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1. Operation Research 
 

The term Operations Research (OR) was first coined by MC Closky and Trefthen in 1940 in a 

small town, Bowdsey of UK. The main origin of OR was during the second world war – The 

military commands of UK and USA engaged several inter-disciplinary teams of scientists to 

undertake scientific research into strategic and tactical military operations. Their mission was to 

formulate specific proposals and to arrive at the decision on optimal utilization of scarce military 

resources and also to implement the decisions effectively. In simple words, it was to uncover the 

methods that can yield greatest results with little efforts. Thus it had gained popularity and was 

called “An art of winning the war without actually fighting it” 

The name Operations Research (OR) was invented because the team was dealing with research 

on military operations. The encouraging results obtained by British OR teams motivated US 

military management to start with similar activities. The work of OR team was given various 

names in US: Operational Analysis, Operations Evaluation, Operations Research, System 

Analysis, System Research, Systems Evaluation and so on. The first method in this direction was 

simplex method of linear programming developed in 1947 by G.B Dantzig, USA. Since then, 

new techniques and applications have been developed to yield high profit from least costs. Now 

OR activities has become universally applicable to any area such as transportation, hospital 

management, agriculture, libraries, city planning, financial institutions, construction management 

and so forth. In India many of the industries like Delhi cloth mills, Indian Airlines, Indian 

Railway, etc are making use of OR techniques. 
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 HISTORY OF OR 

   The term OR coined by Mc.Clostcy and Tref in the year 1940 in U.K. OR was first       

    used in military operations for optimum utilization of resources. 

 
YEAR EVENTS 

1940 Term OR was coined by Mc.Closky and Trefthen in U.K 

 
 
1949 

• OR unit was set up in India in Hyderabad. (The Regional 

Research Lab) 

• OR unit was set up at defence science lab. 

 
 
1951 

• The National Research Council (NRC) in US formed a 

committee on OR. 

• The first book was published called “Methods on OR” by 

Morse and Kimball. 

1952 • OR Society of America was formed. 

1953 
• OR unit was set up in Calcutta in the “Indian Statistical 

Institute”. 

1995  OR society of India was established. 

 
OR gained its significance first in the defence during the World War II (1939-1945) in order to 

make the best use of limited military resources and win the war. The effectiveness of OR in 

defence spread interest in Government departments and industry. 

CONCEPT AND DEFINITION OF OR 
Operations research signifies research on operations. It is the organized application of modern 

science, mathematics and computer techniques to complex military, government, business or 

industrial problems arising in the direction and management of large systems of men, material, 

money and machines. The purpose is to provide the management with explicit quantitative 

understanding and assessment of complex situations to have sound basics for arriving at best 

decisions. Operations research seeks the optimum state in all conditions and thus provides 

optimum solution to organizational problems. 
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DEFINITION 
“OR is defined as the application of Scientific methods, tools and techniques to problems 

involving the operations of a system so as to provide to those in control of the system, 

with optimum solutions to the problem”. 

“OR is defined as the application of Scientific methods by interdisciplinary team to 

problems involving control of organized system, so as to provide solutions which serve 

best to the organization as a whole. 

OR is otherwise called as the “Science of use”. 

OR is the combination of management principles and mathematical concepts 

(Quantitative techniques) for managerial decision-making purpose. 

 

CHARACTERISTICS OF OR 

 Aims to find solutions for problems of organized systems. 

 Aims to provide optimum solution. Optimization means the best minimum or 

maximum for the criteria under consideration. 

 It is the application of scientific methods, tools and techniques. 

 Interdisciplinary team approach is used to solve the problems. 

 The solutions that serve best to the organization as a whole is taken into 
consideration. 

 
2. Optimization 

Linear Programming Problem: A linear programming problem is one in which we have to 
find optimal value (maximum or minimum) of a linear function of several variables (called 
objective function) subject to certain conditions that the variables are non-negative and 
satisfying by a set of linear inequalities with variables, are sometimes called division 
variables. 
Objective Function: A linear function z = px + qy (p and q are constants) which has to be 
maximised or minimised, is called an objective function. 
Constraints: The linear inequalities or equations or restrictions on the variables of the linear 
programming problem are called constraints. The conditions x ≥ 0, y ≥ 0 are called non-
negative restrictions. 
Optimal Value: The maximum or minimum value of an objective function is known as its 
optimal value. 
Optimisation Problem: A problem, which seeks to maximise or minimise a linear function 
subject to certain constraints as determined by a set of linear inequalities, is called an 
optimisation problem. 
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Feasible Region: The common region determined by all the constraints including non-
negative constraints x, y >0 of a linear programming problem is called the feasible region 
for the problem. The region other than the feasible region is called an infeasible region. The 
feasible region is always a convex polygon. 
Feasible Solutions: Points within and on the boundary of the feasible region represent 
feasible solutions of the constraints. Any point outside the feasible region is called an 
infeasible solution. 
Optimal Feasible Solution: Any point in the feasible region that gives the optimal value of 
the objective function is called the optimal feasible solution. 
Bounded and Unbounded Region: A feasible region of a system of linear inequalities is 
said to be bounded, if it can be enclosed within a circle. Otherwise, it is called unbounded. 
 
Optimization is the way of life. We all have finite resources and time and we want to make 
the most of them. From using your time productively to solving supply chain problems for 
your company – everything uses optimization. It’s an especially interesting and relevant 
topic in data science. 

3. Linear programming (LP) 
 

Linear programming (LP) is one of the simplest ways to perform optimization. It helps you 
solve some very complex optimization problems by making a few simplifying assumptions. 
As an analyst, you are bound to come across applications and problems to be solved by 
Linear Programming. 
For some reason, LP doesn’t get as much attention as it deserves while learning data 
science. So, I thought let me do justice to this awesome technique. I decided to write an 
article that explains Linear programming in simple English. I have kept the content as 
simple as possible. The idea is to get you started and excited about Linear Programming. 
Note- If you want to learn this in a course format, we have curated this free course for you-
 Linear Programming for Data Science Professionals 
  
Now, what is linear programming? Linear programming is a simple technique where 
we depict complex relationships through linear functions and then find the optimum points. 
The important word in the previous sentence is depicted. The real relationships might be 
much more complex – but we can simplify them to linear relationships. 
Applications of linear programming are everywhere around you. You use linear 
programming at personal and professional fronts. You are using linear programming when 
you are driving from home to work and want to take the shortest route. Or when you have a 
project delivery you make strategies to make your team work efficiently for on-time 
delivery. 
 

http://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=LinearProgrammingGuidearticle
http://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=LinearProgrammingGuidearticle
http://courses.analyticsvidhya.com/courses/introduction-to-data-science-2?utm_source=blog&utm_medium=LinearProgrammingGuidearticle
https://courses.analyticsvidhya.com/courses/linear-programming?utm_source=blog&utm_medium=LinearProgrammingGuidearticle
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Example of a linear programming problem 
Let’s say a FedEx delivery man has 6 packages to deliver in a day as shown in figure 1. The 
warehouse is located at point A. The 6 delivery destinations are given by U, V, W, X, Y, 
and Z. The numbers on the lines indicate the distance between the cities. To save on fuel 
and time the delivery person wants to take the shortest route. 

 
Figure 1. Allocation and Scheduling 

So, the delivery person will calculate different routes for going to all the 6 destinations and 
then come up with the shortest route. This technique of choosing the shortest route is called 
linear programming. 
In this case, the objective of the delivery person is to deliver the parcel on time at all 6 
destinations. The process of choosing the best route is called Operation Research. Operation 
research is an approach to decision-making, which involves a set of methods to operate a 
system. In the above example, my system was the Delivery model. 
Linear programming is used for obtaining the most optimal solution for a problem with 
given constraints. In linear programming, we formulate our real-life problem into a 
mathematical model. It involves an objective function, linear inequalities with subject to 
constraints. 
Is the linear representation of the 6 points above representative of the real-world? Yes and 
No. It is an oversimplification as the real route would not be a straight line. It would likely 
have multiple turns, U-turns, signals and traffic jams. But with a simple assumption, we 
have reduced the complexity of the problem drastically and are creating a solution that 
should work in most scenarios. 
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Formulating a problem –  
Let’s manufacture some chocolates 
Example: Consider a chocolate manufacturing company that produces only two types of 
chocolate – A and B. Both the chocolates require Milk and Choco only.  To manufacture 
each unit of A and B, the following quantities are required: 
Each unit of A requires 1 unit of Milk and 3 units of Choco 
Each unit of B requires 1 unit of Milk and 2 units of Choco 
The company kitchen has a total of 5 units of Milk and 12 units of Choco. On each sale, the 
company makes a profit of 
Rs 6 per unit A sold 
Rs 5 per unit B sold. 
Now, the company wishes to maximize its profit. How many units of A and B should it 
produce respectively? 
Solution: The first thing I’m gonna do is represent the problem in a tabular form for better 
understanding. 
 Milk Choco Profit per unit 

A 1 3  Rs 6 

B 1 2  Rs 5 

Total 5 12  

  
Let the total number of units produced by A be = X 
Let the total number of units produced by B be = Y 
Now, the total profit is represented by Z 
The total profit the company makes is given by the total number of units of A and B 
produced multiplied by its per-unit profit of Rs 6 and Rs 5 respectively. 
 
Profit: Max Z = 6X+5Y which means we have to maximize Z. 
The company will try to produce as many units of A and B to maximize the profit. But the 
resources Milk and Choco are available in a limited amount. 
As per the above table, each unit of A and B requires 1 unit of Milk. The total amount of 
Milk available is 5 units. To represent this mathematically, 
X+Y ≤ 5 
Also, each unit of A and B requires 3 units & 2 units of Choco respectively. The total 
amount of Choco available is 12 units. To represent this mathematically, 
3X+2Y ≤ 12 
Also, the values for units of A can only be integers. 
So we have two more constraints, X ≥ 0  &  Y ≥ 0 
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For the company to make maximum profit, the above inequalities have to be satisfied. 
This is called formulating a real-world problem into a mathematical model. 
  
Common terminologies used in Linear Programming 
 
Let us define some terminologies used in Linear Programming using the above example. 
Decision Variables: The decision variables are the variables that will decide my output. 
They represent my ultimate solution. To solve any problem, we first need to identify the 
decision variables. For the above example, the total number of units for A and B denoted by 
X & Y respectively are my decision variables. 
 
Objective Function: It is defined as the objective of making decisions. In the above 
example, the company wishes to increase the total profit represented by Z. So, profit is my 
objective function. 
Constraints: The constraints are the restrictions or limitations on the decision variables. 
They usually limit the value of the decision variables. In the above example, the limit on the 
availability of resources Milk and Choco are my constraints. 
 
Non-negativity restriction: For all linear programs, the decision variables should always 
take non-negative values. This means the values for decision variables should be greater 
than or equal to 0. 
The process to formulate a Linear Programming problem 
Let us look at the steps of defining a Linear Programming problem generically: 
Identify the decision variables 
Write the objective function 
Mention the constraints 
Explicitly state the non-negativity restriction 
For a problem to be a linear programming problem, the decision variables, objective 
function and constraints all have to be linear functions. 
If all the three conditions are satisfied, it is called a Linear Programming Problem. 
  
 

4. Linear Programs by Graphical Method 
A linear program can be solved by multiple methods. In this section, we are going to look at 
the Graphical method for solving a linear program. This method is used to solve a two-
variable linear program. If you have only two decision variables, you should use the 
graphical method to find the optimal solution. 
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A graphical method involves formulating a set of linear inequalities subject to the 
constraints. Then the inequalities are plotted on an X-Y plane. Once we have plotted all the 
inequalities on a graph the intersecting region gives us a feasible region. The feasible region 
explains what all values our model can take. And it also gives us the optimal solution. 
Let’s understand this with the help of an example. 
 
Example: A farmer has recently acquired a 110 hectares piece of land. He has decided to 
grow Wheat and barley on that land. Due to the quality of the sun and the region’s excellent 
climate, the entire production of Wheat and Barley can be sold. He wants to know how to 
plant each variety in the 110 hectares, given the costs, net profits and labor requirements 
according to the data shown below figure 2: 
 

Variety Cost (Price/Hec)  Net Profit (Price/Hec)  Man-days/Hec 

Wheat 100  50  10 

Barley 200  120  30 

 
The farmer has a budget of US$10,000 and availability of 1,200 man-days during the 
planning horizon. Find the optimal solution and the optimal value. 
Solution: To solve this problem, first we gonna formulate our linear program. 
Formulation of Linear Problem 
Step 1: Identify the decision variables 
The total area for growing Wheat = X (in hectares) 
The total area for growing Barley = Y (in hectares) 
X and Y are my decision variables. 
 
Step 2: Write the objective function 
Since the production from the entire land can be sold in the market. The farmer would want 
to maximize the profit for his total produce. We are given net profit for both Wheat and 
Barley. The farmer earns a net profit of US$50 for each hectare of Wheat and US$120 for 
each Barley.  
 
 
Our objective function (given by Z) is, Max Z = 50X + 120Y 
 
Step 3: Writing the constraints  
1. It is given that the farmer has a total budget of US$10,000. The cost of producing Wheat 
and Barley per hectare is also given to us. We have an upper cap on the total cost spent by 
the farmer. So our equation becomes: 
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100X + 200Y ≤ 10,000  
 
2. The next constraint is the upper cap on the availability of the total number of man-days 
for the planning horizon. The total number of man-days available is 1200. As per the table, 
we are given the man-days per hectare for Wheat and Barley. 
10X + 30Y ≤ 1200 
 
3. The third constraint is the total area present for plantation. The total available area is 110 
hectares. So the equation becomes, 
X + Y ≤ 110 
 
Step 4: The non-negativity restriction 
The values of X and Y will be greater than or equal to 0. This goes without saying. 
X ≥ 0, Y ≥ 0 
 
We have formulated our linear program. It’s time to solve it. 
 
Solving an LP through Graphical method 
Since we know that X, Y ≥ 0. We will consider only the first quadrant. 
To plot for the graph for the above equations, first I will simplify all the equations. 
100X + 200Y ≤ 10,000 can be simplified to X + 2Y ≤ 100 by dividing by 100. 
10X + 30Y ≤ 1200 can be simplified to X + 3Y ≤ 120 by dividing by 10. 
The third equation is in its simplified form, X + Y ≤ 110. 
Plot the first 2 lines on a graph in the first quadrant (like shown below) 
The optimal feasible solution is achieved at the point of intersection where the budget & 
man-days constraints are active. This means the point at which the equations X + 2Y ≤ 100 
and X + 3Y ≤ 120 intersect gives us the optimal solution. 
The values for X and Y which gives the optimal solution is at (60,20). 
To maximize profit the farmer should produce Wheat and Barley in 60 hectares and 20 
hectares of land respectively. 
 
 
 
The maximum profit the company will gain is, 
Max Z = 50 * (60) + 120 * (20) 
=  US$5400 
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Figure 2. Graphical Method 

 
Therefore from the output, we see that the organization should produce 88 units of toy A 
and 20 units of toy B and the maximum profit for the organization will be Rs.2600. 
  

5. Simplex Method 
Simplex Method is one of the most powerful & popular methods for linear programming. 
The simplex method is an iterative procedure for getting the most feasible solution. In this 
method, we keep transforming the value of basic variables to get maximum value for the 
objective function. 
A linear programming function is in its standard form if it seeks to maximize the objective 

function. subject to 

constraints,
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where,  and . After adding slack variables, the corresponding system 
of constraint equation is, 

 

 
.                                    .                                       .                    . 

where,  

The variables,   ……………….  are called slack variables. They are non-
negative numbers that are added to remove the inequalities from an equation. 
The above explanation gives the theoretical explanation of the simplex method. Now, I am 
gonna explain how to use the simplex method in real life using Excel. 
Example: The advertising alternatives for a company include television, newspaper and 
radio advertisements. The cost for each medium with its audience coverage is given below. 
 

Mode Television  Newspaper  Radio 

Cost per advertisement ($) 2000  600  300 

Audience per advertisement 100,000  40,000  18,000 

 
The local newspaper limits the number of advertisements from a single company to 
ten. Moreover, in order to balance the advertising among the three types of media, no more 
than half of the total number of advertisements should occur on the radio. And at least 10% 
should occur on television. The weekly advertising budget is $18,200. How many 
advertisements should be run in each of the three types of media to maximize the total 
audience? 
Solution: First I am going to formulate my problem for a clear understanding. 
 
Step 1: Identify Decision Variables 

Let ,  ,    represent the total number of ads for television, newspaper, and radio 
respectively. 
 
Step 2: Objective Function 
The objective of the company is to maximize the audience. The objective function is given 
by: 
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Step 3: Write down the constraints 
Now, I will mention each constraint one by one. 
It is clearly given that we have a budget constraint. The total budget which can be allocated 
is $18,200. And the individual costs per television, newspaper and radio advertisement is 
$2000, $600 and $300 respectively. This can be represented by the equation, 

 
For a newspaper advertisement, there is an upper cap on the number of advertisements to 

10. My first constraints are,  
The next constraint is the number of advertisements on television. The company wants at 
least 10% of the total advertisements to be on television. So, it can be represented as: 

 
The last constraint is the number of advertisements on the radio cannot be more than half of 
the total number of advertisements. It can be represented as 

 
Now, I have formulated my linear programming problem. We are using the simplex method 
to solve this. I will take you through the simplex method one by one. 
To reiterate all the constraints are as follows. I have simplified the last two equations to 
bring them in standard form. 

 

 

 
We have a total of 4 equations. To balance out each equation, I am introducing 4 slack 

variables,  ,  and . 
So our equations are as follows: 

 

 

 

 
On solving the objective function you will get the maximum weekly audience as 1,052,000. 
You can follow the tutorial here to solve the equation. To solve a linear program in excel, 
follow this tutorial. 
  
 

https://www.youtube.com/watch?v=XK26I9eoSl8
https://www.youtube.com/watch?v=F6myxAIW0wU
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6. Applications of Linear Programming 

Linear programming and Optimization are used in various industries. The manufacturing 
and service industry uses linear programming on a regular basis. In this section, we are 
going to look at the various applications of linear programming. 
Manufacturing industries use linear programming for analyzing their supply chain 
operations. Their motive is to maximize efficiency with minimum operation cost. As per the 
recommendations from the linear programming model, the manufacturer can reconfigure 
their storage layout, adjust their workforce and reduce the bottlenecks. Here is a small 
Warehouse case study of Cequent a US-based company, watch this video for a more clear 
understanding. 
 
Linear programming is also used in organized retail for shelf space optimization. Since the 
number of products in the market has increased in leaps and bounds, it is important to 
understand what does the customer want. Optimization is aggressively used in stores like 
Walmart, Hypercity, Reliance, Big Bazaar, etc. The products in the store are placed 
strategically keeping in mind the customer shopping pattern. The objective is to make it 
easy for a customer to locate & select the right products. This is subject to constraints like 
limited shelf space, a variety of products, etc. 
Optimization is also used for optimizing Delivery Routes. This is an extension of the 
popular traveling salesman problem. The service industry uses optimization for finding the 
best route for multiple salesmen traveling to multiple cities. With the help of clustering and 
greedy algorithm, the delivery routes are decided by companies like FedEx, Amazon, etc. 
The objective is to minimize the operation cost and time. 
Optimizations are also used in Machine Learning. Supervised Learning works on the 
fundamental of linear programming. A system is trained to fit on a mathematical model of a 
function from the labeled input data that can predict values from an unknown test data. 
Well, the applications of Linear programming don’t end here. There are many more 
applications of linear programming in real-world like applied by Shareholders, Sports, Stock 
Markets, etc. Go on and explore further. 
  
 
 

7. Principle of Simplex Method 

As the fundamental theorem of LP problem tells us that at least one basic feasible solution 
of any LP problem must be optimal, provided the optimal solution of the LP problem exists. 
Also, the number of basic feasible solutions of the LP problem is finite and at the 
most nCm (where, n is number of decision variables and m is the number of constraints in the 
problem). On the other hand, the feasible solution may be infinite in number. So it is rather 

https://www.youtube.com/watch?v=gIXNTebJOe8
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impossible to search for optimal solutions from amongst all feasible solutions. Furthermore, 
a great labour will also be required in finding out all the basic feasible solutions and select 
that one which optimizes the objective function. In order to remove this difficulty; a simple 
method was developed by Dantzig (1947) which is known as Simplex Algorithm. Simplex 
Algorithm is a systematic and efficient procedure for finding corner point solutions and 
taking them for optimality. The evaluation of corner points always starts from the point of 
origin. This solution is then tested for optimality i.e. it tests whether an improvement in the 
objective function is possible by moving to adjacent corner point of the feasible function 
space. This iterative search for a better corner point is repeated until an optimal solution if it 
exists, is determined.   

 

7.1  Basic Terms Involved in Simplex Procedure 

The following terms relevant for solving a linear programming problem through simplex 
procedure are given below: 

7.1.1  Standard form of linear programming problem 

The standard form of LP problem is to develop the procedure for solving general LP 
problem. The optimal solution of the standard form of a LP problem is the same as original 
LP problem. The characteristics of standard form are given in following steps: 

Step 1.     All the constraints should be converted to equations except for the non-
negativity restrictions which remain as inequalities (≥0). 

Step 2.     The right side element of each constraint should be made non-negative. 
Step 3.     All variables must have non-negative values. 
Step 4.     The objective function should be of maximization form. 

4.1.2 Slack variables 

If a constraint has less than or equal sign, then in order to make it on equality we have to 
add something positive to the left hand side. The non-negative variable which is added to 
the left hand side of the constraint to convert it into equation is called the slack variable. For 
example, consider the constraints. 

3X1 + 5X2 ≤ 2, 7X1 + 4X2 ≤ 5, X1, X2 ≥ 0                 

We add the slack variables S1 ≥ 0, S2 ≥ 0 on the left hand sides of above inequalities 
respectively to obtain 
 3X1+5X2+S1 = 2 
7X1+4X2+S2 = 5 
 X1, X2, S1, S2 ≥ 0 
 
 

7.1.3 Surplus variables 
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If a constraint has greater than or equal to sign, then in order to make it an equality we have 
to subtract something non-negative from its left hand side. The positive variable which is 
subtracted from the left hand side of the constraint to convert it into equation is called the 
surplus variable. 
For example, consider the constraints. 
 3X1 + 5X2 ≥ 2, 2X1 + 4X2 ≥ 5, X1, X2 ≥0       
We subtract the surplus variables S3 ≥0, S4 ≥ 0 on the left hand sides of above inequalities 
respectively to obtain 

 3X1+5X2 -S3 = 2 
 2X1 + 4X2 -S4 = 5 
 X1, X2, X3, X4 ≥0 

7.1.4 Solution to LPP 

Any set X = {X1, X2, X3, Xn+m} of variables is called a solution to LP problem, if it satisfies 
the set of constraints only. 

7.1.5 Feasible solution (FS) 

Any set X = {X1, X2, X3 ,Xn+m} of variables is called a feasible solution of L.P. problem, if 
it satisfies the set of constraints as  well as non-negativity restrictions. 

7.1.6 Basic solution (BS) 

For a system of m simultaneous linear equations in n variables (n>m), a solution obtained by 
setting (n-m) variables equal to zero and solving for the remaining variables is called a basic 
solution. Such m variables (of course, some of them may be zero) are called basic variables 
and remaining (n-m) zero-valued variables are called non-basic variables. 

4.4 Computational Aspect of Simplex Method for Maximization Problem 

Step 1: Formulate the linear programming model. If we have n-decision variables X1, 
X2, Xn and m constraints in the problem, then mathematical formulation of L P problem is 
Maximize Z=C1X1+ C2X2++CnXn                                   

Subject to the constraints: 
 a11 X1+ a12 X2+ +a1n Xn ≤ b1 
a21 X1+ a22 X2  + a2n Xn ≤ b2 
am1 X1+ am2 X2 +  + amn Xn ≤ bm 
X1, X2, Xn ≥ 0 

Step 2: Express the mathematical model of LP problem in the standard form by adding 
slack variables in the left hand side of the constraints and assign zero coefficient to these 
variables in the objective function. Thus we can restate the problem in terms of equations as 
follows: 

Maximize  
                                                                                                                                                        
Z=C1X1+ C2X2+ CnXn  +0Xn+1  +0Xn+2++0Xn+m                            
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Subject to the constraints: 
a11 X1+ a12 X2+ + a1n Xn +Xn+1  = b1 
a21 X1+ a22 X2++ a2n Xn +Xn+2  = b2 

. 
am1 X1+ am2X2++amn Xn +Xn+m = bm 

  
 X1, X2,  ,Xn, Xn+1,Xn+2 , , Xn+m ≥0 
  
Step 3: Design the initial feasible solution .An initial basic feasible solution is obtained by 
setting  X1=X2= =Xn =0. Thus, we get Xn+1=b1, Xn+2 =b2 ,, Xn+m =bm. 
Step 4: Construct the starting (initial) simplex tableau. For computational efficiency and 
simplicity, the initial basic feasible solution, the constraints of the standard LP problem as 
well as the objective function can be displayed in a tabular form, called the Simplex 
Tableau as shown below. 
 
 

Table 4.1  Initial simplex tableau 

Cj (contribution per unit) → c1 c2 
 

cn 0 0 
 

0 

Minimum 
Ratio* 

Cb Basic 
Variables 

Value of 
Basic 

Variables 

Coefficient Matrix Identify Matrix 

  B b(=XB) X1 X2 
 

Xn Xn+1 Xn+2 
 

Xn+m 
0 s1 b1 a11 a12 

 
a1n 1 0 

 
0   

0 s2 b2 a21 a22 
 

a2n 0 1 
 

0 
. . . . . 

 
.         

. . . . . 
 

.         
. . . . . 

 
.         

0 sm bm am1 am2 
 

amn 0 0 
 

1 
Contribution 
loss per unit: 

 

0 0 
 

0 0 0 
 

0   

Net 
contribution 

per units: 

 

c1 c2 
 

cn 0 0 
 

0 

             
  
* Negative ratio is not to be considered. 
  

The interpretation of the data in the above Tableau is given as under. Other simplex tableau 
will have similar interpretations. 

(i)    The first row, called the objective row of the simplex table indicates the values 
of Cj (j subscript refer to the column number) which are the coefficients of the (m + 
n) variables in the objective function. These coefficients are obtained directly from 
the objective function and the value Cj would remain the same in the succeeding 
tables. The second row of the table provides the major column headings for the table 
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and these column headings remain unchanged in the succeeding tables of the 
Simplex Method. 

(ii)  The first column labelled CB, also known as objective column, lists the coefficient of 
the current basic variables in the objective function. The second 
column labelled Basic variables points out the basic variables in the basis, and in the 
initial simplex tableau these basic variables are the slack variables. The third 
column labelled Solution values(= xB), indicates the resources or the solution values 
of the basic variables. 

(iii) The body matrix (under non-basic variables) in the initial simplex tableau consists of 
the coefficients of the decision variables in the constraint set. 

(iv)The identity matrix in the initial simplex tableau represents the coefficient of the 
slack variables that have been added to the original inequalities to make them 
equation. The matrix under non-basic variables in the simplex tableau is 
called coefficient matrix. Each simplex tableau contains an identity matrix under the 
basic variables. 

(v)   To find an entry in the Zj row under a column, we multiply the entries of that 
column by the corresponding entries of CBcolumn and add the products, i.e., Z 

= . 
The Zj entry under the Solution columngives the current value of the objective function. 
(vi) The final row labeled ∆j = Zj - Cj called the index (or net evaluation) row, is used to 

determine whether or not the current solution is optimal. The calculation of Zj -
 Cj row simply involves subtracting each Zj value from the corresponding Cj value 
for that column, which is written at the top of that column. Each entry in the ∆j 

 row represents the net contribution (or net marginal improvement) to the objective 
function that results by introducing one unit of each of the respective column 
variables. 

Step 5: Test the Solution for Optimality. Examine the index row of the above simplex 
tableau. If all the elements in the index row are positive then the current solution is optimal. 
If there exist some negative values, the current solution can further be improved by 
removing one basic variable from the basis and replacing it by some non-basic one. 
Step 6: Revision of the Current Simplex Tableau. At each iteration, the Simplex Method 
moves from the current basic feasible solution to a better basic feasible solution. This 
involves replacing one current basic variable (called the departing variable) by a new non-
basic variable (called the entering variable). 

(a)   Determine which variable to enter into the solution-mix net. One way of doing 
this is by identifying the column (and hence the variable) with the most negative 
number in the ∆j row of the previous table. 

(b)   Determine the departing variable or variable to be replaced. Next we proceed to 
determine which variable must be removed from the basis to pave way for the 
entering variable. This is accomplished by dividing each number in the quantity 
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(or solution values) column by the corresponding number in the pivot column 
selected in (a), i.e., we compute the respective ratios b1/a1j, b2/a2j, bm/amj (only for 
those aijs; i=1,2, m which are strictly positive). These quotients are written in the 
last column labelled Minimum Ratio of the simplex tableau. The row 
corresponding to smallest of these non-negative ratios is called the pivot (or key) 
row and the corresponding basic variable will leave the basis. Let the minimum 
of { b1/a1j, b2/a2j, bm/amj ; aij > 0} be bk/akj , then corresponding variables in the 
pivot row sk will be termed as outgoing (or departing) variable in the next tableau 
to be constructed just after we put an arrow → of type to right of kth row of the 
simplex tableau 1. 

(c)    Identify the pivot number. The non-zero positive number that lies at the 
intersection of the pivot column and pivot row of the given table is called the 
pivot (or key) number. We place a circle around the number. 

Step 7: Evaluate (update) the new solution. After identifying the entering and departing 
variable, find the new basic feasible solution by constructing a new simplex tableau from 
the current one by using the following steps: 

(a)    Compute new values for the pivot row by simply dividing every element of the 
pivot row by the pivot number. 

(b)   New entries in the CB column and XB column are entered in the new table of the 
current solution 

(c)    Compute new values for each of the remaining rows by using the following 
formula 
New row numbers=Number in old rows-{(corresponding number above or below 
pivot number) x (corresponding number in the row replaced in (a))} 

(d)   Test for optimality. Compute the Zj and index rows as previously demonstrated 
in the initial simplex tableau. If all numbers in the index row are either zero or 
positive, an optimal solution has been made attained. i.e., there is no variable 
which can be introduced in the solution to cause the objective function value to 
increase. 

4.      Revise the solution. If any of the numbers in the index (∆j = Zj - Cj) row are negative, 
repeat the entire steps 5 & 6 again until an optimal solution has been obtained. 

The above procedure is illustrated through the following example. 

 

Example 1 

A firm produces three products A, B, and C each of which passes through three different 
departments fabrication, finishing, packaging. Each unit of product A requires 3, 4 and 2 
hours respectively, B requires 5, 4 and 4 hours respectively and C requires 2, 4 and 5 hours 
respectively in 3 departments respectively. Every day 60 hours are available in fabrication 
department, 72 hours in finishing and 100 hours in packaging department. If unit 
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contribution of unit A is Rs. 5, Rs. 10 for B and Rs. 3 for C. Then determine number of units 
of each product so that total contribution to cost is maximized and also determine if any 
capacity would remain unutilized. 

Solution:         

Step 1: Formulate this as LPP.  Let X1, X2 and X3 be the number of units produced of the 
products A, B and C respectively. 

 Objective function:        Max Z = 5X1 + 10X2 + 3X3 

 Subject to constraints:    3X1 + 5X2 + 2X3 ≤ 60 

 4X1 + 4X2 + 4X3 ≤ 72 

2X1 + 4X2 + 5X3 ≤ 100         X1, X2, X3 ≥ 0 

Step 2: Now converting into standard form of LPP 

                  Max Z= 5X1 + 10X2 + 3X3 + 0S1 + 0S2 + 0S3 

                  3X1 + 5X2 + 2X3 + S1 = 60 

                  4X1 + 4X2 + 4X3 + S2 = 72 

                  2X1 + 4X2 + 5X3 + S3 = 100                   X1, X2, X3, S1, S2, S3 ≥ 0 

                  where S1 ,S2 and S3 are slack variables. 

Step 3: Find the initial feasible solution .An initial basic feasible solution is obtained by 
setting   X1 =0, X2 = 0 and X3 = 0. Thus, we get S1 = 60, S2 = 72 and S3 =100. 
Step 4: Construct the starting (initial) simplex tableau. 

      Cj  
→ 

5 10 8 0 0 0   

  B.V. CB XB X1 X2 X3 S1 S2 S3 Minimum 
Ratio 

R1 S1 0 60 3 (5) 2 1 0 0 60/5=12  
R2 S2 0 72 4 4 4 0 1 0 72/4=18 
R3 S3 0 100 2 4 5 0 0 1 100/4=25 

      Zj 0 0 0 0 0 0   
      

 

−5 −10 −8 0 0 0   
                  

Step 5: The most negative value of ∆j is −10 hence X2 is the incoming variable (↑) and the 
least positive minimum ratio is 12 hence S1 is the outgoing variable (⟶). The element under 
column X2 and row R1   is the key element i.e. 5 so divide each element of row R1 by 5 

(i.e. ). Subtract appropriate multiples of this new row from the remaining rows, so 
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as to obtain zeros in the remaining positions. Performing the row 
operations  
we get the second Simplex tableau as    
          

      Cj → 5 10 8 0 0 0   
  B.V. CB XB X1 X2 X3 S1 S2 S3 M.R. 

 

X2 10 12 3/5 1 2/5 1/5 0 0 12/2/5=30 

 

S2 0 24 8/5 0 12/5 −4/5 1 0 24/12/5=10  

 

S3 0 52 -2/5 0 17/5 −4/5 0 1 52/17/5=15.294 

      Zj 6 10 4 2 0 0   
      

 

1 0 −4 2 0 0   
  

Step 6:  The most negative value of ∆j is -4 hence X3 is the incoming variable (↑) and the 
least positive minimum ratio is 10 hence S2 is the outgoing variable (). The element under 
column X2 and row 

R1   is the key element i.e. 5 so divide each element of row R2b by 12/5 (i.e. Rc → Rb * 
5/12). Subtract appropriate multiples of this new row from the remaining rows, so as to 
obtain zeros in the remaining positions. Performing the 

row operations . 

We get the third Simplex tableau as 

    Cj  → 5 10 8 0 0 0 

B.V. CB XB X1 X2 X3 S1 S2 S3 

X2 10 8 1/3 1 0 1/3 −1/6 0 
X3 8 10 2/3 0 1 −1/3 5/12 0 
S3 0 18 −8/3 0 0 1/3 −17/12 1 
    Zj 26/3 10 8 2/3 5/3 0 
    j 11/3 0 0 2/3 5/3 0 

It is apparent from this table that all ∆j =Zj − Cj are positive and therefore an optimum 
solutions is reached . So X1 = 0, X2 = 8, X3 = 10 

 Z = 5X1 + 10X2 + 8X3 = 160 

And  also as S3 is coming out to be 18 so there are 18 hours unutilized in finishing 
department. 
In case the objective function of the given LP problem is to be minimized, then we convert 
it into a problem of maximization by using 
Min. Z* = − Max. (−Z). The procedure of finding optimal solution using Simplex Method is 
illustrated through the following example: 
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1. Direct Search 

A direct search method is a method which relies only on evaluating f (x) on a sequence x1, x2, · · · 

and comparing values in order to calculate a minimizer of f(x) . Direct methods are usually applied 

in the following circumstance 

 

the function f (x) is not differentiable; 

the derivatives of f are complicated to compute or even do not exist; 

the function has few variables; 

the location of an optimal solution is roughly known. 

There are many direct search methods. Here we introduce the most popular five: 

 

Golden section method 

1. Fibonacci method 

2. Hooke and Jeeves’ method 

3. Spendley, Hext and Himsworth’s method 

4. Nelder and Mead’s method 

 

The first two methods deal with a function of a single variable, the rest four deal with a function of 

several variables. 

2. Golden section 

The first algorithm that I learned for root-finding in my undergraduate numerical analysis class 

(MACM 316 at Simon Fraser University) was the bisection method.  It’s very intuitive and easy to 

implement in any programming language (I was using MATLAB at the time).  The bisection 

method can be easily adapted for optimizing 1-dimensional functions with a slight but intuitive 

modification.  As there are numerous books and web sites on the bisection method, I will not dwell 

on it in my blog post. 

Instead, I will explain a clever and elegant way to modify the bisection method with the golden 

ratio that results in faster computation; I learned this method while reading “A First Course in 

Statistical Programming with R” by John Braun and Duncan Murdoch.  Using a script in R to 

implement this special algorithm, I will illustrate how to minimize a non-differentiable function with 

the golden section search method.  In a later post (for the sake of brevity), I will use the same 

method to show that the minimizer of the sum of the absolute deviations from a univariate data set is 

the median.  The R functions and script for doing everything are in another post as shown in figure 

1. 

http://en.wikipedia.org/wiki/Numerical_analysis
https://www.sfu.ca/
http://en.wikipedia.org/wiki/Bisection_method
http://en.wikipedia.org/wiki/Matlab
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/Differentiation_(mathematics)
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Median
https://chemicalstatistician.wordpress.com/2013/04/22/using-r-to-implement-the-golden-bisection-method/
https://chemicalstatistician.wordpress.com/2013/04/22/using-r-to-implement-the-golden-bisection-method/
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 Figure 1. Search Space 

 

The Fibonacci spiral approximates the golden spiral, a logarithmic spiral whose growth factor is 

the golden ratio. Source: Dicklyon , Minimization with the Bisection Method 

 

Assume that a single-variable continuous function has a unique minimum (and, thus, a unique 

minimizer) in a closed interval [a, b].  If this function is differentiable in [a, b], then calculus can be 

used easily to find the minimizer.  However, if the function has a cusp or a kink, then it’s not 

differentiable at that point, and numerical methods are needed instead.  For example, consider the 

following function as shown in figure 2. 

 

 

https://chemicalstatistician.files.wordpress.com/2013/04/fibonacci_spiral1.png
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Golden_spiral
http://en.wikipedia.org/wiki/Logarithmic_spiral
http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/File:Fibonacci_spiral_34.svg
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Minimum
http://en.wikipedia.org/wiki/Calculus
http://en.wikipedia.org/wiki/Numerical_method
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Figure 2. Golden Section Search Space  

Within the interval [1, 3], this function has a unique minimizer near x = 1.5, but it also has a cusp at 

x = 2.  Thus, it is not differentiable at x = 2.  A simple, stable, but slow numerical method to find the 

minimizer is the bisection method. 

To use the bisection method to find the minimizer, we can 

1) Pick 2 points,  and , with  and both points in [a, b]. 

2) Find  and . 

3) a) If , then the minimizer must be to the right of , because this unique minimizer 

must be less than , and the function is decreasing from  to . 

b) Otherwise (i.e. ), the minimizer must be to the left of  with logically analogous 

reasoning. 

4) i) If 3a is true, then the minimizer must be in the interval ; repeat the algorithm from Step 1 

until the interval length is smaller than some pre-set tolerance. 

ii) If 3b is true, then the minimizer must be in the interval ; repeat the algorithm from Step 

1 until the interval length is smaller than some pre-set tolerance. 

To summarize this algorithm, every iteration beings with 

https://chemicalstatistician.files.wordpress.com/2013/04/cusped-function.png
http://en.wikipedia.org/wiki/Bisection_method
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– the boundaries of the interval , 

– 2 test points for the argument,  and . 

The function is evaluated at  and , and, based on whether  or , a 

new set of boundaries and test points are set for the next iteration. 

 

Using the Golden Ratio to Set the Test Points 

Since the test points  and  are arbitrarily set, it comes as no surprise that the choice of the test 

points affects the speed of the computation.  A clever way to save computation time is to set the test 

points to take advantage of some special properties of the golden ratio, which Braun and Murdoch 

denote with  and has the value 

 

This number has many special properties that you can easily find on the web.  The one that will save 

computation time is 

 

Let the lower and upper bounds of the interval of interest be  and , respectively.  Now, let’s set the 

test points as 

 

 

The advantage of setting the test points as these above values comes when one of the new test points 

is updated.  Suppose that 

. 

Then the minimizer must be to the right of .  Thus,  becomes the new lower bound, which I will 

denote as .  The beauty of the golden ratio comes in calculating the new lower test point, which I 

will denote as . 

 

Since ,  becomes the new lower bound. 

 

Recall that 

 

Substituting the right-hand side of this above equation for  in the calculation of , some very 

simple algebraic manipulation yields 

 

Now, taking advantage of that special property of the golden ratio, , some more 

simple algebraic manipulation yields 

 

http://en.wikipedia.org/wiki/Golden_ratio
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Thus, the new lower test point is just the old upper test point.  This saves computation time, because 

we don’t need to compute a new lower test point; we can just recycle the value that we knew from 

the old upper test point! 

Similar logic for the case  will show that the new upper test point is simply the old 

lower test point.  Notationally, if 

, 

then 

. 

Using the Script to Numerically Minimize a Function 

In another post, you can find the function for implementing this special golden search method and 

the script for minimizing the above function with the cusp.  This script is basically the same as the 

one written by Braun and Murdoch on Pages 134-135 in their book.  My script used slightly more 

self-evident variable names and included debugging statements to help me to identify why my 

function was not working properly when I first wrote it.  Debugging statements are statements that 

show the values of key variables being computed in the flow of a script (and often 

within loops or branches) to identify the point in the flow at which the script stopped working 

properly.  My mathematical and statistical programming skills became much better when I began 

using debugging statements.  They are good for debugging, but should generally be commented out 

when the script is corrected and working properly.  Since the problems that I am solving are quite 

simple, I kept them in the script and will show part of the output to illustrate why they are useful. 

Recall the function with a cusp that I plotted above. 

 

 

Using my function, the initial boundaries 1 and 3, and an absolute tolerance of , here is what 

my function, golden.section.search(), returned in the first iteration. > golden.section.search(f, 1, 3, 

1e-5) 

 

Iteration # 1  

f1 = 0.8196601  

f2 = 1.763932  

f2 > f1  

New Upper Bound = 2.236068  

New Lower Bound = 1  

New Upper Test Point =  1.763932  

New Lower Test Point =  1.472136 

This function used 26 iterations to get the final answer. 

https://chemicalstatistician.wordpress.com/2013/04/22/using-r-to-implement-the-golden-bisection-method/
https://chemicalstatistician.wordpress.com/2013/04/22/using-r-to-implement-the-golden-bisection-method/
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Loop_(computing)#Loops
http://en.wikipedia.org/wiki/Conditional_branch
http://en.wikipedia.org/wiki/Debugging
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Iteration # 26  

f1 = 0.75  

f2 = 0.75  

 

f2 > f1  

New Upper Bound = 1.500003  

New Lower Bound = 1.499995  

New Upper Test Point =  1.5  

New Lower Test Point =  1.499998  

 

Final Lower Bound = 1.499995  

Final Upper Bound = 1.500003  

Estimated Minimizer = 1.499999 

 

3. Fibonacci Search Technique  

In computer science, the Fibonacci search technique is a method of searching a sorted array using 

a divide and conquer algorithm that narrows down possible locations with the aid of Fibonacci 

numbers. Compared to binary search where the sorted array is divided into two equal-sized parts, 

one of which is examined further, Fibonacci search divides the array into two parts that have sizes 

that are consecutive Fibonacci numbers. On average, this leads to about 4% more comparisons to be 

executed, but it has the advantage that one only needs addition and subtraction to calculate the 

indices of the accessed array elements, while classical binary search needs bit-shift, division or 

multiplication, operations that were less common at the time Fibonacci search was first published. 

Fibonacci search has an average- and worst-case complexity of O (log n).  

 

The Fibonacci sequence has the property that a number is the sum of its two predecessors. Therefore 

the sequence can be computed by repeated addition. The ratio of two consecutive numbers 

approaches the Golden ratio, 1.618... Binary search works by dividing the seek area in equal parts 

(1:1). Fibonacci search can divide it into parts approaching 1:1.618 while using the simpler 

operations. 

 

If the elements being searched have non-uniform access memory storage (i. e., the time needed to 

access a storage location varies depending on the location accessed), the Fibonacci search may have 

the advantage over binary search in slightly reducing the average time needed to access a storage 

location. If the machine executing the search has a direct mapped CPU cache, binary search may 

lead to more cache misses because the elements that are accessed often tend to gather in only a few 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Sorted_array
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/CPU_cache
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cache lines; this is mitigated by splitting the array in parts that do not tend to be powers of two. If 

the data is stored on a magnetic tape where seek time depends on the current head position, a 

tradeoff between longer seek time and more comparisons may lead to a search algorithm that is 

skewed similarly to Fibonacci search. 

 

 

Fibonacci search is derived from Golden section search, an algorithm by Jack Kiefer (1953) to 

search for the maximum or minimum of a uni modal function in an interval.  

 

4. Algorithm 

Let k be defined as an element in F, the array of Fibonacci numbers. n = Fm is the array size. If n is 

not a Fibonacci number, let Fm be the smallest number in F that is greater than n. 

 

The array of Fibonacci numbers is defined where Fk+2 = Fk+1 + Fk, when k ≥ 0, F1 = 1, 

and F0 = 0. 

To test whether an item is in the list of ordered numbers, follow these steps: 

Set k = m. 

If k = 0, stop. There is no match; the item is not in the array. 

Compare the item against element in Fk−1. 

 

If the item matches, stop. 

If the item is less than entry Fk−1, discard the elements from positions Fk−1 + 1 to n. Set k = k − 1 

and return to step 2. 

If the item is greater than entry Fk−1, discard the elements from positions 1 to Fk−1. Renumber the 

remaining elements from 1 to Fk−2, set k = k − 2, and return to step 2. 

Alternative implementation (from "Sorting and Searching": 

Given a table of records R1, R2, ..... RN whose keys are in increasing order K1 < K2 < ... < KN, the 

algorithm searches for a given argument K. Assume N+1 = Fk+1 

 

Step 1. [Initialize]  

i ← Fk, p ← Fk-1, q ← Fk-2 (throughout the algorithm, p and q will be consecutive Fibonacci 

numbers) 

Step 2. [Compare]  

If K < Ki, go to Step 3; if K > Ki go to Step 4; and if K = Ki, the algorithm terminates successfully. 

Step 3. [Decrease i]  

https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Golden_section_search
https://en.wikipedia.org/wiki/Jack_Kiefer_(statistician)
https://en.wikipedia.org/wiki/Unimodal_function
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If q=0, the algorithm terminates unsuccessfully. Otherwise set (i, p, q) ← (i - q, q, p - q) (which 

moves p and q one position back in the Fibonacci sequence); then return to Step 2 

Step 4. [Increase i] 

 If p=1, the algorithm terminates unsuccessfully. Otherwise set (i,p,q) ← (i + q, p - q, 2q - p) (which 

moves p and q two positions back in the Fibonacci sequence); and return to Step 2 

The two variants of the algorithm presented above always divide the current interval into a larger 

and a smaller subinterval. The original algorithm, however, would divide the new interval into a 

smaller and a larger subinterval in Step 4. This has the advantage that the new i is closer to the 

old i and is more suitable for accelerating search 

 

5. Bi Section Method 

 

The method is also called the interval halving method, the binary search method or the dichotomy 

method. This method is used to find root of an equation in a given interval that is value of ‘x’ for 

which f(x) = 0. 

The method is based on The Intermediate Value Theorem which states that if f(x) is a continuous 

function and there are two real numbers a and b such that f(a)*f(b) 0 and f(b) < 0), then it is 

guaranteed that it has at least one root between them. 

Steps: 

Find middle point c= (a + b)/2 . 

If f(c) == 0, then c is the root of the solution. 

Else f(c) != 0 

If value f(a)*f(c) < 0 then root lies between a and c. So we recur for a and c 

Else If f(b)*f(c) < 0 then root lies between b and c. So we recur b and c. 

Else given function doesn’t follow one of assumptions. 

Since root may be a floating point number, we repeat above steps while difference between a and b 

is less than a value  (A very small value) as shown in figure 3. 
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Figure 3. Bi Section  

In mathematics, the bisection method is a root-finding method that applies to any continuous 

functions for which one knows two values with opposite signs. The method consists of 

repeatedly bisecting the interval defined by these values and then selecting the subinterval in which 

the function changes sign, and therefore must contain a root. It is a very simple and robust method, but 

it is also relatively slow. Because of this, it is often used to obtain a rough approximation to a solution 

which is then used as a starting point for more rapidly converging methods. The method is also called 

the interval halving method, the binary search method, or the dichotomy method. For polynomials, 

more elaborated methods exist for testing the existence of a root in an interval (Descartes' rule of 

signs, Sturm's theorem, Budan's theorem. They allow extending bisection method into efficient 

algorithms for finding all real roots of a polynomial; see Real-root isolation. The method is applicable 

for numerically solving the equation f(x) = 0 for the real variable x, where f is a continuous 

function defined on an interval [a, b] and where f(a) and f(b) have opposite signs. In this 

case a and b are said to bracket a root since, by the intermediate value theorem, the continuous 

function f must have at least one root in the interval (a, b). At each step the method divides the interval 

in two by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that 

point. Unless c is itself a root (which is very unlikely, but possible) there are now only two 

possibilities: either f(a) and f(c) have opposite signs and bracket a root, or f(c) and f(b) have opposite 

signs and bracket a root. The method selects the subinterval that is guaranteed to be a bracket as the 

new interval to be used in the next step. In this way an interval that contains a zero of  is reduced in 

width by 50% at each step. The process is continued until the interval is sufficiently small. Explicitly, 

if f(a) and f(c) have opposite signs, then the method sets c as the new value for b, and if f(b) and f(c) 

https://media.geeksforgeeks.org/wp-content/uploads/bisection.jpg
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Bisection
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Descartes%27_rule_of_signs
https://en.wikipedia.org/wiki/Descartes%27_rule_of_signs
https://en.wikipedia.org/wiki/Sturm%27s_theorem
https://en.wikipedia.org/wiki/Budan%27s_theorem
https://en.wikipedia.org/wiki/Real-root_isolation
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Intermediate_value_theorem
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have opposite signs then the method sets c as the new a. (If f(c)=0 then c may be taken as the solution 

and the process stops.) In both cases, the new f(a) and f(b) have opposite signs, so the method is 

applicable to this smaller interval.  

 

6. Exhaustive Method 

 

For discrete problems in which no efficient solution method is known, it might be necessary to test 

each possibility sequentially in order to determine if it is the solution. Such exhaustive examination of 

all possibilities is known as exhaustive search, direct search, or the "brute force" method. Unless it 

turns out that NP-problems are equivalent to P-problems, which seems unlikely but has not yet been 

proved, NP-problems can only be solved by exhaustive search in the worst case. 

 

 

 

 

 
 

https://mathworld.wolfram.com/NP-Problem.html
https://mathworld.wolfram.com/P-Problem.html
https://mathworld.wolfram.com/NP-Problem.html
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1. Decision Tree Analysis 

 

A Decision Tree Analysis is a graphic representation of various alternative solutions that are 

available to solve a problem. The manner of illustrating often proves to be decisive when 

making a choice. A Decision Tree Analysis is created by answering a number of questions 

that are continued after each affirmative or negative answer until a final choice can be made. 

A Decision Tree Analysis is a scientific model and is often used in the decision making 

process of organizations. When making a decision, the management already envisages 

alternative ideas and solutions. By using a decision tree, the alternative solutions and 

possible choices are illustrated graphically as a result of which it becomes easier to make a 

well-informed choice. This graphic representation is characterized by a tree-like structure in 

which the problems in decision making can be seen in the form of a flowchart, each with 

branches for alternative choices. 

 

The Decision Tree Analysis makes good use of the ‘what if’ thought. There are several 

alternatives that consider both the possible risks and benefits that are brought about by 

certain choices. The possible alternatives are also made clearly visible and therefore the 

decision tree provides clarity with respect to the consequences of any decisions that will be 

made. 

 

Representation 

There are several ways in which a decision tree can be represented. This Analysis is 

commonly represented by lines, squares and circles. The squares represent decisions, the 

lines represent consequences and the circles represent uncertain outcomes. By keeping the 

lines as far apart as possible, there will be plenty of space to add new considerations and 

ideas. 

The representation of the decision tree can be created in four steps: 

Describe the decision that needs to be made in the square. 

Draw various lines from the square and write possible solutions on each of the lines. 

Put the outcome of the solution at the end of the line. Uncertain or unclear decisions are put 

in a circle. When a solution leads to a new decision, the latter can be put in a new square. 

Each of the squares and circles are reviewed critically so that a final choice can be made as 

shown in figure 1 and 2. 

https://whatagraph.com/blog/articles/data-visualization-techniques
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Figure 1. Decision Tree Model 1 

 

2. Decision Tree Analysis example 

Suppose a commercial company wishes to increase its sales and the associated profits in the 

next year. 

The different alternatives can then be mapped out by using a decision tree. There are two 

choice for both increase of sales and profits: 1- expansion of advertising expenditure and 2- 

expansion of sales activities. This creates two branches. Two new choices arise from choice 

1, namely 1-1 a new advertising agency and 1-2 using the services of the existing 

advertising agency. Choice 2 presents two follow-up choices in turn; 2-1-working with 

agents or 2-2- using its own sales force. 

 

Figure 2. Decision Tree Model 2 
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The above example illustrates that, in all likelihood, the company will opt for 1-2-2, because 

the forecast of this decision is that profits will increase by 12%. This Analysis is particularly 

useful in situations in which it is considered desirable to develop various alternatives of 

decisions in a structured manner as this will present a clear substantiation. This method is 

increasingly used by medical practitioners and technicians as it enables them to make a 

diagnosis or determine car problems. 

 

3. Utility Theory 

Utility theory bases its beliefs upon individuals’ preferences. It is a theory postulated in 

economics to explain behavior of individuals based on the premise people can consistently 

rank order their choices depending upon their preferences. Each individual will show 

different preferences, which appear to be hard-wired within each individual. We can thus 

state that individuals’ preferences are intrinsic. Any theory, which proposes to capture 

preferences, is, by necessity, abstraction based on certain assumptions. Utility theory is 

a positive theory that seeks to explain the individuals’ observed behavior and choices. The 

distinction between normative and positive aspects of a theory is very important in the 

discipline of economics. Some people argue that economic theories should be normative, 

which means they should be prescriptive and tell people what to do. Others argue, often 

successfully, that economic theories are designed to be explanations of observed behavior of 

agents in the market, hence positive in that sense. This contrasts with a normative theory, 

one that dictates that people should behave in the manner prescribed by it. Instead, it is only 

since the theory itself is positive, after observing the choices that individuals make, we can 

draw inferences about their preferences. When we place certain restrictions on those 

preferences, we can represent them analytically using a utility function—a mathematical 

formulation that ranks the preferences of the individual in terms of satisfaction different 

consumption bundles provide. Thus, under the assumptions of utility theory, we can assume 

that people behaved as if they had a utility function and acted according to it. Therefore, the 

fact that a person does not know his/her utility function, or even denies its existence, does 

not contradict the theory. Economists have used experiments to decipher individuals’ utility 

functions and the behavior that underlies individuals’ utility. 

 

To begin, assume that an individual faces a set of consumption “bundles.” We assume that 

individuals have clear preferences that enable them to “rank order” all bundles based on 

desirability, that is, the level of satisfaction each bundle shall provide to each individual. 

This rank ordering based on preferences tells us the theory itself has ordinal utility—it is 

designed to study relative satisfaction levels. As we noted earlier, absolute satisfaction 

depends upon conditions; thus, the theory by default cannot have cardinal utility, or utility 

that can represent the absolute level of satisfaction. To make this theory concrete, imagine 

that consumption bundles comprise food and clothing for a week in all different 
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combinations, that is, food for half a week, clothing for half a week, and all other possible 

combinations. 

 

4. The utility theory then makes the following assumptions: 

Completeness: Individuals can rank order all possible bundles. Rank ordering implies that 

the theory assumes that, no matter how many combinations of consumption bundles are 

placed in front of the individual, each individual can always rank them in some order based 

on preferences. This, in turn, means that individuals can somehow compare any bundle with 

any other bundle and rank them in order of the satisfaction each bundle provides. So in our 

example, half a week of food and clothing can be compared to one week of food alone, one 

week of clothing alone, or any such combination. Mathematically, this property wherein an 

individual’s preferences enable him or her to compare any given bundle with any other 

bundle is called the completeness property of preferences. 

 

More-is-better: Assume an individual prefers consumption of bundle A of goods to bundle 

B. Then he is offered another bundle, which contains more of everything in bundle A, that 

is, the new bundle is represented by αA where α = 1. The more-is-better assumption says 

that individuals prefer αA to A, which in turn is preferred to B, but also A itself. For our 

example, if one week of food is preferred to one week of clothing, then two weeks of food is 

a preferred package to one week of food. Mathematically, the more-is-better assumption is 

called the monotonicity assumption on preferences. One can always argue that this 

assumption breaks down frequently. It is not difficult to imagine that a person whose 

stomach is full would turn down additional food. However, this situation is easily resolved. 

Suppose the individual is given the option of disposing of the additional food to another 

person or charity of his or her choice. In this case, the person will still prefer more food even 

if he or she has eaten enough. Thus under the monotonicity assumption, a hidden property 

allows costless disposal of excess quantities of any bundle. 

 

Mix-is-better: Suppose an individual is indifferent to the choice between one week of 

clothing alone and one week of food. Thus, either choice by itself is not preferred over the 

other. The “mix-is-better” assumption about preferences says that a mix of the two, say half-

week of food mixed with half-week of clothing, will be preferred to both stand-alone 

choices. Thus, a glass of milk mixed with Milo (Nestlè’s drink mix), will be preferred to 

milk or Milo alone. The mix-is-better assumption is called the “convexity” assumption on 

preferences, that is, preferences are convex. 

 

Rationality: This is the most important and controversial assumption that underlies all of 

utility theory. Under the assumption of rationality, individuals’ preferences avoid any kind 

of circularity; that is, if bundle A is preferred to B, and bundle B is preferred to C, then A is 
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also preferred to C. Under no circumstances will the individual prefer C to A. You can 

likely see why this assumption is controversial. It assumes that the innate preferences (rank 

orderings of bundles of goods) are fixed, regardless of the context and time. 

 

If one thinks of preference orderings as comparative relationships, then it becomes simpler 

to construct examples where this assumption is violated. So, in “beats”—as in A beat B in 

college football. These are relationships that are easy to see. For example, if University of 

Florida beats Ohio State, and Ohio State beats Georgia Tech, it does not mean that Florida 

beats Georgia Tech. Despite the restrictive nature of the assumption, it is a critical one. In 

mathematics, it is called the assumption of transitivity of preferences. 

 

Whenever these four assumptions are satisfied, then the preferences of the individual can be 

represented by a well-behaved utility function. The assumption of convexity of preferences 

is not required for a utility function representation of an individual’s preferences to exist. 

But it is necessary if we want that function to be well behaved. Note that the assumptions 

lead to “a” function, not “the” function. Therefore, the way that individuals represent 

preferences under a particular utility function may not be unique. Well-behaved utility 

functions explain why any comparison of individual people’s utility functions may be a 

futile exercise (and the notion of cardinal utility misleading). Nonetheless, utility functions 

are valuable tools for representing the preferences of an individual, provided the four 

assumptions stated above are satisfied. For the remainder of the chapter we will assume that 

preferences of any individual can always be represented by a well-behaved utility function. 

As we mentioned earlier, well-behaved utility depends upon the amount of wealth the 

person owns. Utility theory rests upon the idea that people behave as if they make decisions 

by assigning imaginary utility values to the original monetary values. The decision maker 

sees different levels of monetary values, translates these values into different, hypothetical 

terms (“utils”), processes the decision in utility terms (not in wealth terms), and translates 

the result back to monetary terms. So while we observe inputs to and results of the decision 

in monetary terms, the decision itself is made in utility terms. And given that utility denotes 

levels of satisfaction, individuals behave as if they maximize the utility, not the level of 

observed dollar amounts. 

 

The analytic hierarchy process (AHP) is a structured technique for organizing and 

analyzing complex decisions, based on mathematics and psychology. It was developed 

by Thomas L. Saaty in the 1970s who partnered with Ernest Forman to develop Expert 

Choice in 1983, and has been extensively studied and refined since then. It represents an 

accurate approach for quantifying the weights of decision criteria. Individual experts’ 

experiences are utilized to estimate the relative magnitudes of factors through pair-wise 

comparisons. Each of the respondents has to compare the relative importance between the 

https://en.wikipedia.org/wiki/MCDA
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Psychology
https://en.wikipedia.org/wiki/Thomas_L._Saaty
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two items under special designed questionnaire (note that while most of the surveys adopted 

the five point likert scale, AHP's questionnaire is 9 to 1 to 9, see Li et al. (2019)   

 

5.  Analytic Hierarchy Process  

   Analytic Hierarchy Process (AHP) is one of Multi Criteria decision making method that 

was originally developed by Prof. Thomas L. Saaty. In short, it is a method to derive ratio 

scales from paired comparisons. The input can be obtained from actual measurement such as 

price, weight etc., or from subjective opinion such as satisfaction feelings and preference. 

AHP allow some small inconsistency in judgment because human is not always consistent. 

The ratio scales are derived from the principal Eigen vectors and the consistency index is 

derived from the principal Eigen value.  

 

Now let me explain what paired comparison is. It is always easier to explain by an example. 

Suppose we have two fruits Apple and Banana. I would like to ask you, which fruit you like 

better than the other and how much you like it in comparison with the other. Let us make a 

relative scale to measure how much you like the fruit on the left (Apple) compared to the 

fruit on the right (Banana) as shown figure 3.  

 

 

 

Figure 3. a Paired Comparison Representation 

 

If you like the apple better than banana, you thick a mark between number 1 and 9 on left 

side, while if you favor banana more than apple, then you mark on the right side.  

For instance I strongly favor banana to apple then I give mark like this  

 

Figure 3. b Paired Comparison Representation 
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Now suppose you have three choices of fruits. Then the pair wise comparison goes as the 

following  

 
 

   
 

 
 

    

 

 
 

 

Figure 3. c Paired Comparison Representation 

 

You may observe that the number of comparisons is a combination of the number of things 

to be compared. Since we have 3 objects (Apple, Banana and Cheery), we have 3 

comparisons. Table below shows the number of comparisons.  

Number of comparisons  

Number of things  1  2  3  4  5  6  7   

number of comparisons  0  1  3  6  10  15  21   

The scaling is not necessary 1 to 9 but for qualitative data such as preference, ranking and 

subjective opinions, it is suggested to use scale 1 to 9.  

In the next section you will learn how to analyze this paired comparisons  

Making Comparison Matrix (How to make reciprocal matrix?) 

By now you know how to make paired comparisons. In this section you will learn how to 

make a reciprocal matrix from pair wise comparisons. 

For example John has 3 kinds of fruits to be compared and he made subjective judgment on 

which fruit he likes best, like the following  

 

  

    

  

   
 

 

 
 

 Figure 3. d Paired Comparison Representation 

http://people.revoledu.com/kardi/tutorial/AHP/Comparison-Matrix.htm
http://people.revoledu.com/kardi/tutorial/AHP/Comparison-Matrix.htm
http://people.revoledu.com/kardi/tutorial/AHP/Comparison-Matrix.htm
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We can make a matrix from the 3 comparisons above. Because we have three comparisons, 

thus we have 3 by 3 matrix. The diagonal elements of the matrix are always 1 and we only 

need to fill up the upper triangular matrix. How to fill up the upper triangular matrix is using 

the following rules:  

 

If the judgment value is on the left side of 1, we put the actual judgment value.  

If the judgment value is on the right side of 1, we put the reciprocal value.  

 

Comparing apple and banana, John slightly favor banana, thus we put in the row 1 column 

2 of the matrix. Comparing Apple and Cherry, John strongly likes apple, thus we put actual 

judgment 5 on the first row, last column of the matrix. Comparing banana and cherry, 

banana is dominant. Thus we put his actual judgment on the second row, last column of the 

matrix. Then based on his preference values above, we have a reciprocal matrix like this 

 

To fill the lower triangular matrix, we use the reciprocal values of the upper diagonal. If 

is the element of row column of the matrix, then the lower diagonal is filled using this 

formula  

 

Thus now we have complete comparison matrix  

 

Notice that all the element in the comparison matrix are positive, or .  

Next section will discuss about how you will use this matrix. 

 

6. Priority Vectors 

Having a comparison matrix, now we would like to compute priority vector, which is the 

normalized Eigen vector of the matrix. If you would like to know what the meaning of 

Eigen vector and Eigen value is and how to compute them manually, go to my other tutorial 

and then return back here. The method that I am going to explain in this section is only an 

approximation of Eigen vector (and Eigen value) of a reciprocal matrix. This approximation 

is actually worked well for small matrix and there is no guarantee that the rank will not 

http://people.revoledu.com/kardi/tutorial/AHP/Priority%20Vector.htm
http://people.revoledu.com/kardi/tutorial/AHP/Priority%20Vector.htm
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reverse because of the approximation error. Nevertheless it is easy to compute because all 

we need to do is just to normalize each column of the matrix. At the end I will show the 

error of this approximation. 

Suppose we have 3 by 3 reciprocal matrix from paired comparison  

 

We sum each column of the reciprocal matrix to get  

 

Then we divide each element of the matrix with the sum of its column, we have normalized 

relative weight. The sum of each column is 1.  

 

The normalized principal Eigen vector can be obtained by averaging across the rows  

 

The normalized principal Eigen vector is also called priority vector . Since it is normalized, 

the sum of all elements in priority vector is 1. The priority vector shows relative weights 

among the things that we compare. In our example above, Apple is 28.28%, Banana is 

64.34% and Cherry is 7.38%. John most preferable fruit is Banana, followed by Apple and 

Cheery. In this case, we know more than their ranking. In fact, the relative weight is a ratio 

scale that we can divide among them. For example, we can say that John likes banana 2.27 

(=64.34/28.28) times more than apple and he also like banana so much 8.72 (=64.34/7.38) 

times more than cheery. 

Aside from the relative weight, we can also check the consistency of John's answer. To do 

that, we need what is called Principal Eigen value. Principal Eigen value is obtained from 

the summation of products between each element of Eigen vector and the sum of columns of 

the reciprocal matrix. 
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Computation and the meaning of consistency are explained in the next section. 

As a note, I put the comparison matrix into Matlab to see how different is the result of 

numerical computation of Eigen value and Eigen vector compared to the approximation 

above.  

 

 

We get three Eigen vectors concatenated into 3 columns of matrix  

 

The corresponding Eigen values are the diagonal of matrix  

 

The largest Eigen value is called the Principal Eigen value, that is which is 

very close to our approximation (about 1% error). The principal Eigen vector 

is the Eigen vector that corresponds to the highest Eigen value. 

 

The sum is 1.4081 and the normalized principal Eigen vector is  

 

This result is also very close to our approximation  

 

Thus the approximation is quite good. 

Thus the sum of Eigen vector is not one. When you normalized an Eigen vector, then you 

get a priority vector. The sum of priority vector is one. 

In next section you will learn how to make use of information of principal eige value to 

measure whether the opinion is consistent.  

 

 

 

http://people.revoledu.com/kardi/tutorial/AHP/Consistency.htm
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Consistency Index and Consistency Ratio 

What is the meaning that our opinion is consistent? How do we measure the consistency of 

subjective judgment? At the end of this section will be able to answer those questions. 

Let us look again on John's judgment that we discussed in the previous section. Is John 

judgment consistent or not? 

  

    

  

   
 

 

 
 

  Figure 3. e Paired Comparison Representation 

 

First he prefers Banana to Apple. Thus we say that for John, Banana has greater value than 

Apple. We write it as .  

Next, he prefers Apple to Cherry. For him, Apple has greater value than Cherry. We write it 

as .  

Since and , logically, we hope that or Banana must be preferable than 

Cherry. This logic of preference is called transitive property. If John answers in the last 

comparison is transitive (that he like Banana more than Cherry), then his judgment is 

consistent. On the contrary, if John prefers Cherry to Banana then his answer is inconsistent. 

Thus consistency is closely related to the transitive property.  

A comparison matrix is said to be consistent if for all , and . However, 

we shall not force the consistency. For example, has value and has value 

, we shall not insist that must have value . This too much consistency is 

undesirable because we are dealing with human judgment. To be called consistent , the rank 

can be transitive but the values of judgment are not necessarily forced to multiplication 

formula . 

  

Prof. Saaty proved that for consistent reciprocal matrix, the largest Eigen value is equal to 

the number of comparisons, or . Then he gave a measure of consistency, called 

Consistency Index as deviation or degree of consistency using the following formula  

 

 

http://people.revoledu.com/kardi/tutorial/AHP/Consistency.htm
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Thus in our previous example, we have and three comparisons, or , thus 

the consistency index is  

 

Knowing the Consistency Index, the next question is how do we use this index? Again, Prof. 

Saaty proposed that we use this index by comparing it with the appropriate one. The 

appropriate Consistency index is called Random Consistency Index ( ). 

He randomly generated reciprocal matrix using scale , , …, , …, 8, 9 (similar to the 

idea of Bootstrap) and get the random consistency index to see if it is about 10% or less. 

The average random consistency index of sample size 500 matrices is shown in the table 

below 

Random Consistency Index ( )  

n  1  2  3  4  5  6  7  8  9  10  

RI  0  0  0.58  0.9  1.12  1.24  1.32  1.41  1.45  1.49  

 

Then, he proposed what is called Consistency Ratio, which is a comparison between 

Consistency Index and Random Consistency Index, or in formula 

 

If the value of Consistency Ratio is smaller or equal to 10%, the inconsistency is acceptable. 

If the Consistency Ratio is greater than 10%, we need to revise the subjective judgment. 

For our previous example, we have and for is 0.58, then we have 

. Thus, John's subjective evaluation about his fruit 

preference is consistent. 

So far, in AHP we are only dealing with paired comparison of criteria or alternative but not 

both. In next section, I show an example to use both criteria and alternative in two levels of 

AHP.  

 

7. Illustrative example  

In this section, figure 4 shows an example of two levels AHP. The structure of hierarchy in 

this example can be drawn as the following  

http://people.revoledu.com/kardi/tutorial/AHP/AHP-Example.htm
http://people.revoledu.com/kardi/tutorial/AHP/AHP-Example.htm
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  Figure 4 AHP Levels 

 

Level 0 is the goal of the analysis. Level 1 is multi criteria that consist of several factors. 

You can also add several other levels of sub criteria and sub-sub criteria but I did not use 

that here. The last level (level 2 in figure above) is the alternative choices. You can see 

again Table 1 for several examples of Goals, factors and alternative choices. The lines 

between levels indicate relationship between factors, choices and goal. In level 1 you will 

have one comparison matrix corresponds to pair-wise comparisons between 4 factors with 

respect to the goal. Thus, the comparison matrix of level 1 has size of 4 by 4. Because each 

choice is connected to each factor, and you have 3 choices and 4 factors, then in general you 

will have 4 comparison matrices at level 2. Each of these matrices has size 3 by 3. However, 

in this particular example, you will see that some weight of level 2 matrices are too small to 

contribute to overall decision, thus we can ignore them. 

Based on questionnaire survey or your own paired comparison, we make several 

comparison matrices. Click here if you do not remember how to make a comparison matrix 

from paired comparisons. Suppose we have comparison matrix at level 1 as table below. 

The yellow color cells in upper triangular matrix indicate the parts that you can change in 

the spreadsheet. The diagonal is always 1 and the lower triangular matrix is filled using 

formula .  

 

Table 9: Paired comparison matrix level 1 with respect to the goal  

Criteria  A  B  C  D  Priority Vector  

A  1.00  3.00  7.00  9.00  57.39%  

B  0.33  1.00  5.00  7.00  29.13%  

C  0.14  0.20  1.00  3.00  9.03%  

D  0.11  0.14  0.33  1.00  4.45%  

Sum  1.59  4.34  13.33  20.00  100.00%  

=4.2692, CI = 0.0897, CR = 9.97% < 10% (acceptable)  
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The priority vector is obtained from normalized Eigen vector of the matrix. Click here if you 

do not remember how to compute priority vector and largest Eigen value from a 

comparison matrix. CI and CR are consistency Index and Consistency ratio respectively, as 

I have explained in previous section. For your clarity, I include again here some part of the 

computation:  

 

 

(Thus, OK because quite consistent)  

   

 

Random Consistency Index (RI) 

Suppose you also have several comparison matrices at level 2. These comparison matrices 

are made for each choice, with respect to each factor.  

 

Paired comparison matrix level 2 with respect to Factor A  

Choice  X  Y  Z  Priority Vector  

X  1.00  1.00  7.00  51.05%  

Y  1.00  1.00  3.00  38.93%  

Z  0.14  0.33  1.00  10.01%  

Sum  2.14  2.33  11.00  100.00%  

=3.104, CI = 0.05, CR = 8.97% < 10% (acceptable)  

   

Paired comparison matrix level 2 with respect to Factor B  

Choice  X  Y  Z  Priority Vector  

X  1.00  0.20  0.50  11.49%  

Y  5.00  1.00  5.00  70.28%  

Z  2.00  0.20  1.00  18.22%  

Sum  8.00  1.40  6.50  100.00%  

=3.088, CI = 0.04, CR = 7.58% < 10% (acceptable)  

   

We can do the same for paired comparison with respect to Factor C and D. However, the 

weight of factor C and D are very small (look at Table 9 again, they are only about 9% and 

5% respectively), therefore we can assume the effect of leaving them out from further 

consideration is negligible. We ignore these two weights as set them as zero. So we do not 

use the paired comparison matrix level 2 with respect to Factor C and D. In that case, the 

weight of factor A and B in Table 9 must be adjusted so that the sum still 100%  
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Adjusted weight for factor A =  

   

Adjusted weight for factor B =  

   

Then we compute the overall composite weight of each alternative choice based on the 

weight of level 1 and level 2. The overall weight is just normalization of linear combination 

of multiplication between weight and priority vector.  

   

 

 

 

Overall composite weight of the alternatives  

   Factor A  Factor B  Composite Weight  

(Adjusted) Weight  0.663  0.337     

Choice X  51.05%  11.49%  37.72%  

Choice Y  38.93%  70.28%  49.49%  

Choice Z  10.01%  18.22%  12.78%  

For this example, we get the results that choice Y is the best choice, followed by X as the 

second choice and the worst choice is Z. The composite weights are ratio scale. We can say 

that choice Y is 3.87 times more preferable than choice Z, and choice Y is 1.3 times more 

preferable than choice X. 

We can also check the overall consistency of hierarchy by summing for all levels, with 

weighted consistency index (CI) in the nominator and weighted random consistency index 

(RI) in the denominator. Overall consistency of the hierarchy in our example above is given 

by  

   

 

(Acceptable)  

   

Final Remark  

By now you have learned several introductory methods on multi criteria decision making 

(MCDM) from simple cross tabulation, using rank, and weighted score until AHP. Using 

Analytic Hierarchy Process (AHP), you can convert ordinal scale to ratio scale and even 

check its consistency. 
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1. Constrained and Unconstrained Optimization 

   

 

 

Figure 1. Constrained and Unconstrained Optimization 

 

Input description: A function  . 

Problem description: What point  maximizes (or minimizes) the function f? 

Discussion: Most of this book concerns algorithms that optimize one thing or another. This 

section considers the general problem of optimizing functions where, due to lack of 

structure or knowledge, we are unable to exploit   the problem-specific algorithms seen 

elsewhere in this book. 

Optimization arises whenever there is an objective function that must be tuned for optimal 

performance.   Suppose we are building a program to identify good stocks to invest in.   We 

have available certain financial data to analyze, such as the price-earnings ratio, the interest 

and inflation rates, and the stock price, all as a function of time t as shown in figure 1. The 

key question is how much weight we should give to each of these factors, where these 

weights correspond to coefficents of a formula: 

 

 

 

We seek the numerical values  ,  ,  ,  whose stock-goodness function does the best job 

of evaluating stocks.    Similar issues arise in tuning evaluation functions for game playing 

programs such as chess. 

Unconstrained optimization problems also arise in scientific computation.   Physical systems 

from protein structures to particles naturally seek to minimize their ``energy functions.'' 

Thus programs that attempt to simulate nature often define energy potential functions for the 

possible configurations of objects and then take as the ultimate configuration the one that 

minimizes this potential.    
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Global optimization problems tend to be hard, and there are lots of ways to go about 

them.   Ask the following questions to steer yourself in the right direction: 

 

Am I doing constrained or unconstrained optimization? - In unconstrained 

optimization,   there are no limitations on the values of the parameters other than that they 

maximize the value of f. Often, however, there are costs or constraints on these parameters. 

These constraints make certain points illegal, points that might otherwise be the global 

optimum. Constrained optimization problems typically require mathematical programming 

approaches like linear programming, discussed in Section  

 

Is the function I am trying to optimize described by a formula or data? - If the function that 

you seek to optimize is presented as an algebraic formula (such as the minimum 

of  ), the solution is to analytically take its derivative f'(n) and see for 

which points p' we have f'(p') = 0.   These points are either local maxima or minima, which 

can be distinguished by taking a second derivative or just plugging back into f and seeing 

what happens.     Symbolic computation systems such as Mathematica and Maple are 

fairly     effective at computing such derivatives, although using computer algebra systems 

effectively is somewhat of a black art. They are definitely worth a try, however, and you can 

always use them to plot a picture of your function to get a better idea of what you are 

dealing with. 

 

How expensive is it to compute the function at a given point? - If the function f is not 

presented as a formula, what to do depends upon what is given. Typically, we have a 

program or subroutine that evaluates f at a given point, and so can request the value of any 

given point on demand. By calling this function, we can poke around and try to guess the 

maxima. Our freedom to search in such a situation depends upon how efficiently we can 

evaluate f. If f is just a complicated formula, evaluation will be very fast.   But suppose 

that f represents the effect of the coefficients  on the performance of the board 

evaluation function in a computer chess program, such that  is how much a pawn is 

worth,  is how much a bishop is worth, and so forth. To evaluate a set of coefficients as a 

board evaluator, we must play a bunch of games with it or test it on a library of known 

positions.   Clearly, this is time-consuming, so we must be frugal in the number of 

evaluations of f we use. 

How many dimensions do we have? How many do we need? - The difficulty in finding a 

global maximum increases rapidly with the number of dimensions (or parameters). For this 

reason, it often pays to reduce the dimension by ignoring some of the parameters. This runs 

counter to intuition, for the naive programmer is likely to incorporate as many variables as 

possible into their evaluation function. It is just too hard to tweak such a complicated 

function. Much better is to start with the 3 to 5 seemingly most important variables and do a 
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good job optimizing the coefficients for these. Figure 2 represents step by step procedure for 

problem solving  

 

How smooth is my function? The main difficulty of global optimization is getting trapped in 

local optima.   Consider the problem of finding the highest point in a mountain range.     If 

there is only one mountain and it is nicely shaped, we can find the top by just walking in 

whatever direction is up. However, if there are many false summits or other mountains in 

the area, it is difficult to convince ourselves whether we are really at the highest 

point. Smoothness is the property that enables us to quickly find the local optimum from a 

given point.   We assume smoothness in seeking the peak of the mountain by walking up. If 

the height at any given point was a completely random function, there would be no way we 

could find the optimum height short of sampling every single point. 

 

Efficient algorithms for unconstrained global optimization use derivatives and partial 

derivatives to find local optima, to point out the  

Today I will just solve few problems which I explained in the last class regarding the 

maxima, minima and the saddle point identification of non-linear programming problem. 

Now again we are concentrating on one dimensional unconstrained non-linear programming 

problem. Let me take few examples on that. 

 

(Credit to NPTEL) 

 

Figure 2 a.  Problem Solving Steps 

 

This is one of example. The function has been given as . We need to find 

out the minimum maximum and if there is any saddle point or not. 
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Credit to NPTEL                     

Figure 2 b.  Problem Solving Steps 

 

Now, if the function  is giving to you, now the process is that now, one thing you 

have to just see the pattern of the function. First of all, if you can find out the pattern of the 

function, that would be nice. Now for finding out the pattern we have to judge whether the 

function has in which part of the interval function has the convexity and which part of the 

interval function has the concavity. Now once the function has been given us a convex 

function in certain interval, here there is no restriction on the decision variable that is why 

this is unrestricted in sign. x can take any value from minus infinity to plus infinity. 

 

Now if you cons, if you just check in which interval function has the convexity. Then we 

can declare that within that interval there must be certain minimum point. I explained you in 

the last class regarding this. And if the function has the concave part in the some other 

region then function must be having the maximum value within that. And if the function is 

changing from convex to concavity; that means the pattern of the function is just changing 

in certain point then that must be the saddle point. 

 

Now I am not going into that geometry of the function of these let us try to solve this 

function first. For doing that thing the necessary conditions suggest such we will find out the 

first order derivative of the function  . Then we will equate to 0 then we will get 

the     stationary     points     of     these.     If     we     considered     the     first     order   a 
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derivative 

 

Now, if , then we must be getting there are three stationary points for this one is 0 

another one is -3 and another one is 1. Now for checking the maximum and minimum of the 

function we will go for the second order derivative of . Then it 

would be . Let us see what is happening in individual 3 

stationary points. At , we get that   as well as the  that means

 must be the minimum point all right. 

 

Now, let us go to the next . Then we are getting 

    if we consider . Our sufficient conditions suggest that we will go for 

third order derivative of x. Now third order derivative is coming as 

. At this value is coming . That must be positive 

since you we see that 

from the sufficient condition that third order derivative is positive. That is why we cannot 

we cannot go further we have to declare then these must be a saddle point all right, at

 must be changing is it is pattern. 

 

Now,   let   us go  for ,    that means,  at there is a maximum 

point. 

Now, if this is the information we are getting from the necessary and sufficient  condition, 

what we can see from the function that -3, if I just take the interval from -3 to 

+3 we see at -3 there is a maximum point; that means, the function must be concave. After 

that it is going to zero; that means we are reaching to the minimum point; that means around 

0 that function must be convex. And after that the function is changing it is pattern. 

 

If I just draw it just we see that we will get this function. 
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(Credit to NPTEL) 

Figure 2 c.  Problem Solving Steps 

 

Now, what we see here at -3, we are getting the maximum value and at 1, it is changing the 

pattern and 0 there is a minimum value for the function. 

 

 

 

(Credit to NPTEL) 

Figure 2 d.  Problem Solving Steps 
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Now, that is why the next level of problem next level of calculations are coming that call the 

numerical optimization I was mentioning. Now let us take another problem. Now for this 

problem we are trying to sketch the function. 
 

Solve the Problem:  

First then we will go  for the maximum minima of the function this is the function  for  us 

. Now if I just ask you just tell me how to case this 

function. One thing we can do that we will first find out the concavity part and the convexity 

part of this function. 

Now, for doing this thing for finding out the convexity or concavity, you know we have to 

find out the second order derivative of the function. Now if the second order derivative if it 

is positive, one thing is either convex or concave. What is that? As we know if >0; that 

means, we are getting the convexity of the function. And if f we are getting the 

concavity of the function. That is why let us see the value of .Now the x is again is not 

persisted. It can move from orgin. That is why just to excel I was finding out few values for 

x and the corresponding  and try to find out the values for . What we could see 

here, if  we considered the  values just  you  see from -1.2, -1.1, -1, -0.9, if it is moving 

further at 0 the value is 0, and after it is going to minus then it is going to plus, where it is 

going the changing it is pattern just look at the excel file you could see the it is changing it 

pattern at 1. Now we try to draw the picture of it and we could find out this  is the picture of 

. What we could see in the .that, after -1 the function value is the    x is 

coming negative. After that 0 it is positive. And at 0 we  are we will see this is  not a 

function  this is . That is why must function must be having the concave pattern 

convex pattern here  is negative that is why. After the taking we are getting the 

negative value and after one it is changing from negative to positive. It is not maintaining 

before one and after one the pattern is not being maintained from convexity to concavity it is 

going. 

That is why I just draw the function after that just you see. We are getting the convex 

concave part at -3 and at 0 we are getting the convex part of the function. 

 

Again at one it is changing is pattern from minus from the concavity to convexity. That is 

the thing, now we are applying the classical optimization technique for maxima and 

minimum. Now if we just look at the function we could see the minimize coming at 0, and 

maximize coming at -1. And after that we are having the changing pattern at one. That is 

why the first order derivative. We could see now oh no at -1 also just we could see that is it 

is changing it is pattern, the stationary points are . Now  is these
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and  we  could see at , if    is positive that is why it is having the minimum value, all 

right. And at    is coming 0, but  is not 0. That is why we can see we can 

say that seems the aim is here or that is why  that must be the point of inflections at point 

+1 and  -1.  From the picture of also we can see the same pattern.  That is  why see if  the 

function is given by judging the convexity concavity part minimum maximum part, we can 

sketch the function rough sketch we can have of the function all right, but the exact for 

getting the exact picture of the function we need to study something more than that. That is 

the asymptote and all other properties, we need to find out then only we can sketch the 

function better otherwise a rough sketch we will get true this only. 

 

Solve the Problem:  

 

 

Now this is another problem just see. Now a farmer has statistical records showing that if 25 

orange trees are planted each tree would yield 500 oranges, but there is information that, if 

we plant only one tree extra, then 10 oranges per tree will reduce. Now the question is given 

to you how many tree should be planted for maximum total yield. For normal case we are 

getting 500 oranges from a tree. Now, but it the next information if we plant one tree extra 

from each tree 10 oranges will be reduce; that means, we will get from each plant. Now the 

question is that how many trees should be planted. So, that maximum yield will come. 
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Now let us to construct is problem we have to just construct function for solving this. Now 

let me solve it manually and step by step procedure as shown in figure 3. 

(Credit to NPTEL) 

 

Figure 3 a.  Problem Solving Steps 

 

Let me considered the variable x as number of trees the farmer is planting in excess of 25. 

Because the initially the information has been given that in the normal case is planting 25 

plants. That is why in x is we are considering x plants are being planted. If x is equal to 1 

then how many how much yield he will get he will get  because there 

are 25 plants. Now, if there are x number of plants, then what should be  the number of for 

plants all together it would total number of plants. Now how   much    yield    I   will   

get?    If    it   is   normal   we   will   get  I   will   get   total yield  . 

Now I have to maximize this. This is my question, because I have to maximize the total 

number of yield all right. 

 

Now, if this is a problem for us then just look at the function this function is coming as 

 all right we have to maximize this function. Now let us apply the 

classical optimization technique, what we are getting  That is why 

the stationary points are if  I just equate to 0, gives me that  let us find out 

 for this.  That means always it is negative. That is why it is suggested 

that you plant 12.5 numbers of trees for getting maximum yield. 
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But you see the problem is such a problem here certainly, there is a restriction on the 

decision variable x that always x has to be positive. It cannot be negative number of trees 

cannot be negative. What else you are getting the restriction number of tree should be 

discrete. That is why this kind of optimization problem is being named as the discrete 

optimization problem, but you will see if we just find out feasible space the feasible space 

here we are considering the whole range from x is equal to 0 to 0 , which is totally 

continuous, but that should not be the always we will have the value for x is 1, 2, 3, 4, 5,.. 

Etcetera integer numbers. 

 

Now, we are getting. That is why this process is not correct process to judge that we are 

getting the result nice result for it. That is why that is the disadvantage of using the classical 

optimization technique. Now that is why there is another series of techniques available that 

is called numerical optimization technique. There is range of variations of the 

methodologies. Now today I will just discuss one simple methodology for solving through 

the numerical optimization. And the advantage is that even the space is discrete, we cannot 

use those methodologies and nicely we can get the solution of it the very well-known 

method you must have been learned it that is the interval having process. 

 

(Credit to NPTEL) 

Figure 3 b.  Problem Solving Steps 
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Now, before to that I get certain values I was calculating certain values for affects. And I 

just  draw the picture of it.  And certainly we are getting that at we are getting the 

optimal solution. 

That here if we see we are getting the points    we would calculate. Now 

one thing is that one thing we can say that within the range of 0 to 21 function is unimodal. 

That is why whenever we are getting a function it is a better practice for us to 

just judge the property of the function, let us draw it for if I am having the tool. If I am 

having any softer for plotting the graph do it otherwise just use excel as I did here. Just 

simple excel will be sufficient for you. Put the value of x and calculate the value of  and 

draw it. That is why classical optimization suggested 12.5 it is very much correct. 

 

Figure 3 a.  Problem Solving Steps 

 

(Credit to NPTEL) 

Figure 3 c.  Problem Solving Steps 

 

Now, this is not accepted. That is why we are going to the next level of technique 

optimization technique through which we will solve the problem this is the very well- 

known methodology. All of you must have been done in numerical analysis interval halving 

process. There is another name to it that is called the by section method. We will solve the 

same problem and we will see how nicely we will get the solution for the same problem 

where the solution will be we can consider as integer all right. 

 

Now let me tell you the steps of interval halving method first. Now the first step it saying 

that whenever interval halving method is tells you that, as we could see from the function 
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fact and that always from maximum is there from 0 to 21. That is why it is suggested that let 

me considered 20. It is suggested that always from 0 to 20 you make the interval half of it. 

That is why we will get one part [0, 10] and another part [10, 20]. After that each part you 

make you half it, that is why will get [0, 5], [5, 10], [10, 15], [10, 20]. That is why initially 

what you do you take the left point of the interval and the right point on the interval and in 

between in equally use space 3 points. So, that whole interval can be divided in to 4 parts. 

The process tells you that the interval is called is the interval of uncertainty, because we do 

not know that is totally uncertain to us where the optima lie. Only thing we have some 

information function is unimodal in between 0 to 20. 

 

(Credit to NPTEL) 

Figure 3 d.  Problem Solving Steps 

 

 

If  I just draw the intervals, that interval will be . Now we could see here that 

we are getting the point  that is the middle point of   middle point of   and the  

middle  point  of . Just look at the methodology we have written here   

and we are looking for the minimum value of the function certainly we are function is uni 

modal. That is why there is only one more there only one 
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Minimum within the interval. That is the minimal cannot lie from within this region from  

because function is gradually increasing. That is why we will discard a part of the interval, which 

part we will discard we will discard the part from . And we will get a new interval of 

uncertainty as  all right. 

 

Let us consider the other case that ; that means, in the left side function is increasing 

and then in the right side function is decreasing, but if I just minimize the function certainly, in 

the left side function minimum cannot lie all right. That is why will discard that part that is why 

you see we have written the methodology delete  and you considered new interval of 

uncertainty as . 

 

Now, the other case, if  we con if we see that   ; that means, we are getting 

the around  we are having the minimum and  one side this having the higher value  one side 

higher value; that means, the minimum cannot lie bellow to and the beyond to     . That is why 

will get the new interval of uncertainty as . After what we will do once we will get the 

new interval of uncertainty, that one will consider at the initial interval of uncertainty we repeat 

the process. We will again find out 4 parts of the interval, we will find out new . we will repeat 

the process  again  and again and how long we will do in repeat the process as long as the 

interval of uncertainty is very small. 

 

Or we have certain target that we want to get accuracy of 10%, accuracy of 5%. Then we can 

have the better pross this process can give us that kind of accuracy. In that way will we will get 

the solution. Now this is one of the method numerical optimization. What even numerical 

optimization method we will get we will see everywhere the challenge lies how to select . 

Because these are only the guiding points for selecting the minimum value of the function. That 

is why from the next class I will give you few more nice methodologies. And after learning all 

the methodologies together we will just compare all the methodologies, that is all for today. 

 

 

 

 

 

 

 

 

 



1 
Advanced Optimization Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – V – Advanced Optimization Methods – SPRA5301 



2 
Advanced Optimization Method 

1.  Swarm Intelligence 

Swarm Intelligence systems employ large numbers on using fuzzy systems, Tabu Search and 

Scatter Search, Ant colony algorithm, Multi Response optimization - Gray Relational Analysis. 

2. Heuristic Algorithm  

A heuristic algorithm is one that is designed to solve a problem in a faster and more efficient 

fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness 

for speed. Heuristic algorithms often times used to solve NP-complete problems, a class of 

decision problems. In these problems, there is no known efficient way to find a solution quickly 

and accurately although solutions can be verified when given. Heuristics can produce a solution 

individually or be used to provide a good baseline and are supplemented with optimization 

algorithms. Heuristic algorithms are most often employed of agents interacting locally with one 

another and the environment. Swarm intelligence refers to the collective behavior of 

decentralized systems and can be used to describe both natural and artificial systems. Specific 

algorithms for this class of system include the particle swarm optimization algorithm, the ant 

colony optimization algorithm, and artificial bee colony algorithm. Each of the previous 

algorithms was inspired by the natural, self-organized behavior of animals. 

3. Tabu Search 

This heuristic technique uses dynamically generated tabus to guide the solution search to 

optimum solutions. It examines potential solutions to a problem and checks immediate local 

neighbors to find an improved solution. The search creates a set of rules dynamically and 

prevents the system from searching around the same area redundantly by marking rule violating 

solutions as “tabu” or forbidden. This method solves the problem of local search methods when 

the search is stuck in suboptimal regions or in areas when there are multiple equally fit solutions. 

 

4. Simulated Annealing 

Borrowing the metallurgical term, this technique converges to a solution in the same way metals 

are brought to minimum energy configurations by increasing grain size. Simulated annealing is 

used in global optimization and can give a reasonable approximation of a global optimum for a 

function with a large search space. At each iteration, it probabilistically decides between staying 

at its current state or moving to another while ultimately leading the system to the lowest energy 

state.2 

5. Genetic Algorithms 

Genetic algorithms are a subset of a larger class of evolutionary algorithms that describe a set of 

techniques inspired by natural selection such as inheritance, mutation, and crossover. Genetic 

algorithms require both a genetic representation of the solution domain and a fitness function to 

evaluate the solution domain. The technique generates a population of candidate solutions and 

http://people.revoledu.com/kardi/tutorial/AHP/AHP-Example.htm
http://people.revoledu.com/kardi/tutorial/AHP/AHP-Example.htm
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uses the fitness function to select the optimal solution by iterating with each generation. The 

algorithm terminates when the satisfactory fitness level has been reached for the population or 

the maximum generations have been reached. 

 

6. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are models capable of pattern recognition and machine 

learning, in which a system analyzes a set of training data and is then able to categorize new 

examples and data. ANNs are influenced by animals’ central nervous systems and brains, and are 

used to solve a wide variety of problems including speech recognition and computer vision.1 

Support Vector Machines 

Support Vector Machines (SVMs) are models with training data used by artificial intelligence to 

recognize patterns and analyze data. These algorithms are used for regression analysis and 

classification purposes. Using example data, the algorithm will sort new examples into 

groupings. These SVMs are involved with machine learning, a subset of artificial intelligence 

where systems learn from data, and require training data before being capable of analyzing new 

examples.1 

 

6.1  Neural Network Theory  

Starting with measured data from some known or unknown source, a neural network may be 

trained to perform classification, estimation, simulation, and prediction of the underlying process 

generating the data. Hence, neural networks, or neural nets, are software tools designed to 

estimate relationships in data. An estimated relationship is essentially a mapping, or a function, 

relating raw data to its features. The Neural Networks package supports several function 

estimation techniques that may be described in terms of different types of neural networks and 

associated learning algorithms. 

The general area of artificial neural networks has its roots in our understanding of the human 

brain. In this regard, initial concepts were based on attempts to mimic the brain's way of 

processing information. Efforts that followed gave rise to various models of biological neural 

network structures and learning algorithms. This is in contrast to the computational models found 

in this package, which are only concerned with artificial neural networks as a tool for solving 

different types of problems where unknown relationships are sought among given data. Still, 

much of the nomenclature in the neural network arena has its origins in biological neural 

networks, and thus, the original terminology will be used alongside with more traditional 

nomenclature from statistics and engineering. 
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7. Function Approximation 

When input data originates from a function with real-valued outputs over a continuous range, the 

neural network is said to perform a traditional function approximation. An example of an 

approximation problem could be one where the temperature of an object is to be determined 

from secondary measurements, such as emission of radiation. Another more trivial example 

could be to estimate shoe size based on a person's height. These two examples involve models 

with one input and one output. A more advanced model of the second example might use gender 

as a second input in order to derive a more accurate estimate of the shoe size. 

Pure functions may be approximated with the following two network types: 

 

Feedforward Neural Networks  

Radial Basis Function Networks  

 

8. Feedforward Neural Networks 

Feedforward neural networks (FF networks) are the most popular and most widely used models 

in many practical applications. They are known by many different names, such as "multi-layer 

perceptrons." Figure illustrates a one-hidden-layer FF network with inputs ,...,  and output . 

Each arrow in the figure symbolizes a parameter in the network. The network is divided into 

layers. The input layer consists of just the inputs to the network. Then follows a hidden layer, 

which consists of any number of neurons, or hidden units placed in parallel. Each neuron 

performs a weighted summation of the inputs, which then passes a nonlinear activation 

function , also called the neuron function as shown in figure 1. 

 

 

Figure 1. Neural Network 

. A feedforward network with one hidden layer and one output. Mathematically the functionality 

of a hidden neuron is described by 

 

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.5.1.html
http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.5.2.html
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where the weights { , } are symbolized with the arrows feeding into the neuron. 

The network output is formed by another weighted summation of the outputs of the neurons in 

the hidden layer. This summation on the output is called the output layer. In Figure there is only 

one output in the output layer since it is a single-output problem. Generally, the number of output 

neurons equals the number of outputs of the approximation problem. 

 

The neurons in the hidden layer of the network in Figure  are similar in structure to those of the 

perceptron, with the exception that their activation functions can be any differential function. 

The output of this network is given by 

 

 

where n is the number of inputs and nh is the number of neurons in the hidden layer. The 

variables { , , , } are the parameters of the network model that are represented 

collectively by the parameter vector . In general, the neural network model will be represented 

by the compact notation g( ,x) whenever the exact structure of the neural network is not 

necessary in the context of a discussion. 

Some small function approximation examples using an FF network can be found in Section 5.2. 

Note that the size of the input and output layers are defined by the number of inputs and outputs 

of the network and, therefore, only the number of hidden neurons has to be specified when the 

network is defined. The network in Figure 2.5 is sometimes referred to as a three-layer network, 

counting input, hidden, and output layers. However, since no processing takes place in the input 

layer, it is also sometimes called a two-layer network. To avoid confusion this network is called 

a one-hidden-layer FF network throughout this documentation. 

In training the network, its parameters are adjusted incrementally until the training data satisfy 

the desired mapping as well as possible; that is, until ( ) matches the desired output y as closely 

as possible up to a maximum number of iterations. The nonlinear activation function in the 

neuron is usually chosen to be a smooth step function. The default is the standard sigmoid as 

shown in figure 2 

 

that looks like this. 

In[1]:=  

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.4.0.html
http://reference.wolfram.com/applications/neuralnetworks/FeedforwardNetwork/5.2.0.html
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Figure 2. Performance Evaluation 

 

The FF network in Figure is just one possible architecture of an FF network. You can modify the 

architecture in various ways by changing the options.  

 

9. Multilayer Networks  

The package supports FF neural networks with any number of hidden layers and any number of 

neurons (hidden neurons) in each layer. In Figure a multi-output FF network with two hidden 

layers is shown in figure. 

 

Figure 3. Multilayer Network 

 

A multi-output feed forward network with two hidden layers. 

The number of layers and the number of hidden neurons in each hidden layer are user design 

parameters. The general rule is to choose these design parameters so that the best possible model 

with as few parameters as possible is obtained. This is, of course, not a very useful rule, and in 

practice you have to experiment with different designs and compare the results, to find the most 

suitable neural network model for the problem at hand. For many practical applications, one or 

two hidden layers will suffice. The recommendation is to start with a linear model; that is, neural 

networks with no hidden layers, and then go over to networks with one hidden layer but with no 

more than five to ten neurons. As a last step you should try two hidden layers. 
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10. Radial Basis Function Networks 

After the FF networks, the radial basis function (RBF) network comprises one of the most used 

network models. Figure  illustrates an RBF network with inputs ,...,  and output . The arrows 

in the figure symbolize parameters in the network. The RBF network consists of one hidden 

layer of basis functions, or neurons. At the input of each neuron, the distance between the neuron 

center and the input vector is calculated. The output of the neuron is then formed by applying the 

basis function to this distance. The RBF network output is formed by a weighted sum of the 

neuron outputs and the unity bias shown in figure 4. 

 

Figure 4. RBF network with one output. 

 

The RBF network in Figure is often complemented with a linear part. This corresponds to 

additional direct connections from the inputs to the output neuron. Mathematically, the RBF 

network, including a linear part, produces an output given by 

 

where nb is the number of neurons, each containing a basis function. The parameters of the RBF 

network consist of the positions of the basis functions , the inverse of the width of the basis 

functions , the weights in output sum , and the parameters of the linear part ,..., . In most 

cases of function approximation, it is advantageous to have the additional linear part but it can be 

excluded by using the options. 

The parameters are often lumped together in a common variable to make the notation compact. 

Then you can use the generic description g( ,x) of the neural network model, where g is the 

network function and x is the input to the network. 

 

In training, the network the parameters are tuned so that the training data fits the network model 

Eq. (2.10) as well as possible. In Eq. (2.10) the basis function is chosen to be the Gaussian bell 
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function. Although this function is the most commonly used basis function, other basis functions 

may be chosen. Also, RBF networks may be multi-output as illustrated in Figure 2.8. 

 

Figure 5. Multi-output RBF network 

 

FF networks and RBF networks can be used to solve a common set of problems. The built-in 

commands provided by the package and the associated options are very similar. Problems where 

these networks are useful include: 

Function approximation 

Classification 

Modeling of dynamic systems and time series 

 

11. Dynamic Neural Networks 

Techniques to estimate a system process from observed data fall under the general category of 

system identification. Figure 6 illustrates the concept of a system. 

 

Figure 6. System 

A system with input signal u, disturbance signal e, and output signal y 

 

Loosely speaking, a system is an object in which different kinds of signals interact and produce 

an observable output signal. A system may be a real physical entity, such as an engine, or 

entirely abstract, such as the stock market. There are three types of signals that characterize a 

system, as indicated. The output signal y(t) of the system is an observable/measurable signal, 

which you want to understand and describe. The input signal u(t) is an external measurable 
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signal, which influences the system. The disturbance signal e(t) also influences the system but, in 

contrast to the input signal, it is not measurable. All these signals are time dependent. 

In a single-input, single-output (SISO) system, these signals are time-dependent scalars. In the 

multi-input, multi-output (MIMO) systems, they are represented by time-dependent vectors. 

When the input signal is absent, the system corresponds to a time-series prediction problem. This 

system is then said to be noise driven, since the output signal is only influenced by the 

disturbance e(t). The Neural Networks package supports identification of systems with any 

number of input and output signals. A system may be modeled by a dynamic neural network that 

consists of a combination of neural networks of FF or RBF types, and a specification of the input 

vector to the network. Both of these two parts have to be specified by the user. The input vector, 

or regressor vector, which it is often called in connection with dynamic systems, contains lagged 

input and output values of the system specified by three indices: , and . For a SISO model 

the input vector looks like this: 

 

 

 

Index represents the number of lagged output values; it is often referred to as the order of the 

model. Index is the input delay relative to the output. Index represents the number of lagged 

input values. In a MIMO case each individual lagged signal value is a vector of appropriate 

length. For example, a problem with three outputs and two inputs ={1,2,1}, ={2,1}, and 

={1,0} gives the following regressor: 

 

 

For time-series problems, only has to be chosen. 

The neural network part of the dynamic neural network defines a mapping from the regressor 

space to the output space. Denote the neural network model by g( , ) where is the parameter 

vector to be estimated using observed data. Then the prediction (t) can be expressed as 

  

 

 

Models with a regressor like Eq. (2.0) are called ARX models, which stands for AutoRegressive 

with eXtra input signal. When there is no input signal u(t), its lagged valued may be eliminated 

from Eq. (2.0), reducing it to an AR model. Since the mapping g( , ) is based on neural 

networks, the dynamic models are called neural ARX and neural AR models, or neural AR(X) as 
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short form for both them. Figure 2.10 shows a neural ARX model, based on a one-hidden-layer 

FF network. 

 

Figure 7. Neural ARX Model 

The special case of an ARX model where no lagged outputs are present in the regressor (that is, 

when =0 in Eq. (2.0)), is often called a Finite Impulse Response (FIR) model. 

Depending on the choice of the mapping g( , ) you obtain a linear or a nonlinear model using an 

FF network or an RBF network.  

Although the disturbance signal e(t) is not measurable, it can be estimated once the model has 

been trained. This estimate is called the prediction error and is defined by 

 

A good model that explains the data well should yield small prediction errors. Therefore, a 

measure of (t) may be used as a model-quality index. 

 

12. Hopfield Network 

In the beginning of the 1980s Hopfield published two scientific papers, which attracted much 

interest. This was the starting point of the new era of neural networks, which continues today. 

Hopfield showed that models of physical systems could be used to solve computational 

problems. Such systems could be implemented in hardware by combining standard components 

such as capacitors and resistors.  

The importance of the different Hopfield networks in practical application is limited due to 

theoretical limitations of the network structure but, in certain situations, they may form 

interesting models. Hopfield networks are typically used for classification problems with binary 

pattern vectors. 

The Hopfield network is created by supplying input data vectors, or pattern vectors, 

corresponding to the different classes. These patterns are called class patterns. In an n-

dimensional data space the class patterns should have n binary components {1,-1}; that is, each 

class pattern corresponds to a corner of a cube in an n-dimensional space. The network is then 

used to classify distorted patterns into these classes. When a distorted pattern is presented to the 
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network, then it is associated with another pattern. If the network works properly, this associated 

pattern is one of the class patterns. In some cases (when the different class patterns are 

correlated), spurious minima can also appear. This means that some patterns are associated with 

patterns that are not among the pattern vectors. 

Hopfield networks are sometimes called associative networks since they associate a class pattern 

to each input pattern. 

The Neural Networks package supports two types of Hopfield networks, a continuous-time 

version and a discrete-time version. Both network types have a matrix of weights W defined as 

 

where D is the number of class patterns { , ..., }, vectors consisting of +/-1 elements, to be 

stored in the network, and n is the number of components, the dimension, of the class pattern 

vectors. 

Discrete-time Hopfield networks have the following dynamics: 

 

Eq. (2.26) is applied to one state, x(t), at a time. At each iteration the state to be updated is 

chosen randomly. This asynchronous update process is necessary for the network to converge, 

which means that x(t)=Sign[W x(t)]. 

A distorted pattern, x(0), is used as initial state for the Eq. (2.0), and the associated pattern is the 

state toward which the difference equation converges. That is, starting with x(0) and then 

iterating Eq. (2.0) gives the associated pattern when the equation converged. 

For a discrete-time Hopfield network, the energy of a certain vector x is given by 

 

It can be shown that, given an initial state vector x(0), x(t) in Eq. (2.26) will converge to a value 

having minimum energy. Therefore, the minima of Eq. (2.27) constitute possible convergence 

points of the Hopfield network and, ideally, these minima are identical to the class patterns 

{ , ..., }. Hence, one can guarantee that the Hopfield network will converge to some 

pattern, but one cannot guarantee that it will converge to the right pattern. 

Note that the energy function can take negative values; this is, however, just a matter of scaling. 

Adding a sufficiently large constant to the energy expression it can be made positive. 

The continuous Hopfield network is described by the following differential equation 

 

where x(t) is the state vector of the network, W represents the parametric weights, and is a 

nonlinearity acting on the states x(t). The weights W are defined in Eq. (2.25). The differential 

equation, Eq. (2.28), is solved using an Euler simulation. 
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To define a continuous-time Hopfield network, you have to choose the nonlinear function . 

There are two choices supported by the package, Saturated Linear and the default nonlinearity of 

Tanh. 

 

For a continuous-time Hopfield network, defined by the parameters given in Eq. (2.25), one can 

define the energy of a particular state vector x as 

 

As for the discrete-time network, it can be shown that given an initial state vector x(0)  the state 

vector x(t) in Eq. (2.28) converges to a local energy minimum. Hence, the minima of Eq. (2.29) 

constitute the possible convergence points of the Hopfield network and ideally these minima are 

identical to the class patterns { , ..., }. However, there is no guarantee that the minima will 

coincide with this set of class patterns. 
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