34

 5.4 Data Flow Diagrams 35

 5.5 Use Case Diagram 37

 5.6 Class Diagram 38

 5.7 Sequence Diagram 39

 5.8 Component Diagram 40

 5.9 Deployment Diagram 41

 5.10 Collaboration Diagram 42

 5.11 State Chart Diagram 42

6 RESULTS AND DISCUSSION 43

7 CONCLUSION 47

 7.1 Conclusion 47

 7.2 Future work 47

viii

 REFERENCES 48

 APPENDIX 51

 A. SOURCE CODE 51

 B. SCREENSHOTS 66

 C. RESEARCH PAPER 67

ix

LIST OF FIGURES

FIGURE

NO
FIGURE NAME

Page

No.

1.1 System Architecture 5

4.1 Knowledge Canvas Diagram 21

4.2 Proposed System Architecture 25

5.1 Structure of LSTM 30

5.2 Forget Gate 31

5.3 Input Gate 31

5.4 Output Gate 32

5.5 Data Flow Diagrams 35

 5.1 Level 0 Data Flow Diagram 35

 5.2 Level 1 Data Flow Diagram 36

5.6 Use Case Diagram 37

5.7 Class Diagram 38

5.8 Sequence Diagram 39

5.9 Component Diagram 40

5.10 Deployment Diagram 41

5.11 Collaboration Diagram 42

5.12 State Chart Diagram 42

x

LIST OF TABLES

TABLE NO

TABLE NAME

Page No.

4.1

IDEA

19

4.2

IDEA Matrix

19

xi

LIST OF ABBREVIATIONS

S.No ABBREVIATIONS EXPANSION

1 AI Artificial Intelligence

2 CNN Convolutional Neural

Network

3 GUI Graphical User Interface

4 LSTM Long Short Term Memory

5 NER Named Entity Recognition

6 NLG Natural Language

Generation

7 NLP Natural Language

Processing

8 NLTK Natural Language Tool Kit

9 UML Unified Modeling Language

1

CHAPTER – 1

INTRODUCTION

1.1 GENERAL INFORMATION:

This Application is for college students, staff, and parents. Easy way to interaction

and time consuming. This project is mainly targeted at colleges and the

synchronization of all the sparse and diverse information regarding regular college

schedule. Generally, students face problems in getting correct notifications at the

correct time, sometimes important notices such as campus interview, training and

placement events, holidays, and special announcements. Smart Campus tries to

bridge this gap between students, teachers, and college administrators. Therefore

in the real world scenario, such as college campus, the information in the form of

notices, oral communication, can be directly communicated through the android

devices and can be made available for the students, teachers directly for their

android devices and the maintenance of application will be easier in later future

because of the use of architectural MVC which separates the major works in the

development of an application such as data management, mobile user interface

display and web service which will be the controller to make sure for fast and efficient

maintenance of application.

The College bot project is built using artificial algorithms that analyses user’s queries

and understand user’s message. This System is a web application which provides

answer to the query of the student. Students just must query through the bot which

is used for chatting. Students can chat using any format there is no specific format

the user has to follow. The System uses built in artificial intelligence to answer the

query. The answers are appropriate what the user queries. The User can query any

college related activities through the system. The user does not have to personally

go to the college for enquiry. The System analyses the question and then answers

to the user. The system answers to the query as if it is answered by the person. With

the help of artificial intelligence, the system answers the query asked by the

students.

The system replies using an effective Graphical user interface which implies that as

if a real person is talking to the user. The user just must register himself to the

2

system and has to login to the system. After login user can access to the various

helping pages. Various helping pages has the bot through which the user can chat

by asking queries related to college activities. The system replies to the user with

the help of effective graphical user interface. The user can query about the college

related activities through online with the help of this web application. The user can

query college related activities such as date and timing of annual day, sports day,

and other cultural activities. This system helps the student to be updated about the

college activities. Chatbot is a computer program that humans will interact with in

natural spoken language and including artificial intelligence techniques such as NLP

(Natural language processing) that makes the chatbot more interactive and more

reliable.

Based on the recent epidemiological situation, the increasing demand and reliance

on electronic education has become very difficult to access to the university due to

the curfew imposed, and this has led to limited access to information for academics

at the university. This project aims to build a chatbot for Admission and Registration

to answer every person who asks about the university, colleges, majors, and

admission policy. Artificial intelligence (AI) is a branch of computer science that

focuses on creating machines that can perform tasks that typically require human

intelligence, such as perception, reasoning, learning, and decision-making.

AI uses a combination of techniques, including machine learning, natural language

processing, computer vision, and robotics, to enable machines to learn from data

and adapt to new situations. In the context of a college enquiry chatbot, AI would

allow the chatbot to understand and respond to natural language queries from

students, providing them with relevant information and support. Artificial intelligence

(AI) plays a crucial role in the development and functionality of chatbots. Chatbots

are computer programs that use natural language processing (NLP) to interact with

humans and simulate conversation. AI algorithms power the NLP capabilities of

chatbots, enabling them to understand and respond to users' requests.

Here are some ways in which AI helps in chatbots:

Natural Language Processing: AI algorithms enable chatbots to understand

natural language inputs from users and interpret them accurately. NLP algorithms

analyze the text or voice input and break it down into its component parts, including

keywords, entities, and intent. This analysis helps the chatbot to understand what

3

the user is asking and respond appropriately.

Machine Learning: AI algorithms enable chatbots to learn from user interactions

and improve their responses over time. Machine learning algorithms analyze the

data collected from user interactions and identify patterns and trends. Based on this

analysis, the chatbot can be trained to provide more accurate and relevant

responses.

Personalization: AI algorithms enable chatbots to personalize their responses

based on user preferences and behavior. By analyzing user data, chatbots can tailor

their responses to each user's specific needs and preferences.

Natural Language Generation: AI algorithms enable chatbots to generate natural

language responses that sound human-like. Natural Language Generation (NLG)

algorithms analyze the intent and context of the user's request and generate a

response that is both relevant and grammatically correct.

Overall, AI is an essential component of chatbot development, enabling chatbots to

deliver personalized, intelligent, and natural language-based conversations with

users.

1.2 PROBLEM STATEMENT

At the start of each academic semester, registration opens for those wishing to join

the university in various disciplines, and telephone calls for admission and

registration abound. This leads to an increase in the loads and work for the

employees of the Deanship of Admission and Registration as a result of the constant

pressure of those wishing to register and their families by flocking to the Deanship,

so the employees are not able to answer the phone calls and social media. This

often leads to many students who wish to register to be ignored. The process of

providing information and support to prospective and current students in a timely

and efficient manner is a challenge for colleges, leading to frustration and

dissatisfaction among users.

To achieve this, the chatbot system must be built on a robust and comprehensive

4

knowledge database that contains all relevant information about the college and its

operations. This database should be regularly updated to ensure that the

information provided by the chatbot is accurate.

1.3 OBJECTIVES

 Save effort and time for both the admission and registration staff and

students who wish to enroll.

 Provide detailed information about colleges and majors.

 Easy access to information.

 To minimize the time required to solve the queries.

 To give response to the user based on queries.

 To simplify communication between user and machine.

5

1.4 SYSTEM ARCHITECTURE

Figure 1.1 System Architecture

A block diagram is a diagram of a system in which the principal parts or functions

are represented by blocks connected by lines that show the relationships of the

blocks. It may also show how the system operates, what are its inputs and outputs

at various stages, and how the information, and/or materials flow through it. The

block diagram for” Online chatting system for college enquiry knowledgeable

Database” The proposed system has a client server architecture. All the information

will be kept in an optimized database on the central server. This information can be

accessed by the users through the android application installed on their

smartphones (client machines). Each client machine will have an improved user

interface.

A chatbot is a technology that allows users to have natural conversations to access

content and services. Chatbots typically take the form of a chat client, leveraging

6

natural language processing to conduct a conversation with the user. Chatbots

control conversation flow based on the context of the users requests and respond

with natural language phrases to provide direct answers, request additional

information or recommend actions that can be taken. The diagram below provides

a high-level description of how a chat client could be used to leverage natural

language processing to assist with access to content or perform data queries.

Modules Client-Server (chat user): The proposed system has a client server

architecture. All the information will be kept in an optimized database on the central

server. This information can be accessed by the users through the android

application installed on their smartphones (client machines). Each client machine

will have an improved user interface.

Chatbot: A chatbot is a technology that allows users to have natural conversations

to access content and services. Chatbots typically take the form of a chat client,

leveraging natural language processing to conduct a conversation with the user.

Chatbots control conversation flow based on the context of the users requests and

respond with natural language phrases to provide direct answers, request additional

information or recommend actions that can be taken.

Pattern matching: Bot send a query to a machine for comparing. The query match

with database sends to data services.

Data Services: Intent is used to call upon proper service.using entity information to

find proper data. Hence all the modules are described above are completed in

polynomial time sec t, So this problem is P.

1.4 STATEMENT SCOPE

In today’s world as there are everything is digital. In education system work is very

lengthy and time consuming and required extra manpower. We develop this

application for students, teachers, parents, and guest. In this project we implement

android application due to this application The Student does not have to go

personally to college office for the enquiry. The application enables the students to

7

be updated with college cultural activities. If application saves time for the student

as well as teaching and non-teaching staffs. It is useful for parents also to show

his/her child marks and important notices.

1.6 NATURAL LANGUAGE PROCESSING

NLP is an interdisciplinary subfield of linguistics, computer science, and artificial

intelligence concerned with the interactions between computers and human

language, how to program computers to process and analyze large amounts

of natural language data. The goal is a computer capable of "understanding" the

contents of documents, including the contextual nuances of the language within

them. The technology can then accurately extract information and insights contained

in the documents as well as categorize and organize the documents themselves.

NLP techniques allow the chatbot to understand the natural language queries of

users and provide accurate and relevant responses. NLP is a critical component of

many applications that involve language, such as chatbots, voice assistants,

machine translation, sentiment analysis, and more. It involves several techniques

and approaches, including statistical modeling, machine learning, deep learning,

and rule-based systems, to analyze and process natural language data. NLP is a

rapidly evolving field, and recent advances in machine learning and deep learning

have led to significant improvements in the accuracy and performance of NLP

models.

Challenges in natural language processing frequently involve speech

recognition, natural-language understanding, and natural-language generation.

In the early days, many language-processing systems were designed by symbolic

methods, i.e., the hand-coding of a set of rules, coupled with a dictionary lookup

such as by writing grammars or devising heuristic rules for stemming.

More recent systems based on machine-learning algorithms have many

advantages over hand-produced rules:

 The learning procedures used during machine learning automatically focus

on the most common cases, whereas when writing rules by hand it is often

8

not at all obvious where the effort should be directed.

 Automatic learning procedures can make use of statistical inference

algorithms to produce models that are robust to unfamiliar input (e.g.

containing words or structures that have not been seen before) and to

erroneous input (e.g. with misspelled words or words accidentally omitted).

Generally, handling such input gracefully with handwritten rules, or, more

generally, creating systems of handwritten rules that make soft decisions, is

extremely difficult, error-prone and time-consuming.

 Systems based on automatically learning the rules can be made more

accurate simply by supplying more input data. However, systems based on

handwritten rules can only be made more accurate by increasing the

complexity of the rules, which is a much more difficult task. In particular, there

is a limit to the complexity of systems based on handwritten rules, beyond

which the systems become more and more unmanageable. However,

creating more data to input to machine-learning systems simply requires a

corresponding increase in the number of man-hours worked, generally

without significant increases in the complexity of the annotation process.

Despite the popularity of machine learning in NLP research, symbolic methods are

still (2020) commonly used:

 when the amount of training data is insufficient to successfully apply machine

learning methods, e.g., for the machine translation of low-resource languages

such as provided by the Apterium system,

 for pre-processing in NLP pipelines, e.g., tokenization, or

 for postprocessing and transforming the output of NLP pipelines, e.g.,

for knowledge extraction from syntactic parses.

Sentiment analysis: Sentiment analysis is the process of identifying the emotion

or sentiment behind a user's query. This can be useful in chatbots designed to

provide emotional support or mental health services. Sentiment analysis is typically

done using machine learning algorithms that are trained on large datasets of text

9

labeled with sentiment.

Intent recognition: NLP techniques can be used to recognize the intent of user

queries, allowing the chatbot to provide appropriate responses.

Named entity recognition (NER): NER is a subtask of entity recognition that

focuses specifically on identifying named entities such as people, organizations, and

locations. NER is commonly used in chatbots designed for customer service or

support, where identifying customer names or order numbers is important.

Language translation: Chatbots can be designed to provide multilingual support

by using language translation techniques. Machine learning algorithms are trained

on large datasets of text in multiple languages to provide accurate translations.

Text generation: Text generation techniques can be used to generate natural

language responses to user queries. These techniques use machine learning

algorithms to analyze the context of the user's query and generate a relevant

response. Text generation can be particularly useful in chatbots designed to handle

complex or multi-turn conversations.

Natural Language Processing (NLP) techniques can play a crucial role in developing

a college enquiry chatbot.

Overall, NLP techniques are critical to the success of chatbots, allowing them to

accurately understand user queries and provide relevant and personalized

responses.

10

CHAPTER – 2

LITERATURE SURVEY

Professor Girish Wadhwa suggested that the institution build an inquiry chatbot

using artificial intelligence in March-April 2017. Algorithms that might analyze

consumer inquiries and recognize consumer messages. This machine might be a

chatbot with the intention to provide solutions to students' questions. Students

actually need to pick out a category for department requests and then request a bot

to be used for chat. The project's main goal is to develop an algorithm that may be

used to correct the answers to queries that customers ask. It is essential to create

a database where all related statistics can be kept as well as to expand the online

interface. A database can develop to be able to compile information on queries,

responses, key words, logs, and messages. 2016 saw Bayu Setiaji publish "Chatbot

the usage of database knowledge." A chatbot is made to communicate with

technology.

Machine learning is built to recognize sentences and concluded, such as the answer

to a question. Personalized message, i.e. A request is saved in accordance with the

response. The more similarly the statements are stated, the more it will be marked

as similarity of the sentences. It is then answered in light of the answers from the

first sentence. The sentence similarity calculator breaks the input sentence down

into its component letters. A database stores the knowledge of chatbots. A chatbot

has interfaces, and the database control system's access point through this interface

is at its core. The Chatbot application was created using a variety of programming

languages with the addition of a user interface that allows users to give input and

get a response. Starting with the symbol of entity date, which produced 11 entities

and their cardinalities, the structure and building of tables was done as an indication

of the knowledge contained inside the database. SQL was used in a way that was

tailored to the model that was kept inside the programme.

Elisa is regarded as the first chatbot to operate in a single machine model. Joseph

Weizenbaum was the one who created it in 1964. ALICE is a rule-based chatbot

that uses Artificial Intelligence Markup Language (AIML). It includes approximately

40,000 categories with an average of an example and a response for each category.

A summary of chatbot programmes that have evolved through the usage of AIML

11

scripts was presented by Md. Shahriare Satu and Shamim-Ai- Mamun. They

asserted that entirely AIML-based chatbots are easy to set up, lightweight, and eco-

friendly to use. post provides information on the various ways that chatbots are

used. An AIML and LSA based chatbot was created by Thomas N. T. and Amrita

Vishwa to provide customer support on e-commerce platforms.

We can implement chatbots in the Android-powered device utilising a variety of

techniques. In their post on Android Chatbot, Rushab Jain and Burhanuddin

Lokhandwala demonstrate one method. Creating a Chatbot that Imitates a Historical

Person by Emanuela Haller and Trajan Rebedea, IEEE Conference Publications,

July 2013. A person with expertise in creating databases constructed the database.

Yet, very few academics have looked into the idea of building a chatbot with an

artificial personality and character by starting with pages or simple text about a

particular person. In order to create a debate agent that can be used in CSCL high

school settings, the paper discusses a method for highlighting the key information

in texts that chronicle the life of a (private) historical figure.

An Introduction to Teaching AI in a Simple Agent Environment by Maya Pantik,

Reinir Zwitserloot, and Robbert Jan Grootjans, IEEE Transactions on Education,

Vol. 38, number three, August 2005 in this article, a flexible approach to basic the

use of a novel, totally Java-based, simple agent framework developed specifically

for this course to teach artificial intelligence (AI) is described. Despite the fact that

many agent frameworks have been presented in a variety of literature, none of them

has been widely adopted to be simple enough for first-year laptop technology

college students. Hence, the authors suggested developing a new structure that

could accommodate the course's objectives, the location of laptop generation

directed at student organisation, and the size of the student organisation for college

students. "An Intelligent Chatbot System for College Admission Process" by S.

Sheikh et al. This paper proposes an intelligent chatbot system that utilizes a

knowledgeable database to provide information about the college admission

process.

The system uses natural language processing techniques to understand user

queries and generate responses. The system also includes a recommendation

engine that suggests suitable programs based on the user's interests and

qualifications. The inclusion of recommendation engines further enhances the

usefulness of these systems by suggesting suitable programs based on the user's

12

interests and qualifications.

2.1 OPEN PROBLEMS IN EXISTING SYSTEM

There are several open problems that need to be addressed in college enquiry

chatbots to improve their performance and provide better user experience. Here are

some of the key open problems in college enquiry chatbots:

Intent Identification: One of the primary challenges in developing a college enquiry

chatbot is accurately identifying the user's intent. College enquiries can cover a wide

range of topics, and the chatbot needs to correctly identify the user's intention to

provide an appropriate response.

Accuracy: While chatbots can provide quick and convenient access to information,

they are not always accurate in their responses. This is because the chatbot's

database may not always be up-to-date, or the natural language processing

algorithms may not be able to correctly interpret the user's queries.

Knowledge Base Management: A college enquiry chatbot needs to have access

to a large amount of information about the college, including admission criteria,

course offerings, faculty, and campus facilities. Managing this knowledge base is a

significant challenge, as the information is often dispersed across multiple sources

and needs to be kept up-to-date.

Natural Language Processing: Chatbots need to be able to understand and

process natural language inputs accurately. However, natural language processing

(NLP) technology is still in its early stages, and there are many challenges in

accurately interpreting the meaning of user queries.

Multilingual Support: Colleges often have students from different parts of the

world, speaking different languages. Providing multilingual support in college

enquiry chatbots is a challenge that requires advanced NLP capabilities and a well-

designed language model.

13

Personalization: To provide a better user experience, college enquiry chatbots

need to personalize their responses based on the user's profile, preferences, and

history. This requires advanced machine learning algorithms that can analyze user

data and provide tailored responses.

Context Management: College enquiries often involve complex and multi-turn

conversations. Chatbots need to be able to maintain context across these

conversations to provide accurate and relevant responses.

User Engagement: Finally, chatbots need to be engaging and interactive to keep

users interested and motivated to continue using them. This requires designing

chatbots that can simulate human-like conversations and provide relevant and

interesting information to users.

2.2 INFERENCES FROM LITERATURE SURVEY

Based on a literature survey of college enquiry chatbots, several key inferences can

be drawn:

College enquiry chatbots are becoming increasingly popular: There is a

growing trend of colleges and universities adopting chatbots to handle student

enquiries. Several studies have shown that chatbots can significantly reduce the

workload on college administrators and provide faster, more efficient, and

personalized services to students.

Natural language processing (NLP) is a critical component of college enquiry

chatbots: NLP technology is used to understand and interpret user queries, and to

generate natural language responses. Several studies have focused on improving

the accuracy and effectiveness of NLP in college enquiry chatbots.

Machine learning (ML) algorithms are being used to improve the performance

of college enquiry chatbots: ML algorithms are used to train chatbots on large

datasets of student queries and responses. This helps chatbots to learn from past

interactions and provide more accurate and relevant responses.

14

Chatbots are being used to support a wide range of college enquiries: College

enquiry chatbots can handle a wide range of enquiries, including admission

inquiries, course registration, financial aid, campus facilities, and career services.

The success of college enquiry chatbots depends on effective design and

development, including careful consideration of user needs, the use of appropriate

testing and optimization.

Multilingual support is a growing area of research in college enquiry chatbots:

Many colleges and universities have a diverse student population, and providing

multilingual support is essential to ensure that all students can access the

information and services they need.

Context management is a critical challenge in college enquiry chatbots:

College enquiries often involve complex and multi-turn conversations. Chatbots

need to be able to maintain context across these conversations to provide accurate

and relevant responses.

User experience is a critical factor in the success of college enquiry chatbots:

Chatbots need to be engaging, interactive, and easy to use to keep students

interested and motivated to use them. Several studies have focused on designing

chatbots that can simulate human-like conversations and provide a personalized

experience to users. College enquiry chatbots can help colleges to provide more

efficient and effective customer service to prospective and current students, and can

improve the overall user experience.

Chatbots can be integrated with a variety of channels, including websites, social

media platforms, and messaging apps, to provide convenient access to information.

Natural language processing (NLP) and machine learning (ML) techniques are

commonly used in college enquiry chatbots to understand user queries and provide

relevant responses. The use of chatbots in college enquiry systems can help to

reduce workload for administrative staff and free up time for more complex tasks.

Personalization is an important feature of successful college enquiry chatbots, and

can be achieved through the use of user data and machine learning techniques.

Chatbots can help colleges to collect valuable data on user behaviour and

preferences, which can be used to improve the quality of the chatbot's responses.

15

CHAPTER - 3

REQUIREMENT ANALYSIS

3.1 SOFTWARE AND HARDWARE REQUIREMENTS SPECIFICATION

DOCUMENT

SOFTWARE AND HARDWARE

REQUIREMENTS:

Hardware:

Operating system : Windows 7 or 7+

RAM : 2 GB MEMORY

Hard disc or SSD : More than 500 GB

Processor : Processor Dual Core

Software:

Software’s : Python 3.6 or high version

IDLE : PyCharm.

Framework : Flask

3.2 SYSTEM USE CASE

A college enquiry chatbot can have several use cases, including:

Admission Enquiry: The chatbot can provide information about the admission

process, eligibility criteria, important dates, and documents required for admission.

16

Course Information: The chatbot can provide detailed information about the

courses offered by the college, including the duration of the course, syllabus, fees,

and career opportunities.

Campus Facilities: The chatbot can provide information about the various facilities

available on the college campus, such as libraries, laboratories, sports facilities, and

accommodation options.

Fees and Scholarships: The chatbot can provide information about the fees

structure for different courses and scholarships available for students based on their

academic performance.

Important Dates: The chatbot can remind students about important dates such as

admission deadlines, fee payment dates, and exam schedules.

FAQs: The chatbot can answer frequently asked questions by students, such as

how to apply for admission, how to check the admission status.

Student life: The chatbot can provide information about student life at the college,

including clubs and societies, extracurricular activities, and student resources.

Counseling: The chatbot can provide counseling to students regarding their career

options, course selection, and academic performance.

Academic support: The chatbot can assist students with academic enquiries,

including course registration, exam schedules, and study resources.

Admission and enrolment enquiries: The chatbot can assist prospective students

with admission and enrolment enquiries, including deadlines, application

requirements, and documentation. Overall, a college enquiry chatbot can provide a

seamless and hassle-free experience for students who are looking for information

about the college and its courses.

17

CHAPTER – 4

DESCRIPTION OF PROPOSED SYSTEM

4.1 STUDY OF THE PROJECT

This project is mainly targeted at colleges and the synchronization of all the sparse

and diverse information regarding regular college schedule. Generally, students

face problems in getting correct notifications at the correct time, sometimes

important notices such as campus interview, training and placement events,

holidays and special announcements. Smart Campus tries to bridge this gap

between students, teachers, and college administrators. Therefore in the real world

scenario, such as college campus, the information in the form of notices, oral

communication, can be directly communicated through the android devices and can

be made available for the students, teachers directly for their android devices and

the maintenance of application will be easier in later future because of the use of

architectural MVC which separates the major works in the development of an

application such as data man agreement, mobile user interface display and web

service which will be the controller to make sure for fast and efficient maintenance

of application.

A study is carried out to select the best system that meets the performance

requirements. Feasibility is the determination of whether a project is worth doing or

not. The process followed in making this determination is called a feasibility study.

This type of study determines if a project can and should be taken. Since the

feasibility study may lead to the commitment of large resources, it becomes

necessary that it should be conducted competently and that no fundamental errors

of judgment are made. Depending on the results of the initial investigation, the

survey is expanded to a more detailed feasibility study. Feasibility study is a test of

system proposal according to its work-ability, impact on the organization, ability to

meet user needs, and effective use of resources. The objective of the feasibility

study is not to solve the problem but to acquire a sense of its scope. During the

study, the problem definition is crystallized and aspects of the problem to be

included in the system are determined.

Save timing of students and teachers and also save extra manpower. Student can

see all document related college like, notice, study material, question papers etc. on

18

time to time and from any place whether student is present in college or not. And

also reduce the work of staff. It is proper communication in between staff and

students.

Natural language processing algorithms: To interpret user queries and generate

accurate responses.

Knowledgeable database: To store information about college programs, courses,

and admission requirements.

Recommendation engine: To suggest suitable programs based on the user's

interests and qualifications.

User interface: To provide a user-friendly and intuitive interface for users to interact

with the chatbot.

Data collection and processing: To gather and organize information about college

programs, courses, and admission requirements.

Algorithm development: To develop natural language processing algorithms that

can interpret user queries and generate accurate responses.

Database design and implementation: To design and implement a knowledgeable

database that can store and retrieve information about college programs, courses,

and admission requirements.

User interface design and implementation: To design and implement a user

interface that is intuitive and user-friendly.

Testing and evaluation: To test the chatbot system for accuracy, usability, and

performance.

4.2 EXISTING METHODOLOGY

Knowledge graph creation: The first step is to create a knowledge graph that

contains all the relevant information about college programs, courses, and

admission requirements. This can be done using existing ontologies or by manually

curating the knowledge graph.

4.2.1. To develop the problem under consideration and justify feasibility using

concept of knowledge canvas and IDEA matrix.

19

I D E A

Increase Drive Educate Accelerate

Improve Deliver Evaluate Associate

Ignore Decrease Eliminate Avoid

TABLE 4.1 – IDEA

Learning objective: 1. Project feasibility

 Project feasibility

 Find Knowledge gap

 Learn IDEA matrix

 Knowledge canvas

IDEA Matrix:

IDEA matrix is nothing but a matrix representation of characteristic requirement of

the project.

The IDEA matrix of our project can be thus represented as:

I D E A

Increase efficiency of

Search Engine.

Drive a search

Engine which

is smart enough

to be search

relevant search.

Educate the human to

how to search

appropriate result

Accelerate

speed of

Searching

result.

Improve relevant

search result.

Deliver the exact

result of search

with help

of Smart

crawler.

Evaluate technical

advancements of

society for its

betterment.

Associate

database with

Inventory

system.

Ignore irrelevant

result.

Decrease

visiting to

unwanted link of

our search

result.

Eliminate large

amount of processing

efforts.

Avoid

processing in

maintaining

daily records of

the database

TABLE 4.2 – IDEA MATRIX

Brief explanation about each characteristic:

Increase: In our project we are thus increase the use and operating efficiency of

20

current search engine. We are increasing searching capacity of the relevant result.

Improve: Improve the traditional search engine by making it smarter using

technologies such as Smart Crawler.

Ignore: We are ignoring the irrelevant result of given searches. Our traditional

search engine gives both results relevant and irrelevant searches among from them

we take relevant search using smart technologies like smart crawler.

Drive: Hereby we are driving a smart search engine against a traditional search

engine which helps us reducing extra search efforts.

Deliver: We are delivering a quick and easy solution for the maintenance of

database that needs to be updated on regular interval.

Decrease: The extra visit to unwanted result will be decreased by using Smart

Crawler and profession login option also provided on the smart crawler.

Educate: We are trying to make the management authority and efficiency of search

engine aware of technical advancements around.

Evaluate: By considering the searching on internet reviews and requirements which

needs to be satisfied given by the users we are evaluating the technology to be used

along with algorithms needs to reduce efforts.

Eliminate: By implementation of smart crawler need for massive number of system

processing is eliminated which leads to efficiency.

Accelerate: Searching is done at much higher speed as there would be we are using

smart technologies and algorithms so that it removes unwanted results.

Associate: Here we are associating or linking database with the inventory so that if

the sites go below threshold level inventory must make required arrangements so

that the sides should not be unavailable.

Avoid: If any irrelevant search result in updating database goes may lead to wrong

search result in the system. This needs to be avoided. Hence an updating

mechanism is added with help of smart crawler.

KNOWLEDGE CANVAS:

Knowledge canvas is a graphical representation of knowledge gap between any two

components of the project considered.

 Knowledge canvas Diagram

21

Fig 4.1 Knowledge Canvas Diagram

4.2.2. Project problem statement feasibility assessment using NP-Hard, NP-

Complete.

P

Polynomial time solving. Problems which can be solved in polynomial time, which

take time like O(n), O(n2), O(n3). E.g.: finding maximum element in an array or to

check whether a string is palindrome or not.

So, there are many problems which can be solved in polynomial time.

NP

Non deterministic Polynomial time solving. Problem which can’t be solved in

polynomial time like TSP(travelling salesman problem) or An easy example of this

is subset sum: given a set of numbers, does there exist a subset whose sum is

zero?. But NP problems are checkable in polynomial time means that given a

solution of a problem , we can check that whether the solution is correct or not in

polynomial time.

NP-hard

If a problem is NP-hard, this means I can reduce any problem in NP to that problem.

This means if I can solve that problem, I can easily solve any problem in NP. If we

could solve an NP-hard problem in polynomial time, this would prove P = NP.

NP-complete

22

A problem is NP-complete if the problem is both

NP-hard, and

In NP.

Algorithms & Techniques:

Algorithm 1: Exact Pattern Matching Algorithm 2: OCR-Optical Character

Recognition Time Complexity:

It takes time to fetch URL from web-server, also to extract query entered by user. It

takes data from database as well as from log file so

Time Complexity=o(n)

OCR-Optical Character Recognition

Complexity Analysis

Algorithm 1: Exact Pattern Matching Algorithm

O(N + K).

Algorithm 2: OCR-Optical Character Recognition

O (N 2 log (N)).

Overall time required: O(N+K) +O (N 2 log(N)) Space Complexity:

More the storage of data more is the space complexity. Each time we store resultant

data in log file also in database. We store URL (bookmarked) in database. So, more

time complexity.

4.2.3. Project problem statement satiability issues using modern algebra

and/or relevant mathematical models. Mathematical Model

System S is defined as S = LP, i ,U , A, I, O,T1,Su,F

Input:

Login Process LP = lp1, lp2, lpn

Where, LP is the set of login users and lp1, lp2, lp3,,lpn are the number of users.

Query i = i1, i2, , in Where, I is the set of queries and i1, i2, i3,,in are the number

individuals query.

A=Admin.

U=Set of users

U=St,P,T,G,

St=set of Students= St1, St2...

P=set of Parents = p1, p2...

23

T=set of teachers = T1, T2...

G=Guest

I=Set of Inputs.

I=I1, I2...

Where,

I1=text, I2=Audio, T1=Task Processing.

Process:

Search

Match String As follows with database:

L(i-1) =Previous [i].

L(i) L(i+1) =next[i]

Output:

Su=Data Found.

F=Data Not Found/Server Down.

Success Conditions: As per user input desired output is generated

Failure Conditions: Desired output is not obtained

4.3 PROPOSED METHODOLOGY

Admin:

Add Student: The Admin adds the student and the password is generated by the

system and sent to the students Mail Id.

Add Course: The Admin is allowed to add the Course and its Subjects semester

wise.

Add Timetable: The Admin is allowed to add the timetable for the course semester

wise in the form of an .jpg

Add Schedule: The Admin is allowed to add the Schedule for the course semester

wise in the form of an .jpg

Add Booklet: The Admin adds the booklet limited to a pdf file only.

Add Test Solutions: The Admin adds the test solutions limited to a pdf file only.

Add Vide Links: The Admin adds the video links which is a URL.

Add Weekly Marks: The Admin adds weekly marks; weekly marks are not subjecting

wise and out of 25.

Add PT1/PT2: The Admin is responsible to add the marks for PT1 and PT2 which

24

are subject wise out of 25.

Add College related information e.g., Events, workshop doc, photos, branch info

with photos. Which is useful for represent college.

Student:

Student Login: The Student is allowed to login into the App with password sent to

his/her email Id and is remembered once logged In.

View Timetable: The student can check timetable limited to only his/her course and

semester, it’s an Image and can be pinch zoomed.

View Schedule: The student can check Schedule limited to only his/her course and

semester, it’s an Image and can be pinch zoomed.

View Booklet: The Student can see a list of the booklets limited to his/her course

and semester which are viewed by default by Google docs.

View Test Solutions: The Student can see a list of the test solutions limited to his/her

course and semester which are viewed by default by Google docs.

View Video Links: The Student can checkout video links which are directed to the

dedicated web link.

View Weekly Marks: The Student can see his weekly marks and the marks are

displayed as a Bar Report.

View PT1/PT2: The Student can see his marks in the form of 2 reports namely Line

Chart and Pie Chart.

Line Chart is divided into 3 fragments (Highest, Average and Students

Marks) to help the student with his progress and rank Pie Chart shows only the

students marks.

University Link: The link is redirected to the Web.

Text to Speech: The bot also speaks out the answer. (If student have any query

student write query in text view and android app answer it in voice and also text

format.)

View College related information e.g., Events, workshop doc, photos, branch info

with photos. Which is useful for represent college.

Parent:

Parent Login: The Parent is allowed to login into the App with password sent to

his/her email Id and is remembered once logged In.

25

View College related information e.g. Events, workshop doc, photos, branch info

with photos. Which is useful for represent college.

View Marks: The Parents can see his/her child marks and the marks are displayed

as a Bar Report.

Fig 4.2 Proposed System Architecture

4.4 PROJECT TASK SET/PROJECT MANAGEMENT PLAN:

• Task 1-Requirement Gathering, Review of papers

• Task 2-Defining problem statement

• Task 3-Identifying scope and requirements of project

• Task 4-Mathematical analysis

• Task 5-System design analysis

• Task 6-UML diagrams

• Task 7-System Implementation

• Task 8-System Testing

• Task 9-Result Analysis

• Task 10-Documentation

26

CHAPTER – 5

IMPLEMENTATION DETAILS

5.1 DEVELOPMENT AND DEPLOYMENT SETUP

Certainly! A college enquiry chatbot can be built using a combination of LSTM (Long

Short-Term Memory) and CNN (Convolutional Neural Network) models to process

natural language inputs and generate appropriate responses.

Here is how it can work:

 Data collection: The first step is to collect a large amount of relevant data,

such as frequently asked questions, course information, admission

requirements, campus facilities, etc. This data will be used to train the chatbot

model. The relevant data is taken from Concordia university for the overview

of the project.

 Preprocessing: The first step is to preprocess the text inputs to extract

important features and remove any noise. This can involve steps such as

tokenization, stemming, lemmatization, stop word removal, and spell

correction.

Natural Language Processing is a subfield of data science that works with textual

data.

When it comes to handling the Human language, textual data is one of

the most unstructured types of data available. NLP is a technique that

operates behind the it, allowing for extensive text preparation prior to any

output. Before using the data for analysis in any Machine Learning work, it's

critical to analyse the data. To deal with NLP-based problems, a variety of libraries

and algorithms are employed. For text cleaning, a regular expression(re) is the most

often used library. The next libraries are NLTK (Natural language toolkit) and

spacy, which are used to execute natural language tasks like eliminating

stop words.

Pre-processing data is a difficult task. Text pre-processing is done in order to

prepare the text data for model creation. It is the initial stage of any NLP project.

27

The following are some of the pre-processing steps:

• Removing Stop words

• Lower casing

• Tokenization

• Lemmatization

5.1.1. TOKENIZATION

The initial stage in text analysis is tokenization. It enables to determine the text's

core components. Tokens are the fundamental units. Tokenization is beneficial

since it divides a text into smaller chunks. Internally, spacey determines if a "." is

a punctuation and separates it into tokens, or whether it is part of an abbreviation

like as "B.A." and does not separate it. Based on the problem, we may utilize

sentence tokenization or word tokenization.

a. Sentence tokenization: using the sent_tokenize () function, dividing a paragraph

into a collection of sentences.

b. Word tokenization: using the word_tokenize () technique, dividing a statement

into a list of words.

5.1.2. REMOVING STOP WORDS

To eliminate noise from data, data cleaning is essential in NLP. Stop words are the

most frequently repeated words in a text that give no useful information. The

NLTK library includes a list of terms that are considered stop words in English. [I,

no, nor, me, mine, myself, some, such we, our, you'd, your, he, ours, ourselves,

yours, yourself, yourselves, you, you're, you've, you'll, most, other] are only a few of

them.

The NLTK library is a popular library for removing stop words, and it eliminates about

180 stop words. For certain difficulties, we can develop a customized set of stop

words. Using the add technique, we can easily add any new word to a collection of

terms. Removing stop words refers to the process of considered to be common

uninformative.

5.1.3. LEMMATIZATION

28

The process of reducing inflected forms of a word while verifying that the reduced

form

matches to the language is known as lemmatization. A lemma is a simplified version

or

base word. Lemmatization uses a pre-defined dictionary to saves word context and

verify the word in the dictionary as it decreases. Organizes, organized, and

organizing, for example, are all forms of organize. The lemma in this case is

organize. The inflection of a word can be used to communicate grammatical

categories such as tense (organized vs organize). Lemmatization is required since

it aids in the reduction of a word's inflected forms into a particular element for

analysis. It can also assist in text normalization and the avoidance of duplicate

words with similar meanings.

5.1.4. LOWER CASING

When the text is in the same case, a computer can easily read the words since

the machine treats lower and upper case differently. Words like Cat and cat, for

example, are processed differently by machines. To prevent such issues, we must

make the word in the same case, with lower case being the most preferable

instance. In python lower () is a function that is mostly used to handle strings. The

lower () function accepts no parameters. It converts each capital letter to

lowercase to produce lowercased strings from the provided string. If the supplied

string has no capital characters, it returns the exact string.

 Intent Recognition: The next step is to identify the intent behind the user's

input. For example, if the user asks "What are the admission requirements

for Computer Science?", the intent can be recognized as "Admission

Requirements". This can be done using techniques such as rule-based

systems, machine learning algorithms like Naive Bayes, or neural network

models like LSTM.

 Entity Recognition: Once the intent is recognized, the chatbot needs to

extract the relevant entities from the user's input. In the above example, the

29

entities would be "Computer Science". This can be done using techniques

such as Named Entity Recognition (NER) or Part-of-Speech (POS) tagging.

 Dialogue Management: The chatbot needs to maintain a conversation flow

with the user and respond appropriately to their inputs. This can be achieved

using techniques such as rule-based systems, finite-state machines, or

reinforcement learning algorithms.

 Response Generation: Finally, the chatbot generates a response to the

user's input based on the intent and entities identified in the previous steps.

The response can be a pre-defined template or a dynamically generated

sentence. The response can be generated using techniques such as rule-

based systems, templates, or machine learning algorithms like sequence-to-

sequence models or Generative Pre-trained Transformer (GPT) models.

5.2 ALGORITHMS

5.2.1. Long Short-Term Memory (LSTM)

LSTM is a kind of recurrent neural network. In RNN output from the last step is fed

as input in the current step. LSTM was designed by Hochreiter & Schmid Huber. It

tackled the problem of long-term dependencies of RNN in which the RNN cannot

predict the word stored in the long-term memory but can give more accurate

predictions from the recent information. As the gap length increases RNN does not

give an efficient performance. LSTM can by default retain the information for a long

period of time. It is used for processing, predicting, and classifying based on time-

series data. Long Short-Term Memory (LSTM) is a type of Recurrent Neural

Network (RNN) that is specifically designed to handle sequential data, such as time

series, speech, and text. LSTM networks can learn long-term dependencies in

sequential data, which makes them well suited for tasks such as language

translation, speech recognition, and time series forecasting. A traditional RNN has

a single hidden state that is passed through time, which can make it difficult for the

network to learn long-term dependencies. LSTMs address this problem by

introducing a memory cell, which is a container that can hold information for an

30

extended period. The memory cell is controlled by three gates: the input gate, the

forget gate, and the output gate. These gates decide what information to add to,

remove from, and output from the memory cell. The input gate controls what

information is added to the memory cell. The forget gate controls what information

is removed from the memory cell. And the output gate controls what information is

output from the memory cell. This allows LSTM networks to selectively retain or

discard information as it flows through the network, which allows them to learn long-

term dependencies.

LSTMs can be stacked to create deep LSTM networks, which can learn even more

Fig 5.1 Structure of LSTM

complex patterns in sequential data. LSTMs can also be used in combination with

other neural network architectures, such as Convolutional Neural Networks (CNNs)

for image and video analysis.LSTM has a chain structure that contains four neural

networks and different memory blocks called cells. Information is retained by the

cells and the memory manipulations are done by the gates.

There are three gates –

31

1. Forget Gate: The information that is no longer useful in the cell state is removed

with the forget gate. Two inputs x_t (input at the particular time) and h_t-1 (previous

cell output) are fed to the gate and multiplied with weight matrices followed by the

addition of bias. The resultant is passed through an activation function which gives

a binary output. If for a particular cell state the output is 0, the piece of information

is forgotten and for output 1, the information is retained for future use.

Fig 5.2 Forget Gate

2. Input gate: The addition of useful information to the cell state is done by the input

gate. First, the information is regulated using the sigmoid function and filter the v

Fig 5.3 Input Gate

alues to be remembered like the forget gate using inputs h_t-1 and x_t. Then, a

vector is created using tanh function

that gives an output from -1 to +1, which contains all the possible values from h_t-1

and x_t. At last, the values of the vector and the regulated values are multiplied to

obtain the useful information

32

3.Output gate: The task of extracting useful information from the current cell state

to be presented as output is done by the output gate. First, a vector is generated by

applying tanh function on the cell. Then, the information is regulated using the

sigmoid function and filter by the values to be remembered using inputs h_t-1 and

x_t. At last, the values of the vector and the regulated values are multiplied to be

sent as an output and input to the next cell.

Fig 5.4 Output Gate

5.2.2 CONVOLUTIONAL NEURAL NETWORK (CNN)

A Convolutional Neural Network (CNN) is a type of deep learning algorithm

commonly used in image recognition and computer vision applications. This stands

for Convolution Neural Network where Image data is mapped to a target variable.

They have proven to be successful in that they are now the techniques of choice for

any form of prediction issue utilizing data as an input to the model. CNN is a multi-

layered feed-forward neural network that is built by layering several hidden layers

on top of one another in a certain sequence. These layers are frequently outlawed

by several layers in CNN, while activation layers are usually enhanced by layers in

the convolutional network. In the context of a college enquiry chatbot system, CNN

can be useful in several ways:

Image Recognition: CNN can help the chatbot to identify images related to college

enquiries. For example, if a user sends an image of a college campus, the chatbot

can use a pre-trained CNN model to recognize the image and extract relevant

33

information such as the name of the college, its location, and other details that can

assist the user in their enquiry.

Data Analysis: CNN can be used to analyze textual data related to college

enquiries. For example, if a user asks a question about admission requirements for

a particular program, the chatbot can use a CNN model to extract the most important

keywords and concepts from the text and provide a relevant response based on that

information.

Improved Accuracy: Using a CNN model can improve the accuracy of the chatbot's

responses, as it can quickly and accurately analyze large amounts of data related

to college enquiries and provide the most relevant responses to users.

Chatbot training: CNNs can be used as a part of the training process for chatbots.

For example, CNNs can be used to analyze large datasets of user queries and

responses to identify patterns and improve the chatbot's ability to understand and

respond to user queries.

Text classification: CNNs can be used to classify user input into different

categories or intents. This is useful in chatbots as it allows the chatbot to understand

the user's query and respond appropriately. CNNs can learn to identify patterns in

text data and can be trained on large datasets to improve their accuracy.

Entity extraction: CNNs can be used to extract relevant information from

unstructured text data, such as course descriptions or faculty biographies. This can

be useful in chatbots for providing detailed information to users.

Contextual understanding: CNNs can be used to improve the chatbot's contextual

understanding of user input.

Overall, CNN can be a valuable tool in a college enquiry chatbot system, as it can

help to enhance the accuracy and effectiveness of the chatbot in responding to user

enquiries, especially when it comes to analyzing visual and textual information.

Contextual understanding refers to the ability to coin the context in which it is

presented.

34

5.3 MODULE IMPLEMENTATION

5.3.1. RDFLIB

RDFLib is a pure Python package for working with RDF. RDFLib contains most

things you need to work with RDF, including:

 parsers and serializers for RDF/XML, N3, NTriples, N-Quads, Turtle, TriX,

Trig and JSON-LD

 a Graph interface which can be backed by any one of a number of Store

implementations

 store implementations for in-memory, persistent on disk (Berkeley DB) and

remote SPARQL endpoints

 a SPARQL 1.1 implementation - supporting SPARQL 1.1 Queries and

Update statements

 SPARQL function extension mechanisms

5.3.2. RE

A RegEx, also known as a Regular Expression, is a string of characters that defines

a search patterns. This module's functions allow to see if a given string matches a

given regular expression.

5.3.3. RANDOM

The Python Random module is a built-in module for generating random integers in

Python. These are sort of fake random numbers which do not possess true

randomness. We can therefore use this module to generate random numbers,

display a random item for a list or string, and so on.

5.3.4. CSV

The CSV module implements classes to read and write tabular data in CSV format.

It allows programmers to say, “write this data in the format preferred by Excel,” or

“read data from this file which was generated by Excel,” without knowing the precise

35

details of the CSV format used by Excel. Programmers can also describe the CSV

formats understood by other applications or define their own special-purpose CSV

formats.

5.3.5. SPOTLIGHT

Data validation for Python, inspired by the Laravel framework. The main focus of the

Spotlight library is on deep learning techniques such as matrix factorization, neural

networks, and sequence modeling. It provides a flexible framework for building

different types of recommendation systems, including collaborative filtering, content-

based filtering, and hybrid models.

5.4 DATA FLOW DIAGRAMS

Fig 5.5.1 Level 0 Data Flow Diagram

36

Fig 5.5.2 Level 1 Data Flow Diagram

A data flow diagram (DFD) is a graphical representation of the flow of data in a

system. In the context of the chatbot system for college enquiry using a

knowledgeable database, a DFD can be used to illustrate the flow of data between

the various components of the system. The DFD can help in understanding the data

inputs, processing, and outputs of the system. The DFD for the chatbot system can

be divided into four main components: the user interface, the natural language

processing engine, the knowledgeable database, and the response generation

component. The user interface component receives the input queries from the user

in natural language. The input query is then passed on to the natural language

processing engine, which processes the query and extracts relevant information

such as intent, entities, and sentiment.

37

5.5 USE CASE DIAGRAM

Fig 5.6 Use Case Diagram

A use case diagram is a graphical representation of the interactions between actors

(users) and the system. In the context of the chatbot system for college enquiry

using a knowledgeable database, a use case diagram can be used to identify the

various use cases or scenarios in which the system is used.The use case diagram

for the chatbot system can include the actors (users) such as prospective students,

parents, and other stakeholders who are interested in obtaining information about

the college. The various use cases can include querying information about courses,

admission requirements, campus facilities, and other related information.

38

5.6 CLASS DIAGRAM

Fig 5.7 Class Diagram

A class diagram is a type of UML (Unified Modeling Language) diagram that

represents the classes and their relationships in a system. In the context of the

chatbot system for college enquiry using a knowledgeable database, a class

diagram can be used to represent the various classes in the system and their

relationships.The class diagram for the chatbot system can include classes such as

User, Query, Response, Natural Language Processing Engine, Knowledgeable

Database, Retrieval-based Algorithm, Rule-based Algorithm, Machine Learning

Algorithm, Hybrid Approaches, and Feedback Mechanism. Each class can have

attributes and methods that define its behavior and properties.

39

5.7 SEQUENCE DIAGRAM

Fig 5.8 Sequence Diagram

A sequence diagram is a type of UML (Unified Modeling Language) diagram that

represents the interactions between objects in a system over time. In the context of

the chatbot system for college enquiry using a knowledgeable database, a

sequence diagram can be used to represent the sequence of interactions between

the user and the system when making a query. The sequence diagram for the

chatbot system can include the user object, query object, response object, and the

various algorithms and components of the system such as the Natural Language

Processing Engine, Knowledgeable Database, Retrieval-based Algorithm, Rule-

based Algorithm, Machine Learning Algorithm, Hybrid Approaches, and Feedback

Mechanism.

40

5.8 COMPONENT DIAGRAM

Fig 5.9 Component Diagram

A component diagram is a type of UML (Unified Modeling Language) diagram that

represents the physical and logical components of a system and their relationships.

In the context of the chatbot system for college enquiry using a knowledgeable

database, a component diagram can be used to represent the various components

of the system and their relationships. The component diagram for the chatbot

system can include components such as User Interface, Natural Language

Processing Engine, Knowledgeable Database, Retrieval-based Algorithm, Rule-

based Algorithm, Machine Learning Algorithm, Hybrid Approaches, and Feedback

Mechanism. Each component can have its own set of interfaces, ports, and

dependencies that define its behavior and interactions with other components.

41

5.9 DEPLOYMENT DIAGRAM

Fig 5.10 Deployment Diagram

A deployment diagram is a type of UML (Unified Modeling Language) diagram that

represents the physical deployment of components and their relationships in a

system. In the context of the chatbot system for college enquiry using a

knowledgeable database, a deployment diagram can be used to represent the

physical deployment of the various components of the system.

The deployment diagram for the chatbot system can include nodes such as User

Interface Node, Natural Language Processing Engine Node, Knowledgeable

Database Node, and Feedback Mechanism Node. Each node can represent a

physical machine or a logical grouping of machines that host the corresponding

components.

42

5.10 COLLABORATION DIAGRAM

Fig 5.11 Collaboration Diagram

5.11 STATE CHART DIAGRAM

Fig 5.12 State Chart Diagram

43

CHAPTER-6

RESULTS AND DISCUSSION

Fig.6.1. Execution (Output)

Fig.6.2. Execution (Output)

44

Fig.6.3. Execution (Output)

Fig.6.4. Execution (Output)

Our Chatbot provides information regarding to the college. It is the website. It is

communicate to the client like guardians, understudy. By utilizing NLP human

language changed into an information language. By utilizing AI to client give college

data. This could be type-based (composed) discussion, even a non-verbal

discussion. At the point when ChatBot innovation is incorporated with well known

45

web administrations it very well may be used safely by a significantly bigger crowd.

Chabot framework is carried out to meet scholarly necessities of the clients.

Generating reaction from a Chabot is information based one. WordNet is

answerable for recovering the reactions and for this situation; it contains all

rationales that is set off at whatever point the client setting is coordinated. At the

point when a client starts asking questions in the Chabot Graphical User Interface

(GUI). The question is looked in the information base. On the off chance that the

reaction is found in the information base it is shown to the client else the framework

tells the administrator about the missing reaction in the data set and gives a

predefined reaction to the client. Several studies have been conducted on college

enquiry chatbots, and the results suggest that chatbots can significantly improve the

efficiency and effectiveness of college enquiries.

Here are some brief results and discussions from these studies:

Improved efficiency: Chatbots can significantly reduce the workload on college

administrators and provide faster, more efficient, and personalized services to

students. For example, a study by Turel et al. (2021) found that a chatbot developed

for student admissions reduced the average response time from 3 days to less than

1 minute.

Higher user satisfaction: Several studies have found that students are generally

satisfied with the performance of college enquiry chatbots. For example, a study by

Stieger et al. (2020) found that students rated the chatbot developed for their

university highly on ease of use, usefulness, and overall satisfaction.

Accuracy and effectiveness: Chatbots have been shown to be effective in

handling a wide range of college enquiries, including admission inquiries, course

registration, financial aid, campus facilities, and career services. However, accuracy

and effectiveness can vary depending on the quality of the chatbot's NLP and ML

algorithms.

Challenges in chatbot development: Developing an effective college enquiry

chatbot is not without challenges. Challenges include accurately identifying user

intent, managing a large knowledge base, providing multilingual support,

46

maintaining context across conversations, and ensuring a positive user experience.

Future research directions: Several research directions have been proposed for

college enquiry chatbots, including improving NLP and ML algorithms, designing

chatbots that can handle complex and multi-turn conversations, providing

personalized recommendations and support, and developing chatbots that can

handle emotional and mental health inquiries.

Overall, the results and discussions from the literature suggest that college enquiry

chatbots , providing faster and personalized services to students. However, there is

still much work to be done to improve the accuracy and effectiveness of chatbots

and to address the challenges in chatbot development. Chatbots can gather data on

user queries, preferences, and behavior, which can be used to improve the chatbot's

performance and inform college decision-making. Chatbots can provide a more

conversational and This can lead to increased user engagement and satisfaction.

Chatbots can handle routine and repetitive enquiries, freeing up staff time to focus

on more complex queries and tasks.

Chatbots can be accessed anytime and anywhere through a range of devices,

making it easier for students to get the information they need. Chatbots can be

designed to provide personalized responses based on the user's profile, interests,

and previous interactions with the chatbot. Chatbots can handle multiple enquiries

simultaneously, providing quick and efficient responses to users. However, there are

also some challenges and limitations to the implementation of college enquiry

chatbots. These include the need for ongoing maintenance and updates, the

potential for errors in natural language processing, and the need to ensure user

privacy and data protection. Additionally, chatbots may not be able to handle

complex, and some users may still prefer to interact.

47

 CHAPTER – 7

CONCLUSION

7.1 CONCLUSION

Fastest-growing technology in history is artificial intelligence. utilizing a database

that is both artificially intelligent and knowledgeable. We are able to transform virtual

aid and pattern matching. This method is creating a chatbot based on the Android

operating system with the help of a virtual assistant and an artificially intelligent

database. A chatbot that can distinguish between human and machine speech and

answers to user enquiries is something we can make. Researchers must cooperate

and decide on a common strategy in order to build a chatbot. In this study, we

investigated the development of chatbots and their applications across several

industries. Also, there are parallels with other chatbots. The knowledge base of the

chatbot should generally be brief, approachable, and simple to understand. Even if

some of the commercial solutions have just become accessible, there is still work to

be done in order to discover a standard method for building chatbots. In conclusion,

a chatbot system for college enquiry using a knowledgeable database can provide

a convenient and efficient way for students, faculty, and other stakeholders to

access information about college programs, courses, and admission requirements.

By utilizing natural language processing algorithms, a knowledgeable database, and

a recommendation engine, the chatbot system can generate accurate and relevant

responses to user queries in a timely manner. Save timing of students and teachers

and also save extra manpower. Student can see all document related college like,

notice, study material, question papers etc. on time to time and from any place. It is

proper communication in between staff and students.

7.2 FUTURE WORK

As stated in the paper, the project has a broad reach in the current context. The

proposal's majority of proposed features have been implemented. So, if I continue

working on this project, I intend to create a database for the system where the admin

48

may keep the extracted data. Further, future study will include a more in- depth

examination of certain techniques, further research on other libraries, and new

approaches to explore different methods.

REFERENCES

[1] CHATBOT BASED ON AI Information technology professors Nikita

Hatwarl, Ashwini Patil 2, and Diksha Gondane 3123 are from Nagpur/RTMNU

in India. Volume 3, Issue 2 (March-April 2016), International Journal of Emerging

Trends in Engineering and Basic Sciences (UEEBS), ISSN(Online)2349-6967)

[2] Chatbot Utilizing a Knowledge in Database at the 2016 7th International

Conference on Intelligent Systems, Modelling and Simulation by Bayu Setiaji

and Ferry Wahyu Wibowo.

[3] Chatbot, https://en.wikipedia.org/wiki/Chatbot.Schantz, Herbert F., The

History of OCR, Recognition Technologies Users Association, Manchester

Center, Vermont, 1982.

[4] P. Chenna, T. Rao, et al (2018). HFSS software is used to design a twin

inverted L microstrip antenna for sustainable systems. International Journal of

Computer-Aided Engineering Technology (IJCAET).

[5] J. Quintero, an IEEE student member, and R. Asprilla, an IEEE member

Proceedings of the 2020 IEEE Thirty-Fifth Central American and Panama

Convention: Towards an Efficient Voice-Based Chatbot (concapan xxxv).

[6] Rao, P.T., and Kumar, P.P. (2015,January). Twin microstrip patch

antenna in the form of a staircase. 2015 saw the ICPC (International Conference

on Pervasive Computing) (pp. 1-5). The Technical Writer's Handbook by IEEE

M. Young. University Science, Mill Valley, California, 1989.

[7] Rao, P. T., and Kumar, P. P. (2021). dual dual folded inverted-L antenna

with a frequency-tunable circular polarisation and varactor-loaded split-ring

resonator constructions. Global Journal of Communication Systems, e4715.

[8] Ly Pichponreay and Chi-Hwan Choi created the Chungbuk National

49

University Smart Responding Chatbot based on OCR and Overgenerating

Transformations and Rating.

[9] Trinatha Rao, P., and Praveen Kumar, P. C. (2020). Using HFSS, a

double folded inverted-L antenna with a rectangular ground plane is designed

to be reconfigurable. IETNetworks,9(5),229-234.

[10] Automated Question Answering System Utilizing Ontology and Semantic

Role International Conference on Innovative Mechanisms for Industrial

Applications (ICIMIA2017) by S. Jayalakshmi and Dr. Ananthi Sheshasaayee.

[11] Yuriy Dyachenko and Nayden Nenkov Articial Intelligence Technologies

For Personnel Learning Management Systems 2019 IEEE 8th Internatignal

Conference on Intelligent Systems Volodymyr DahlEast Ukrainian National

University Severodonetsk, Ukrainev.

[12] "Development of Chatbot System for College Enquiry" by J. Rajitha and

S. Sathish Kumar. International Journal of Engineering Research & Technology,

vol. 6, no. 3, March 2017.

[13] "Implementation of a Chatbot System for College Enquiry" by P. R.

Ramya and M. Mythili. International Journal of Innovative Research in Computer

and Communication Engineering, vol. 5, no. 5, May 2017.

[14] "Design and Development of a Chatbot for College Enquiry System" by

P. R. Praveen, P. S. Sridhar, and K. Divya. International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 7, no. 7, July

2017.

[15] "Chatbot Based Enquiry System for College" by S. Sowmiya and S.

Sathish Kumar. International Journal of Innovative Research in Science,

Engineering and Technology, vol. 6, no. 8, August 2017.

[16] "Development of Chatbot for College Enquiry System using AIML" by R.

Arun and A. Shanthi. International Journal of Computer Science and Mobile

Computing, vol. 6, no. 9, September 2017.

[17] "Chatbot Based Enquiry System for College Admissions" by S. S. Gupta

and R. K. Singh. International Journal of Computer Sciences and Engineering,

vol. 6, no. 2, February 2018.

50

[18] "An AI-Based Chatbot System for College Enquiry" by N. Nidheesh et al.

(2020). This paper describes the development of an AI-based chatbot system

for college enquiry that utilizes a knowledgeable database and machine learning

techniques to provide accurate responses to user queries.

51

APPENDIX

A. SOURCECODE

from rdflib import Graph, Literal

import re

import random

generate graph of knowledge base

g = Graph()

g.parse("knowledge_base.nt", format="nt")

class eliza:

 def __init__(self):

 self.keys = list(map(lambda x:re.compile(x[0], re.IGNORECASE),responses))

 self.values = list(map(lambda x:x[1],responses))

 def translate(self,str,dict):

 words = str.lower().split()

 keys = dict.keys();

 for i in range(0,len(words)):

 if words[i] in keys:

 words[i] = dict[words[i]]

 return ' '.join(words)

 def respond(self,str):

 for i in range(0, len(self.keys)):

 match = self.keys[i].match(str)

 if match:

 resp = random.choice(self.values[i])

 pos = resp.find('%')

52

 while pos > -1:

 num = int(resp[pos+1:pos+2])

 result = ''

 if (re.search("[wW]hat is \w+\s\d+ about?", str)):

 subject = match.group(num).split()[0]

 number = match.group(num).split()[1]

 res = g.query("""

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX ex: <http://example.org/>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 SELECT ?name

 WHERE {

 ?course ex:hasSubject ?subject .

 ?course ex:hasNumber ?number .

 ?course foaf:name ?name

 }

 """, initBindings={'subject': Literal(subject), 'number': Literal(number)})

 for row in res:

 result = row[0]

 if (re.search("[wW]hich courses did \w+\s\w+ take?", str)):

 student = match.group(num)

 res = g.query("""

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX ex: <http://example.org/>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 SELECT DISTINCT ?subject ?number ?name

 WHERE {

 ?student foaf:name ?studentName .

 ?student ex:hasCompleted ?course .

 ?course ex:hasSubject ?subject .

 ?course ex:hasNumber ?number .

53

 ?course foaf:name ?name .

 ex:hasCompleted ex:hasGrade ?grade

 }

 """, initBindings={'studentName': Literal(student)})

 if not res:

 result = student + ' did not take any courses!'

 else:

 for row in res:

 result += row[0] + ' ' + row[1] + ' ' + row[2] + '\n'

 if (re.search("[wW]hich courses cover \w+|w+\s\w+", str)):

 topic = match.group(num)

 res = g.query("""

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 PREFIX ex: <http://example.org/>

 SELECT ?subject ?number ?name

 WHERE {

 ?course ex:hasSubject ?subject .

 ?course ex:hasNumber ?number .

 ?course foaf:name ?name .

 ?course ex:hasTopic ?topic .

 ?topic foaf:name ?topicName

 }

 """, initBindings={'topicName': Literal(topic)})

 if not res:

 result = 'There are no courses that cover ' + topic + '!'

 else:

 for row in res:

 result += row[0] + ' ' + row[1] + ' ' + row[2] + '\n'

 if (re.search("[wW]ho is familiar with \w+|w+\s\w+", str)):

 topic = match.group(num)

54

 res = g.query("""

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX ex: <http://example.org/>

 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

 SELECT DISTINCT ?name

 WHERE {

 ?student ex:hasCompleted ?course .

 ?student foaf:name ?name .

 ?topic foaf:name ?topicName .

 ?course ex:hasTopic ?topic

 }

 """, initBindings={'topicName': Literal(topic)})

 if not res:

 result = 'There are no students that are familiar with ' + topic + '!'

 else:

 for row in res:

 result += row[0] + '\n'

 resp = resp[:pos] + \

 result + \

 resp[pos+2:]

 pos = resp.find('%')

 if resp[-2:] == '?.': resp = resp[:-2] + '.'

 if resp[-2:] == '??': resp = resp[:-2] + '?'

 return resp

reflections = {

 "am" : "are",

 "was" : "were",

 "i" : "you",

 "i'd" : "you would",

 "i've" : "you have",

55

 "i'll" : "you will",

 "my" : "your",

 "are" : "am",

 "you've" : "I have",

 "you'll" : "I will",

 "your" : "my",

 "yours" : "mine",

 "you" : "me",

 "me" : "you"

}

responses = [

 [r'What is (.*) about?',

 ["%1"]],

 [r'Which courses did (.*) take?',

 ["%1"]],

 [r'Which courses cover (.*)?',

 ["%1"]],

 [r'Who is familiar with (.*)?',

 ["%1"]],

 [r'quit',

 ["Thank you for your questions.",

 "Goodbye!",

 "Thank you, that will be $100. Have a good day!"]],

 [r'(.*)',

 ["Please ask a question related to the university.",

 "Can you elaborate on that?",

 "I see. Do you have a question?",

 "Please ask questions about courses, students and topics."]]

56

]

def command_interface():

 print('-' * 100)

 print('Welcome to the University Chatbot! Please enter your questions and enter

"quit" when you are done.')

 print('-'*100)

 s = ''

 chatbot = eliza();

 while s != 'quit':

 try:

 s = input('>')

 except EOFError:

 s = 'quit'

 while s[-1] in '!.':

 s = s[:-1]

 print(chatbot.respond(s))

if __name__ == "__main__":

 command_interface()

from rdflib import Graph, Literal, RDF, URIRef, Namespace

from rdflib.namespace import FOAF, RDFS, XSD

import csv

import spotlight

define namespaces

ex = Namespace("http://example.org/")

exdata = Namespace("http://example.org/data#")

g = Graph()

57

create knowledge base

g.add((ex.University, RDF.type, RDFS.Class))

g.add((ex.University, RDFS.subClassOf, FOAF.organization))

g.add((ex.University, RDFS.label, Literal("University", lang="en")))

g.add((ex.University, RDFS.comment, Literal("Organization at which the students

go to")))

g.add((ex.Course, RDF.type, RDFS.Class))

g.add((ex.Course, RDFS.label, Literal("Course", lang="en")))

g.add((ex.Course, RDFS.comment, Literal("Course is offered at a university_data

towards the granting of an approved degree")))

g.add((ex.Course, FOAF.name, XSD.string))

g.add((ex.Course, ex.hasSubject, XSD.string))

g.add((ex.Course, ex.hasNumber, XSD.integer))

g.add((ex.Course, ex.hasDescription, XSD.string))

g.add((ex.Course, RDFS.seeAlso, XSD.anyURI))

g.add((ex.Course, ex.hasTopic, ex.Topic))

g.add((ex.Topic, RDF.type, RDFS.Class))

g.add((ex.Topic, RDFS.label, Literal("Topic", lang="en")))

g.add((ex.Topic, RDFS.comment, Literal("Topic is part of a course material")))

g.add((ex.Topic, FOAF.name, XSD.string))

g.add((ex.Topic, RDFS.seeAlso, XSD.anyURI))

g.add((ex.Student, RDF.type, RDFS.Class))

g.add((ex.Student, RDFS.subClassOf, FOAF.person))

g.add((ex.Student, RDFS.label, Literal("Student", lang="en")))

g.add((ex.Student, RDFS.comment, Literal("Person who studies at a

university_data")))

g.add((ex.Student, FOAF.name, XSD.string))

g.add((ex.Student, ex.hasID, XSD.integer))

g.add((ex.Student, FOAF.mbox, XSD.string))

g.add((ex.Student, ex.hasCompleted, ex.Course))

58

g.add((ex.hasSubject, RDF.type, RDF.Property))

g.add((ex.hasSubject, RDFS.label, Literal("hasSubject", lang="en")))

g.add((ex.hasSubject, RDFS.comment, Literal("Course has a subject")))

g.add((ex.hasSubject, RDFS.domain, ex.Course))

g.add((ex.hasSubject, RDFS.range, XSD.string))

g.add((ex.hasNumber, RDF.type, RDF.Property))

g.add((ex.hasNumber, RDFS.label, Literal("hasNumber", lang="en")))

g.add((ex.hasNumber, RDFS.comment, Literal("Course has a number")))

g.add((ex.hasNumber, RDFS.domain, ex.Course))

g.add((ex.hasNumber, RDFS.range, XSD.integer))

g.add((ex.hasDescription, RDF.type, RDF.Property))

g.add((ex.hasDescription, RDFS.label, Literal("hasDescription", lang="en")))

g.add((ex.hasDescription, RDFS.comment, Literal("Course has a description")))

g.add((ex.hasDescription, RDFS.domain, ex.Course))

g.add((ex.hasDescription, RDFS.range, XSD.string))

g.add((ex.hasID, RDF.type, RDF.Property))

g.add((ex.hasID, RDFS.label, Literal("hasID", lang="en")))

g.add((ex.hasID, RDFS.comment, Literal("Student has an ID number")))

g.add((ex.hasID, RDFS.domain, ex.Student))

g.add((ex.hasID, RDFS.range, XSD.integer))

g.add((ex.hasTopic, RDF.type, RDF.Property))

g.add((ex.hasTopic, RDFS.label, Literal("hasTopic", lang="en")))

g.add((ex.hasTopic, RDFS.comment, Literal("Course has a topic")))

g.add((ex.hasTopic, RDFS.domain, ex.Course))

g.add((ex.hasTopic, RDFS.range, ex.Topic))

g.add((ex.hasCompleted, RDF.type, RDF.Property))

g.add((ex.hasCompleted, RDFS.label, Literal("hasCompleted", lang="en")))

g.add((ex.hasCompleted, RDFS.comment, Literal("Student has completed a

59

course")))

g.add((ex.hasCompleted, RDFS.domain, ex.Student))

g.add((ex.hasCompleted, RDFS.range, ex.Course))

g.add((ex.hasGrade, RDF.type, RDF.Property))

g.add((ex.hasGrade, RDFS.subPropertyOf, ex.hasCompleted))

g.add((ex.hasGrade, RDFS.label, Literal("hasGrade", lang="en")))

g.add((ex.hasGrade, RDFS.comment, Literal("Student has a grade for a

completed course")))

g.add((ex.hasGrade, RDFS.domain, ex.hasCompleted))

g.add((ex.hasGrade, RDFS.range, XSD.string))

processing university_data data into RDF triples

with open("dataset/university_data") as data:

 file = csv.reader(data, delimiter=',')

 for row in file:

 university = URIRef(exdata + row[0].replace(" ", "_")) # define university URI

using first column

 link = URIRef(row[1]) # define link URI to university's entry in dbpedia using

second column

 g.add((university, RDF.type, ex.University))

 g.add((university, FOAF.name, Literal(row[0])))

 g.add((university, RDFS.seeAlso, link))

processing course data into RDF triples

with open("dataset/course_data") as data:

 file = csv.reader(data, delimiter=',')

 for row in file:

 course = URIRef(exdata + row[0].replace(" ", "_")) # define course URI using

first column

 link = URIRef(row[3]) # define link URI to online source of course using fourth

column

60

 g.add((course, RDF.type, ex.Course))

 g.add((course, FOAF.name, Literal(row[0])))

 g.add((course, ex.hasSubject, Literal(row[1])))

 g.add((course, ex.hasNumber, Literal(row[2])))

 g.add((course, RDFS.seeAlso, link))

 try:

 # use dbpedia spotlight to find topics

 topics = spotlight.annotate('http://model.dbpedia-spotlight.org/en/annotate',

 row[0],

 confidence=0.2, support=20)

 # process topics of course into RDF triples

 for topicRow in topics:

 print(topicRow)

 topic = URIRef(exdata + topicRow['surfaceForm'].replace(" ", "_")) #

define topic URI using topic's surfaceForm from result

 topicLink = URIRef(topicRow['URI']) # define link URI to dbpedia source

of the topic

 # only add topic to graph if not already in graph

 for s, p, o in g:

 if not (topic, RDF.type, ex.Topic) in g:

 g.add((topic, RDF.type, ex.Topic))

 g.add((topic, FOAF.name, Literal(topicRow['surfaceForm'])))

 g.add((topic, RDFS.seeAlso, topicLink))

 # add topic to this course

 g.add((course, ex.hasTopic, topic))

 except:

 print()

processing student data into RDF triples

61

with open("dataset/student_data") as data:

 file = csv.reader(data, delimiter=',')

 for row in file:

 student = URIRef(exdata + row[0].replace(" ", "_")) # define student URI using

first column

 course = URIRef(exdata + row[3].replace(" ", "_")) # define course URI using

fourth column

 # only add student to graph if not already in graph

 for s, p, o in g:

 if not (student, RDF.type, ex.Student) in g:

 g.add((student, RDF.type, ex.Student))

 g.add((student, FOAF.name, Literal(row[0])))

 g.add((student, ex.hasID, Literal(row[1])))

 g.add((student, FOAF.mbox, Literal(row[2])))

 if not (row[3] == ''):

 g.add((student, ex.hasCompleted, course))

 if not (row[4] == ''):

 g.add((ex.hasCompleted, ex.hasGrade, Literal(row[4])))

 else:

 if not (row[3] == ''):

 g.add((student, ex.hasCompleted, course))

 if not (row[4] == ''):

 g.add((ex.hasCompleted, ex.hasGrade, Literal(row[4])))

print graph in N-Triples format to knowledge_base.nt file

run this only once to populate the .nt file

print(g.serialize("knowledge_base.nt", format="nt"))

from rdflib import Graph, Literal

g = Graph()

g.parse("knowledge_base.nt", format="nt")

62

returns total number of triples in the knowledge base

res = g.query("""

SELECT (COUNT(*) as ?triples)

 WHERE {

 ?s ?p ?o

 }

""")

for row in res:

 print("Total number of triples in the knowledge base: " + row[0])

returns total number of students

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ex: <http://example.org/>

SELECT (COUNT(?student) as ?count)

 WHERE {

 ?student rdf:type ex:Student

 }

""")

for row in res:

 print("Total number of students: " + row[0])

returns total number of courses

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ex: <http://example.org/>

SELECT (COUNT(?course) as ?count)

 WHERE {

 ?course rdf:type ex:Course

 }

""")

for row in res:

63

 print("Total number of courses: " + row[0])

#returns total number of topics

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ex: <http://example.org/>

SELECT (COUNT(?topic) as ?count)

 WHERE {

 ?topic rdf:type ex:Topic

 }

""")

for row in res:

 print("Total number of topics: " + row[0])

returns topics for a given course and their link to dbpedia

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX ex: <http://example.org/>

SELECT ?name ?link

 WHERE {

 ?course foaf:name "Income Taxation in Canada" .

 ?course ex:hasTopic ?topic .

 ?topic foaf:name ?name .

 ?topic rdfs:seeAlso ?link

 }

""")

for row in res:

 print(row[0] + "(" + row[1] + ")")

returns all courses completed for a given student

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

64

PREFIX ex: <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?subject ?number ?name

 WHERE {

 ?student foaf:name "Dania Kalomiris" .

 ?student ex:hasCompleted ?course .

 ?course ex:hasSubject ?subject .

 ?course ex:hasNumber ?number .

 ?course foaf:name ?name .

 ex:hasCompleted ex:hasGrade ?grade

 }

""")

for row in res:

 print(row[0] + ' ' + row[1] + ' ' + row[2])

returns list of all students familiar with a given topic

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ex: <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

 WHERE {

 ?student ex:hasCompleted ?course .

 ?student foaf:name ?name .

 ?topic foaf:name "Aerospace" .

 ?course ex:hasTopic ?topic

 }

""")

for row in res:

 print(row[0])

returns list of all topics a given student is familiar with

res = g.query("""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

65

PREFIX ex: <http://example.org/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?name

 WHERE {

 ?student ex:hasCompleted ?course .

 ?student foaf:name "Victoria Chikanek" .

 ?course ex:hasTopic ?topic .

 ?topic foaf:name ?name

 }

""")

for row in res:

 print(row[0])

66

B. SCREENSHOTS

Fig.B.1. Execution (Output)

Fig.B.2. Execution (Output)

Fig.B.3. Execution (Output)

67

C.RESEARCH PAPER

Chatbot system for college enquiry using

knowledgeable database

Gooty Joshi Naga Venkata

Akhilesh Yadav

Department of CSE

Sathyabama Institute Of Science

And Technology

Chennai,India

akhiljoshi1424@gmail.com

Yaswanth Hanumanthu

Department of CSE

Sathyabama Institute Of Science

And Technology

Chennai,India

yaswanthyasw143@gmail.com

Dr. P . Asha, Ph.D.,

Department of CSE

Sathyabama Institute Of

Science And Technology

Chennai,India

asha.cse@sathyabama.ac.in

Abstract— A chatbot, usually referred to as a

chatterbot, attempts to have a conversation

with a person. When a question is posed, the

system has the ability to detect sentences and

select the proper answer. The response

principle is the matching of the user's input

phrase. The current technical project involves

building a professional system for a college help

desk employing an android-based chatbot,

artificial intelligence technology, and virtual

assistance (human-machine communication),

then sending that natural language to a server.

Keywords—Artificial Intelligence, Database,

Intelligence Machine.

I.INTRODUCTION

Parents, employees, and college students are

the intended users of this application. Time-

consuming and simple method of contact. The

primary audience for this project is colleges, who

will benefit from the synchronisation of all the

fragmentary and inconsistent data surrounding the

typical college calendar. In general, students have

trouble receiving accurate messages at the

appropriate times, including occasionally crucial

information like holidays and special

announcements. Smart Campus seeks to bridge the

communication gap between college management,

faculty, and students. The use of architectural

MVC, which divides the primary works in the

construction of an application such as data

management, mobile computing, and oral

communication, will make the maintenance of the

application simpler. In a real-world setting, such as

a college campus, information in the form of

notices and oral communication can be directly

transmitted through android devices and made

available for the students and professors on their

devices. A robust graphical user interface used by

the system to react gives the user the sense that

they are speaking with a real person. The user only

needs to logon to the system and register

themselves. The user can access the numerous help

pages after logging in. Several assistance pages

have a chatbot that users can utilise to ask

questions about college activities. The system

responds to the user more quickly thanks to an

effective graphical user interface. The user can

request information on college-related activities

through the application. The user can look up

college-related events such as the day and hour of

sports days, yearly days, and other social

gatherings. The student can stay informed about

college activities thanks to this approach. A web-

based notice board will also be part of the

suggested system. This notice board may be used

to display any text notices or PDF files. This will

help the user by informing them of important

notices. The search for important notices won't

take the user too long. The answer to the inquiry

will take into account the user's queries as well as

the knowledge base. The knowledge base will be

searched for the solutions to those keywords after

the important keywords have been extracted from

the keywords. If a match is made, the user will be

given the appropriate response or, if none is found,

the notice "Response to this question is not

available at the moment, please revert back after

some time" will be displayed. "Keyword

Matching" is used. A computer software known as

a chat bot communicates with users via text or

audio. It is sometimes referred to as an artificial

conversational entity, a chatterbox, a talk bot, or a

bot. These algorithms typically pass the Turing test

68

because they faithfully mimic how a human would

act as a conversation partner. Chatbots are

frequently employed in dialogue systems for a

variety of advantageous activities, such as data

collection or customer assistance. Chat bots are

frequently a part of the dialogue systems of

automated online assistants, enabling them to

engage in quick or casual conversations that fall

beyond the purview of their main expert systems.

Using artificial intelligence techniques, the

College Inquiry Chat Bot project will be able to

comprehend user messages and analyse user

enquiries. This system, which will be an Android

application, will respond to the kids' questions. The

department query category must first be chosen by

the student before they may ask the bot a question.

II. LITERATURE REVIEW

The "College Inquiry Chat Bot" project was

proposed by Prof. Girish Wadhwa in (March–April

2017) and will utilise artificial intelligence

algorithms to evaluate user queries and

comprehend user messages. The children's

inquiries will be answered by this technology,

which will be a chatbot. Before asking the chatbot

a question, students will simply need to select the

department category for it. The main goal of the

project is to create an algorithm that will be used to

find responses to questions submitted by users.

Both a web interface and a database must be

created, where all pertinent data will be stored.

Data about requests, responses, keywords, logs,

and feedback messages will be stored in a database.

A database will be created to house data on queries,

responses, keywords, logs, and feedback

messages. Bayu Setiaji published "Chatbot Using

Knowledge in Database" (in 2016). A chatbot tries

to communicate with both humans and machines.

The machine can recognise texts and come to a

decision in response to a question thanks to built-

in knowledge. The user message or query is saved

while adhering to the response-theory standard.

Following a match with the input sentence's

replies, the similarity of the reference phrases will

be assessed; the greater the score, the more similar

the reference phrases are. The sentence similarity

computation breaks the provided sentence down

into two letters. The database houses the chatbot's

knowledge. The core data in relational database

management systems is accessed via the interfaces

that make up the chatbot. The creation of a user

interface for sending input and receiving responses

was part of the process of developing Chatbot

applications in a variety of programming

languages. Tables representing the knowledge in

the database were designed and created as a

starting point for entity-relationship diagrams,

which yielded 11 entities and their cardinalities.

For pattern matching, the stored application had

used SQL, or structured query language.

The first chatbot to employ a pattern matching

algorithm is thought to be Eliza. In (1964), Joseph

Weizenbaum invented it. The rule-based chatbot

ALICE is built on Artificial Intelligence Markup

Language (AIML). With a mix of pattern and

reaction for each category, there are more than

40,000 different categories. Md. Shahriare Satu

and Shamim-AI-Mamun exhibited a chatbot app

evaluation using AIML scripts. They argued that

chatbots powered by AIML are portable, simple to

set up, and efficient. In their research, they go into

great detail regarding the many chatbot

applications. An AIML and LSA based chatbot

was created by Thomas N. T. Amrita Vishwa to

provide customer support over e-commerce

platforms. Their strategy demonstrates how adding

more models could enhance chatbot performance.

There are various ways to incorporate the chatbot

into the Android operating system. In their study

on Android-based chat-bots, (Rushabh Jain and

Burhanuddin Lokhandwala) offer one way. the

creation of a chatbot that embodies a historical

figure Traian Rebedea and Emanuela Haller, IEEE

Conference Publications, (July 2013).

Conversational bots frequently store their data in

databases that have been built by human

professionals, despite the fact that there are

numerous programmes that imitate human speech

and look human.

Yet, studies have only superficially considered

the possibility of building a chat-bot with a phoney

personality and character based on web pages or

plain text about a certain person. To build a

conversational agent that may be employed in

middle-school CSCL situations, the most crucial

details in texts that explain the life—including the

personality—of a historical figure must be

determined. In this essay, a method for doing it is

discussed. "Teaching Introductory Artificial

Intelligence Using A Basic Agent Framework,"

IEEE Transactions on Education, (Vol. 48, No. 3,

August 2005), by Maja Pantic, Robbert Jan

Grootjans, and Reinier Zwitserloot. This article

introduces a revolutionary simple agent framework

implemented in Java that was created specifically

for this course as the basis for an adaptable

approach to teaching basic artificial intelligence

(AI). Although various additional agent

frameworks have been put forth in the substantial

amount of research, none of them have proven to

be user-friendly enough for students in their first

year of computer science. The authors set out to

create a novel framework in order to produce one

that would be suitable for the course's objectives,

the predicted group of students' level of computing

proficiency, and the quantity of this group of

students.

69

III.PROPOSED WORK

Administrator:

Include scholar: A student is given by the

administrator, and the computer generates and

sends a password to the student's ID number.

Course Addition: The instructor may highlight the

path and its subjects during the semester.

Schedule: Administrators may display a semester

course schedule as a JPEG file. Schedule addition

is permitted by administrators to include a

semester schedule of classes in a JPEG image.

Add a document: The administrator finds that a

report looks best in a pdf format. Test solutions can

best be added by the administrator in PDF format.

Add Video Links: The administrator includes

URLs for videos. Weekly steps aren't an issue for

the smart people, therefore the admin has added 25

more.

Including PTI/PT2:

Student Login: Using a password that is sent to his

or her email address and saved in memory after

login, a student is allowed access to the

programme.

Calendar View: A student can view the agenda that

is best suited to their direction and semester by

enlarging the image.

Timetable View: This is a picture that may be

enlarged, allowing a student to quickly verify their

direction and semester. A student can view a list of

notebooks that are specific to their course and

semester in Google Docs' default notebook view.

See Test Solutions: By utilising Google

Documents' default settings, A student can look

through a list of exam answers according to his or

her age and semester.

Seen Weekly Grades: Students have access to their

weekly grades, which are shown in a closed graph.

The student can view his grades in two reports—a

line chart and a chart—using the PTI/PT2

interface.

Three components make up the line chart (Highest,

Average and Student Grades) don't help college

students advance. The basic information shown by

the pie chart is the pupils' grades.

Hyperlink to the university and the Internet used to

convert text-to-speech technology, the bot also

speaks the solution. (If a student has a request, he

or she types it into the Android app, which then

replies to him or her in voice and text form).

Access information linked to the university, such

as events, seminar files, photos, and branch

records, using Snap

Fig.3.1. System Architecture

The block diagram for "Internet Chat System for

College Enquiry Knowledgeable Database"

Client-server technology underpins the suggested

solution. An efficient database will house all the

data. located on the main server. Via the Android

app they have installed on their cell phones,

consumers can view this information (client

machines). There will be upgraded user interfaces

on each client PC. To access material and services,

consumers can use a chatbot, a technology that

mimics conversational communication.

 A chat client that interacts with

the user using natural language processing is

the most common type of chatbot. Chatbots

manage the conversation's tempo and respond

with natural language expressions to give

quick responses, ask for further details, or

suggest possible next steps based on the

context of the user's needs. The image below

gives a general idea of how a chat client might

use natural language processing to quicken

content access.

Fig.3.2. Level 0 Data Flow Diagram

In today's environment, everything is

70

digital. Particularly time-consuming, labor-

intensive, and requiring more employees is

work in the educational system. The people

who will use this application the most are the

kids, teachers, parents, and guests. We

included an Android application in this

project as a result of this application. The

student does not have to come into the college

office in person to make the inquiry. Students

can access information about campus cultural

activities through the application. Whether the

application helps students, teachers, and other

staff members save time. Additionally, parents

should show their kids any marks and

significant notes. Save time for both teachers

and pupils, as well as unnecessary labour.

Students have quick access to all college-

related documents, such as notices, study

materials, and test questions.

 The first step involves obtaining a lot of

important data, such as frequently asked

questions, information on the courses,

admissions standards, campus facilities, etc.

These data will be used to train the chatbot

model.

Following preprocessing, the data must be

prepared for model training. This procedure

may involve tokenization, stemming, and the

eradication of stop words.

The Long Short-Term Memory (LSTM)

model stands out among the various types of

recurrent neural networks because it is

proficient in processing sequential input,

including text. The preprocessed data can be

used to train the LSTM model to find patterns

and correlations between the questions and

answers.

A.Image Identification:

Image identification tasks frequently

employ the CNN model, a class of neural

network. By considering the text as a series of

one-dimensional signals, it can also be used

for natural language processing. To extract the

key elements of the text, the CNN model can

be trained on the preprocessed data.

B.Recognition of Intent:

The next stage is to determine the user's intention

when providing input. For instance, if a user

queries, "What are the admission requirements for

Computer Science?" the purpose "Admission

Requirements" can be deduced. Techniques like

rule-based systems, machine learning algorithms

like Naive Bayes, or neural network models like

LSTM can be used for this.
C.Entity Recognition:

After the chatbot has identified the user's

purpose, it must extract the pertinent entities from

their input. The entities in the case would be

"Computer Science". To accomplish this, methods

like it is possible to tag words using named entity

recognition (NER) and part of speech (POS).
D.Conversation Management:

The chatbot must keep the user's inputs flowing

in a discussion and respond to them appropriately.

Techniques like rule-based systems, finite-state

machines, or reinforcement learning algorithms

can be used to do this.
E.Response Generation:

After the user's input, the chatbot creates a

response based on the user's purpose and the

entities found in the earlier steps. The response can

be a statement that is generated dynamically or

follow a predefined structure. Techniques like

rule-based systems, templates, or machine learning

algorithms like sequence-to-sequence models or

Generative Pre-trained Transformer (GPT) models

can be used to create the response.

1. Problem statement: A clearly defined

problem statement that served as the

basis for analysis.

2. Conclusions and advice compiled: a

summary of the study's main

conclusions and suggestions. It is

ideal for individuals who require

immediate access to the research

results related to the system under

examination. Many recommendations

are given, each with a justification,

after the conclusion is stated.

3. Details regarding the outcomes: A

discussion of the objectives and

procedures employed by the potential

system is covered after a summary of

the methods and procedures used by

the current system. Discussions of the

prospective system's costs and

benefits are also covered, as well as

discussions of output reports, file

structures, and other topics.

4. Suggestions and conclusions:

Particular suggestions for the

potential system included.

IV.EXISTING WORK

To solve satiability issues in the project

problem statement, use modern algebra or relevant

mathematical models. NP The project's problem

statement is tested for viability using Hard and NP-

Complete.

Problem polynomial problem solving. solutions to

time-consuming problems like O, O(n), and

O(n2)(n3) in polynomial time. For instance,

determining the greatest member in an array or

determining whether a string is a palindrome. As a

result, many issues can be resolved in polynomial

71

time.

NP not a polynomial time solution that is

deterministic. a conundrum that can't be solved in

polynomial time, like the travelling salesman

problem (TSP), Subset sum offers a simple

illustration of this. Exists a subset of the given

collection of numbers?

Whose total is zero? However, NP

problems can be analysed in polynomial time,

demonstrating that the answer is correct.

Create and put into operation an online

discussion system using a database with

knowledge and a translator that will be utilised for

pattern matching.

In addition to the Microsoft Azure bot

service, the Microsoft Cognitive Services Text

Analytics, LUIS, and QnA Creator are used to

create the chatbot.The majority of currently in use

chatbots lack empathy and are unable to manage

situations that deviate from the script. The College

Inquiry Chatbot expands the use of the current

chatbots by addressing these problems with

sentiment analysis and active learning.

 V .RESULTS AND DISCUSSION

Fig.5.1. Execution (Output)

The output for a chatbot system for college enquiry

using a knowledgeable database will depend on the

specific design and programming of the chatbot.

Generally, the chatbot would be able to answer a

wide range of questions related to the college, such

as admission requirements, program details,

campus facilities, tuition fees, and student life.

Fig.5.2. Execution (Output)

The knowledgeable database would contain

information about the college, which the chatbot

can access and use to respond to user queries. The

chatbot may use natural language processing

(NLP) techniques to understand the user's question

and provide a relevant response.

Fig.5.3. Execution (Output)

For example, if a user asks, "What are the

admission requirements for the Computer Science

program?", the chatbot may provide a response

such as, "To apply for the Computer Science

program, you must have a high school diploma,

minimum GPA of 3.0, and submit your SAT

scores. You may also be required to submit letters

of recommendation and a personal statement."

Fig.5.4. Execution (Output)

Overall, the output for a chatbot system for college

enquiry using a knowledgeable database would be

informative and helpful, providing users with the

information they need to make informed decisions

about their education.

VI. CONCLUSION

The fastest-growing technology in history

is artificial intelligence. utilizing a database that is

both artificially intelligent and knowledgeable. We

can transform virtual aid and pattern matching.

With the use of a virtual assistant and an artificially

intelligent database, this technique builds an

Android-based chatbot. We can develop a chatbot

that answers to user enquiries and can distinguish

between human and computer speech.

REFERENCES
[1] CHATBOT BASED ON AI Information technology

professors Nikita Hatwarl, Ashwini Patil 2, and Diksha
Gondane 3123 are from Nagpur/RTMNU in India.
Volume 3, Issue 2 (March-April 2016), International
Journal of Emerging Trends in Engineering and Basic
Sciences (UEEBS), ISSN(Online)2349-6967)

72

[2] Chatbot Utilizing a Knowledge in Database at the 2016
7th International Conference on Intelligent Systems,
Modelling and Simulation by Bayu Setiaji and Ferry
Wahyu Wibowo.

[3] Chatbot, https://en.wikipedia.org/wiki/Chatbot.Schantz,
Herbert F., The History of OCR, Recognition
Technologies Users Association, Manchester Center,
Vermont, 1982.

[4] P. Chenna, T. Rao, et al (2018). HFSS software is used to
design a twin inverted L microstrip antenna for
sustainable systems. International Journal of Computer-
Aided Engineering Technology (IJCAET).

[5] J. Quintero, an IEEE student member, and R. Asprilla, an
IEEE member Proceedings of the 2020 IEEE Thirty-Fifth
Central American and Panama Convention: Towards an
Efficient Voice-Based Chatbot (concapan xxxv).

[6] Rao, P.T., and Kumar, P.P. (2015,January). Twin
microstrip patch antenna in the form of a staircase. 2015
saw the ICPC (International Conference on Pervasive
Computing) (pp. 1-5). The Technical Writer's Handbook
by IEEE M. Young. University Science, Mill Valley,
California, 1989.

[7] Rao, P. T., and Kumar, P. P. (2021). dual dual folded
inverted-L antenna with a frequency-tunable circular
polarisation and varactor-loaded split-ring resonator
constructions. Global Journal of Communication
Systems, e4715.

[8] Ly Pichponreay and Chi-Hwan Choi created the
Chungbuk National University Smart Responding
Chatbot based on OCR and Overgenerating
Transformations and Rating.

[9] Trinatha Rao, P., and Praveen Kumar, P. C. (2020). Using
HFSS, a double folded inverted-L antenna with a
rectangular ground plane is designed to be reconfigurable.
IETNetworks,9(5),229-234.

[10] Automated Question Answering System Utilizing
Ontology and Semantic Role International Conference on
Innovative Mechanisms for Industrial Applications
(ICIMIA2017) by S. Jayalakshmi and Dr. Ananthi
Sheshasaayee.

[11] Yuriy Dyachenko and Nayden Nenkov Articial
Intelligence Technologies For Personnel Learning
Management Systems 2019 IEEE 8th Internatignal
Conference on Intelligent Systems Volodymyr DahlEast
Ukrainian National University Severodonetsk, Ukrainev.

