
1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – I - MICROPROCESSOR, MICRO CONTROLLER AND

EMBEDDED SYSTEM– SPHA5204

2

UNIT 1

8086 MICROPROCESSORS (16 BIT)

8086 microprocessor - Internal architecture, signals-addressing

modes- instruction formats-instruction set, Programming-

addition, subtraction, multiplication and division, Interfacing-

traffic light controller, stepper motor control.

INTRODUCTION

The microprocessor is the central unit of a computer system that performs arithmetic and logic operations,

which generally include adding, subtracting, transferring numbers from one area to another, and comparing

two numbers. It's often known simply as a processor, a central processing unit, or as a logic chip. It's

essentially the engine or the brain of the computer that goes into motion when the computer is switched

on. It's a programmable, multipurpose device that incorporates the functions of a CPU (central processing

unit) on a single IC (integrated circuit). A microprocessor accepts binary data as input, processes that data,

and then provides output based on the instructions stored in the memory. The data is processed using the

microprocessor's ALU (arithmetical and logical unit), control unit, and a register array. The register array

processes the data via a number of registers that act as temporary fast access memory locations. The flow

of instructions and data through the system is managed by the control unit.

Benefits of a Microprocessor

Less cost - Due to their use of IC technology, microprocessors don't cost much to produce. This means

that the use of microprocessors can greatly reduce the cost of the system it's used in.

Fast - The technology used to produce modern microprocessors has allowed them to operate at incredibly

high speeds--today's microprocessors can execute millions of instructions per second.

Power consumption - Power consumption is much lower than other types of processors since

microprocessors are manufactured using metal oxide semiconductor technology. This makes devices

equipped with microprocessors much more energy efficient.

Portable - Due to how small microprocessors are and that they don't consume a lot of power, devices

using microprocessors can be designed to be portable (like smartphones).

Reliable - Because semiconductor technology is used in the production of microprocessors, their failure

rate is extremely low.

3

They are versatile - The same microprocessor chip can be used for numerous applications as long as the

programming is changed, making it incredibly versatile.

Common Terms used – in Microprocessors

Word Length: Word length refers to the number of bits in the processor's internal data bus--or the number

of bits that a processor can process at any given time. For example, an 8-bit processor will have 8-bit

registers, an 8-bit data bus, and will perform 8-bit processing at a time.

Instruction Set: The instruction set is the series of commands that a microprocessor can understand.

Essentially, it's the interface between the hardware and the software.

Cache Memory: The cache memory is used to store data or instructions that the software or program

frequently references during operation. Basically, it helps to increase the operation's overall speed by

allowing the processor to access data more quickly than from a regular RAM.

Clock Speed: The clock speed is the speed at which a microprocessor is able to execute instructions. It's

typically measured in Hertz and expressed in measurements like MHz (megahertz) and GHz (gigahertz).

Bus: A bus is the term used to describe the set of conductors that transmit data or that address or control

information to the microprocessor's different elements. Most microprocessors consist of three different

buses, which include the data bus, the address bus, and the control bus.

Categories of Microprocessors

Based on Word Length

Microprocessors can be based on the number of bits the processor's internal data bus or the number of bits

that it can process at a time (which is known as the word length). Based on its word length, a

microprocessor can be classified as 8-bit, 16-bit, 32-bit, and 64-bit.

RISC - Reduced Instruction Set Computer

RISC microprocessors are more general use than those that have a more specific set of instructions. The

execution of instructions in a processor requires a special circuit to load and process data. Because RISC

microprocessors have fewer instructions, they have simpler circuits, which means they operate faster.

Additionally, RISC microprocessors have more registers, use more RAM, and use a fixed number of clock

cycles to execute one instruction.

CISC - Complex Instruction Set Computer

CISC microprocessors are the opposite of RISC microprocessors. Their purpose is to reduce the number

of instructions for each program. The number of cycles per instruction is ignored. Because complex

instructions are made directly into the hardware, CISC microprocessors are more complex and slower.

4

CISC microprocessors use little RAM, have more transistors, have fewer registers, have numerous clock

cycles for each instruction, and have a variety of addressing modes.

Special Purpose Processors

Some microprocessors are built to perform specific functions. For example, coprocessors are used in

combination with a main processor, while a transputer is a transistor computer: a microprocessor that has

its own local memory.

ARCHITECTURE OF 8086

It is Pipelined architecture. The 8086 CPU is divided into two functional units: Bus Interface

Unit (BIU) , Execution Unit (EU)

The Bus Interface Unit (BIU)

The BIU handles all data and addresses on the buses for the execution unit such as it sends out

addresses, fetches instructions from memory, reads/writes data from ports and memory. It contains

the bus interface logic, Segment register, stack pointer, base pointer, index pointer, memory

address logic and 6 byte Instruction queue (FIFO). BIU fetches the instruction code from memory

and stores in the queue.

Instruction Queue

To increase the execution speed, BIU fetches as many as six instruction bytes ahead to time from

5

memory. The prefetched instruction bytes are held for the EU in a first in first out group of registers

called a instruction queue. When the EU is ready for its next instruction, it simply reads the

instruction from this instruction queue. This is much faster than sending out an address to the

system memory and to send back the next instruction byte. Fetching the next instruction while the

current instruction executes is called pipelining.

6

Execution unit (EU)

It consists of ALU, General purpose register, Flag register, Instruction decoder, Pointer and index

register and the control unit which are required to execute an instruction. EU gets the opcode of

the instruction from instruction queue. Then it will be decoded and executed .BIU and EU are

independent. The overlapping operation of BIU and EU functional unit of a microprocessor is

called pipelining.

Register

It has fourteen 16 bit register .All the register subdivide in to

1. Data Register

2. Segment Register

3. Pointer Register

4. Index register (program counter)

5. Flag Register

Data Register

It has four 16 bit general purpose register (AX, BX, CX, DX)

16 bit

Registe

r

8 bit

High-

order

Registe

r

8 bit

lower

order

Registe

r

AX AH AL

BX BH BL

CX CH CL

DX DH DL

AX register:

 It serves as accumulator.

 It performs I/O operation and process data through AX, AH, AL.

 Result stored in accumulator.

 For 16 bit multiplication/division AX contain one word operand.

 For 32 bit multiplication/division AX contain lower order word operand.

7

BX register:

 It acts as a index register for MOVE operation.

 Base register for data memory address.

CX register:

 CX register can be used as a count register for string operation.

 It will have the count .

 It has large number of iteration.

 CX holds desired number of repetition and it automatically decremented by one

after the execution of instruction.

 CX become zero , the execution instruction is terminated.

DX register:

 DX can be used as a port address for IN and OUT instruction.

 The DX can be used in I/O instruction, Divide, Multiple Instruction.

 In 32 bit multiplication/division instruction DX is used to hold the higher order

word operand.

Segment Registers:

The BIU contains four 16-bit segment registers, one MB memory. Each divided in to 16 parts

which are called segments. Each segment occupies the 64KB memory space.

They are:

 Code segment (CS) register

 Data segment (DS) register

 Stack segment (SS) register

 Extra segment (ES) register

These segment registers are used to hold the upper 16 bits of the starting address for each of the

segments. The part of a segment starting address stored in a segment register is often called the

segment base.

8

1. Code Segment (CS)

The CS register is used for addressing a memory location in the Code Segment of the memory,

where the executable program is stored.

2. Data Segment (DS)

The data segment register points to the data segment of the memory, where data is stored

3. Stack Segment (SS)

It is used to addressing stack segment of the memory in which data is stored.

4. Extra Segment (ES):

It can be used as another data segment of the memory.

Pointer and Index register

1. Stack Pointer(SP)

2. Base Pointer(BP)

3. Source Index(SI)

4. Destination Index(DI)

5. Instruction Pointer(IP)

Flag register

1
5

1
4

13 1
2

11 10 9 8 7 6 5 4 3 2 1 0

X X X X OF D
F

IF TF SF ZF X AF X PF X CF

S- Sign Flag : This flag is set, when the result of any computation is negative.

9

Z- Zero Flag: This flag is set, if the result of the computation or comparison performed by

the previous instruction is zero.

P- Parity Flag: This flag is set to 1, if the lower byte of the result contains even number of

1’s.

C- Carry Flag: This flag is set, when there is a carry out of MSB in case of addition or a

borrow in case of subtraction.

T- Tarp Flag: If this flag is set, the processor enters the single step execution mode.

Interrupt Flag: If this flag is set, the maskable interrupt are recognized by the CPU, otherwise

they are ignored.

D- Direction Flag: This is used by string manipulation instructions. If this flag bit is ‘0’, the

string is processed beginning from the lowest address to the highest address, i.e., auto

incrementing mode. Otherwise, the string is processed from the highest address towards the

lowest address, i.e., auto incrementing mode.

AC-Auxilary Carry Flag: This is set, if there is a carry from the lowest nibble, i.e, bit three

during addition, or borrow for the lowest nibble, i.e, bit three, during subtraction.

O- Over flow Flag: This flag is set, if an overflow occurs, i.e, if the result of a signed operation

is large enough to accommodate in a destination register. The result is of more than 7-bits in

size in case of 8-bit signed operation and more than 15-bits in size in case of 16-bit sign

operations, then the overflow will be set.

Addressing modes of 8086

The method of specifying the data to be operated.

Immediate Addressing mode:

The 8 bit or 16 bit data is provided in the instruction itself.

EX: MOV BX, 5000H-Load 5000H in to BX register.

MOV CX, 4500H-Store 4500H in to CX register.

Register Addressing mode:

The data in a register or in a register pair specified by the instruction.

EX: MOV AL, BL-The content present in BL register is copied to AL register.

MOV AX, BX-The content present in BX register is copied to AX register.

Memory addressing mode:

Memory Addressing requires determination of physical address. The physical address can be

computed from the content of segment register and an effective address. The segment address

identifies the starting location of the segment in the memory and the effective address represents

the offset of the operand from the beginning of this segment of memory. The 20 bit effective

10

address can be made up of base, index and displacement.

16- bit effective address (EA)=Base+ Displacement.

20 bit physical address (PA) = Segment*10+Base+Index+Displacement.

TYPES:

1. Direct addressing mode

2. Register indirect addressing mode

3. Based addressing mode

4. Indexed addressing mode

5. Based Indexed addressing mode

6. Based Indexed with displacement addressing mode

7. String addressing mode

8. Branch addressing mode

Direct addressing mode:

The instruction or operand specifies the memory address where data is located. EX:

MOV AX, [5000H]-copies the 2 byte of data starting from memory location

DS*10+5000H to AX register. LSB-Data from DS*10+5000H, MSB- Data from
DS*10+5001H

MOV AX, SS: [2000H]: Similarly to access the memory from Stack segment.

Register indirect addressing mode:

The instruction specifies the register containing the address where the data is located. Where data

is located. This addressing mode works with SI, DI, BX and BP registers.

EX: MOV AL, [BX]-The Data present in BX register pointed to memory location (which default

indicates the data segment) is moved to AL register.

MOV AL, CS:[SI]- The Data present in SI register pointed to memory location which
indicates the code segment is moved to AL register.

Based addressing mode:

The 8-bit or 16-bit instruction operand is added to the contents of a base register (BX or BP), the

resulting value is a pointer to location where data resides.

EX: MOV AL, [BX+8 Bit DISP]-The content of memory location pointed by physical address

(PA) of the base register BX with displacement is copied to AL register.

MOV AH, [BP+8 Bit DISP]- The content of memory location pointed by physical address

(PA) of the base register BP with displacement is copied to AH register.

11

Indexed addressing mode:

The 8-bit or 16-bit instruction operand is added to the contents of an index register (SI or DI), the

resulting value is a pointer to location where data resides.

EX: MOV AL, CS: [SI+DISP]- The content of memory location pointed by physical address (PA)

of the index register SI with displacement which is present in code segment is copied to AL

register.

MOV AL, SS: [DI+DISP]- The content of memory location pointed by physical address (PA) of

the index register DI with displacement which is present in stack segment is copied to AL

register.

Based Indexed addressing mode:

The contents of a base register (BX or BP) is added to the contents of an index register (SI or

DI), the resulting value is a pointer to location where data resides.

EX: MOV AL, [BX+DI]- The content of memory location pointed by physical address(PA) of

the summation base register BX and index register DI is copied to AL register.

MOV AL, [BP+SI]- The content of memory location pointed by physical address (PA) of the

summation base register BP and index register SI is copied to AL register.

Based Indexed with displacement

The 8-bit or 16-bit instruction operand is added to the contents of a base register (BX or BP) and

index register (SI or DI) with displacement value, the resulting value is a pointer to location where

data resides.

EX: MOV AL, [BX+DI+DISP]-The 16-bit operand is added to the contents of a BX and DI

with displacement ,the resulting value is a pointer to location of AL.

MOV AL, [BP+SI+DISP]- The 16-bit operand is added to the contents of a BP and SI with

displacement ,the resulting value is a pointer to location of AL.

String Addressing Mode:

String is a byte or word s which are stored in memory.

EX: MOV SB-The memory source address is the SI register in the data segment. The memory of

destination address is the DI register in the extra segment.

Branch Addressing Mode:

 Intra segment mode- Intra segment Direct, Intra segment Indirect

 Inter segment mode- Inter segment Direct, Inter segment Indirect

EX: JNC START If CY=O, then PC is loaded with current PC contents plus 8 bit signed value of

START, otherwise the next instruction is executed.

Direct IO port addressing:

It is used to access data from standard IO-mapped devices or ports. In the direct port addressing

mode, an 8-bit port address is directly specified in the instruction.

12

EX: IN AL, [09H]-The content of the port with address 09H is moved to the AL register.

Indirect IO port addressing:

It is used to access data from standard IO mapped devices or ports. In the indirect port addressing

mode, the instruction will specify the name of the register which holds the port address.

EX: OUT [DX],AX-The content of the AX is moved to the port whose address is specified by

the DX register.

Relative Addressing mode:

The effective address of a program instruction is specified relative to instruction pointer(IP) by

an 8 bit signed displacement.

EX: JZ 0AH-Jump on Zero

13

Implied Addressing mode:

The instruction itself will specify the data to be operated by the instruction.

EX: CLC-clear flag

CMC-complement carry flag

INSTRUCTION SET OF 8086

The command applied to the microprocessor to perform a specific function.

TYPES:

1. Data transfer Instruction

2. Arithmetic and Logical Instruction

3. Branch Instruction

4. Loop Instruction

5. Process control Instruction

6. Flag Manipulation Instruction

7. Shift and Rotate Instruction.

8. String Manipulation Instruction

Data transfer Instruction:

The data is copied from source to Destination without any change. i.e register to register

Memory to register; register to memory, Data given immediately to register or

memory.[MOV,LDS,XCHG,PUSH,POP]

EX: MOV AX, SI-The content of SI is moved to the AX register.

XCHG DH, CL-The content of CL register is exchanged with content of DH register.

Arithmetic and Logical Instruction:

It performs the arithmetic, logical, increment, decrement, compare and scan

instruction.[ADD,SUB,MUL,DIV,INC,CMP,DAS,AND,OR,NOT,TEST,XOR]

EX: ADC BH,CL-The content of BH register ,the AL register and the carry flag are added. The result
is stored in the BH- register.

XOR BX,DX-The content of the BX and DX registers are Exclusive ORed .This result is stored in

BX register.

14

Control Transfer Instruction:

 Branch Instruction

 Loop Instruction

Branch Instruction:

The instruction will transfer the control of execution to the specified address. The JUMP, CALL,

interrupt and Return belongs to the Branch instruction.

EX: JNC 4500H-Jump if no carry to the memory location 4500H

CALL -This Instruction is used to transfer execution to a subprogram or procedure. There are two

basic types of CALL: Near and Far.

JCXZ Instruction - Jump if the CX register is zero

Loop Instruction:

These instructions have REP prefix with CX used as count register, and they can be used to

implement unconditional and conditional loops. The LOOP, LOOPNZ, LOOPZ instruction

belong to this Loop instruction. It is used to implement different delay loops.

EX: LOOP Instruction - Loop to specified label until CX = 0

LOOPE / LOOPZ - loop while CX ≠ 0 and ZF = 1

Process control Instruction:

The instruction control the machine status CLC, CMC, CLI, STD, STI, NOP, HLT, WAIT and

LOCK instruction.

EX:CLC-Carry flag is reset to zero.

CMC-Carry flag is complemented.

HLT-Halt the program execution.

WAIT-Wait for test line active.

Flag Manipulation Instruction:

All the instruction which directly affect the flag registers come under this group of instruction.

Instructions like CLD, STD, CLI, and STI belong to this category.

EX:STD: Set direction Flag

STC: Set Carry Flag

Shift and Rotate Instruction: The instruction involves in the bitwise shifting OR Rotation in

either direction with or without a count in CX. The example instructions are RCL, RCR, ROL,

ROR, SAL, SHL, SAR and SHR.

EX: ROR AX, CL- Rotate word or byte operand right by CL times. So CF and OF flag gets
affected.

15

SAL AX, CL-Shift word or byte operand CL times.

Note: Shift and Rotate examples comes under Logical

String Instruction:

These instructions involve various string manipulation operations like load, move, scan,

compare, store .EX: MOVS, LODS and STOS.

EX: LODSW Instruction - Load string byte into AL or Load string word into AX

MOVSW Instruction - Move string byte or string word.

 PIN DIAGRAM

 AD7-AD0 : address/data bus(multiplexed)

 memory address or I/O port no : whenever ALE = 1

 data : whenever ALE = 0

 high-impedance state : during a hold acknowledge

 A15-A8 : address bus

 high-impedance state : during a hold acknowledge

 AD15-AD8 : address/data bus(multiplexed)

 memory address bits A15-A8 : whenever ALE = 1

 data bits D15-D8 : whenever ALE = 0

16

 high-impedance state : during a hold acknowledge

 AD15-AD0-Address/Data Bus

17

 A19-A16-Address/Status

 A19/S6-A16/S3 : address/status bus(multiplexed)

 memory address A19-A16, status bits S6-S3

 high-impedance state : during a hold acknowledge

 S6 : always remain a logic 0

 S5 : indicate condition of IF flag bits

 S4, S3 : show which segment is accessed during current bus cycle

 S4, S3 : can used to address four separate 1M byte memory banks by decoding

them as A21, A20

 TEST’(BUSY’) : tested by the WAIT instruction

 WAIT instruction function as a NOP : if TEST’= 0

 WAIT instruction wait for TEST’ to become 0:if TEST’=1

 INTR: Interrupt request

 It is a level triggered input which is sampled during the last clock cycle of each

instruction to determine the processor should enter in to interrupt vector look up

table located in the system memory.

 It is internally masked by software

 NMI : Non-maskable interrupt

 similar to INTR except that no check IF flag bit

 if NMI is activated : use interrupt vector 2

 RESET :

 Reset signal active high for minimum of four clock cycles.

 The signals terminate its present activity and the system is reset.

 CLK(CLOCK) : provide basic timing to µ

 duty cycle of 33%

18

 VCC(power supply) : +5.0V, ±10%

 GND(Ground) : two pins labeled GND

 MN/MX’ : select either minimum or maximum mode

 Low—Maximum

 High--Minimum

 BHE’/S7 : bus high enable

 Enable the most significant data bus bits(D15-D8) during read or write operation

 Status of S7 : always a logic 1

 Minimum Mode Pins: MN = 1(directly to +5.0V) next p

 IO/M’(8088) or M/IO’(8086) : select memory or I/O

 address bus : whether memory or I/O port address

 WR: write signal(high impedance state during hold ack.)

 strobe that indicate that output data to memory or I/O

 during WR’=0 : data bus contains valid data for M or I/O

 RD’: Control signal read operation(it is an active low signal)

 Depends upon the status of S2 pin it will read the memory of I/O or memory.

SIMPLE PROGRAMS

ADDITION OF TWO 16 BIT NUMBER

Mov AX,[2000]

ADD AX,[2002]

MOV [2004],AX

HLT

19

ADDITION OF TWO 32 BIT NUMBER

MOV BL,00

MOV AX,[1700]

ADD AX,[1704]

MOV[1800],AX

MOV AX,[1702]

ADC AX,[1706]

JNC L1

INC BL

MOV [1802],AX

MOV[1804],BL

HLT

SUBTRACTION OF TWO 16 BIT NUMBER

MOV AX,[1500]

SUB AX,[1502]

MOV [1800],AX

HLT

SUBTRACTION OF TWO 32 BIT NUMBER

MOV BL,00

MOV AX,[1600]

SUB AX,[1604]

MOV[1800],AX

MOV AX,[1602]

SBB AX,[1606]

JNC L1

20

INC BL

MOV [1802],AX

MOV[1804],BL

HLT

MULTIPLICATION TWO 16 BIT NUMBER

MOV AX, [1200]

MUL AX,[1202]

MOV [1300],AX

MOV[1302],DX

HLT

DIVISION OF 32BIT NUMBER

MOV AX,[1600]

MOV DX,[1602]

MOV BX,[1604]

DIV BX

MOV [1500],AX

MOV[1502],DX

HLT

INTERFACING TRAFFIC LIGHT PROGRAM

MOV BX,1100

MOV CX,no of data

MOV AL,[BX]

OUT [PPICNT],AL

INC BX

21

MOV AL,[BX]

OUT[PPIAPRT],AL

INC BX

MOV AL,[BX] OUT

[PPIBPRT],AL HLT

STEPPER MOTOR PROGRAM

Diagram:

Truth Table:

1002 OUT 26,AL /*Move 80(Hex) to PPI, 26 is the CW of PPI*/

1004 MOV AL,0A /*Energizing the poles*/

1006 OUT 20,AL

22

1008 CALL 2000 /*Give some delay to rotate

Motor*/ 1010 MOV AL,06

1012 OUT 20,AL

1014 CALL 2000

1016 MOV AL,05

1018 OUT 20,AL

1020 CALL 2000

1022 MOV AL,09

1024 OUT 20,AL

1026 CALL 2000

1028 JMP 1004 /*Repeat the steps*/

1030 HLT

Stepper Motor

A Stepper Motor or a step motor is a brushless, synchronous motor which divides a full rotation into

a number of steps. Unlike a DC motor which rotates continuously when a fixed DC voltage is applied

to it, a step motor rotates in discrete step angles. This means, that it converts electrical power into

mechanical power. The stepper motors also differs in the way they are powered. Instead of an AC or

a DC voltage, they are driven (usually) with pulses. Each pulse is translated into a degree of rotation.

The Stepper Motors therefore are manufactured with steps per revolution of 12, 24, 72, 144, 180, and

200, resulting in stepping angles of 30, 15, 5, 2.5, 2, and 1.8 degrees per step. The stepper motor can

be controlled with or without feedback.

Working of Stepper motor

• There are 4 coils with 90o angle between each other fixed on the stator. The way that the coils are

interconnected, will finally characterize the type of stepper motor connection, the coils are not

connected together. The above motor has 90o rotation step. The coils are activated in a cyclic order,

one by one. The rotation direction of the shaft is determined by the order that the coils are activated.

The coils are energized in series, with about 1sec interval. The shaft rotates 90o each time the next

coil is activated. Figure below shows the conduction of stepper motors.

Types of stepper motors

1. Permanent magnet stepper

2. Hybrid synchronous stepper

23

3. Variable reluctance stepper

Variable Reluctance Motors

• The variable reluctance motor in the illustration has four “stator pole sets” (A, B, A’, B’), set 15

degrees apart. Current applied to pole A through the motor winding causes a magnetic attraction that

aligns the rotor (tooth) to pole A. Energizing stator pole B causes the rotor to rotate 15 degrees in

alignment with pole B. This process will continue with pole A’ and back to A in a clockwise direction.

Reversing the procedure (B’to A) would result in a counter clockwise rotation. Figure below shows

the Variable Reluctance Motors.

Permanent Magnet Motors

• The rotor and stator poles of a permanent magnet stepper are not teethed. Instead the rotor have

alternative north and south poles parallel to the axis of the rotor shaft. When a stator is energized, it

develops electromagnetic poles. The magnetic rotor aligns along the magnetic field of the stator. The

other stator is then energized in the sequence so that the rotor moves and aligns itself to the new

magnetic field. This way energizing the stators in a fixed sequence rotates the stepper motor by fixed

angles. Figure below shows the Permanent Magnet Motors.

Hybrid Motors

• They are constructed with multi-toothed stator poles and a permanent magnet rotor. Standard hybrid

motors have 200 rotor teeth and rotate at 1.80 step angles. Other hybrid motors are available in

0.9ºand 3.6º step angle configurations. Because they exhibit high static and dynamic torque and run

at very high step rates, hybrid motors are used in a wide variety of industrial applications. A hybrid

stepper is a combination of both permanent magnet and the variable reluctance. It has a magnetic

teethed rotor which better guides magnetic flux to preferred location in the air gap. The magnetic

24

rotor has two cups. One for north poles and second for the south poles. The rotor cups are designed

so that that the north and south poles arrange in alternative manner. Figure below shows the Hybrid

Motors.

A stepper motor is an electromechanical device which converts electrical pulses into discrete

mechanical movements. The shaft or spindle of a stepper motor rotates in discrete step increments

when electrical command pulses are applied to it in the proper sequence. The motors rotation has

several direct relationships to these applied input pulses. The sequence of the applied pulses is directly

related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly

related to the frequency of the input pulses and the length of rotation is directly related to the number

of input pulses applied.

Advantages

• The rotation angle of the motor is proportional to the input pulse.

• The motor has full torque at stand- still (if the windings are energized)

• Precise positioning and repeat- ability of movement since good stepper motors have an accuracy of

3 – 5% of a step and this error is noncumulative from one step to the next.

• Excellent response to starting/ stopping/reversing.

• Very reliable since there are no con-tact brushes in the motor. Therefore the life of the motor is

simply dependant on the life of the bearing.

• The motors response to digital input pulses provides open-loop control, making the motor simpler

and less costly to control.

• It is possible to achieve very low speed synchronous rotation with a load that is directly coupled to

the shaft.

• A wide range of rotational speeds can be realized as the speed is proportional to the frequency of

the input pulses

Disadvantages

• Resonances can occur if not properly controlled.

• Not easy to operate at extremely high speeds.

Open Loop Operation

25

One of the most significant advantages of a stepper motor is its ability to be accurately controlled in

an open loop system. Open loop control means no feedback information about position is Needed.

This type of control eliminates the need for expensive sensing and feedback devices such as optical

encoders. Your position is known simply by keeping track of the input step pulses.

Stepper Motor Modes

Stepper motors is driven by waveforms which approximate to sinusoidal waveforms. There are three

excitation modes commonly used with stepper motors: full-step, half-step and micro stepping.

Stepper Motor – Full-Step (Two Phases are on)

In full-step operation, the stepper motor steps through the normal step angle, e.g. with a 200

step/revolution the motor rotates 1.8° per full step, while in half-step operation the motor rotates 0.9°

per full step. There are two kinds of full-step modes which are single-phase full-step excitation and

dual-phase full-step excitation. In single-phase full-step excitation, the stepper motor operates with

only one phase energized at a time. This mode is typically used in applications where torque and

speed performances are less important, wherein the motor operates at a fixed speed and load

conditions are well defined. Typically, stepper motors are used in full-step mode as replacements in

existing motion systems, and not used in new developments. Problems with resonance can prohibit

operation at some speeds. This mode requires the least amount of power from the drive power supply

of any of the excitation modes. In dual-phase full-step excitation, the stepper motor operates with

two phases energized at a time. This mode provides excellent torque and speed performance with

minimal resonance problems.

Stepper Motor – Half-Step

Stepper motor half-step excitation mode alternates between single and dual-phase operations

resulting in steps that are half the normal step size. Therefore, this mode provides twice the resolution.

While the motor torque output varies on alternate steps, this is more than offset by the need to step

through only half the angle. This mode had become the predominately used mode by Anaheim

Automation beginning in the 1970’s, because it offers almost complete freedom from resonance

issues. The stepper motor can operate over a wide range of speeds and drive almost any load

commonly encountered. Although half-step drivers are still a popular and affordable choice, many

newer micro stepping drivers are cost-effective alternatives. Anaheim Automation’s BLD75 series is

a popular half-step driver and is suitable for a wide range of stepper motors. With this driver, the

customer only needs a transformer, as the other power supply components are built into the driver

itself.

Stepper Motor – Micro stepping

In the stepper motor micro stepping mode, a stepper motor’s natural step angle can be partitioned

into smaller angles. For example: a conventional 1.8 degree motor has 200 steps per revolution. If

the motor is micro stepped with a ‘divide-by-10,’ then each micro step moves the motor 0.18 degrees,

which becomes 2,000 steps per revolution. The micro steps are produced by proportioning the current

in the two windings according to sine and cosine functions. This mode is widely used in applications

requiring smoother motion or higher resolution. Typical micro step modes range from ‘divide-by-10’

to ‘divide-by-256’ (51,200 steps per revolution for a 1.8 degree motor). Some micro step drivers have

a fixed divisor, while the more expensive micro step drivers provide for selectable divisors. For cost-

effective micro step drivers.

26

Applications of Stepper motors

Aircraft – In the aircraft industry, stepper motors are used in aircraft instrumentations, antenna and

sensing applications, and equipment scanning

• Automotive – The automotive industry implements stepper motors for applications concerning

cruise control, sensing devices, and cameras. The military also utilizes stepper motors in their

application of positioning antennas

• Chemical – The chemical industry makes use of stepper motors for mixing and sampling of

materials. They also utilize stepper motor controllers with single and multi-axis stepper motors for

equipment testing

• Consumer Electronics and Office Equipment – In the consumer electronics industry, stepper motors

are widely used in digital cameras for focus and zoom functionality features. In office equipment,

stepper motors are implemented in PC-based scanning equipment, data storage drives, optical disk

drive driving mechanisms, printers, and scanners

• Gaming – In the gaming industry, stepper motors are widely used in applications like slot and lottery

machines, wheel spinners, and even card shufflers

• Industrial – In the industrial industry, stepper motors are used in automotive gauges, machine

tooling with single and multi-axis stepper motor controllers, and retrofit kits which make use of

stepper motor controllers as well. Stepper motors can also be found in CNC machine control

• Medical – In the medical industry, stepper motors are utilized in medical scanners, microscopic or

nanoscopic motion control of automated devices, dispensing pumps, and chromatograph auto-

injectors. Stepper motors are also found inside digital dental photography (X-RAY), fluid pumps,

respirators, and blood analysis machinery, centrifuge

• Scientific Instruments –Scientific equipment implement stepper motors in the positioning of an

observatory telescope, spectrographs, and centrifuge

• Surveillance Systems – Stepper motors are used in camera surveillance.

27

PART A

1.Construct the format of Flag Register in 8086 Microprocessor with bit position

2.Compare the Minimum and Maximum mode signal in 8086.

3.Differentiate with examples (i)PUSH (ii) POP

4.Explain the following instructions:

 i)MUL (ii) ADD (iii) ADC (iv)SUB(v) DIV

5.Define the following (i)JC & JNC instructions(ii)CALL and RET?

6.Grade the 8085 and 8086 Microprocessor.

7.Discriminate the Program counter and Stack Pointer in 8086 Microprocessor

8.Discuss an ALP for Addition of two 16 bits 8086 Microprocessor

9.Demonstrate an ALP for subtraction of two 16 bits in 8086.

10.Examine an ALP for Multiplication of two 16 bits in 8086

11.Evaluate ALP Division of two 16 bit using 8086.

PART B

1.Elaborate the organization of 8086 architecture with neat diagram.

2.Discuss the classification of 8086 instruction with examples.

3.Classify the various type of addressing modes used in 8086 with examples.

4.Construct an ALP for Stepper Motor Controller in 8085.

5.Create an ALP for Traffic Light controller in 8085.

6.Distinguish the branching instruction of 8086 microprocessor with examples.

7.Compare the 8086 data transfer instruction with adequate examples.

8.Intepret the pin details of 8086 and briefly explain its functions.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – II – Advanced Microprocessors – SPHA5204

2

UNIT II ADVANCED PROCESSORS

Review of processor and its types-80286-80386-80486-Introduction to Pentium

family-MMX architecture and instruction set- Multi core processor architecture.

ARCHITECTURE & FEATURES 80286

The 80286 is the first family of advanced microprocessors with memory management and

protection mode. It is 16 bit processor with 134000 transistors. The CPU, with its 24-bit address bus

is able to address up to 16 Mbytes of physical memory. It has 12.5 MHz, 10 MHz and 8 MHz clock

frequencies. Average speed is 0.21 instructions per clock cycle. It compatible with 8086 in terms of

instruction set. It has two operating modes namely real address mode and virtual address mode. In real

address mode, the 80286 can address up to 1Mb of physical memory address. In virtual address mode,

it can address up to 16 Mb of physical memory address space and 1 GB of virtual memory address

space. The instruction set of 80286 includes the instructions of 8086 and 80186. It has some extra

instructions to support operating system and memory management. In real address mode, the 80286

is object code compatible with 8086. In protected virtual address mode, it is source code compatible

with 8086. It is five times faster than the standard 8086.

3

Fig:1.1: Architecture of 80286

4

Register of 80286

The 80286 contains almost the same set of registers, as in 8086, namely

1. Eight 16-bit general purpose registers

2. Four 16-bit segment registers

3. Status and control registers

4. Instruction Pointer

Functional blocks of 80286

1. Address Unit (AU)

2. Bus Init (BU)

3. Instruction Unit (IU)

4. Execution Unit (EU)

Address Unit

The address unit is responsible for calculating the physical address (PA or MA) of instructions

and data accessed. PA 29 bit, off set 16 bit. The address lines derived by this unit may be used

to address different peripherals. The PA handed over to the bus unit (BU) of the CPU.

Bus Unit

The bus unit has 16-bit data bus, 24 bit address bus and control bus. It performs all external

operation. Latches and drivers of address bus transmit address from A19-A0 for read and write

operation. It will fetch instruction bytes from the memory. Instructions are fetched in advance and

stored in a queue to enable faster execution of the instructions. This concept is called instruction

pipelining. It controls the prefetcher module. These prefetched instructions are arranged in a 6-

byte instructions queue.

Instruction Unit

The 6-byte prefetch queue forwards the instructions arranged in it to the instruction unit (IU).

The instruction unit accepts instructions from the prefetch queue and an instruction decoder

decodes them one by one. The output of the decoding circuit drives a control circuit in the

execution unit, which is responsible for executing the instructions received from decoded

instruction queue.

Execution Unit

5

The decoded instruction queue sends the data part of the instruction over the data bus. The EU

contains the register bank used for storing the data as scratch pad, or used as special purpose

registers. The ALU, the heart of the EU, carries out all the arithmetic and logical operations and

sends the results over the data bus or back to the register bank.

Register

The architecture has fifteen registers. It is grouped in to four categories are listed below.

1. General purpose registers

2. Segment registers

3. Base and Index registers

4. Status and control registers

General purpose Registers

It is used to store arithmetic and logical operations. They are AX, BX, CX , DX can be used

either as 16 bit words or split into pair of 8 bit registers.

Segment Registers

It is used to select the segment of memory that is immediately addressable for code, stack and

data.

Base and Index Registers

General purpose register can also used to determine offset address of operand in memory. It

holds base address or indexes to particular location within a segment.

Status and control registers:

It is a 16 bit special purpose register used for record and control of the 80286 processor. The instruction

pointer contains the offset address of the next sequential instruction to be executed.

Flag Word Description

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

6

X

NT

IOP

L

IOP

L

OF

DF

IF

TF

SF

ZF

X

AF

X

PF

X

CF

D3

2

D3

1

D3

0

D2

9

D2

8

D2

7

D2

6

D2

5

D2

4

D2

3

D2

2

D2

1

D2

0

D1

9

D1

8

D1

7

D1

6

X X X X X X X X X X X X X TS EM MP PE

Status Flag:

1. Carry Flag (CF) D0 set on carry/borrow produced ,when adding/subtracting bits.

2. Parity Flag (PF) D2 set on even number of ones.

3. Auxiliary carry Flag (AF) D4 set on carry or borrow to LSB to MSB otherwise cleared.

4. Zero Flag (ZF) Set on D6 is zero

5. Sign Flag (SF) Set on D7 is one

6. Overflow Flag (OF) Too large or small numbers.

Control Flag

1. Trap Flag (TF) Set, a single interrupts occurs after the next instruction executes.TF is

cleared by the single step interrupt.

2. Interrupt Flag (IF) Set, Maskable interrupt will cause the CPU to transfer control to an

interrupt vector specified location.

3. Direction Flag (DF) Causes string instruction to auto decrement the appropriate index

registers when set. Clearing DF causes auto increment.

Machine Status Word

1. Task switch TS is set, This flag indicates the next instruction using extension will

generate exception7, permitting the emulation of processor extension is for the current

task.

2. Processor Extension (EM) The emulate processor extension flag causes a processor

extension absent exception and permits the emulation of processor extension by CPU.

3. Monitor Processor Extension (MP) The monitor process extension flag allows WAIT

instruction to generate a processor extension not present in the extension.

4. Protection enable (PE) Protection enable flag places the 80286 in protected mode, PE

is set. This can only be cleared by resetting the CPU.

Other Flag

1. Nested Flag

7

2. I/O privilege level

Interrupt

The Interrupts of 80286 may be divided into three categories,

1. External or hardware interrupts

2. INT instruction or software interrupts

3. Interrupts generated internally by exceptions

While executing an instruction, the CPU may sometimes be confronted with a special situation

because of which further execution is not permitted. While trying to execute a divide by zero

instruction, the CPU detects a major error and stops further execution. In this case, we say that an

exception has been generated. In other words, an instruction exception is an unusual situation

encountered during execution of an instruction that stops further execution. The return address

from an exception, in most of the cases, points to the instruction that caused the exception. As

in the case of 8086, the interrupt vector table of 80286 requires 1Kbytes of space for storing 256,

four-byte pointers to point to the corresponding 256 interrupt service routines (lSR). Each pointer

contains a 16-bit offset followed by a 16-bit segment selector to point to a particular ISR. The

calculation of vector pointer address in the interrupt vector table from the (8-bit) INT type is

exactly similar to 8086. Like 8086, the 80286 supports the software interrupts of type 0 (INT 00)

to type FFH (INT FFH).

Maskable Interrupt INTR

This is a maskable interrupt input pin of which the INT type is to be provided by an external circuit

like an interrupt controller. The other functional details of this interrupt pin are exactly similar to

the INTR input of 8086.

Non-Maskable Interrupt NMI

It has higher priority than the INTR interrupt. Whenever this interrupt is received, a vector value

of 02 is supplied internally to calculate the pointer to the interrupt vector table. Once the CPU

responds to a NMI request, it does not serve any other interrupt request (including NMI). Further

it does not serve the processor extension (coprocessor) segment overrun interrupt, till either it

executes IRET or it is reset. To start with, this clears the IF flag which is set again with the

execution of IRET, i.e. return from interrupt.

Single Step Interrupt

As in 8086, this is an internal interrupt that comes into action, if trap flag (TF) of 80286 is set. The

CPU stops the execution after each instruction cycle so that the register contents (including flag

register), the program status word and memory, etc. may be examined at the end of each instruction

execution. This interrupt is useful for troubleshooting the software. An interrupt vector type 01 is

reserved for this interrupt.

8

Signal Description of 80286

CLK

This is the system clock input pin. The clock frequency applied at this pin is divided by two

internally and is used for deriving fundamental timings for basic operations of the circuit. The

clock is generated using 8284 clock generator.

D15-D0

These are sixteen bidirectional data bus lines.

A23-A0

9

These are the physical address output lines used to address memory or I/O devices. The address lines

A23 - A16 are zero during I/O transfers

This output signal, as in 8086, indicates that there is a transfer on the higher byte of the data bus (D15 – D8).

These are the active-low status output signals which indicate initiation of a bus cycle and with

M/IO and COD/INTA, they define the type of the bus cycle.

This output line differentiates memory operations from I/O operations. If this signal is it “0” indicates that an

I/O cycle or INTA cycle is in process and if it is “1” it indicates that a memory or a HALT cycle is in progress.

This output signal, in combination with M/ IO signal and S1 , S0 distinguishes different memory,

I/O and INTA cycles.

This active-low output pin is used to prevent the other masters from gaining the control of the bus

for the current and the following bus cycles. This pin is activated by a "LOCK" instruction prefix,

or automatically by hardware during XCHG, interrupt acknowledge or descriptor table access

10

READY

This active-low input pin is used to insert wait states in a bus cycle, for interfacing low speed

peripherals. This signal is neglected during HLDA cycle.

HOLD and HLDA

This pair of pins is used by external bus masters to request for the control of the system bus

(HOLD) and to check whether the main processor has granted the control (HLDA) or not, in the

same way as it was in 8086.

11

INTR :

Through this active high input, an external device requests 80286 to suspend the current

instruction execution and serve the interrupt request. Its function is exactly similar to that of

INTR pin of 8086.

NMI :

The Non-Maskable Interrupt request is an active-high, edge-triggered input that is equivalent to

an INTR signal of type 2. No acknowledge cycles are needed to be carried out.

PEREG and (Processor Extension Request and Acknowledgement)

Processor extension refers to coprocessor (80287 in case of 80286 CPU). This pair of pins extends

the memory management and protection capabilities of 80286 to the processor extension 80287.

The PEREQ input requests the 80286 to perform a data operand transfer for a processor extension.

The PEACK active-low output indicates to the processor extension that the requested operand is

being transferred.

 and :

Processor extension both are active-low input signals indicate the operating conditions of a

processor extension to 80286. The BUSY goes low, indicating 80286 to suspend the execution and

wait until the BUSY become inactive. In this duration, the processor extension is busy with its

allotted job. Once the job is completed the processor extension drives the input

high indicating 80286 to continue with the program execution. An active signal

causes the 80286 to perform the processor extension interrupt while executing the WAIT and ESC

instructions. The active signal indicates to 80286 that the processor extension has

committed a mistake and hence it is reactivating the processor extension .

CAP :

A 0.047 μf, 12V capacitor must be connected between this input pin and ground to filter the output

of the internal substrate bias generator. For correct operation of 80286 the capacitor must be

charged to its operating voltage. Till this capacitor charges to its full capacity, the 80286 may be

12

kept stuck to reset to avoid any spurious activity.

Vss :

This pin is a system ground pin of 80286.

Vcc :

This pin is used to apply +5V power supply voltage to the internal circuit of 80286. RESET the

active-high RESET input clears the internal logic of 80286, and reinitializes it

Reset

The active-high reset input pulse width should be at least 16 clock cycles. The 80286 requires at least

38 clock cycles after the trailing edge of the RESET input signal, before it makes the first opcode

fetch cycle.

Real Address Mode

It act as a fast 8086.Instruction set is upwardly compatible. It address only 1 M byte of physical

memory using A0-A19.In real addressing mode of operation of 80286, it just acts as a fast 8086.

The instruction set is upward compatible with that of 8086.The 80286 addresses only 1Mbytes of

physical memory using A0- A19. The lines A20-A23 are not used by the internal circuit of 80286

in this mode. In real address mode, while addressing the physical memory, the 80286 uses BHE

along with A0- A19. The 20-bit physical address is again formed in the same way as that in 8086.

The contents of segment registers are used as segment base addresses. The other registers,

depending upon the addressing mode, contain the offset addresses. Because of extra pipelining

and other circuit level improvements, in real address mode also, the 80286 operates at a much

faster rate than 8086, although functionally they work in an identical fashion. As in 8086, the

physical memory is organized in terms of segments of 64Kbyte.An exception is generated, if the

segment size limit is exceeded by the instruction or the data. The overlapping of physical memory

segments is allowed to minimize the memory requirements for a task. The 80286 reserves two

fixed areas of physical memory for system initialization and interrupt vector table. In the real mode

the first 1Kbyte of memory starting from address 0000H to 003FFH is reserved for interrupt vector

table. Also the addresses from FFFF0H to FFFFFH are reserved for system initialization. The

program execution starts from FFFFH after reset and initialization. The interrupt vector table of

80286 is organized in the same way as that of 8086. Some of the interrupt types are reserved for

exceptions, single-stepping and processor extension segment. When the 80286 is reset, it always

starts the execution in real address mode. In real address mode, it performs the following functions:

it initializes the IP and other registers of 80286, it prepares for entering the protected virtual address

mode.

13

Protected virtual address mode (PVAM)

80286 is the first processor to support the concepts of virtual memory and memory management.

The virtual memory does not exist physically it still appears to be available within the system. The

concept of VM is implemented using Physical memory that the CPU can directly access and

secondary memory that is used as storage for data and program, which are stored in secondary

memory initially. The Segment of the program or data required for actual execution at that instant,

is fetched from the secondary memory into physical memory. After the execution of this fetched

segment, the next segment required for further execution is again fetched from the secondary

memory, while the results of the executed segment are stored back into the secondary memory for

further references. This continues till the complete program is executed. During the execution the

partial results of the previously executed portions are again fetched into the physical memory, if

required for further execution. The procedure of fetching the chosen program segments or data

from the secondary storage into physical memory is called swapping. The procedure of storing

back the partial results or data back on the secondary storage is called un swapping. The virtual

memory is allotted per task. The 80286 is able to address 1 G byte of virtual memory per task. The

complete virtual memory is mapped on to the 16Mbyte physical memory.

If a program is larger than 16Mbyte is stored on the hard disk and is to be executed, if it is fetched

in terms of data or program segments of less than 16Mbyte in size into the program memory by

swapping sequentially as per sequence of execution. Whenever the portion of a program is required

for execution by the CPU, it is fetched from the secondary memory and placed in the physical

memory is called swapping in of the program. A portion of the program or important partial results

required for further execution , may be saved back on secondary storage to make the PM free for

14

further execution of another required portion of the program is called

15

Swapping out of the executable program.

80286 uses the 16-bit content of a segment register as a selector to address a descriptor stored in

the physical memory. The descriptor is a block of contiguous memory locations containing

information of a segment, like segment base address, segment limit, segment type, privilege level,

segment availability in physical memory, descriptor type and segment use another task.

16

ARCHITECTURE OF 80386

Features of 80386:

This 80386 is a 32bit processor that supports 8bit/32bit data operands. The 80386-instruction set is

upward compatible with all its predecessors. The 80386 can run 8086 applications under protected

mode in its virtual 8086 mode of operation. With the 32 bit address bus, the 80386 can address up to

4Gbytes of physical memory. The physical memory is organized in terms of segments of 4Gbytes at

maximum. The 80386 CPU supports 16K number of segments and thus the total virtual space of

4Gbytes * 16K = 64 Terabytes. The memory management section of 80386 supports the virtual

memory, paging and four levels of protection, maintaining full compatibility with 80286. The 80386

offers a set of 8 debug registers DR 0-DR 7 for hardware debugging and control. The 80386 has on-

chip address translation cache. The concept of paging is introduced in 80386 that enables it to organize

the available physical memory in terms of pages of size 4Kbytes each, under the segmented memory.

The 80386 can be supported by 80387 for mathematical data processing.

Architecture:

The Internal Architecture of 80386 is divided into 3 sections.

 Central processing unit –Two types=> Execution unit and Instruction unit

 Memory management unit

 Bus interface unit

17

Execution unit :

It has 8 General purpose and 8 Special purpose registers which are either used for handling data

or calculating offset addresses.

Instruction unit:

It decodes the opcode bytes received from the 16-byte instruction code queue and arranges them

in a 3- instruction decoded instruction queue. After decoding them pass it to the control section for

deriving the necessary control signals. The barrel shifter increases the speed of all shift and rotate

operations. The multiply / divide logic implements the bit-shift-rotate algorithms to complete the

operations in minimum time. Even 32- bit multiplications can be executed within one microsecond

by the multiply / divide logic.

Memory management unit :

The Memory management unit consists of

 Segmentation unit

 Paging unit.

Segmentation unit:

It allows the use of two address components, viz. segment and offset for relocability and sharing

of code and data. The segments of size 4Gbytes. The Segmentation unit provides a 4 level

protection mechanism for protecting and isolating the system code and data from those of the

application program

The Paging unit :

It organizes the physical memory in terms of pages of 4kbytes size each. It works under the control

of the segmentation unit, i.e. each segment is further divided into pages. The virtual memory is

also organizes in terms of segments and pages by the memory management unit. It converts linear

addresses into physical addresses. The control and attribute PLA checks the privileges at the page

level. Each of the pages maintains the paging information of the task. The limit and attribute PLA

checks segment limits and attributes at segment level to avoid invalid accesses to code and data in

the memory segments.

Bus control unit

18

It has a prioritize to resolve the priority of the various bus requests. which controls the access of

the bus. The address driver drives the bus enable and address signal A0 – A31. The pipeline and

dynamic bus sizing unit handle the related control signals. The data buffers interface the internal

data bus with the system bus.

Pin Diagram:

Pin Description:

CLK2: The input pin provides the basic system clock timing for the operation of 80386.

D 0 – D31: These 32 lines act as bidirectional data bus during different access cycles

A31 – A 2: These are upper 30 bit of the 32- bit address bus.

BE0 to BE 3: The 32- bit data bus supported by 80386 and the memory system of 80386 can be

viewed as a 4- byte wide memory access mechanism. The 4 byte enable lines BE 0 to BE 3, may

be used for enabling these 4 blanks. Using these 4 enable signal lines, the CPU may transfer 1 byte

/ 2 / 3 / 4 byte of data simultaneously.

W/R#: The write / read output distinguish the write and read cycles from one another.

D/C#: This data / control output pin distinguishes between a data transfer cycle from a machine

control cycle like interrupt acknowledge.

M/IO#: This output pin differentiates between the memory and I/O cycles.

LOCK#: The LOCK# output pin enables the CPU to prevent the other bus masters from gaining

19

the control of the system bus.

NA#: The next address input pin, if activated, allows address pipelining, during 80386 bus cycles.

ADS#: The address status output pin indicates that the address bus and bus cycle definition pins (

W/R#, D/C#, M/IO#, BE 0# to BE 3#) are carrying the respective valid signals. The 80383 does

not have any ALE signals and so this signals may be used for latching the address to external

latches.

READY#: The ready signals indicate to the CPU that the previous bus cycle has been terminated

and the bus is ready for the next cycle. The signal is used to insert WAIT states in a bus cycle and

is useful for interfacing of slow devices with CPU.

VCC: These are system power supply lines.

VSS: These return lines for the power supply

BS16#: The bus size – 16 input pin allows the interfacing g of 16 bit devices with the 32 bit wide

80386 data bus. Successive 16 bit bus cycles may be executed to read a 32 bit data from a

peripheral.

HOLD: The bus hold input pin enables the other bus masters to gain control of the system bus if

it is asserted.

HLDA: The bus hold acknowledge output indicates that a valid bus hold request has been

received and the bus has been relinquished by the CPU.

BUSY#: The busy input signal indicates to the CPU that the coprocessor is busy with the allocated

task.

ERROR#: The error input pin indicates to the CPU that the coprocessor has encountered an error

while executing its instruction.

PEREQ: The processor extension request output signal indicates to the CPU to fetch a data word

for the coprocessor.

INTR: This interrupt pin is a maskable interrupt, that can be masked using the IF of the flag

register.

NMI: A valid request signal at the non-maskable interrupt request input pin internally generates a

non- maskable interrupt of type2.

RESET: A high at this input pin suspends the current operation and restart the execution from the

starting location.

N / C : No connection pins are expected to be left open while connecting the 80386 in the circuit.

20

Register Organization:

The 80386 has eight 32 - bit general purpose registers which may be used as either 8 bit or 16 bit

registers. 32 - bit register known as an extended register, is represented by the register name with

prefix E. Example: A 32 bit register corresponding to AX is EAX, similarly BX is EBX etc. The

16 bit registers BP, SP, SI and DI in 8086 are now available with their extended size of 32 bit and

are names as EBP, ESP, ESI and EDI. AX represents the lower 16 bit of the 32 bit register EAX.

BP, SP, SI, DI represents the lower 16 bit of their 32 bit counterparts, and can be used as

independent 16 bit registers. The six segment registers available in 80386 are CS, SS, DS, ES, FS

and GS. The CS and SS are the code and the stack segment registers respectively, while DS, ES,

FS, GS are 4 data segment registers. The 16 bit instruction pointer IP is available along with 32 bit

counterpart EIP.

Flag Register of 80386: It is a 32 bit register. Out of the 32 bits, Intel has reserved bits D18 to

D31, D 5 and D 3, while D1 is always set at 1.Two extra new flags are added to the 80286 flag to

derive the flag register of 80386. They are VM and RF flags.

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15

 VM RF

D31-D17 reserved for Intel

VM - Virtual Mode Flag:

If this flag is set, the 80386 enters the virtual 8086 mode within the protection mode. This is to be

set only when the 80386 is in protected mode. In this mode, if any privileged instruction is executed

an exception 13 is generated. This bit can be set using IRET instruction or any task switch operation

only in the protected mode.

RF- Resume Flag:

This flag is used with the debug register breakpoints. It is checked at the starting of every

instruction cycle and if it is set, any debug fault is ignored during the instruction cycle. The RF is

automatically reset after successful execution of every instruction, except for IRET and POPF

instructions. Also, it is not automatically cleared after the successful execution of JMP, CALL and

INT instruction causing a task switch. These instructions are used to set the RF to the value

specified by the memory data available at the stack.

21

Segment Descriptor Registers:

This registers are not available for programmers, rather they are internally used to store the

descriptor information, like attributes, limit and base addresses of segments. The six segment

registers have corresponding six 73 bit descriptor registers. Each of them contains 32 bit base

address, 32 bit base limit and 9 bit attributes. These are automatically loaded when the

corresponding segments are loaded with selectors.

Control Registers:

The 80386 has three 32 bit control registers CR), CR 2 and CR 3 to hold global machine status

independent of the executed task. Load and store instructions are available to access these registers.

System Address Registers: Four special registers are defined to refer to the descriptor tables

supported by 80386. The 80386 supports four types of descriptor table, viz. global descriptor table

(GDT), interrupt descriptor table (IDT), local descriptor table (LDT) and task state segment

descriptor (TSS).

Debug and Test Registers: Intel has provide a set of 8 debug registers for hardware debugging.

Out of these eight registers DR 0 to DR 7, two registers DR 4 and DR 5 are Intel reserved. The

initial four registers DR 0 to DR 3 store four program controllable breakpoint addresses, while DR

6 and DR 7 respectively hold breakpoint status and breakpoint control information. Two more test

register are provided by 80386 for page caching namely test control and test status register.

ADDRESSING MODES:

The 80386 supports overall eleven addressing modes to facilitate efficient execution of higher

level language programs. In case of all those modes, the 80386 can now have 32-bit immediate or

32- bit register operands or displacements. The 80386 has a family of scaled modes. In case of

scaled modes, any of the index register values can be multiplied by a valid scale factor to obtain

the displacement. The valid scale factor are 1, 2, 4 and 8.

The different scaled modes are as follows. Scaled Indexed Mode: Contents of the index register

are multiplied by a scale factor that may be added further to get the operand offset.

Based Scaled Indexed Mode:

Contents of the index register are multiplied by a scale factor and then added to base register to

obtain the offset. Based Scaled Indexed Mode with Displacement: The Contents of the index

register are multiplied by a scaling factor and the result is added to a base register and a

22

displacement to get the offset of an operand. After reset, the 80386 starts from memory location

FFFFFFF0H under the real address mode. In the real mode, 80386 works as a fast 8086 with 32-

bit registers and data types. In real mode, the default operand size is 16 bit but 32- bit operands and

addressing modes may be used with the help of override prefixes. The segment size in real mode

is 64k, hence the 32-bit effective addressing must be less than 0000FFFFFH. The real mode

initializes the 80386 and prepares it for protected mode.

Memory Addressing in Real Mode: In the real mode, the 80386 can address at the most 1Mbytes

of physical memory using address lines A 0-A19. Paging unit is disabled in real addressing mode,

and hence the real addresses are the same as the physical addresses. To form a physical memory

address, appropriate segment registers contents (16-bits) are shifted left by four positions and then

added to the 16-bit offset address formed using one of the addressing modes, in the same way as

in the 80386 real address modes. The segment in 80386 real mode can be read, write or executed,

i.e. no protection is available. Any fetch or access past the end of the segment limit generates

exception 13 in real address mode. The segments in 80386 real mode may be overlapped or no

overlapped. The interrupt vector table of 80386 has been allocated 1Kbyte space starting from

00000H to 003FFH.

Protected Mode of 80386

All the capabilities of 80386 are available for utilization in its protected mode of operation. The

80386 in protected mode support all the software written for 80286 and 8086 to be executed under

the control of memory management and protection abilities of 80386. The protected mode allows

the use of additional instruction, addressing modes and capabilities of 80386.

Addressing in protected mode:

In this mode, the contents of segment registers are used as selectors to address descriptors which

contain the segment limit, base address and access rights byte of the segment. The effective address

(offset) is added with segment base address to calculate linear address. This linear address is further

used as physical address, if the paging unit is disabled. Otherwise the paging unit converts the

linear address into physical address. The paging unit is a memory management unit enabled only

in protected mode. The paging mechanism allows handling of large segments of memory in terms

of pages of 4Kbyte size. The paging unit operates under the control of segmentation unit. The

paging unit if enabled converts linear addresses into physical address, in protected mode.

Segmentation

Descriptor tables: These descriptor tables and registers are manipulated by the operating system

to ensure the correct operation of the processor, and hence the correct execution of the program.

Three types of the 80386 descriptor tables are listed as follows:

23

 Global Descriptor Table (GDT)

 Local Descriptor Table (LDT)

 Interrupt Descriptor Table (IDT)

Descriptors:

The 80386 descriptors have a 20-bit segment limit and 32-bit segment address. The descriptor of

80386 are 8-byte quantities access right or attribute bits along with the base and limit of the

segments. Descriptor Attribute Bits: The A (accessed) attributed bit indicates whether the segment

has been accessed by the CPU or not. The TYPE field decides the descriptor type and hence the

segment type. The S bit decides whether it is a system descriptor (S=0) or code/data segment

descriptor (S=1).The DPL field specifies the descriptor privilege level. The D bit specifies the

code segment operation size. If D=1, the segment is a 32-bit operand segment, else, it is a 16-bit

operand segment. The P bit (present) signifies whether the segment is present in the physical

memory or not. If P=1, the segment is present in the physical memory. The G (granularity) bit

indicates whether the segment is page addressable. The zero bit must remain zero for compatibility

with future process.

The AVL (available) field specifies whether the descriptor is for user or for operating system. •

The 80386 has five types of descriptors listed as follows:

1. Code or Data Segment Descriptors.

2. System Descriptors.

3. Local descriptors.

4. TSS (Task State Segment) Descriptors.

5. GATE Descriptors.

The 80386 provides a four level protection mechanism exactly in the same way as the 80286 does.

Paging operation:

Paging is one of the memory management techniques used for virtual memory multitasking

operating system. The segmentation scheme may divide the physical memory into a variable size

segments but the paging divides the memory into a fixed size pages. The segments are supposed

to be the logical segments of the program, but the pages do not have any logical relation with the

program. The pages are just fixed size portions of the program module or data. The advantage of

paging scheme is that the complete segment of a task need not be in the physical memory at any

time. Only a few pages of the segments, which are required currently for the execution, need to be

available in the physical memory. Thus the memory requirement of the task is substantially

reduced, relinquishing the available memory for other tasks. Whenever the other pages of task are

24

required for execution, they may be fetched from the secondary storage. The previous pages which

are executed need not be available in the memory, and hence the space occupied by them may be

relinquished for other tasks.

Paging Descriptor Base Register:

The control register CR2 is used to store the 32-bit linear address at which the

previous page fault was detected. The CR 3 is used as page directory physical base address register,

to store the physical starting address of the page directory. The lower 12 bit of the CR3 are always

zero to ensure the page size aligned directory. A move operation to CR 3 automatically loads the

page table entry caches and a task switch operation, to load CR 0 suitably.

Page Directory:

This is at the most 4Kbytes in size. Each directory entry is of 4 bytes, thus a total

of 1024 entries are allowed in a directory. The upper 10 bits of the linear address are used as an

index to the corresponding page directory entry. The page directory entries point to page tables.

Page Tables:

Each page table is of 4Kbytes in size and many contain a maximum of 1024 entries.

The page table entries contain the starting address of the page and the statistical information about

the page. The upper 20 bit page frame address is combined with the lower 12 bit of the linear

address. The address bits A12- A21 are used to select the 1024 page table entries. The page table

can be shared between the tasks. The P bit of the above entries indicates, if the entry can be used

in address translation. If P=1, the entry can be used in address translation, otherwise it cannot be

used. The P bit of the currently executed page is always high. The accessed bit A is set by 80386

before any access to the page. If A=1, the page is accessed, else unaccessed. The D bit is set before

a write operation to the page is carried out. The D-bit is undefined for page director entries. The

OS reserved bits are defined by the operating system software. The User / Supervisor (U/S) bit and

read/write bit are used to provide protection. These bits are decoded to provide protection under

the 4 level protection models. The level 0 is supposed to have the highest privilege, while the level

3 is supposed to have the least privilege. This protection provide by the paging unit is transparent

to the segmentation unit.

ARCHITECTURE OF 80486

25

It is 32 bit processor. One of the most obvious feature included in a 80486 is a built in math

coprocessor. This coprocessor is essentially the same as the 80387 processor used with a 80386,

but being integrated on the chip allows it to execute math instructions about three times as fast as

a 80386/387 combination. 80486 is an 8Kbyte code and data cache. To make room for the

additional signals, the 80486 is packaged in a 168 pin, pin grid array package instead of the 132

pin PGA used for the 80386.

Flag Register of 80486:

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

26

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15

 VM RF

31 18 17 16 Reserved for INTEL E F L A G Flags

CF: Carry Flag

AF: Auxiliary carry

ZF: Zero Flag

SF : Sign Flag

TF : Trap Flag

IE : Interrupt Enable

DF : Direct Flag

OF : Over Flow

IOPL : I/O Privilege Level

NT : Nested Task Flag

RF : Resume Flag

VM : Virtual Mode

AC : Alignment Check

The memory system for the 486 is identical to 386 microprocessor. The 486 contains 4G bytes of

memory beginning at location 00000000H and ending at FFFFFFFFH. The major change to the

memory system is internal to 486 in the form of 8K byte cache memory, which speeds the

execution of instructions and the acquisition of data. Another addition is the parity checker/

generator built into the 80486 microprocessor. Parity Checker / Generator : Parity is often used to

determine if data are correctly read from a memory location. INTEL has incorporated an internal

parity generator / decoder.

27

Parity is generated by the 80486 during each write cycle. Parity is generated as even parity and a

parity bit is provided for each byte of memory. The parity check bits appear on pins DP0-DP3,

which are also parity inputs as well as parity outputs. These are typically stored in memory during

each write cycle and read from memory during each read cycle. On a read, the microprocessor

checks parity and generates a parity check error, if it occurs on the PCHK# pin. A parity error

causes no change in processing unless the user applies the PCHK signal to an interrupt input.

Interrupts are often used to signal a parity error in DS-based computer systems. This is same as

80386, except the parity bit storage. If parity is not used, Intel recommends that the DP0 – DP3

pins be pulled up to +5v.

Cache memory: The cache memory system stores data used by a program and also the

instructions of the program. The cache is organized as a 4 way set associative cache with each

location containing 16 bytes or 4 double words of data.

Control register CR0: It is used to control the cache with two new control bits not present in the

80386 microprocessor. The CD (cache disable) , NW (non-cache write through) bits are new to

the 80486 and are used to control the 8K byte cache. If the CD bit is a logic 1, all cache operations

are inhibited. This setting is only used for debugging software and normally remains cleared. The

NW bit is used to inhibit cache write through operation. As with CD, cache write through is

inhibited only for testing. For normal operations CD = 0 and NW = 0. Because the cache is new

to 80486 microprocessor and the cache is filled using burst cycle not present on the 386.

The 80486 contains the same memory-management system as the 80386. This includes a paging

unit to allow any 4K byte block of physical memory to be assigned to any 4K byte block of linear

memory. The only difference between 80386 and 80486 memory-management system is paging.

The 80486 paging system can disabled caching for section of translation memory pages, while the

80386 could not. If these are compared with 80386 entries, the addition of two new control bits is

observed (PWT and PCD). The page write through and page cache disable bits control caching.

The PWT controls how the cache functions for a write operation of the external cache memory. It

does not control writing to the internal cache. The logic level of this bit is found on the PWT pin

of the 80486 microprocessor. Externally, it can be used to dictate the write through policy of the

external caching. The PCD bit controls the on-chip cache. If the PCD = 0, the on-chip cache is

enabled for the current page of memory. Note that 80386 page table entries place a logic 0 in the

PCD bit position, enabling caching. If PCD = 1, the on-chip cache is disable. Caching is disable

regard less of condition of KEN#, CD, and NW.

28

Test registers : TR3,TR5

Cache data register (TR3):

It is used to access either the cache fill buffer for a write test operation or the cache read buffer for

a cache read test operation. In order to fill or read a cache line (128 bits wide), TR3 must be

written or read four times. The contents of the set select field in TR5 determine which internal

cache line is written or read through TR3. The 7 bit test field selects one of the 128 different 16

byte wide cache lines. The entry select bits of TR5 select an entry in the set or the 32 bit location

in the read buffer.

Control bits in TR5:

It is used to enable the

 Fill buffer or read buffer operation (00).

 Perform a cache write (01),

 Perform a cache read (10)

 Flush the cache (11).

The cache status register (TR4) hold the cache tag, LRU bits and a valid bit. This register is loaded

with the tag and valid bit before a cache a cache write operation and contains the tag, valid bit,

LRU bits, and 4 valid bits on a cache test read. Cache is tested each time that the microprocessor

is reset if the AHOLD pin is high for 2 clocks prior to the RESET pin going low. This causes the

486 to completely test itself with a built in self test or BIST. The BIST uses TR3, TR4, TR5 to

completely test the internal cache. Its outcome is reported in register EAX. If EAX is a zero, the

microprocessor, the coprocessor and cache have passed the self test. The value of EAX can be

tested after reset to determine if an error is detected. In most of the cases we do not directly access

the test register unless we wish to perform our own tests on the cache or TLB.

Pin Definitions :

A 31-A2 : Address outputs A31-A2 provide the memory and I/O with the address during normal

operation. During a cache line invalidation A31-A4 are used to drive the microprocessor.

A20 : The address bit 20 mask causes the 80486 to wrap its address around from location

000FFFFFH to 00000000H as in 8086. This provides a memory system that functions like the 1M

byte real memory system in the 8086 processors.

ADS: The address data strobe becomes logic zero to indicate that the address bus contains a

valid memory address.

29

AHOLD: The address hold input causes the microprocessor to place its address bus connections

at their high-impedance state, with the remainder of the buses staying active. It is often used by

another bus master to gain access for a cache invalidation cycle.

30

BREQ: This bus request output indicates that the 486 has generated an internal bus request. BE 3-

BE 0 : Byte enable outputs select a bank of the memory system when information is transferred

between the microprocessor and its memory and I/O. The BE 3 signal enables D31 – D24 , BE2

enables D23-D16, BE1 enables D15 – D8 and BE 0 enables D 7-D 0

BLAST: The burst last output shows that the burst bus cycle is complete on the next activation of

BRDY# signal

BOFF : The Back-off input causes the microprocessor to place its buses at their high impedance

state during the next cycle. The microprocessor remains in the bus hold state until the BOFF# pin

is placed at a logic 1 level.

NMI : The non-maskable interrupt input requests a type 2 interrupt.

BRDY : The burst ready input is used to signal the microprocessor that a burst cycle is complete.

KEN : The cache enable input causes the current bus to be stored in the internal.

LOCK : The lock output becomes a logic 0 for any instruction that is prefixed with the lock

prefix.

W / R : current bus cycle is either a read or a write.

IGNNE : The ignore numeric error input causes the coprocessor to ignore floating point error and

to continue processing data. The signal does not affect the state of the FERR pin.

FLUSH : The cache flush input forces the microprocessor to erase the contents of its 8K byte

internal cache

EADS: The external address strobe input is used with AHOLD to signal that an external address

is used to perform a cache invalidation cycle.

FERR : The floating point error output indicates that the floating point coprocessor has detected

an error condition. It is used to maintain compatibility with DOS software.

BS 8 : The bus size 8, input causes the 80486 to structure itself with an 8-bit data bus to access

byte-wide memory and I/O components.

BS16: The bus size 16, input causes the 80486 to structure itself with an 16-bit data bus to access

word-wide memory and I/O components.

PCHK : The parity check output indicates that a parity error was detected during a read operation

on the DP 3 – DP 0 pin.

PLOCK : The pseudo-lock output indicates that current operation requires more than one bus

cycle to perform. This signal becomes a logic 0 for arithmetic coprocessor operations that access

31

64 or 80 bit memory data.

32

PWT: The page write through output indicates the state of the PWT attribute bit in the page table

entry or the page directory entry.

RDY : The ready input indicates that a non-burst bus cycle is complete. The RDY signal must be

returned or the microprocessor places wait states into its timing until RDY is asserted.

M / IO : Memory / IO defines whether the address bus contains a memory address or an I/O port

number. It is also combined with the W/ R signal to generate memory and I/O read and write

control signals.

The 80486 data bus, address bus, byte enable, ADS#, RDY#, INTR, RESET, NMI, M/IO#, D/C#,

W/R#, LOCK#, HOLD, HLDA and BS16# signals function as we described for 80386. • The

80486 requires 1 clock instead of 2 clock required by 80386. A new signal group on the 486 is the

PARITY group DP 0-DP 3 and PCHK#. These signals allow the 80486 to implement parity

detection / generation for memory reads and memory writes. During a memory write operation,

the 80486 generates an even parity bit for each byte and outputs these bits on the DP 0-DP3 lines.

A normal 80486 memory read operation to read a line into the cache requires 2 clock cycles.

However, if a series of reads is being done from successive memory locations, the reads can be

done in burst mode with only 1 clock cycle per read. To start the process the 80486 sends out the

first address and asserts the BLAST# signal high. When the external DRAM controller has the

first data bus, it asserts the BRDY# signal. The 80486 reads the data word and outputs the next

address. Since the data words are at successive addresses, only the lower address bits need to be

changed. If the DRAM controller is operating in the page or the static column modes then it will

only have to output a new column address to the DRAM.

In this mode the DRAM will be able to output the new data word within 1 clock cycle. When the

processor has read the required number of data words, it asserts the BLAST# signal low to

terminate the burst mode. The final signal we want to discuss here are the bus request output signal

BREQ, the back-off input signal BOFF#, the HOLD signal and the hold-acknowledge signal

HLDA. These signals are used to control sharing the local 486 bus by multiple processors (bus

master). When a master on the bus need to use the bus, it asserts its BERQ signal .An external

parity circuit will evaluate requests to use the bus and grant bus use to the highest – priority master.

To ask the 486 to release the bus, the bus controller asserts the 486 HOLD input or BOFF# input.

If the HOLD input is asserted, the 486 will finish the current bus cycle, float its buses and assert

the HLDA signal. To prevent another master from taking over the bus during a critical operation,

the 486 can assert its LOCK# or PLOCK# signal.

The extended flag register EFLAG is illustrated in the figure. The only new flag bit is the AC

alignment check, used to indicate that the microprocessor has accessed a word at an odd address

or a double word boundary. Efficient software and execution require that data be stored at word or

double word boundaries.

33

MMX instruction set:

MMX Instructions

MMX is widely supported: Intel Pentium MMX, Pentium 2+, Celeron, AMD K6, Athlon, Duron,

and higher ([PENT,MMX] in NASM docs).

Extended MMX instructions are supported by newer processors: Pentium 3+, Celeron 2+, Athlon

and Duron ([KATMAI,MMX] in NASM docs).

 8 64-bit registers, MM0 to MM7.
 Registers represent arrays of 8 bytes, 4 words, or 2 dwords.
 Used for high speed, low precision integer vector operations (such as for image and signal

processing).
 Registers overlap FPU registers ST(0) to ST(7)

Instruction Set
 PADDUSW mm1, mm2

 ^ ^ ^ ^ ^ ^

 | | | | | |

 P = packed (all MMX instructions) --------------+ | | | | |

 Instruction (add) --------------------------------+ | | | |

 S = saturation, US = unsigned saturation -----------+ | | |

 B, W, D, Q = 8 bytes, 4 words, 2 dword, or 1 qword ---+ | |

 | |

34

 Destination is an MMX register, mm0-mm7 -----------------+ |

 |

 Source is an MMX register or 64 bit memory location ----------+

Saturation means that overflows are handled by replacing with the closest representable

value, e.g. 0 to 255 for unsigned byte saturation, -32768 to 32767 for signed word, etc.

Unless noted, all instructions take two operands, a and b.

a is mm0-mm7, b is mm0-mm7 or a 64 bit memory location.

a[0], b[0] means the low order byte, word, or dword of a or b.

x means B W D or Q indicating 8, 16, 32, or 64 bit size of input elements.

r means eax, ebx, ecx, edx, esi, edi, esp, ebp.

mm means one of mm0-mm7.

mem means memory in any addressing mode (e.g. qword ptr [eax+ebx*8+offset])

i means an immediate constant (0, 1, 2...).

* means extended MMX, not supported on some older processors.

Instruction Input Sizes Notes

----------- ----------- -----

; Required FPU reset after any MMX instruction before FPU instructions

EMMS No operands

; Move

MOVQ Q a = b, a may be memory if b is mm0-7

MOVNTQ mem, mm * Q a = b, fast (non temporal) store

MOVD a, mm D a = mm[0], a is a 32 bit register or memory

MOVD mm, b D to Q, mm = {b, 0}, b is a 32 bit register or

memory

; Parallel arithmetic

PADDx B W D a += b, discard carry

PADDSx B W a += b, signed saturation

PADDUSx B W a += b, unsigned saturation

PSUBx B W D a -= b, discard borrow

PSUBSx B W a -= b, signed saturation

PSUBUSx B W a -= b, unsigned saturation

PMULLW W a = (a * b) & 0xffff

PMULHW W a = (a * b) >> 16, signed

PMULHUW * W a = (a * b) >> 16, unsigned

; Complex multiply or vector product

PMADDWD W to D, a = {a[0]*b[0]+a[1]*b[1],

a[2]*b[2]+a[3]*b[3]}, signed

; Parallel compare, conditional store

PCMPEQx B W D a = -(a == b)

PCMPGTx B W D a = -(a > b), signed

PMOVMSKB r, mm * B r = (mm < 0), 8 bits, zero extended

MASKMOVQ * B if (b[i] < 0) [edi+i] = a[i], b must be mm0-7

; Logical (element boundaries are irrelevant)

PAND Q a &= b

PANDN Q a = ~a & b

POR Q a |= b

PXOR Q a ^= b

; Shift

35

PSLLx W D Q a <<= b[0], b may also be 0..63

PSRLx W D Q a >>= b[0], unsigned, b may also be 0..63

PSRAx W D a >>= b[0], signed, b may also be 0..31

; Pack to smaller type

PACKSSWB W to B, a = {a[0]..a[3],b[0]..b[3]}, signed

saturation

PACKUSWB W to B, a = {a[0]..a[3],b[0]..b[3]}, unsigned

saturation

PACKSSDW D to W, a = {a[0], a[1],b[0], b[1]}, signed

saturation

; Unpack

PUNPCKLBW B a = {a[0],b[0]...a[3],b[3]}

PUNPCKHBW B a = {a[4],b[4]...a[7],b[7]}

PUNPCKLWD W a = {a[0],b[0],a[1],b[1]}

PUNPCKHWD W a = {a[2],b[2],a[3],b[3]}

PUNPCKLDQ D a = {a[0],b[0]}

PUNPCKHDQ D a = {a[1],b[1]}

; Parallel min, max, average

PMINUB * B a = min(a, b), unsigned

PMAXUB * B a = max(a, b), unsigned

PMINSW * W a = min(a, b), signed

PMAXSW * W a = max(a, b), signed

PAVGx * B W a = (a + b + 1) >> 1

; Reorder elements

PSHUFW a, b, i * W a = {b[i], b[i>>2], b[i>>4], b[i>>6]}

; Extract single element

PEXTRW r, mm, i * W r = mm[i], i=0..3, zero extend

PINSRW mm, b, i * W mm[i] = x, i=0..3, b is 16/32 bit reg or memory

; Vector sum of absolute differences

PSADBW * B to W, a[0] = sum(abs(a-b)), unsigned, zero

extended

MOVNTQ and MASKMOVQ store non-temporal data - data which will not be reloaded

for awhile and therefore should not be stored in cache. This frees cache memory.

Multi core Processor - Types

36

1.Core duo Processor:

 Execution time will be decreased when two processor connected together.

37

Core 2 quad processor:

Execution time will be decreased when four processor connected together.

38

PART A

1.Discuss the register in 80286 Microprocessor

2.Compare 8086 & 80286 Microprocessor

3.Describe the Registers in 80386 Microprocessor

4.Sketch the Flag Register in 80286 Microprocessor

5.List the Flag Register in 80386

6.Inspect the Register in 80486 Microprocessor

7.Demonstrate the any two types of MMX instruction set.

8.Develop the floating point in 80486 Microprocessor

9.Explain the Flag Register in 80486. Microprocessor

10.Classify the features of 80286 Microprocessor

11.Measure the features of 80386 Microprocessor

12.Illustrate the features of 80486 Microprocessor

PART B

1.Construct Architecture of Intel 80286 Microprocessor.

2.Discuss the Architecture of Intel 80386 Microprocessor.

3.Produce the Construction architecture of Intel 80486 Microprocessor.

4.Discuss in detail about the MMX Architecture.

5.Explain the MMX instruction set.

6.Explain the Multi core Processor.

7.Distinguish between 80286,80386 and 80486 microprocessors

8.Analyze the 80286 and 80386 microprocessors

9.Compare 80386 and 80486 microprocessors

39

TEXT / REFERENCE BOOKS

1. A.K Ray and K M Bhurchandi, Advanced Microprocessors and Periperals,3RD edition,

TMH,2017.

2. Joseph Yiu, The Definitive Guide to the ARM Cortex-M3,2nd Edition, Newnes,2015.

3. Dr.MarkFisher, ARM Cortex M4 Cookbook, Packt, 2016.

4. David Hanes, “IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the

 Internet of Things”, Cisco press, 2017.

5. Olivier Hersent , David Boswarthick , Omar Elloumi, “The Internet of Things: Key Applications

 and Protocols”, 2nd Edition, Wiley, 2012.

6. Rajkamal, “Embedded system-Architecture, Programming, Design”, TMH, 2011.

7. Jonathan W.Valvano, “Embedded Microcomputer Systems,Real Time Interfacing”,Cengage

 Learning,3rd Edition, 2012.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT III – ARM CONTROLLER– SPHA5204

2

Unit –III ARM PROCESSOR ARCHITECTURE

CISC and RISC ARCHITECTURE

Central Processing Unit Architecture operates the capacity to work from “Instruction Set

Architecture” to where it was designed. The architectural designs of CPU are RISC (Reduced

instruction set computing) and CISC (Complex instruction set computing). CISC has the ability to

execute addressing modes or multi-step operations within one instruction set. It is the design of

the CPU where one instruction performs many low-level operations. For example, memory

storage, an arithmetic operation and loading from memory. RISC is a CPU design strategy based

on the insight that simplified instruction set gives higher performance when combined with a

microprocessor architecture which has the ability to execute the instructions by using some

microprocessor cycles per instruction.

What is RISC and CISC ARCHITECTURES?

Hardware designers invent numerous technologies & tools to implement the desired architecture

in order to fulfill these needs. Hardware architecture may be implemented to be either hardware

specific or software specific, but according to the application both are used in the required quantity.

As far as the processor hardware is concerned, there are 2 types of concepts to implement the

processor hardware architecture. First one is RISC and other is CISC.

CISC Architecture

The CISC approach attempts to minimize the number of instructions per program, sacrificing the

number of cycles per instruction. Computers based on the CISC architecture are designed to

decrease the memory cost. Because, the large programs need more storage, thus increasing the

memory cost and large memory becomes more expensive. To solve these problems, the number of

instructions per program can be reduced by embedding the number of operations in a single

instruction, thereby making the instructions more complex.

3

Figure 3.1 CISC Architecture

 MUL loads two values from the memory into separate registers in CISC.

 CISC uses minimum possible instructions by implementing hardware and executes

operations.

 Instruction Set Architecture is a medium to permit communication between the

programmer and the hardware. Data execution part, copying of data, deleting or editing is

the user commands used in the microprocessor and with this microprocessor the Instruction

set architecture is operated.

 The main keywords used in the above Instruction Set Architecture are as below

Instruction Set: Group of instructions given to execute the program and they direct the computer

by manipulating the data. Instructions are in the form – Opcode (operational code) and Operand.

Where, opcode is the instruction applied to load and store data, etc. The operand is a memory

register where instruction applied.

Addressing Modes: Addressing modes are the manner in the data is accessed. Depending upon

the type of instruction applied, addressing modes are of various types such as direct mode where

straight data is accessed or indirect mode where the location of the data is accessed. Processors

having identical ISA may be very different in organization. Processors with identical ISA and

nearly identical organization is still not nearly identical.

4

CPU performance is given by the fundamental law

 …………………………(3.1)

Thus, CPU performance is dependent upon Instruction Count, CPI (Cycles per instruction) and

Clock cycle time. And all three are affected by the instruction set architecture.

Figure 3.2 Instruction Count of the CPU

This underlines the importance of the instruction set architecture. There are two prevalent

instruction set architectures

Examples of CISC PROCESSORS

IBM 370/168 – It was introduced in the year 1970. CISC design is a 32 bit processor and four 64-

bit floating point registers.

VAX 11/780 – CISC design is a 32-bit processor and it supports many numbers of addressing

modes and machine instructions which is from Digital Equipment Corporation.

Intel 80486 – It was launched in the year 1989 and it is a CISC processor, which has instructions

varying lengths from 1 to 11 and it will have 235 instructions.

Characteristics of CISC Architecture

 Instruction-decoding logic will be Complex.

 One instruction is required to support multiple addressing modes.

 Less chip space is enough for general purpose registers for the instructions that are

0operated directly on memory.

 Various CISC designs are set up two special registers for the stack pointer, handling

interrupts, etc.

5

 MUL is referred to as a “complex instruction” and requires the programmer for storing

functions.

6

RISC Architecture

RISC (Reduced Instruction Set Computer) is used in portable devices due to its power efficiency.

For Example, Apple iPod and Nintendo DS. RISC is a type of microprocessor architecture that

uses highly-optimized set of instructions. RISC does the opposite, reducing the cycles per

instruction at the cost of the number of instructions per program Pipelining is one of the unique

feature of RISC. It is performed by overlapping the execution of several instructions in a pipeline

fashion. It has a high performance advantage over CISC.

Fig 3.3 RISC Architecture

RISC processors take simple instructions and are executed within a clock cycle

Characteristics of RISC Architecture

 Simple Instructions are used in RISC architecture.

 RISC helps and supports few simple data types and synthesize complex data types.

 RISC utilizes simple addressing modes and fixed length instructions for pipelining.

 RISC permits any register to use in any context.

7

 One Cycle Execution Time

 The amount of work that a computer can perform is reduced by separating “LOAD” and

“STORE” instructions.

 RISC contains Large Number of Registers in order to prevent various number of

interactions with memory.

 In RISC, Pipelining is easy as the execution of all instructions will be done in a uniform

interval of time i.e. one click.

 In RISC, more RAM is required to store assembly level instructions.

 Reduced instructions need a less number of transistors in RISC.

 RISC uses Harvard memory model means it is Harvard Architecture.

 A compiler is used to perform the conversion operation means to convert a high-level

language statement into the code of its form.

RISC & CISC Comparison

Table 3.1Comparison between CISC & RISC

MUL instruction is divided into three instructions

“LOAD” – moves data from the memory bank to a register

“PROD” – finds product of two operands located within the registers

“STORE” – moves data from a register to the memory banks

The main difference between RISC and CISC is the number of instructions and its complexity.

8

History of ARM Processors

ARM machines have a history of living up to the expectations of their developers, right from the

very first ARM machine ever developed. It all began in the 1980s when Acorn Computers Ltd.,

spurred by the success of their platform BBC Micro wished to move on from simple CMOS

processors to something more powerful, something that could stand strong against the IBM

machines launched in 1981. The solutions available in the market like the Motorola 68000 were

not powerful enough to handle graphics and GUIs leaving only one option with the company, make

their own processor.

Inspired by the making of 32 bit processors by some undergraduates at Berkeley and a one man

design centre Western Design Centre, Phoenix, Steve Ferber and Sophie Wilson of Acorn Ltd. set

out to make their own processors. Sophie developed the instruction set and simulated it on the

BBC Basic which convinced many in the company that it was not just anything half-hearted shot

aimed in darkness. With the support and permission of the then CEO Hermann Hauser, the ARM

project formally took off in 1983 with VLSI Technology as their silicon partner, to produce an

ARM processor with latencies as low as that of the 6502. The first ARM core dubbed as ARM1

was delivered by VLSI Technology in 1985. This processor used in conjunction with the BBC

Micro helped in the development of the next generation called ARM2. 1987 saw the release of

ARM Archimedes.

Acorn floated a new company Advanced RISC Machines Ltd. solely dedicated for ARM core

development. In 1992, Acorn won the Queen’s Award for Technology for the ARM. Apple and

ARM collaborated to develop the ARM6 cores on which the Apple Newton PDAs were based.

Later, the technology was also transferred to Intel over a settlement of lawsuit. Intel further

modified it and developed its own high performance line XScale, now sold to Marvell. ARM Inc.

is involved with developing cores primarily while its licensees make microcontroller and

processors, the most popular being the ARM7TDMI machines. Some prominent licensees of ARM

machines are Alcatel Lucent, Apple, Atmel, Cirrus Logic, Freescale, DEC, Intel, LG, Marvell,

Microsoft, Nvidia, Qualcomm, Samsung, Sharp, ST microelectronics, Symbios Logic, Texas

http://www.engineersgarage.com/articles/what-is-cmos-technology
http://www.engineersgarage.com/articles/vlsi-design-future

9

Instruments, VLSI Technology, Yamaha, Zilabs etc.

Architecture

History and Development

 ARM was developed at Acron Computers ltd of Cambridge, England between 1983 and

1985.

 RISC concept was introduced in 1980 at Stanford and Berkley.

 ARM ltd was found in 1990.

 ARM cores are licensed to partners so as to develop and fabricate new microcontrollers

around same processor cores.

ARM Architecture

 Architecture of ARM is Enhanced RISC Architecture.

 It has large uniform Register file.

 Employs Load Store Architecture- Here operations operate on registers and not in

memory locations.

 Architecture is of uniform and fixed length.

 32 bit processor. It also has 16 bit variant i.e. it can be used as 32 bit and as 16 bit

processor.

10

Figure 3.4 ARM Architecture

Core Data path

 Architecture is characterized by Data path and control path.

 Data path is organized in such a way that, operands are not fetched directly from memory

locations. Data items are placed in register files. No data processing takes place in

memory locations.

 Instructions typically use 3 registers. 2 source registers and 1 destination register.

 Barrel Shifter pre-processes data, before it enters ALU.

- Barrel Shifter is basically a combinational logic circuit, which can shift data to left or right by

arbitrary number of position in same cycle.

 Increment or Decrement logic can update register content for sequential access.

ARM Organization

Register Bank is connected to ALU via two data paths.

11

 A bus

 B bus

B bus goes via Barrel Shifter. It pre-processes data from source register by shifting left or right

or even rotating. The Program Counter is that part of register Bank that generate address.

Registers in register bank are symmetric i.e., they can have both data and address. Program counter

generates address for next function. Address Incrementer block, increments or decrements register

value independent of ALU. There is an Instruction Decode and control block that provides control

signals. (Not in figure)

Pipeline

 In ARM 7, a 3 stage pipeline is used. A 3 stage pipeline is the simplest form of pipeline

that does not suffer from the problems such as read before write.

 In a pipeline, when one instruction is executed, second instruction is decoded and third

instruction will be fetched.

 This is executed in a single cycle.

Register Bank

 ARM 7 uses load and store Architecture.

 Data has to be moved from memory location to a central set of registers.

 Data processing is done and is stored back into memory.

 Register bank contains, general purpose registers to hold either data or address.

 It is a bank of 16 user registers R0-R15 and 2 status registers.

 Each of these registers is 32 bit wide.

Data Registers- R0-R15

 R0-R12 - General Purpose Registers

 R13-R15 - Special function registers of which,

R13 - Stack Pointer, refers to entry pointer of Stack.

R14 - Link Register, Return address is put to this whenever a subroutine is called.

R15 - Program Counter

Depending upon application R13 and R14 can also be used as GPR. But not commonly used.

12

Fig 2.5 User Register

In addition there are 2 status registers

 CPSR - Current program status register, status of current execution is stored.

 SPSR - Saved program Status register, includes status of program as well as processor.

CPSR

CPSR contains a number of flags which report and control the operation of ARM7 CPU.

Fig 2.6 CPSR Register

13

Conditional Code Flags

N - Negative Result

from ALU Z - Zero

result from ALU

C - ALU operation

carried out V - ALU

operation overflowed

Interrupt Enable Bits

I - IRQ, Interrupt Disable

F - FIQ, Disable Fast

Interrupt T- Bit

If

T=0, Processor in ARM

Mode. T=1, Processor in

THUMB Mode Mode Bits

Specifies the processor Modes.

ARM features

 Barrel Shifter in data path that maximize the usage of hardware available on the chip.
 Auto increment and Auto decrement addressing modes to optimize program

loop. This feature is not common in RISC architecture.

 Load and Store instruction to maximize data throughput.

 Conditional execution of instructions, to maximize execution throughput.

ARM INSTRUCTION SET

We know that the ARM provides by way of memory and registers, and the sort of

instructions to manipulate them. All ARM instructions are 32 bits long. Here is a typical

one:

14

10101011100101010010100111101011

Usually, mnemonics are followed by one or more operands which are used to completely

describe the instruction. An example for mnemonic is ADD, for 'add two registers'. This alone

doesn't tell the assembler which registers to add and where to put the result. If the left and

right hand side of the addition are R1 and R2 respectively, and the result is to go in R0, the

operand part would be written R0,R1,R2. Thus the complete add instruction, in assembler

format, would be:

ADD R0, R1, R2 ;R0 = R1 + R2

Most ARM mnemonics consist of three letters, e.g. SUB, MOV, STR, STM. Certain

'optional extras' may be added to slightly alter the affect of the instruction, leading to

mnemonics such as ADCNES and SWINE.

The mnemonics and operand formats for all of the ARM's instructions are described in

detail in the sections below. At this stage, we don't explain how to create programs, assemble

and run them. There are two main ways of assembling ARM programs - using the assembler

built-in to BBC BASIC, or using a dedicated assembler. The former method is more

convenient for testing short programs, the latter for developing large scale projects. Chapter

Four covers the use of the BASIC assembler.

Condition codes

The property of conditional execution is common to all ARM instructions, so its

representation in assembler is described before the syntax of the actual instructions. As

mentioned before, there are four bits of condition encoded into an instruction word. This

allows sixteen possible conditions. If the condition for the current instruction is true, the

execution goes ahead. If the condition does not hold, the instruction is ignored and the next

one executed.

The result flags are altered mainly by the data manipulation instructions. These instructions

only affect the flags if you explicitly tell them to. For example, a MOV instruction which

copies the contents of one register to another. No flags are affected. However, the MOVS

(move with Set) instruction additionally causes the result flags to be set. The way in which

each instruction affects the flags is described below.

15

To make an instruction conditional, a two-letter suffix is added to the mnemonic. The

suffixes, and their meanings, are listed below.

AL Always

An instruction with this suffix is always executed. To save having to type 'AL' after the

majority of instructions which are unconditional, the suffix may be omitted in this case.

Thus ADDAL and ADD mean the same thing: add unconditionally.

NV Never

All ARM conditions also have their inverse, so this is the inverse of always. Any instruction

with this condition will be ignored. Such instructions might be used for 'padding' or perhaps

to use up a (very) small amount of time in a program.

EQ Equal

This condition is true if the result flag Z (zero) is set. This might arise after a compare

instruction where the operands were equal, or in any data instruction which received a zero

result into the destination.

NE Not equal

This is clearly the opposite of EQ, and is true if the Z flag is cleared. If Z is set, and

instruction with the NE condition will not be executed.

VS Overflow set

This condition is true if the result flag V (overflow) is set. Add, subtract and compare

instructions affect the V flag.

VC

Overflow

clear The

opposite to

VS. MI

Minus

Instructions with this condition only execute if the N (negative) flag is set. Such a condition

would occur when the last data operation gave a result which was negative. That is, the N

16

flag reflects the state of bit 31 of the result. (All data operations work on 32-bit numbers.)

PL Plus

This is the opposite to the MI condition and instructions with the PL condition will only

execute if the N flag is cleared.

The next four conditions are often used after comparisons of two unsigned numbers. If the

numbers being compared are n1 and n2, the conditions are n1>=n2, n1<n2, n1>n2 and

n1<=n2, in the order presented.

CS Carry set

This condition is true if the result flag C (carry) is set. The carry flag is affected by

arithmetic instructions such as ADD, SUB and CMP. It is also altered by operations

involving the shifting or rotation of operands (data manipulation instructions).

When used after a compare instruction, CS may be interpreted as 'higher or same', where

the operands are treated as unsigned 32-bit numbers. For example, if the left hand operand

of CMP was 5 and the right hand operand was 2, the carry would be set. You can use HS

instead of CS for this condition.

CC Carry clear

This is the inverse condition to CS. After a compare, the CC condition may be interpreted

as meaning 'lower than', where the operands are again treated as unsigned numbers. An

synonym for CC is LO.

HI Higher

This condition is true if the C flag is set and the Z flag is false. After a compare or subtract,

this combination may be interpreted as the left hand operand being greater than the right

hand one, where the operands are treated as unsigned.

LS Lower or same

This condition is true if the C flag is cleared or the Z flag is set. After a compare or subtract,

this combination may be interpreted as the left hand operand being less than or equal to the

right hand one, where the operands are treated as unsigned.

The next four conditions have similar interpretations to the previous four, but are used when

signed numbers have been compared. The difference is that they take into account the state

of the V (overflow) flag, whereas the unsigned ones don't.

Again, the relationships between the two numbers which would cause the condition to be

true are n1>=n2, n1<n2, n1>n2, n1<=n2.

17

GE Greater than or equal

This is true if N is cleared and V is cleared, or N is set and V is set.

LT Less than

This is the opposite to GE and instructions with this condition are executed if N is set and

V is cleared, or N is cleared and V is set.

GT Greater than

This is the same as GE, with the addition that the Z flag must be cleared too.

LE Less than or equal

This is the same as LT, and is also true whenever the Z flag is set.

Note that although the conditions refer to signed and unsigned numbers, the operations on

the numbers are identical regardless of the type. The only things that change are the flags

used to determine whether instructions are to be obeyed or not.

The flags may be set and cleared explicitly by performing operations directly on R15, where

they are stored.

Group one - data manipulation

Assembler format

ADD has the following format:

ADD{cond}{S} <dest>, <lhs>, <rhs>

The parts in curly brackets are optional. Cond is one of the two-letter condition

codes listed above. If it is omitted, the 'always' condition AL is assumed. The S, if

present, causes the

instruction to affect the result flags. If there is no S, none of the flags will be changed. For

example, if an instruction ADDS É yields a result which is negative, then the N flag will

be set. However, just ADD É will not alter N (or any other flag) regardless of the result.

After the mnemonic are the three operands. <dest> is the destination, and is the

register number where the result of the ADD is to be stored. Although the assembler is

18

happy with actual numbers here, e.g. 0 for R0, it recognises R0, R1, R2 etc. to stand for the

register numbers. In addition, you can define a name for a register and use that instead. For

example, in BBC BASIC you could say:-

iac = 0

where iac stands for, say, integer accumulator. Then this can be used in an instruction:-

ADD iac, iac, #1

The second operand is the left hand side of the operation. In general, the group one

instructions act on two values to provide the result. These are referred to as the left and

right hand sides, implying that the operation determined by the mnemonic would be

written between them in mathematics. For example, the instruction:

ADD R0, R1, R2

has R1 and R2 as its left and right hand sides, and R0 as the result. This is analogous to an assignment

such as R0=R1+R2 in BASIC, so the operands are sometimes said to be in 'assignment order'.

The <lhs> operand is always a register number, like the destination. The <rhs> may either be a

register, or an immediate operand, or a shifted or rotated register. It is the versatile form that the right

hand side may take which gives much of the power to these instructions.

If the <rhs> is a simple register number, we obtain instructions such as the first ADD example above.

In this case, the contents of R1 and R2 are added (as signed, 32-bit numbers) and the result stored in

R0. As there is no condition after the instruction, the ADD instruction will always be executed. Also,

because there was no S, the result flags would not be affected.

The three examples below all perform the same ADD operation (if the condition is true):

ADDNE R0, R0, R2

 ADDS R0, R0, R2

 ADDNES R0, R0, R2

They all add R2 to R0. The first has a NE condition, so the instruction will only be executed if the Z flag is

cleared. If Z is set when the instruction is encountered, it is ignored. The second one is unconditional, but

has the S option. Thus the N, Z, V and C flags will be altered to reflect the result. The last example has the

condition and the S, so if Z is cleared, the ADD will occur and the flags set accordingly. If Z is set, the ADD

will be skipped and the flags remain unaltered.

Immediate operands

19

Immediate operands are written as a # followed by a number. For example, to increment R0, we

would use:

ADD R0, R0, #1

Now, as we know, an ARM instruction has 32 bits in which to encode the instruction type, condition,

operands etc. In group one instructions there are twelve bits available to encode immediate operands.

Twelve bits of binary can represent numbers in the range 0..4095, or - 2048..+2047 if we treat them as

signed.

Shifted operands

If the <rhs> operand is a register, it may be manipulated in various ways before it is used in the

instruction. The contents of the register aren't altered, just the value given to the ALU, as applied to

this operation (unless the same register is also used as the result, of course).

The particular operations that may be performed on the <rhs> are various types of shifting and

rotation. The number of bits by which the register is shifted or rotated may be given as an immediate

number, or specified in yet another register.

Shifts and rotates are specified as left or right, logical or arithmetic. A left shift is one where the bits,

as written on the page, are moved by one or more bits to the left, i.e. towards the more significant

end. Zero-valued bits are shifted in at the right and the bits at the left are lost, except for the final bit

to be shifted out, which is stored in the carry flag. Left shifts by n bits effectively multiply the number

by 2n, assuming that no significant bits are 'lost' at the top end.

A right shift is in the opposite direction, the bits moving from the more significant end to the lower

end, or from left to right on the page. Again the bits shifted out are lost, except for the last one which

is put into the carry. If the right shift is logical then zeros are shifted into the left end. In arithmetic

shifts, a copy of bit 31 (i.e. the sign bit) is shifted in.

Right arithmetic shifts by n bits effectively divide the number by 2n, rounding towards minus infinity

(like the BASIC INT function). A rotate is like a shift except that the bits shifted in to the left (right)

end are those which are coming out of the right (left) end.

RM INSRUCTION SET

Registers,

Memory Access, and Data Transfer

Arithmetic and Logic Instructions

20

Branch Instructions Assembly

Language/O Operations

Subroutines

Registers and Memory Access

In the ARM architecture Memory is byte addressable 32-bit addresses 32-bit processor

registers Two operand lengths are used in moving d the memory and the processor registers

Bytes (8 bits) and words (32 bits) Word addresses must be aligned, i.e., they multiple of 4

Both little-endian and big-endian memory address supported When a byte is loaded from

memory into a register or stored from a register into the memory It always located in the low-

order byte position of the register.

Register Structure

31 0

R0

R1

R14

Register Structure

Figure 2.13 The register structure.

21

There are 15 additional general-purpose reg the banked registers They are duplicates of some of

the R0 to R14 reg They are used when the processor switches into Interrupt modes of operation

Saved copies of the Status register are also a Supervisor and Interrupt modes.

ARM Instruction Format

Each instruction is encoded into a 32-bit wo Access to memory is provided only by Load

instructions The basic encoding format for the instruction Load, Store, Move, Arithmetic, and

Logic in shown below

31 28 27 20 19 16 15 12 11

Condition OP code Rn Rd Other info

Figure 2.13 The ARM instruction format

An instruction specifies a conditional execu (Condition), the OP code, two or three regis and Rm),

and some other information.

Memory Addressing Mod

Pre-indexed mode

The effective address of the operand is the sum o the base register Rn and an offset value

Pre-indexed with write back mode

The effective address of the operand is generated as in the Pre-indexed mode, and then the effective

written back into Rn

Post-indexed mode

The effective address of the operand is the conte offset is then added to this address and the resul

into Rn

ARM Indexed Addressing

Table 2.2 Arm indexed addressing

22

5

2

=

o

f

Relative Addressing Mode

Memory

 word (4 bytes)

address

1000 LDR R1, ITEM

Upd

1004 -

1008 -

ITEM=1060 Operand

23

The operand must be within the range of 4095 bytes forward or ba updated PC.

Pre-Indexed Addressing M

Post-Indexed

Addressing with W

Pre-Indexed

Addressing with W

Load/Store Multiple

Operation

In ARM processors, there are two instruction and storing multiple operands

They are called Block transfer instructions Any subset of the general purpose registers
or stored Only word operands are allowed, and the OP co LDM (Load Multiple) and
STM (Store Multiple) The memory operands must be in successive locations. All of the
forms of pre- and post-indexing w without write back are available. They operate on a
Base register Rn specified instruction and offset is always 4

LDMIA R10!, {R0,R1,R6,R7}

IA: “Increment After” corresponding to post-indexing

Arithmetic Instructions

The basic expression for arithmetic

instruction OPcode Rd, Rn,

Rm

For example, ADD R0, R2, R4

Performs the operation R0

[R2]+[R4] SUB R0, R6, R5

Performs the operation R0

[R6]-[R5] Immediate mode: ADD

R0, R3, #17

Performs the operation R0 [R3]+17

The second operand can be shifted or rotate used in the operation. For example, ADD

R0, R1, R5, LSL #4 operates a second operand stored in R5 is shifted left 4-bit p

(equivalent to [R5]x16), and its is then added to t R1; the sum is placed in R0

Logic Instructions

The logic operations AND, OR, XOR, and B implemented by instructions with the OP
co ORR, EOR, and BIC.

For example

AND R0, R0, R1: performs R0 [R0]+[R1]

The Bit-Clear instruction (BIC) is closely rel AND instruction. It complements each bit
in operand Rm before A with the bits in register Rn.

24

 For example, BIC R0, R0, R1. Let R0=02FA62CA, Then the instruction results in
the pattern 02FA0 in R0

The Move Negative instruction complement the source operand and places
the result in For example, MVN R0, R3

Branch Instructions

Conditional branch instructions contain a signed 24bit offset that is added to

the updated contents of the Program Counter to generate the branch target

address The format for the branch instructions is shown below

31 28 27 24 23

Condition

OP code

offset

Offset is a signed 24-bit number. It is shifted left (all branch targets are aligned word
addresses), s to 32 bits, and added to the updated PC to generate the branch target address.
The updated points to the instruction that is two forward from the branch instruction.

THUMB INSTRUCTION SET

The Thumb instruction set is a subset of the most commonly used 32-bitARM

instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit

ARM instruction that has the same effect on the processor model.

• To understand 16-bit Thumb mode operation of ARM Processor. To understand

the features of Thumb mode operation and how Thumb instructions decompress

25

to ARM Mode.

• To know the technique of switching between ARM and Thumb mode of operations.

26

• To know the similarities and differences between ARM and Thumb mode of operation. To

understand exception handling and branching in Thumb mode.

• To understand operation of data processing instructions and data transfer instructions in

Thumb mode.

ARM7TDMI processor has two instruction sets:

• the standard 32-bit ARM instruction set

• a 16-bit THUMB instruction set.

ARM architecture versions v4T and above define a 16-bit instruction set called the Thumb

instruction set. The functionality of the Thumb instruction set is a subset of the functionality

of the 32-bit ARM instruction set. A processor that is executing Thumb instructions is

operating in Thumb state. A processor that is executing ARM instructions is operating in ARM

state. A processor in ARM state cannot execute Thumb instructions, and a processor in Thumb

state cannot execute ARM instructions. You must ensure that the processor never receives

instructions of the wrong instruction set for the current state. Each instruction set includes

instructions to change processor state. The processor in Thumb mode uses same eight general-

purpose integer registers that are available ARM mode. Some Thumb instructions also access

the PC(ARM register 15),the Link Register(ARM register 14) and Stack Pointer(ARM register

13).When R15 is read, bit[0] is zero and bits[31:1]contain the PC. when R15 is written, bit[0]

is IGNORED and bits[31:1] are written to the PC.

Thumb does not provide direct access to the CPSR or any SPSR.

Thumb execution is flagged by the T bit(bit[5]) in the CPSR.

T==0 32-bit instructions are fetched(ARM instruction)

T==1 16-bit instructions are fetched(Thumb instruction)

use ARM code in 32-bit on-chip memory for small speed- critical routines

use Thumb code in 16-bit off-chip memory for large non-critical control routines

27

Switching between ARM and Thumb States of Execution Using BX Instruction

Thumb Programmers Model

• Registers r0 to r7 are accessible (Lo)

• Few instructions require r8 to r15 to be specified

• r13 is used as the stack pointer

• r14 is used as the link register

• r15 is used as the program counter

Thumb General registers and Program Counter

User / System FIQ Supervisor Abort IRQ Undefined

Thumb Program Status Registers

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

r0

r1

r2

r3

r4

r5

r6

r7

SP_FIQ

LR_ FIQ

PC_ FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_SVC

LR_ SVC

PC_ SVC

r0

r1

r2

r3

r4

r5

r6

r7

SP_ABT

LR_ ABT

PC_ ABT

r0

r1

r2

r3

r4

r5

r6

r7

SP_IRQ

LR_ IRQ

PC_ IRQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_UND

LR_ UND

PC_ UND

28

sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq

sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq sprsr_fiq

sprsSrP_fSiqR_IRQ SPsSpRrsr__UfNiqD

Figure 3.14 Thumb general register and thumb status reg

Branch Instruction Formats

Instruction formats

 op> Rd, Rn, Rm

 <op> Rd, Rn, # <imm3>

 <op> Rd|Rn, Rm|Rs

 <op> Rd, Rn, #<sh 5>

 <op> Rd, #<imm 8>

 MOV Rd, #<imm8>

 MVN Rd, Rm

 CMP Rn, #<imm8>

 CMP Rn, Rm

 CMN Rn, Rm

 TST Rn, Rm

 ADD Rd, Rn, #<imm3>

 ADD Rd, #< imm8>

 ADD Rd, Rn, Rm

 ADC Rd, Rm

 SUB Rd, Rn, #<imm3>

p SPSR_SVC SPSR_ABT

CPSR CPSR CPSR CPSR CPSR CPSR

29

 SUB Rd, #< imm8>

 SUB Rd, Rn, Rm

 SBC Rd, Rm

 NEG Rd, Rn

 LSL Rd, Rm, #<#sh>

 LSL Rd, Rs

 LSR Rd, Rm, #<#sh>

 LSR Rd, Rs

 ASR Rd, Rm, #<#sh>

 ASR Rd, Rs

 ROR Rd, Rs

 AND Rd, Rm

 EOR Rd, Rm

 ORR Rd, Rm

 BIC Rd, Rm

 MUL Rd, Rm

 Data Transfer Instruction

 LDR|STR Rd, [Rn, #off5]

 LDR|STR Rd, [Rn, Rm]

 LDRB|STRB Rd, [Rn, #off5]

 LDRB|STRB Rd, [Rn, Rm]

 LDRH|STRH Rd, [Rn, #off5]

 LDRH|STRH Rd, [Rn, Rm]

 Signed operands:

 LDR|STR {S} {H|B} Rd, [Rn, Rm]

30

ARM CORES

 Figure 3.15 ARM cores

31

The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed

by ARM Holdings. The cores are intended for application use. The group consists of the

32-bit ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8,ARM Cortex-A9, ARM

Cortex-A12, ARM Cortex-A15, and ARM Cortex-A17 MPCore,[1] and the 64-bit ARM

Cortex-A53, ARM Cortex- A57, and ARM Cortex-A72.The 64-bit ARM Cortex-A cores

implement the ARMv8-A profile of the ARMv8 architecture. The 32-bit ARM Cortex-A

cores implement the ARMv7-A profile of the ARMv7 architecture. The main

distinguishing feature of the ARMv7-A profile, compared to the other two profiles, the

ARMv7-R profile implemented by the ARM Cortex-R cores and the ARMv7-M profile

implemented by most of the ARM Cortex-M cores, is that only the ARMv7-A profile

includes a memory management unit (MMU).[2] Many modern operating systems require a

MMU to run.

ARM Cortex-M

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM

Holdings. The cores are intended for microcontroller use, and consist of the Cortex-M0,

M0+, M1, M3, M4, and M7

Arm Cortex-R

The Arm Cortex-R real time processor offers high performance computing solutions for

Embedded systems where reliability, high availability, fault tolerance, maintainability and

deterministic real time responses are essential. The Cortex-R series processors provide fast

time-to-market through proven technology shipped in billions of products, and leverages

the vast ARM ecosystem and global, local language, 24/7 support services to ensure rapid

and low-risk development

Cortex-R series processors deliver fast and deterministic processing and high performance,

while meeting challenging real-time constraints in a range of situations. They combine

these features in a performance, power and area optimized package, making them the

trusted choice in reliable systems demanding high error-resistance.

https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/ARM_Cortex-A5
https://en.wikipedia.org/wiki/ARM_Cortex-A5
https://en.wikipedia.org/wiki/ARM_Cortex-A7_MPCore
https://en.wikipedia.org/wiki/ARM_Cortex-A8
https://en.wikipedia.org/wiki/ARM_Cortex-A8
https://en.wikipedia.org/wiki/ARM_Cortex-A12
https://en.wikipedia.org/wiki/ARM_Cortex-A12
https://en.wikipedia.org/wiki/ARM_Cortex-A15_MPCore
https://en.wikipedia.org/wiki/ARM_Cortex-A15_MPCore
https://en.wikipedia.org/wiki/ARM_Cortex-A17_MPCore
https://en.wikipedia.org/wiki/ARM_Cortex-A17_MPCore
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A57
https://en.wikipedia.org/wiki/ARM_Cortex-A57
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_architecture#32-bit_architecture
https://en.wikipedia.org/wiki/ARM_Cortex-R
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/ARM_Cortex-A#cite_note-2
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/Microcontroller

32

PART A

1.Identify the main Feature of ARM Microcontroller

2.Discuss about the application of ARM Microcontroller

3.Develop the debugging techniques

4.Explain the Harvard Architecture.

5.Compare the Harvard Architecture with Von- Numen Architecture

6.Asses the memory management in ARM Microcontroller

7.Describe the need of Raspberry pi

8.Analyze the Von Numen Architecture.

PART B

1.Briefly compare the properties of Cortex M0, M3, M4, M7 cores. Such as machine cycles

 and pipelines

2.Distinguish the various version of ARM cortex M series

3.Classify the Thumb instruction set of ARM Processor

4.Construct the Raspberry pi 3 development board with necessary Sensors, Bluetooth and

 Wi-fi devices.

5.Describe the traditional debugging features and memory management in ARM

 Microcontroller.

33

TEXT / REFERENCE BOOKS

1. A.K Ray and K M Bhurchandi, Advanced Microprocessors and Periperals,3RD edition,

TMH,2017.

2. Joseph Yiu, The Definitive Guide to the ARM Cortex-M3,2nd Edition, Newnes,2015.

3. Dr.MarkFisher, ARM Cortex M4 Cookbook, Packt, 2016.

4. David Hanes, “IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the

 Internet of Things”, Cisco press, 2017.

5. Olivier Hersent , David Boswarthick , Omar Elloumi, “The Internet of Things: Key Applications

 and Protocols”, 2nd Edition, Wiley, 2012.

6. Rajkamal, “Embedded system-Architecture, Programming, Design”, TMH, 2011.

7. Jonathan W.Valvano, “Embedded Microcomputer Systems,Real Time Interfacing”,Cengage

 Learning,3rd Edition, 2012.

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple

Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the

ARM6 processor family, and VLSI became the initial licensee. Subsequently, additional

companies, including Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed

the ARM processor designs, extending the applications of ARM processors into mobile

phones, computer hard disks, personal digital assistants (PDAs), home entertainment

systems, and many other consumer products.The ARM microcontroller architecture come with

a few different versions such as ARMv1, ARMv2 etc and each one has its own advantage and

disadvantages.

ARM ARCHITECTURE VERSIONS

The evolution of features and enhancements to the processors over time has led

to successive versions of the ARM architecture. Note that architecture version numbers

are independent from processor names. For example, the ARM7TDMI processor is based

on the ARMv4T architecture (the T is for Thumb® instruction mode support).

Figure 1: The Evolution of ARM Processor Architecture.

The ARMv5E architecture was introduced with the ARM9E processor families,

including the ARM926E-S and ARM946E-S processors. This architecture added

“Enhanced” Digital Signal Processing (DSP) instructions for multimedia applications.

With the arrival of the ARM11 processor family, the architecture was extended to the

ARMv6. New features in this architecture included memory system features and Single

Instruction–Multiple Data (SIMD) instructions. Processors based on the ARMv6

architecture include the ARM1136J(F)-S, the ARM1156T2(F)-S, and the ARM1176JZ(F)-S

Over the past several years, ARM extended its product portfolio by diversifying its CPU

development, which resulted in the architecture version 7 or v7. In this version, the

architecture design is divided into three profiles:

 A-profile is designed for high-performance open application platforms.

 R-profile is designed for high-end embedded systems in which real-time

performance is needed.

 M-profile is designed for deeply embedded microcontroller-type systems.

The Cortex processor families are the first products developed on architecture v7, and

the Cortex-M3 processor is based on one profile of the v7 architecture, called ARM

v7-M, an architecture specification for microcontroller products.

Figure : Instruction set Enhancement in ARM architectures.

Historically (since ARM7TDMI), two different instruction sets are supported on the ARM

processor: the ARM instructions that are 32 bits and Thumb instructions that are 16 bits. During

program execution, the processor can be dynamically switched between the ARM state and the

Thumb state to use either one of the instruction sets. The Thumb instruction set provides only a

subset of the ARM instructions, but it can provide higher code density. It is useful for products

with tight memory requirements.

 In 2003, ARM announced the Thumb-2 instruction set, which is a new superset of

Thumb instructions that contains both 16-bit and 32-bit instructions. The extended instruction set

in Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional 16-bit

instructions alongside 32-bit instructions. It allows more complex operations to be carried out in

the Thumb state, thus allowing higher efficiency by reducing the number of states switching

between ARM state and Thumb state. Focused on small memory system devices such as

microcontrollers and reducing the size of the processor, the Cortex-M3 supports only the Thumb-

2 (and traditional Thumb) instruction set. Instead of using ARM instructions for some operations,

as in traditional ARM processors, it uses the Thumb-2 instruction set for all operations. As a

result, the Cortex-M3 processor is not backward compatible with traditional ARM processors.

That is, you cannot run a binary image for ARM7 processors on the Cortex-M3 processor.

Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions,

including all 16-bit Thumb instructions supported on ARM7 family processors, making application

porting easy.

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there

is no need to switch the processor between Thumb state (16-bit instructions) and ARM state

(32-bit instructions). For example, in ARM7 or ARM9 family processors, you might need to

switch to ARM state if you want to carry out complex calculations or a large number of

conditional operations and good performance is needed, whereas in the Cortex-M3 processor, you

can mix 32-bit instructions with 16-bit instructions without switching state, getting high code

density and high performance with no extra complexity. The Thumb-2 instruction set is a very

important feature of the ARMv7 architecture. Compared with the instructions supported on ARM7

family processors (ARMv4T architecture), the Cortex-M3 processor instruction set has a large

number of new features. For the first time, hardware divide instruction is available on an ARM

processor, and a number of multiply instructions are also available on the Cortex-M3 processor

to improve data-crunching performance. The Cortex-M3 processor also supports unaligned data

accesses, a feature previously available only in high-end processors.

THE ARM CORTEX-M3 PROCESSOR

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors

released by ARM in 2006, was primarily designed to target the 32-bit microcontroller

market. The Cortex-M3 processor provides excellent performance at low gate count and

comes with many new features previously available only in high-end processors. The

Cortex-M3 addresses the requirements for the 32-bit embedded processor market in the

following ways:

 Greater performance efficiency:Allowing more work to be done without increasing

the frequency or power requirements

 Low power consumption:Enabling longer battery life, especially critical in portable

products including wireless networking applications

 Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced

as quickly as possible and in a known number of cycles

 Improved code density: ensuring that code fits in even the smallest memory

footprints

 Ease of use: providing easier programmability and debugging for the growing

number of 8-bit and 16-bit users migrating to 32 bits

 Lower cost solutions: reducing 32-bit-based system costs close to those of legacy

8-bit and 16-bit devices and enabling low-end, 32-bit microcontrollers to be priced

at less than US$1 for the first time

 Wide choice of development tools: from low-cost or free compilers to full-featured

development suites from many development tool vendors

There are 3 subfamilies within the ARM cortex family

ARM Cortex-A family (v7-A):

Applications processors for full OS and 3rd party applications

ARM Cortex-R family (v7-R):

Embedded processors for real-time signal processing, control applications

ARM Cortex-M family (v7-M):

Microcontroller-oriented processors for MCU and SoC applications

CORTEX-M3 PROCESSOR APPLICATIONS

With its high performance and high code density and small silicon footprint, the Cortex-

M3 processor is ideal for a wide variety of applications:

 Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost

microcontrollers, which are commonly used in consumer products, from toys to electrical

appliances. It is a highly competitive market due to the many well-known 8-bit and 16-

bit microcontroller products on the market. Its lower power, high performance, and ease-

of-use advantages enable embedded developers to migrate to 32-bit systems and develop

products with the ARM architecture.

Automotive: Another ideal application for the Cortex-M3 processor is in the automotive

industry. The Cortex-M3 processor has very high-performance efficiency and low

interrupt latency, allowing it to be used in real-time systems. The Cortex-M3 processor

supports up to 240 external vectored interrupts, with a built-in interrupt controller with

nested interrupt supports and an optional MPU, making it ideal for highly integrated and

cost-sensitive automotive applications.

Data communications : The processor’s low power and high efficiency, coupled

with instructions in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for

many communications applications, such as Bluetooth and ZigBee.

Industrial control: In industrial control applications, simplicity, fast response, and

reliability are key factors. Again, the Cortex-M3 processor’s interrupt feature, low

interrupt latency, and enhanced fault-handling features make it a strong candidate in this

area.

Consumer products: In many consumer products, a high-performance microprocessor (or

several of them) is used. The Cortex-M3 processor, being a small processor, is highly

efficient and low in power and supports an MPU enabling complex software to execute

while providing robust memory protection. There are already many Cortex-M3 processor-

based products on the market, including low-end products priced as low as US$1,

making the cost of ARM microcontrollers comparable to or lower than that of many 8-

bit microcontrollers.

CORTEX-M3 PROCESSOR VERSUS CORTEX-M3-BASED MCUs

The Cortex-M3 processor is the central processing unit (CPU) of a microcontroller chip.

In addition, a number of other components are required for the whole Cortex-M3 processor-based

microcontroller. After chip manufacturers license the Cortex-M3 processor, they can put the

Cortex-M3 processor in their silicon designs, adding memory, peripherals, input/output (I/O), and

other features.

Cortex-M3 processor-based chips from different manufacturers will have different

memory sizes, types, peripherals, and features. This book focuses on the architecture of the

processor core.

Figure 1: The Cortex-M3 Processor based MCU.

Cortex M3 Architecture

The Cortex™-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register

bank, and 32-bit memory interfaces (see Figure 2.1). The processor has a Harvard

architecture, which means that it has a separate instruction bus and data bus. This allows

instructions and data accesses to take place at the same time, and as a result of this, the

performance of the processor increases because data accesses do not affect the instruction

pipeline. This feature results in multiple bus interfaces on Cortex-M3, each with

optimized usage and the ability to be used simultaneously.

However, the instruction and data buses share the same memory space (a unified

memory system). In other words, you cannot get 8 GB of memory space just because

you have separate bus interfaces. For complex applications that require more memory

system features, the Cortex-M3 processor has an optional Memory Protection Unit

(MPU), and it is possible to use an external cache if it’s required. Both little endian

and big endian memory systems are supported.

The Cortex-M3 processor includes a number of fixed internal debugging components.

These components provide debugging operation supports and features, such as

breakpoints and watchpoints.

REGISTERS

The Cortex-M3 processor has registers R0 through R15 (see Figure 2.2). R13 (the stack

pointer) is banked, with only one copy of the R13 visible at a time.

R0–R12: General-Purpose Registers R0–R12 are 32-bit general-purpose registers for data

operations. Some 16-bit Thumb® instructions can only access a subset of these registers

(low registers, R0–R7).

R13: Stack Pointers

The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is

visible at a time. The two stack pointers are as follows:

• Main Stack Pointer (MSP): The default stack pointer, used by the operating system (OS)

kernel and exception handlers

• Process Stack Pointer (PSP): Used by user application code The lowest 2 bits of the

stack pointers are always 0, which means they are always word aligned.

R14: The Link Register When a subroutine is called, the return address is stored in the

link register.

R15: The Program Counter The program counter is the current program address. This

register can be written to control the program flow.

Special Registers: The Cortex-M3 processor also has a number of special registers.They

are as follows:

 Program Status registers (PSRs)

 Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

 Control register (CONTROL)

These registers have special functions and can be accessed only by special instructions.

They cannot be used for normal data processing

CORTEX M3 CPU operating modes

The Cortex-M3 processor has two modes and two privilege levels. The operation modes

(thread mode and handler mode) determine whether the processor is running a normal

program or running an exception handler like an interrupt handler or system exception

handler (see Figure 2.4). The privilege levels (privileged level and user level) provide a

mechanism for safeguarding memory accesses to critical regions as well as providing a

basic security model.

When the processor is running a main program (thread mode), it can be either in a

privileged state or a user state, but exception handlers can only be in a privileged state.

When the processor exits reset, it is in thread mode, with privileged access rights. In the

privileged state, a program has access to all memory ranges (except when prohibited by

MPU settings) and can use all supported instructions. Software in the privileged access

level can switch the program into the user access level using the control register. When

an exception takes place, the processor will always switch back to the privileged state

and return to the previous state when exiting the exception handler.

A user program cannot change back to the privileged state by writing to the control

register (see Figure 2.5). It has to go through an exception handler that programs the

control register to switch the processor back into the privileged access level when

returning to thread mode. The separation of privilege and user levels improves system

reliability by preventing system configuration registers from being accessed or changed

by some untrusted programs. If an MPU is available, it can be used in conjunction with

privilege levels to protect critical memory locations, such as programs and data for OSs.

For example, with privileged accesses, usually used by the OS kernel, all memory

locations can be accessed (unless prohibited by MPU setup). When the OS launches a

user application, it is likely to be executed in the user access level to protect the system

from failing due to a crash of untrusted user programs.

ARM MEMORY ORGANIZATION

The Cortex-M3 and Cortex-M4 have a predefined memory map. This allows the built-in

peripherals, such as the interrupt controller and the debug components, to be accessed by simple

memory access instructions.

Thus, most system features are accessible in program code. The predefined memory map also

allows the Cortex-M3 processor to be highly optimized for speed and ease of integration in system-

on-a-chip (SoC) designs.

Overall, the 4 GB memory space can be divided into ranges as shown in picture below. The Cortex-

M3 design has an internal bus infrastructure optimized for this memory usage.

The ARM Cortex-M3 memory is divided into following regions :

 System - .

 Private Peripheral Bus - External - Provides access to :

 the Trace Port Interface Unit (TPIU),

 the Embedded Trace Macrocell (ETM),

 the ROM table,

 implementation-specific areas of the PPB memory map.

A graphical representation of the ARM memory is shown in picture below :

ARM Memory Map

 Private Peripheral Bus - External - Provides access to :

 the Instrumentation Trace Macrocell (ITM),

 the Data Watchpoint and Trace (DWT),

 the Flashpatch and Breakpoint (FPB),

 the System Control Space (SCS), including the MPU and the Nested

Vectored Interrupt Controller (NVIC).

 External Device - This region is used for external device memory.

 External RAM - This region is used for data.

 Peripheral - This region includes bit band and bit band alias areas.

 Peripheral Bit-band alias - Direct accesses to this memory range behave

as peripheral memory accesses, but this region is also bit addressable

through bit-band alias.

 Peripheral bit-band region - Data accesses to this region are remapped to

bit band region. A write operation is performed as read-modify-write.

 SRAM - This executable region is for data storage. Code can also be stored here. This

region includes bit band and bit band alias areas.

 SRAM Bit-band alias - Direct accesses to this memory range behave as

SRAM memory accesses, but this region is also bit addressable through

bit-band alias.

 SRAM bit-band region - Data accesses to this region are remapped to bit

band region. A write operation is performed as read-modify-write.

 Code - This executable region is for program code. Data can also be stored here.

PIPELINING

The Process of fetching the next instruction while the current instruction is being executed is called

as “pipelining”. Pipelining is supported by the processor to increase the speed of program

execution. Increases throughput. Several operations take place simultaneously, rather than serially

in pipelining. The Pipeline has three stages fetch, decode and execute as shown in Fig.

The three stages used in the pipeline are:

(i) Fetch : In this stage the ARM processor fetches the instruction from the memory.

(ii) Decode : In this stage recognizes the instruction that is to be executed.

(iii) Execute 2 In this stage the processor processes the instruction and writes the result back to

desired register.

If these three stages of execution are overlapped, we will achieve higher speed of execution. Such

pipeline exists in version 7 of ARM processor. Once the pipeline is filled, each instructions require

s one cycle to complete execution. Below fig shows three staged pipelined instruction.

In first cycle, the processor fetches instruction 1 from the memory In the second cycle the processor

fetches instruction 2 from the memory and decodes instruction 1. In the third cycle the processor

fetches instruction 3 from memory, decodes instruction 2 and executes instruction 1. In the fourth

cycle the processor fetches instruction 4, decodes instruction 3 and executes instruction 2. The

pipeline thus executes an instruction in three cycles i.e. it delivers a throughput equal to one

instruction per cycle.

In case of a multi-cycle instruction as shown 1n Fig. 9.10.2(b), instruction 2 (i. e. STR of the store

instruction) requires 4 clock cycles and hence the pipeline stalls for one clock pulse. The first

instruction completes execution in the third clock pulse, while the second instruction instead of

completing execution in fourth clock pulse completes the same in fifth clock pulse. Thereafter

every instruction completes execution in one clock pulse as seen in this figure.

The amount of work done at each stage can be reduced by increasing the number of stages in the

pipeline. To improve the performance, the processor then can be operated at higher operating

frequency.

As more number of cycles are required to fill the pipeline, the system latency also increases. The

data dependency between the stages can also be increased as the stages of pipeline increase. So the

instructions need to be schedule while writing code to decrease data dependency.

PIPELINE HAZARDS

1. Pipeline hazards are situations that prevent the next instruction in the instruction stream

from executing during its designated clock cycles.

2. Any condition that causes a stall in the pipeline operations can be called a hazard.

3. There are primarily three types of hazards:

i. Data Hazards

ii. Control Hazards or instruction Hazards

iii. Structural Hazards.

i. Data Hazards:

A data hazard is any condition in which either the source or the destination operands of an

instruction are not available at the time expected in the pipeline. As a result of which some

operation has to be delayed and the pipeline stalls. Whenever there are two instructions one of

which depends on the data obtained from the other.

A=3+A

B=A*4

For the above sequence, the second instruction needs the value of ‘A’ computed in the first

instruction.

Thus the second instruction is said to depend on the first.

If the execution is done in a pipelined processor, it is highly likely that the interleaving of these

two instructions can lead to incorrect results due to data dependency between the instructions.

Thus the pipeline needs to be stalled as and when necessary to avoid errors.

ii. Structural Hazards:

This situation arises mainly when two instructions require a given hardware resource at the same

time and hence for one of the instructions the pipeline needs to be stalled.

The most common case is when memory is accessed at the same time by two instructions. One

instruction may need to access the memory as part of the Execute or Write back phase while other

instruction is being fetched. In this case if both the instructions and data reside in the same memory.

Both the instructions can’t proceed together and one of them needs to be stalled till the other is

done with the memory access part. Thus in general sufficient hardware resources are needed for

avoiding structural hazards.

iii. Control hazards:

The instruction fetch unit of the CPU is responsible for providing a stream of instructions to the

execution unit. The instructions fetched by the fetch unit are in consecutive memory locations and

they are executed.

However the problem arises when one of the instructions is a branching instruction to some other

memory location. Thus all the instruction fetched in the pipeline from consecutive memory

locations are invalid now and need to removed(also called flushing of the pipeline).This induces a

stall till new instructions are again fetched from the memory address specified in the branch

instruction.

Thus the time lost as a result of this is called a branch penalty. Often dedicated hardware is

incorporated in the fetch unit to identify branch instructions and compute branch addresses as soon

as possible and reducing the resulting delay as a result.

INTERRUPT CONTROLLER or Handler in Cortex-M3

Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt

Controller (NVIC). It is closely coupled to the processor core and provides a number of

features as follows:

 Nested interrupt support

 Vectored interrupt support

 Dynamic priority changes support

 Reduction of interrupt latency

 Interrupt masking

Nested Interrupt Support The NVIC provides nested interrupt support. All the external

interrupts and most of the system exceptions can be programmed to different priority

levels. When an interrupt occurs, the NVIC compares the priority of this interrupt to the

current running priority level. If the priority of the new interrupt is higher than the

current level, the interrupt handler of the new interrupt will override the current running

task.

Vectored Interrupt Support The Cortex-M3 processor has vectored interrupt support.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR)

is located from a vector table in memory. There is no need to use software to determine

and branch to the starting address of the ISR. Thus, it takes less time to process the

interrupt request.

Dynamic Priority Changes Support: Priority levels of interrupts can be changed by

software during run time. Interrupts that are being serviced are blocked from further

activation until the ISR is completed, so their priority can be changed without risk of

accidental reentry.

Reduction of Interrupt Latency: The Cortex-M3 processor also includes a number of

advanced features to lower the interrupt latency. These include automatic saving and

restoring some register contents, reducing delay in switching from one ISR to another,

and handling of late arrival interrupts.

Interrupt Masking: Interrupts and system exceptions can be masked based on their

priority level or masked completely using the interrupt masking registers BASEPRI,

PRIMASK, and FAULTMASK. They can be used to ensure that time-critical tasks can

be finished on time without being interrupted.

THE MEMORY MAP OF CORTEX-M3

The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, such

as the interrupt controller and the debug components, to be accessed by simple memory

access instructions.

Thus, most system features are accessible in C program code. The predefined memory

map also allows the Cortex-M3 processor to be highly optimized for speed and ease of

integration in system-on-a-chip (SoC) designs.

Overall, the 4 GB memory space can be divided into ranges as shown in Figure 2.6. The

Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In

addition, the design allows these regions to be used differently. For example, data

memory can still be put into the CODE region, and program code can be executed from

an external Random Access Memory (RAM) region. The system-level memory region

contains the interrupt controller and the debug components. These devices have fixed

addresses, detailed in Chapter 5. By having fixed addresses for these peripherals, you

can port applications between different Cortex-M3 products much more easily.

The Cortex-M3 Instruction Set

 Memory access instructions

 General data processing instructions
 Multiply and divide instructions

 Saturating instructions

 Bitfield instructions

 Branch and control instructions
 Miscellaneous instructions.

ADDRESSING MODES OF ARM PROCESSOR

Addressing modes of ARM processor are classified as follows:

Addressing modes for Data Processing Operand (i.e op1):

These are two method for addressing these operands

Unmodified value In this addressing mode, the register or a value is given unmodified
i.e. without any shift or rotation e. g, (i) MOV R0, # 1234 H This instruction will move the

immediate constant value 1234 into register R0.

Modified value In this addressing mode, the given value or register is shifted or rotated.

These are Different shift and rotate operations possible as listed below with examples.

(1) Logical shift left This will take the value of a register and shift the value towards most
Significant bits, by n bits. e.g. MOV R0, R1, LSL # 2

After the execution of this instruction R0 will become the value of R1 shifted 2 bits.

(2) Logical shift right This will take the value of a register and shift the value towards
right by n bits. e.g. MOV R0, R1, LSR R2 After the execution of this instruction R0 will
have the value of R1 shifted right by R2 times. R1 and R2 are not altered.

(3) Arithmetic shift right This is similar to logical shift right, except that the MSB is
retained as well as shifted for arithmetic shift operation e.g. MOV R0, R1, ASR #2 After
the execution of this instruction R0 will have the value of R1 Arithmetic; shifted right by

2 bits.

(4) Rotate right This will take the value of a register and rotate it right by n bits e.g. MOV
R0, R1, ROR R2 After the execution of this instruction R0 will have the value of R1

rotated right for R2 times.

(5) Rotate right extended This is similar to Rotate right by one bit, with the carry flag
moved into the MSB, i.e. it is similar to rotate right through carry e. g. MOV R0, R1 RRX
After the execution of this instruction R0 Will have the value of register R1 rotated right
through carry by 1 bit.

Addressing Modes for Memory Access Operand

As already discussed load and store instructions are used to access memory. The
different memory access addressing modes are

(i) Register indirect addressing mode

(ii) Relative register indirect addressing mode

(iii) Base indexed indirect addressing mode

(iv) Base with scale register addressing mode

Each of these addressing modes have offset addressing, Pre-index addressing and
post-index addressing as explained in the examples for each addressing mode

(i) Register indirect addressing mode

In this addressing mode, a register is used to give the address of the memory
location to be accessed. e. g. LDR R0, [R1] This instruction will load the
register R0 with the 32-bit word at the memory address held in the register
R1.

(ii) Relative register indirect addressing mode In this addressing mode the memory
address is generated by an immediate value added to a register. Pre index and post

index are supported in this addressing mode. e. g. (a) LDR R0, [R1, #4]

This instruction will load the register R0 with the word at the memory areas calculated
by adding the constant address contained in the R1 register value 4 to the memory

address contained in R1 register e.g. (b) LDR R0, [R1, #4]!

This is a pre-index addressing. This instruction is same \as that in e. g. (a) this

instruction also places the new address in R1 i.e R1 (R1 + 4. e.g. (c)‘LDR, [R1], #4

This is post-index addressing. This instruction will load register R0 with the word at
memory address given in register R1. It will then calculate the new address by adding 4

to R1 and place this new address in R1

(iii) Base indexed indirect addressing mode In this addressing mode the memory

address is generated by adding the values of two registers. Pre-index and post-index
are supported also in this addressing mode. e.g. (a) LDR R0, [R1, R2]

This instruction will load the register R0 with the word at memory address calculated by

adding register R1 to register R2. e.g. (b) LDR R0, [R1, R2]!

This is pre-index addressing. This instruction is same as that in e.g. (a). This instruction
also places the new address in R1 i. e. R1 (-R1 + R2. e.g. (c) LDR R0, [R1], R2

This is a post-index addressing. This instruction will load register R0 with the word at
memory address given in register R1. It will then calculate the new address by adding
the value in register R2 to register R1 and Place this new address in R1.

(iv) Base with scaled register addressing mode In this addressing mode the memory
address is generated by a register value added to another register shifted left. Pre-index
and post-index are supported in this addressing mode. e.g. (a) LDR R0, [R1, R2, LSL
#2]

This instruction will load the register R0 with the word at the memory address calculated
by adding register leith register R2 shifted left by 2 bits. e.g. (b) LDR RO,[R1, R2,_LSL
#2]!

This is a pre-indexed addressing. This instruction will load the register R0 with the word
at the memory address calculated by adding register R1 with register R2 shifted left by

2 bits. The new address is placed in register R1.

i.e.R1e-R1+R2 <<2.

e.g. (c) LDR R0, [R1], R2, LSL #2.

This is a post-indexed addressing. This instruction will load the register R0 with the word at

memory address contained in register R1. It will then calculate the new address by adding register

R1 with register R2 shifted left by two bits. The new address is placed in register.

I/O PROGRAMMING IN CORTEX-M3

GPIO in Cortex-M3 LPC1768 Microcontroller is the most basic peripheral. GPIO, General

Purpose Input Output is what let’s your microcontroller be something more than a weak auxiliary

processor. With it you can interact with physical world, connecting up other devices and turning

your microcontroller into something useful. GPIO has two fundamental operating modes, input

and output. Input let’s you read the voltage on a pin, to see whether it’s held low(0V) or high(3V)

and deal with that information programatically. Output let’s you set the voltage on a pin, again

either high or low.

Every pin on LPC1768 can be used as GPIO pin and can be independently set to act as input or

output. In next tutorial we’ll get you into how to achieve these goal. I mean reading the status of

switch and making LED blink. But for now we only have to look at basics, which is very important

to understand before we go and build application. Depending on LPC17xx version the pinout

maybe different. Here we’ll focus on 100 pin LPC1768 as an example. Please keep LPC1768 User

Manual with you [Chapter: 9, Page No:129]. pins on LPC1768 are divided into 5 groups (PORTs)

starting from 0 to 4. Pin naming convention: P0.0 (group 0, pin 0) or (port 0, pin 0). Each pin has

4 operating modes: GPIO(default), 1st alternate function, 2nd alternate function, 3rd alternate

http://www.binaryupdates.com/wp-content/uploads/LPC1768-User-Manual.pdf
http://www.binaryupdates.com/wp-content/uploads/LPC1768-User-Manual.pdf

function. Almost all GPIO pins are powered automatically so we don’t need to turn them on

always. Let’s have a look at details about configuration of these GPIO port pins.

1. Pin Function Setting

The LPC_PINCON register controls operating mode of these pin.

LPC_PINCON –> PINSEL0 [1:0] control PIN 0.0 operating mode.

[Page No: 102, Table: 74].

…….

LPC_PINCON –> PINSEL0 [31:30] control PIN 0.15 operating mode.

LPC_PINCON –> PINSEL1 [1:0] control PIN 0.16 operating mode.

……..

LPC_PINCON –> PINSEL1 [29:28] control PIN 0.30 operating mode.

LPC_PINCON –> PINSEL2 [1:0] control PIN 1.0 operating mode.

……..

LPC_PINCON –> PINSEL2 [31:30] control PIN 1.15 operating mode

LPC_PINCON –> PINSEL3 [1:0] control PIN 1.16 operating mode

………

LPC_PINCON –> PINSEL3 [31:30] control PIN 1.31 operating mode

……..

LPC_PINCON –> PINSEL9 [25:24] control PIN 4.28 operating mode

LPC_PINCON –> PINSEL9 [27:26] control PIN 4.29 operating mode

NOTE: some register bits are reserved and are not used to control a pin for example,

LPC_PINCON –> PINSEL9 [23:0] are reserved.

LPC_PINCON –> PINSEL9 [31:28] are reserved.

Bit Value Function

00 GPIO Function

01 1st alternate function

10 2nd alternate function

11 3rd alternate function

Example:

To set pin 0.3 as GPIO (set corresponding bit to 00)

LPC_PINCON –> PINSEL0 &= ~ ((1<<7) | (1<<6));

To set pin 0.3 as ADC channel 0.6 (2nd alternate function, set corresponding bit to 10)

LPC_PINCON –> PINSEL0 &= ((1<<7) | (0<<6)); // you may omit (0<<6)

For reference follow [Page No: 117, Table: 80]

2. Pin Direction Setting

Register LPC_GPIOn –> FIODIR [31:0] control the pin input/output, where ‘n’ stands for pin

group (0-4). To set a pin as output, set the corresponding bit to ‘1’. To set a pin as input, set the

corresponding bit to ‘0’, by default, all pins are set as input (all bits are 0).

Example:

To set 0.3 as output

LPC_GPIO –> FIODIR |= (1<<3);

3. Pin is Set as Output

A pin digital high/low setting

LPC_GPIOn –> FIOSET is used to turn a pin to HIGH. Register LPC_GPIOn –> FIOCLR is

used to turn a pin to low. To turn a pin to digital ‘1’ (high), set the corresponding bit

of LPC_GPIOn –> FIOSET to 1. To turn a pin to digital ‘0’ (low), set the corresponding bit

of LPC_GPIOn –> FIOCLR to 1.

Example

Turn Pin 0.3 to high

LPC_GPIO0 –> FIOSET |= (1<<3);

If we set LPC_GPIOn –> FIOSET bit to ‘0’ there is no effect.

Turn Pin 0.3 to low

LPC_GPIO0 –> FIOCLR |= (1<<3);

If we set LPC_GPIOn –> FIOCLR bit to ‘0’ there is no effect.

4. Pin is Set to Input

 Read a Pin Value

Register LPC_GPIOn –> FIOPIN stores the current pin state. The corresponding bit is ‘1’

indicates that the pin is driven high.

Example

To read current state of Pin 0.3

Value = ((LPC_GPIO0 –> FIOPIN & (1<<3)) >> 3);

Note: write 1/0 to corresponding bit in LPC_GPIOn –> FIOPIN can change the output of the

pin to 1/0 but it is not recommended. We should use LPC_GPIOn –> FIOSET and GPIOn –

> FIOCLR instead.

 Pin Internal Pull up Setting

Register LPC_PINCON –> PINMODEn is used to set up a pin internal pull-up.

LPC_PINCON –> PINMODE0 [1:0] control P0.0 internal pull-up

…..

LPC_PINCON –> PINMODE0 [31:30] control P0.15 internal pull-up,

Please see LPC_PINCON –> PINSELn for the full list [Page No: 114].

Bit Value Pin Mode

00 On chip pull-up resistor enabled

01 Repeater Mode

10 Tri-State mode, (neither pull-up nor pull-down)

11 On chip pull-down resistor enabled

 Example:

By default all pins which are set as input has internal pull-up on (00).

 To disable internal pull-up on pin 0.3

LPC_PINCON –> PINSEL0 |= (1<<7);

+++

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – IV - PYTHON– SPHA5204

2

Introduction to Python

Python is developed by Guido van Rossum. Guido van Rossum started implementing Python

in 1989. Python is a very simple programming language so even if you are new to

programming, you can learn python without facing any issues.

Readable: Python is a very readable language.

Easy to Learn: Learning python is easy as this is a expressive and high level programming

language, which means it is easy to understand the language and thus easy to learn.

Cross platform: Python is available and can run on various operating systems such as Mac,

Windows, Linux, Unix etc. This makes it a cross platform and portable language.

Open Source: Python is a open source programming language.

Large standard library: Python comes with a large standard library that has some handy

codes and functions which we can use while writing code in Python.

Free: Python is free to download and use. This means you can download it for free and use it in

your application. See: Open Source Python License. Python is an example of a FLOSS

(Free/Libre Open Source Software), which means you can freely distribute copies of this

software, read its source code and modify it.

Supports exception handling: If you are new, you may wonder what is an exception? An

exception is an event that can occur during program exception and can disrupt the normal flow

of program. Python supports exception handling which means we can write less error prone

code and can test various scenarios that can cause an exception later on.

https://docs.python.org/3/license.html

3

Advanced features: Supports generators and list comprehensions. We will cover these

features later.

Automatic memory management: Python supports automatic memory management

which means the memory is cleared and freed automatically. You do not have to bother

clearing the memory.

Applications:

Web development – Web framework like Django and Flask are based on Python. They help you

write server side code which helps you manage database, write backend programming logic,

mapping urls etc.

Machine learning – There are many machine learning applications written in Python. Machine

learning is a way to write a logic so that a machine can learn and solve a particular problem on

its own. For example, products recommendation in websites like Amazon, Flipkart, eBay etc.

is a machine learning algorithm that recognise user’s interest. Face recognition and Voice recognition

in your phone is another example of machine learning.

Data Analysis – Data analysis and data visualisation in form of charts can also be

developed using Python.

Scripting – Scripting is writing small programs to automate simple tasks such as sending

automated response emails etc. Such type of applications can also be written in Python

programming language.

Introduction to Different IoT Tools

IOT Tools stands for the Internet of Things Tools. It is a network or connection of devices,

vehicles, equipment applying embedded electronics, home appliances, buildings and many

more. This helps in collecting and exchanging different kinds of data. It also helps the user to

control the devices remotely over a network.

Today in the internet-driven world, IoT has engulfed the IT industry and is the latest buzzword.

It has opened many new horizons for companies and developers working on IoT. Many

exceptional products have been developed due to IoT app development. Companies providing

Internet of Things solution are creating hardware and software designs to help the IoT

developers to create new and remarkable IoT devices and applications.

List of IoT Tools:

Some IoT tools that help developers in developing IoT applications and devices are discussed

below:

1. Tessel 2

It is used to build basic IoT prototypes and applications. It helps through its numerous modules

and sensors. Using Tessel 2 board, a developer can avail Ethernet connectivity, Wi- Fi

https://www.educba.com/what-is-iot/
https://www.educba.com/hardware-vs-software/

4

connectivity, two USB ports, a micro USB port, 32MB of Flash, 64MB of RAM. Additional

modules can also be integrated like cameras, accelerometers, RFID, GPS, etc.

Tessel 2 can support Node.JS and can use libraries of Node.JS. It contains two processors, its

hardware uses 48MHz Atmel SAMD21 and 580.

MHz MediaTek MT7620n coprocessor. One processor can help to run firmware applications

at high speed and the other one helps in the efficient management of power and in exercising

good input/output control.

2. Eclipse IoT

This tool or instrument allows the user to develop, adopt and promote open source IoT

technologies. It is best suited to build IoT devices, Cloud platforms, and gateways. Eclipse

supports various projects related to IoT. These projects include open-source implementations

of IoT protocols, application frameworks and services, and tools for using Lua programming

language which is promoted as the best-suited programming language for IoT.

3. Arduino

Arduino is an Italy based IT company that builds interactive objects and microcontroller

boards. It is an open-source prototyping platform that offers both IoT hardware and software.

Hardware specifications can be applied to interactive electronics and software includes

Integrated Development Environment (IDE). It is the most preferable IDEs in all IoT

development tools. This platform is easy and simple to use.

4. Platform IoT

It is a cross-platform IoT IDE. It comes with the integrated debugger. It is the best for mobile

app development and developers can use a friendly IoT environment for development. A

developer can port the IDE on Atom editor or it can install it as a plugin. It is compatible with

more than 400 embedded boards and has more than 20 development frameworks and platforms.

It offers a remarkable interface and is easy to use.

5. M2M Labs Mainspring

It is an IoT platform and an open source application framework. It is used to build a machine

to machine applications (M2M) which can be used in fields of remote monitoring and fleet

management. It supports much functionality like validation and normalization of data, device

configuration, data retrieval processes and flexible modeling of devices. It is based on Apache,

Cassandra, NoSQL database and Java.

6. Kinoma

https://www.educba.com/node-dot-js-alternatives/
https://www.educba.com/iot-technologies/
https://www.educba.com/iot-technologies/
https://www.educba.com/iot-framework/
https://www.educba.com/iot-protocols/
https://www.educba.com/iot-hardware/
https://www.educba.com/iot-platform/
https://www.educba.com/what-is-nosql-database/

5

It is a Marvell semiconductor hardware prototyping platform. It enables three different projects.

To support these projects two products are available Kinoma Create and Element Board.

Kinoma Create is a hardware kit for prototyping electronic and IoT enabled devices. Kit

contains supporting essentials like Bluetooth Low Energy (BLE), integrated Wi-Fi, speaker,

microphone and touch screen. Element Board is the smallest JavaScript-powered IoT product

platform.

7. Device- Hive

It is based on Data Art’s AllJoyn. It is a free open source M2M i.e. machine to machine

communication framework. It was launched in 2012 and considered the most preferable IoT

app development platform. It has cloud-based API which can be controlled remotely

irrespective of network configuration. Its libraries, protocols, and management portal are

controlled in a similar manner. It is best suited for applications related to smart home tech,

security, automation, and sensors.

8. Kaax

It provides end to end support for IoT devices connected across the cloud. Due to its multi-

purpose middleware, it allows users to build connected applications, IoT applications, and

many smart products. Open source kit is described as ‘hardware agnostic’ by Kaax i.e. it can

interface with any hardware like sensors, gateways, and other devices. It helps developers to

distribute firmware updates remotely, and to enable cross-platform interoperability.

9. Home Assistant

It is an open source tool mostly used for functions based on the Python coding system and

home automation. Desktop and mobile browsers help to control their IoT system. It is easy to

set up and is famous for its smooth operations, privacy standards, and security. It can support

systems running on Python 3.

10. Net

It is an integrated solution for developers of IoT. It offers services like cloud integration and

business intelligence to provide both web technologies and hardware. Its development kit is

delivered as a platform as a service i.e. PaaS which allows the developers to efficiently utilize

its power for development purpose.

https://www.educba.com/wifi-vs-ethernet/
https://www.educba.com/what-is-network-topology/
https://www.educba.com/python-3-commands/
https://www.educba.com/business-intelligence-tool/

6

11. Raspbian

This IDE is created for Raspberry Pi board. It has more than 35000 packages and with the help

of precompiled software, it allows rapid installation. It was not created by the parent

organization but by the IoT tech enthusiasts. For working with Raspberry Pi, this is the most

suitable IDE available.

Developing Application through IOT Tools:

Technology is on a constant innovative role and with that perspective has brought a significant

change in our lives. With the passage of time connectivity has improved a lot better; thanks to

the smart devices, the wireless communication, sensors, cloud based computing system and

much more.

But the one platform that has already created the buzzword and hype is Internet of Things (IoT),

enabling the organizations to take controls and manage the operations conveniently thereby

undertaking the tougher projects to deal with.

The Three Pillars of IoT

It is important for the app developers to note that the entire structure of the Internet of Things,

basically rests upon three major pillars. They include:

 Network

 Things in Themselves

 Cloud

The network usually performs the same function to what router does in connecting the network

to the device. Here the devices are linked to the cloud. The information is received from the

infrastructure stationed at data centers. The things provide the data stream and also manages it.

On the other hand, the things are organized by software. The Things in themselves acts as an

Internet Gateway is regarded as an important structure that helps in other device

communication through a single or many communication protocol. The processor is not high

powered and in most of the cases it gets directly linked up to Internet of Things. The Operating

System is also embedded. The device that gets connected to the network normally does not

have a screen. The Cloud is a server that serves as a security cover safeguarding your

confidential data. During the critical juncture, the ordered data gets processed whereas the

processing of a program occurs during the concluding stages. This program can be anything

from a web app to a mobile app or even a software that users make use of.

Applications for IoT

So, now that you finally sit down for developing an application for the Internet of Things,

there are a few factors taken into consideration. Let’s have a quick glance at these:

https://www.educba.com/uses-of-raspberry-pi/
https://www.mindinventory.com/internet-of-things-iot-app-development.php

7

1. Choose an Appropriate and Convenient Platform

The first and foremost step that the developer needs to ensure is selecting the appropriate

platform for the development process. The platforms such as Ubidots, Xively or Thingworx

are IoT proven and offer the scope to design the best in class apps. Apart from that if you are

choosing an authenticated platform, you are also avoiding the unnecessary exposures. With

the help of these plat-forms you don’t have to start anything from the beginning.

2. Consider the Industry for IoT Application

Today Internet of Things does not have limited services but its scope has much widened and

extended. So, it is essential to consider the industry. The industries are connected with the

devices and network to offer solutions. As such there are a diverse set of industries that is

optimally connected such as the healthcare, transportation, energy resources, sports,

manufacturing etc.

For instance, it will become easier for the people to find transportation such as connecting

buses or trains. Side by side you will also have to find ways to improve in connecting the

things.

3. Segregating services from API Interface

While you are developing the apps for IoT, it becomes important to separate the services from

API interface. But why? This is because you want your app to smoothly run on mobile and

web desktop. Managing your IoT applications well will help to provide better opportunities.

4. IoT Data Must be Secured Strongly

It becomes the sheer responsibility of the application developer to offer a strong secured

environment to IoT data especially from the physical attacks. The security becomes

paramount in case of GPS networks or in case of banking apps.

5. The Different Levels of IoT Apps

Understanding the various levels of IoT applications is pivotal as it gives an idea to know the

system and its function. There are four different layers; the devices, the ingestion tier, the

analytics area and lastly the end-user. So, first consider the devices that you will be connecting.

In the ingestion tier the infrastructure or the software receives data or organizes it.In the third

8

layer the data is mainly processed with the help of analytics area. The last is the end users for

whom the app is getting developed.

6. Keep an Eye on IoT Device Firmware Security

The Internet of Things is always connected with things and keeps communicating with it.

This is what distinguishes them from the traditional web and mobile apps.The hardware is

always apprehended to have security based issues in the firmware and so it becomes

essential keep on updating firmware. The firmware needs to be authenticated and signed

before the update.

7. Not Compromise with Speed and Quality

As an app developer you need to keep in mind when creating applications for the IoT, you

cannot comprise with the speed and quality at any cost.You need to focus on transforming

the ideas into actuality and offer stable working prototype. Once you achieve, you can think

of being successful.

8. Provide Scalability to the Applications

The Internet of Things based applications should be scalable. The IoT is still a new concept

but it has already been predicted that it has immense potential and will become larger than

ever with the time to arrive.

Scalability will allow your app to remain in light even after a long period of time. The Internet

of Things is although new into the technological arena but isn’t a foreign term any more.

Gradually it is expanding and has reached to a different height where accessing information and

getting connected has become easier and cost effective. The applications for IoT is a challenge

for the developers because it is not based on the conventional methods unlike web or mobile

apps.

SENSOR BASED APPLICATION THROUGH

EMBEDDED SYSTEM

SENSORS

Sensors are synonymous to human sense organs. These are the eyes of modern electronic

devices utilized to implement automation in different practical fields. Sensors form the basic

components of many systems, in which a process is controlled based on the signals sensed by

the sensors. Sensors are modern electronic devices used frequently to detect various signals

generated as a response to various natural or artificial ambient factors. In effect, a sensor

9

converts a physical parameter into a signal, generally in terms of voltage or current. The

physical parameter that a sensor responds to may be temperature, pressure, humidity, velocity,

radiation, vibration, etc. Sensors are the main parts of many measurement devices like

thermometer, barometer, accelerometer, etc. Sensors can be coupled in many ways to build

measuring and the final process control device. Mechatronics is a branch of engineering where

mechanical components are organized in such a way that their working is controlled by some

electronic circuits. Here sensors play an important role in the controlling of the mechanical

processes. Therefore sensors are termed as the electronic eyes of many automatic systems

where a larger computer or microcontroller is generally used. Numerous sensors and their

applications are available today. A comparative study of the performance of an individual

sensor in a specific application gives a clear vision which sensor can be employed singly or in

conjunction with others. In any sensor based application, the working system requires economy

and simplicity for its real life implementation. For selecting a sensor for a particular application

there are certain features that have to be considered. These are accuracy, ambient conditions

like temperature or humidity, range of measurement, ease of calibration, resolutions, cost, etc.

SOME USEFUL SENSORS

Capacitive Sensors Capacitors are basically two conducting plates separated by some dielectric

media. From its physical parameters the value of capacitance can be expressed as d A C e =

where e is the dielectric constant of the medium between the plates, A is the area of a plate

projected on the other plate and d is the distance between the plates. A capacitor can be

constructed in a number of ways out of which some common forms are: parallel plate capacitor,

spherical capacitor, cylindrical capacitor etc. Some very special forms are used for some

specific applications and one such form is the fringe field capacitor. By changing the value of

different parameters, the value of a capacitor can be changed. Based on this simple proposition

a capacitor can be utilized as a sensor [73]. Capacitive sensors can directly sense a variety of

things like motion, chemical composition, electric field and also indirectly sense many other

variables which can be converted into motion or dielectric constant, such as pressure,

acceleration, fluid level and fluid composition. They are built using conductive sensing

electrodes in a dielectric, with excitation voltages of the order of five volts and detection

circuits which turn a capacitance variation into a voltage, frequency, or pulse width variation.

Capacitive sensor based embedded system is also used to determine moisture content of tea

leaves .

Light Sensors

Eye is the light sensor that every high level creature is equipped with. Human eye sense visible

light of electro-magnetic spectrum whereas other creatures have different forms of organs

capable of sensing wide range of spectrum. Light sensors are obtained by exploiting the

variations of some physical property of an object when exposed to light. Some of these objects

are light dependent resistance (LDR), photo diode, charged couple device (CCD), solar cell

10

etc. A very common use of LDR as a light sensor is in automatic street lighting system, where

the street light glows on at night and glows off at day light. Light sensors are widely used for a

number of applications [75] [76] [77][78]. Monitoring of moisture in a transformer oil using

optical fiber as sensor has been discussed by Laskar and Bordoloi Pressure Sensors A

sensor capable of sensing pressure and its magnitude is termed as a pressure sensor. A

diaphragm made by etching a single silicon crystal is widely used to form a miniature pressure

sensor. Most of these sensors use piezo-resistive elements to quantify the state of the diaphragm

on application of a pressure. Another well known approach for the quantification of the state

of a diaphragm is to use a variable gap capacitor placed between the diaphragm and an attached

chip, which directly measures the deflection of the diaphragm on application of pressure [80].

This arrangement is useful to measure weight as pressure exerted by an object is directly

proportional to its weight. Hazarika and Pegu [81] have published a microcontroller based air

pressure monitoring instrumentation system using optical fibres as sensor.

Chemical Sensors

sensor is said to be a chemical sensor which contains an analytical device that can sense data

about the chemical composition of a liquid or a gas sample. The sensor provides the

information in the form of a measurable physical quantity that is correlated with the chemical

composition of the given sample. In the process of sensing the two main steps involved are

recognition and transduction.

In the recognition step, the molecules of the target composition interact selectively with

receptor molecules included in the structure of the recognition element of the sensor. As a

result, an attributes of a physical parameter varies and this variation is utilized to generate

the output signal. 4.3.5. Biosensors If a chemical sensor is equipped with a biological material

as a recognition element, the sensor is termed as a biosensor. Alternately, in biomedicine and

biotechnology, sensors which detect biological objects such as cells, protein, nucleic acid or

bio mimetic polymers, are called biosensors.

EMBEDDED SYSTEM

The word embedded implies that some entity is homogeneously integrated within a system. In

the present day context, an embedded system is a hardware electronics arrangement within

which a software is loaded in the memory element to drive the system to achieve its goal. The

system may or may not be programmable depending on its application. An embedded system

is a realization of a definition of some kind of automatic process guided by a set of rules. The

hardware and their response to the real time working environment are bonded together by the

embedded software. An embedded system can be visualized as a computational unit with

essential software, though it is not a computer in the conventional way. It can be specify as

A stand alone system designed to perform a particular task without any human intervention.

A hardware and software system intended to perform a specific job in an efficient and cheaper

way.

11

An intelligent system capable of taking input from the environment and produce appropriate

response.

A system capable of taking inputs from the environment along with processing of the parameter

to give a suitable output, all within a small time period.

The system which works conveniently in time critical situations where responses in a specific

time frame are required, because of its capability of taking input processing-output actions very

fast.

SCHEMATIC OF EMBEDDED SYSTEM

An embedded system is fast in response to its inputs, small in size, consumes low power and

over all it is reliable in operations. These are generally designed for real time applications.

Therefore their power requirement and size should be small enough to incorporate them in

practical applications. To minimise their size and power requirement, the hardware is provided

in the form of a microcontroller which provide computation engine, input/output facilities,

communication ports, user interface, memory and display etc. A typical block diagram of an

embedded system is shown in

The software embedded is written in assembly level or high level language and compiled to

machine level code before it is burnt into the EPROM inbuilt with the microcontroller which

acts as the computational engine of the system. The software is written in such a way that it will

be compact enough to be burnt in a small memory area, consumes low power during use and

compatible to processor speed to achieve efficiency.

12

TYPES OF EMBEDDED SYSTEM

Based on practical requirements, performance, size an embedded system can be classified into

different types. A typical classification is shown below: According to performance and

functional requirement, embedded systems have been classified into four categories, viz.

 Real time embedded systems

 Stand alone embedded system

 Networked embedded systems

 Mobile embedded systems

According to the scale of performance of the microcontroller, embedded systems have been

classified into three categories, viz.

 Small scale embedded systems

 Medium scale embedded systems

 Sophisticated embedded systems

APPLICATIONS OF EMBEDDED SYSTEM

Embedded systems are used in many different applications like house hold electronics items,

automobiles, aircraft, military weapons, telecommunications, smart cards, missiles, satellites,

computer networking, surveillance systems, medical electronics, industrial control, digital

consumer electronics etc. In house hold applications, embedded systems include washing

machine, dishwashers, electric oven, home security systems, automatic door opening & closing

systems, keyless entry system etc. Embedded systems in automobiles and in

telecommunications cover applications in vehicle and cruise control system, body and engine

safety, keyless starting system, entertainment devices in car like MP3 players etc, ecommerce

and mobile phone, robotics in industrial assembly line, mobile computing, wireless

communications, computer networking etc. Embedded systems in smart cards, missiles and

satellites category includes applications in security systems, telephone and banking sectors,

defence weaponry and aerospace devices, communication. Embedded systems in peripherals

& computer networking are seen in blade servers, routers, wireless P. C. card, card swiping

system, displays and monitors, image processing, network cards and printers etc. Pacemakers,

various control systems in MRI, CT scan, X-ray machines are few examples of embedded

systems in the area of medical electronics. Embedded systems in consumer electronics include

digital camera, HD TV, DVD players, MP3 players, Set top box etc.

13

Implementing IOT Concepts with Python:

Python in IoT development

Python plays a significant role in developing internet of things, along with python we use different

languages for developing IOT those are

 Assembly

 B#

 C

 C++

 Java

 Javascript

 Php

 Python

 Rust and many more

As of now java programming language is widely used for developing the IoT devices now python

is coming into the field, with the following features of python most of developers prefer python

programming language.

https://mindmajix.com/python-training

14

PART A

1.Describe the role of Python in IoT development

2.Develop the features of Python

3.Classify the IoT hardware processing

4.Evaluate the history of IoT techniques

5.Analyze the common challenges in IoT

6.Explain how sensors are interfaced with in Embedded system

7.Identify the classification of Embedded system

8.Evaluate the communication devices used in IoT

PART B

1.Analyze the different IoT Tools

2.Discriminate the developing applications through IoT Tools

3.Design an embedded system using processor, external memory and sensor

4.Discuss the IoT concepts using Python

5.Explain the functional layers and capabilities of an IoT with a neat diagram.

TEXT / REFERENCE BOOKS

1. A.K Ray and K M Bhurchandi, Advanced Microprocessors and Periperals,3RD edition,

TMH,2017.

2. Joseph Yiu, The Definitive Guide to the ARM Cortex-M3,2nd Edition, Newnes,2015.

3. Dr.MarkFisher, ARM Cortex M4 Cookbook, Packt, 2016.

4. David Hanes, “IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the

 Internet of Things”, Cisco press, 2017.

5. Olivier Hersent , David Boswarthick , Omar Elloumi, “The Internet of Things: Key Applications

 and Protocols”, 2nd Edition, Wiley, 2012.

6. Rajkamal, “Embedded system-Architecture, Programming, Design”, TMH, 2011.

7. Jonathan W.Valvano, “Embedded Microcomputer Systems,Real Time Interfacing”,Cengage

 Learning,3rd Edition, 2012.

Python interpreter:

Interpreter: To execute a program in a high-level language by translating it one line ata time.

Compiler: To translate a program written in a high-level language into a low-level language all at once, in

preparation for later execution.

Compiler Interpreter

Compiler Takes Entire program as input
Interpreter Takes Single instruction as input

Intermediate Object Code is Generated
 No Intermediate is Object

Generated

Code

Conditional Control Statements are

Executes faster

 Conditional Control Statements

Executes slower

are

Memory Requirement is More(Since Object

Code is Generated)
Memory Requirement is Less

Program need not be compiled every time
 Every time higher level program

converted into lower level program

is

Errors are displayed after entire program is checked Errors are displayed for every instruction

interpreted (if any)

Example : C Compiler Example : PYTHON

Modes of python interpreter:

Python Interpreter is a program that reads and executes Python code. It uses 2 modes of Execution.

1. Interactive mode

2. Script mode

Interactive mode:

 Interactive Mode, as the name suggests, allows us to interact with OS.

 When we type Python statement, interpreter displays the result(s) immediately.

Advantages:

 Python, in interactive mode, is good enough to learn, experiment or explore.

 Working in interactive mode is convenient for beginners and for testing small pieces of code.

Drawback:

 We cannot save the statements and have to retype all the statements once again to re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:

>>> 1 + 1

2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you to enter code. If you

type 1 + 1, the interpreter replies 2.

>>> print ('Hello, World!')

Hello, World!

32

This is an example of a print statement. It displays a result on the screen. In this case, the result is the words.

Script mode:

 In script mode, we type python program in a file and then use interpreter to execute the content of the
file.

 Scripts can be saved to disk for future use. Python scripts have the

extension .py, meaning that the filename ends with.py

 Save the code with filename.py and run the interpreter in script mode to execute the script.

Interactive mode Script mode

A way of using the Python interpreter by

typing commands and expressions at the prompt.

A way of using the Python interpreter to read and

execute statements in a script.

Can’t save and edit the code Can save and edit the code

If we want to experiment with the code,

we can use interactive mode.

If we are very clear about the code, we can

use script mode.

we cannot save the statements for further use and we

have to retype all the statements to re-run them.

we can save the statements for further use and we no

need to retype all the statements to re-run them.

We can see the results immediately. We can’t see the code immediately.

Integrated Development Learning Environment(IDLE):

Is a graphical user interface which is completely written in Python.

It is bundled with the default implementation of the python language and also comes with optional

part of the Python packaging.

Features of IDLE:

Multi-window text editor with syntax highlighting.

34

Auto completion with smart indentation.

Python shell to display output with syntax highlighting.

2. VALUES AND DATATYPES

Value:

Value can be any letter, number or string.

Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different datatypes.)

Data type:

Every value in Python has a data type.

It is a set of values, and the allowable operations on those values.

Python has four standard data types:

Numbers:

 Number data type stores Numerical Values.

 This data type is immutable [i.e. values/items cannot be changed].

 Python supports integers, floating point numbers and complex numbers. They are defined as,

Sequence:

 A sequence is an ordered collection of items, indexed by positive integers.

 It is a combination of mutable (value can be changed) and immutable (values cannot be changed)

datatypes.

35

 There are three types of sequence data type available in Python, they are

1. Strings

2. Lists

3. Tuples

Strings:

 A String in Python consists of a series or sequence of characters - letters, numbers, and special
characters.

 Strings are marked by quotes:

 Single quotes(' ') E.g., 'This a string in single quotes'

 double quotes(" ") E.g., "'This a string in double quotes'"

 triple quotes(""" """)E.g., """This is a paragraph. It is made up of multiple
lines and sentences."""

 Individual character in a string is accessed using a subscript(index).

 Characters can be accessed using indexing and slicing operations .Strings are

Immutable i.e the contents of the string cannot be changed after it is created.

Indexing:

 Positive indexing helps in accessing the string from the beginning

 Negative subscript helps in accessing the string from the end.

 Subscript 0 or –ven(where n is length of the string) displays the first element.

Example: A[0] or A[-5] will display “H”

 Subscript 1 or –ve (n-1) displays the second element.

Example: A[1] or A[-4] will display “E”

Operations on string:

i. Indexing

ii. Slicing

iii. Concatenation

iv. Repetitions

v. Membership

Creating a string >>> s="good morning" Creating the list with elements of different

data types.

Indexing >>>print(s[2])

o

>>>print(s[6])

O

 Accessing

position0

 Accessing

position2

the

the

item

item

in

in

the

the

Slicing(

position -1)

ending >>>print(s[2:])

od morning

- Displaying items from 2ndtill

last.

36

Slice operator is used

to extract part of a

data

type

>>>print(s[:4])

Good

st

- Displaying items from 1

position till 3rd.

Concatenation >>>print(s+"friends")

good morning friends

-Adding and printing the

characters of two strings.

Repetition >>>print(s*2)

good morning

good morning

Creates new strings,
concatenating multiple copies of

the same string

in, not in (membership

operator)
>>> s="good morning"

>>>"m" in s True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present.

Lists

 List is an ordered sequence of items. Values in the list are called elements /items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different datatypes.

Operations on list:

Indexing

Slicing

Concatenation

Repetitions

Updation, Insertion, Deletion

Creating a list >>>list1=["python",

"hello”]

>>>list2=["god",6.78,9]

7.79, 101, Creating the list

elements of different data

types.

with

Indexing >>>print(list1[0]) python

>>>list1[2]

101

 Accessing the item in the

position0

 Accessing the item in the

position2

Slicing(ending

position -1)

Slice operator is used

to extract part of a

string, or some part of a

list

>>>print(list1[1:3])

[7.79, 101]

>>>print(list1[1:]) [7.79, 101,
'hello']

- Displaying items from 1st
till2nd.

- Displaying items from 1st

position till last.

Python

Concatenation >>>print(list1+list2)

['python', 7.79, 101, 'hello', 'god',

-Adding and printing

items of two lists.

the

37

 6.78, 9]

Repetition >>>list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',

6.78, 9]

Creates new strings, concatenating

multiple

copies of the same string

Updating the list >>>list1[2]=45

>>>print(list1)

[‘python’, 7.79, 45, ‘hello’]

Updating the list using index value

Inserting an element >>>list1.insert(2,"program")

>>> print(list1)

['python', 7.79, 'program', 45,

'hello']

Inserting an element in 2ndposition

Removing an element >>>list1.remove(45)

>>> print(list1)

['python', 7.79, 'program', 'hello']

Removing an element by
giving the element directly

Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list.i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from the tuple.

 Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

Basic Operations:

Creating a tuple >>>t=("python", 7.79,

"hello”)

101, Creating the tuple with elements

of different data types.

Indexing >>>print(t[0]) python

>>>t[2]

101

 Accessing the item in the

position0

 Accessing the item in the

position2

Slicing(

position -1)

ending >>>print(t[1:3])

(7.79, 101)

 Displaying items from1st

till2nd.

Concatenation >>>t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elements at

the end of another tuple elements

Repetition >>>print(t*2)

('python', 7.79, 101,

'python', 7.79, 101, 'hello')

'hello',

 Creates new strings,

concatenating multiple copies of the

same string

Altering the tuple data type leads to error. Following error occurs when user tries to do.

38

Mapping

Dictionaries:

-This data type is unordered and mutable.

-Dictionaries fall under Mappings.

 Lists are ordered sets of objects, whereas dictionaries are unorderedsets.

 Dictionary is created by using curly brackets. i,e.{}

 Dictionaries are accessed via keys and not via their position.

 A dictionary is an associative array (also known as hashes). Any key of the dictionary is associated

(or mapped) to a value.

 The values of a dictionary can be any Python data type. So dictionaries are unordered key-value-

pairs(The association of a key and a value is called a key- value pair)

Dictionaries don't support the sequence operation of the sequence data types like strings, tuples and lists.

Creating a

dictionary

>>> food = {"ham":"yes", "egg" :

"yes", "rate":450 }

>>>print(food)

{'rate': 450, 'egg': 'yes', 'ham':

'yes'}

Creating the dictionary with

elements of different data

types.

Indexing >>>>print(food["rate"])

450

Accessing the item with keys.

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

Displaying items from 1st till 2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>>words = {"house" : "Haus", "cat":"Katze"}

>>>words["car"]

Traceback (most recent call last): File

"<stdin>", line 1, in <module>KeyError: 'car'

 Data type Compile time Run time

int a=10 a=int(input(“enter a”))

float a=10.5 a=float(input(“enter a”))

string a=”panimalar” a=input(“enter a string”)

list a=[20,30,40,50] a=list(input(“enter a list”))

tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

>>>t[0]="a"
Trace back (most recent call last):

File "<stdin>", line 1, in <module>
Type Error: 'tuple' object does not support item assignment

>>> a=b=c=100

 A variable allows us to store a value by assigning it to a name, which can be used later.

 Named memory locations to store values.

 Programmers generally choose names for their variables that are meaningful.

 It can be of any length. No space is allowed.

 We don't need to declare a variable before using it. In Python, we simply assign a value to a variable

and it will exist.

Assigning value to variable:

Value should be given on the right side of assignment operator(=) and variable on left side.

Assigning a single value to several variables simultaneously:

Assigning multiple values to multiple variables:

 Keywords are the reserved words in Python.

 We cannot use a keyword as name, function name or any other identifier.

 They are used to define the syntax and structure of the Python language.

 Keywords are case sensitive.

Identifier is the name given to entities like class, functions, variables etc. in Python.

 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to

Z) or digits (0 to 9) or an underscore (_).

>>>counter =45
print (counter)

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And Indentation,

Quotation In Python, Tuple Assignment:

VARIABLES:

>>>a,b,c=2,4,"ram"

KEYWORDS:

IDENTIFIERS:

40

 all are valid example.

 An identifier cannot start with a digit.

 Keywords cannot be used as identifiers.

 Cannot use special symbols like!, @, #, $, % etc. in our identifier.

 Identifier can be of any length.

Example:

Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations

Num Number 1

Num num1

Num1 addition of program

_NUM 1Num

NUM_temp2 Num.no

IF if

Else else

Statements:

-Instructions that a Python interpreter can executes are called statements.

-A statement is a unit of code like creating a variable or displaying avalue.

Here, The first line is an assignment statement that gives a value to n. The second line is

a print statement that displays the value of n.

Expressions:

-An expression is a combination of values, variables, and operators.

- A value all by itself is considered an expression, and also a variable.

- So the following are all legal expressions:

INPUT: Input is data entered by user (end user) in the program. In python, input

() function is available for input.

Syntax for input() is:
variable = input (“data”)

 INPUT AND OUTPUT

>>> 42

42

>>> a=2

>>>a+3+2 7

>>> z=("hi"+"friend")

>>>print(z) hifriend

>>> n = 17

>>>print (n)

 STATEMENTS AND EXPRESSIONS:

41

Example:

>>> x=input("enter the name:")
enter the name: george

>>>y=int(input("enter the number"))
enter the number 3
#python accepts string as default data type. Conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Example:

A hash sign (#) is the beginning of a comment.

Anything written after # in a line is ignored by interpreter.

Eg: percentage = (minute * 100)/60 # calculating percentage of an hour

 Python does not have multiple-line commenting feature. You have to comment each line
individually as follows:

Example:

This is a comment.

This is a comment, too.

I said that already.

DOCSTRING:

Docstring is short for documentation string.

It is a string that occurs as the first statement in a module, function, class, or method definition. We

must write what a function/class does in the docstring.

 Triple quotes are used while writing docstrings.

Syntax:

functionname doc. Example:

Most of the programming languages like C, C++, Java use braces { } to define a block of code. But,
python uses indentation.

Blocks of code are denoted by line indentation.

It is a space given to the block of codes for class and function definitions or flow control.

def double(num):
"""Function to double thevalue"""
return2*num

>>>print (double. doc)
Function to double the value

>>> print ("Hello")
Hello

Syntax:
print (expression/constant/variable)

COMMENTS:

LINES AND INDENTATION:

42

Example:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals. Anything that is

represented using quotations are considered as string.

Single quotes(' ') Eg, 'This a string in single quotes'

double quotes(" ") Eg, "'This a string in double quotes'"

triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines and
sentences."""

An assignment to all of the elements in a tuple using a single assignment statement.

Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an

assignment to be assigned values from a tuple on the right of the assignment.

The left side is a tuple of variables; the right side is a tuple of values.

Each value is assigned to its respective variable.

All the expressions on the right side are evaluated before any of the assignments. This feature makes
tuple assignment quite versatile.

 Naturally, the number of variables on the left and the number of values on the right have to be the

same.

Example:

-It is useful to swap the values of two variables. With conventional assignment statements, we have to use a

temporary variable. For example, to swap a and b:

Swap two numbers Output:

a=2;b=3

print(a,b) (2, 3)

temp = a (3, 2)

a = b >>>

b = temp

print(a,b)

a=3
b=1
if a>b:

print("a is greater")
else:

print("b is greater")

QUOTATION INPYTHON:

 TUPLE ASSIGNMENT

>>>(a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

43

-Tuple assignment solves this problem neatly:

-One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are ‘packed’ together in a tuple:

-In tuple unpacking, the values in a tuple on the right are ‘unpacked ‘into the variables/names on the

right:

-The right side can be any kind of sequence (string, list,tuple)

Example:

-To split an email address in to user name and a domain

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator

Types of Operators:

-Python language supports the following types of operators

 Arithmetic Operators

 Comparison (Relational)Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

>>>mailid='god@abc.org'

>>>name,domain=mailid.split('@')

>>>print name god

>>> print (domain) abc.org

(a, b) = (b, a)

>>>b = ("George",25,"20000") # tuplepacking

>>>b = ("George", 25, "20000") # tuple packing
>>>(name, age, salary)=b # tupleunpacking
>>>name
'George'
>>>age
25
>>>salary
'20000'

4.OPERATORS:

44

 Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction, multiplication etc.

Assume, a=10 and b=5

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts

operand.

right hand operand from left hand a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs

operators

exponential (power) calculation on a**b =10 to the

power 20

// Floor Division - The division of operands where the result is the

quotient in which the digits after the decimal point are removed

5//2=2

Examples

a=10

b=5

print("a+b=",a+b)

print("a-b=",a-b)

print("a*b=",a*b)

print("a/b=",a/b)

print("a%b=",a%b)

print("a//b=",a//b)

print("a**b=",a**b)

Output:

a+b=15

a-b= 5

a*b= 50

a/b= 2.0

a%b=0

a//b=2

a**b= 100000

Comparison (Relational)Operators:

 Comparison operators are used to compare values.

 It either returns True or False according to the condition. Assume, a=10 and b=5

Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

45

becomes true. not true.

!= If values of two operands are not equal, then condition becomes true. (a!=b) is

true

> If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is not

true.

< If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b) is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b) is

true.

Example

a=10

b=5

print("a>b=>",a>b)

print("a>b=>",a<b)

print("a==b=>",a==b)

print("a!=b=>",a!=b)

print("a>=b=>",a<=b)

print("a>=b=>",a>=b)

Output: a>b=>

True a>b=>

False a==b=>

False a!=b=>

True a>=b=>

False a>=b=>

True

Assignment Operators:

-Assignment operators are used in Python to assign values to variables.

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns value

of a + b into c

+= Add AND It adds right operand to the left operand and assign the result to

leftoperand

c += a is

equivalent to c

= c + a

-= Subtract

AND

It subtracts right operand from the left operand and assign the result

to left operand

c -= a is

equivalent to c

= c -a

46

*= Multiply

AND

It multiplies right operand with the left operand and assign the

result to left operand

c *= a is

equivalent to c

= c *a

/= Divide

AND

It divides left operand with the right operand and assign the result

to left operand

c /= a is

equivalent to c

= c /ac

/= a is

equivalent to c

= c /a

%= Modulus

AND

It takes modulus using two operands and assign the result to left

operand

c %= a is

equivalent to c

= c % a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent to c

= c ** a

//= Floor

Division

It performs floor division on operators and assign value to the left

operand

c //= a is

equivalent to c

= c // a

Example

a =21

b =10

c = 0

c = a + b

print("Line 1 - Value of c is ",c)

c += a

print("Line 2 - Value of c is ", c)

c *= a

print("Line 3 - Value of c is ",c)

c /= a

print("Line 4 - Value of c is ", c)

c = 2

c %=a

print("Line 5 - Value of c is ",c)

c **= a

print("Line 6 - Value of c is ",c)

c //= a

print ("Line 7 - Value of c is ", c)

Output

Line 1 - Value of c is 31

Line 2 - Value of c is 52

Line 3 - Value of c is 1092

Line 4 - Value of c is 52.0

Line 5 - Value of c is2

Line 6 - Value of c is 2097152

Line 7 - Value of c is99864

47

Logical Operators:

-Logical operators are the and, or, not operators.

Example

a = True

b = False

print('a and b is', a and b)

print('a or b is' ,a or b)

print('not a is', not a)

Output

x and y is False

x or y is True

not x is False

Bitwise Operators:

 A bitwise operation operates on one or more bit patterns at the level of individual bits

Example: Let x = 10 (0000 1010 in binary)and

y = 4 (0000 0100 in binary)

Example

a = 60 # 60 = 0011 1100
Output

Line 1 - Value of c is 12

b = 13

c = 0

c = a & b;

13 = 0000 1101

12 = 0000 1100

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is-61

print "Line 1 - Value of c is ", c

c = a|b; # 61 = 00111101

print "Line 2 - Value of c is ", c

c = a^b; # 49 = 00110001

print "Line 3 - Value of c is ", c

c =~a; # -61 = 11000011

Line 5 - Value of c is 240

Line 6 - Value of c is 15

48

print "Line 4 - Value of c is ", c

c = a<<2; # 240 = 11110000

print "Line 5 - Value of c is ", c

c = a>>2; # 15 = 00001111

print "Line 6 - Value of c is ", c

Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list, tuple, dictionary or

not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators areused.

Example:

x=[5,3,6,4,1]

>>>5 in x

True

>>>5 not in x

False

Identity Operators:

• They are used to check if two values (or variables) are located on the same partof the

memory.

Example

x =5

y =5

x2 = 'Hello'

y2= 'Hello'

print(x1 is not y1)

print(x2 is y2)

Output

False

True

49

When an expression contains more than one operator, the order of evaluation

depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method names for the

last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>><< Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.

-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction) is a

useful way to remember the rules:

• Parentheses have the highest precedence and can be used to force an expression to evaluate in the

order you want. Since expressions in parentheses are evaluated first, 2 * (3-1)is 4, and (1+1)**(5-2)

is8.

• You can also use parentheses to make an expression easier to read,asin(minute

* 100) / 60, even if it doesn’t change the result.

• Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and2

*3**2 is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction. So 2*3-1 is 5,

not 4, and 6+4/2 is 8, not5.

• Operators with the same precedence are evaluated from left to right (except exponentiation).

5.OPERATOR PRECEDENCE:

50

Examples:

a=9-12/3+3*2-1

a=?

a=9-4+3*2-1

a=9-4+6-1

a=5+6-1 a=11-

1 a=10

A=2*3+4%5-3/2+6

A=6+4%5-3/2+6

A=6+4-3/2+6 A=6+4-

1+6

A=10-1+6

A=9+6 A=15

find m=?

m=-43||8&&0||-2 m=-

43||0||-2 m=1||-2

m=1

 Function is a sub program which consists of set of instructions used to perform a specific task.

A large program is divided into basic building blocks called function.

Need For Function:

• When the program is too complex and large they are divided into parts. Each part is separately

coded and combined into single program. Each subprogram is called as function.

• Debugging, Testing and maintenance becomes easy when the program is divided into

subprograms.

• Functions are used to avoid rewriting same code again and again in a program.

• Function provides code re-usability

• The length of the program is reduced.

Types of function:

Functions can be classified into two categories:

i) user defined function

ii) Built in function

i) Built in functions

• Built in functions are the functions that are already created and stored inpython.

• These built in functions are always available for usage and accessed by a programmer. It cannot be

modified.

6.Functions, Function Definition And Use, Function call, Flow Of Execution, Function Prototypes,

Parameters And Arguments, Return statement, Arguments types, Modules

FUNCTIONS:

51

>>>max(3,4) 4 # returns largest element

>>>min(3,4) 3 # returns smallest element

>>>len("hello") 5 #returns length of an object

>>>range(2,8,1) [2,

3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8) 8.0 #returns rounded integer of the given number

>>>chr(5)

\x05'

#returns a character (a string) from an integer

>>>float(5)

5.0

#returns float number from string or integer

>>>int(5.0) 5 # returns integer from string or float

>>>pow(3,5) 243 #returns power of given number

>>>type(5.6)

<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])

(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")

Good morning

displays the given object

>>>input("enter name:")

enter name : George

reads and returns the given string

ii) User Defined Functions:

• User defined functions are the functions that programmers create for their requirement anduse.

• These functions can then be combined to form module which can be used in other programs by

importing them.

• Advantages of user defined functions:

 Programmers working on large project can divide the workload by making different functions.

 If repeated code occurs in a program, function can be used to include those codes and execute
when needed by calling that function.

• def keyword is used to define a function.

• Give the function name after def keyword followed by parentheses in which arguments are given.

• End with colon (:)

• Inside the function add the program statements to be executed

• End with or without return statement

Description Built in function

 Function definition: (Sub program)

52

Syntax:

def fun_name(Parameter1,Parameter2…Parameter n): statement1

statement2…

statement n return[expression]

Example:

def my_add(a,b):
c=a+b

return c

 Once we have defined a function, we can call it from another function, program or even the

Pythonprompt.

 To call a function we simply type the function name with appropriate arguments.

Example:

• The order in which statements are executed is called the flow of execution

• Execution always begins at the first statement of the program.

• Statements are executed one at a time, in order, from top to bottom.

• Function definitions do not alter the flow of execution of the program, but remember that statements

inside the function are not executed until the function is called.

• Function calls are like a bypass in the flow of execution. Instead of going to the next statement, the

flow jumps to the first line of the called function, executes all the statements there, and then comes

back to pick up where it left off.

Note: When you read a program, don’t read from top to bottom. Instead, follow the flow of execution. This

means that you will read the def statements as you are scanning from top to bottom, but you should skip the

statements of the function definition until you reach a point where that function is called.

i. Function without arguments and without return type

ii. Function with arguments and without return type

iii. Function without arguments and with return type

iv. Function with arguments and with return type

x=5

y=4

my_add(x,y)

Function Calling: (Main Function)

Flow of Execution:

Function Prototypes:

53

i) Function without arguments and without return type

o In this type no argument is passed through the function call and no output is return to main
function

o The sub function will read the input values perform the operation and print the result in the
same block

ii) Function with arguments and without return type

o Arguments are passed through the function call but output is not return to the main function

iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is return to the main
function.

iv) Function with arguments and with return type

o In this type arguments are passed through the function call and output is return to the main
function

Without Return Type

Without argument With argument

def add(): def add(a,b):

c=a+b

print(c)

a=int(input("enter a"))

b=int(input("enter b"))

add(a,b)

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

print(c)

add()

OUTPUT:

enter a5

enter b 10

OUTPUT:

enter a5

enter b 10

15 15

With return type

Without argument With argument

def add(): def add(a,b):

c=a+b

return c

a=int(input("enter a"))

b=int(input("enter b"))

c=add(a,b)

print(c)

a=int(input("enter a"))

b=int(input("enterb"))

c=a+b

return c

c=add()

print(c)

OUTPUT: OUTPUT:

enter a5 enter a5

enter b 10 enter b 10

15 15

54

Parameters:

 Parameters are the value(s) provided in the parenthesis when we write function header.

 These are the values required by function to work.

 If there is more than one value required, all of them will be listed in parameter list separated by

comma.

 Example: defmy_add(a,b):

Arguments :

 Arguments are the value(s) provided in function call/invoke statement.

 List of arguments should be supplied in same way as parameters are listed.

 Bounding of parameters to arguments is done 1:1, and so there should be same number and type of
arguments as mentioned in parameter list.

 Example:my_add(x,y)

 The return statement is used to exit a function and go back to the place from where it was called.

 If the return statement has no arguments, then it will not return any values. But exits from function.

 ARGUMENT TYPES:

1. Required Arguments

2. Keyword Arguments

3. Default Arguments

4. Variable length Arguments

Required Arguments :The number of arguments in the function call should match exactly with

the function definition.

Syntax:

return[expression]

RETURN STATEMENT:

Parameters And Arguments:

Example:

def my_add(a,b):

c=a+b

return c

x=5

y=4

print(my_add(x,y))

Output:

9

defmy_details(name, age):

print("Name: ", name)

print("Age ", age)
return

my_details("george",56)

55

Output:

Keyword Arguments:

Python interpreter is able to use the keywords provided to match the values with parameters even though

if they are arranged in out of order.

Output:

DefaultArguments:

Assumes a default value if a value is not provided in the function call for that argument.

Output:

Variable lengthArguments

If we want to specify more arguments than specified while defining the function, variable length

arguments are used. It is denoted by * symbol before parameter.

Output:

7. MODULES:

 A module is a file containing Python definitions ,functions, statements and instructions.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the module.

rajanrahulmichealärjun

Name:
georgeAge40

Name:
georgeAge56

Name:
georgeAge56

def my_details(name, age):
print("Name: ", name)
print("Age ", age)
return

my_details(age=56,name="george")

defmy_details(name, age=40):

print("Name: ", name)

print("Age ", age) return

my_details(name="george")

def my_details(*name):

print(*name)

my_details("rajan","rahul","micheal", ärjun")

 Once we import a module, we can reference or use to any of its functions or variables in our code.

 There is large number of standard modules also available in python.

 Standard modules can be imported the same way as we import our user- defined
modules.

 Every module contains many functions.

 To access one of the function , you have to specify the name of the module and the name
of the function separated by dot .This format is called dot notation.

Syntax:

import

module_namemodule_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:

import math x=math.sqrt(25)

print(x)

import calx=cal.add(5,4)

print(x)

Built-in python modules are,

1.math– mathematical functions:

some of the functions in math module is,

 math.ceil(x) - Return the ceiling of x, the smallest integer greater

than or equal to x

math. floor(x) - Return the floor of x, the largest integer less than or equal to x.

math. factorial(x)-Return x factorial.

math.gcd(x,y)-Return the greatest common divisor of the integers a and b

math.sqrt(x)- Return the square root of x

math.pi - The mathematical constant π = 3.141592

math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers

random.randrange(stop) random.randrange(start, stop[,

step]) random.uniform(a, b)

-Return a random floating point number

8. ILLUSTRATIVE PROGRAMS

Program for SWAPPING(Exchanging)of

values

Output

a = int(input("Enter a value "))

b = int(input("Enter b value"))

c = a

a = b

b =c

Enter a value

Enter b value 8

a=8

b=5

5

print("a=",a,"b=",b,)

Program to find distance between twopoints Output

import math

x1=int(input("enter x1"))

y1=int(input("enter y1"))

x2=int(input("enter x2"))

y2=int(input("enter y2"))

distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)

enter x17

enter y16

enter x25

enter y27

2.5

print(distance)

Program to circulate n numbers Output:

a=list(input("enter the list")) enter the list '1234'

print(a) ['1', '2', '3', '4']

for i in range(1,len(a),1): ['2', '3', '4', '1']

print(a[i:]+a[:i]) ['3', '4', '1', '2']

 ['4', '1', '2', '3']

What is Raspberrr y Pi | IoT Raspberrr y Pi Tutorial for Beginnn ers

In IoT Tutorials, we saw different types of applications like Health, Education, Government etc.

But today, we will talk about a new device called Raspberry Pi that can be incorporated into IoT systems to

make work easy.

So, in this Raspberry Pi tutorial, we are going to learn about IoT Raspberry Pi introduction with its

innovation. Moreover, we will discuss the difference between Raspberry Pi models in IoT. At last, we will

see how to buy IoT Raspberry Pi.

So, let’s start with Introduction to IoT Raspberry Pi. What is a Raspberry Pi?

The Raspberry Pi is a very small computer that is almost the size of your credit card. It costs between Rs 750

and Rs 4000. It can function as a proper desktop computer or use to build smart devices and is available

anywhere in the world.

The Pi changed into what initially was meant to be a microcomputer to teach kids coding. Its scope can

expand after hobbyists and engineers noticed its capacity, and it’s far now one of the most famous objects

inside the international era.

Who Invented IoT Raspberry Pi?

The Raspberry Pi Foundation was formed in the year 2008 after a group of technicians and academics who

were concerned about

students’ interest gradually drifting and declining in computer sciences. So they came up with a low-cost

computer as a solution to inspire children and make it more accessible.

The basic motive was that these tiny computer systems might allow for very basic and simple programming.

Its low electricity utilization and value expect to make Pis more easily to be used in school rooms.

Why is it called Raspberry Pi?

The “Raspberry” name is a homage to computer companies in early times that were being named after a fruit,

like Apple, Apricot Computers, Tangerine Computer Systems. The idea to make a small computer to run

only the Python programming language is where the “Pi” derives from.

when was IoT Raspberry Pi launched?

The first Raspberry Pi unit which was available commercially was launched on February 19, 2012. This

version featured 256MB of RAM, could run on Linux-based desktop operating systems, had one USB port,

and no Ethernet port. This was named the Model A.

What’s the Difference Between Raspberry Pi Models?

IoT Raspberry Pi models can be confusing because there are so many of them and there are two levels to the

naming system.

The invention of Raspberry Pi

The “generation” of the model, represent by Pi 1, Pi 2, and Pi 3 where Pi 1 is for models between 2012-14, Pi

2 is 2015 models, and Pi 3 is 2016 models. So 3 is the most recent which is better than 2, which is better than

1.

The power and features indicate by model A, A+, B, and B+. It’s not like grades though, A is lower than B.

Where is IoT Raspberry Pi’s used?

IoT Raspberry Pi can be used in a wide variety of tasks. It’s ideal and best suitable for projects where there is

a computer requirement but you don’t require much processing power, you want to keep the costs low and

want to save on space. Here’s a brief list of some ideal uses of the Pi.

 Teach kids (or yourself) the way to code.

 Use it as a desktop pc.

 Construct a movement seize safety digital camera or a DIY pan and tilt digital camera with

Raspberry Pi.

 Make your very own retro gaming console.

How IoT Raspberry Pi Uses

How IoT Raspberry Pi Used

 You can make an FM radio or a global clock.

 Prepare time-lapse pictures digital camera with the digital camera module.

How to Build a Raspberry Pi Temperature

Monitor

Temperature and humidity are vital data points in today’s industrial world. Monitoring environmental data

for server rooms, commercial freezers, and production lines is necessary to keep things running

smoothly. There are lots of solutions out there ranging from basic to complex and it can seem

overwhelming on what your business needs and where to start.

We’ll walk through how to build and use a Raspberry Pi temperature sensor with different temperature

sensors. This is a good place to start since these solutions areinexpensive, easy to do, and gives you

a foundation to build off of for other environmental monitoring.

Raspberry Pi

A Raspberry Pi is an inexpensive single board computer that will allow you to connect toa temperature

sensor and stream the data to a data visualization software. Raspberry Pi’s started out as a learning tool

and have evolved to an industrial workplace tool. The ease of use and ability to code with Python, the

fastest growing programming language, has made them a go to solution.

You’ll want a Raspberry Pi that has WiFi built in, which are any model 3, 4, and zero W/WH. Between

those you can choose based on pricing and features. The Zero W/WH is the cheapest but if you need

more functionality you can choose between the 3 and 4. You can only buy one Zero W/WH at a time

due to limitations by the Raspberry Pi Foundation. Whatever Pi you choose, make sure to purchase a

charger since that is how you’ll power the Pi and an SD card with Raspbian to make installation of the

operating system as easy as possible.

There are other single board computer that can work as well, but that’s for another time and another

article.

Sensors

There are four sensors we recommend using because they are inexpensive, easy to connect, and give

accurate readings; DSB18B20, DHT22, BME280, and Raspberry PiSense HAT.

How IoT Raspberry Pi Uses

DHT22 — This temperature and humidity sensor has temperature accuracy of +/- 0.5 Cand a humidity

range from 0 to 100 percent. It is simple to wire up to the Raspberry Pi and doesn’t require any pull up

resistors.

DSB18B20 — This temperature sensor has a digital output, which works well with the Raspberry Pi. It

has three wires and requires a breadboard and resistor for the connection.

BME280 — This sensor measures temperature, humidity, and barometric pressure. It can be used in

both SPI and I2C.

Sense HAT — This is an add on board for Raspberry Pi that has LEDs, sensors, and a tinyjoystick. It connects

directly on to the GPIO on the Raspberry Pi but using a ribbon cable

gives you more accurate temperature readings.

Raspberry Pi Setup

If this is the first time setting up your Raspberry Pi you’ll need to install the Raspbian Operating System and

connect your Pi to WiFi. This will require a monitor and keyboardto connect to the Pi. Once you have it up

and running and connected to the WiFI, your Piis ready to go.

Initial State Account

You’ll need somewhere to send your data to keep a historical log and view the real-time data stream so

we will use Initial State. Go to https://iot.app.initialstate.com and create a new account or log into your

existing account.

Next, we need to install the Initial State Python module onto your Pi. At a commandprompt (don’t forget

to SSH into your Pi first), run the following command:

$ cd /home/pi/
$ \curl -sSL https://get.initialstate.com/python -o - | sudo bash

After you enter the curl command in the command prompt you will see somethingsimilar to the following

output to the screen:

pi@raspberrypi ~ $ \curl -sSL https://get.initialstate.com/python -o
- | sudo bash
Password:
Beginning ISStreamer Python Easy Installation!
This may take a couple minutes to install, grab some coffee :) But don't forget to come
back, I'll have questions later!

Found easy_install: setuptools 1.1.6
Found pip: pip 1.5.6 from /Library/Python/2.7/site-packages/pip- 1.5.6- py2.7.egg
(python 2.7)
pip major version: 1 pip
minor version: 5
ISStreamer found, updating...
Requirement already up-to-date: ISStreamer in
/Library/Python/2.7/site-packagesCleaning up...
Do you want automagically get an example script? [y/N]
Where do you want to save the example? [default: ./is_example.py]

Please select which Initial State app you're using:
1. app.initialstate.com
2. [NEW!] iot.app.initialstate.com Enter
choice 1 or 2:
Enter iot.app.initialstate.com user name:
Enter iot.app.initialstate.com password:

When prompted to automatically get an example script, type y. This will create a test script that we can run

to ensure that we can stream data to Initial State. The next prompt will ask where you want to save the

example file. You can either type a custom local path or hit enter to accept the default location. Finally,

you’ll be asked which Initial State app you are using. If you’ve recently created an account, select option

2, enter your user name and password. After that the installation will be complete.

Let’s take a look at the example script that was created.

$ nano is_example.py

On line 15, you will see a line that starts with streamer = Streamer(bucket_ This

lines creates a new data bucket named “Python Stream Example” and is associated withyour account.

This association happens because of the access_key=”...” parameter on that same line. That long

series of letters and numbers is your Initial State account access key. If you go to your Initial State

account in your web browser, click on your username in the top right, then go to “my settings”, you will

find that same access key

here under “Streaming Access Keys”.

Initial State Stream Access Keys

Every time you create a data stream, that access key will direct that data stream to youraccount (so don’t share

your key with anyone).

Run the test script to make sure we can create a data stream to your Initial State account. Run the

following:

$ python is_example.py

Go back to your Initial State account in your web browser. A new data bucket called “Python Stream

Example” should have shown up on the left in your log shelf (you may have to refresh the page). Click

on this bucket and then click on the Waves icon to viewthe test data.

Initial State Python Stream Example dashboard

If you are using Python 3 you can install the Initial State Streamer Module you can install using the

following command:

pip3 install ISStreamer

Now we are ready to setup the temperature sensor with the Pi to stream temperature to adashboard.

DHT22 Solution

You’ll need the following items to build this solution:

-DHT22 Temperature and Humidity Sensor

The DHT22 will have three pins — 5V, Gnd, and data. There should be a pin label for power on the

DHT22 (e.g. ‘+’ or ‘5V’). Connect this to pin 2 (the top right pin, 5V) of thePi. The Gnd pin will be labeled ‘-’

or ‘Gnd’ or something equivalent. Connect this to pin 6 Gnd (two pins below the 5V pin) on the Pi. The

remaining pin on the DHT22 is the data pin and will be labeled ‘out’ or ‘s’ or ‘data’. Connect this to one of

the GPIO pins on the Pi such as GPIO4 (pin 7). Once this is wired, power on your Pi.

For this solution we will need to use Python 3 and the CircuitPython library as Adafruithas deprecated the

DHT Python library.

Install the CircuitPython-DHT Python module at a command prompt to make reading DHT22 sensor

data super easy:

$ pip3 install adafruit-circuitpython-dht
$ sudo apt-get install libgpiod2

With our operating system installed along with our two Python modules for reading sensor data and

sending data to Initial State, we are ready to write our Python script.

The following script will create/append to an Initial State data bucket, read the DHT22 sensor data, and

send that data to a real-time dashboard. All you need to do is modify lines 6–11.

1 import adafruit_dht

2 from ISStreamer.Streamer import Streamer

3 import time

4 import

board5

6 # --------- User Settings ---------

7 SENSOR_LOCATION_NAME = "Office"

8 BUCKET_NAME = ":partly_sunny: Room Temperatures"

9 BUCKET_KEY = "dht22sensor"

10 ACCESS_KEY = "ENTER ACCESS KEY HERE"

11 MINUTES_BETWEEN_READS = 10

12 METRIC_UNITS = False

13 #

14

15 dhtSensor = adafruit_dht.DHT22(board.D4)

16 streamer = Streamer(bucket_name=BUCKET_NAME, bucket_key=BUCKET_KEY,

access_key=ACCESS_KEY)17

18 while True:

19 try:

20 humidity = dhtSensor.humidity

21 temp_c = dhtSensor.temperature

22 except RuntimeError:

23 print("RuntimeError, trying again. ")

24 continue

25

26 if METRIC_UNITS:

27 streamer.log(SENSOR_LOCATION_NAME + " Temperature(C)", temp_c)

28 else:

29 temp_f = format(temp_c * 9.0 / 5.0 + 32.0, ".2f")

30 streamer.log(SENSOR_LOCATION_NAME + " Temperature(F)", temp_f)

31 humidity = format(humidity,".2f")

32 streamer.log(SENSOR_LOCATION_NAME + " Humidity(%)", humidity)

33 streamer.flush()

34 time.sleep(60*MINUTES_BETWEEN_READS)

tempsensor.py hosted with ❤ by GitHub view raw

https: ///gist.github.com/25be959d124f4b4c86f7160cf916f4d4.git

Line 7— This value should be unique for each node/temperature sensor. This could be your sensor

node’s room name, physical location, unique identifier, or whatever. Just make sure it is unique for

each node to ensure that the data from this node goesto its own data stream in your dashboard.

Line 8— This is the name of the data bucket. This can be changed at any time in theInitial State UI.

Line 9— This is your bucket key. It needs to be the same bucket key for every node you want

displayed in the same dashboard.

Line 10— This is your Initial State account access key. Copy and paste this key from your Initial

State account.

Line 11— This is the time between sensor reads. Change accordingly.

Line 12 — You can specify metric or imperial units on line 11.

After you have set lines 7–12 in your Python script on your Pi, save and exit the texteditor. Run the script

with the following command:

$ python3 tempsensor.py

Introduction:

What is ThingSpeak?

ThingSpeak is an open source platform that provides various services exclusively targeted for

development of IoT (Internet of Things) applications. It enables various services like real time

data collection, analysis and visualisation of collected data via charts. It enables the creation

of various plugins, apps collaborating with various web services, social networking and other

APIs.

Thingspeak Channel:

‘Thingspeak channel’ is the core element of the thingspeak platform. This channel is used to

store the real-time data or the data transferred through various sensors and embedded

systems. Data stored at the channel is further used for analysis and visualisation.

1. Creating a channel :

Before creating a channel you need to sign in to things speak. You can easily sign in either

using your either thingspeak account or mathswork account, or create a new mathswork

account via following link:

https://thingspeak.com/users/sign_up

1. Click on the menu bar ‘Channels > My Channels.’

2. Now on the channels page click on the button ‘New Channel’.

3. New channel page have various text box fields showing the settings of the channel.

a. Name – provide a unique name to your channel.

b. Fields – Click the check boxes next to the field and then enter the field name.

c. To make your channel public check the ‘Make Public‘check box.

d. Similarly, you can also add the location to your channel by clicking the ‘Show

Location’ check box.

e. Check the ‘Show video’ check box to make the video visible uploaded by you.

f. Now click the ‘Save channel’ button to save your channel.

4. Now , the channel page opens with the following tabs:

a. Private View- It displays the information about your channel that is only visible to

you.

b. Public View- If you have chosen to make your channel publically visible then it will

display the selected fields and information.

c. Channel Settings- It will show all the options that are available during the channel

creation.

d. API Keys- In this tab you will have two API Keys – Read API key (to read from your

channel), write API Key (to write to your channel).

e. Data Import/export- It enables you to import and export the channel data.

5. In future your channel will be available to you just by clicking ‘Channels >My Channels’.

Implementing IoT Concepts with Python

Objective:To upload DHT11 sensor data to ThingSpeak channel through Raspberry
pi2.

1. Creating a Channel:

a. Create a Channel over ThingSpeak.

b. Edit the channel settings, add two fields first one for temperature

and second forhumidity .

c. Save the channel.

2. Establishing hardware infrastructure:

a. Take a Raspberry Pi 2 board, connect it with the power of 12V approx..

b. Make the connections with monitor, keyboard and mouse.

3. Connecting sensor with Raspberry Pi 2:

a. The DHT11 sensor consists of three connecting pins :

1. VCC: This pin used to connect with the voltage. Connect

this pin with thepin number 2 at raspberry pi board via

connecting wire.

2. GND: This is called as ‘ground’. Connect it at Pin number 6 of pi
board.

3. DATA: It is used as an output data port connect this at pin

named GPIO 23 at pi board.

b. The connections of sensor with the raspberry Pi is shown the following
diagram:

4. Coding for DHT11 Sensor:

a. The python code for reading the sensor data is as follows:

importsys
importRPi.GPIOasGPIO
fromtimeimportsleep
importAdafruit_DHT
importurllib2

defgetSensorData():
RH,T=Adafruit_DHT.read_retry(Adafruit_DHT.DHT11,23)
return dict
return(str(RH),str(T))

main() function
defmain():
use sys.argv if needed
iflen(sys.argv)<2:
print('Usage: python tstest.py PRIVATE_KEY')
exit(0)
print'starting...'

baseURL='https://api.thingspeak.com/update?api_key=%s'%sys.argv[1]

whileTrue:
try:
RH,T=getSensorData()
f=urllib2.urlopen(baseURL+
"&field1=%s&field2=%s"%(RH,T))
printf.read()
f.close()
sleep(15)
except:
print'exiting.'
break

call main

snapshot of the coding

5. Save the code as ‘dht_thingspeak.py’.

6. Use Adafruit DHT Library to make this code run.

7. Now run the following command at the terminal to execute the code:

Here, mention the write API key of your thingspeak channel at theplace
’writeAPIKey’.

8. The snapshot of running the python code is as follows:

if name ==' main ':
main()

sudopython dht_thingspeak.py ‘writeAPI Key’.

Acquiring Data in Think speak :

 The data at your Think Speak channel will be visible as follows:

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT V – EMBEDDED SYSTEM DESIGN AND DEVELOPMENT
SPHA5204

UNIT V

IDE, or Integrated Development Environment, is a software application that combines all of the features

and tools needed by a software developer. Examples of IDEs include NetBeans, Eclipse, IntelliJ, and

Visual Studio.

CASE STUDY OF AN

EMBEDDED SYSTEM

FOR A SMART CARD

SMART CARD

 Smart card is one of the most used embedded system

today. It is used for credit, debit bank card, e-wallet

card, identification card, medical card (for history and

diagnosis details) and card for a number of new

innovative application.

EMBEDDED HARDWARE COMPONEBTS

 Microcontroller or ASIP

 RAM for temporary variables and Stack

 OTP ROM for application codes and RTOS codes for

scheduling the tasks

 Flash for storing user data, user address, user

identification codes, card number and expiry date

 Timer and interrupt controller

 A carrier frequency generating circuit and ASK

modulator

 Interfacing circuit for the IOs.

 Charge pumps for delivering power to the antenna for

transmission and for the system circuits.

EMBEDDED SOFTWARE COMPONENTS

 Boot-up, initialization and OS program

 Smart card secure file system

 Connection establishment and termination

 Communication with the host

 Cryptography algorithm

 Host authentication

 Card authentication

 Saving addition parameters or recent new data sent by

the host(ex- balance receipt)

SMART CARD HARDWARE COMPONENTS

LIST OF TASKS, FUNCTIONS AND IPC

Cruise Control

TASKS AND THE SYNCHRONIZATION MODEL

Cruise Control

N

Case Study: Cruise Control

Murray Cole

1

Cruise Control

Basic idea

allow driver to set a speed to be maintained without his/her intervention (e.g. 70mph down a long straight motorway)

no need to keep accelerator pressed (less driver fatigue)

Cruise Control

2

Cruise Control

Pin down some requirements

Driver can request the system to maintain the current speed Driver can always turn it off

System should not operate after braking

System should allow the driver to travel faster than the set speed

Specification

3

Cruise Control

We need to

specify the inputs specify

the outputs

decide on the required states (and a start state) specify the transitions

Design an FSM

4

Cruise Control

on: on/off button

set: set the cruise speed to the current speed

brake: the brake has been pressed accP: the accelerator has been

pressed accR: the accelerator has been released

resume: resume travelling at the set speed

Driver Inputs

5

Cruise Control

correct: indicates the car is travelling at the correct speed. slow: indicates the car is going slower than the set speed

fast: indicates the car is going faster than the set speed

Sensor Inputs

6

Cruise Control

store: store the current speed as the cruise speed

inc: increase the throttle

dec: decrease the throttle

Control Outputs

7

Cruise Control

Off: System is not operational.

Ready: Switched on but no cruise speed set.

Set: Actively controlling speed.

Wait: Speed set but subsequently overridden by brake. Wait to be told to resume control.

Acc: Accelerator is currently pressed down (so override)

States

8

Cruise Control

set/store

slow/inc

fast/dec correct

All other inputs are loops with no output (ie ignored). Omitted here for clarity!

The Controller

9

Cruise Control

Model (real system would interact with car hardware) inputs with strings from the keyboard

outputs with strings to the monitor

state by a variable holding an integer

transitions by code which changes state and makes outputs in response to inputs

Java Implementation

10

Cruise Control

// Initialise Values

// Repeat Forever while(true) {

// Display Current State

// Read input from keyboard

// Make a transition

// Display any output

}

Overview

11

Cruise Control

public class CruiseControl {

// Inputs

public static final int on = 1; public static final

int set = 2; public static final int brake = 3; public

static final int accP = 4;

.........

// Outputs

public static final int store = 10; public static

final int inc = 11; public static final int dec = 12;

// States

public static final int OFF = 13; public static final

int READY = 14;

......

12

Cruise Control

int input = 0; int output = 0; int state = OFF;

while(true) {

String in = keyboard.readLine(); if (in.equals("on"))

input = on;

else if (in.equals("set")) input = set;

..........

else input = 0;

// Make the appropriate transition (NEXT OVERHEAD) switch(output) { // Display any

output

case store: System.out.println(" store "); break;

.........

}

}

13

Cruise Control

switch(state) {

.............

case SET:

switch(input)

{

case on:

state = OFF; break; case brake:

state = WAIT; break; case accP:

state = ACC; break; case fast:

output = dec; break; case slow:

output = inc; break; case correct:

break;

default: break;

}

break;

..........

}

14

The incident occurred when the driver was on a highway on a rainy night. The traffic was slow,

travelling at about 40 mph. The driver engaged cruise control and set it to 40 mph. Later the rain

cleared and the traffic got faster so the driver used the accelerator to increase the speed to 60 mph

and travelled in this mode for some miles (the controller still in set mode but overridden by the

accelerator).

Coming to the exit ramp the driver turned off and released the accelerator to coast up the ramp. At

that point the cruise control aimed to stabilise the speed at the set level (40 mph). The driver was

taken by surprise and lost control of the car which travelled through a stop sign without braking.

Fortunately no accident occurred.

PART A

Maintenance

15

1.Discuss about Real time Operating system.

2.Analyze the Embedded System.in real time

3.Explain the Software Development Environment

4.Grade the Hard ware debugging techniques

5.Justify the RTOS

6.Compare the assembler, compiler and linker

7.Justify the applications of Embedded System.

8.Explain the working of Robotics

9.Asses the Home Automation in Real Time Application

10.Describe the Industrial Automation in Real Time Application.

PART B

1.Evaluate the role of Embedded system in Robotics.

2.Create the design diagram for the Adaptive cruise control in car.

3.Construct the diagram for smart card using Embedded System.

4.Explain the working of the Home Automation with suitable Example.

5.Measure the parameters used for Industrial automation.

16

TEXT / REFERENCE BOOKS

1. A.K Ray and K M Bhurchandi, Advanced Microprocessors and Periperals,3RD edition,

TMH,2017.

2. Joseph Yiu, The Definitive Guide to the ARM Cortex-M3,2nd Edition, Newnes,2015.

3. Dr.MarkFisher, ARM Cortex M4 Cookbook, Packt, 2016.

4. David Hanes, “IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the

 Internet of Things”, Cisco press, 2017.

5. Olivier Hersent , David Boswarthick , Omar Elloumi, “The Internet of Things: Key Applications

 and Protocols”, 2nd Edition, Wiley, 2012.

6. Rajkamal, “Embedded system-Architecture, Programming, Design”, TMH, 2011.

7. Jonathan W.Valvano, “Embedded Microcomputer Systems,Real Time Interfacing”,Cengage

 Learning,3rd Edition, 2012.

	Execution unit (EU)
	Register
	Data Register
	AX register:
	BX register:
	CX register:
	DX register:
	Immediate Addressing mode:
	Register Addressing mode:
	Memory addressing mode:
	TYPES:
	Direct addressing mode:
	Register indirect addressing mode:
	Based addressing mode:
	Indexed addressing mode:
	Based Indexed addressing mode:
	Based Indexed with displacement
	String Addressing Mode:
	Branch Addressing Mode:
	Direct IO port addressing:
	Indirect IO port addressing:
	Relative Addressing mode:
	Implied Addressing mode:
	TYPES: (1)
	Data transfer Instruction:
	Arithmetic and Logical Instruction:
	Control Transfer Instruction:
	Branch Instruction:
	Loop Instruction:
	Process control Instruction:
	Flag Manipulation Instruction:
	ADDITION OF TWO 32 BIT NUMBER
	SUBTRACTION OF TWO 16 BIT NUMBER
	SUBTRACTION OF TWO 32 BIT NUMBER
	MULTIPLICATION TWO 16 BIT NUMBER
	DIVISION OF 32BIT NUMBER
	ARCHITECTURE & FEATURES 80286
	Register of 80286
	Functional blocks of 80286
	Address Unit
	Bus Unit
	Instruction Unit
	Execution Unit
	Register
	General purpose Registers
	Segment Registers
	Base and Index Registers
	Status and control registers:
	Flag Word Description
	Machine Status Word
	Interrupt
	Maskable Interrupt INTR
	Non-Maskable Interrupt NMI
	Single Step Interrupt
	Signal Description of 80286
	D15-D0
	These are sixteen bidirectional data bus lines.
	A23-A0
	READY
	HOLD and HLDA
	INTR :
	NMI :
	PEREG and (Processor Extension Request and Acknowledgement)
	CAP :
	Vss :
	Vcc :
	Reset
	Real Address Mode
	Protected virtual address mode (PVAM)
	ARCHITECTURE OF 80386
	Architecture:
	Execution unit :
	Instruction unit:
	Memory management unit :
	Segmentation unit:
	The Paging unit :
	Bus control unit
	Pin Diagram:
	Register Organization:
	VM - Virtual Mode Flag:
	RF- Resume Flag:
	Segment Descriptor Registers:
	Control Registers:
	ADDRESSING MODES:
	Based Scaled Indexed Mode:
	Protected Mode of 80386
	Addressing in protected mode:
	Segmentation
	Descriptors:
	Paging operation:
	Paging Descriptor Base Register:
	Page Directory:
	Page Tables:
	ARCHITECTURE OF 80486
	Flag Register of 80486:
	Cache data register (TR3):
	Control bits in TR5:
	Pin Definitions :
	MMX instruction set:
	MMX Instructions
	Instruction Set

	Core 2 quad processor:
	CISC and RISC ARCHITECTURE
	What is RISC and CISC ARCHITECTURES?
	CISC Architecture
	Characteristics of CISC Architecture
	RISC Architecture
	Characteristics of RISC Architecture
	History of ARM Processors
	Architecture
	Condition codes
	AL Always
	NV Never
	EQ Equal
	NE Not equal
	VS Overflow set
	PL Plus
	CS Carry set
	CC Carry clear
	HI Higher
	LS Lower or same
	GE Greater than or equal
	LT Less than
	GT Greater than
	LE Less than or equal
	Assembler format
	ADD{cond}{S} <dest>, <lhs>, <rhs>
	iac = 0
	ADD iac, iac, #1
	ADD R0, R1, R2
	ADDNE R0, R0, R2
	Immediate operands
	ADD R0, R0, #1
	Shifted operands
	RM INSRUCTION SET
	Registers and Memory Access
	Register Structure
	Register Structure (1)
	ARM Instruction Format
	31 28 27 20 19 16 15 12 11
	Memory Addressing Mod
	Pre-indexed with write back mode
	Post-indexed mode
	ARM Indexed Addressing

	ITEM=1060 Operand
	Arithmetic Instructions
	Branch Instructions
	THUMB INSTRUCTION SET
	Thumb Programmers Model
	Branch Instruction Formats Instruction formats
	 Data Transfer Instruction

	ARM MEMORY ORGANIZATION
	The Cortex-M3 Instruction Set
	I/O PROGRAMMING IN CORTEX-M3
	1. Pin Function Setting
	2. Pin Direction Setting
	3. Pin is Set as Output
	4. Pin is Set to Input

	Introduction to Different IoT Tools
	1. Tessel 2
	2. Eclipse IoT
	3. Arduino
	4. Platform IoT
	5. M2M Labs Mainspring
	6. Kinoma
	7. Device- Hive
	8. Kaax
	9. Home Assistant
	10. Net
	11. Raspbian
	The Three Pillars of IoT
	Applications for IoT
	1. Choose an Appropriate and Convenient Platform
	2. Consider the Industry for IoT Application
	3. Segregating services from API Interface
	4. IoT Data Must be Secured Strongly
	5. The Different Levels of IoT Apps
	6. Keep an Eye on IoT Device Firmware Security
	7. Not Compromise with Speed and Quality
	8. Provide Scalability to the Applications
	Light Sensors
	Chemical Sensors
	TYPES OF EMBEDDED SYSTEM
	APPLICATIONS OF EMBEDDED SYSTEM
	Implementing IOT Concepts with Python:
	Python interpreter:
	Modes of python interpreter:
	Interactive mode:
	Drawback:
	Script mode:
	Integrated Development Learning Environment(IDLE):
	Features of IDLE:
	2. VALUES AND DATATYPES
	Data type:
	Python has four standard data types:
	Sequence:
	1. Strings
	3. Tuples
	Indexing:
	Example: A[0] or A[-5] will display “H”
	Example: A[1] or A[-4] will display “E”
	Lists
	Operations on list:
	Tuple:
	Basic Operations:
	Mapping
	Assigning value to variable:
	Identifier is the name given to entities like class, functions, variables etc. in Python.
	Example:
	Statements:
	Expressions:
	>>> x=input("enter the name:") enter the name: george
	Example:
	Example: (1)
	DOCSTRING:
	Syntax:
	Example: (2)
	Example: (3)
	-One way to think of tuple assignment is as tuple packing/unpacking.
	-In tuple unpacking, the values in a tuple on the right are ‘unpacked ‘into the variables/names on the right:
	Example: (4)
	Arithmetic operators:
	Assume, a=10 and b=5
	Comparison (Relational)Operators:
	Example
	Assignment Operators:
	Example (1)
	Output
	Logical Operators:
	Example (2)
	Output (1)
	Bitwise Operators:
	Example (3)
	Output (2)
	Membership Operators:
	Example: (5)
	Identity Operators:
	Example (4)
	Examples:
	Need For Function:
	Types of function:
	i) Built in functions
	ii) User Defined Functions:
	i) Function without arguments and without return type
	ii) Function with arguments and without return type
	iii) Function without arguments and with return type
	iv) Function with arguments and with return type
	Parameters:
	comma.
	Arguments :
	ARGUMENT TYPES:
	Output:
	Output: (1)
	Output: (2)
	Output: (3)
	 A module is a file containing Python definitions ,functions, statements and instructions.
	 To use these modules in a program, programmer needs to import the module.
	Syntax: (1)
	Implementing IoT Concepts with Python
	1. Creating a Channel:
	2. Establishing hardware infrastructure:
	3. Connecting sensor with Raspberry Pi 2:
	4. Coding for DHT11 Sensor:
	Acquiring Data in Think speak :

