
 

1  

 

 

 

SCHOOL OF SCIENCE AND HUMANITIES 

                                                DEPARTMENT OF PHYSICS 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – I - Condensed Matter Physics – SPHA5301 



 

2  

                                   1. CRYSTAL BINDING 
 

Forces between the atoms 

 

 

 Solids are stable structures, and therefore there exist interactions holding atoms in a crystal 
together. For example a crystal of sodium chloride is more stable than a collection of free Na and Cl 
atoms. This implies that the Na and Cl atoms attract each other, i.e. there exist an attractive 

interatomic force, which holds the atoms together. This also implies that the energy of the crystal is 
lower than the  energy of the free atoms.  The amount of energy which is required to pull the crystal 

apart into a set of free atoms is called the cohesive energy of the crystal. 

Cohesive energy = energy of free atoms – crystal energy 

 
Magnitude of the cohesive energy varies for different solids from 1 to 10 eV/atom, except inert gases 
in which the cohesive energy is of the order of 0.1eV/atom. The cohesive energy controls the melting 

temperature . 
 

 
 
 

 
 

 
 
 

cohesive energy 

 
 

 
 

Fig.1 
                               (Solid Curve is Resultant energy) 

 A typical curve for the potential energy (binding energy) representing the interaction between 

two atoms is shown in Fig.1. It has a minimum at some distance R=R0.  

 Potential energy increases due to repulsion and decreases due to attraction.  

For R>R0 the potential decreases gradually, approaching 0 as R, while for R<R0 the potential 

increases very rapidly, tending to infinity at R=0. Since the system tends to have the lowest possible 
energy, it is most stable at R=R0, which is the equilibrium interatomic distance. The corresponding 

energy U0 is the cohesive energy. 

A typical value of the equilibrium distance is of the order of a few angstroms (e.g. 2-3Å), so that the 
forces under consideration are short range. 

The interatomic force is determined by the gradient of the potential energy (U), so that  
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If we apply this to the curve in Fig.1, we see that F(R)<0 for R>R0. This means that for large 

separations the force is attractive, tending to pull the atoms together. On the other, hand F(R) > 
0 for R<R0, i.e. the force becomes repulsive at small separations of the atoms, and tends to push 

the atoms apart. The repulsive and attractive forces cancel each other exactly at the point R0, 
which is the point of equilibrium. 

 The attractive interatomic forces reflect the presence of bonds between atoms in solids, 
which are responsible for the stability of the crystal. There are several types of bonding, 

depending on the physical origin and nature of the bonding force involved. The four main 
types are: Van der Waals (or molecular) bonding, ionic bonding, covalent bonding and 

metallic bonding. 

 Although the nature of the attractive energy is different in different solids, the origin of 
the repulsive energy is similar in all solids. The origin of the repulsive force is mainly due to 

the Pauli exclusion principle. The elementary statement of this principle is that two electrons 
cannot occupy the same orbital. As ions approach each other close enough, the orbits of the 

electrons begin to overlap, i.e. some electrons attempt to occupy orbits already occupied by 
others. This is, however, forbidden by the Pauli exclusion principle. As a result, electrons are 
excited to unoccupied higher energy states of the atoms. Thus, the electron overlap increases 

the total energy of the system and gives repulsive contribution to the interaction.  
 

Born Haber Cycle 

 

Fig. 2 Born Haber Cycle 

 

I - Ionization Energy 

E - Electron Affinity 

D - Dissociation energy 

S - Sublimation energy 

ΔH - heat of formation/ 

heat of dissociation 

U0 - Lattice energy 

 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Ionization_Energy
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Electron_Affinity
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Energies_and_Potentials/Enthalpy/Heat_of_Sublimation
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 The compounds have an additional stability due to the lattice energy of the solid 

structure. However, lattice energy cannot be directly measured. The Born-Haber cycle allows us 

to understand and determine the lattice energies of ionic solids.  

 Lattice Energy is a type of potential energy that may be defined in two ways.  

In one definition, the lattice energy is the energy required to break apart an ionic solid and 

convert its component atoms into gaseous ions. This definition causes the value for the lattice 

energy to always be positive, since this will always be an endothermic reaction.  

The other definition says that lattice energy is the reverse process, meaning it is the energy 

released when gaseous ions bind to form an ionic solid. As implied in the definition, this process 

will always be exothermic, and thus the value for lattice energy will be negative. Unit: kJ/mol.  

There are several important concept to understand before the Born-Haber Cycle can be applied to 

determine the lattice energy of an ionic solid; ionization energy, electron affinity, dissociation 

energy, sublimation energy and heat of formation.  

 Ionization Energy is the energy required to remove an electron from a neutral atom or 

an ion. This process always requires an input of energy, and thus will always have a 
positive value. In general, ionization energy increases across the periodic table from left 

to right, and decreases from top to bottom.  

 Electron Affinity is the energy released when an electron is added to a neutral atom or 
an ion. Usually, energy released would have a negative value, but due to the definition of 

electron affinity, it is written as a positive value in most tables. Therefore, when used in 
calculating the lattice energy, we must remember to subtract the electron affinity, not add 

it. In general, electron affinity increases from left to right across the periodic table and 
decreases from top to bottom. 

 Dissociation energy is the energy required to break apart a compound. The dissociation 

of a compound is always an endothermic process, meaning it will always require an input 
of energy. Therefore, the change in energy is always positive.  

 Sublimation energy is the energy required to cause a change of phase from solid to gas,  
bypassing the liquid phase. This is an input of energy, and thus has a positive value. It 
may also be referred to as the energy of atomization.  

 The heat of formation is the change in energy when forming a compound from its 
elements. This may be positive or negative, depending on the atoms involved and how 

they interact. 

Born Haber Cycle Process: 

Step 1: 

In first stage, the solid sodium and chlorine molecules are dissociated into constituent atoms. The 

solid sodium is vaporized by applying an energy equal to the sublimation energy (S), while 

chlorine molecule is dissociated by supplying an energy equal to dissociation energy (D). ( D/2 

per Cl atom). 

https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Modules_and_Websites_(Inorganic_Chemistry)/Crystal_Lattices/Thermodynamics_of_Lattices/Lattice_Enthalpies_and_Born_Haber_Cycles
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Ionization_Energy
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Electron_Affinity
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Energies_and_Potentials/Enthalpy/Heat_of_Sublimation
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Step 2: 

In second stage, the gaseous sodium and chlorine atoms are ionized. This requires Ionization 

energy (I) to remove an electron (outermost) from a Na atom. When this energy is added to Cl 

atom, energy equivalent to electron affinity (E) is released.  

Step 3: 

In third stage two ions (Na + and Cl -) are allowed in the lattice and lattice energy (U0) is 

released. 

Step 4: 

In fourth stage, it is return back to the starting point by breaking the lattice into solid sodium and 

Cl molecules by supplying heat of dissociation (ΔH). 

                      Hence S + D/2+I-E-U0+ ΔH = 0 ;    S + D/2+I-E+ ΔH = U0 

Calculate Lattice Energy for Nacl: 

S= 108.8 X 10 3 J/mol; D = 242.8 X 10 3 J/mol; I = 494 X 10 3 J/mol; E = 364.2 X 10 3 J/mol and 

ΔH = 410.2 X 10 3 J/mol ? 

Hence U0 = 770 X 10 3 J/mol 

Remarks: 

The distance between the ions increases and the lattice energy is reduced. The melting and 

hardness of the crystal fall progressively or coefficient of thermal expansion and compressibility 

increases. 

Bonding in Solids 

• A chemical bond is a lasting attraction between atoms, ions or molecules that enables the 

formation of chemical compounds.  

• The bond may result from the electrostatic force of attraction between oppositely charged 

ions as in ionic bonds or through the sharing of electrons as in covalent bonds.  

The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bonds" 

and "weak bonds" or "secondary bonds" such as Vander waals and Hydrogen bond. 

• The three primary bonds are  

 • Covalent Bonds  

  (Sharing of electrons)  

 • Metallic Bonds  

 (free nature of valence electrons)  

 • Ionic Bonds 

 (Transfer of electrons)  

https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Ion
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Chemical_compound
https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Covalent_bond
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The two secondary bonds are 

 Hydrogen  

 Vander Waals Bond or Molecular bond  

 

Ionic bonding 

• An ionic bonding is the attractive force existing in between a positive ion and a negative 

ion. 

• These ions are formed when the atoms of different elements involved in loss or gain of 

electrons in order to stabilize their outer shell electron configuration. 

• Electro positive elements readily give up electrons and are usually group I or II elements.  

• Eg. Na, K and Ba  

• Electro negative elements readily take up electrons and are typically group VI or VII 

elements  

• Eg. Cl,Br and O 

Formation of Ionic bond: 

 

Fig.3.  Ionic bonding in NaCl 

Let us consider a molecule of NaCl . When neutral atoms of Na and Cl are brought close 

together the outer valence electron of Na gets transformed to the chlorine atom to acquire a 

stable electronic configuration. Eg. NaCl, KCl, KBr etc.,  

Properties of Ionic solids: 

o Ionic solids are crystalline in nature  

o They are hard and brittle 

o They have high melting and boiling point 

o Solids are good insulator of electricity 

o They are soluble in polar solvents and insoluble in non polar solvents . 

 

Covalent Bonding 

 In covalent bonding the stable arrangement of electrons in an outer shell is 

achieved by a process of sharing of valence electrons rather than electron transfer 

and usually takes place in non metal elements.  

 Such sharing results lowering of potential energy of the system 
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 When two atoms are involved in the bond formation process and they share a 

single pair of electrons and they are known as single covalent bond.  

 When two atoms are involved in the bond formation process and they share two 

or three pair of electrons results in double or triple bond.  

 A Covalent bond is formed not only due to overlap of either pure 's' orbital or 'p' 

orbital, but also due to overlap of 's' and 'p' orbital. such bonding is called hybrid 

bonding. 

Eg. Cl2, H2O, HCl, Carbon, NH3 

 

sp3 bonding/ hybrid bonding 

 To explain the tetrahedron arrangement in diamond, we note that each C 

atom has four electrons in the second shell: two 2s electrons and two 2p electrons 

(2s22p2). The s states are spherically symmetric, whereas the p states represent 

charge distributions lying along x, y, and z coordinates. The energy difference 

between these states is not very big. It appears that it energetically favourable to 

excite one of the s electrons to p states so that the electronic configuration 

becomes 2s2p3. 

Formation of covalent bond: 

(i) single covalent bond: 

 

 

Fig. 4 Covalent Bonding 
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(ii) Two single covalent bond: 

 

 

 

Fig. 5. H2O bonding 

Properties of Covalent bond  

• Covalent bonds are directional 

• Covalent solids are hard and brittle ; crystalline in nature  

• When compared to ionic solids they have low melting and boiling point.  
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• Pure covalent solids are insulators 

• It will become semiconductor upon doping.  

METALLIC BONDING 

• The valence electrons from all the atoms belong to the crystal are free to move 

throughout the crystal.  

• The crystal may consider as on array of positive metal ions embedded in a cloud or sea of 

free electrons.  This type of bonding is called metallic bonding.  

• Eg.  Cu, Ag, Al etc.,  

 

Fig. 6 Metallic Bonding 

Formation of metallic bond: 

In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal 

atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they 

form a “sea” of electrons that surrounds the positively charged atomic nuclei of the 

interacting metal ions. 

Metallic bonding is a type of chemical bonding that rises from the electrostatic 

attractive force between conduction electrons (in the form of an electron cloud of 

delocalized electrons) and positively charged metal ions.  

Properties of metallic bond / metallic solids 

• The metallic bond is weaker than the ionic and the covalent bonds.  

• Non directional 

• • Metals are good conductors of electricity when solid, or liquid. The de localized 

electrons are able to move under an electric field.  

• • Metals are good conductors of heat. The delocalized electrons disperse heat more 

quickly. 
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• • Metals are malleable and ductile, not brittle. The cations are able to slide past each other 

and still retain their attraction to the electron sea.  

• Metallic solids are not soluble in polar and non polar solvents  

 

•  Table 1- Difference Between Ionic bond, Covalent bond, and Metallic bond 

 

What is Hydrogen Bonding? 

• In a molecule, when a hydrogen atom is linked to a highly electronegative atom, it 

attracts the shared pair of electrons more and so this end of the molecules becomes 

slightly negative while the other end becomes slightly positive.  The negative end of one 

molecule attracts the positive end of the other and as a result, a weak bond is formed 

between them. This bond is called the hydrogen bond. 

• Hydrogen bonding is a special class of attractive intermolecular forces that arise due to 

the dipole-dipole interaction between a hydrogen atom that is bonded to a highly 

electronegative atom and another highly electronegative atom while lies in the vicinity of 

the hydrogen atom. For example, in water molecules (H2O), hydrogen is covalently 

bonded to the more electronegative oxygen atom. Therefore, hydrogen bonding arises in 

water molecules due to the dipole-dipole interactions between the hydrogen atom of one 

water molecule and the oxygen atom of another H2O molecule. 
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Here, the location of the bond pair of electrons in the O-H bond is very close to the 

oxygen nucleus (due to the large difference in the electronegativities of oxygen and 

hydrogen). Therefore, the oxygen atom develops a partial negative charge (-δ) and the 

hydrogen atom develops a partial positive charge (+δ). Now, hydrogen bonding can occur 

due to the electrostatic attraction between the hydrogen atom of one water molecule 

(with +δ charge) and the oxygen atom of another water molecule (with -δ charge). Thus, 

hydrogen bonds are a very special class of intermolecular attractive forces that arise only 

in compounds featuring hydrogen atoms bonded to a highly electronegative atom. 

Hydrogen bonds are mostly strong in comparison to normal dipole-dipole and dispersion 

forces. However, they are weak compared to true covalent or ionic bonds.  

The conditions for hydrogen bonding are: 

1. The molecule must contain a highly electronegative atom linked to the hydrogen atom. 

The higher the electronegativity more is the polarization of the molecule.  
2. The size of the electronegative atom should be small. The smaller the size, the greater is 

the electrostatic attraction. 

Eg. HF, H2O and carboxylic acid etc.,  

 

Fig. 7 Hydrogen Bonding 

Properties of Hydrogen Bonding 

 Solubility: Lower alcohols are soluble in water because of the hydrogen bonding which 
can take place between water and alcohol molecule. 

 Volatility: As the compounds involving hydrogen bonding between different molecules 
have a higher boiling point, so they are less volatile.  

 Viscosity and surface tension: The substances which contain hydrogen bonding exists 
as an associated molecule. So their flow becomes comparatively difficult. They have 

higher viscosity and high surface tension.  

 The lower density of ice than water: In the case of solid ice, the hydrogen bonding 

gives rise to a cage- like structure of water molecules. As a matter of fact, each water 
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molecule is linked tetrahedral to four water molecules. The molecules are not as closely 
packed as they are in a liquid state. When ice melts, this case like structure collapses and 

the molecules come closer to each other. Thus for the same mass of water, the volume 
decreases and density increases. Therefore, ice has a lower density than water at 273 K. 

That is why ice floats. 

Van Der Waals Bonding 
Secondary bonds are weak in comparison to primary bonds.  

They are found in most materials, but their effects are often overshadowed by the strength of the 
primary bonding. 
Secondary bonds are not bonds with a valence electron being shared or donated. They are usually 

formed when an uneven charge distribution occurs, creating what is known as a dipole (the total 
charge is zero, but there is slightly more positive or negative charge on one end of the atom than 

on the other). 
These dipoles can be produced by a random fluctuation of the electrons around what is normally 
an electrically symmetric field in the atom. 

Once a random dipole is formed in one atom, an induced dipole is formed in the adjacent atom.  
This is the type of bonding present in N2 molecules, and is known as Van Der Waals Bonding.  

 

Fig.8. Vander waals Bonding 

Secondary bonding may also exist when there is a permanent dipole in a molecule due to an 

asymmetrical arrangement of positive and negative regions.  

Molecules with a permanent dipole can either induce a dipole in adjacent electrically symmetric 

molecules, and thus form a weak bond, or they can form bonds with other permanent dipole 
molecules. 

Properties: 

• The main characteristics of van der Waals forces are: They are weaker than normal 
covalent and ionic bonds.   

• Van der Waals forces are additive and cannot be saturated.  
• They have no directional characteristic.  

•  

https://byjus.com/chemistry/close-packing-three-dimensions/
https://byjus.com/chemistry/close-packing-three-dimensions/
https://byjus.com/chemistry/close-packing-three-dimensions/
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Table 2 
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IMPERFECTIONS IN CRYSTALS 

 INTRODUCTION 

In an ideal crystal, the atomic arrangement is perfectly regular and continuous throughout. But 
real crystals are never perfect; lattice distortion and various imperfections, irregularities or 

defects generally present in them. The mechanical, electrical and magnetic properties of 
engineering crystalline solids, particularly metals and alloys, are affected by the imperfections in 
the crystals. 

If atoms in the solid are not arranged in a perfectly regular manner, it is called defects in crystals.  
CLASSIFICATION OF IMPERFECTIONS (Defects) 

The various types of structural imperfections or defects in crystals are classified as follows: 
1. Point defects (or) Zero dimensional defects 
a. Vacancies 

i. Schottky defect 
ii. Frenkel defect 

b. Interstitial atoms 
c. Extrinsic defects (Impurities) 
i. Substitutional Impurity 

ii. Interstitial Impurity 
2. Line defects (or) one dimensional defect 

a. Edge dislocation 
b. Screw dislocation 
3. Surface defects (or) Plane defects (or) two dimensional defects  

a. Grain boundaries 
b. Tilt boundaries 

c. Twin boundaries 
d. Stacking faults 

Point defects 

Point defect is also called zero dimensional imperfections. In a crystal lattice, point defect is one 
which is completely local in its effect, e.g. a vacant lattice site. The introduction of point defect 

into a crystal increases its internal energy as compared to that of the perfect crystal. They change 
the electrical resistance of a crystal.  
Point defects are created during crystal growth and application of thermal energy, mechanical 

stress or electric field. Further they are created by irradiating the crystal by x-ray, microwaves 
and light. 

Different types of point defects are described below.  
a. Vacancies 

A vacancy is the simplest point defect in a crystal. This refers to a missing atom (or) a vacant  

atomic site. Such defects may arise either from imperfect packing density crystallization process 
or from thermal vibration of atoms at high temperature.  

Vacancy may also occur if an atom leaves its own site and dissolved interstitially into the 
structures. The vacancies may be single or deviancies or trivacancies and so on. 
Vacancies are classified into two types as follows.  

(i) Schottky defect 
(ii) Frenkel defect 
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Fig. 9. Point defect 

(i ) Schottky defects 

Schottky vacancies refer to the missing of anion and cation. In general the missing of pair of ions  

in ionic crystal is called schottky defect. This defect is the combination of one cation vacancy 
and one anion vacancy. The concentration of Schottky defect decreases the density of the crystal. 
This type of point defect is dominant in alkali halides.  

Consider an ionic crystal having equal number of positively and negatively charged ions.  
 

 

 
Fig. 10. Schottky defect 

(ii) Frenkel defects 

Frenkel vacancies refer to the shift of cation from the regular site to interstitial site. As cations 

are generally the smaller ions, it is possible for them to get displaced into  
the void space present in the lattice. The concentration of Frenkel defects does not change the 

density of the crystal and the overall electrical neutrality of the crystal. The point defect in silver 
halides and calcium fluoride are of the Frenkel type.  
Extrinsic vacancies (Impurities) 

This is a defect in which a foreign atom occupies a regular lattice site. Foreign atoms generally 
have atomic radii and electronic structures differing from those of the host atoms and therefore 

act as centers of distortion. Basically there are two types of impurity defects.  
(a) Substitutional impurity 
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It refers to a foreign atom substitutes or replaces a parent atom in the lattice.  
Example: In the case of semiconductor technology, Aluminum and phosphorus doped in silicon 

are substitutional impurities in the crystal.  
 

 
Fig. 11 Substitutional defect 

(b) Interstitial impurity 

It is a small sized atom occupying the void space in the parent crystal, without dislodging any of 

the parent atoms from their sites. An atom can enter the interstitial or void space only when it is 
substantially smaller than the parent atom. 
Example: Presence of carbon in iron. 

 
Fig. 12 Interstitital impurity 
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Fig.1 
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Inelastic Neutron Scattering 
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Fig.2  

 

 
Fig. 3 

 

Mono atomic Chain- Lattice Vibration 

 

Lattice vibrations give the key to many temperature dependent properties of solids. If we 

know the quantum mechanical energy eigenvalues of these vibrations, we can easily model 

thermodynamic quantities such as the Gibbs energy and the heat capacity. If we also know 

the eigenfunctions corresponding to the eigenvalues, we can calculate, e.g. the vibratio nal 

displacements of the atoms and connect that to properties such as the electrical resistivity. In 
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applications to materials science the temperature is often so high that a classical 

description agrees very well with the more fundamental quantum mechanical approach. We 

therefore start with a brief comparison of these two descriptions.  

Linear chain with one atomic species  

 

To describe the lattice vibrations of crystals, we consider first linear chains of equal atoms 
(present section), then linear chains with a basis of different atoms (Section 9.2), and finally 

general three-dimensional structures (Section 9.3). This sequence of increasing sophistication 
is adopted because some physical concepts are better illustrated in one-dimensional 

situations, where notations and technicalities can be kept at the minimal level.  
So, we begin by considering a one-dimensional chain, of lattice constant a, formed by a 
(large) number N of atoms of mass M. We indicate by un the longitudinal displacement of 

the nth atom from the equilibrium position tn=na, at a particular time (see Figure 9.1). We 
denote by E0({un}) the total ground-state energy of the interacting electronic-nuclear system, 
with the nuclei fixed in the positions Rn=na+un. The ground state of the crystal is supposed to 

be non-degenerate for all configurations {un} of interest. 

 

 
Fig.4 

 

 
Fig.5 Dispersion Curve 

https://www.sciencedirect.com/topics/physics-and-astronomy/lattice-vibrations
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Linear chain with two atomic species  

 

 
Fig.6 

 

where there are two different atomic species in the linear chain, i.e. the basis in the unit cell is 

two. The equations of motion for the two atoms follow as a direct generalization of eqn. 

 
A phonon is the quantum of energy associated with a lattice vibration or elastic wave. 

To exemplify this concept, we consider a set of N identical ions of mass m distributed along a 
monatomic 1D Bravais lattice whose translation vector is R→=nazˆ, with n being an integer 
and a denoting the distance between two adjacent ions. The vibrational motion is assumed 

here to be confined to the z-direction (along the chain).  
Let un be the displacement of the ion that oscillates from its equilibrium position z = na along 

the linear chain (see Fig. 1.5). The number N is taken to be sufficiently large that end effects 
can be ignored (i.e. the chain is effectively infin ite). Assuming that only neighboring ions 
interact, Newton’s equation of motion for the nth ion yields. 

Linear monatomic chain with nearest neighbour interactions  

To show the essential aspects of the lattice vibrations in the linear chain, we suppose that the 
only relevant inter-atomic interactions occur between nearest neighbour atoms; in other 
words, we assume that the only force constants different from zero are Dnn, Dnn+1 and Dn−1n.  

 
 

https://www.sciencedirect.com/topics/physics-and-astronomy/phonons
https://www.sciencedirect.com/topics/engineering/energy-engineering
https://www.sciencedirect.com/topics/physics-and-astronomy/lattice-vibrations
https://www.sciencedirect.com/topics/physics-and-astronomy/elastic-waves
https://www.sciencedirect.com/topics/engineering/equilibrium-position
https://www.sciencedirect.com/topics/physics-and-astronomy/equations-of-motion
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i.e. in this case the frequencies of the two atoms are still coupled to each other. The 

eigenvalues follow then from the determinant 
 

 
 

 
Fig. 7 
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To describe the lattice vibrations of crystals, we consider first linear chains of equal 
atoms(present section), then linear chains with a basis of different atoms(Section 2), and 

finally general three-dimensional structures (Section 3). This sequence of increasing 
sophistication is adopted because some physical concepts are better illustrated in one-

dimensionalsituations, where notations and technicalities can be kept at the essential.  
So, we begin by considering a one-dimensional chain, of lattice constant a, formedby a 
(large) number N of atoms of mass M. We indicate by un the (longitudinal) displacement of 

the n-th atom from the equilibrium position tn = na, at a particular time(see Fig. 1). We 
denote by E0({un}) the total ground-state energy of the crystal Hamiltonian, with the nuclei 

fixed in the positions Rn = na + un; the energy E0({un}) is also called static lattice energy. The 
ground state of the crystal is supposed to be non-degenerate for all configurations {un} of 
interest. 

 

Phonon specific heat  
 
A phonon is the quantum mechanical description of an elementary vibrational motion in 

which a lattice of atoms or molecules uniformly oscillates at a single frequency. In classical 

mechanics this designates a normal mode of vibration. Normal modes are important because 

any arbitrary lattice vibration can be considered to be a superposition of 

these elementary vibration modes (cf. Fourier analysis). While normal modes are wave-

like phenomena in classical mechanics, phonons have particle- like properties too, in a way 

related to the wave–particle duality of quantum mechanics.  

 

High temperature limit (Dulong-Petitlaw)  

 

In the high temperature limit andcanthereforeexpandtheexponentialin 

thedenominatorin eq. 
 

 
 

That were cover it in this limit is simply a 

consequenceofthefactthatatsuchhightemperaturesthequantizednatureofthevibrations 

doesnotshowupanymore.Energycanbetakenupinaquasi-continuousmannerandwearrive 
attheclassicalresultthateachdegreeoffreedomyields kBT to the energy of the solid. 

Lowtemperaturelimit(Debyeapproximation)  

The vibrational term here is only the low temperature limit of 

the Debye specific heat expression; the full expression includes an integral which must be 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Vibration
https://en.wikipedia.org/wiki/Lattice_model_(physics)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Normal_mode
https://en.wikipedia.org/wiki/Superposition_principle
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Elementary_particle
https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality
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evaluated numerically. It produces good agreement with the transition to the Dulong and 

Petit limit athigh temperatures.

 

Fig.8 

Anharmoniceffectsincrystals  

Anharhominicity in Phonons Discussion till now confined to harmonic approximation – 

potential energy of lattice vibrations had only quadratic terms. We learnt that the lattice waves are 

normal modes – phonons do not interact with each other; they do not change with time. Its 

consequences are: 1. The heat capacity becomes T independent for T>TD. 2. There is no thermal 

expansion of solids. 3. Thermal conductivity of solids is infinite Conditions not fulfilled in real 

crystals. Way out: Include higher order terms in potential energy. with c,g and f >0 This is equivalent 

to having three or more phonon processes in the Hamiltonian. They can lead to processes like: 
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Normal and Umklapp process 

In crystalline materials, Umklapp scattering (also U-process or Umklapp process) is a 
scattering process that results in a wave vector (usually written k) which falls outside the 

first Brillouin zone. If a material is periodic, it has a Brillouin zone, and any point outside the 
first Brillouin zone can also be expressed as a point inside the zone. So, the wave vec tor is 

then mathematically transformed to a point inside the first Brillouin zone. This 
transformation allows for scattering processes which would otherwise violate 
the conservation of momentum: two wave vectors pointing to the right can combine to create 

a wave vector that points to the left. This non-conservation is why crystal momentum is not a 
true momentum. 

Examples include electron- lattice potential scattering or an anharmonic phonon-phonon 
(or electron-phonon) scattering process, reflecting an electronic state or creating a phonon 
with a momentum k-vector outside the first Brillouin zone. Umklapp scattering is one process 

limiting the thermal conductivity in crystalline materials, the others being phonon 
scattering on crystal defects and at the surface of the sample. 

Figure 1 schematically shows the possible scattering processes of two incoming phonons with 
wave-vectors (k-vectors) k1 and k2 (red) creating one outgoing phonon with a wave 
vector k3 (blue). As long as the sum of k1 and k2 stay inside the first Brillouin zone (grey 

squares), k3 is the sum of the former two, thus conserving phonon momentum. This process is 
called normal scattering (N-process). 

With increasing phonon momentum and thus larger wave vectors k1 and k2, their sum might 
point outside the first Brillouin zone (k'3). As shown in Figure 2, k-vectors outside the first 
Brillouin zone are physically equivalent to vectors inside it and can be mathematically 

transformed into each other by the addition of a reciprocal lattice vector G. These processes 
are called Umklapp scattering and change the total phonon momentum.  
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3.Band Theory of Solids 

 

Applications of Uncertainty Principle 

 Calculation of energy of particle in 1D box: 

Consider a particle of mass „m‟ moving along the x-axis between the two rigid walls 

of the well with x = 0 and x = a.   

 

Fig.1.8  Particle in a box 

 When the force acting on the particle between the walls is zero, its potential energy is 

constant in this region and it is duly taken to be zero.  As the walls are assumed to be rigid, 

the force acting on the particle abruptly increases from zero to finite value at the boundaries 

and hence the potential energy of the particle becomes infinitely large at x = 0 and x = a.   

Thus, potential function V(x) is expressed as  

V(x) = 0 for 0 < x < a 

V(x) = ∞ for 0 ≥ x ≥ a 

 This potential function is known as square well potential.  

 The particle cannot move out of the box.  Also, it cannot exist on the walls of the box.  

So its wave function Ψ is 0 for x ≤ 0 and x ≥ a and for zero potential the Schrodinger 

equation can be written as: 

                             ... (1) 

                                ... (2) 

where   

The general solution of equation (2) is 
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             ... (3) 

 Applying the boundary conditions  at x = a and x = 0, one gets   where 

n = 1, 2, 3, ... and B = 0.   

Thus the wave function associated with the electron is: 

                                   ... (4) 

                              ... (5) 

This equation gives the energy of the particle in the nth energy state.   

 

Fig.1 Energy levels and wave functions 

 The particle in the box cannot possess any arbitrary amount of energy.  Rather, it can 

have discrete energy values specified by the equation (5).  In other words, its energy is 

quantised. 

Each value of En is called as eigen value and the corresponding Ψn is called eigen function. 

Problems 

1.  Calculate the minimum energy of an electron can possess in an infinitely deep potential 

will of width 4nm. 

 Given: 

 a = 4nm; n = 1 (for minimum energy) 

Solution: 
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2.  An electron is trapped in a one-dimensional box of length 0.1nm.  Calculate the energy 

required to excite the electron from its ground state to the sixth excited state.  

 Given: 

 a = 0.1 nm; n = 1 (for ground energy) 

Solution: 

 

 

 

For sixth state, n = 6 

 

 

The energy required to excite the electron from its ground state to the sixth excited state is 

 

 

 

 

3.  If the uncertainty in position of an electron is 4 X 10-10 m, calculate the uncertainty in 

its momentum. 

Solution: 
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ORIGIN OF ENERGY BANDS 

Generally solid consists of more number of atoms and each atom consists of the 

central nucleus of positive charge around which small negatively charged particles called 

electrons revolve in different paths or orbits. An Electrostatic force of attraction between 

electrons and the nucleus holds up electrons in different orbits.  

An isolated atom possesses discrete energies of different electrons. If two isolated 

atoms are brought to very close proximity, then the electrons in the orbits of two atoms 

interact with each other. So, that in the combined system, the energies of electrons will not be 

in the same level but changes and the energies will be slightly lower and larger than the 

original value. So, at the place of each energy level, a closely spaced two energy levels exists. 

If „N‟ number of atoms are brought together to form a solid and if these atoms‟ electrons 

interact and give „N‟ number of closely spaced energy levels in the place of discrete energy 

levels, it is known as bands of allowed energies/band. Between the bands of allowed 

energies, a small region does not allow any energy levels. Such regions are called forbidden 

energy band/ energy gap (Eg). The allowed bands of energies and forbidden bands of energies 

are present alternatively one after another for the electrons of a solid. 

 

Fig. 2 Band formation in solids 

When two atoms of equal energy levels are brought closer together, the k shell energy 

levels of individual atoms lie in the energy level E1 and splits into E1
1 and E1

2 become as 

energy band. Similarly for L-shell energy levels lies in the energy level E2 and splits into E2
1 

and E2
2.  Similarly when three atoms are brought together, the energy levels are in K – shell 

and L-shell are E1
1 , E1

2  and E2
1, E2

2 respectively. Similarly for K, L,M and N shells are E1
1 , 

E1
2,E1

3 , E1
4 and E2

1, E2
2, E2

3, E2
4 respectively. These type of transformations from the 

original energy levels into two (or) more energy levels is known as energy level splitting.  
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In example Lithium atom consists of 3 electrons. Among them the two electrons are 

in the same energy state (1s) and the other one is in the higher energy state (2s). In a solid of 

lithium contains N number of atoms, the lower energy level forms a band of 2N electrons 

occupying N different energy levels are shown in  

Fig.2.4. The higher energy level can form a band of 2N electrons (completely filled). But 

only N numbers of electrons are present in the next energy level. Therefore the band is half-

filled band. The unoccupied band of the solid corresponds to the un occupied excitation level 

of the isolated atom. 

 

Fig.3 (a) Isolated atom and (b) Solid of N atoms  

The width of the energy band depends on the relative freedom of electrons in the 

crystal. The electrons in lower filled energy (closely bounded with nucleus) band do not have 

any freedom to move in the crystal. The electrons in half filled energy level (loosely bound 

with nucleus) are free to move inside the crystal. Generally the half- filled band is called 

valence band and the upper unoccupied (unfilled) band is called conduction band. In 

between the valence band and conduction the gap is known as energy gap  

The differences between metals, semiconductors and insulators can be made based on 

(i) the width of the energy gap (ii) number of effective electrons (The availability of number 

of free electrons that participate in electrical conduction per unit volume when an electric 

field is applied. These free electrons are called effective electrons). 

BAND STRUCTURE OF CONDUCTOR, SEMICONDUCTORS, INSULATORS, 

HALF METALS AND SEMI METALS  

Conductors: 

 In case of conductors, there is no forbidden band and the valence band and conduction 

band overlap each other (Fig). Low resistive materials and it is about 10-8Ωm are generally 

called as conducting materials. These materials have high electrical and thermal conductivity. 

The conducting property of a solid is not a function of total number of the electrons in a metal 

and it is about the number of free/valence electrons called as conduction electrons. He nce in 

metals the electrical conductivity depends on the number of free electrons. Here, plenty of 

free electrons are available for electric conduction. The electrons from valence band freely 

enter in the conduction band due to overlapping of bands.  
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Examples: Iron, Copper etc.,  

Semiconductors: 

 In semiconductors, the forbidden band is very small (Fig.). Germanium and silicon are 

the best examples of semiconductors. In Germanium the forbidden band is of the order of 

0.7eV while in case of silicon, the forbidden gap is of the order of 1.1eV. Actually, a semi-

conductor material is one whose electrical properties lie between insulators and good 

conductors. At 0°K, there are no electrons in conduction band and the valence band is 

completely filled. When a small amount of energy is supplied, the electrons can easily jump 

from valence band to conduction band due to minimum energy gap. For example, when the 

temperature is increased, the forbidden band is decreased so that some electrons are liberated 

into the conduction band. In semi-conductors, the conductivities are of the order of 102 ohm-

meter. 

Examples: Silicon, Germanium etc.,  

Insulator 

In case of insulators, the forbidden energy band is wide (Fig.). Due to this fact, 

electrons cannot jump from valence band to conduction band. In insulators, the valence 

electrons are bound very tightly to their parent atoms. For example, in case of materials like 

glass, the valence band is completely filled at 0K and the energy gap between valence band 

and conduction band is of the order of 6 eV. Even in the presence of high electric field, the 

electrons do not move from valence band to conduction band. When a very large energy is 

supplied, an electron may be able to jump across the forbidden gap. Increase in temperature 

enables some electrons to go to the conduction band. This explains why certain materials 

which are insulator become conductors at high temperature. The resistively of insulators is of 

the order of 107 ohm-meter.  

Examples: Wood, Glass etc.,  

At absolute zero (0K) the energy levels are completely occupied by electrons up to a 

certain level. Above that the energy levels are completely unoccupied by electrons. This 

highest level which is completely filled by electrons is called Fermi level.  In conductor the 

Fermi level lies in the permitted band (since the valence and conduction band overlap without 

an energy gap). In Semiconductor the Fermi level lies in the small energy gap. In Insulator 

the Fermi level lies exactly in the middle of energy gap.  

The Fermi energy (EF) is described as the highest energy that the electrons assumes 

at a temperature of 0 K (Fig.2.5). The Fermi energy is the difference in energy, mostly 

kinetic. To put this into perspective one can imagine a cup of coffee and the cup shape is the 

electron band; as one fills the cup with the liquid the top surface increases. This can be 
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compared to the Fermi energy because as electrons enter the electron band the Fermi energy 

increases. The Semiconductors act differently than the above stated analogy.  

 

Fig. 4 (a) Conductor    (b) Semiconductor           (c) Insulator 

BLOCH THEOREM 

 Based on band theory, the solids are again classified into conductor, semiconductor and 

insulator. The free electron theory explained about the electrical conductivity and therma l 

conductivity of solids but it fails to clearly explain about the difference in between the 

conductor, insulator and semiconductor. Hence the Bloch theorem is used to explain as 

follows: 

 In order to understand the difference between the conductors and insulators, it is 

necessary to incorporate the variation of potential inside the crystal due to the presence of 

positive ion cores in the free electron model. It gives the realistic idea about to assume the 

potential inside the metallic crystal to be periodic with the periodicity of the lattice shown in 

Fig.  

 

Fig. 5 One dimensional periodic potential in a crystal 
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Fig.6 

 Suppose an electron passes along X-direction in a one-dimensional crystal having 

periodic potentials: 

V(x) = V (x + a) 

where „a‟ is the periodicity of the potential.  

 The Schrödinger wave equation for the moving electron in a constant potential (V)  is: 

 
2

2 2

d 2m
[E V(x)] 0

dx


   


    (1) 

The solution for Equation (1) is of the form: 

   ψ(x) = eiKx uk(x)     (2) 

where   uk(x) = uk(x +(N) a)  (3) 

Eqn. (3) represents periodic function and eikx represents plane wave. The above statement is 

known as Bloch theorem and Eqn. (3) is called Block function.  

The Bloch function has the property: 

ψ(x + a) = exp [ik (x + (N)a)]  

uk(x + a) = ψ(x) exp ik(N)a                                       (4) 

or ψ(x + a) = Qψ (x) where Q = exp ik(N)a    (5) 

This is frequently referred as Bloch condition.  

If exp ik(N)a   = 1; KNa = 2πn : Hence K = 2πn / L (Because L= Na) 

The total number of allowed k- values in first zone is  

Length of the first zone/ Length of the unit spacing = (2π/a) / (2π/L) = L/a = N. 

https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#img-c05e060
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00562
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00562
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Kronig Penny Model: 

Proof: Suppose g(x) and f(x) are two real independent solutions for the 

Schrödinger‟s equation (1), then f(x + a) and g(x + a) are also solutions of the above equation 

so that: 

f(x + a) = α1 f(x) + α2 g(x) 

g(x + a) = β1 f(x) + β2 g(x)      (6) 

where α1, α2, β1 and β2 are the real functions of energy (E). 

The solution for Schrödinger wave equation is of the form: 

ψ(x) = A f(x) + B g(x)      (7) 

where A and B are constants and 

ψ(x + a) = A f(x + a) + B g(x + a)     (8) 

Substituting Eqn (6) in Eqn (8), we have: 

ψ(x + a) = A[α1 f(x) + α2 g(x)] + B[β1 f(x) + β2 g(x)] 

= [Aα1 + Bβ1] f(x) + [Aα2 + Bβ2] g(x)     (9) 

From the property of Bloch function, Eqn. (5) can be written as using Eqn.  (7), we have: 

ψ(x + a) = Qψ(x) = QAf(x) + QBg(x)     (10) 

Comparing Equations (9) and (10), we have: 

Aα1 + Bβ1 = QA 

and     Aα2 + Bβ2 = QB       (11) 

In Eqn. (11), A and B have non-vanishing values only if the determinant of the coefficients of 

A and B is equal to zero. 

 i.e. 
1 1

2 2

Q
0

Q

  


  
 

or Q2 – (1 + 2) Q + 12 - 21 = 0  (12) 

From the above equation, we can show α1β2 – α2β1 = 1 Then the Eqn.(12) becomes: 

Q2 − (α1 + β2)Q + 1 = 0       (13) 

https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00565
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00567
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#para-00664
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00566
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00568
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#p-00569
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#para-00570
https://learning.oreilly.com/library/view/engineering-physics/9788131775073/xhtml/ch5-sub5.8.xhtml#img-c05e071
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The above quadratic equation has two roots say Q1 and Q2. So, we have two values for ψ(x) 

i.e., ψ1(x) and ψ2(x). Also note that Q1 Q2 = 1. For certain values of energy corresponding to 

(α1 + β2)2 < 4, the two roots are complex and can be written as: 

Q1 = eiKa     and     Q2 = e−iKa      (14) 

The wave functions ψ1(x) and ψ2(x) can be represented as ψ1(x + a) = e ika ψ1(x) and 

ψ2(x + a) = e−iKa ψ2(x)       (15) 

For other regions of energy corresponding to (α1 + β2)2 > 4, the roots Q1 and Q2 are real and 

reciprocal to each other. These two roots corresponding to Schrödinge r‟s equation of the 

type: 

ψ1(x) = eμxu(x)     and     ψ2(x) = e−μxu(x)     (16)  

(μ is a real quantity) 

Mathematically, the above solutions are sound but not accepted as wave functions describing 

elections. This leads to the energy spectrum of an electron in a periodic potential consists of 

allowed and forbidden energy regions or bands.  

Requirements for An Acceptable Wavefunction 

1. The wave function ψmust be continuous. All its partial derivatives must also 

becontinuous (partial derivatives are  This makes the wave 

function“smooth”. 

2. The wave function ψ must be quadratically integrable. This means that the 

integral ∫ψ*ψdτmust exist. 

3. Since ∫ψ*ψdτ is the probability density, it must be single valued. 

4. The wave functions must form an orthonormal set. This means that 

• the wave functions must be normalized. 

 = 1 

 the wave functions must be orthogonal. 

=0 

 =  where ;  

Δijis called Kronecker delta 

5. The wave function must be finite everywhere. 

6. The wave function must satisfy the boundary conditions of the quantum 

mechanical system it represents.  
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 HEISENBERG UNCERTAINTY PRINCIPLE 

 Uncertainty principle, also called Heisenberg uncertainty principle or 

indeterminacy principle, statement, articulated (1927) by the German physicist Werner 

Heisenberg, that the position and the velocity of an object cannot both be measured exactly, 

at the same time, even in theory. The very concepts of exact position and exact velocity 

together, in fact, have no meaning in nature.  

 The uncertainty principle is alternatively expressed in terms of a particle‟s momentum 

and position. The momentum of a particle is equal to the product of its mass times its 

velocity. Thus, the product of the uncertainties in the momentum and the position of a 

particle equals h/(4π) or more, where h is Planck‟s constant, or about 6.6 × 10−34 joule-

second. It is impossible to know the precise position and momentum. This relationship also 

applies to energy and time, in that one cannot measure the precise energy of a system in a 

finite amount of time. Uncertainties in the products of “conjugate pairs” 

(momentum/position) and (energy/time) were defined by Heisenberg as having a minimum 

value corresponding to Planck‟s constant divided by 4π. More clearly: 

 

 

Where Δ refers to the uncertainty in that variable.  

 Qualitatively this principle states that “the order of magnitude of the product of the 

uncertainties in the knowledge of two variables must be at least Planck‟s constant h”.  

Considering the position and momentum is the pair of physical variables, we have  

                                                                                            ... (1) 

where Δp is the uncertainty in determining the momentum and  

          Δx is the uncertainty in determining the position of the particle.  

Similarly, we have 

                                                                                            ... (2) 

                                                                                            ... (3) 

where ΔE and  Δt are uncertainties in determining the energy and time while  ΔJ and Δθ 

uncertainties in determining the angular momentum and angle.  

 

 

https://www.merriam-webster.com/dictionary/articulated
https://www.britannica.com/biography/Werner-Heisenberg
https://www.britannica.com/biography/Werner-Heisenberg
https://www.britannica.com/biography/Werner-Heisenberg
https://www.britannica.com/science/velocity
https://www.britannica.com/science/Plancks-constant
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4.ATOMIC MOLECULAR STRUCTURE 

 

The Hydrogen molecule: 

We are now in a position to discuss the electronic structure of the simplest molecule: H2. For 

the low-lying electronic states of H2, the BO approximation is completely satisfactory, and so 

we will be interested in the electronic Hamiltonian.  

 

 

 

 

a. Minimal Atomic Orbital Basis 

The most natural basis functions are the atomic orbitals of the individual Hydrogen 

atoms. If the bond length is very large, the system will approach the limit of two non-

interacting Hydrogen atoms, in which case the electronic wavefunction can be well 

approximated by a product of an orbital on atom “A” and an orbital on atom “B” and 

these orbitals will be exactly the atomic orbitals (AOs) of the two atoms. Hence, the 

smallest basis that will give us a realistic picture of the ground state of this molecule 

must contain two functions: 1sA and 1sB. These two orbitals make up the minimal AO 

basis for H2. For finite bond lengths, it is advisable to allow the AOs to polarize and 

deform in response to the presence of the other electron (and the other nucleus).  

b. Molecular Orbital Picture  

We are now in a position to discuss the basic principles of the molecular orbital (MO) 

method, which is the foundation of the electronic structure theory of real molecules. 

The first step in any MO approach requires one to define an effective one electron 

Hamiltonian, (hˆeff)  . To this end, it is useful to split the Hamiltonian into pieces for 

electrons “1” and “2” separately and the interaction: 

 

The matrix representation, 

BO approximation (Born Oppenheimer) : 

The Born-Oppenheimer Approximation is the assumption that the electronic motion and the nuclear motion in 

molecules can be separated. It leads to a molecular wave function in terms of electron positions and nuclear 

positions. 
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where we made use of the average one electron (onsite) energy: 

 

and the off-diagonal coupling (often called a “hopping integral”): 

 

 

 

 

These eigenfunctions merely reflect the symmetry of the molecule; the two hydrogen atoms 

are equivalent and so the eigenorbitals must give equal weight to each 1s orbital. So our 

“choice” of the one electron Hamiltonian actually does not matter much in this case; any one-

electron Hamiltonian that reflects the symmetry of the molecule will give the same molecular 

orbitals. 

    

The second step in MO theory is to construct a single determinant out of the MOs that 

corresponds to the state we are interested in. For the purposes of illustration, let us look at the 

lowest singlet state built out of the molecular orbitals. Hence,  
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First, we decompose the wavefunction into spatial and spin parts and note that the spin part is 

normalized: 

 

Each of the first two terms is energy of a single electron (either 1 or 2) in the field produced 

by the nuclei (hˆ ) while the third is the average repulsion of the two electrons. Note that the 

second and third terms are both positive, so  binding has to arise from the one-electron piece. This 
is the MO energy for the ground state of H2. 

 
 Central Field Approximation  

 

The basic difficulty in solving the Schrödinger equation stems from the fact that the 
interelectron repulsion is too larger an effect to be treated as a perturbation. 2Nijijer<Σ  

→ It is that the inter electron repulsion contains a large spherically symmetric component. 
Thus it is possible to construct a potential energy function which is a spherically symmetric. 
()iUr  

→ One electron operator is a good approximation to the actual potential energy of the ith 
electron in the field of the nucleus and the other electrons. The Hamiltonian may be written 

as,  
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It is therefore independent of the angular coordinates, then becomes the Hamiltonian which 
contains the non spherical part of the electron repulsions, whereas contains the K.E, P.E in 

the field of the nucleus, and the spherical average electron repulsion energy. 1H *H  
This is Known as central field approximation. The advantage of this approach is that, it is 

assumed that contains most of the inter electron repulsion, the remaining term is small 

enough to be treated as a perturbation.*H 1H 

 

is a product of single electron wave function . When is allowed to operate on a product wave 

function, it operates on each of the in turn, since the coordinates of each of electrons are 

independently variable. So, the equation reduced to a set of simultaneous equation, one for each 

electron. Φ iφ*H ΦiφN 

 

Each is hydrogen type orbitals except radial part. These orbitals are called central field orbitals. iφ 

The symmetric wavefunction remains same even we interchange the indices 1 and 2  

On the other hand antisymmetric wavefunction changes sign if we interchange indices 1 and 
2.  

This is required because of the indistinguishability of identical particles like electrons.  
In Classical mechanics, identical particles are distinguishable, because it is possible to define 
the individual particles in terms of their space coordinate and time.  

However, in Quantum mechanics, this is not possible. So, identical particles are 
always considered to be indistinguishable.  

For two electrons system, when the two electrons are interchanged, then the wavefunctions  

are related with a phase factor as 

 

The “+” sign is for symmetric state and “-“ sign is for antisymmetric state.  
This shows that the wavefunction should be either symmetric or antisymmetric with respect 

to the interchange of the electrons.  
If the two electrons are in the symmetric or antisymmetric state in a system, then these 

electrons remain in that state for all time unless it disturbed by external perturbation.  
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Hartree’s method of Self Consistent field for N-electron system  

 

• For the Schrödinger equation to be analytically solvable, the variables must be 
separable - the variables are the coordinates of the electrons.  

• To separate the variables in a way that retains information about electron-electron 
interactions, the electron-electron term must be approximated so it depends only on 

the coordinates of one electron.  
• Such an approximate Hamiltonian can account for the interaction of the electrons 

in an average way.  

• The exact one-electron eigenfunctions of this approximate Hamiltonian then can be 
found by solving the Schrödinger equation.  

• These functions are the best possible one-electron functions.  
• The Hartree method is used to approximate the wavefunction and the energy of a 

quantum multi-electron system in a stationary state.  
• This approximation assumes that the exact N-body wave function of the system can 

be approximated by a product of single-electron wavefucntions.  

• In principle, the Hartree-Fock technique enables us to calculate all the states and their 
energies for any atom in the periodic table. 

•  However, the computational effort required increases rapidly with the number of 
electrons since the size of the Slater determinant scales with the square of the number 

of single-electron states involved.  
 
The best single electron atomic wave functions are the self consistent field (SCF) 

functions introduced by Hartree (1927).  
To obtain these, we start with a set of approximate single electron functions. Using of these 

except the ith function, the average field due to their charge clouds is calculated. N  
This constitutes the potential field in which the ith electron moves. Solution of the ith 
equation gives an improved wave function . Jφ′ 

This is repeated for each of the electrons, giving first improved, single electron wave 
functions. N  

These are then used to calculate a set of second improved wave functions, and so on; 
the process is continued until no further improvement is registered.  
In other words, the electrons are supposed to move in a potential which they themselves 

generate. This is the reason it is known as Self Consistent  
The calculated energy of the atom is the sum of the energies of the individual 

electrons, minus the coulomb repulsion energy averaged over all pairs of electron wave 
functions, since this gets included twice over for each pair of electrons & , once in calculation 
and once in . The energy of each of the SCF/AO‟s, is found to be a function  

When the central field orbital is multiplied by a spin function which is or , we have a one-

electron, central field spin orbital.  
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in which are spin orbitals.  

    The distribution of electrons with and are known as configuration. Electrons in orbitals 

with same and are said to be equivalent.  
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• It is helps to predict that exact solutions to the multi-electron Schrödinger equation 

would consist of a family of multi-electron wavefunctions, each with an associated 

energy eigenvalue. 

•  These wavefunctions and energies would describe the ground and excited states of the 

multi-electron atom, just as the hydrogen wavefunctions and their associated energies 

describe the ground and excited states of the hydrogen atom. We would predict 

quantum numbers to be involved, as well.  

• The fact that electrons interact through their electron-electron repulsion means that an 

exact wavefunction for a multi-electron system would be a single function that 

depends simultaneously upon the coordinates of all the electrons; i.e., a multi-electron 

wavefunction: 

• |ψ(r1,r2,⋯ri)⟩  

• Unfortunately, the electron-electron repulsion terms make it impossible to find an exact 

solution to the Schrödinger equation for many-electron atoms. 

• What is meant by LCAO  

(Linear Combination of Atomic orbitals)? 

 

The Linear combination of atomic orbitals which is also known as LCAO is an 

approximate method for representing molecular orbitals. It‟s more of a 

superimposition method where constructive interference of two atomic wave function 

produces a bonding molecular orbital whereas destructive interference produces non-

bonding molecular orbital.  

• Conditions to be satisfied: 

The conditions that are required for a linear combination of atomic orbitals are as 

follows: 

Same Energy of combining orbitals –  

• The combining atomic orbitals must have same or nearly same energy. This means that 

2p orbital of an atom can combine with another 2p orbital of another atom but 1s and 

2p cannot combine as they have appreciable energy difference.  

• Same symmetry about the molecular axis –   

• combining atoms should have same symmetry around the molecular axis for proper 

combination, otherwise, the electron density will be sparse. 

For e.g. all the sub-orbitals of 2p have same energy but still, the 2pz orbital of an atom 

can only combine with a 2pz orbital of another atom but cannot combine with 2px and 

2py orbital as they have a different axis of symmetry. In general, the z-axis is 

considered as the molecular axis of symmetry 

https://byjus.com/chemistry/electrons/
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• Proper Overlap between the atomic orbitals – The two atomic orbitals will combine 

to form molecular orbital if the overlap is proper. Greater the extent of overlap of 

orbitals, greater will be the nuclear density between the nuclei of the two atoms.  

• The condition can be understood by two simple requirements. For the formation of 

proper molecular orbital, proper energy and orientation are required. For proper 

energy, the two atomic orbitals should have the same energy of orbitals and for the 

proper orientation, the atomic orbitals should have proper overlap and the same 

molecular axis of symmetry.  

• Covalent bonds and linear combination of atomic orbitals  

• Consider two atoms next to each other.  

• Since different orbitals of an atom are separated in energy, we consider one orbital per 

atom 

• That the atoms are sufficiently far apart, so that the shape of the orbitals or the energy 

of the orbitals doesn't change much. 

• Bonding molecular orbitals are formed by in-phase combinations of atomic wave 

functions, and electrons in these orbitals stabilize a 

molecule. Antibonding molecular orbitals result from out-of-phase combinations of 

atomic wave functions and electrons in these orbitals make a molecule less stable. 

 

Fig. 1 

 

https://byjus.com/chemistry/energy-of-orbitals/
https://byjus.com/chemistry/energy-of-orbitals/
https://byjus.com/chemistry/energy-of-orbitals/
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Hybridization 

• Hybridization is defined as the concept of mixing two atomic orbitals with the same 

energy levels to give a degenerated new type of orbitals. This intermixing is based on 

quantum mechanics. The atomic orbitals of the same energy level can only take part 

in hybridization and both full filled and half- filled orbitals can also take part in this 

process, provided they have equal energy.  

• During the process of hybridization, the atomic orbitals of similar energy are mixed 

together such as the mixing of two „s‟ orbitals or two „p‟ orbital‟s or mixing of an „s‟ 

orbital with a „d‟ orbital.  

• What are hybrid orbitals? 

• The hybrid orbitals can be defined as the combination of standard atomic orbitals 

resulting in the formation of new atomic orbitals. 

•  a „p‟ orbital or „s‟ orbital with a „d‟ orbital.  

 

Types of Hybridisation 

• Based on the types of orbitals involved in mixing, the hybridization can be classified as 

sp3, sp2, sp, sp3d, sp3d2, sp3d3. Let us now discuss the various types of 

hybridization, along with their examples. 

1) sp Hybridization 

https://byjus.com/chemistry/shapes-of-orbitals/
https://byjus.com/chemistry/shapes-of-orbitals/
https://byjus.com/chemistry/shapes-of-orbitals/
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• sp hybridization is observed when one s and one p orbital in the same main shell of an 

atom mix to form two new equivalent orbitals. The new orbitals formed are called sp 

hybridized orbitals. It forms linear molecules with an angle of 180° 

• This type of hybridization involves the mixing of one „s‟ orbital and one „p‟ orbital of 

equal energy to give a new hybrid orbital known as an sp hybridized orbital.  

• sp hybridization is also called diagonal hybridization.  

• Each sp hybridized orbital has an equal amount of s and p character, i.e., 50% s and p 

character. 

\ 

Fig. 2 

Examples of sp Hybridization: 

All compounds of beryllium like BeF2, BeH2, BeCl2 

All compounds of carbon-containing triple Bond like C2H2.  

• sp2 hybridisation is observed when one s and two p orbitals of the same shell of an 

atom mix to form 3 equivalent orbital. The new orbitals formed are called sp2 hybrid 

orbitals.   

• sp2 hybridization is also called trigonal hybridization.  

• It involves mixing of one „s‟ orbital and two „p‟ orbital‟s of equal energy to give a new 

hybrid orbital known as sp2. 

• A mixture of s and p orbital formed in trigonal symmetry and is maintained at 1200. 

• All the three hybrid orbitals remain in one plane and make an angle of 120° with one 

another. Each of the hybrid orbitals formed has 33.33% s character and 66.66% ‘p’ 

character. 

https://byjus.com/chemistry/beryllium/
https://byjus.com/chemistry/single-bond-double-bond-and-triple-bond/
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• The molecules in which the central atom is linked to 3 atoms and is sp2 hybridized have 

a triangular planar shape 

•  

Fig. 3 

• Examples of sp2 Hybridization 

• All the compounds of Boron i.e. BF3, BH3  

• All the compounds of carbon containing a carbon-carbon double bond, Ethylene (C2H4)  

• sp3 Hybridization 

• When one „s‟ orbital and 3 „p‟ orbitals belonging to the same shell of an atom mix 

together to form four new equivalent orbital, the type of hybridization is called 

a tetrahedral hybridization or sp3. The new orbitals formed are called sp3 hybrid 

orbitals.  

• These are directed towards the four corners of a regular tetrahedron and make an angle 

of 109°28’ with one another. 

•  The angle between the sp3 hybrid orbitals is 109.280  

• Each sp3 hybrid orbital has 25% s character and 75% p character.  

• Example of sp3 hybridization: ethane (C2H6), methane.  

•  

Fig.4 

https://byjus.com/chemistry/atoms-and-molecules/
https://byjus.com/chemistry/carbon-compounds/
https://byjus.com/regular-tetrahedron-formula/
https://byjus.com/jee/conformations-of-ethane-and-butane/
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Heitler and London Theory 

• Valence Bond Theory   

• Heitler and London introduced this theory. This is primarily based on the concepts 

of atomic orbitals, electronic configuration of elements, the overlapping of atomic 

orbitals, hybridization of atomic orbitals.  

•  The overlapping of atomic orbitals results in the formation of a chemical bond. The 

electrons are localized in the bond region due to overlapping. 

• Valence bond theory describes the electronic structure of molecules.  

• The theory says that electrons fill the atomic orbitals of an atom within a molecule.  

•  It also states that the nucleus of one atom is attracted to the electrons of another atom.  

• It is a theory which describes chemical bonding.  

• VBT states that the overlap of incompletely filled atomic orbitals leads to the formation 

of a chemical bond between two atoms.  

• The unpaired electrons are shared and a hybrid orbital is formed.  

• Postulates of Valence Bond Theory  

• The overlapping of two half- filled valence orbitals of two different atoms results in the 

formation of the covalent bond.  

• The overlapping causes the electron density between two bonded atoms to increase. 

This gives the property of stability to the molecule.  

• In case the atomic orbitals possess more than one unpaired electron, more than one 

bond can be formed and electrons paired in the valence shell cannot take part in such 

a bond formation. 

• Covalent bonds are formed when two valence orbitals (half- filled) belonging to two 

different atoms overlap on each other. The electron density in the area between the 

two bonding atoms increases as a result of this overlapping, thereby increasing the 

stability of the resulting molecule. 

• The presence of many unpaired electrons in the valence shell of an atom enables it to 

form multiple bonds with other atoms. The paired electrons present in the valence 

shell do not take participate in the formation of chemical bonds as per the valence 

bond theory. 

• A covalent bond is directional. Such a bond is also parallel to the region of overlapping 

atomic orbitals. 

https://www.toppr.com/guides/chemistry/structure-of-atom/shapes-of-atomic-orbitals/
https://www.toppr.com/guides/chemistry/structure-of-atom/shapes-of-atomic-orbitals/
https://www.toppr.com/guides/chemistry/structure-of-atom/shapes-of-atomic-orbitals/
https://www.toppr.com/guides/chemistry/structure-of-atom/electrons-distributed-orbits-shells-electronic+configuration/
https://www.toppr.com/guides/chemistry/carbon-and-its-compounds/covalent-bond/
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• Based on the pattern of overlapping, there are two types of covalent bonds: sigma bond 

and a pi bond. The covalent bond formed by sidewise overlapping of atomic orbitals 

is known as pi bond whereas the bond formed by overlapping of atomic orbital along 

the inter nucleus axis is known as a sigma bond. 

• Based on the overlapping of orbitals, how many types of covalent bonds are formed and 

what are they? 

• Answer: Based on the overlapping of orbitals, two types of covalent bonds are formed. 

These are known as sigma(σ) and pi(π) bonds.  

• Sigma bonds are formed by the end-to-end overlap of atomic orbitals along the inter-

nuclear axis known as a head-on or axial overlap. End-on overlapping is of three 

types, they are s-s overlapping, s-p overlapping and p-p overlapping. 

• A pi bond is formed when atomic orbitals overlap in a specific way that their axes 

remain parallel to each other and perpendicular to the internuclear axis. 

•  

Fig.5 

• Applications of Valence Bond Theory  

• The maximum overlap condition which is described by the valence bond theory can 

explain the formation of covalent bonds in several molecules.  

• This is one of its most important applications. For example, the difference in the length 

and strength of the chemical bonds in H2 and F2 molecules can be explained by the 

difference in the overlapping orbitals in these molecules.  

• The covalent bond in an HF molecule is formed from the overlap of the 1s orbital of the 

hydrogen atom and a 2p orbital belonging to the fluorine atom, which is explained by 

the valence bond theory.  
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• Limitations of Valence Bond Theory 

• It fails to explain the tetravalency of carbon.  

• No insight offered on the energies of the electrons.  

• The theory assumes that electrons are localized in specific areas.  

• It does not give a quantitative interpretation of the thermodynamic or kinetic stabilities 

of coordination compounds. 

• No distinction between weak and strong ligands.  
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5.Fermi surface 

 
The Fermi surface is defined as the surface of constant energy 𝐸𝐹 in K- space inside which 

all the states are occupied by the valence electron, while all the states lying outside it are 

empty at zero temperature. The effect of temperature on the Fermi surface is very slight and  
the surface remains sharp even at room temperature or higher. The shape of the Fermi surface 
is determined by the geometry of the energy contours in a zone. For a free electron, the Fermi 

surface is a sphere of radius 𝐾𝐹 when it lies well within the first Brillouin zone.  

However, non spherical and complicated shaper are observed when the Fermi surface and 
Brillouin zone are close to or touch one another under the effect of pseudo potential 𝑉𝑒𝑓𝑓 (r). 

Hence, a study of the shape of the Fermi surface and its proximity of the Brillouin zone is 
used to determine the properties of solids, such as heat capacity, pauli’s paramagnetism , 
electrical conductivity, etc. Fig  shows the evolution of the shape of constant energy curve 

(fs) as the number of electrons are gradually increased. The kinetic energy of a free electron 
in K - space is given by the parabolic eqn. 

 
Fig.1 –Fermi Surface 

 

 
 

The center of the first BZ (where K=0) is a minimum energy position, E = 0. This implies 
that for K =0 all the states are empty inside the brillouin zone. For small number of valence 

electrons, only the states lying near the bottom of the band (ie. the centre of the first BZ) are 
filled and the occupied volume is a sphere of radius KF . As the number of valence electrons 
is increased, more and more states are occupied and so the Fermi volume gradually expands. 

The Fermi surface begins to deform and loses its spherical shape near the zone boundary. The 
degree of distortion depends on (i) how near is the Fermi surface to the zone boundaries, (ii) 

the magnitude of the effective pseudo potential.  
Characteristics of Fermi surfaces 

1. The Fermi surface represents the dynamic and inertial properties of conduction electron 

in K- space. 
2. The volume of the Fermi surface represents the number of conduction electrons.  

3. The Fermi surface has spherical shape within the first brillouin zone and non- spherical in 
higher zones. 
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4. The Fermi surface always meets the zone boundary at right angles along the line of  
intersection. 

5. For a spherical Fermi surface, the velocity of for a free electron is v = ħ𝐾 

6. For non- spherical Fermi surfaces, under periodic potential, the velocity of electron is a  
non linear function of K. 
7. Study of Fermi surface gives to know the important properties of solids, such as heat  

capacity, pauli’s paramagnetism, electrical conductivity etc.  
 

Harrison’s method of constructing Fermi surface 

Extended zone scheme 

Harrison’s method is based on a weak pseudo potential 𝑉𝑒𝑓𝑓 ( r ) . The effect of this 

potential causes the energy discontinuities ΔE as well as distortion in the Fermi surface at the 

zone boundaries. Therefore, if 𝑉𝑒𝑓𝑓 ( r ) is made arbitrarily low , the energy discontinuities 
and the distortion in the Fermi surface can be removed. By taking arbitrarily low pseudo 

potential, we can describe the Fermi sphere of any radius 𝐾𝐹 from the centre of the first 
Brillouin zone which will cross a whole nmber of zone boundaries without distortion. This 

representation is an example of extended zone scheme. Thus,  using Harrison’s method, let us 
construct Fermi surface for some simple lattice in two and three dimensions. 

 
Fermi surfaces in two dimension (square lattice ) 

Consider a square lattice of lattice periodicity ‘a’. In order to know the size of the  

Harrison’s Fermi circle, let us consider the following cases of increasing electron 
concentration. 

 
(a) Monovalent metal 

The area of a first Brillion zone corresponding to a square lattice of parameter ‘a’ is given by 

A = 4𝜋2/𝑎2 . In a monovalent lattice, there is only one electron per unit cell. Thus only half 

the area in the first BZ will be occupied, and the rest will be vacant. The area of the Fermi 
circle (2D) equal to 𝜋𝐾𝐹2 must be equal to half the area of the first Brillouin zone. 

 
Fig.2 

 
𝐾𝐹 − Radius of Fermi circle. 
Where 𝜋/𝑎 is the distance of the zone boundary from the centre of the zone. Since the value 

A 𝑘𝑓 lies between 0<𝑘𝑓 < 𝜋/𝑎 , the Fermi circle lies well within the first BZ as shown in fig 

Hence the Fermi surface remains undistorted. 
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(b) Divalent metal 
If the atom of the metal is divalent in a square lattice, then from the same argument as given 

above 

 

 
Fig. 3 

Distance of the first Brillouin zone boundary from the centre is equal to (𝜋/𝑎 ) and the corner 

of the first zone from the centre in equal to 2 𝜋/𝑎 = 1.414 ……(5) 

From eqn (3) and (4) , we have ,𝜋/𝑎 < 𝑘𝑓 < 1.414 𝜋/𝑎 
 
This implies that a circle of radius 𝐾𝐹 will go beyond the first zone boundary but will remain 

inside the corner of the first Brillouin zone as shown in fig. If we translate the pieces of Fermi 

circle shown in fig through a distance 2(𝜋/𝑎 ) along 𝑘𝑥 and 𝑘𝑦 axes , we can construct closed 
curves around the corner and the boundaries of the first BZ as shown in the figure in a 

periodic zone scheme. 
In fig 4, the constant energy curves surround empty areas and are known as first zone holes 
and the constant energy curves in fig 5 surround the areas filled with electron and are known 

as the second zone electrons. 
 

 
Fig. 4                                                                   Fig. 5 
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(c) Trivalent metal 
For the trivalent metal, the radius of the Fermi circle is found to be  

 

It means that 𝜋/𝑎 < 𝐾𝐹 < 1.414 𝜋/𝑎 , which shows that the radius of the Fermi circle is still 
smaller than the distance of the corner of the first zone from the centre. Hence, the nature of 

the Fermi surface will be similar to the divalent case. The only difference will be that the size 
of the first zone holes will be smaller and the size of the second zone electrons bigger.  
 

Effect of magnetic field on Fermi surface: electron orbit 
 

In the absence of collision, the equation of motion of an electron in a magnetic field is given 
by 

 

Where e (v×B) is Lorentz force experienced by the electrons moving with velocity V in a  

magnetic field B. In metals, since V is perpendicular to Fermi surface in K space, the force is  
parallel to the Fermi surface and perpendicular to both v and B. The component of K parallel 
to B is therefore constant. So that electron orbit in K space is obtained by taking the 

intersection of the Fermi surface with a plane normal to B. The shape of the electron orbit in 
k space depends on the shape of the Fermi surface and the orientation of the external 

magnetic field. 
Let us consider two closely spaced electron orbits in k space with energies E and E+ dE as  
shown in fig . The shape of the electron orbit in r- space can be obtained by integrating 

eqn(1). 

 

This shows that the electron orbit in r- space is similar in shape with the K space orbit but 
differs by a scale factor of ħ/𝑒𝐵 and rotation of 𝜋/2. The period of electron orbit in a magnetic 

field is obtained as 
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Fig.6 

 

The velocity of an electron in a band of energy E in K space is given by 

 

Where 𝑑𝑘˔ 𝑖𝑠 the normal distance in k space. Eqn (3) becomes 

 
A is the area of the orbit in K space .  

Therefore, the cyclotron frequency is ωc, 

 
Cyclotron frequency is also given by ωc = v/r = eB/mc 
Where mc is the cyclotron effective mass and can be determined by comparing eqn (5) and 

(6) cyclotron effective mass 𝑚𝑐 is  

 
Fermi surface in metals: construction of Fermi surface of metals  

 

The procedure for constructing the Fermi surface in metal consists the following steps. 

1. For a given metal lattice, construct the corresponding reciprocal lattice.  
2. Near each reciprocal lattice point, construct a unit cell (brillouin zone) by the Wigner  
Seitz method. 

3. For the given parameters of the Brillouin zone and valence of the metal, determine the 
radius of the Fermi sphere 𝐾𝐹 . A sphere of this radius is drawn from the centre of the  

extended zone. 
4. The Fermi surface formed by the intersection of the Fermi sphere is classified by the  

rules. For constructing Fermi surface in 3D for metals having simple crystal structures, first 
we have to develop a formula connecting KF and the dimension of the brillouin zones.  

 
Electron orbit, hole orbit and open orbit 
 

The three types of orbits in a magnetic field are shown in fig 1.14. The three orbits are 
(1)electron orbit (2) hole orbit (3) open orbit. The first two orbits are closed orbits and are 
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traversed in opposite manner. Because, particles of opposite charge moving in the magnetic 
field in opposite direction. Electrons in holes like orbits move in a magnetic field with a 

positive charge. The third orbit is not closed. The particle on reaching the zone boundary at A 
is instantly recoils back to B. such an orbit is called an open orbit. Open orbits have an 

important effect on the magneto resistance. Orbits that enclose filled states are electron orbits. 
Orbits that enclose the empty states are called hole orbits. Orbits that move from zone to zone 
without closing are open orbits.  
 

 

Fig. 7 

De-Hass-van alphen effect (dHvA effect) 

 
When a metal is placed in a magnetic field, the electrons do not move in straight path but 

rotate in quantized orbits around the Fermi surface in a plane perpendicular to the field. 
Based on this concept, de Hass and van Alphen discovered that, at low temperatures the 
diamagnetic susceptibility of pure bismuth as a function of magnetic field in high fields 

exhibits periodic oscillations. This effect is called as de Hass van Alphen effect.  
This effect has been developed successfully in determining the external cross- sectional area 

of the Fermi surface. The basic idea of the de Hass van Alphen effect involves the 
quantization of electron orbits in a constant magnetic field applied in the Z- direction on such 
a way that the flux through the orbit. 

 

 
Fig.8 a and b 

The Bloch theorem is still applicable to KZ component of K, but not to KX and KY. 

Therefore the stationary allowed values specified by the square lattice of points are taken as 
shown in fig 8(a). They move round on one or other set of quantized circular orbits shown in 
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fig 8(b). Each of these circular orbits has a considerable degree of degeneracy. When a 
magnetic field is applied along KZ direction, it confines electrons to orbits of quantization 

area and these orbits lie on a set of coaxial cylinders of axis KZ. On the application of 
magnetic field, the energy levels which are condensed in this way are termed as Landau 

levels. When the magnetic field is increased, the allowed area of the orbit increases. So that 
the cylinders which correspond to the Landau level expand in cross section. Near the Fermi 
surface, the nearest cylinder expands in areas with increasing field, cylinder crosses the Fermi 

energy and so the corresponding landau level becomes empty. The electrons then distribute 
themselves on other parts of the Fermi surface. The critical field at which this happens is 

obtained as 
1/𝐵 = 2𝜋𝑒/ħ𝐴 (𝑛 + 𝜈) 

 

If 𝜈 Landu levels are below the Fermi energy, ( 𝜈 − 1) levels will be below it. If 𝜈 is very 

large, the new state of the electron gas with (𝜈 − 1) levels below EF becomes equivalent to 

the earlier situation and, therefore the process repeats as field is increases further. The effect 
of this procession of Landau level through the Fermi level as the magnetic field is increased 

gives the periodic fluctuation of the energy of the electron about the zero filed. The magnetic 
moment is the rate of change of free energy with field. Therefore the magnetization and the 

susceptibility vary periodically with 1/B. The period is 𝛿(1/𝐵) = 2𝜋𝑒/ħ𝐴 
Thus the period of oscillations is inversely proportional to the cross- sectional area of the 

Fermi surface in a plane perpendicular to the magnetic field. The external area of the Fermi 
surface normal to the direction of applied field is measured using the above equation.  
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