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NUMERICAL METHODS AND COMPUTER PROGRAMMING
(SPH 5107)

UNIT 1
SYSTEM OF EQUATIONS

In the field of Science and Engineering, the solution of equations of
the form f(x) =0 occurs in many applications. If f(x) is a polynomial of
degree two or three or four, exact formulae are available. But, if f(x) is
a transcendental function like a + be” + ¢ sin x + d log x eic., the solution is
not exact and we do not have formulae to get the solutions. When the
coefficients are numerical values, we can adopt various numerical
approximate methods to solve such algebraic and transcendental
equations. We will see below some methods of solving such numerical
equations. From the theory of equations, we recall to our memory the
following theorem:

If f(x) is continuous in the interval (a, b) and if f(a) and f (b) are of
opposite signs, then the equation f(x) =0 will have atleast one real root
between a and b.

The Bisection method (or BOLZANO’s method)
(or Interval halving method)

Suppose we have an equation of the form f(x)=0 whose
solution in the range (a, b) is to be searched. We also assume that f(x) is
continuous and it can be algebraic or transcendental. If f(a) and f(b) are
of opposite signs, atleast one real root between a and b should exist. For
convenience, let f(a) be positive and f(b) be negative. Then atleast one
root exists between a and b. As a first approximation, we assume that root

to be x,F% (mid point of the ends of the range). Now, find the sign

of f(xo). If f(xo) is negative, the root lics between a and xg. If f (xp) is
positive, the root lies between x, and b. Any one of this is true. Suppose



F(xg) is positive as shown in the Figure , then the root lies between xg and
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b and take the root as x, = B Now f(x,) is negative

Hence the root lies between x;, and x;, and let the root be

5 Now f(x;) is negative as in the Fig. then

+
(approximate) x, = %o 2

+x
the root lies between x; and x, and let x3=x“ 2 and so on. In this way,

2
taking the mid-point of the range as the approximate root, we form a
sequence of approximate roots xg, x;, X,... whose limit of convergence is
the exact root. However, depending on the precision required, we stop the
process after some steps. Though simple, the convergence of this method
is slow but sure.

Note. Afier n bisections, the length of the subinterval which contains x, is

L;. If the error is to be made less than a small quantity €, say,

b-a . .n b=a
——«<¢. Thatis, 2" >
2"

b-a

(25
log2

Example 1. Find the positive root of X’ —x=1 correct to four
decimal places by bisection method.

Solution. Let f(x)=x"—x~-1

"Here, f(0)=—1=-ve and f(1)==ve
f(2) =5 =+ ve. Hence a root lies between 1 and 2. We can takethcrange
as (1, 2) and proceed. We can still shorten the range.

f(1:5)=0-8750=+ve

Thé number of iterations n should be greater than



#5d f()==1=-ve

Hence. the root lies between 1 and 1-5 wel(1)
Let xg=1tE3 — 12500
" flxp) =f£(1:25) =— 029688
' Hence the Toot lies between 1:25 and 1-5 -(2)
Now, X =-I£57+L§= 1-3750 |

f(1:3750) = 0-22461 =+ve
The root lies between 1-2500 and 1-3750.
1-250[}; I-3T5[}= 13125
£(1-3125)=- 0051514
Therefore, root lies between 1-3750 and 1-3125
]-3125; 1-375{}= 13438

NDW 13 ——
Fxy) =f(1-3438) = 0-082832=+ve

The root lies between 1-3125 and 1-3438

Hence —_ 3'25; 1:3438 _ | 3282

£(1:3282) = 0014898
Therefore the root lies between 13125 and 1-3282
xs=14(1-3125+1-3282) = 1-3204
£(1:3204) = - 0-0183-40
The root lies between 1:3204 and 1-3282
X =l(113204+ 1-3282) = 1324"

f(1- 3243] —ve
Hanecs the root lies hﬁtwm 1-3243 and 1- 3232



x,=3(13243+ 1'3232)= 1-3205
£(1-3263) =+ve
- The root lies between 1-3243 and 1 3261
xg=5(1:3243+1-3263) = 1-3253
f(1:3253) =+ ve
The root lies between 1-3243 and 1-3253
: x=1(1:3243+13253) = 13248

f(1-3248) =+ ve
- 'The root lies between 1-3243 and 1-3248

X9 =75 (1:3243 + 1-3248) = 1-32455

£(1-32455) = - ve
The root lies between 1-3248 and 1-32455

- "

x;; =5 (1:3248 + 1:32455) = 1-3247
F(1-3247)=—ve

The root lies between 1-3247 and 1-3248

Hence, xi3 =3 (1:3247 + 1:3248) = 1-32475

Therefore, the approximate root is 1-32475
(This is not correct to 5 decimal places).

Example 2. Assuming that a root of X =9x+1=0 lies in the
interval (2, 4), find that root by bisection method.

Solution. Let  f(x)=x"—9x+ 1

f(2)=-ve and f(4) =+ ve
Therefore, a root lies between 2 and 4



-,

Let rp="2"=3
Now f(3) =+ ve; hence the root lies between 2 and 3
_2+3
== 2 =25

f(x)=f(25)=~ve
The root lies between 2-5 and 3.

25+3
xp=""—=275
f(275)=-ve

The root lies between 2-75 and 3
X =2 (275 +3)=2875
fx)=f(2-875)=—ve
Therefore, the root lies between 2:875 and 3
x,=1 (2875 +3) = 29375
f(29375) =~ ve
The root lies between 29375 and 3
X5 =3 (29375 + 3) = 29688

f(2-9688) = + ve
The rooi lies between 29688 and 2-9375

= l1 (29375 + 2-9688) = 2.9532
f(29532) =+ ve
. The root lies between 29375 and 29532
X7 =2 (29375 + 2:9532) = 2.9454

f(2-9454) =+ ve
The root lies between 29375 and 2-9454
Xg=+ {2 9375 +2-9454) = 29415
F(2:9415)=—ve
The root lies between 2-9415 and 2-9454.
Xg =-;- (29415 + 2-9454) = 2.9435
£(29435) =+ ve



The root lies between 2-9415 and 2.9435.
x“} = 2‘9’425
f(29425) =—ve

The root lies between 29425 and 29435,
x| 1 = 2943{]’

f(2:9430) = + ve
X, =294275
X3 = 2942875
Approximate root is 29429,

Example 3. Find the positive root of x—cosx=0 by bisection
method.

Solution. Let fx)=x—-cosx
J(0)=—ve, f(0-5)=05-cos (0-5) =— 0-37758
f(1)=1-cos 1=045970

Hence, the root lies between 0-5 and 1.

05+1
2

F(0-75)=0-75 - cos (0-75) = 0-018311 = + ve
- The root lies between 0-5 and 0-75.
.= 0-5+0-75
1= 2

£(0625) = 0-625 - cos (0-625) = - 018596
The root lies between 0-625 and 0-750.
X =3 (0625 +0750) = 06875

f(0-6875) =~ 0085335
. The root lies between 06875 and 0-75.

=0-75

=0-625



= % (0-6875 +0-75) = 0-71875

f(0-71875)=0-71875 —cos (0-71875) = — 0-033879
The root lies between 0-71875 and 0 75

Xg=3 [0-713?5 +075)=0- 73433
f(0-73438) =- 0-0078664 = —ve
. The root lies between 0-73438 and 0-75
x5=0742190
f(0-74219) = 00051999 =+ ve
xs=1 (0:73438 +0.742190) = 0-73829
F(0-73829) = - 0-0013305
The root lies between 0-73829 and 0-74219
x; =1 (073829+ 0.74219) = 0.7402

£(0-7402) = 0-7402— cos (0-7402) = 0-0018663
The raot lies between 073829 and 0-7402

xg = 073925
£(0-73925) = 0-00027593
xo=0-7388 (correct to 4 places)
The root is 0-7388.

Example 4. Find the positive of x*=x =2x*—6x-4=0
bisection method.

Solution. Let f@=x'-"-2-6x-4
f(2) and f(3) are opposite in sign since f(2)=-ve and f(3)=+

f(2-5) =—ve; hence root lies between 2-5 and 3
25+3

x= 2 =275
Therefore the root lies between 2 and 3
2+3

="y =23



Proceeding in the same manner, the sequence of mid-points is 2-5,
275, 263, 269, 2-72, 2-735, 2728, 2-7315, 2-7298, 2-7307, 2-7311,
2-7313, 2-7314, 2-7315,...

f(27315) =-00232
The root of the equation is 2-7315 approximately.

Example 5. Using bisection method, find the negative root of
x’ —4x+9=0 by bisection method.

Solution. Let f)=x-4x+9 (1)

fEx)=—x"+4x+9 (2)
The negative root of f(x)=0 is the positive root of f(-x)=0.

We will find the positive root of f(— x) =0, firstly,
ie., dH)=x"-4x-9=0
®(2)=-ve and ¢(3)=+ve

. The root lies between 2 and 3.
243

Hence X="p = 25
#(2:5)=(25) -4 (2:5)-9=—ve
Therefore, the root lies between 2-5 and 3.
Hence, x=3(25+3)=275
®(2-75)=+ve
., 'The root lies between 2-5 and 2-75
X =3 (25 +275)=2625
&(2:625) = (2-625)° — 4(2:625) =9 =— 1-4121 =— ve
The root lies between 2-625 and 2-75.
X =% (2:625 +2:75) = 2-6875



O(2-6875)=—ve
*. The root lies between 2-6875 and 2-75.
xg =5 (26875 +2:75) = 2-71875

®(2-71875) =+ ve
. The root lies between 2-6875 and 2-T1875.
Xg= -% (2-6875+ 2-71875)=2703125

#(2-703125) = (2:703125)° — 4(2:703125) - 9 = — ve
-, 'The root lies between 2-703125 and 2-71875.

x5 =1 (2703125 + 2:71875) = 2710938

Proceeding in the same way,
X3 =2-707031, x5 =2-705078, xy=2-706054,
X0 = 270654, x;;, =2-706297, x,, =2-706418,
x;3=2-70648, x,, =2-70651 etc.
We can conclude the root to be 2-7065 for ¢(x)=0
Hence the negative root of the given equation is - 2-7065.

Regula Falsi method .(or the method of false position)

Consider the equation f(x) =0 and let f(a) and f(b) be of opposite
signs. Also, let a < b. The curve y = f(x) will meet the x-axis at some point
between A (a, f(a)) and B (b, f(b)). The equation of the chord joining the
two points A (a,f(a)) and B(b,f(b)) is y;{f} =JIP {ﬂ; :ia’}- The
x-coordinate of the point of intersection-of this chord with the x-axis gives
an' approximate value for the root of f(x) =0. Setting y=0 in the chord
equation, we get

—f(a) _ f(a)—f(b)

x—a a-—b




x[f(@) - f(B)] - af (a) +af (b) =—af (a) + bf (a)
x [f (@) = f (b)] = bf (a) = af (D)
. ) -bf(@)
U f)-f@
This value of x; gives an approximate value of the root of
f(x)=0. (a<x <b)
Now f(x,) and f(a) are of opposite signs or f(x,) and f(b) are of
opposite signs.
If f(x,).f(a) <0, then x, lies between x, and a.
_af(x) —xf(a)
25 ) -f@
In the same way, we get xy, x....

This sequence x;, X,, X3,.... Will converge (o the required root. In
practice, we get x; and x;,, such that | x;—x;,, | <eg, the required

Hence

accuracy.

Geometrical interpretation

If A(a,f(a)) and B(b,f(b)) are two points on y=f(x) such that
f(a) and f(b) are opposite in sign, then the chord AB meets x-axis at
x=1x,. This x, is the approximate root of f(x) =0. Now c (x,f(x,)) is on
the curve.

If f(a). f(x;) <0, join the chord AC which cuts x-axis at x=x,. Then
x, is the second approximate root of f(x)=0. This process is continued
until we get the root to the desired accuracy.

The order of convergence of Regula Falsi method is 1-618. (This
may be assumed.)



Y (a.f(@)
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Example 1. Solve for a positive root of X' =dx+1=0 by Regula
Falsi method.

Solution. Let f(x)=x-4x+1=0

f(D)==2=-ve; fQ=1=+ve, f(O)=1=+ve
. a root lies between 0 and 1

Another root lies between 1 and 2
We shall find the root that lies between 0 and 1
Here a=0, b=1
_af(h)-bf(@) _Oxf()-1xf©) -1 _.
TO—f@ - f)—f©) —2-1- 000
£ =f(§)=%-§+ 1 =—02963

Now f(0) andf(%)are opposite in sign,

X

Hence the root lies between 0 and 1/3.

of{1]-Lr@
f[4)-ro

Hence x;=

— 3 __
X% ="T7063 = 025714




Now f(x;)=f(0-25714)=-0-011558=—ve

. The root lies between 0 and 0-25714
_ 0x£(025714) - 025714 (0)
- f(0-25714) - £(0)

={25420

_=025714
~ 1011558

f(xy) =f(0-25420) = — 0-0003742
*. The root lies between 0 and 0-25420
e 0 % £(0-25420) - 0:25420 % £ (0)
o £(0-25420) —£(0)
- 0-25420
=TT.0003742 - 02410
f(x4) =£(0-25410) = — 0-000012936
The root lies between 0 and 0-25410

_ 0 xf(0-25410) - 0-25410 < f(0)
BT A 0254100 £ (0)

__ -025410
= 27.000012936 410

Hence the root is 0-25410.

Example 2. Find an approximate root of x log;px — 1-2=0 by False
position method.

Solution. Let f(x)=xlog;px—1-2
f(D=-12=-ve; f(2)=2x030103=12=-0-59794
f(3)=3x047712-12=0231364=+ ve
Hence a root lies between 2 and 3.

Y B)-3(2) 2x023136-3x(=059794)
=AY fR) © 0231364059794 2121014

f(x))=£(27210)=- 0017104




The root lies between x; and 3.
_ x5 xf@3)-3x%f(x)
F3)=f(x)
2721014 x 0231364 -3 X (- 0017104)
a 0-23136+0-017104

_ 0-68084
024846
f(x)=f(27402) = 2.7402 x log (2:7402) - 1-2
== 0-00038905
. The root lies between 2-740211 and 3
_ 27402 x £ (3) — 3 x f(2:7402)
f(3)-f(2:7402)

_ 2:7402 x 023136 + 3 x 0-00038905

0:23136 + 0-00038905

= 2740211

_ 063514
023175

= 2.740627

f(2:7406 = 000011998
. 'The root lies between 2-740211 and 2-740627
. = 27402 X £ (2-7406) — 27406 X £ (2:7402)
¢ £(2:7406) — £ (2-7402)
_ 2:7402 x 0-00011998 + 2-7406 x 0-00038905
0-00011998 + 0-00038905
0-0013950
= m = 27405

Hence the root 1s 2-7405.

Example 3. Find the positive root of X’ = 2x+ 5 by False Position
method.



Solution. Let f(x)=x-2x-5=0
There is only one positive root by Descarte’s rule of signs.
f()=8-9=-1==ve; f(3)=16=+ve
", the positive root lies between 2 and 3. It is closer to 2 also.
_af(b)—bf(a) _2xf(3)-3xf(2)
fb)—f(a) f3)-1(@2)

X




F(xy) =1 (2-058824) = — 0-390795

. The root lies between 2-058824 and 3
_ 2058824 xf(3) — 3 X f(2058824)

F(3)—f(2-058824)

34-113569
=m=2rﬂﬂllﬁ4
fx) =f(2081264) =-0-147200
. The root lies between 2-081264 and 3
2081264 x 16— 3 % (—0-147200)
16+0-147200 = 2089635
[ 0g) =£(2-089639) =—0-054679
The root lies between 2089639 and 3
= 2-089639 x £ (3) — 3 x £ (2089639)
f(3) - £(2-089639)
fx) =f(2:09274) =- 0-020198
. The root lies between 2-09274 and 3

_ 209274 x 16+ 3 x (0-020198)
X5 = 16020198

I (xg) =f(2-093884) = — 0-007447
The root lies between 2-093884 and 3 _
_ 2093884 x 16 + 3 x 0-007447
- 16007447
f (xg) = £ (2-094306) = - 0-002740
. The root lies between 2094306 and 3
_ 2094306 x 16 = 3 x (= 0-002740)
= 16002740
Similarly, xg =2-0945 correct to 4 decimal places.

13=

=2-092740

= 2-093884

=2-094306

= 2-094461

NEWTON —RAPHSON METHOD:




Criterion fm; the convergence in Newton-Raphson method
y

P, (o, Floy))

% o,
\ 2 "y _—
\;

P (o, fla))
1 Here, in Newton’s method,

v

f(x)
fx)

B . ‘ i’ ‘e s
This is really an iteration method where

Xy =X~

I
i1 = ¢[.I;.]' and 'q}(xf) =X f{{xi)

Hence the equation is -
x = ¢(x) where ¢(x)=x I

i / < |
The sequence X;, Xp, Xy,... CONVETges 10 the exact value if i o'(x) |

’ 2 ”{I)
. o | et -rare |
[£(0)]
f(x) f7(x)
1 i —_— |
ie., if [f’[x]]z <

if | ff70 | <1f W)

Order of convergence of Newton’s method

convergence is quadratic and is of order 2.



Example 1. Find the positive root of f(x}:?f—h—ﬁ:ﬂ by
Newton-Raphson method correct to five decimal places.
~ Solution. Let f(x)=2¢-3x—6; f(x)=6x>-3
f(1)=2-3-6==T==ve and f(2)=16-6-6=4=+ve
- a root lies between 1 and 2
By Descarte’s rule of sign, we can prove that there is only one
positive root.
Take og=2
_ fO0) _ 2-30-6 dop+6
0T ) T ew2-3 623
4o +6
60 - 3
ﬂ%); =2= = 1.809524
6{2} -3 21
_ 4(1-809524)° + 6 _ 29-700256
5(1 809524)* - 3 ~ 16646263

4[1?34200) +6 28719072
6(1-784200)° - 3 "~ 16-100218

o=

o, =

= 1784200

= 1-783769

SOLUTION OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS:



4-2 Gauss-Elimination Method (Direct method). This is a direct
method based on the elimination of the unknowns by combining equations
such that the n equations in n unknowns are reduced to an equivalent
upper triangular system which could be solved by back substitution.

Consider the n linear equations in n unknowns, viz.
QX+ Akt +a,X, = by
Gy %) + Gk + - + GyXy = by

....................... 1)
a,xta,x+--+a,x, '—_bn
where a; and b; are known constants and x;'s are unknowns.
The system (1) is equivalent to
AX=B .(2)
4 B
Q11612 Ay, % 1 2
X
where A= aﬂﬂﬂ% » X=| |and B=|
Gp) Gnp " Qpy i;
kxni L")

$ \

=~ Now our aim is to reduce the augmented matrix (A B) to upper
mangular matrix.

ay @3 .. a,|b
- b

g @ap=| > T )
a, ap o Ay b—‘lJ

Now, multiply the first row of (3) ( if a;; #0) by —:—“ and add to
11

the ith row of (A, B), where i =2, 3, ..., n. By this, all elements in the first
column of (A, B) except a,, are made to. zero. Now (3) is of the form -

(”u a;, -+ a,|b )
U bn * e bz‘ Cz (4}
0 b, - b,|c,

. J
Now take the pivot b,,. Now, considering b,, as the pivot, we will
make all elements below b,, in the second column of (4) as zeros. That



is, multiply second row of (4) by ~=2 and add to the corresponding

by

elements of the ith row (i=3,4,...,n). Now all elements below b,, are

reduced to zero. Now (4) reduces to

(“11 a,; a3..-8; | b )
0 by byu.by |
0 0 . Ty ol ‘r-dl

0 0 cpu..cpld,

.(5)

. J
Now taking c;, as the pivot, using elementary operations, we make
all elements below c;; as zeros. Continuing the process, all elements

below the leading diagonal elements of A are made to zero.
Hence, we get (A, B) after all these operations as

(ay, ap ay - ay, | by )

0 by by - byl

0 0 €13 'l:3.4 .o ™ d}

0 0 0 0 o

K

\ s
From, (6), the given system of linear equations is equivalent to

ay Xy + BpaXy + QX+ - +a X, = b,

bypxy + byyky + -+ + byX, = ¢y

----------------

Going from the bottom of these equation, we solve for x, =

..(6)

Using this in the penultimate equation, we get x, _, and so. By this back

substitution method, we solve for

Xps Xy — 1s Xy 20 =" K Xy

Note. This method of making the matrix A as upper triangular matrix had
been taught in lower classes while finding the rank of the matrix A.



4-2-1 Gauss-Jordan elimination method (Direct method)

This method is a modification of the above Gauss elimination
method. In this method, the coefficient matrix A of the system AX=B is
brought to a diagonal matrix or unit matrix by making the matrix A not
only upper triangular but also lower triangular by making all elements
above the leading diagonal of A also as zeros. By this way, the system
AX = B will reduce to the form,

a; 0 0 00 (b )
0 by 0 00 |co
' A7
. . L. d, (7)
0 0 00 wo,|K,
From (7) ’
n CZ 'bI
X S, Ny == ] =—
"oy, 2 by, ' ay,

Note. By this method, the values of x;, x5, ..., x, are got immediately without
using the process of back substitution.

Example 1. Solve the system of equations by (i) Gauss elimination
method (ii) Gauss-Jordan method.

x+2y+z=3 2x+3y+3z=10; 3x-y+2z=13 [MKU 1981]
Solution. (By Gauss method)
The given system is equivalent to

1 2 1 3
2 3 3 =| 10
3 -1 2 13

A = B

(1)

=
=
]
B e

— ) b

b L ==
S w

" /e PO M



Now, we will make the matrix A upper triangular.
(

1 2 1 3

AB=/2 33 |10

} 3 -1 2 |13
'rt'} f : i R,+(-2)R, ie., Ry(-2)
o _7 1 la| RHAHEIR ie, Ry(-3

\
Now take by, =—1 as the pivot and make b;, as zero.

I 2 1 3 ,
A.B)~[0 -1 1 | 4| Ry(-7 -(2)
0 0 -8 |-24
From this, we get
| ' I+ﬁy+z=3
-y+z=4
~8z=-24 .
z=3,y=-1,x=2 by back substitution.

Solution. (Gauss-Jordan method)
In stage 2, make the element, in the position (1, 2) , also zero.

1 2 1 3)
AB~l0 -1 1 4
0 0 -8 |-24
\, J
1 -0 3 1)
~lo =1 1 4| R,
0 0 -8 |-24
\ g
(1 0 3 | n) ]
-0 =1 1 4 Rj['g"]
0 0 -1 |[-3
1 4
(1 0 0O 2)
~[0 =1 0 . 1| R3(3).Ry(1)
0 0 -1 |=3
\ J
x=2,-y=1,=z2==3



x=Ly=—1,z=3

Example 2. Solve the system by Gauss-Elimination method
2x+3y—2z=5; 4x+4y-3z=3 and 2x—-3y+2z=2. [MKU 1980]

Solution. The system is equivalent to

|
Lad
B2
Is ]
= b2 W LA

A X =
2 3 -1 |5
A,B)=|4 4 -3 |3
2 -3 2 |2

Step 1. Taking a,;, = 2 as the pivot, reduce all elements below that to

ZEro.

2 3 -1 5
A,B)~|0 -2 -1 |=T7| Ry(-2),Ry(-1)

0 -6 3 |-3
.S‘lep 2. Taking the element - 2 in the position (2, 2) as pivot, reduce
all elements below that to zero.

2 3 —-1 5
(A,B)~| 0 =2 =1 =T | Ryp(=3)
0 0 6 18

Hence 2x+3y-z=5
-2y-z=-1
6z=18
. z=3,y=2,x=1. by back substitution.
Example 3, Solve the following system by Gauss-Jordan method:
I, +x, v x;+xy=4; ;+70+x3+x,=12
X+ X+ 0x3+xy==35; Xx;+x3+x;3+4x,=-6
Solution. Interchange the first and the last equation, so that the
coefficient of x, in the first equation is 1. Then we have



1 1 1 4 |—-6
1 711 12
AB=l, { 61 |-5
5111 4
\
(1 1 1 4] -6
o [6] 0 -3| 18
“to 0 5 =3 1
0 -4 -4 —-19]| 34
\
1-15 14.
131=

_9 =_9"" H33=4—3-

R’M (' I]': J'?3| (= 1), _R4| (=3)

14
9

_3
9

LUX=B implies LY=B where UX=Y

LY =B gives,

14
Nn=14, 2y +y; =13, 3y -+ =17

" yl - ]4, y:z:- ]5, }'3=_

UX =Y implies,
1 5 1 14
x
0 -9 1|yl=|-15
s || 2 5
0 -3 -3
x+S5y+z=14
-9y +z==15
5,5
9 3

3
3



Example 3. Solve the following system by triangularization method:
x+y+z=1 4x+3y-2=6, Ix+5y+3z=4.

1 1 I X |
Solution. Here A={4 3 -1 'X=|y |'B=|6
35 3 2 4

10 0 ) uy uy up 1 1 |

LU= lﬂ 1 0 0 Uy Uy |= 4 3 -—|

Ly Ly 1|0 0 uay 3 5 3

Uy =up=t3=1.
biuy=4, by tup=3, hiuz+iy=- l.
by=4, up==1, =-S5
by=3, by +hyup=5ly+lup+tuy=3
liy=—2, ugy=—10
Now, LUX=8 implies LY=BwhereUX=Y

| 0 0\ |
4 1 0|y |=|6
3 -2 1 M 4

=04y +y,=6, 3y, —2y,+ ;=4
- n=hL y»=2 =3

UX=Y gives,
1 1 1) x 1
0 -1 =5}|ly|I=|2
0 0 -10}|z 5
x+y+z=1
-y—5z=2
-10z=5
Hence, z=-—— y:l: xX=



Gauss Elimination Method
This 1s direct method based on number of unknowns, by eliminating the same by

combining the equations to a tnangular form. To 1llustrate the method consider
the following system equations

™
Steps to solve the system of three equation with three unknowns :
Let us consider the system of equation
ajpxy +apx; +apxz = by
az;xjy +azx; +anxy =b;
azxj +azpx;+azpx; =b;

1. To eliminate x1 from the second equation, multiply the first row of the
equation matrix by - az1/ a1 and add it to second equation. Sinularly
eliminate x; from the third equation and subsequently all other
equations. We get new equation of the form

ajxy +apxy+apx; =b
+har+ bax; =0
+ b3z +b33x3 =3

Where b =axn—(axy/aj)Xaj
by; =ax;—(az /ajp) Xas)
c2 =by—(ax/ay) x b



b3» =as2—(as1 /as)) Xaj
biz =azz—(az /aj)) Xagz
c3 =bs—(as /aj) xbp

2. To eliminate x; from the third equation, multiply the second row of
the equation matrix by - bsy/ by; and add 1t to third equation. Simularly eliminate
x2 from the third equation and subsequently all other equations.

ajxy +ajx+apx; =by
+bam2+ brxy =0

biaix: = ds
where c33 = b3z —(b3> /b)) X by
d3 =c3—(b32/b22) x¢2

3. From the above reduced system of equation substitute the values x3 | x»
and x1 by backward substitution we get the solution of the given equations.

Illustration 1 :

Solve the system of equation by Gauss elimination method
x+2y+z=3
2x+ 3y +3z=10
3x-y +2z=13
Solution :

The given system of equation 1s equivalent to

-1 2 1 3-
- 2 3 3 10 -
- 3 -1 2 13 -

Now, we have to make the above matrix as upper triangular

By using the following modifications
Ry’ =Ry + (-2Ri: R3" = R3 + (:3)Ry



-1 2 1 3 -
-0 -1 1 4 -
-0 -7 -8 4 -
Now we have to take by =-1 as the key element and reduce b3; as 0
By using the following modifications
Ry = B3 + (+7)R»

1 21 3 -
-0 11 4 -
0 0 8 24

From the above matrix
X+ 2y +z =3
- v +z=4
-8z=-24

Therefore z= 3, y=-1, x =2 by back substitution.

Solve the system of equation by Gauss elimination method
2x+y +4z=12
§x -3y +2z=20
dx + 11y =z =33

Solution :

The given system of equation 1s equivalent to

- 2 1 4 12 -
- 8 -3 2 20 -
- 4 11 -1 33 -

Now, we have to eliminate x from the second and third equation
By using the following modifications
Ry’ =Ry + (-4)Ry; Ry’ = Ry + (-2 Ry
- 2 1 4 12 -
-0 -7 -14 -28-
0 9 -9 9-



Second step we eliminate y from the third equation. Taking (byz =9 /7) as the
key element multiply the second equation by key element and add 1t to the third
equation
By using the following modifications

Ri" = R3 + (9/7T)Ra

-1 21 3 -
-0 7 -14 28 -
-0 0o 27 -27-

From the above matrix
X+ y + 4z = 12
-Ty -14z = -28
-2lz=-21
By back substitution, we get the solution of the equation
z=1, y=2.x =3

Therefore z=3, y=-1, x =2 by back substitution.

Check Your Progress

Solve the system of equation by Gauss elimination method
200+ y +4z =25
§x +13y +2z =23
4x - 11y +21z =14

(Ans:x=y=z=1)
Gauss Jordon Method
This method 15 a slightly modification of the above Gauss Elimmation method .

Here elimination 1s performed not only in the lower triangular but also upper
triangular - This leads to unit matrix and hence solution 1s obtamned . This 15

Jordon’s modification of the Gauss elimination and hence the name 1s Gauss-
Jordon Method.



The above system of equation 1s written m the matrix form as
AX =8
Now our aimn 1s to reduce the given matrix (A)) to unit matrix.
The system of equation can be solved sumply thus :
ag 0 0 .0 bp-
0 b0 .0 ¢ -
-0 0 ci3 .. 0 r:fj* -

-0 0 0 ... ‘py My
The above system of linear equations 1s equivalent to

ajpx;+ 0 + . +0 =b;
by + ... H0 =c¢2

AanXn = My
he above the equation we get solution directly.

Solve the system of equation by Gauss-Jordon method
10x+ y+:z=12
2x +10y +z=10
x + y +5z=13
Solution :

The given system of equation is rearranged for computation convenience,
Interchange the first and last equation, since coefficient of the x in the last equation 1s

unity (1) :

-1 1 5 T -
-2 10 1 13-
- 10 1 1 12 -

Now, we have to make the above matrix as upper triangular
By using the following modifications



R’ =Ry + (-2)R1; R’ = Rs + (-10) Ry

1 1 5 7 -
-0 8 9 _1-
0 9 49  _58-

Now we have to take baa = 1/8 as the key element and reduce bz; as 0
By using the followmg modifications
Ry’ =R2/8. R3 = R3z+ (+9/8)Ra

-1 1 5 7 -
-~ 0 1 9/8 18 -
-0 0 _473/8  -473/8-

Now we have to make b33 = 1 as the key element and reduce b3y as 0

By using the followimg modifications
R:" =R3x -8M473. Ri"=R; + (-DER

-1 0 49/8 57/8 -
-0 1 -9/8 -1/8 -
-0 0 1 1 -

Now we have to make by; =0 and by =0.
By using the followimng modifications
R’ =Ra+(-98)R:. Ry = Ry + (-49/8) R3

-1 0 0 1-
-0 1 0 1-
-0 0 1 1-

Therefore x=1,y=1,z=1.



Solve the system of equation by Gauss-Jordon method
XX+ y+4z=12
Sx-3y+2z=20
dx + 11y -z=33
Solution :

The given system of equation 1s equivalent to

- 2 1 4 12 -
- 8 -3 2 20 -
-4 11 -1 33 -

Now, we have to eliminate x from the second and third equation
By using the followimng modifications
Ry =Ra + ((4)R1: R’ = Rs + (-2)Ry
- 2 1 4 12 -
-0 -7 -14 -28-
0 9 -9 9-



Second step we eliminate y from the third equation. Taking (by3 =9 /7) as the
key element multiply the second equation by key element and add it to the third
equation
By using the following modifications

B;’ = Ry + (9/7) Ry

-2 1 4 12 -
-0 7 14 28 -
-0 0o -27 -27-

At this stage, we eliminate y from the first equation. Z from the first and second
equation. By using following modifications ;
Ri"=R1/2; Ry’ =Ra/-7: Rz = R3,;,(-2T) Ry

-1 12 2 6 -
-0 1 2 4 -
-0 0 1 1-

By’ = Ry + (-2)R; :Ry" =Ry + (-1/2)Rs;

¥

-1 0 1 4 -

-0 1 0 2-

-0 0 1 1-
Ri" =R; + (-1)Ry;

-1 0 3 -

-0 1 0 2-

-0 0 1 1-

Therefore x =3, y=2z=1.

Check Your Progress

Solve the system of equation by Gauss-Jordon method
I0x+ y+z=13
2x + 10y +z=14
x + y +15z2=32

(Ans: x=v=1,z=2)

2.4 Lesson End Activities

1. Solve the system of equation by Gauss Elimination method
3.15x—1.96y+3.85z=1205



2.13x-512y -2.802z=-801
3.92x +3.051y +2.15z = 6.88

2. Solve the system of equation by Gauss elimination method
Ix+4y+06:z=18
2x-y+8z= 13
Jx -2y +7z=20

3. Solve the system of equation by Gauss-Jordon method
x+y+4z =9
Sx-3y+z = 12
dx + 11y -z =18

4. Solve the system of equation by Gauss-Jordon method
2x-y+4z =35
§x-3y+z =0
x+ 1y -z =11

Answer For Lesson End Activities

1. (dAns : x =1.7089, y = -1.8005, z = 1.0488)

2. (Ans:x=3,y=1,z=1)

I (dns:x=2,y=1z=1)

4. (Ans: 1=1,y=1z=1)

Gauss-Jacobi Method
Let us consider this method in the case of three equations in three unknowns.
Consider the 3 linear equations 1n 3 unknowns,
aix + byy+ciz =di
a)x + byy+e; z =d;
aix +bzy+tciz =ds

This method is applied only when diagonal elements are exceeding all orther
elements in the respective equations i.e.,

| ai| =|bi|+|e| =di
| az| =|b2|+|e2| =d2
| az| =|bz|+|cz| =ds

Let the abowve condition 1s true we apply this method or we have to rearrange the
equations in the abowve form to fulfill the above condition.

We start with mitial values of Xy and z as zero. Solve X, y .z interms of other _.
variables



1

V= (dy by ")
ai
1
YW= (ds ax™ | c277)
b>
1
L, i1
z.i"_l)‘ — | fdj a:;IrIJ b:;}_,.?')‘)
€3

The above iteration is contfinued until any two successive values are equal.

I . Solve the system of equation by Gauss-Jacobi method
27x+o6y -z =485
ox +Isy+2z = 72
x +oy + 54z=110

Solution:
To apply this method | first we have to check the diagonal elements are dommant.

3

1e, 27> 6+1 ; 15>6+2 ;54 > 1+1 _So iteration method can be applied

x=127(85-6y +z)
y =1/15(72 -6x -22)
z =1/54¢110-x - y)

First iteration : From the above equations, we start withx =y =z=10
1) _ _ -
x" =85/27 = 3.14815 (1)

yWV=7215 =48 (2
2V =r110/5¢4 =2.03704 (3



Second iteration :Consider the new values of }"rﬂ =4.8 andzV =2.03704 in the
first equation

x? = 127( 85| 6x4.8 + 2.03704) =2.15693
V¥ = I/15(72 - 6x3.14815—2x 2.03704 ) = 3.26913
7Y = 1/54(110| 3.14815 | 4.8) = .0.515

Fourth iteration : Consider the new values of x”) = 2.15693, y? =3.26913
and z¥ =.0.515 in the first equation

= 1/27( 85| 6x3.26013 +-0.515) = 2.49167
v¥'= 1/15(72 - 6x2.15693 —2x 2.15693 ) = 3.68525
2 = 1/5¢4(110| 215693 | 3.26913) = 1.03655
Thus, we continue the iteration and result is noted below

Iteration No.  x ¥ | Z

4 | 2.40003 3.54513  1.92265

5 | 2.43155 | 3.58327 | 1.02692

6 2.42323 3.57046 | 1.02565

7 | 2.42603 | 3.57395 - 1.92604

K | 2.42527 | 3.57278 - 1.02503

0 | 2.42552  3.57310  1.02506

10 | 2.42546 | 3.57300 - 1.02505

From the above table 9™ and 10 ™ iterations are equal by considering the four
decimal places. Hence the solution of the equation is

X =2.4255 y =3.5730 z =1.9260.



Illustration 2 . Solve the system of equation by Gauss-Jacobi method
10x-5y -2z =3
4x -10y+3z = -3

x +oy + 10z=3
Solution:

To apply this method , first we have to check the diagonal elements are dominant.

1e, 10> 5+2 ; 10=4+3 ;10 > 1+6 . So iteration method can be applied

x=1/10(3+5y +2z)
y =1/10(3 +4x +3z)

z=1/10(-3—x - 6y)

==

First iteration : From the above equations, we start with x =y

x¥ = 3/10 = 0.3 (D)
yV= 3710 = 0.3 e (2)
=310 = .03

e {3)

Second iteration :Consider the new values of .}'“U =0.3 andz"V =-0.3 in the first
equation

x? = 1/10( 3+ 5x.3 +(-0.3) = 0.30
vV = 1/10(3 + 4x0.3 +3x(-03)) = 0.33
Y= 11ofr-31 03 60.3)] = .0.5]

V=033 andz?
-0.51 in the first equation

Third iteration : Consider the new values of =030 ;)



x¥= 1107 3| 5x0.33 +(-0.51)] = 0.363
v¥'= 1/10(3 + 4x0.39 + 3x(-0.51)) =0.303
2= pror-3| 039 | 6x(0.33)] =-0.537
_ Thus, we continue the iteration and result is noted below
_ Iteration No. X ¥ z
4 0.3441 | 0.2841 -0.5181
5 033843 - 0.2822 -0.50487
6 0.340126 | 0.283911 | 0.503163
7  0.3413220 | 0.2851015 -0.5043502
8 | 0.34167891 | 0.2852214 -0.50519319
| 9 0.3415720062 - 0.285113607 -0.505300731

From the above table 8 ™ and 9 ™ iterations are equal by considering the 3

decimal places. Hence the solution of the equation is

x =0.342,y =0.285, z=-0.505.

Solve the following system of equations by using Gauss-Jacobi Method

1. 8x -3y +2z=20; 4x +1ly—z=33; 6x +3y +12z=35

2. 28x+4y-z= 32, x 3y +10z=24; Ix +3y +10z =24

3. x-2y+z=-4;x+0y-2z=-1; 3x+ty+5z =13

4.8 +y+z =8, 2x+t4y+z=4,;x+3y+3z2=35

Model Answer For Lesson End Activities

1. (Ans: 3.017, 1.980, 0.912)

2. (Ans: 0.994, 1.507, 1.549)

3. (Ans:-1.0, .990¢ 3 ) 4. (4ns: 0.83, .32,

Gauss-Seidel Method

This method 15 only an enhancement of Gauss-Jaobi1 Method.
Consider the 3 linear equations i 3 unknowns,
aix + bjy+ciz =dp
ax + byy+cy z =d;
aix +bzy+tciz =ds

1.07})



This method is applied only when diagonal elements are exceeding all other
zlements in the respective equations i.e.,

| ar| =|b1|+|cr|l =di

| a2 =| b2+ ez | =d>

laz| = D3|+ es| =ds

We start with imitial values of x.y and z as zero.



r+l i
X"V =y by"” | af”)

aj
1

Jr.(r—lgz | (ds ajxlfrb C;E”’I)
b;
1

zf?‘_j)‘ = | (d; agxfr_l’ bjyfr};)
c3

Nete ;1. For all systems of equation, this method will not work

2 lteration method is self correcting method. Any ervor made in computation is corrected
automatically in subseguent iterations

3. lteration is stopped when any two successive jteration values are egual

IMustration : 1. Solve the system of equation by Gauss-Seidel method
I0x-5y -2z =3
4x -10y +3z = -3
x +o6y + 10z=3
Solution:
To apply this method , first we have to check the diagonal elements are dominant.

le, 10> 5+2 ; 10>4+3 ;10 > 1+6 . So iteration method can be applied

x=1/103+5y +2z)
y =1/10(3 +4x +3z)
z =1/10¢-3-x - oy)

First iteration :
From the above equations, we start withx =y =z =

x¥ = 3710 =03 .. .(]

New value of x is used for further calculation ie., x = 0.3
Y= 1710 (3 + 4x 0.3+ 3(0)] =042 . _.(2

New values of x and v is used for further calculation ie., x = 0.3 and y = 0.42
AV =1/10¢3 -03 -6(0.42) = _0.582 (3
Second iteration :

Consider the new values of ym =0 .42 andz" = _0.582 in the first equation
X = 1/10f 3+ 5x0.42 +(-0.582)) = 0.3036



y¥ = 1/10(3 + 4x0.3936 + 3x(-0.582)) = 0.28284

2 = 1/10[-3 | (0.3936) | 6(0.28284) = -0.509064
|

Third iteration : Consider the new values of x? =0.3036, }»‘Q’ =0.28284 and
¥ =0.500064 in the first equation

X = 1I0[ 3| 5x0.28284 +(-0.509064)] = 0.3390072

{-
y ¥ =

v

/103 + 4x0.3396072 + 3 x(-0.5090064 ) = 0.28312368

PLE 1/10f -3 | 0.3396072 | 0x(0.283123678)] =-0.503834928

Thus, we continue the iteration and result is noted below

: Iteration No. X ¥  Z
4 0.34079485 0.28516740 -0.50517996
) L 0.3415547  0.28506792  -0.505196220
6 - 0.3414947 - 0.2850390 -0.5051728

7 L 0.3414849 L 0.28504212  -0.5051737

The values correct to 3 decimal places are
x=0342, y=0285 z=-0.505



| . Solve the system of equation by Gauss-Seidel method
28x +4y -z =32

dx +3y +10z = 24

2x +i7y + 4z =35

To apply this method , first we have to rewrnte the equation in such way that to
fulfill diagonal elements are dominant.

28x +4y -z =32
2x 17y + 4z =35
dx +3y +10:z = 24

ie, 28> 4+1 ; 17>2+4 ;10 > 4+3 . So iteration method can be applied
x=1/28(32-4y +z)
y =1/17(35 -2x -4z)
z =1/10(24 —x - 3y)

First iteration :
From the above equations, we start with y =z = 0, we get

= 32108 = 1.1420

New mhﬁe of x is used for further calculation ie., x = 1.1429
yV'= 117 (35 + 1.1420+ 3(0)] = 1.0244



New values of x and y is used for further calculation ie,, x = 1.1420

andy = 1.9244

2V =1/1024 -1.1420 -3(1.9244) ] = 1.8084)

Second iteration :
Consider the new values of },H,J =1.0244 andz" = 1.8084

x? = 1/28] 32—4(1.9244) +( 1.8084)] = 0.0325

V¥ = 1/17[35 -2(0.0325) -4(1.8084)] = 1.5236

Z¥ = 110[24 | (0.0325) | 3(1.5236)] = 1.8497

Third iteration :
Consider the new values of x”°/ = 0.9325, y'¥ =1.5236 and z¥ = 1.8497

x¥ = 1/28[ 32—4(1.5236) +(1.8497)] = 0.00]3
V¥ = 1/17[35 -2(0.9013) -4(1.8497)) = 1.5070
2 = 110[24 | (0.0013) | 3(1.5070)] = 1.8488
_ Thus, we continue the iteration and result is noted below
_ Iteration No. X oy 4
4 ' 0.9036 15069 ' 1.8486
5 | 0.0036 | 1.5069 | 1.8486

Therefore x =0.9936, v=1.5069, z=1.8486

e

8x -6y +z=13.67; 3x+y-2z=17.59; 2x-6y-+9z=2929
30x -2y +3z=T75; 2x+2y+18z=30; x+17y-2z=48
y—x+10z=3561; x+z+10y=2008; y-z+10x=11.19
10x-2y+z=12; x+9y-z=10; 2x-vy +11z=20
8x —y+z=18; 2x+5y-2z=3; xX+y-—3z =-16
2x +y+z=4 X+2y-z =4, x+y+2z=4

0.83.0.32,1.07

2.5796, 2.7976, 1.0693

1.321, 1522, 3541

1.2624, 1.1591, 1.694

2, 0.9998, 2.9999

I, 1, 1

S

7 7



3.2 LU decomposition

The process of Gaussian Elimination also results in the factoring of the matrix
A to
A=LU,

where L 15 a lower triangular matrix and U is an upper triangular matrix.
Using the same matrix A as in the last section, we show how this factorization
15 realized. We have

3 2 1 3 2 -1

6 6 7| =] 0 —2 5]=MA,

3 -4 4 0 -2 3

10 o\ /-3 2 -1 3 2 _1
MA=(2 1 0 6 6 T|=|0 -2 s5].

101 3 -4 4 0 -2 3

Note that the matrix M; performs row elimination on the first column. Two
times the first row 18 added to the second row and one times the first row is
added to the third row. The entries of the column of M; come from 2 = —(6/-3)
and 1 = —(3/ —3) as required for row elimination. The number —3 is called the
pivot.

The next step 1s

-3 2 —1 -3 2 -1
[ 51 —= n -2 5| =M;(M;A),
[ 3 0 -
where

1 0 0 -3 2 -1 -3 2 -1
M, (M A) = o 1 0 0 -2 5]= 0 -2 5.
0 -1 1 o -2 3 0 0 -2

Here, Mz multiplies the second row by —1 = —(—2/ — 2) and adds it to the
third row. The pivot 18 —2.
We now have

where

M:M;A=U
or
A=M'MUL

The inverse matrices are easy to find. The matrix M; multiples the first row by
2 and adds it to the second row, and multiplies the first row by 1 and adds it
to the third row. To invert these operations, we need to multiply the first row
by —2 and add it to the second row, and multiply the first row by —1 and add
it to the third row. To check, with



we have
1 0 0 1 0 0 1 0 0
2 1 0 -2 1 0j=10 1 0}.
1 0 1 -1 0 1 0 0 1
similarly,
1 00
Mz'=1({0 1 0
011
Therefore,
L=M;'M;!
is given by

1 0 0\ /1 00 1 0 0
L=(-2 1 0|0 1 0}]l=]-2 1 0],
1 0 1/ \0 11 -1 1 1

which is lower triangular. The off-diagonal elements of I'I.-Il_l and M ! are simply
sombined to form L. Our LU decomposition is therefore

-3 2 -1 1 0 0 -3 2 -1
6 -6 T)|=-2 1 0 0 -2 5.
3 -4 4 -1 1 1 0o 0 -2



Another nice feature of the LU decomposition is that it can be done by over-
writing A, therefore saving memory if the matrix A 1s very large.

The LU decomposition is useful when one needs to solve Ax = b for x when
A is fixed and there are many different b’s. First one determines L and U using
Gaussian elimination. Then one writes

(LU)x = L(Ux) = b.
We let
y = Ux,

and first solve
Ly=hb

for ¥ by forward substitution. We then solve
Ux=y¥

for x by backward substitution. When we count operations, we will see that
solving (LU)x = b is significantly faster once L and U are in hand than solving
Ax = b directly by Gaussian elimination.

We now illustrate the solution of LUx = b using our previous example,

where
1 0 0 -3 2 -1 -1
L=|-2 1 0y, U= 0 -2 51. b=1{- .
—1 1 1 0 o -2 —6

With y = Ux, we first solve Ly = b, that is



1 0 0\ /m 1

-2 1 0 =1 =1-7
-1 1 1 Us —6
Using forward substitution
= _11
Yz = -7+ 2y = -4,

Yys=—b6+y —y2 =2,

We now solve Ux = y, that 1s

-3 2 -1 31 -1
0 -2 5 | =19
o 0o -2 Ty 2
Using backward substitution,
—2.1!3 =2 = I = —1.,
—211?: —9—5:1'3 =—4—:>:I'2 =2,

—3I1=—1—QIE+I3=—E—}11 =2,

and we have once again determined

I 2
€Ly = 2
Ig —1

POWER METHOD FOR APPROXIMATING EIGENVALUES

the eigenvalues of an n = n matrix A are obtained by solving its
charactensbc equation

A"+ g, A"+ g AT+ s+ g =0

For large values of n, polynomial equations like this one are difficult and time-consuming
to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section you will look at an alterna-
tive method for approximating eigenvalues. As presented here, the method can be used only
to find the eigenvalue of A that 15 largest in absolute value—this elgenvalue 15 called the
dominant eigenvalue of 4. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Definition of Dominant Let A Ay ..., and A, be the eigenvalues of an n x n matrix A. A, is called the
Eigenvalue and dominant eigenvalue of 4 if

Dominant Eigenvector [l = A,

The eigenvectors corresponding to A, are called dominant eigenvectors of 4.

, 1=2,....n



Mot every matnx has a dominant eigenvalue. For instance, the matrix

1=l -]

{with eigenvalues of A, = 1 and A, = —1) has no dominant eigenvalue. Similarly, the
matrx
2 0 0
A=|0 2 0
0 0 1

{with eigenvalues of A; = 2, A, = 2, and A; = 1) has no dominant eigenvalue.

Finding a Dominant Eigenvalue

Find the dominant eigervalue and corresponding eigenvectors of the matrix

2 -12
A= .
i)
From Example 4 of Section 7.1 you know that the characteristic polynomial of A is
A2+ 340+ 2= (A + 1A + 2). So the eigenvalues of 4 are Ay = — 1 and A, = —2, of

which the dominant one 15 A, = —2_ From the same example you know that the dominant
eigenvectors of A (those cormesponding to A, = —2) are of the form

x=r[_?J, t# 0.



The Power Method

Like the Jacob and Gauss-Seidel methods, the power method for approximating eigenval-
ues 15 iterative. First assume that the matrix 4 has a dominant eigenvalue with correspond-
ing dominant eigenvectors. Then choose an imitial approximation x; of one of the dominant
eizenveciors of 4. This imitial approximation must be a monrzero vector in £7, Finally, form
the sequence given by
x, = Ax,
Xy = Ax; = A(dx;) = A%x,
x; = Ax, = AiAx) = Ax,

x, = Ax,_, = A(A*'x)) = A,

For large powers of &, and by properly scaling this sequence, you will see that you obtain
a good approximation of the dominant eigenvector of A, This procedure 15 illustrated in

Approximating a Dominant Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of
lZ - IZJ
A= _ -
1 -5
Begin with an mmtial nonzero approximation of

|

Then obtain the following approximations.

lterafion “hraled " Approximation
2 —12]1 —10 250
R e
1 —sll 4 — 1.00.
2 —12][-10] [28 2.80
== S —4) T _mJ — mll.[ﬂ]_
I e ZEJ_[—MJ 29
LBEMMT sl —n| - [ 1.00]
2 —12]—64 136 2.96
x, =dx; = = J 46
1 —sll-22] | 46] —= [ 1.00.
2 —121[ 136 —280 208
= dx, = - —o4
LEMT D 5| nmJ l—94J — [ 1.00 ]
N e —EEUJ_lSﬁEJ lgﬂlz.aa
TS T —s)| —o4] T |190] — 1.00

Mote that the approximations in Example 2 appear to be approaching scalar multiples of

H;
Theorem 10.2

Determining an Eigenvalue
from an Egerwech:pr

If x 15 an eigenvector of a matrix 4, then its corresponding eigenvalue is given by

This quotient is called the Rayleigh quotient.

A N
a=2"2
XX




Because x 15 an eigenvector of 4, vou know that Ax = Ax and can write

Ax - x  Ax-x Ax-x)

A

XX XX XX
Approximuating a Deominant Eigenvalue

Use the result of Example 2 to approximate the dominant eigenvalue of the matrix
2 —12
A= :
)
After the sixth iteration of the power method in Example 2, obtained

568 2.99
=[5 2]
190 1.00
With x = (2.99, 1) as the approximation of a dominant eigenvector of 4, use the Rayleigh

guotient to obtain an approximation of the dominant eigenvalue of A, First compute the
product Ax.

dx = [2 - IEJ [Z.QQJ _ [—ﬁ.UEJ
I —5]11.00 —2.01
Then, because
Ax < x = (—6.02)2.99) + (—=2.01)(1) = =200
and
x - x = (2.99)2.99) + (1){1) = 9.94,
you can compute the Rayleigh quotient to be

which 15 a good approximation of the dominant eigenvalue A = —2,



The Power Method with Scaling

Calculate seven iterations of the power method with scaling to approximate a dominant
eigenvector of the matrix

| 2 0
A=|-2 1 2
| 3 1

Use x; = (1, 1, 1) as the imtial approximation.

One iteration of the power method produces

12 o] 3
Axg=|-2 1 2||1|=]1]
13 1]l 5

and by scaling you obtain the approsamation

31 [os0
x,=41]|=[020]
5 1.00

A second iteration yields

| 2 07060 1.00
Axy, =| -2 2((020) =100

1
1 3 1.00 2.20
and
1.00 0.45
x, = E 1.00 0.45|.
2.20 1.00

Continuing this process, you obtain the sequence of approximations shown in Table 10.6.

TABLE 10.6
iy X 13 | 13 A5 Yy r
1.0d 0.60 045 048 0.51 0.50 0.50 0.50
1.0 0.20 045 0.55 0.51 049 0.50 0.50
1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.00

From Table 10.6 vou can approximate a dominant eigenvector of 4 to be

0.50
x = (050
1.00

Using the Rayleigh quotient, vou can approximate the dominant eigenvalue of A to be
A = 3. (For this example you can check that the approximations of x and A are exact.)



Example 3. Use the power method to calculate an approximation to the

dominant eigenpair for
A -7 2
o 8 =1

Let

=)
v (5)
e (753)

We stop here because the vectors A™ X, already appear to be approaching a

multiple of
-1
1

LA Xy A'X,  —583-65—584-64
COAX, - A'X, 65-60+64-64

So a dominant eigenpair is (approximately)

1 ([ =583\ _ -1
('g‘m"-ﬁ( 584 )) - ('g'n'ﬁ-‘( 1.002 ))

Since the actual dominant eigenpair is

()

the method has worked well in this example.

Now

Al -9.05

Although the power method has worked well in these examples, we must
say something about cases in which the power method may fail. There are
basically three such cases:

1. Using the power method when A is not diagonalizable. Recall that A
has n linearly independent eigenvectors if and only if A is diagonal-
izable. Of course, it is not easy to tell by just looking at A whether it
is diagonalizable.



2. Using the power method when A does not have a dominant eigenvalue,
or when the dominant eigenvalue is such that

|.:’L[| > IJL:_-I but I,l|| = |;'|._;_-I

(Then |A;/As| is barely less than 1, and high powers of |A; /2| do not
tend to zero quickly.) Again, it is not easy to determine whether A has
this defect by just looking at A.

3. If the entries of A contain significant error. Powers A™ of A will have
significant roundoff error in their entries.

Here is a rule of thumb for using the power method:

1. Try it, and if the numbers

Amt lX[] . Am X[]
A™ Xy - A™ Xy

approach a single number A;, then stop and go to step 2.
2. Check whether (A, A™Xy) is an eigenpair by checking whether

_r"l{.r"lmX[]} = .}tl[-r'im-X[]}

3. If step 2 checks, accept
(A, A" Xp)

as a dominant eigenpair.

Example 4. Check the answer to Example 3.

Solution The proposed eigenpair is

~1
(s (e )
To check, we calculate

-1 -1
"‘( 1.{][15) and '9'“5( 1.m5)



N (=T 2N\ (=1 (901
‘ 1.005 )\ 8 -1 Lo05 )~ \ =9.005
-1 9.05
_g'm( 1.005 ) N ( —9.09525 )
Thus
-1 - —0.04 (0
”1( 1.005 ) ~ (=9.05) ( 1.005 ) = ( 0.09025 ) = (n)
-1 . -1
”"( 1.005 ) = ‘g‘“5( 1.005 )

and the answer checlks.

and

20

To illustrate possible failure of the power method, we show an example.

Example 5. Try the power method on

1 1
-(2)
1 1
() 0m()

Explain the results.

with

Solution Let

Then we have



We see that

J'll‘a“X[] = (;) and z’ll‘a“']X[] = ( _:-12 )

so that A™ X}, is not becoming parallel to any vector. Also

2 1
APHX AT X ( -1 ) ' (1) 1
AnX, - AZmX, (1) (1\ 2
()-)

1 2
A:h:x[] _A'.E]J—]X[] B (1) ’ ( -1 ) B
J:li:u—]x[] . _v’lm_]X[] - 9 2 -
(1)-(=)

S50 we have no approximation to the eigenvalues. The power method has

failed when
1
X[] — (1)

1
5

When

We find

0
..-'1X[] = (1)

enea()-( )
exnma( )= ()
woa()-()

and for the same reasons as before, the power method fails. Also in this case
the approximations to A, oscillate between —% and —1.



An explanation for the failure is that A has no dominant eigenvalue. In
fact, the eigenvalues are 1 and —1, which have the same magnitude.

When to Stop in the Power Method We would like to have a rule
about when to stop in using the power method. Usually we would stop
when |AJ™ — A3%%| is small. However, in most realistic problems we do not
know A;"™ so we can only estimate |[AS" — A1"!| This can be done for
symmetric A.

3-2. Iteration method (or Method of successive approximatio
Suppose we want the approximate roots of the equation
fx)=0 (1)
Now, write the equation (1) in the form
| x = §(x) -(2)

Solution. Let f(x)=x—2x=5=0
f(2)==1=-ve; f(3)=16=+ve
The root lies between 2 and 3 and closer to 2. f(x) =0 can be written a
1

P=u+5: ie. x=(2x+53=06(x



¥ =5 —

(2x+ 57"
LU |
| ¢’(x) | <1 for all x in (2, 3).
Take x3=20

x, = (2% + 5)' =97 =2.0801
X, =(9-1602)% =2.0924 ; x;=(9-1848)'% =2.0942
x,=(9-1884)3 =2.0045 ; x;=(9:1890)" = 2:0945

Therefore the root is 2-0945.

Example 6. Find a positive root of 3x—1+ sinx =0 by iteration
method.

Solution. Writing the given equation as

| - COS X
x=—V1+sinx = ¢(x), ¢'(x) =————
3 6V1 +sinx

The root of given equation lies in (0, 1)
since f(0)=-ve and f(1)=+ve

In (0, 1), |¢'(x)| <1 for all x
So, we can use iteration method.

Taking %,=04, x, =% T+ sin (04) =0-39291

12:?1- 1+ sin (0.39291) = 0-39199

xﬁ=-;-xu +sin (0-39199) =0-39187
X, =0:39185
x5 =039185

The root is 0-39185.



NUMERICAL METHODS AND COMPUTER PROGRAMMING (SPH5107)
UNIT -1l

INTERPOLATION, CURVE FITTING AND STATISTICS

NEWTON FORWARD INTERPOLATION FORMULA

A A? Ak
Pn(z) =%+ gUEI—In)+ 2!§;[T—Tu}[1—11)+"'+ k!:fiz—zu)---[z—m—l)
jII"'T'?J"I::I
+W[I—Iu)...[I—IN_1).
Letuzm_kzu,thm

z—1z1 =hu+zo— (zo+h)=hlu—1),z —z2 =h(u—2),...,z —zp = h{u— k), etc..

With this transformation the above forward interpolation formula is simplified to the following form:

Ayg A'-zll'r:n Ak Yo B*

2 (k) + ST { () (Blw — 1)} + -+ =

Pxlu) = wo + [u[:u—l}---l:u—k+1}]

AN
o e [ (hw = 1) - (bl = ¥ 1)

i‘ik‘!,-'cn
k!

Qiz'yo
21

= yo + Awyolu) + fufw—1)) 4+ +

w1 kD)

ﬂlN'yo

+
N

|:1.r,[:1.|: — 1) (u— N+ 1)] .
If N =1, we have a linear interpolation given by

flu) = yo+ Ayo(u).
For N = 2, we get a quadratic interpolating polynomial:

LT

flu) = yp + Ayglu) + 3



NEWTON BACKWARD INTERPOLATION FORMULA

Py(z)=b+ bz —zx)+bi(z—zn)(z—zn—1)+ -+ bn(z —zn)(z —zN—1) - [z —21),

then using the fact that P (z;) = s, we have

by = uw
1 1
b = E[w —yn-—1) = EVyN

_yv —Zyn—1+yn—2 _ 1

b2 2h2 T oR2

(Viyn)

1

k
RiRe Y Y

bkz

Thus, using backward differences and the transformation = = =z + hu, we obtain the Newton's backward

formula as follows:

u{u+1)

+1) (u+N-1
- u+1) wa N=Dow

Viyn + -+
yn N

Py (u) = yv +uVyny +

PROBLEM 1

Obtain the Newton's forward interpolating polynomial, FPs(z) for the following tabular data and interpolate the
vahe of the function at = = 0.0045.

x 0 0001 0.002 0.003 0.004 0.005
v 1.121 1.123 1.1255 1.127 1.128 1.1285



Solution: For this data. we have the Forward difference difference table

T | w Ay | APya | Aly; | A%y | ASy;

0 |1.121 | 0.002 |0.0005 -0.0015| 0.002 '-.0025
001 1.123 |0.0025 -0.0010 | 0.0005 |-0.0005
002 11.1255 |0.0015 |-0.0005 00
003 1.127 | 0.001 -0.0005
004 1.128 |0.0005

005 1 1.1285
Thus, for z = zg + hu, where g =0, R =0.001 and u = - zu, we get
Py(z) = 1121 4+ u x 002 + %{.uuus] I Gl 13]|{“ =2 « (—.0015)

I ulu — l]{u‘il— 2)(u —3) (.002) + uu—1)(u— 25}|{u_ 3)(u—4) x (—.0025).

P5(0.0045) = Ps(0 +0.001 x 4.5)

00005 o e @ X 45 3.5 x 2.5

=1121+0.002 x 45+

0.002 0.0025
45%35%25%x 15—
g ERXgmxesX 120

= 1.12840045.

wdbx3bx2bx1bx05b




PROBLEM 2
Using the following table for tan z, approximate its value at 0.71. Also, find an error estimate (Note

tan(0.71) = 0.85953 ).

T 0.70 72 0.74 0.76 0.78

tanzi 084229 (0.87707 0.91309 |0.95045 |0.98926

Solution: As the point z = 0.71 lies towards the initial tabular values, we shall use Newton's Forward fornmla. The
forward difference table is:

Ti % Ay Ay, | Ay | Aty

0.70 |0.84229 |0.03478 |0.00124 | 0.0001 |0.00001
0.72 |0.87707 |0.03602 |0.00134 |0.00011

0.74 |0.91309 |0.03736 |0.00145

0.76 |0.95045 |0.03881

0.78 |0.98926

In the above table, we note that A®¥ is almost constant, so we shall attempt grd degree polynomial interpolation.

071 -070

Note that zg = 0.70, = = 0.02 gives u = 002

= 0.5. Thus, using forward interpolating polynomial of

degree 3, we get

0.00124 ., 0.0001
o -+

Pa(u) = 084220 + 0,03478u + w(u—1)(u—2).

0.00124

Thus,  tan(0.71) & 0.84220 + 0.03478(0.5) + —,

% 0.5 x (—0.5)

0.0001
-+

T 0.5x (—08) % (—1.5)

= 0.859535.



An error estimate for the approximate value is

341’9
4!

u(u—1)(u—2)(u—3) = 000000039,

u=05

Note that exact value of tan(0.71) (upto 5 decimal place) is 0.85953. and the approximate value. obtained using

the Newton's interpolating polynomial is very close to this vale. This is also reflected by the error estimate given
above.

PROBLEM 3

Apply third degree polynomial for the set of values given by to estimate the value of f(10.3) by taking
(z) zo =9.0, (22) zo = 10.0.
Also. find approximate valie of f{13.5).

Solution: Note that £ = 10.3 is closer to the values lying in the beginning of tabular valies, while £ =135 is
towards the end of tabular values. Therefore, we shall use forward difference formula for £ = 10.3 and the
backward difference formula for £ = 13.5. Recall that the interpolating polynomial of degree 3 is given by

Ay Alyg
ol Sufu—1)+ —gule— 1)(u—2)

flzg + ku) = yg + Aygu +

Therefore,
103 -09.0

1. for zp =9.0, k=10 and = =103, we have u = 1

= 1.3. This gives,

2 .0
f(10.3) =5+ 4x 13 +ﬁ{1'3} % .3 +a{1.3) % .3 x (—0.7)

= 5.550.

103 —-10.0

2. for zg =100, h=1.0 and z =10.3, we have u = 7

= .3. This gives,

F(10.3) = 544 6x 3+ '2—2:{.3) X (—0.7) + #{.3) % (=0.7) % (=1.7)

= 5.54115.



Note: as £ = 10.3 is closer to z = 10.0, we may expect estimate calculated using o = 10.0 tobe a

better approximation.
for zo = 13.5, we use the backward interpolating polynomial, which gives,

2 &3
flzxa + hu) = yg + Vynu + V;Nu[u +1)+ ;I"Nul{'u +1){u + 2).
| 135 — 14 -
Therefore, taking zy = 14, 2 = 1.0 and z = 13.5, we have u = I = —0.5. This gives,

-01 0.0
f(13.5) =81+ 6 (~0.5) + —=(~05) x 05 + -~ (~0.5) x 0.5 x (L1.5)

= 7.8125.

LAGRANGES INTERPOLATION FORMULA

(z—zo)(z—z2) (22— Zn)

(21 — zg)(z1 — Z2) -+ (Z1 — Tp)

_(z—z)(z—z2) (2 —Zn)
IU_II)"'[IU_I-H)

flza) + flz1)

(z—zo)(z—21) (2= Zn—1)

(Zpn — 20)(Tn — 1) (Zn — Tn1)

flzn)

PROBLEM 1
Using the following data, find by Lagrange's formula, the value of f(z) at z =10 :

2 0 1 2 2 4

i 9.3 96 | 102 | 104 | 10.8

% =f(z:) (1140 |12.80 14.70 |17.00 |19.80

Also find the value of = where f(z) = 16.00.

SOLUTION:



1140 12.80 . 14.70
0.7 x 04455 ' 04 x (—0.1728) ' (—0.2) x 0.0648

F(10) =~ —0.01792 x [

. 17.00 . 19.80
(—04) x (—0.0704) * (—0.8) x 0.4320

= 13.197845.

Now to find the value of z such that f(z) = 16, we interchange the roles of = and y and calculate the

following products:

Thus,the required value of T is obtained as:
9.3 N 9.6 N 10.2
4.6x 2173248 ° 32x (—78204) 1.3 x 73.5471

T =2 217.3248 x [

N 10.40 N 10.80
(—1.0) x (—151.4688) ' (—3.8) x 839 664

= 10.39123.

CURVE FITTING BY METHOD OF LEAST SQUARES
The principle of least squares the method of least squares which gives a

unique set of values to the constants in the equation of the fitting curve.

7
F'a /

nl
° M, M M M, X
Let (x;,¥),i=1,2,...,n be the n sets of observations and let

y=f(x) (1)
be the relation suggested between x and y.




E Zd, Z [y;— f (x))? is the sum of the squares of the residuals.

i=1 i=1
If E=0, ie., ecach d;=0, then all the n points P; will lic on
y=f(x).

If not, we will choose f(x) such that E is minimum. That is, the best
fitting curve to the set of points is that for which E is minimum. This principle
is known as the principle of least squares or the least square criterion.

(_1') a straight line (ir) a second degree curve

Fitting a straight line by the method of least squares

Fitting a straight line
Let y = a + bx be the equation of the line fo be fitted. To estimate the values of a
and b we have, the following normal equations.

M "
> yi =na+b x
=l Tl

i)

Elﬂx —a‘)—x +EJ“>—1
Tl :-1 :-1

il

Here n 1s the number of observations, and the quantities El}' , E ¥i > Z x;y; and
il =l Tl
m
N xf can be obtained from the given set of points (x;, y;); i = 1, 2, ..., n and the above

=l

equations can be solved for a and b.

By the principle of least squares, £ is minimum.
dE dE

:i;"ﬂ and :ﬁ;"ﬂ

ie, 2%[y,—(ax;+b)](~x)=0 and 2ZE[y,—(ax;+b))(~1)=0

iLe., Z (xpy; = ﬂ-“dz - bx)=0 and Z i~ ax;— b) =

i=1 i=1



n n n
a¥ x'+b) 5= xy (1)

i=1 i=1 i=1

ay x+nb=2y (2)
i=1 i=1

Since, x; y; are known, equations (1) and (2) give two equations in
a and b. Solve for a and & from (1) and (2) and obtain the best fit
y=ax+b.
Note 1. Equations (1) and (2) are called normal equations.
2. Dropping suffix i from (1) and (2), the normal eguations are
aIx+nb=Iy and aEx®+bEx=ZExy
which are got by taking L on both sides of y=ax+b and also
taking Ebon both sides after multiplying by x both sides of
y=ax+b.

- -b
3. - Transformations like x-‘ﬁ"-r-"} roduce the lincar

equation y=ox + P to the form ¥=AX + B. Hence, a linear fit is
another linear fit in both systems of coordinates.

prOBLEM 1. BY the method of least squares find the best fitting
straight line to the data given below

x 5 10 15 20 25

y 15 19 23 26 30
Solution. Let the straight line be y=ax+b
The normal equations are aXx+ 5b =Xy (1)

aXx* + bEx = Exy )

To calculate Ix, £x%, Iy, Zxy we form below the table.

x y 'e xy

5 16 25 80

10 19 100 190

15 23 225 345

20 26 400 520

25 30 625 750

75 114 1375 1885




The normal equations are 75a+ 5b=114 A1)

f 1375a + 75b = 1885 .(2)
Eliminate b; multiply (1) by 15
o 1125a + 756 = 1710 w(3)
(2) - (3) gives, 250a=175 or a=07
Hence b=123

Hence, the best fitting line is y=07x+12-3

Fit a straight line to the data given below. Also

PROBLEM 2:
estimate the value of y at x=2-5.
X = 0 i 2 3 4
y o i 1-8 33 45 6-3
Solution. Let the best fit be y=ax+ b ...(1)
The normal equations are
alx+5b=1Ly wa(2)
aZx® + bEx = Exy ..(3)
We prepare the table for easy use.
x y e xy
0 1-0 0 0
1 1-8 1 1-8
2 i3 4 6-6
3 4.5 9 13.5
4 6-3 16 252
Total 10 169 30 471
Substituting in (2) and (3), we get,
10a + 5b = 169
30a + 10b=47-1

Solving, we get, a=133, b=072
Hence, the equation is y=1-33x+0-72
y(atx=25)=133x25+072=4.045



Find the best-fit values of @ and & so that v=a + &x fits the data given in the table.

Sol. Let the straight line is y=a+bx

x: (01 | 2|3 |4

v 1.3 133(45|63
X ¥ Xy x?
0 1 0 0
1 18 1.8 1
2 3.3 6.6 4
3 45 135 9
4 6.3 25.2 16

Y x=10 | D y=169 | D xy=47.1| 3 x* =30

Normal equations are, 2 y=na +b2x

ny:aZx +52x2

Here n=5, D x=10, X y=169, > xy=47.1 3 x* =30

Putting these values in normal equations, we get
16.9=5a +10b

47.1=10a + 308
On solving these two equations, we get

a=072, £=133.
So required line y=0.72+1.33x. Ans.

Fitting a parabola

Let y =a + bx+ cx” be the equation of the lme to be fitted. To estimate the

values of @ and b and ¢, we have, the following normal equations.

| n |
SNy, =na+bS x, +¢> x,”
A ) S

1=l

il

Tl

] " n R
Sy, =ay x, +b> x7 +e> x]
S " s ) S

Tl

n R R

3 .
SNxTy. =ay x; +bY x,
i " e s

Tl

Tl

1=l

fml =l

n

i=l el

3 4
+cy x,

(D)

(2)
.(3)



m " "
Here n 1s the number of observations, and the quantities > x, . > v,, > %y, > X,
E s ] " ]
f Tl

=1 1=l T=l

Find the least square polynomial approximation of degree two to the data.

x| 0|1 (23| 4
v =4 |-=1(4]11 |20

Also compute the least error.

Sol. Let the equation of the polynomial be y=gq+bx +cx’ (1)
X ¥ xy x* xzy x° x*
0 —4 0 0 0 0 0
1 -1 -1 1 -1 1 1
2 4 8 4 16 8 16
3 11 33 9 99 27 81
4 20 80 16 320 64 256
Nx=10] 3 y=30| Yxy=120 | 3 x* =30 | D x*y=434 | Y x*=100| ¥ x* =354

The normal equations are,

N y=na+by x+ey 5 (2
Sxy=ad x+b> 5"+ x° .(3)
Sty=adF +63 0+t ()
Here n = 5,3 x=10, > y=30 Y xy=120, Y x*=30, Y x*y=431, > " =100,
Y x* =35

Putting all these values in (2), (3) and 4), we get

30=15a+10b+ 30¢ ..(5)
120 =104 + 305 + 100e ..(6)
434 = 30a + 100k + 354¢ (D

On solving these equations, we get a=—4, b=2, c=1. Therefore required polynomial is

y:—4+2x+x2, errors = 0. Ans.

Example 5: Fit a second degree curve of regression of v on x to the following data:

x| 1234
y o |11]18 |27

Sol. We form the following table:



X ¥ x? x° x4 Xy xzy

1 6 1 1 1 6 6

2 11 4 8 16 22 44

3 18 9 27 81 54 162

4 27 16 64 256 108 432
Sx=10 | Zy=62 | ZxF =30 | Ix’ =100 | 3x* =354 | Zxy=190| Xx’y = 644

The equation of second degree parabola is given by
y=a+bx+c

And the normal equations are

Xy =an+bix+ cTx?

Ixy =aix+ bEx? +cIx°

S’y =aEx’ + bEx® + et

g + 106+ 30ec=

y=3+42x+x>. Ans.

Problem:

62
10q + 305 +100c=190
30a + 1008 + 354 ¢ = 644

=a=3,b=2,c=1

(D)

()
.3
()

Fit a second-degree parabola to the following data by least squares method.



x | 1929 | 1930 | 1931|1932 | 1933 | 1934 | 1935 | 1936 | 1937
y| 352 | 356 | 357 | 358 | 360 | 361 | 361 | 360 | 359
. _ (x — xq)
Sol. Taking x, =1933, ¥y =357 then u =

Here £ =1
Taking u = x—x,and v=y—y,, therefore, u=x—1933and v=y—357

2

4

x |u=x-1933| v |v=y-357 “y i uv i i
1929 —4 352 -5 20 16 —-80 —64 256
1930 -3 356 -1 3 9 -9 —27 31
1931 -2 357 0 0 4 0 -8 16
1932 -1 358 1 -1 1 -1 1
1933 0 360 3 0 0 0 0 0
1934 1 361 4 4 1 4 1 1
1935 2 361 4 3 4 16 3 16
1936 3 360 3 o 9 27 27 31
1937 4 359 2 3 16 32 o4 256
Total 2&20 2\2:11 Zuv:Sl 213260 2&%2—9 21&3:0 Ef =708

Then the equation y=a+&x+ cx® is transformed to v=A+ Bu+ Cu’

Normal equations are:

On solving these equations, we get A=——=3, B=

N v=94+BY u+Cy u’
Zuv: AZqu BZHZ + CZu?’

= 11=0A+ 60C
= B=17/20

Sutv=AYut +Byu +Cy ' = —9=60A+708C

y=3+0.855— 0274

231

17
20

y—357 =3+ 0.85(x — 1933) — 0.27(x — 1933)*

y=—1010135.08 + 1044 .69x — 0.27x*. Ans.

247

(D)

—=085and C=—-=""=-027
04



COREELATION AND REGRESSION
1. Karl Pearson Coefficient of Correlation

HX.T) = Cov(X.T)
Ox0Oy
> (-0, - 7)
rX.¥)= =l ;
{im D230, —J-'JET
EZ Vi —[ZK:‘} Z}'i]
T{X.Y-J= =1 1=l g

|' n N T N n 2
\||[ﬂzsz_{zxi} lﬂZ}’jz—{Z?:‘] }

The maximum value r can achieve 1s 1, and its minimum value 15 —1.

Therefore, for any given set of observations, —1<r< 1.

The values = 1 and = — 1 occur when there 1s an exact linear relationship between x
and y. As the relationship between x and y deviates from perfect linearity, r moves away
from 1 or — 1 and closer to 0.

If y tends to increase in magnitude as x increases, 7 1s greater than 0 and x and vy are said
to be positively correlated; 1f y decreases as x increases, r 1s less than 0 and the two

varnables are negatively correlated.

If r = 0, there 1s no linear relationship between x and y and the variables are uncorrelated.



2. Spearman’s Rank Correlation Coefficient
If X and Y are qualitative variables we use Spearman’s rank correlation coefficient which

1s defined as follows:

6> d;’
p=1-—/F1 Where d is the difference in ranks.
n[n‘ —1)

Note: If there 1s more than one item with the same value or rank in the series then
Spearman’s formula for calculating the rank correlation coefficients 1s modified as
follows. In this case, common ranks are given to the repeated ranks. This common rank
1s the average of the ranks which these items would have assumed 1f they are slightly
different from each other and the next item will get the rank next the ranks already
assumed. As a result of this, following adjustment 1s made in the formula: add the factor

% to Zdj where m 1s the number of items an 1tem 1s repeated. This correction
factor 1s to be added for each repeated value.

Exf 53 x, and Exi: ¥, can be obtained from the given set of points (x; vy, i = I, 2,
Tl ful ol
..., 1 and the above equations can be solved for a, b and c.

3. Regression equations

Prediction or estimation of most likely values of one vanable for specified values
of the other 1s done by using suitable equations mnvolving the two varables. Such
equations are known as Regression Equations

Regression equation of y on Xx:
Yy — ¥ =Dby (x— X ) where y 15 the dependent variable and x 1s the independent

variable and by, 15 given by

E (x—x)y-»)

_ il
b}x - n
S (x-%)°
=l
" M i
nY XY= x>y
or S A = i=l =l

¥x o, . n 32
Nyt Ny
M‘./._.-x L.l

=l f=1



Regression equation of x on y:
X — X =Dbgy (y— ¥ ) where y 1s the dependent vanable and x 1s the independent
variable and byy 15 given by

3 (=D )

-l
b, = -
T AT
> =¥
=1
Nao-NaxNy
:1%1} .;11{,_1}
I S £ [ [
or EJ_H =7 = p ~

. mo n
] Nyl .
) )

iml =l

byx and by, are called as regression coefficients of y on x and x on y respectively.

Relation between correlation and regression coefficients:

X

G-.]-
b,=r— and b =r

o, a,
o o 4
b, b,=r—r—==r
o, G__].
]
Hence r=x,/b,b,

Note: In the above expression the components inside the square root 1s valid only when
byx and byy have the same sign. Therefore the regression coefficients will have the

same sign.

The data below gives the marks obtained by 10 pupils taking
Maths and Physics tests.

Pupil A B C D E F G H I J

Maths mark
(foutof 30) (20 23 8 29 14 11 11 20 17 17

X

Fhysics mark
(outof40y |30 35 21 33 33 26 22 31 33 36

y

Calculate the correlation co-efficient?



1 _ 1 _
5, = "'-.='_sz —x* and S, = "'..,;’;Eyz —y° .

where
VM
1
= x5313-17x%30
_ 10
yF=
SIXS},
7=0_y7
10
1 .
__300_ s.=.——x3250-17* =36 =6
T 10

s o= L %9250-30% =25=5
’ =\ 10

_531.3-510
6X3

¥

=0.71



A group of twelve children participated in a psychological study
designed to assess the relationship, if any, between age, x years,
and average total sleep time (ATST), y minutes. To obtain a
measure for ATST, recordings were taken on each child on five
consecutive nights and then averaged. The results obtained are
shown in the table.

Child Age (x years) ATST (v minutes)
A 4.4 586
B 6.7 565
C 10.5 515
D 9.6 532
E 12.4 478
F 55 560
G 11.1 493

H 8.6 533
| 14.0 075

J 10.1 490

K 7.2 530

L 7.9 515



Yx=1083y=6372X x> =1060.1 Y 3* =3396942 ¥ xy = 56825.4

Calculate the value of the product moment correlation coefficient

between x and y. Assess the statistical significance of your value
and interpret your results.



Solution
(a) Use the formula

1 _
Sy = _ny_ XY
1

@—9 andf=@=53l.

when x = =
12 12

Thus

S.xy

= %(56825. 4)—9x531=-43.55

1

Also s =...,II:5E><1060.1—92 = 2.7096

X

5, = i>< 3396942 — 531% =~ 33.4290

712

—43.55

2.7096 X 33.4290

Hence

Rank correlation problem:



Two judges at a fete placed the ten entries for the 'best fruit
cakes' competition in order as follows (1 denotes first, etc.)

Entry A B C D E F G H | J
Judge 1

{x) 2 9 1 3 10 4 6 8 5 7
Judge 2

) 6 9 2 1 8 4 3 10 7 5

|l there a linear relatlonshlp between the rankings produced by
the two Judges?

Solution:

L _q__6zd’
g alr’—1

d=x—y, 1s the difference in ranking.



ldl |4 0o 1 2 2 0

d> |16 0 1 4 4 0

So Yd* =16 +0+1+ ... +4 =46
6 X 46
= r.=1-
s 10(100 —1)
1 6 X 46
10 X 99
_119
165

= (0.721 to 3 decimal places.



Repeated rank problem:
Find the value of » for the following data

RanKSx‘1 2= 2=5 4 6 7 8

Ranks y ‘ 1 3 4 2 5 6= 6= 6=

Solution

Those tied in the x rankings are given a value of % =21 and

o+7+8 =7. (In general, each tie 1s

those tied 1n y are allocated

given the mean of the places that would have been occupied if a
strict order had been produced.) The table, therefore, becomes

Ranks x | 1 21 21 5 4 6 7 8
Ranks y | 1 3 4 2 5 7 7 7
| d| o L+ 11 3 1 1 0 1
d* o + 22 g 1 1 0

Hence >d* =14.5
6x14.5
and r.=1

T g(64-1)

=0.827



Problems on Regression:

Find the lines of regression for the following data:

Mass g (x) ‘50 100 150 200 250 300 350 400

Lengthmm(y)‘ 37 48 60 71 80 90 102 109

Solution:
F=1Rems, §=Il=T62
=100 295 74.625 = 2728125
2= 20000 9557 13125
L e 2TBIB g
13125
Sy
y-y=—"2(x—3)
s, = | y=0.208x+27.857

The values of 0.208 and 27.857 represent the gradient of the line
and its intercept on the y-axis



2.

In a decathlon held over two days the following performances were
recorded in the high jump and long jump. All distances are in
metres.

Competitor A B © D E F G

Highjump x» | 1.90 1.85 1.96 1.88 1.88 Abs 1.92
Longjump vy | 6.22 6.24 6.50 6.36 6.32 6.44 Abs

What performances might have been expected from F in the high
jump and G in the long jump if they had competed?



Solution

To estimate G's performance in the long jump we use the v on x line.

5
Now y-y=—"45(x—X)

x

Ea

and using competitors A to E,

f:%:ﬁﬂs, =21 _1gm
5 5
Also Sg = %:x: 59.9404 — 6.328 x1.894 = 0.002848
5’ :%xl?. 9429 —1.894% = 0.001344
= y—6.328= 2002848 (x—1.894)
0.001344

= y=2119x+2.315
Thus x=1.92 gives $=2.119x1.92+2.315=6.38m

Now to estimate F's high jump accurately we need a line for
which the sum of the horizontal distances from it is a minimum.

This is the x on v line and its equation is



_ & —
x-¥= (y-3)
3}’

5’ =%><200. 268—6.328" =0.010016

_0.002848
0.010016

= x=0.284y +0.095.

= x-18% (y—6.328)

C =64 = 1=0.284x6.44+0.095=192 m
x=192 =  $=6.38

y=6.44 — =192

THEORY OF SAMPLING
TEST OF HYPOTHESIS




Population:
The group of individuals, under study is called is called population.

Sample:
A finite subset of statistical individuals in a population is called Sample

Sample size:
The number of individuals in a sample is called the Sample size.

Parameters and Statistics:
The statistical constants of the population are referred as Parameters and the
statistical constants of the Sample are referred as Statistics.

Standard Error :
The standard deviation of sampling distribution of a statistic is known as its
standard error and is denoted by (S.E)

Test of Significance :

It enable us to decide on the basis of the sample results if the deviation between the
observed sample statistic and the hypothetical parameter value is significant or the
deviation between two sample statistics is significant.

Null Hypothesis:
A definite statement about the population parameter which is usually a hypothesis
of no-difference and is denoted by H,,

Alternative Hypothesis:
Any hypothesis which i1s complementary to the null hypothesis is called an
Alternative Hypothesis and is denoted by H,

Errors in Sampling:
Type I and Type Il errors.
Type | error : Rejection of Hy when it is true.
Type Il error : Acceptance of Hy when it is false.

Two types of errors occurs in practice when we decide to accept or reject a
lot after examining a sample from it. They are Type 1 error occurs while rejecting
H, when it is true. Type 2 error occurs while accepting H, when it is wrong.



Critical region:

A region corresponding to a statistic t in the sample space S which lead to the
rejection of H, is called Critical region or Rejection region. Those regions which
lead to the acceptance of H, are called Acceptance Region.

Level of Significance :

The probability o that a random value of the statistic “t”" belongs to the critical
region is known as the level of significance. In otherwords the level of significance
is the size of the type I error. The levels of significance usually employed in testing
of hypothesis are 5% and 1%.

A test of any statistical hyposthesis where the alternate hypothesis is one
tailed(right tailed/ left tailed) is called one tailed test.

For the null hypothesis Hy if g =y then.

H, = u >y, (Right tail)

H;= U< ug(Left tail)

H,= u# puy(Two tail test)

Types of samples :

Small sample and Large sample

Small sample (n=<30 ) : “Students t test, F test , Chi Square test
Large sample (n>30) : Z test.

95 % confidence limit for the population mean p in a small test,
Let x be the sample mean and n be the sample size. Let s be the sample S.D.
Then ; * thos (54"[""."1]—1)
Application of t — distribution
When the size of the sample is less than 30, ‘t’ test is used in (a) single mean and
(b) difference of two means.

Distinguish between parameters and statistics.

Statistical constant of the population are usually referred to as parameters.
Statistical measures computed from sample observations alone are usually referred
to as statistic.

In practice, parameter values are not known and their estimates based



The critical or rejection region is the region which corresponds to a predetermined
level of significance c.. Whenever the sample statistic falls in the critical region we
reject the null hypothesis as it will be considered to be probably false. The value
that separates the rejection region from the acceptance region is called the critical

value.

level of significance

The probability o that a random value of the statistic ‘t’ belongs to the critical
region is known as the level of significance. In other words level of significance is
the size of type I error. The levels of significance usually employed in testing of
hypothesis are 5% and 1%.

Tvpe I Student t test for sinele mean

1] =
s/n—1

Where x is the sample mean, p is the population mean, s is the SD and n is the
number of observations.

1. The mean weakly sales of soap bars in departmental stores were 146.3 bars per
store. After an advertising campaign the mean weekly sales in 22 stores for a
typical week increased to 153.7 and showed a SD of 17.2. Was the advertising
campaign successful?

Solution:
Calculated t value = 1.97 and Tabulated Value = 1.72( at 5% level of

significance with 21 degrees of freedom)
Calculated value > Tabulated value, Reject Ho(Null hypothesis)



2. A sample of 26 bulbs gives a mean life of 990 hours with SD of 20 hours. The
manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not
upto the standard.
Solution:
Calculated t value =2.5
Tabulated Value = 1.708( at 5% level of significance with 25 degrees of
freedom)
Calculated value > Tabulated value, Reject Ho(Null hypothesis)

3. The average breaking strength of steel rod is specified to be 18.5 thousand
pounds. To test this a sample of 14 rods was tested. The mean and SD obtained
were 17.85 and 1.955 respectively. Is the result of the experiment significant?
Solution:

Calculated t value =1.199

Tabulated Value = 2.16( at 5% level of significance with 13 degrees of
freedom)

Calculated value < Tabulated value, Accept Ho(Null hypothesis)

A machinist is making engine parts with axle diameter of 0.700 inch. A random sample
of 10 parts shows a mean diameter of 0.742 inch with a standard deviation 0£0.040 inch.
Compute the statistic you would use to test whether the work is meeting the
specifications
Solution:

Here we are given

n=0.700inch X =0.742 inch s =0.040inch andn= 10

Null hypothesis Hyp: 1= 0.700 inch

i.e., the product is conforming to specifications

ﬁltemativehypothesis: Hi:pu+ 0.700inch

D 742 —0.700
The test statistic t= =3.15

T

(10 -1)
Here the test statistic follows the student’s t distribution with 10-1 =9 degrees of

freedom. At S5 % level of significance, the table valueis 2.26

Hence the calculated value > table value

So the null hypothesis is rejected and we conclude that there is significant difference and
the product is not conforming to specifications.



Type II Student t test when SI) not given

|t] =G -/ (sn) )
Where x = X(x)/n and s> = 1/(n-1) = (x-x)°

Students t test where SD of the sample is not given directly)

I. A random sample of 10 boys had the following IQ’s
70,120,110,101,88,83,95,98,107,100. Do these data support the assumption of a
population mean IQ of 1007 Find the reasonable range in which most of the mean
1Q values of samples of 10 boys lie?

Solution:

Calculated t value =0.62

Tabulated Value = 2.26( at 5% level of significance with 9 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis)

95% confidence limits : (86.99,107.4)

2. The heights of 10 males of a given locality are found to be
70,67,62,68,61,68,70,64,64,66 inches. Is it reasonable to believe that the average
height is greater than 64 inches Test at 5%.

Solution:

Calculated t value =2

Tabulated Value = 1.833( at 5% level of significance with 9 degrees of freedom)
Calculated value > Tabulated value, Reject Ho (Null hypothesis)

3. Certain pesticide is packed into bags by a machine. A random sample of 10 bags

is drawn and their contents are found to be as follows:

50,49,52,44,45,48,46,45,49,45. Test if the average packing to be taken 50 grams

Solution:

Calculated t value =3.19

Tabulated Value = 2.262 ( at 5% level of significance with 9 degrees of
freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)



Tvpe 111 Student t test for difference of means of two samples

To test the significant difference between two mea n x, and x, of sample sizes n,
and n-, use the statistic.
} |tl:(}1}—}3]fsx"[[]fn]}+(lh]3}]
where 8" = (n;8;,” + M8, ) (n; + n, — 2)
s; and s, being the sample standard deviations degree of freedom being n; + n, — 2.

1. Samples of two types of electric light bulbs were tested for length of life and
following data were obtained.

Type | Type 1

Samplesize n; =8 n,=7

Sample means x;= 1234 hrs | x, = 1036 hrs

Sample S.D. S; = 36 hrs s> = 40 hrs

Is the difference in the means sufficient to warrant that type I is

superior to type Il regarding length of life.

Solution:

Calculated t value =9.39

Tabulated Value = 1.77 ( at 5% level of significance with 13 degrees of freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)




2. Below are given the gain in weights (in N) of pigs fed on two diets A and B.

Diet A |25 [32 |30 |34 |24 |14 |32 |24 |30 |31 |35 |25
DietB |44 |34 |22 |10 |47 |31 |40 |32 |35 |18 |21 |35 |29 |22
Test if the two diets differ significantly as regards their effect on increase in

weight.

Solution:

Calculated t value = 0.609

Tabulated Value = 2.06 ( at 5% level of significance with 25 degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)
3. The nicotine content in milligrams of two samples of tobacco were found to be
as follows:

Sample |24 (27 |26 |21 |25

A

Sample |27 (30 |28 |31 (22 |36
B

Can it be said that two samples come from normal populations having the same
mean.

Solution:

Calculated t value = 1.92

Tabulated Value = 2.262 ( at 5% level of significance with 9 degrees of

freedom)
Calculated value < Tabulated value, Accept Ho (Null hypothesis)

CHI-SQUARE TEST FORMULAE
wz . (0 —E E)
Where O is the observed frequency and E is the Expected frequency

Under the test of goodness of fit we try to find out how far observed values of a
given phenomenon are significantly different from the expected values. The Chi
square statistic can be used to judge the difference between the observed and

expected frequencies. . .
'qfl test can be applied only for small samples.
Degree of freedom = n— 1 where n is the no. of observations.



CHI-SQUARE TEST FOR INDEPENDENCE OF ATTRIBUTES

An attribute means a quality or characteristic. Eg. Drinking, smoking, blindness,
honesty

2 X 2 CONTINGENCY TABLE

Consider any two attributes A and B. A and B are divided into two classes.

OBSERVED FREQUENCIES
A b
B |c|d
EXPECTED FREQUENCIES
E(a)= E(b)=(b+d)(a+b)/N | a+b
(a+c)(a+byVN
E(c) = | E(d)=(b+d)(c+d)/N | c+d
(a+c)(c+d VN
a+c b+d N(Total
frequencies)
PROBLEMS

1. A die is thrown 264 times with the following results. Show that the die is

bi ase‘d.

No appeared on the |1 |2 |3 (4 |5 |6
die
Frequency 40 |32 |28 |58 |54 |60

Solution:

Calculated y”* value =17.6362

Tabulated Value = 11.07 ( at 5% level of significance with 5 degrees of
freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)



2. 200 digits were chosen at random from a set of tables. The frequencies of the
digits were

Digits O (1 |2 |3 |4 |5 |6 |7 |8 |9

Frequency | I8 |19 |23 |21 |16 |25 |22 |20 |21 |13

Use the y” test to assess the correctness of the hypothesis that the digits were

distributed in the equal number in the tables from which these were chosen.

Solution:

Calculated upr2 value =4.3

Tabulated Value = 16.919 ( at 5% level of significance with 9 degrees of
freedom)

Calculated value< Tabulated value, Accept Ho (Null hypothesis)

3. Two groups of 100 people each were taken for testing the use of a vaccine 15

persons contracted the disease out of the inoculated persons while 25 contracted

the disease in the other group. Test the efficiency of the vaccine using chi square
Lest.

Solution:

Calculated y* value =3.125

Tabulated Value = 3.184 ( at 5% level of significance with 1 degrees of
freedom)

Calculated value< Tabulated value, Accept Ho (Null hypothesis)

Problem 4:

Given the following contingency table for hair colour and eye colour. Find the
value of Chi-Square and is there any good association between the two

Hair Fair Brown Black
colour

Eve colour
Grey 20 10 20
Brown 25 15 20

Black 15 S 20




Solution:

Calculated y”* value = 3.6458

Tabulated Value =9.488 ( at 5% level of significance with 4 degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

LARGE SAMPLES

TEST OF SIGNIFICANCE OF LARGE SAMPLES
If the size of the sample n>30 then that sample is called large sample.

Tvpe 1. Test of significance for single proportion

Let p be the sample proportion and P be the population proportion, we use the
statistic Z= (p-P)/ ,/(PQ/n)

Limits for population proportion P are given by p+3./(PQ/n)
Where q=1-p

1. A manufacture claimed that at least 95% of the equipment which he supplied to
a factory conformed to specifications. An examination of a sample of 200 pieces of

equipment revealed that 18 were faulty. tEst his claim at 5% level of significance.
Solution:

Calculated Z value =2.59

Tabulated Value = 1.96 ( at 5% level of significance) Calculated value >
Tabulated value, Reject Ho (Null hypothesis)

2. In a big city 325 men out of 600 men were found to be smokers. Does this
information support the conclusion that the majority of men in this city are
smokers.

Solution:
Calculated Z value =2.04
Tabulated Value = 1.645 ( at 5% level of significance) Calculated value >

Tabulated value, Reject Ho (Null hypothesis)

3. A die is thrown 9000 times and of these 3220 yielded 3 or 4. Is this consistent
with the hypothesis that the die was unbiased?

Solution:

Calculated Z value =4.94 since z>3

Calculated value > Tabulated value, Reject Ho (Null hypothesis)



4 A random sample of 500 apples were taken from the large consignment and 65
were found to be bad. Find the percentage of bad apples in the consignment.

Solution:
(0.175, 0.085) Hence percentage of bad apples in the consignment lies between

17.5% and 8.5%

Tvpe 11 Test of significance for difference of proportions

Let n, and n, are the two sample sizes and sample proportions are p, and p,

Z=—_(n=r) = where p= (np;+n;p,/n,+n, and g=1-p
w,'qulfn] +1/ny )

1. Before an increase in excise duty on tea, 800 persons out of a sample of 1000
persons were found to be tea drinkers. After an increase in duty 800 people were
tea drinkers in the sample of 1200 people. Using standard error of proportions state
whether there is a significant decrease in the consumption of tea after the increase

in the excise duty.

Solution:

Calculated Z value =6.972

Tabulated value at 5% (one tail) = 1.645

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. In two large populations there are 30% and 25% respectively of fair haired
people. Is this difference likely to be hidden in samples of 1200 and 900
respectively from the two populations.

Solution:

Calculated Z value =2.55

Tabulated value at 5% = 1.96
Calculated value > Tabulated value, Reject Ho (Null hypothesis)



Type I1I Test of significance for single Mean

z= x -t/ (c/Vn) where x is the same mean
L 18 the population mean, s 1s the population S.D.
n is the sample size.

The values of x + 1.96 (a/vn) are called 95% confidence limits for
the mean of the population corresponding to the given sample.

The values of x + 2.58 (o/vn) are called 99% confidence limits for
the mean of the population corresponding to the given sample.

1. A sample of 900 members has a mean of 3.4 cms and SD 2.61 cms. Is the
sample from a large population of mean is 3.25 cm and SD 2.61 cms. If the
population is normal and its mean is unknown find the 95% confidence limits of
true mean.

Solution:

Calculated Z value =1.724

Tabulated value at 5% = 1.96

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

Limits (3.57, 3.2293)

2. An insurance agent has claimed that the average age of policy holders who issue
through him is less than the average for all agents which is 30.5 years. A random
sample of 100 policy holders who had issued through him gave the following age
distribution.

Age 16-20 | 21-25 | 26-30 | 31-35 | 36-40
No of 12 22 20 30 16
persons

Test the significant difference at 5% level of significance.



Solution:

Calculated Z value = 2.68

Tabulated value at 3% = 1.645

Calculated value > Tabulated value, Reject Ho (Null hypothesis)
3 Write down the test statistic for single mean for large samples.

L =X - i/ (o/Nn) where X is the same mean
L 18 the population mean, s is the population S.D.
n is the sample size.

4. The mean score of a random sample of 60 students is 145 with a SD of 40. Fine
the 95 % confidence limit for the population mean.

Solution z = X £ 1.96 (c/\'n)
= 145+ (1.96) (40/760)
=145+ 10.12
= 155.12 or 134.88
.. The confidence limits are 155.12 and 134.88.
Tvpe IV Test of significance for Difference of means
Z=( x - x5)/V (6,7M)) + (657/ny)

PROBLEMS

1. The means of 2 large samples of 1000 and 2000 members are 67.5 inches and 68
inches respectively. Can the samples be regarded as drawn from the same
population of SD 2.5 inches.

Solution:

Calculated Z value =5.16

Tabulated value at 5% = 1.96

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. The mean yield of wheat from a district A was 210 pounds with SD 10 pounds
per acre from a sample of 100 plots. In another district the mean yield was 220
pounds with sD 12 pounds from a sample of 150 plots. Assuming that the SD of
yield in the entire state was 11 pounds test whether there is any significant
difference between the mean yield of crops in the two districts.

Solution:

Calculated Z value =7.041

Tabulated value at 5% = 1.96

Calculated value > Tabulated value, Reject Ho (Null hypothesis)



SPH5107 NUMERICAL METHODS AND COMPUTER PROGRAMMING
UNIT 3
NUMERICAL DIFFERENTIATION AND INTEGRATION

Newton’s forward difference formula to get the derivative
We are given (n + 1)®drdered pairs (x,y,) i =0, 1, ... n. We want to

find the derivative of y =f{x} passing through the (n + 1) points, at a point
nearer to the starting value x = x,.

Newton's forward difference interpolation formula is
u(u—1u-2) A’y

-1
y(xo+uh)=y.=yo+uAyo+“—{“2—!—zA2yo+
A

X —Xo

h

where y (x) is a polynomial of degree n in x and u =

Differentiating y (x) w.r.t. x,

2
1 2, 3 —6u+2 5

+(4u’-|8u2+22u—6)
24

Ay, + ] (2)

Equation (2) gives the value of % at general x which may be

anywhere in the interval.
In special case like x=x,, i.e., u=0, (2) reduces to



) [P _1 T L 1
2] (2] cAlwonetinton]

Differentiating (2) again w.r.t. x,

dy d(dy)du_d(dy)1
f_du de | de dul dx | h
y

—-i[azyﬂﬁu l}ﬁyﬂﬂﬁ“ 18+ 11) Aty + ] (4)

d’ K 12
&y 1 -
Hence, 2%:—[&): %2'8 A'yy + ] ..(5)

Equations (4) and (5) give the second and third derivative value at
X=X

Setting x=xg i.e., u=0 in (4) and (5)

( & -

\Eyl =# B Azyo-Asyo :; A‘ °+ ] "'(6)
=%

(d’ “

£y 1 lia.xk 3 ]

\dx’l"'-h’.Ayo szo sl 7)

Newton’s backward difference formula to compute the derivative
Now, consider Newton's backward difference interpolation formula,

1) 2 1)(v+2
YW=y Gt vh) =y, +v ¥y, 4+ L 92 222D 3,

(8)

where v=



Differentiate (8) w.r.t. x,

dy_dy dv_dy 1|
de dv dx dv h
dy)_1 e W Hbve2 o
(dx]’h[vy"’“ 2 Vot TV
2
L1874+ 2246 v‘y,,+---] ()
24
&y 1[n s 6+ 18v+11
. 'd—xz-z-h—zhvyu*-(v-fl)v.vn 12 V‘ ] ..(10)
dy | 12v+ 18
L DLy, g, +] (1)

Equations (9), (10), (11) give the first, second, and third dcnvatwc
at any general x.

Setting x=x, or v=0 in (9), (10), (11), we get

dy ) I 2, 3
p =z["’-+zv PV
; Jh=x
(dz \
| =L e e vy, ] (13)
\ Ax=x, hz
(ds i . .
y | 3 3 :
A, 3¢ +] (14
dl')x-x h’. )',."'2 Ve o

Example 1. Find the first two derivatives of (x)'° at x=50 and
x = 56 given the table below:



x : 50 51 52 53 54 55 56
f:x'-’f‘ . 36840 37084 3-7325 37563 37798 38030 3-8259

Solution. Since we require f’(x) at x = 50 we use Newton’s forward
formula and to get f'(x) at x = 56 we use Newton's backward formula.

Difference Table

X ¥ Ay Azy A’y
50 3.6840
51 3 ?W’H 00244 — _ 00003

00241 0
52 3.7325 ~ 0-0003

0-0238 0
53 37563 - 0-0003

0-0235 0
54 3.7798 00232 - 0-0003 o
55 3.8030 - - 00003 —

00229 —
56 3.8259 —

By Newton’s forward formula,

2] A=),

1 1
=Z[ AYO-§A2Y0+§ A’y ]
1

=0-02455
&
(5] S

=1 [- 0-:0003] = - 0-0003.



By Newton's backward difference formula,

(dy » dy 1 12 1l
o -’— = 'o-;[Vy.-i-zV .+3V .+---]

\ /
from equation (12)

4
dy 1[ 1 ]
- =—| 00229+ = (- 0:0003) + 0
\aul_“ 1 2
=002275
&) _ire, v from equation (13
P -hz[ Iat nt ] (13)
%“=56

=1 [~ 00003] = - 00003

Example 2. The population of a certain town is given below. Find
the rate of growth of thé population in 1931, 1941, 1961 and 1971.

Year x 1931 1941: ' 1951 1961 1971
Population _ , ;
g : } y : 4062 60-80 79.95 103-56 13265
Solution. We form the difference table.
x ¥ Ay ﬂi}' d.'j'y ﬁ‘y
1931 40-62
T~ 2018 —_
1941 60-80 - 1403 —_
1951 79.95 1915 4-46 49— 4-47
3.61 1.02 —

2
1961 103.56

2909 —
1971 13265 —

We use the same table for backward and forward differences.
(i) To get £°(1931) and f'(1941) we use forward formula,
xo= 1931, x,=1941, ...



>
|

N
h A

dy 1 [ 1 .3 4 ]
( l-o-h[Ayo—ZKA +3Ay-4Avo

%[2013-—(-103)«» (549)-—(-447)]

(&0

. xg= 1931 corresponds u = 0.

B

=—0[2018+0515+ 1-83 + 1-1175]

=2.36425. A1)
D If x= X=Xy _1941-1931 _
(i0) If x= 1941, u="7 2 === |
Putting u=1, in .
9.l 2u—1 —6u+2
i A$=7[Ay°+ 7 4% & N
— 18’ +22u -6 b
- % Ay, -
We get
[ l[zower 1.03) -+ ]
ldx w=1 10 (- )- (549)+— -447)J
|
=75 12018 -0515-0915-03725)
= 1-83775
EXAMPLE 3::

A rod is rotating in a plane. The following table gives
the angle © (in radians) through which the rod has turned for various
values of time t (seconds). Calculate the angular velocity and angular
acceleration of the rod at t = 0-6 seconds.

[ : 0 02 0-4 0-6 08 1-0
L) : 0 0-12 049 1-12 202 3-20

Solution. We form the difference table below:



t ) ve v Ve v'e

0-12

025
e o1 037 001
- o 0-26 001 0

0-63 0
06 1-12 027 001

090 .
oz 2 028 (V'e,)

1-18

(V%8,)
(ve,)

1-0 320
Since x=0-6 is towards the end, we will use backward difference
formula. (We can also use central difference formula).
By Newton’s backward difference formula,

dy| 1 2v+1 W 4+6v+2 3
.(al-:_h[Vy.-l———z sz,-o- 6 vy,

+4v3+ 13y;+22v+6 vAy._.....] (1)

x-xn_0‘6-|'0_
R 02
Using in (1),

49 1 3 !
(%), =sa[118-3 029+ 000]
=5 [118 — 0-42 + 0-00333]
= 3-81665 radians/sec.
dy 1

Also, d—‘;=-’?[vzy,+(v+l)v3.+---]

=1 1028
(d’z]gu-om [0-28 - 0-01]

=6-75 radians/sec’

Here v= -2

NUMERICAL INTEGRATION



TRAPEZOIDAL RULE FOR INTEGRATION:

b
h h h h h
ff{:l:}d.r = 3 [yu+ y1] + ) [y1 + y'z] + -4 3 [[.H: +yk+1] + -+ 5 [[.l’n_'z + yn_1] + 3 [yn_1 +y.,]
1.e.

b
h
ff‘[ﬂdr = E[Lﬁn+2y1+?y2+"'+?yk+'--+2yn—1+yn]

(h/2) [ (sum of the first and last ordinates ) +

(Sum of the remaining ordinates) |

This is called TrRaPEZOIDAL RULE. It is a simple quadrature formula, but is not very accurate.

Remark An estimate for the error E; in numerical integration nsing the Trapezoidal rule is

given by
b—a

12

E]_ - — .'j;“!y',

where A2y is the average value of the second forward differences.
Recall that in the case of linear function, the second forward differences is zero, hence, the Trapezoidal

rule gives exact value of the integral if the integrand is a linear function.

Example 1 Using Trapezoidal rule compute the integral fe’jd:ﬂ__ where the table for the values of y =
]

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.00000 1.01005 1.04081 109417y 1.17351 1.2B402 1.43332 163231 1.B9648 22479 271828
Solution: Here, i =0.1, n = 10,

2.
¥ is given below:

o T Yo _ 1.0+ 271828

2 2

= 1.55914,

and
9

ny = 12.81257.

=1

Thus,
1

e dr = 0.1 x [1.85914 + 12.81257] = 1467171

Simpson’s Rule
If we are given odd number of tabular points.ie. n is even, then we can divide the given integral of
integration in even number of sub-intervals [.Ig;,_—._ I3k+2]. Note that for each of these sub-intervals, we have

the three tabular points xay., Tapsa, Togpss and so the integrand is replaced with a quadratic interpolating
polynomial.



b
h
ff{I]'dI = E[{y[.+y.,]l+-1 *(th+ys+- + ¥+ Yn1)

i

+2x(ya+ya+-+ya+ o+ Yn-z)]

n—1 n—2
h
= 3 (Yo +yn) +4 x Y wi | +2x 5 vi
i=1, i—odd =2, i—even

An estimate for the error E» in numerical integration using the Simpson’s rule

h—a—r—0oH
—_ Ad
Er=—ggg 2y

Simpson’s one third Rule

Suppose the following table represents a set of values of x and v.

x: Xp Xxi X2 X3 X

¥ Yo i 2 Yy ... ¥n

From the above values, we want to find the integration of y = fix) with the range xp and
h

Xp+n

:tuxnﬂx)ir = iji'r{}’rhyn,l + 2{)"‘—’-’_)"‘4"' )j * 4(}"!'")"'3"' }]

= (h/3) [ (sum of the first and last ordinates ) +
+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates) |
The above equation is called Simpson's one third rule and 1t 15 applicable only when
number of ordinates must be odd ( no. of pairs ).

1
CALCULATE fﬁ"tﬂd.r., by Simpson's rule.
0

Solution: Here, i = (0.1, n = 10, thus we have odd number of nodal points. Further,

=]
yo+y0=10+271828=3.71828. Dy =1 +ys+ys + U7+ s = 7.26845,

i=1, i—odd
and
&
Z yi =2+ ya + Ug + ys = 5.54412,

=2, i—even

Thus,
1
1
E:*ﬂ = = s [3.?1&2?3 + 4 = T268361 + 2 = 5.54412] = L46267733



1. Evaluate ;° x* dx by using Trapezoidal rule. Verify result by
actual integration.

Step 1. We are given that f{x) = x’. Interval length (b—a ) = (3—(-3) ) = 6. Sowe
divide 6 equal intervals with h= 6/6 = 1.0 And tabulate the values as below

x F & F @ 4 3B 3
y o 8 16 1 0 1 16 &I

Step2. Write down the trapezoidal rule and put the respective values in that rule
3 f) dx = (W2) [ (Go+ym + 2Qutyeyse o +wy]

= (W/2) [ (sum of the first and last ordinates ) +
(Sum of the remaining ordinates) |

= (1/2) [ (81+81) + 2 (16+1+0+1+16) ]

=115
By actual integration _3 3 fx)dx =3 ¥ xfdx

=[(3°/5) -(-3°/5) ]
=[ (243/5) + (243/5)]

=975
Evaluate o ' 1/(1+x°) dx by using Trapezoidal rule with h = (.2

A fidx = W2) [ osym + 200+ yi+ . +np]

= (W2) [ (sum of the first and last ordinates ) +

(Sum of the remaining ordinates) |
=(0.2/2) [ (1+0.3) + 2 (0.96154+0.86207+0.73529+0.60976) |
=(M.1)[(1.05) + 6.33732 ]

=(.783732
Evaluate o ° 1/ (1+x) dx by using Trapezoidal rule .



Step 1. We are given that f{x) = 1/{1+x). Interval length (b—a ) =(6-0) = 6. S0 we
divide 6 equal intervals with h= 1. And tabulate the values as below

x : 0 1 2 3 4 5 6
v/l +x°): ! 05 1’3 14 /5 1/6 1/7

Step2. Write down the trapezoidal rule and put the respective values of y in that rule
-3 jﬂx) dx = (R2) [ (vo+ym + 2t y2+¥3+ 0 tiny]

= (h/2) [ (sum of the first and last ordinates ) +
(Sum of the remaining ordinates) |

=(1/2) [(1+1/7) + 2 (0.5+1/3 + 1/4 +1/5 +1/6) ]

=(0.5) [ (1.05) + 6.33732 ]
Evaluate ; * log. x dx by using Trapezoidal rule .

Step 1. We are given that fix) =log.x Interval length(b—a ) =(5.2—-4) =1.2. 50 we
divide 6 equal intervals with h=0.2. And tabulate the values as below
X : 4 4.2 4.4 4.6 4.8 3.0 32

¥ : 139 144 148 153 157 161 165

Step2. Write down the trapezoidal rule and put the respective values of y in that rule
-3 ’ x)dx = (R2) [(vo+ym + 2(vit)2e V32 oo FInp]

= (h/2) [ (sum of the first and last ordinates ) +

(Sum of the remaining ordinates) |
=(0.2/2) [ (1.39+1.65) + 2 (144 +1. 48 + 153+ 1.57 +1.61) ]
= (0.1) [3.04 + 2(7.63) ]

=183

Evaluate y ™ sin x dx by using Trapezoidal rule, by dividing the range



into ten equal parts .
Solution :
Step 1. We are given that fix) =sinx Interval length (b—a ) =(x-0) =r.

So we divide 10 equal intervals with h= z/10 (specified in the question itself),
and tabulate the values as below

X 0 =10 2a/10 3a/10 /11

¥: 0.0 0.3090 0.5878 0.8090 0.9511

x: S/l 6m/11) /10 /10 /1) T
Y: 1.0 0.9511 0.8090 0.5878 0.3090 0

Step2. Write down the trapezoidal rule and put the respective values of y in that rule

s de = W2 [(osym + 200ty yse o tyay]

= (h/2) [ (sum of the first and last ordinates ) +
(Sum of the remaining ordinates) |

=(w/20)[(0+0)+2(0.3090+0.5878+0.8090+0.951 1 + 1.0+
0.9511+0.8090+0.5878+0.309)]

= [.9843



2. Evaluate o ' 1/(1+x°) dx by using Simpson's one third rule with h = (.2

Solution:

Step 1. We are given that fix) = 1/(1+x°). Interval length (b—a ) =(1.2-0) =1.2.50
we divide 6 equal intervals with h= (0.2 And tabulate the values as below

x S0 0.2 0.4 0.6 0.8 1.0 1.2
yI/1+3): 1 0.9615 0.8621 0.7353 0.6098 0.5000  0.4098

Step2. Write down the Simpson’s one third rule and put the respective values of y in that
rule

A fx)dx= W3 [(Govye + 2(tyi ) + A ysys )]
= (W/3) [ (sum of the first and last ordinates ) +

+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates) |

=(0.2/3) [ (1+0.4098) + 2 (0.8621 +0.6098) + 4 (0.9615+0.7353+0.5) ]
= (0.0667) [ (1.4098) +2(1.4719) + 4 (2.1503) ]

= (0.0667) [ 1.4098 + 29438 + 8.6012]

=(.8641



Evaluate _; ¥ vt dx by using Simpson's one third rule. Verify result
by actual integration.

Step 1. We are given that f{x) = x*. Interval length (b—a ) = (3 —-(-3)) =6. Sowe
divide 6 equal intervals with h= 6/6 = 1.0 And tabulate the values as below

x : -3 -2 -1 0 1 2 3
¥ : 81 16 ! 0 1 16 81

Step2. Write down the Simpson’s one third rule and put the respective values in that rule
S dx ) = W) [(o+ye + 2(2%ys) « 4Qryseys )]
= (W/3) [ (sum of the first and last ordinates ) +
+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates) |

=(1/3) [ (81+81) + 2 (1+1) +4(16+1+16) |

=98
By actual integration 3 ° f{x) dx = 3° x* dx

=[(3/5) (-3/5) ]
=[ (243/5) + (243/5)]

=97.5



3. Evaluate ¢ °1/(1+x) dx by using Simpson's one third rule .
Solution:

Step 1. We are given that f{x) = 1/{1+x). Interval length (b—a ) = {6-0) = 6. 50 we

divide 6 equal intervals with h= 1. And tabulate the values as below

x : 0 { 2 3 4 5 6
v/l +x°): 1 0.5 173 14 75 1/6 /7

Step2. Write down the Simpson’s one third rule and put the respective values of y in that
rule

A fx)dx = W3) [(o+ye + 2(n2+ys ) + 41+ y3+ys )]

= (h/3) [ (sum of the first and last ordinates ) +
+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates) |

=B [(1I+UT)+2(1/3+1/5)  +4(0.5+1/4 +1/6)]

= 1.9587

4. Evaluate ; log. x dx by using Simpson's one third rule .
Solution:

Step 1. We are given that fix) = log. x Interval length (b—a ) =(5.2-4) =1.2. Sowe
divide 6 equal intervals with h=0.2. And tabulate the values as below

x : 4 42 44 46 48 50 52
b : 1.39 144 148 1.53 157 1.61 165

Step2. Write down the Simpson’s one third rule and put the respective values of y in that
rule

A de = (W3 [(vosveg + 2(a+vs ) + A (s yseys )]

= (h/3) [ (sum of the first and last ordinates ) +
+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates) |



=(0.2/3) [ (1.39+1.65) + 2 (1.48+ 1.57) + 4 (1.44+ 1.53++1.61) ]
= (0.0667) [3.04 + 2(3.05)+ 4 (4.58) ]

=[.83

5. Evaluate ¢ ™ sinx dx by using Simpson's one third rule, by dividing the range into
ten equal parts .

Solution :

Step 1. We are given that fix) = sinx Interval length (b—a ) =(x-10) =r.
So we divide 10 equal intervals with h= /10 (specified in the question itself),
and tabulate the values as below

X 0 /10 2210 310 /10

¥: 0.0 0.3090 0.5878 (0.8090 0.9511

x: S5a/10 6m/10 7m0 810 /10 i
Y: 1.0 0.9511 (0.8090 0.5878 0.3090 0

Step2. Write down the Simpson’s one third rule and put the respective values of y in that
rule

A dx =(3) [ (oo + 2t pe et ys) « A(Wis Visyse yrtyo )]

= (W/3) [ (sum of the first and last ordinates ) +

+ 2 (Sum of remaining even ordinates)
+4 ( sum of remaining odd ordinates

=(2/20)[(0+0)+2(0.5878+ 0.9511+0.9511+0.5878) +
4(0.3090+0.8090+ 1+ 0.8090+0.3090)]

= 2.0009



Simpson’s three-eighth Rule
Suppose the following table represents a set of values of x and y.

D Xp Xy X2 D IS

y: Yo Vi »2 £ ESNRRRNE (.

From the above values, we want to find the integration of y = f{x) with the range xy and
xp +h

xo "fix)dx = (BW8)[(o+ym + 2(3+ Ye+Yotr... )+3(Vi+Y2+ Yo+ Y5+ ..+Vn1 )]

= (3h/8) [ (sum of the first and last ordinates ) +
+ 2 (Sum of multiples of three ordinates)
+3 ( sum of remaining ordinates)]

The above equation is called Simpson’s three-eighths rule which is applicable only when
n is multiple of 3 .

1. Evaluate 3 ° x*dx by using Simpson's three-eighth rule. Verify
result by actual integration.

Step 1. We are given that fix) = x*. Interval length (b—a ) =(3—-(-3) ) =6. 50 we
divide 6 equal intervals with h= 6/6 = 1.0 And tabulate the values as below

X : -3 -2 -1 0 1 2 3
¥y : 81 16 1 0 1 16 81

Step2. Write down the Simpson’s three-eighth rule and put the respective values in that
rule

S dx ) = (W) [(o+ye + 2(v3 ) + 3 (1+yyssys )]
= (3h/8) [ (sum of the first and last ordinates ) +

+ 2 (Sum of multiples of three, other than last ordinates )
+3 ( sum of remaining ordinates)|

= (3/8) [ (81+81) + 2 (0)) + 3(16+1+1+16) ]

=99
By actual integration _; 3 fx)dxy = *x? dx

=[(3/5) -(-3/5) ]



=[ (243/5) + (243/3)]
=97.5

Evaluate o ' 1/(1+x°) dx by using Simpson’'s three-eighth rule with h = 0.2
Step 1. We are given that fix) = 1/(1 +x°). Interval length (b—a ) =(1-0) =1 S0 we

divide 6 equal intervals with h= 0.2 and tabulate the values as below

x o0 0.2 0.4 0.6 0.8 1.0 1.2
yff(!+x3j: ! 0.9615 0.8621 0.7353 0.6098 0.5000 0.4098

Step2. Write down the Simpson’s three-eighth rule and put the respective values of y in
that rule

3P dx = BWS) [(oyg+ 203 )+ 3 (132 e ys )]

= (3h/8) [ (sum of the first and last ordinates ) +
+ 2 (Sum of multiples of three, other than last ordinates )
+3 ( sum of remaining ordinates) |

=(3x0.2/3) [ (1+0.4098) + 2 (0.7353 )
+ 3 (0.9615+0.8621+0.6098 + 0.5) ]

= (0.075) [1.4098 + 1.4706 + 3 (2.9334) ]
= (0.075) [ 1.4098 + 1.4706 + 8.8002]

=0.8760
7. Evaluate o °1/(1+x) dx by using Simpson s three-eighth rule .

Solution:
Step 1. We are given that fix) = l/{1+x). Interval length (b—a ) = (6 —10) = 6. 50 we

divide 6 equal intervals with h= 1. And tabulate the values as below

X , 0 ! 2 3 4 5 6
y=1/1+x)x: 1 0.5 13 1/4 175 1/6 1/7

Step2. Write down the Simpson’s three-eighth rule and put the respective values of y in
that rule



A fdx = W) [(o+ve + 203 ) + 3 Vi+y2seyas s )]

= (3W/8) [ (sum of the first and last ordinates ) +
+ 2 (Sum of multiples of three, other than last ordinates )
+3 ( sum of remaining ordinates )]

=E3BB)[(1+UT)+2(1/4) + 3(05+1/3+1/5 +1/6)]

= 1.9661

8. Evaluate ; ** log, x dx by using Simpson s three-eighth rule .

Solution:

Step 1. We are given that fix) =log.x Interval length(b—a ) =(5.2-4) =12 Sowe
divide 6 equal intervals with h= 0.2, And tabulate the values as below

x : 4 42 44 46 48 50 52
¥ : 1.39 144 148 153 157 1.61 165

Step2. Write down the Simpson’s three-eighth rule and put the respective values of y in
that rule

3 de = (W) [(e+ye + 2 ) + 3 i+ vy s )]
= (3W/8) [ (sum of the first and last ordinates ) +

+ 2 (Sum of multiples of three, other than last ordinates )
+3 ( sum of remaining ordinates ) |

=(3x02 /8)[(1.39+1.65) + 2(1.53) +3 (1.44+ 148 +1.57++1.61) ]
= 0.075) [304+306+3 (6.1)]
= 1.83
9. Evaluate ¥ dx by using Simpson s three-eighth rule, by dividing the range into
nine equal parts and verify your answer with actual integration.

Solution :

Step 1. We are given that fix) = x° Interval length(b—a)=(9-0) =9



So, we divide 9 equal intervals with h=9/9 = 1 (specified in the question itself),
and tabulate the values as below

X 0 I 2 3 4
Y =x7:0 I 4 9 16
x: 5 6 7 8 9

Y: 25 36 49 64 81

Step2. Write down the Simpson’s three-eighth rule and put the respective values of'y in
that rule

A fix)dx = (WS [ oy + 2(34¥6 ) + 3 (V14 V2e Vas Vs ¥72 V3 )]

= (3h/8) [ (sum of the first and last ordinates ) +
+ 2 (Sum of multiples of three, other than last ordinates )
+3 ( sum of remaining ordinates ) |

=(3/8)[ (0+81) +2(9+36) +3(1+4+16+25+49+64)]
=(375)[81+90+477]

=243

By actual integration / Sfix)dx =y 'x dx
=[(9B)(0/3)]
=[(729/3) + 0]

=243
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL

EQUATIONS

Taylor Method
Suppose we want to find the numerical solution of the equation
dv:
| =iy
dx
Given the initial condition y(xg) =y
¥(x) can be expanded about the point x = xq in a Taylor's series as



Suppose the tollowing table represents a set of values ol x and y.

X Xp X X
Y Yo yi ¥

[

Xi . Xn

Yi . Yn

[

From the above values, we want to find the derivative of y = fix), passing through (n+1)
points, at a point closer to the starting value x = xg

¥x) =y + @—x0) [ Y &)]w /] + @ —x0f [y'() [/ 2! + ...
yx) =vo+ x—xgf yo/ll +x—xgf v/ 2+ .

Pm‘ﬁng_t =x; = xp+h. we gejr
yi o =ye+hyolll vy /2Ry 3+ L

Now y(x) can be expanded about the point x = x; ina Taylor’s series as
y: =+ hy A By 20wl 3+ L

Proceeding in the same way, we get
VYnet = Yut hyw AL+ By 20+ Wy 3+

1. Solve dy/dx =x+y, giveny(l)=0,and gety(1.1), y(1.2) by
Taylor series method. Compare the result with the actual solution.

Solution :
Weare giventhat y(1) =0 == xp=Lya=0 h=101
Also ¥y = x+y Yo' =xgtyve=1+0=1
== y" =1+y’ Yo =y Hl=2
== y=yr Yo =yt 2=2
=> =y Yo =2
By Taylor series, we have
Vi =yo+ hyo/ll +Wy /21Ky /3 + .
0.1 (0.1 (0.1 (.1 0.1y
=yl.1) = 0+ @ + qi @+ W@+ @+
1 2 6 24 120

=0.1+0.01+0.00033 + 0.00000833 +0.000000166
=0.11033847



Consider that xp = 1.1, h = 0.1, and evaluate y>

v =yt hyy /1 Ry 20 Py 3+
Calculate v; ', vi " vi ", y;”‘ oxp= A1,y =0.11033847
yi' =xrty = L1+ 011033847 = 1.21033847
i’ =1 +y = 221033847
Using the above values :

y2 =y(1.2) = 0.11033847+ 0.1(1.21033847) + (0.1)° (2.21033847) /2
+ (0.1)° (2.21033847) /6+ (0.1)* (2.21033847) /24

=0.11033847 + 0.121033847 + 2.21033847 (0.003) + ....

= 02461077
The actual solution of dy/dx =x+v 15

y=-x-1+2!
y(l.1) =-1.1 -1+ 2" =0.11034
y(1.2) =-1.2 -1+ 2" =0.2428
y(1.1) = 0.11033847
y(1.2) = 0.2461077

Actual values : y(1.1) = 0.110341836
y(1.2) = 0.242805552.



: 2. Apply Tayl?r sgries method | find correct to four decimal places, the value
or'y(0.1), given dyfdx = x"+y" and y(0)) = 1.

Solution :
Weare giventhat y(0) =1 == xp=0,yo =1, h=01
x; =101, To find y; =y(0.1) by using
Sfollowing series :
Also  y' = xj+y'? Vo' =x{;3+yr}3 =0+1=1
==y =2x+2yy’ ; Yo =2xp 42wy =2
==y =242y 2 (v) Yo'l =2+2yvp v’ +2 (o ,i;
=> ¥y =2py U2y Hyy | =2+ 2(I)(2) +2(1) =8
=2y Gy w" = 2(1)(8)+6(1)(2) =28

By Taylor series, we have

Vi =yo+ hya/ll +Ry /2140y 3+ L
0.1 (0.1)° (0.1 0.1y}
=y0.)=1+ | (1) + |l @ + Il 8 + I (28)+....
1 2 6 24
=1+0.1 +0.00133 +0.00011
=1.11144999
=1.11145

Euler algorithm,
Yas1=YathYy =Y+ hf(x,y,)
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y(x+h)=yx)+hf(x,y).

In this method, the actual curve is approximated by a sequence of
short straight lines. As the intervals increase the straight line deviates
much from the actual curve. Hence the accuracy cannot be obtained as the
number of intervals increase.

Q,P, =error at x=1x,

( S ? ” g p
=%)’ (Ihh):%')' (1 31)

It is of order h’.
Improved Euler method
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N =)’o"’% h[f(xo- Yo) +f (x1, yo + h f(xo, )’o))]
Writing generally,

1
Yas1=Ya+ 3 [T Yo) + (X + b,y + BT (X ¥,)|

Note 1. The difference between Euler's method and improved Euler's
method is that in the latter we take the average of the slopes at

(Xo» Yo) and (x;, ") instead of the slope at (xg, yo) in the former
method.
Modified Euler method
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W =o+h{f{ 5043k v+ 3 A1 G0 )]
In general,
1 1
Ya+1 =y.+h[f(!."‘ihv y'+ih‘(x-’y.) )]

y(x+h)=y(x)+h[f(x+%h. y+%hf(x,y) )]

En.ple 1. Given y' =~y and y (0) = 1, determine the values of y
at x = (0:01) (0-01) (0-04) by Euler method.

Solution. y’=-y and y (0)=1; f(x,y)=-y.
Here, x,=0, y,=1, x, =001, x, =002, x,=0-03, x,=004.
We have to find y,, y,, y3, ¥4 Take h = 0-01.
By Euler algorithm,
Yas1=Yat B Yy =Y+ hf(xyy,) (1)
Y1=Yo +hf(xg yo) =1+ (0-01)(~=1)=.1~001=099.

=0-99 + (0-01)(- 0:99)

=0-9801
Y3 =y, +hf(x,, y,) = 09801+ (0-01)(— 0-9801)
=0-9703
Ya=y3 + hf(xs, y3) = 09703+ (0-01)(—0-9703)
= 0-9606
Tabular values (step values) are:
x 0 0-01 002 0-03 0-04
y 1 0-9900 0-9801 0-9703 0-9606
Exact y 1 0-9900 09802 09704 09608

since, y=¢ " is the exact solution.



Example 2. Using Euler’s method, solve numerically the equatio
y=x+y,y(0)=1, for x=00(02)1-0)
check your answer with the exact solution.
Solution. Here h=02, f(x,y)=x+y, x%=0,y,=1
x,=02, x,=04, x,=06, x,=08, xs=10
By Euler aigorithm,
Y1=Yo+ hf (X0, ¥o) = ¥o + h [xo+ Yol
=14+02)0+1)=12
2=y +h[x,+y]=12+(02)02+12)=148
Y3=Y,+hx;+y,)
=148 +(0-2) (0-4 + 1-48) = 1-856
¥o = 1-856 + (0-2)(0-6 + 1-856) = 2-3472
ys = 23472 + (0-2)(0-8 + 2-3472) = 2-94664

Exact solution is y=2¢" — x— 1. Hence the tabular values are:

x 0 02 04 0-6 0-8 1-0
Euler y 1 1-2 1-48 1-856 2-3472 294664
Exact y 1 1-2428 1-5836 2:0442 2-6511 3-4366

Vord = Vo thflxayn) =ya+thy, :n=012 _.

This formula1s called Enler’s algorithm.



Improved Euler method
Slight change may be included in the above mentioned algorithm | i.e., we approximate
the curve by the tangent and we get improved Euler formula ;

¥n+i = ¥n +(1/2) hfﬂ"an}’ni"' _;"-frj‘-'.r:"'-lL Ynh ﬁ(xm_"mu
This equation 1s called improved Euler's method.
Modified Euler method

Slight change may be included in the above mentioned improved Euler’s method., ie.,
we averaged the slopes, whereas in modified Euler method, we will average the points.
We get the formula for Modified Euler method , given by

Yuel = ¥un t hlrff&'n"'hf{l ,}’n+ﬁ1"{?} ffrxn*,}’nj Jr
or yix+h) =yix) + k[ fix+th/2, y(h'2) fixy) |

This equation 15 called Modified Euler’s method.

I: Solve yv° =-vy . and y(0)= 1, determine the values of y atx =
(0.01)(0.01)0.04) by Euler’s method.

Solution.
Step 1.

Calculate various values of x; s and respective y;’s

Weare giventhat y'=-yand y(0)=1: fixy)=-v.

x=(0.01)0.01)0.04) => xp=0,y0=1
x1=001,x=001,%=002 x:=003, x4=004

Step 2. To find vy, y2, v3, va. Take h=0.01 (Specified in the problem itself)

Write down the Euler formula |

Yo+l = Vo thffxeyn) =yathy, ;n=012 ..

vi =y +hfixoyg) = 1+(001)(-1)=1-0.01 =099

y: =y +hfixpy) =099+(001)(-y1)=099+(0.01) (-0.99) =09801
vi = vz +hffxayy) =09801+(0.01)(-0.9801) =0.9703

y¢ = y; thifixzy;) =09703+(0.01)(-0.9703) =x0.9606



Step 3. Flash the values in tabular form

| X | 0 | 0.01 | 0.02 | 0.03 | 0.04 |
| ¥ |1 | 09900 | 0.9801 | 0.9703 | 09606 |
| Exact y | 1 | 0.9900 | 0.9802 | 0.9704 | 0.9608 |

Since, y =e™" is the exact solution.

Hlustration 2: Solve y° = x+vyand y(0)=1, determine the values of v at x =
0.0(0.2)(1.0) by Euler’s method. Compare answer with actual answer.

Solution.
Weare giventhat h =02, f(x y) =x+y
vi0)=1==xg=0_yo=1
x=(00)02)1.0) == x=00,x=02%=04x:=04 x4=08 x5=1
VYurd = ¥n Y hfixpyn) =yathy' in=012 ..
vi = yo +hffxoye) = 1+(02)(0+1)=1+02=12

vr = v +hifxivi) =
}"j = 1}:!_ + hﬂx_j‘.'}‘_j} =

+(02)(02+12) =148
1.48) =18

yi = y; +hffxayy) =1856+(0.2)(0.6+1.856) =2.3472

¥s = vs +hffxeyy) =2.3472+(02) (0.8 +2.3472) =2.94664

Exact solution is y = 2e™ — x — 1. Flash the values in tabular form

| X | 0 |02 | 0.4 | 0.6 [0.8 | 1.0 |
| Euler |1 [ 1.2 | 1.48 | 1.856 [ 2.3472 | 2.94664 |
y
Exact y | 1 | 1.2428 | 1.5836 | 2.0442 [ 2.6511 | 3.4366
Y

The value of y deviates from the exact values as x increases. Hence we require to use
either Modified Euler or Improved Euler method for the above problem.

Mlustration 3 : Solve numerically y' = y+e*, y0) = [ for x=02, 0.4by Improved
Euler’s method.

Solution :
Step 1.

Wearegiventhat y" = y+é&", y0) =0, f(xy)=y +e"
y(i0)=0 ==xp=0,y9=0

x=02,04 == x,=00,x=02,x2=04



Step 2. Write down the formula for Improved Euler method
Yo+l = Yo H(172) B[ fixnya)t fixeth, yash fixoyn) [

yi = yo +(172) hf fixoyo)+ flxoth yoh fixoyn))) |

0+ [ﬂi} {DE] I W + g + hf_}’l‘} + -EFG_J + E.ra+Fr ,|F

0.1 [0+1+0+0.2(0+1)+e"]

0.1(1+0.2+1.2214)
S y(0.2) = 0.24214

y2 =y +(1722) hf fixpy)+ fixith, yich fixpy) )) ]

where fix1y1) =y + e =0.24214 + " = 146354
yih fix1yi) =0.24214 + (0.2)(1.46354) = 0.53485
fixi+h,  yish fixiyy) =f{0.4, 0.53485) = 0.53485 + ™ = 2.02667

Substituting the above values, we get

y(0.4) = 0.24212+(0.5)(0.2)[1.46354+2.02667]
= 0.59116

Tabulate the values and it given below:
| x K | 02 | 0.4 |
| v [0 | 024214 | 059116 |

Hlustration 4. Compute y at x = (.25 by Modified Euler method given y' = 2xy,

¥0) =1
Solution :

Step 1.
We are given that fix,)) = 2xy ;
},l.ll(ﬂj = xl']'=ﬂ1,]"ll']'=}
h=025=>x;=0+025=025

Step 2. Write down the Modified Euler formula

Y+l = ¥p t hrfﬁ::"'hf?i ,}’n+M) fﬁni}’n}}
=>y; = yp + hf fixg+h/2, yo(W2) fixoyoe) |
=" 1+ (0.25)[f(0.125.1]
= 1+ (0252 (0.125) x 1]
= J.0625.



Runge-Kutta Method

Suppose we want to find the numerical solution of the equation
dy
| =/fixy)
dx

Griven the initial condition y(xg) =yo. ... . (1)

Calculate
ki =h fixo vo)
k2 = h fixg +(1/2)h, yo+(1/2)k;)
and Ay == k; where h = Ax
The above mentioned algorithm is Second order Runge-Kutta Algorithm
Calculate
ki =hfixo va)
k2 = h fixg +(1/2)h, yo+(1/2)k;)
k3 = h fixp +(1/2)h, yo+(1/2)k3)
and Ay = (1/6) [k;+ dka+ k3)
The above mentioned algorithm is Third order Runge-Kutta Algorithm
Caleulate
ki =hfixo va)
k2 = h fixg +(1/2)h, yo+{1/2)k;)
ks = h fxo +(1/2)h, yo+(1/2)k2)
.I:.'_j = hfrfrmh Yo +k3}
and Ay = (1/6) [ki+ 2ka+2 ks+ kyf
yix+h) = y(x) +Ay
The above mentioned algorithm 1s Fourth order Runge-Kutta Algorithm
Where Ax = h.
Calculate
yi =yotAy
Now starting from (x;.v;) and repeating the above process, we get (x2,v3) elc.
Note 1: In second order Runge-Kutta method
Avg = k2 = h fixg +(1/2)h, y,+(1/2)k;)
Ayo = ka = h fixg +(1/2)h, yvo+(1/2)h fixom) )
Therefore
vi = yo + hf fixoth/2, yo-(W2) fixoye) |
This 1s equivalent to modified Euler Method.
Hence, the Runge-Kutta method of second order is nothing but the Modified Euler

Method



Note 2: if fix.y) = fix). i.e., fix,y) 1s only depending on a function x alone, then the fourth
order Runge-Kutta method reduces to Simpson’s one third rule

MNote 3. In all the three methods the values of kl,k2, k3 are same. Therefore, no need to
calculate the constants while doing by all the three method.

Hustration 1. Apply the fourth order Runge-Kutta method to find 1(0.2) given that y' =
x+y, y0) = 1.

Solution:

Step 1. Weare giventhat y' =x+y, y0) =1 ==fixy)=x+yx0=0,yp=1
Since h s not specified in the question, we take h=0.1; x; = 0.1, x> = 0.2

Step 2. We have to find various constants in fourth order Runge-Kutta method
ki = hf(xo.y0) = (0.1)(x0+yo) = (0.1)(0+1) = 0.1
ko = h fixg +{1/2)h, yo+(1/2)ky) = (0.1)f10.05,1.05)
=0.1(0.05+1.05) = 0.11
ks = h fixg +{1/2)h, yo+(1/2)kz) = (0.1)f0.05.1.055)
=0.1(0.05+1.055) = 0.1105
ky=hfixo+h yo+k3) == 01ff0.1, 1.1105) = 0.12105

and Ay = (1/6)[ki+ 2ka+2 ks+ ky]
= (0.16666)(0.1+0.22+0.2210+0.12105)
=0.110342..
yi =yo+ Ay
y(0.1) =y; = yo+ Ay = 1.110342

Step 3. Now starting from (x,,y;) and repeating the above process, we get (x2,12).
Again apply Runge-Kutta method replacing (xp,yva) byixpyi).

ki =hfixi yi) = (0.0)(x;+y) = (0.1)(0.1 +1.110342) = 0.1
ky = hfixr +(1/2)h, yi+(1/2)k;) = (0.1)f(0.15,1.170859)

= 0.1(0.15+1.170859) = 0.1320859
ks = hf(x; +(1/2)h, yi+(1/2)ks) = (0.1)f{0.15, 1.1763848)

= 0.1(0.15+1.1763848) = 0.13263848
ke = hfxich yiok3) = 0.1f{0.2, 1.24298048) = 0.144298048
and Ay = (1/6)[kp+ 2ks+2 ks+ k]

= (0.16666)(0.1+0.2641718+0.26527696+0.144298048)

W0.2) =y, = yot+ Ay = 1110342 + (0. 166666)(0.7947810008)
y(0.2) = 1.2428055 == 1.2428 (Correct to four decimal places).



Hlustration 2. Obtain the values of v at x= 0.1, 0.2 using R K. method of (i) second order
(it) third order and (iii) fourth order for the differential equation y' = -y, given y(0) = 1.

Solution:

Step 1. Weare giventhat y'=-y, y0) =1 ==fixy) =- yxo=0,y=1
Since his clearly specified in the question, we take h=0.1. x;, = 0./, x> = 0.2

Step 2. (i) We have to find various constants in Second order Runge-Kutta method
ki=hf@o.y0) = (0.0)(-y0) = O.)(1) =- 0.1

k2 = h fixg +{172)h, vo+(1/2)k;) = (0.1)f10.05, .95)
= 0.1{-0.95) =-0.095 = Ay
Yi =yo+ Ay
¥O1) =y = yo+t Ay =1-0.095 =0.905
Now starting from (x,.y;) i.e., (.01, 0.905) and repeating the above process, we get
(x2,y2). Again apply Runge-Kutta method replacing (xp.va) by(x1.y1).

ki =hfic y1) = (0.1)(-yo) = (0.1)(-0.905) = - 0.0905

ko = hfix; +{1/2)h, yi+(12)k;) = (0.1)ff0.15, 0.85975)
= 0.1{-0.85975) = - 0.85975 = Ay
yi =yi+Ay
vi0.2) =y; = y;+ Ay = 0.819025
Step 3. (i) We have to find various constants in Third order Runge-Kutta method
ki=hftxo yo) =(0.1)(-yo) = (0.1)(-1) =- 0.1

ks = hfixg +(1/20h, yo+(1/2)k;) = (0.1)f0.05,0.95)
= 0.1(-0.95) = -0.095
ks = h fixo +(1/2)h, yo+(1/2)ks) =(0.1) (0.1, 0.9) = (-0.09)

Ay = (1/6) [k + 4ka+ ks3]

yi =yat Ay
y0.1) =y;= yo+ Ay =1-0.09 =091

Now starting from (x;.y;) i.e., (.01, 0.905) and repeating the above process, we get
(x2y2). Again apply Runge-Kutta method replacing (xp.va) by(x,.3:).

ki =hfixr 1) = (0.1)(-yo) = (0.1)(-0.91) = - 0.091

ky = hfix; +(1/20h, yi+(1/2)k;) = (0.1)f(0.15, 0.865)
= 0.1(-0.865) = - 0.865
ks = h fixo +(1/2h, vo+(1/2)ks) =(0.1) /0.2, 0.828) = - 0.0828
Ay = (1/6) [k + Fka+ k3]



Y2 =y t+Ay
¥(0.2) =y: = yi + Ay = 0.91+ (0.16666)((- 0.091 — 0.346 -0.0828)
= 0.823366

Step 4. (i) We have to find various constants in fourth order Runge-Kutta method
ki =hfxo.yo) =(04)(-yo) = (0.1)(-1) =- 0.1

ks = h fixg +(1/2)h, yo+(1/2)k;) = (0.1)f10.05.0.95)
= 0.1{-0.95) = -0.095
ks = h f{xg +(1/2)h, yo+(1/2)ks) =(0.1) ff0.1, 0.9525) = -0.09525
ke =h fxoch, yo:k3) = 0.1f(0.1.0.90475) = - 0.090475
and Ay = (1/6)fki+ 2ka+2 ks+ k]

= (L. 16666)( -0.095 -0.19—0.1905 -0.090475)
=-0.0951625

yi =yotAy
y(0.1) =y, = yo+ Ay =1+ (0.0951625)

= 0.9048375

Now starting from (x,y;) i.e., (0.1, 0.9048375) and repeating the above process, we

get (x2,52). Again apply Runge-Kutta method replacing (xo,y0) byv(x.yi).

ki =hffxr y) = (0.0)(-y) = (0.1)(-0.91) = - 0.09048375

ko = h fix; +(1/20h, yi+(1/2)k;) = (0.1)f{0.15, 0.8595956)

= 0.1{-0. 0.8595956) = - 0.08595956
ks = h fix; +(1/2)h, yi+(1/2)ky) =(0.1) f{0.15, 0.8618577) = - 0.08618577

ky=hfix;+h yi+k3) ==0.1ff0.2, 0.8186517) = -0.0818517

and Ay = (1/6) [ki+ 2ka+2 ks+ ki
= (0.16666)( - 0.09048375 + 2 (- 0.08595956) +
2(- 0.08618577) -0.0818517 )
= -0.086106607

Y2 =yi+Ay
¥(0.2) =y> = yi+ Ay = 0.9048375+ (-0.086106607)
= 0.81873089



Tabular values are

| x | Secondorder | Third order | Fourth order | Exact Value
| 0.1 | 0.905 | 0.91 [ 0.9048375 | 0.904837418
|02 | 0.819025 | 0.823366 [ 0.81873089 | 0.818730753

4 ’ ' '

¥usl S¥na3 t ihm}'n —¥no1 +2¥pa) + O(hj}
1 ' ' '

¥rsl =¥n-1 + -_]hb':r—l +dy, + )t O(hj}-

Milne’s Predictor-Corrector Method

Consider the differential equation ;ﬂ =1(x,¥);¥(Xo) =¥,
X
Milne's predictor and corrector formula is given by

Yap=Y0+ %(EH —fp+2f3) ————- (1) — Predictor formula
yE{fE” =yo + g(fg + 4fg + fir}) ————— (2) — Corrector formula

where fy =f(x1,y1) fo =f(x2,y2) f3 =f(x3,y3) f{" =f(x4,:f£{]J

Note :f{") = f(m,yﬂ:”] where y'0) =y 45 & y§) = ‘fﬂ{,}c for r#0
Problem(1)
dy x+y

Find y(2) if y(x) is the solution of a2 given that y(0)=2,

y(0.5)=2.636, y(1)=3.595, y(1.5)=4.968 using Milne’s Predictor-Corrector

method correct to four decimal places.

Soln: Given data f(x,y) = "‘Eﬂ ,h=0.5
XU={]‘ X1=ﬂ'.5 x2= ID X3= 15 K4=E.D
Yo=0 y; = 2.636 Y2 = 3.595 Vs = 4.968 Ya=?

Milne's Predictor formula is given by

4h
y4p=yu+?[2f,—fz+2f3} ————— (1)



X, Yi fFf{xiiyi}=Xi+yi
2
X, = 0.5 y, =2.636 f, = X, ;ﬁ _ 0.5+2.636 ~1.568
X, =1 y, =3.595 f, =222 123595 _ 50975
Yo = 4.968 =Y 1:5+4.988 _ 3234
X, =1.5

Substituting all the values in egn(1) we get,
Vap = 2+@{2{1 568) —2.2975 + 2(3.234)} = 6.871

Milne’'s Gorreatm formula is given by

yrt =y + [f +Af, + 10 )————— (2) where " =f(x,,y")
First impravement: Put r=0 in egn(2)

Y=y, + {f +4f, +1%), Where

f[D]—f{}(‘, [u]] f{}h.hp] X +:'l"¢4:.=2+5.571

2
L =3.595+ %[2.29?5 +4(3.234) + 4.4355)=6.8731

=4.4355



Second imprmrement: Put r=1 in egn(2)
Y2 =y ol + 41, +10)

where

X, +y,
{0 =1(x,,y{)=flx 415’22)—%

_2+6.8731 —4.4365

-~ y® =3.595 +%{2 2975 + 4(3.234) + 4.4365)

Third imprnvement' Put r=2 in eqn(2)
Y=y, + {f +af; +12)

where

= 4.4366

X, +Y{. 2+6.8733
(0 =t y?)= 1y )= XY

- yis =3.595 +~=(2.2075 +4(3.234) + 4.4366) = 6.8733

Since y¥% &y% are the same up to four decimal places
v(2)=6.8733
Given %:%{1”2};2 and y(0)=1, y(0.1)=1.06, y(0.2)=1.12,

X
y(0.3)=1.21. Evaluate y(0.4) by Milne’s Predictor-Corrector method.

Soln : Givendata: f(x,y) = %[1 ; 12)}-‘2 h=01

xp =0 x1=0.1 x2 =0.2 x3 =0.3 x4 =04

yo =1 y1=1.06 yo =1.12 y3 =1.21 y4="7

Milne's Predictor formula is given by

4h
Vap =y0+—5(2h -2 +2f3) -———- (1)



:

X Vi fi= f{xi.vi}=§[1 + x?)??

x1=0.1 y1=1.06 4= %(1 + )-:12)3;12 - 0.5674
1

Xp = 0.2 yp =1.12 f2=5(1+x§)y§ ~ 0.6522
1

X3 =0.3 y3 =121 f3=5(1+x§Jy§ ~0.7979

Substituting all the values in egn(1) we get,

4(0.1

Y4p = 1+
Milne’s Corrector formula is given by

yE{;” =yo + g(fg +4fq + fflr)] ————— (2)

where f{) =f(x4=¥ﬂ{}} (O =ysp and )=y
First improvement: Put r=0 in eqn(2)

}-'E_:E': =yo+— n (fg + 4f3 +fm}), Where

3
0) 1
fé (14 Y4 j 5 (1 + xﬁ)yi p=5 (1 +(0. 4]2)[1 .2??1]2 =0.9459
ygi': 112+ %(n 6522 + 4(0.7979) + 0.9459) = 1.2796



Second improvement: Put r=1 in eqn(2)

h
3,-5123: =yo +E(f2 +4f3 +f£f”}, Where

({1 = f()c4, v 1) - %(1 + xi)yg‘i - %(1 +(0.4) )(1 2796)2 =0.9496

2y @) =112+ % (0.6522 + 4(0.7979) + 0.9496) = 1.2797

similarly y() =1.2797

Since yf;’; & yfé are the same up to four decimal places
y(0.4)=1.2797



SPH5107 — COMPUTER PROGRAMMING

Unit -4
Overview of C
A brief history

C is a programming language developed at “AT & T’s Bell Laboratories” of USA in 1972.
It was written by Dennis Ritchie (Fig 2).

Fig 2. Dennis Ritchie

The programming language C was first given by Kernighan and Ritchie, in a classic book
called “The C Programming Language, 1° edition”. For several years the book “The C

Programming Language, 1%! edition” was the standard on the C programming. In 1983 a
committee was formed by the American National Standards Institute (ANSI) to develop a
modern definition for the programming language C . In 1988 they delivered the final standard
definition ANSI C.

Features of C
e Portability
e Modularity
e Extensible
e Speed
e Mid-level programming language
e Flexibility
¢ Rich Library

Advantages of C




1. A C program written in one computer can easily run on another computer without
making any change

2. It has variety of data types and powerful operators

3. A C program is a collection of functions supported by the C library. So we can easily
add our own functions to C library. Hence we can extend any existing C program
according to the need of our applications

4. Since C is a structured language, we can split any big problem into several sub
modules. Collection of these modules makes up a complete program. This modular
concept makes the testing and debugging easier

Structure of a C program

Documentation Section

Global Declaration Section

| |

Body of the program '




Documentation Section:

¢ |t consist of a set of comment lines

e The comment lines begins with /* and ends with */ or a single set of // in the beginning
of the line

e These lines are not executable
e Comments are very helpful in identifying the program features

Preprocessor Section:

e |t is used to link system library files, for defining the macros and for defining the
conditional inclusion

e Eg: #include<stdio.h>, #include<conio.h>, #define MAX 100, etc.,

Global Declaration Section:

e The variables that are used in more than one function throughout the program are
called global variables

e Should be declared outside of all the functions i.e., before main().
main():

Every ‘C’ program must have one main() function, which specifies the starting of a ‘C’ program.
It contains the following two parts

Declaration Part:

e This part is used to declare the entire variables that are used in the executable part of
the program and these are called local variables

Execution Part:

¢ |t contains at least one valid C Statement.

e The Execution of a program begins with opening brace {* and ends with closing
brace Y

e The closing brace of the main function is the logical end of the program
Sub Program section:

e Sub programs are basically functions are written by the user (user defined functions)

e They may be written before or after a main () function and called within main ()
function

e This is optional to the programmer




Constraints while writing a C program

e All statements in ‘C’ program should be written in lower case letters. Uppercase letters
are only used for symbolic constants

e Blank space may be inserted between the words. Should not be used while declaring a
variable, keyword, constant and function

e The program statements can be written anywhere between the two braces following the
declaration part

¢ All the statements should end with a semicolon (;)

Example Program
/* addition.c - To find the average of two numbers and print them
out together with their average */

#include <stdio.h>

void main( )

{

int first, second;
float avg;

printf("Enter two numbers: ");
scanf("%d %d", &first, &second);

printf("The two numbers are: %d, %d", first, second);
avg = (first + second)/2;
printf("Their average is %f", avg);

}

Compilation and Execution of C program

1. Creating the program

2. Compiling the Program

3. Linking the Program with system library
4. Executing the program

Creating the program:

e Type the program and edit it in standard ‘C’ editor and save the program with .c as an
extension.

e This is the source program

Compiling (Alt + F9) the Program:

e This is the process of converting the high level language program to Machine level
Language (Equivalent machine instruction) -> Compiler does it!




e Errors will be reported if there is any, after the compilation

e Otherwise the program will be converted into an object file (.obj file) as a result of the
compilation

e After error correction the program has to be compiled again

Linking the program with system Library:

e Before executing a ¢ program, it has to be linked with the included header files and
other system libraries -> Done by the Linker

Executing the Program:

e This is the process of running (Ctrl + F9) and testing the program with sample data. If
there are any run time errors, then they will be reported.
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The above illustration provides a lucid description of how to compile and execute a C
program.

C Tokens

C tokens, ldentifiers and Keywords are the basic elements of a C program. C tokens are the
basic buildings blocks in C. Smallest individual units in a C program are the C tokens. C tokens
are of six types. They are,

1. Keywords (eg: int, while),
2. ldentifiers (eg: main, total),
3. Constants (eg: 10, 20),
4, Strings (eg: “total”, “hello”),
5. Special symbols  (eg: (), {}),
6. Operators (eg: +,/,-,%)
1. Keywords

Keywords are those words whose meaning is already defined by Compiler. They cannot be
used as Variable Names. There are 32 Keywords in C. C Keywords are also called as
Reserved words. There are 32 keywords in C. They are given below:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue | for signed void
default goto sizeof volatile
do if static while

2. Identifiers

Identifiers are the names given to various program elements such as variables , arrays
& functions. Basically identifiers are the sequences of alphabets or digits.




Rules for forming identifier name

> The first character must be an alphabet (uppercase or lowercase) or an underscore.
> All succeeding characters must be letters or digits.

> No space and special symbols are allowed between the identifiers.

: No two successive underscores are allowed.

Keywords shouldn’t be used as identifiers.

3. Constants

The constants refer to fixed values that the program may not change or modify during
its execution. Constants can be of any of the basic data types like an integer constant, a floating
constant and a character constant. There is also a special type of constant called enumeration
constant.

Eg:

Integer Constants- 45, 215u
Floating Constants- 3.14, 4513E-5L
Character Constants- \t, \n

4. Strings

A string in C is actually a one-dimensional array of characters which is terminated by a null
character \0'".

Eg:

charstr={'S",’A’,’T",’H, 'Y, A", B, 'A’, 'M’, 'A%}

5. Special Symbols

The symbols other than alphabets, digits and white spaces for example -[1 () {},;:* ... =
# are the special symbols.

6. Operators

An Operator is a symbol that specifies an operation to be performed on the operands. The
data items that operators act upon are called operands. Operators which require two operands
are called Binary operators. Operators which require one operand are called Unary Operators.

Types of Operators
Depending upon their operation they are classified as

Arithmetic Operators
Relational Operators
Logical Operators
Assignment Operators

Hownp~




Increment and Decrement Operators
Conditional Operators

Bitwise Operators

Sizeof() Operators

© No O

Arithmetic Operators

Arithmetic Operators are used to perform mathematical calculations like

addition, subtraction, multiplication, division and modulus.

S.NO Operators Operation Example
1 - Addition A+B

2 - Subtraction A-B

3 * multiplication A*B

4 / Division A/B

5 % Modulus A%B

Rules For Arithmetic Operators

1. C allows only one variable on left hand side of = eg. c=a*b is legal, but a*b=c is
not legal.

2. Arithmetic operations are performed on the ASCII values of the characters and not
on characters themselves

3. Operators must be explicitly written.

4. Operation between same type of data yields same type of data, but operation
between integer and float yields a float result.

Example Program

#include <stdio.h>
int main()

{

int m=40,n=20, add,sub,mul,div,mod;
add = m+n;

sub = m-n;

mul = m*n;

div = m/n;

mod = m%n;




n is
m, n is

printf(“Addition of m,
printf(“Subtraction of
printf(“Multiplication of m, n is
mul); printf(“Division of m, n is
div); printf(“Modulus of m, n is

}
Output

Addition of m, nis : 60
Subtraction of m, nis : 20
Multiplication of m, nis : 800
Division of m, nis : 2
Modulus of m, nis : 0

Relational Operators

Relational Operators are used to compare two or more operands. Operands

may be variables, constants or expression

: %d\n”, add);
: %d\n”, sub);
. %d\n”,
. %d\n”,
: %d\n”, mod);

S.NO Operators Operation Example

1 > is greater m > n
than

2 < is less than m <n

3 >= is greater m>=n
than or equal
to

4 <= is less than m<=n
or equal to

5 == is equal to m==n

6 |= is not equal ml=n
to

Example Program

#include
<stdio.h> int
main()




{

int m=40,n=20;
if (m == n)

{

printf(“m and n are equal”);

}

else

{

printf(“m and n are not equal”);

}
}

Output

m and n are not equal

Logical Operators

Logical Operators are used to combine the results of two or more conditions.

is also used to test more than one condition and make decision.

S.NO |Operators | Operation | Example Description
1 && logical (m>5)&&(n<5) It returns true when both
AND conditions are true
2 [ logical OR [ (m>=10)||(n>=10) | It returns true when at-
least one of the condition
is true
3 ! logical I(m>5)&&(n<5)) [ It reverses the state of the
NOT operand “((m>5) &&
(n<5))”
If “((m>5) && (n<5))” is
true, logical NOT operator
makes it false

Example Program

#include <stdio.h>
int main()

{




int a=40,b=20,c=30;
if ((a>b )&& (a >c))

{

printf(“ a is greater than b and c”);

}

else

if(b>c)

printf(“b is greater than a and
c”); else

prinf(“c is greater than a and b”);

}

Output

a is greater than b and c.

Conditional Operator

It itself checks the condition and executed the statement depending on the condition.
Syntax:

Condition? Exp1:Exp2

Example:

X=(a>b)?a:b

The *?” operator acts as ternary operator. It first evaluate the condition, if it is true then
expl1 is evaluated, if condition is false then exp2 is evaluated. The drawback of
Assignment operator is that after the ? or : only one statement can occur.

Example Program

#include <stdio.h>
int main()

{

int x,a=5,b=3;

x = (a>b) ? a : b ;

printf(“x value is %d\n”, x);

}
Output




x value is 5

Bitwise Operators

Bitwise Operators are used for manipulation of data at bit level. It operates on integer
only.

S.NO Operators | Operation Example Description

1 & Bitwise AND | X &Y Will give 1 only when both
inputs are 1

2 | Bitwise OR | X|Y Will give 1 when either of
input is 1

3 A Bitwise XOR | X *Y Will give 1 when one input
is 1 and other is 0

4 ~ 1’s ~X Change all 1to 0 and all 0

Complement to 1
5 << Shift left X<<Y X gets multiplied by

2Ynumber of times

6 >> Shift right | X>>Y X gets divided by 2
number of times

Example Program

#include <stdio.h>
main()

{

int cl1=1,c2;

C2=Cc1<<2;

printf(“Left shift by 2 bits c1<<2=%d”,c2);

}

Output
Left shift by 2 bits c1<<2=4

Special operators:

sizeof () operator:




1. Sizeof operator is used to calcualte the size of data type or variables.
2. Sizeof operator will return the size in integer format.

3. Sizeof operator syntax looks more like a function but it is considered as an operator in ¢
programming
Example of Size of Variables

#tinclude<stdio.h>
int main()

{
int ivar = 100;
char cvar = 'a';
float fvar = 10.10;
printf("%d", sizeof(ivar));
printf("%d", sizeof(cvar));
printf("%d", sizeof(fvar));
return 0;

}
Output :
214

In the above example we have passed a variable to size of operator. It will print the value of
variable using sizeof() operator.

Example of Sizeof Data Type

#tinclude<stdio.h>
int main()

{
printf("%d", sizeof(int));
printf("%d", sizeof(char));
printf("%d",
sizeof(float)); return 0;

Output :
214
In this case we have directly passed an data type to an sizeof.

Example of Size of constant
#include<stdio.h>




int main()

{

printf("%d", sizeof(10));
printf("%d", sizeof('A'));
printf("%d",

sizeof(10.10)); return 0;

Output :

214

In this example we have passed the constant value to a sizeof operator. In this case sizeof
will print the size required by variable used to store the passed value.

Example of Nested sizeof operator
#include<stdio.h>
int main()
{
int num = 10;
printf("%d",
sizeof(sizeof(num))); return 0;

Output:

2

We can use nested sizeof in ¢ programming. Inner sizeof will be executed in normal fashion
and the result of inner sizeof will be passed as input to outer sizeof operator.

Innermost Sizeof operator will evaluate size of Variable “num” i.e 2 bytes Outer Sizeof will
evaluate Size of constant “2” .i.e 2 bytes

Comma(,) Operator:

1. Comma Operator has Lowest Precedence i.e it is having lowest priority so it is evaluated
at last.

2. Comma operator returns the value of the rightmost operand when multiple comma
operators are used inside an expression.

3. Comma Operator Can acts as —

e Operator : In the Expression

e Separator: Function calls, Function definitions, Variable declarations and Enum
declarations

Example:




#include<stdio.h>
void main()

{
int numl = 1, num2 =
2; int res;
res = (numl, num2);
printf("%d", res);

}

Output
2

Consider above example

int num1 =1, num2 = 2;// In variable Declaration as separator
res = (num1, num2);// In the Expression as operator

In this case value of rightmost operator will be assigned to the variable. In this case value of
num2 will be assigned to variable res.

Examples of comma operator:

Type 1 : Using Comma Operator along with Assignment
#include<stdio.h>
int main()

{
int i;
i=1,2,3;
printf("i:%d\n",1i);
return 0;
}
Output:
i1
Explanation:
i=1,2,3;

1. Above Expression contain 3 comma operator and 1 assignment operator.

2. If we check precedence table then we can say that “Comma” operator has lowest
precedence than assignment operator

3. So Assignment statement will be executed first .

4. 1 is assigned to variable “".

Type 2 : Using Comma Operator with Round Braces




#include<stdio.h>

int main()

{
int i;
i= (1J2)3);
printf("i:%d\n",1);
return 9;

Output:

i:3

Explanation:

i=(1,2,3);

1. Bracket has highest priority than any operator.

2. Inside bracket we have 2 comma operators.

3. Comma operator has associativity from Left to Right.
4. Comma Operator will return rightmost operand

i =(1,2,3) Assign 3 to variable i.

Type 3 : Using Comma Operator inside printf statement

#include<stdio.h>

#include< conio.h>

void main()

{

clrscr();

printf("Computer", "Programming");
getch();

}

Output:
Computer

You might feel that answer of this statement should be “Programming” because comma
operator always returns rightmost operator, in case of printf statement once comma is read
then it will consider preceding things as variable or values for format specifier.

Type 4 : Using Comma Operator inside Switch cases.

#include<stdio.h>
#include< conio.h>
void main()

{




int choice = 2 ;
switch(choice)

{

case 1,2,1:
printf("\nAllas");
break;

case 1,3,2:
printf("\nBabo");
break;

case 4,5,3:
printf("\nHurray");
break;

Output :
Babo
Type 5 : Using Comma Operator inside For Loop

#tinclude<stdio.h>

int main()
{
int i,7;
for(i=0,j=0;i<5;i++)
{
printf("\nValue of J : %d",Jj);
J++;
}

return(0);

}

Output:

Value of J :
Value of J :
Value of J :
Value of J :
Value of J :

A WND—=2O




Type 6 : Using Comma Operator for multiple Declaration

#include<stdio.h>
int main()

{

int numl,num2;
int a=10,b=20;
return(0);

}

Note : Use of comma operator for multiple declaration in same statement.

Variable:

e Avariable is an identifier that is used to represent some specified type of information
within a designated portion of the program.

e A variable may take different values at different times during the execution

Rules for naming the variable

e A variable name can be any combination of 1 to 8 alphabets, digit, or underscore
e The first character must be an alphabet or an underscore (_).
e The length of variable should not exceed 8 characters length, and some of the ‘C’

compiler can be recognize upto 31 characters.
Data Types in C

C has a concept of 'data types' which are used to define a variable before its use. The

definition of a variable will assign storage for the variable and define the type of data that will
be held in the location.

The value of a variable can be changed any time.
C has the following basic built-in datatypes.

e int

e float

e double

char

The bytes occupied by each of the primary data types are

Data type Description Memory bytes Control String Example
Int Integer Quantity 2 bytes %d or %i inta=12;
Char Single Character 1 bytes %C char s=n’;
float Floating Point 4 bytes %f float f=29.777




Double Double precision 8 bytes %lIf double d

floating pointing 5843214
no’s

Scope of a variable

A scope in any programming is a region of the program where a defined variable can
have its existence and beyond that variable cannot be accessed. There are three places
where variables can be declared in C programming language:

1. Inside a function or a block is called local variable,
2. Outside of all functions is called global variable.

3. In the definition of function parameters which is called formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They
can be used only by statements that are inside that function. Local variables are not known
to functions outside their own. Following is the example using local variables. Here all the
variables a, b and ¢ are local to main() function.

#include <stdio.h>

main ()
{

/* local variable declaration */

int a, b, c;

/* actual initialization */

a = 10;
b = 20;
C =a + b;

printf ("value of a = %d, b = %d and ¢ = %d\n", a, b, c);
}

Global Variables

Global variables are defined outside of a function, usually on top of the program. The global

variables will hold their value throughout the lifetime of your program and they can be accessed
inside any of the functions defined for the program.




A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is the example using global and
local variables:

#include <stdio.h>

/* global variable declaration */

int g;
main ()
{

/* local variable declaration */

int a, b;

/* actual initialization */

a = 10;
b = 20;
g =a+ b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

}
PRECEDENCE AND ASSOCIATIVELY OF OPERATORS

If an arithmetic expression is given, there are some rules to be followed to evaluate
the value of it. These rules are called as the priority rules. They are also called as the
hierarchy rules. According to these rules, the expression is evaluated as follows;

Rule 1 :- If an expression contains parentheses , the expression within the parentheses will
be performed first. Within the parentheses , the priority is to be followed.

Rule 2 :- If it has more than parentheses , the inner parenthesis is performed first.

Rule 3:- If more than one symbols of same priority , it will be executed from left to right.

C operators in order of precedence (highest to lowest). Their associativity indicates in what
order operators of equal precedence in an expression are applied

Operator Operation Associativity Priority
() Parentheses

[ Brackets (array subscript)| left-to-right 1

. Dot operator

-> Structure operator

++ -- Postfix increment/decrement

++ --| Prefix inc/decrement| right-to-left 2




+ -| Unary plus/minus
! ~[ Not operator,complement
(type) Type cast
* Pointer operator
& Address operator
sizeof Determine size in bytes
* /% Multiplication/division/modulus | left-to-right 3
+ - Addition/subtraction left-to-right 4
<< Bitwise shift left left-to-right 5
>> Bitwise shift right
< Relational less than left-to-right 6
<= less than or equal to
> Relational greater than
>= greater than or equal to
== Relational is equal to left-to-right 7
I= is not equal to
Bitwise  AND Bitwise| left-to-right 8
exclusive
A Bitwise exclusive OR left-to-right 9
| Bitwise inclusive OR left —to-right 10
&& Logical AND left-to-right 11
I Logical OR left-to-right 12
?: Ternary conditiona right-to-left 13
= Assignment right-to-left 14
+= -=| Addition/subtraction
*= /=| assignment
Yo= &=| Multiplication/division
A= =| assignment
<<= >>= Modulus/bitwise AND
assignment
Bitwise exclusive/inclusive OR
assignment
Bitwise shift left/right
assignment
, Comma left-to-right 15

Example for evaluating an expression

Let X =2, Y =5 then the value of the expression
(((Y-1)/X)*(X+Y))is calculated
as-(Y-1)=(5-1)=4=T1
(T1/X)=(4/2)=2=T2
(X+Y)=(2+5)=7=T3
(T2*T3)=(2*7)=14

The evaluations are made according to the priority rule.

Type conversion in expressions.




Type conversion is the method of converting one type of data into another data type.
There are two types of type conversion.
1. Automatic type conversion
2. Type casting

Automatic type conversion

This type of conversion is done automatically. The resultant value of an expression depends
upon the operand which occupies more space, which means the result value converted into
highest data type.

The compiler converts all operands into the data type of the largest operand.

This type of type conversion is done implicitly,this method is called as implicit type
conversion.

Eg.1
float a,b,c;a=10,b=3;

c=a/b
output= > c= 3.3 {4 bytes(float) (All the variables are same datatype} Eg.2
int a,b,c; a=10,b=3; c=a/b;
output= >c=3{2 bytes(int)} Eg.3
int a; float b,c; a=10,b=3;
c=a/b;
output=> ¢=3.3 {4 bytes(float) highest datatype is float}

Type casting

This method is used,when user wants to change the type of the data. General Format for
type casting is
(datatype)operand
Eg.1
int x=10, y=3; z=(float)x/y;(ie z=10.0/3;)
output=>z=3.3(float) Eg:2

int x=10,y=3; z=x/(float)y;(ie z=10/3.0;)




output=>3.3(float)

e The type of the x is not changed,only the type of the value can be changed

e Since the type of conversion is done explicitly,this type conversion is called as
explicit type conversion

The following rules have to be followed while converting the expression from one type
to another to avoid the loss of information:

1. Allinteger types to be converted to float.
2. All float types to be converted to double.
3. All character types to be converted to integer

Input and Output statements

In ‘c’ language several functions ara available for input/output
operations.These functions are collectively known as the standard 1/O library.

1.Unformatted input /output statements
2. Formatted input /output statements

Unformatted Input /Output statements

These statements are used to input /output a single /group of characters from/to the
input/output devices .Here the user cannot specify the type of data that is going to be

input/output.
The following are the Unformatted input /output statements available in ‘C’.
Input Output
getchar() putchar()
getc() putc( )
gets() Puts()

single character input-getchar( ) function:
A getchar( ) function reads only one character through the
keyboard. Syntax: char variable=getchar( );
Example:

char x;




x=getchar();
single character output-putchar( ) function:

A putchar( ) function is used to display one character at a time on the standard output

device.
Syntax: putchar(charvariable);
Example:
char x;
putchar(x);

the getc( ) function

This is used to accept a single character from the standard input to a character variable.
Syntax: character variable=getc( );
Example:
char c;

c=getc( );
the putc( ) function

This is used to display a single character variable to standard output device.
Syntax: putc(character variable);
Example:
char c;
putc(c );
the gets( ) and puts( ) function
The gets( ) function is used to read the string from the standard input device.
Syntax: gets(string variable);
Example:
gets( s);
The puts( ) function is used to display the string to the standard output
device. Syntax: puts(string variable);
Example:
puts( s);

Proram using gets and puts function

#include<stdio.h>




main()

{

char scientist[490];
puts("Enter name");
gets(scientist);
puts("Print the Name");
puts(scientist);

}

output:
Enter Name:Abdul Kalam
Print the Name:Abdul Kalam
Formatted input /output statements
The function which is used to give the value of variable through keyboard is called
input function. The function which is used to display or print the value on the screen is called
output function.
Note : - In C language we use two built in functions, one is used for reading and another is
used for displaying the result on the screen. They are scanf() and printf() functions. They are
stored in the header file named stdio.h.
General format for scanf( ) function
scanf(“control string”, &variable1, &variable2,...... )

The control sting specifies the field format in which the data is to be
entered. %d —integer

%f — float
%cC- char
%S —
string
% Id — long integer
%Uu — Unsigned Integer
Example:
scanf(“%d”,&x) — reading an integer value, the value will be stored in x

scanf(“%d%f”,&x,&a) - reading a integer and a float value In the above scanf () function , we
don’t use any format. This type of Input is called as the Unformatted Input function.

Formatted Input of Integer

The field speciation for reading the integer number is:
%wd




Where The percentage sign(%) indicates that a conversion specification follows. w — is
the field width of the number to be read. d will indicates as data type in integer number.
Example:

scanf(“%2d %5d”, &num1,&num2);
data line is 50 31425

the value 50 is assigned to num1 and 31425 is assigned to num2. suppose the input data is as
follows

31425 50, then the variable num1 will be assigned 31 and num2 will be assigned to 425
and the 50 is unread.
An input field may be skipped by specifying * in the place of field width.

Example the statement scanf(“%d %*d %d),&a,&b); will assign the data 123 456 789
as follows: 123 is assigned to a , 456 skipped because of * and 789 to b

Output Function : To print the value on the screen or to store the value on the file, the
output functions are used. printf() is the function which is use to display the output on the
screen. The General format of the printf() function is

printf(“control string”,variable1,variable2,.....);
Example
printf(“%d”,x) — printing the integer value x.
printf(“%d%f”, x,a)- printing a integer and float value using a single printf function.

Formatted Output of Integer :Similar to formatted input , there is a formatted output also to
have the output in a format manner.

In this control string consists of three types of items.
e Characters that will be printed on the screen as they appear
e Format specification that define the output format for display of each item

e Escape sequence characters such as
\n — new line




\b — back space

\f — form feed

\r — carriage return
\t - horizontal tab
\v — vertical tab

The format speciation is as follows %wd

Where w — is the field width of the number to be write . d will indicates as data type in
integer number.

Examples:

Printf(“%d”,9876); // output:
9876 printf(“%6d”,9876);

output:

1 2 3 4 5
9| 8| 7

printf(“%-

6d7,9876); output:
1 2 3 4 56

9 |8 7 |6

printf(“%06”,9876);
output:
1 2 3 4 5 6

0 (0 91| 8| 7 6

Formatted input of Real(float) Numbers:
. The field speciation for reading the real number is:
%w.pf
Where w — is the field width of the number to be read . p indicates the number of digits
to be read after the decimal point f — indicates that data type in float(real) number.
Example

scanf(“%2.1f %5.2f",&num1,&num2);
data line is 50.1 31425.20




the value 50.1 is assigned to num1 and 31425.20 is assigned to num2.
An input field may be skipped by specifying * in the place of field width.

Example: the statement scanf(“%f %*f %f), &a,&b); will assign the data 12.3 4.56 78.9
as follows: 12.3 is assigned to a , 4.56 skipped because of * and 78.9 to b.

Formatted output of Real(float) Numbers:
The field speciation for reading the real number is:
%w.pf
Where w — is the field width of the number to be read . p indicates the number of digits
to be displayed after the decimal point f — indicates that data type in float(real) number.
Example:
Float y = 98.7682

Printf(“ %f ”, y); // output: 98.7682
printf(“%7.2f y);

output:
1 2 3 4 5 6 7

printf(“%-7.2f ”,y);

output:
1 2 3 4 5 6 7
9 8

Formatted input of Single characters or strings:

The field speciation for reading the character
strings: %Wws or %wc

where,

%c is used to read a single character.
Example:

Char name;

Scanf(“%c”, &name); \\ |/ P : a




Char name[20];
Scanf(%s”,&name); \\|/P : sathyabama
Printing of a Single Character:

The field speciation for reading the character
strings: %Wws or %wc

where,

%s — A sequence of characters can be displayed.
%c — A single character can be displayed.

The character will be displayed right-justified in the field of w, left-justified by
placing a minus sign before the integer w.
Example:
Char x = ‘a’;
Char name[20] = “anil kumar gupta”;
Printf(“%c”, x); // output: a
Printf(“%s”,name); // output: anil kumar gupta
Printf(“%20s”, name);
Output:

1 23 45 6 6 8 910 1112 13 14 15 16 17 18 1920

a | n|i [l K lu| mla|lr| |g|u |p |t |a

Printf(“%-20.10s”, name);

Output:
1 2 3 4 5 6 6 8 9 10 11 12 1314 15 16 17 18 1920

aln i |I kKlu |m ]| alr

Printf(“%.5s”, name);
Output:

glulp [t |a




CONTROL STRUCTURE

Control Statements

./\.

Conditional Unconditional
/\ 1.goto
Decision Making Statement Loop Control Statement 2. continue
1. if Statement 1. for 3. break
2. if.. else statement 2. while
3. nested if statement 3. do-while
4. if..else ladder
5. switch statement
CONDITIONAL STATEMENT

Decision Making Statement
If Statement:
% The if statement is a decision making statement.
« It is used to control the flow of execution of the statement and also used to the
logically whether the condition is true or false
& Itis always used in conjunction with condition.




Syntax:
If(condition)

{

True statements;

}

& If the condition is true, then the true statements are executed.

& If the condition is false then the true statements are not executed, instead the
program skips past them.

% The condition is given by relational operators like ==,<=,>=,!=,etc.
Example 1: //program to check whether the entered number is less than 25

#include<stdio.h>

#include<conio.h>
void main()
{
int i;
clrscr();
printf(“Enter one
value”); scanf(“%d”,&i);
if(i<=25)
printf(“The entered no %d is <
25”,1i); getch();
}




Output:

Enter one value 5
The entered no 5 is < 25

Example 2: //program to calculate the sum and multiplication using if Statement

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,n;

clrscr();

printf(“Enter two values”);
n=scanf (“%d%d”,&a,&b);
if(n==2)

{

printf(“the sum of two numbers : %d”,a+b);
printf(“the product of two numbers:%d”,a*b);

}
getch();

}
Output:

Enter two value 5 10
the sum of two numbers : 15
the product of two numbers : 50

if.. else statement:

« It is basically two way decision making statement and always used in conjunction
with condition.

« It is used to control the flow of expression and also used to carry the logical test and
then pickup one of the two possible actions depending on the logical test.

& If the condition is true, then the true statements are executed otherwise false
statements are executed.

% The true and false statements may be single or group of statements.

|

e




Syntax:
If (condition)

True statements;
else
False statements;

Example 1: //program to find the greatest of two number.

#include<stdio.h>

#tinclude<conio.h>
void main()

{
int a,b;
printf(“Enter two value”);
scanf(“%d%d”,&a,&b);
if(a>b)
printf(“The given no %d is greatest”,a);
else
printf(“The given no %d is greatest”,b);
}
Output:

Enter two value 5 10
The given no 10 is greatest

Nested if..else Statement:

When a series of if_else statements are needed in a program, we can write an entire
if_else statement inside another if and it can be further nested. This is called nesting if.

Syntax:
if(condition 1)
{
if(condition 2)
{
True statement 2;
else
False statement 2;
}
else

False statement 1;

}




Example 1: //program to find the greatest of three numbers.

#include <stdio.h>

int main ()

{

Output:

/* local variable definition */
int a = 100;
int b = 200;

/* check the boolean condition */
if( a == 100 )

{
/* if condition is true then check the following */
if( b == 200 )
{
/* if condition is true then print the following */
printf("Value of a is 100 and b is 200\n" );
}
}

printf("Exact value of a is : %d\n", a );
printf("Exact value of b is : %d\n", b );

return 0;

Value of ais 100 and b is 200
Exact value of ais : 100
Exact value of b is : 200

If else Ladder:

1. Nested if statements will become complex, if several conditions have to be checked.
2. In such situations we can use the else if ladder .

Syntax:

if(condition 1)

{

if(condition 2)
{

True statement 2;

elseif(condition 3)

{




True statement 3;
else

}

False statement 1;

False statement 3;
else

}

Switch Statement

The switch statement is used to execute a particular group of statements from
several available groups of statements.
It allows us to make a decision from the number of choices.

It is a multi-way decision statement.

Rules for writing switch () statement.

1.

Nowunswd

The expression in switch statement must be an integer value or a character
constant.

No real numbers are used in an expression.

Each case block and default block must be terminated with break statement.

The default is optional and can be placed anywhere, but usually placed at end.

The ‘case’ keyword must terminate with colon(:).

Cases should not be identical.

The values of switch expression is compared with the case constant expression in
the order specified i.e., from top to bottom.




switch
( Expression)

i

|
Syntax:

{ e
1:

state
ment;
case 2:

state
ment;




default: statement;
break;

/I program to print the give number is odd / even using switch case statement.

#include<stdio.h>
#include<conio.h> void main()

{

int a,b,c;

printf(“Enter one value”);
scanf(“%d”,&a); switch(a%2)

{

case 0O:

printf(“The given no %d is even”,
a); break;
default :

printf(“The given no %d is odd”,
a); break;

}
}

Output:

Enter one value 5
The given no 5 is odd

Unconditional statement
Break statement

5. The break statement is used to terminate the loop.

6. When the keyword break is used inside any loop, control automatically transferred to
the first statement after the loop.

Syntax:
break;

//program to print the number upto 5 using break statement

#include<stdio.h>

#tinclude<conio.h>
void main()

{
int i;
for(i=1;i<=10;i++)




{

if(i==6)

break;
printf(“%d”,1i);
}

}
Output:

1 2 3 4

While(condition)

if(condition)
beak;

Continue Statement

if(condition)
break;

}while(condition);

-

%

for(initialize;condition; incr/dec)

if(condition)
break;

¢ In some situation, we want to take the control to the beginning of the loop, bypassing
the statement inside the loop which have not been executed, for this purpose the

continue is used.

e When the statement continue is encountered inside any loop, control automatically
passes to the beginning of the loop.

Syntax:
continue;

While(condition)

if(condition)
continue;

if(condition)
continue;

¥umn

if(condition)
continue;

} while (condition);

for(initialize;condition; incr/dec)

if(condition)

continue;




Difference between break and continue

Break Continue
Break statement takes the control to the Continue statement takes the control to be
outside of the loop beginning of the loop
It is also in switch statement This can be used only in loop statements
Always associated with if condition in loop This is also associated with if condition

Goto Statement:

e C provides the goto statement to transfer control unconditionally from one place to
another place in the program.

e A goto statement can change the program control to almost anywhere in the program
unconditionally.
The goto statement require a label to identify the place to move the execution.

e The label is a valid variable name and must be ended with colon(:).

Syntax:

1. goto label; 2.1abel: «—

label: goto label,

/* program to print the given both number is equal or not*/

#include<stdio.h>

#tinclude<conio.h>
void main()

{

int a,b;
printf(“Enter the numbers”);
scanf(“%d%d”,&a,&b);

if(a==b)
goto equal;
else
{

printf(“%d and %d are not
equal”,a,b); exit(9);

}
equal: printf(“%d and %d are equal”,a,b);




Output:

Enter the numbers 4 5
4 and 5 are not equal
Enter the numbers 5 5
5 and 5 are equal

LOOPING STATEMENTS

A loop statement allows us to execute certain block of code repeatedly until test condition
is false.

There are 3 types of loops in C programming:

1 for loop
71 while loop
71 do...while loop

for loop:

The syntax for a for loop is
for ( variable initialization; condition; variable update )

Code to execute while the condition is true

}

The initialization statement is executed only once at the beginning of the for loop. Then the test
expression is checked by the program. If the test expression is false, for loop is terminated. But
if test expression is true then the code/s inside body of for loop is executed and then update
expression is updated. This process repeats until test expression is false.




»S ExtT

.\

for ( initialization condltlon test increment of counter )
{ | 3_ = TI'I.IE

statement 1;
Mentz:
4 ¥

for loop example

Write a program to find the sum of first n natural numbers where n is entered by user.
Note: 1,2,3... are called natural numbers.

#include <stdio.h>
void main(){

int n, count, sum=0;

printf("Enter the value of

n.\n"); scanf("%d",&n);

for(count=1;count<=n;++count) //for loop terminates if count>n

{

sum+=count; /* this statement is equivalent to
sum=sum+count */

}
printf("Sum=%d",sum);

}

Output

Enter the value of
n. 19

Sum=190




In this program, the user is asked to enter the value of n. Suppose you entered 19 then, count is
initialized to 1 at first. Then, the test expression in the for loop,i.e., (count<= n) becomes true. So,
the code in the body of for loop is executed which makes sumto 1. Then, the expression ++count
is executed and again the test expression is checked, which becomes true. Again, the body of for
loop is executed which makes sum to 3 and this process continues. When count is 20, the test
condition becomes false and the for loop is terminated.

/* C program to check whether a number is prime or not. */

#include <stdio.h>
int main()
{
int n, i, flag=0;
printf("Enter a positive integer: ");
scanf("%d",&n);
for(i=2;i<=n/2;++1i)
{
if(n%i==0)
{
flag=1;
break;
}
}
if (flag==0)
printf("%d is a prime number.",n);
else
printf("%d is not a prime number.",n);
return 0;

}

Output

Enter a positive integer: 29
29 is a prime number.

This program takes a positive integer from user and stores it in variable n. Then, for loop is
executed which checks whether the number entered by user is perfectly divisible by i or not
starting with initial value of /i equals to 2 and increasing the value of /in each iteration. If the
number entered by user is perfectly divisible by ithen, flag is set to 1 and that number will not
be a prime number but, if the number is not perfectly divisible by i until test condition i<=n/2 is
true means, it is only divisible by 1 and that number itself and that number is a prime number.

FUNCTIONS
LIBRARY FUNCTIONS

Definition




C Library functions are inbuilt functions in C language which are clustered in a group and
stored in a common place called Library. Each and every library functions in C executes explicit
functions. In order to get the pre- defined output instead of writing our own code, these library
functions will be used. Header file consists of these library functions like Function prototype and
data definitions.

3. Every input and output operations (e.g., writing to the terminal) and all
mathematical operations (e.g., evaluation of sines and cosines) are put into
operation by library functions.

4. The C library functions are declared in header files (.h) and it is represented as
[file_name].h

5. The Syntax of using C library functions in the header file is declared as
“#include<file_name.h>". Using this syntax we can make use of those library functions.

6. #include<filename.h>" command defines that in C program all the codes are included
in the header files followed by execution using compiler.

7. Itis required to call the suitable header file at the beginning of the program in terminal
in order to use a library function. A header file is called by means of the pre-processor
statement given below,

#include<filename.h>

Whereas the filename represents the header file name and #include is a pre - processor directive. To
access a library function the function name must be denoted, followed by a list of
arguments, which denotes the information being passed to the function.

Example

In case if you want to make use of printf() function, the header file <stdio.h> should be included at
the beginning of the C program.

#tinclude <stdio.h>
int main()

{

/* NOTE: Error occurs if printf() statement is written without
using the header file */

printf(" Hello World");
}

The ,main() function is also a library function which is called at the initial of the program.

Example




To find the square root of a number we use our own part of code to find them but this may
not be most efficient process which is time consuming too. Hence in C programming by declaring
the square root function sqrt() under the library function “math.h” will be used to find them rapidly
and less time consuming too. Square root program using the library functions is given below:

Finding Square root Using Library Function

#include <stdio.h>
#include <math.h>
int main(){
float num,root;
printf("Enter a number to find square
root."); scanf("%f",&num);
root=sqrt(num); /* Computes the square root of num and stores
in root. */

printf("Square root of
%.2f=%.2f" ,num,root); return 0;

}

List of Standard Library Functions in C Programming

Adding User Defined functions in C library:

— In C Programming we can declare our own functions in C library which is called as user-
defined functions.

— It is possible to include, remove, change and access our own user defined function to or
from C library functions.

—  Once the defined function is added to the library it is merely available for all C programs
which are more beneficial of including user defined function in C library function

= ]g)nce it is declared it can be used anywhere in the C program just like using other C library
unctions.

— By using these library functions in GCC compilers (latest version), compilation time can be
consumed since these functions are accessible in C library in the compiled form.

—  Commonly the header files in C program are saved as "file_name.h” in which all library




functions are obtainable. These header files include source code and this source code
is further added in main C program file where we include this header file via “#include
<file_name.h>" command.

Steps for adding user defined functions in C library:

Step 1:

For instance, hereby given below is a test function that is going to be included in the
C library function. Write and save the below function in a file as “addition.c”

addition(int a, int b)
{

int sum;

total =a + b;

return sum;

}
Step 2:

Compile “addition.c” file by using Alt + F9 keys (in turbo C).
step 3:

A compiled form of “addition.c” file would be created as “addition.obj”.
Step 4:

To add this function to library, use the command given below (in turbo
C). c:\> tlib math.lib + c:\ addition.obj

+ represents including c:\addition.obj file in the math
library. We can delete this file using — (minus).

Step 5:

Create a file “addition.h” and declare sample of addition() function like
below. int addition (int a, int b);

Now “addition.h” file has the prototype of function “addition”.

Note : Since directory name changes for each and every IDE, Kindly create, compile
and add files in the particular directory.
Step 6:

Here is an example to see how to use our newly added library function in a C program.

4, include <stdio.h>

User defined function is included here.
5. include “c:\\addition.h”
int main ( )

{




int total;

// calling function from library
total = addition (10, 20); printf
("Total = %d \n", total);

Output:
Total = 30

e Source code checking for all header files can be checked inside “include” directory
following C compiler that is installed in system.

e Forinstance, if you install DevC++ compiler in C directory in our system, “C:\Dev-
Cpp\include” is the path where all header files will be readily available.

Mostly used header files in C:
C library functions and header files in which they are declared in conio.h is listed below:

S.No||Header file | Description

1 stdio.h A standard input/output header file where Input/ Output functions are
declared

2 |lconio.h [Console input/output header file

3 |fstring.h [String functions are defined in this header file

4 |fstdlib.h [The general functions used in the C program is defined in this header file.

5 |jmath.h [Mathematical related functions are defined in this header file.

6 |fime.h [Time and clock allied functions are defined in this header file.

7 |ktype.h [Every character managing functions are declared in this header file

8 |lerro.h [This header file contains Error handling functions.

9 |jassertth  |Diagnostics functions are declared in this header file.

C — conio.h library functions

The entire C programming inbuilt functions that are declared in conio.h header file are
given below. The source code for conio.h header file is also given below for your reference.
List of inbuilt conio.h file C functions:

S.no||Function Description
1_‘ clrscr() This function is used to clear the output screen.
Z‘ getch() It reads character from keyboard
Z getche() It reads character from keyboard and echoes to o/p screen
(4 | textcolor() This function is used to change the text colour
5 |fextbackground()|[This function is used to change text background

C — stdio.h library functions




Inbuilt functions of C declared in stdio.h header file are given below.

S.no|| Function

[| Description

1 printf()

This function is used to print the character, string, float, integer, octal
land hexadecimal values onto the output screen

2 |jscanf() |[This function is used to read a character, string, numeric data from keyboard.
3 |getc() | It reads character from file
4 |gets() | It reads line from keyboard
5 |betchar() ||It reads character from keyboard
76 |puts() | It writes line to o/p screen
7 |putchar() |[lt writes a character to screen
8 |clearerr() |[Clears the error indicators
9 open() All file handling functions are defined in this header file.
I close() closes an opened file
1] etw() reads an integer from file
12 |putw() | writes an integer to file
13 |fgetc() |feads a character from file
|14 [putc() rites a character to file
115 |f putc() writes a character to file

| Feads string from a file, per line at a time

Mrites string to a file

18 |f eof() fiinds end of file
19 |fgetchar |feads a character from keyboard
20 getc() reads a character from file
f printf() writes formatted data to a file
[22 ] scanf() reads formatted data from a file
23 |f getchar |[reads a character from keyboard
|24 |fputchar |writes a character from keyboard
125 1f seek() moves file pointer position to given location
26 |SEEK SET Imoves file pointer position to the beginning of the file

[27 1| |SEEK CUR h\oves file pointer position to given location

28 |SEEK END |moves file pointer position to the end of file.

29]|f tell() | gives current position of file pointer

30]|rewind() | Imoves file pointer position to the beginning of the file
31 |putc() | writes a character to file

32]sprint() | writes formatted output to string

33|sscanf()  ||Reads formatted input from a string

34]remove() |[deletes a file

35 |fflush() | flushes a file




Functions

e A function is a group of statement that is used to perform a specified task which
repeatedly occurs in the main program. By using function, we can divide the
complex problem into a manageable problem.

e A function can help to avoid redundancy.
e Function can be of two types, there are
1. Built-in Function (or) Predefined Function (or)

Library Function

2. User defined Function

Functions

Predefined Function
Function

User-defined

Difference between Predefined and User-defined Functions

Predefined Function

User-defined function

Predefined function is a function which is
already defined in the header file (Example:
math.h, string.h, etc)

User- Defined function is a function which is
created by the user as per requirement of its
owner

Predefined Function is a part of a header file,
which are called at runtime

User- Defined function are part of the program
which are compiled at runtime

The Predefined function name is given by the
developer

User- Defined function name created by the
user

Predefined Function name cannot be changed

User defined Function name can be changed

User Defined Functions

e The function defined by the users according to their context (or) requirements is

known as a user defined function.

e The User defined function is written by the programmer to perform specific task (or)
operation, which is repeatedly used in the main program.




e These functions are helpful to break down the large program into a number of the
smaller function.

e The user can modify the function in order to meet their requirements.
e Every user define function has three parts namely

Function Declaration

Function Calling

Function Definition

Need for user-defined function

e While it is possible to write any complex program under the function, and it leads to a
number of problems, such as
The problem becomes too large and complex.
The user can(it go through at a glance
The task of debugging, testing and maintenance become difficult.
e |f a problem is divided into a number of parts, then each part may be independently

coded and later it combined into a single program. These subprograms are called
functions, it is much easier to understand, debug and test the program.

Merits of User-Defined Function

5. The length of the source program can be reduced by dividing it into smaller functions

6. It provides modularity to the program

7. Itis easy to identify and debug an error

8. Once created a user defined function, can be reused in other programs

9. Function facilitates top-down programming approach

10. The Function enables a programmer to build a customized library of repeatedly used
routines

11. Function helps to avoid coding of repeated programming of the similar instruction

Elements of User-Defined Function
5. Function Declaration
6. Function Call
7. Function Definition

Function Declaration

Like normal variable in a program, the function can also be declared before they
defined and invoked

Function declaration must end with semicolon (;)
A function declaration must declare after the header file
The list of parameters must be separated by comma.
The name of the parameter is optional, but the data type is a must.
e If the function does not return any value, then the return type void is must.
If there are no parameters, simply place void in braces.

]




e The data type of actual and formal parameter must match.

Syntax:

Return_type function_name (datatype parameter1, datatype parameter2,...);
Description:

Return type : type of function

Function_name : name of the function

Parameter list or argument list : list of parameters that the function
can convey.
Example:

int add(int x,int y,int z);
Function Call

The function call be called by simply specifying the name of the function,
return value and parameters if presence.

Syntax: function_name();
function_name(parameter);
return_value =function_name (parameter);

Description:
function_name : Name of the function
Parameter : Actual value passed to the calling function

Example
fun();

fun(a,b);
fun(10,20);
c=fun(a,b);
e=fun(2.3,40);

Function Definition

e |t is the process of specifying and establishing the user defined function by specifying
all of its element and characteristics.
Syntax:

Return_type function_name (datatype parameter1, datatype parameter2)




Example 1
#tinclude<stdio.h>
#tinclude<conio.h>

void add(); //Function Declaration void sub();//Function Declaration
void main()

{
clrscr();
add(); //Function call
sub(); //Function call
getch();
}
void add() //Function Definition
{
int a,b,c;
printf(“Enter two values”);
scanf(“%d%d”,&a,&b); c=a+b;
printf(,add=%da,c);
}
void sub() //Function Definition
{
int a,b,c;

printf(“Enter two values”);
scanft (“%d%d”,&a,&b);

c=a-b;

printf(“sub=%d”,c);

}

Example 2 :

//Program to check whether the given number is odd or even
#include<stdio.h>

#include<conio.h>
void oddoreven()

{

printf("Enter One value");
scanf("%d",&oe);

if(oe%2==0)

printf("The Given Number%d is

even"); else

printf("The Given Number %d is odd");
}

void main()
{

clrscr();
oddoreven();
getch();




Function Parameter

e The Parameter provides the data communication between the calling function and
called function.
e There are two types of parameters.

o Actual parameter: passing the parameters from the calling function to
the called function i.e the parameter, return in function is called actual
parameter

3. Formal parameter: the parameter which is defined in the called
function i.e. The parameter, return in the function definition is called
formal parameter

Example:
main()
{
........... Where
h}kég) a,b are the actual
........ . parameters
b X,y are formal parameter
Fun(int x,int y)
{
Example Program
#include<stdio.h>
#include<conio.h>
void add(int,int); //Function Declaration Output:
void sub(float,int);//Function Declaration
void main() add=7
{ sub=-2.500000
clrscr();
add(3,4); //Function call
sub(2.5,5); //Function call

getch();
}
void add(int a,int b)//Function Definition
{
int c;
c=a+b;
printf(“add=%d”,c);
}

void sub(float a, int b) //Function Definition




{
float c;

c=a-b;

printf(“sub=%f",c);

}

Example 2:

//program for factorial of given

number #include<stdio.h>

#include<conio.h> void main()

int fact(int); Output:

int f; Enter one value 5
clrscr(); The Factorial of given
printf("Enter one value"); number 5 is 120

scanf("%d",&f);

printf("The Factorial of given number %d is
%d",f,fact(f)); getch();

}
int fact(int f)

return 1;
else
return(f*fact

(f-1));
}

Function Prototype (or) Function Interface

e The functions are classified into four types depends on whether the
arguments are present or not, whether a value is returned or not. These are
called function prototype.

¢ In ‘C’ while defining user defined function, it is must to declare its prototype.

e A prototype states the compiler to check the return type and arguments type
of the function.

e A function prototype declaration consists of the function’s return type, name
and argument. It always ends with semicolon. The following are the function
prototypes

o Function with no argument and no return
value. o Function with argument and no return
value.

o Function with argument and with return




value. o Function with no argument with
return value.

Function with no argument and no return value

¢ In this prototype, no data transfer takes place between the calling function
and the called function. i.e., the called program does not receive any data
from the calling program and does not send back any value to the calling

program.
Syntax:-
main() o void Fun()
{ = - { The dotted lines indicates that,
-
"""""" Prad there is only transfer of control,
........... o2
e but no data transfer.
Fun()ie _ _
........... T —— }
}
Example program 1
#include<stdio.h> Output:
#include<conio.h> Enter two values 6 4

mul=24

void mul();

void main()

{
clrscr();
mul();
getch();

}

void mul()

{

int a,b,c;
printf(“Enter two values”);

scanf(“%d%d”,&a,&b); c=a*b;




printf(“mul=%d”,c);
}
Example program 2

//Program for finding the area of a circle using Function with no argument
and no return value
I#include<stdio.h>

#tinclude<conio.h>

void circle();
Output:
void main()
Enter radius 5

The area of circle 78.500000 circle();

}

void circle()
{

int r;

float cir;

printf("Enter radius");

scanf("%d",&r);

cir=3.14*r*r;

printf("The area of circle is %f",cir);

}

Function with argument and no return value

¢ In this prototype, data is transferred from the calling function to called function.
i.e., the called function receives some data from the calling function and does
not send back any values to calling function
e |tis one way data communication.
Syntax:-

main() void Fun(x,y) }
{ { Example program 1:
#include<stdio.h>

Fun(a,b);‘_ #




nclude<conio.h>
void add(int,int);

void main()

{
clrscr();
int a,b;

printf(“Enter two values”);
scanf(“%d%d”,&a,&b);

add(a,b);
getch();
}
void add(int x,int y)
{
int c;
C=X+Y;
printf(“add=%4d",c);
}

Example program 2:

The solid lines indicate data
transfer and dotted line indicates
a transfer of control.

a and b are the actual
parameters

x and y are formal parameters

Output:

Enter two values 6 4
add=10

//Program to find the area of a circle using Function with argument and no return value




#include<stdio.h>

#include<conio.h>

void circle(int); Output:
void main
0 Enter radius 5
{ The area of circle 78.500000
intr;
clrscr();

}

printf("Enter radius");
scanf("%d",&r);
circle(r);

void circle(int r)

{

}

float cir;

cir=3.14%r*r;

printf("The area of circle is
%f",cir); getch();

Function with argument and with return value.

e |n this prototype, the data is transferred between the calling function and
called function. i.e., the called function receives some data from the calling
function and sends back returned value to the calling function.

e ltis two way data communication

Syntax:- The solid lines indicates data transfer
main() int Fun(x.y) takes place in between thecalling
{ { program and called program
...................... a,b are the actual parameter
___________ '\] x,y are formal parameter
}

Example program 1:

#include<stdio.h>

#include<conio.h>

void add(int,int);

Output:

Enter two values 6 4
Add=10




void main()

{
clrscr();
int a,b,c;
printf(“Enter two values”);
scanf (“%d%d”,&a,&b);
c=add(a,b);
printf(“Add=%d”,c); getch();
}
void add(int x,int y)
{
int m;
m=X+y ;
return m;
}

Example Program 2

// Program to find the area of a circle using Function with argument
and with return value

#include<stdio.h>

#include<conio.h> float

circle(int); void main()

{

int r; clrscr();

printf("Enter radius");

scanf("%d",&r); Output:

Enter radius 5

. 11}
prlntf( the area of the area of circle 78.500000

circle is

%f",circle(r)); getch();




float circle(int r)

{

float cir;
cir=3.14%r*r;
return cir;

}

Function with no argument with return value

e In this prototype, the calling function cannot pass any arguments to the called
function, but the called program may send some return value to the calling function.

e |tis one way data communication
Syntax:- {

Example program 1

#include<stdio.h>

#include<conio.h>

int add();

void main()

{
clrscr();
int z;
z=add();
printf(“Add=%d”,z);
getch();

}

int add()




NOTE: The dotted line indicates a
control transfer to the called program and the solid
line indicates data return to the calling program

Output:

Enter two values 6 4
Add=10




Example Program 2

// Program to the area of a circle using no argument with a return
value

#include<stdio.h>

#include<conio.h>

float circle();

void main()

{
clrscr();
printf("the area of circle is
%f",circle()); getch();
} Output:
float circle() Enter radius 5
{ the area of circle 78.500000

float cir; int r;
printf("Enter radious"); scanf("%d",&r);
cir=3.14*r*r;

return cir;




Parameter Passing Methods (or) Passing Arguments to Function

e Function is a good programming style in which we can write reusable code that
can be called whenever required.

e Whenever we call a function, the sequence of executable statements gets
executed. We can pass some of the information (or) data to the function for
processing is called a parameter.

e |n‘C’ Language there are two ways a parameter can be passed to a function.
They are

o Call by value
o Call by reference

Call by Value:

e This method copies the value of the actual parameter to the formal parameter of the
function.

e Here, the changes of the formal parameters cannot affect the actual parameters,
because formal parameter are photocopies of the actual parameter.

e The changes made in formal arguments are local to the block of the called function.
Once control returns back to the calling function the changes made disappears.

Example Program
#include<stdio.h>
#include<conio.h>
void cube(int);

int cubel(int);

void main() Output:
{ Enter one values 3
Value of cube function is 3
int a; Value of cubel function is 27
clrscr();

printf(“Enter one values”);

scanf(“%d”,&a);




printf(“Value of cube function is=%d”, cube(a));
printf(“Value of cubel function is =%d”, cubel(a
)); getch();

}

void cube(int x)

{

X=X*xX*X;
return X;
}
int cubel(int x)
{
X=X*x*x;
return Xx;
}

Call by reference

e (Call by reference is another way of passing parameter to the function.

e Here the address of the argument is copied into the parameter inside the function, the
address is used to access arguments used in the call.

e Hence, changes made in the arguments are permanent.

e Here pointer is passed to function, just like any other arguments.
Example Program

#include<stdio.h>

#include<conio.h>

void swap(int,int);

Output:
void main() Before swapping a=5 b=10
{ After swapping a=10 b=5

int a=5,b=10;

clrscr();

printf(“Before swapping a=%d b=%d”,a,b);




swap(&a,&b);

printf(“After swapping a=%d
b=%d”,a,b); getch();

}
void swap(int *x,int *y)
{
int *t;
t=*x;
*x=*y;
*y=t;
}

Nesting of function call in ¢ programming

If we are calling any function inside another function call, then it is known as Nesting
function call. In other words, a function calling different functions inside is termed as Nesting
Functions.

Example:
// C program to find the factorial of a number.

#tinclude <stdio.h>

//Nesting of functions

//calling function inside another
function //calling fact inside
print_fact_table function

void print_fact_table(int); // function declaration
int fact(int); // function declaration
void main() // main function
{
print_fact_table(5); // function call

}
void print_fact_table(int n) // function definition
{

int i;

for (i=1;i<=n;i++)




printf("%d factorial is %d\n",i,fact(i)); //fact(i)-- function call
}

int fact(int n) // function definition
{

if (n == 1)

return 1;

else

return n * fact(n-1);

}

Output:
1 factorial is
2 factorial is
3 factorial is
4 factorial is 24
5 factorial is 120

NN PR

Recursion

A function calling same function inside itself is called as recursion.

Example: // C program to find the factorial of a number.

#include <stdio.h>

int fact(int); // function declaration

void main() // main function

{

printf("Factorial =%d",fact(5)); // fact(5) is the function call
}

int fact(int n) // function definition

{

if (n==1) return 1; else

return n * fact(n-1); // fact(n-1) is the recursive function call

}

Output:
Factorial = 120

Discussion:
For 1!, the functions returns 1, for other values, it executes like the one below:




When the value is 5, it comes to else part and calculates like this,
= 5 * fact (5-1) = 5* fact (4)

5* 4* fact (4-1) = 5% 4% fact (3)

= 5% 4% 3% fact (3-1) 5 * 4% 3% fact (2)

= 5* 4% 3% 2% fact (2-1) =5 * 4% 3* 2% fact (1)
= 5% 4%¥3% 2%¥1 (if (n==1) then return 1, hence we get 1)

=120

ARRAYS
Introduction:

So far we have used only single variable name for storing one data item. If we need to store
multiple copies of the same data then it is very difficult for the user. To overcome the difficulty a
new data structure is used called arrays.

An array is a linear and homogeneous data structure

An array permits homogeneous data. It means that similar types of elements are stored
contiguously in the memory under one variable name.

An array can be declared of any standard or custom data type.
Example of an Array:

Suppose we have to store the roll numbers of the 100 students the we have to declare 100
variables named as roll1, roll2, roll3, ....... roll100 which is very difficult job. Concept of C
programming arrays is introduced in C which gives the capability to store the 100 roll numbers
in the contiguous memory which has 100 blocks and which can be accessed by single variable
name.

] C Programming Arrays is the Collection of Elements

7 C Programming Arrays is collection of the Elements of the same data type.

71 All Elements are stored in the Contiguous memory

71 All elements in the array are accessed using the subscript variable (index).
Pictorial representation of C Programming Arrays

ArrayElement | 4 | 5 |33 13| 1

L

Location 0 1 ? 3 4

The above array is declared as int a [5];




al0] = 4; a[1] =5; al2] = 33; a[3] = 13; a[d] = 1;
In the above figure 4, 5, 33, 13, 1 are actual data items. 0, 1, 2, 3, 4 are index variables.

Index or Subscript Variable:

1.Individual data items can be accessed by the name of the array and an integer enclosed in

square bracket called subscript variable / index

2. Subscript Variables helps us to identify the item number to be accessed in the contiguous

memory.

Characteristics of an array:

2.

7.

The declaration int a [5] is nothing but creation of five variables of integer types in

memory instead of declaring five variables for five values.

All the elements of an array share the same name and they are distinguished from one

another with the help of the element number.

The element number in an array plays a major role for calling each element.

Any particular element of an array can be modified separately without disturbing the

other elements.

Any element of an array a[ ] can be assigned or equated to another ordinary variable or

array variable of its type.

Array elements are stored in contiguous memory locations.

Array Declaration:

Array has to be declared before using it in C Program. Array is nothing but the collection of
elements of similar data types.

Syntax: <data type> array name [size1][size2].....[sizen];

Syntax Parameter Significance

Data type Data Type of Each Element of the array
Array name Valid variable name

Size Dimensions of the Array

Array declaration requirements

Requirement Explanation

Data Type

Data Type specifies the type of the array. We can compute the size
required for storing the single cell of array.

Valid Identifier

Valid identifier is any valid variable or name given to the array.
Using this identifier name array can be accessed.




Size of Array It is maximum size that array can have.

What does Array Declaration tell to Compiler?
1 Type of the Array
1 Name of the Array
"1 Number of Dimension
71 Number of Elements in Each Dimension

Types of Array
7 Single Dimensional Array / One Dimensional Array
71 Multi Dimensional Array

Single / One Dimensional Array:
"1 Single or One Dimensional array is used to represent and store data in a linear form.
7 Array having only one subscript variable is called One-Dimensional array
] ltis also called as Single Dimensional Array or Linear Array
Single Dimensional Array Declaration and initialization:
Syntax for declaration: <data type> <array name> [size];
Examples for declaration: int iarr[3]; char carr[20]; float farr[3];
Syntax for initialization: <data type> <array name> [size] = {val1, val2, ..., valn};
Examples for initialization: int
iarr[3] = {2, 3, 4};
char carr[20] = “program”; float
farr[3] = {12.5, 13.5, 14.5};
Different Methods of Initializing 1-D Array

Whenever we declare an array, we initialize that array directly at compile time.
Initializing 1-D Array is called as compiler time initialization if and only if we assign certain set of
values to array element before executing program. i.e. at compilation time.

Compile
Time
Initializing




Example Program

#include <stdio.h>

int main()

int num[] = {2,8,7,6,0};

int i;

for (i=0;i<5;i++) {

printf(“\n Array Element num [%d] = %d”,i, num[i]); }
return 0; }

Output:

Array Element num[@]

Array Element num[1]
Array Element num[2]

Array Element num[3]

]
®© OO N 00N

Array Element num[4]

Accessing Array
1 We all know that array elements are randomly accessed using the subscript variable.

"1 Array can be accessed using array-name and subscript variable written inside pair of
square brackets [ ].

Consider the below example of an array

51 (32 (43 | 24 | 5 | 26

2001 2003 2005 2007 2009 2011

In this example we will be accessing array like this
arr[3] = Forth Element of Array




arr[5] = Sixth Element of Array

whereas elements are assigned to an array using below way
arr[0] =51; arr[1]=32; arr[2] =43; arr[3]=24; arr[4]=5; arr[5] =26;
Example Program1: Accessing array
#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] = {51,32,43,24,5,26};

int 1i;

for(i=0; i<=5; i++) {

printf("\nElement at arr[%d] is %d",i,arr[i]);
}

getch();

}

Output:

Element at arr[@] is 51

Element at arr[1l] is 32

Element at arr[2] is 43

Element at arr[3] is 24

Element at arr[4] is 5

Element at arr[5] is 26

How a[i] Works?

We have following array which is declared like int arr[] = { 51,32,43,24,5,26};

As we have elements in an array, so we have track of base address of an array. Below things
are important to access an array.

Expression Description Example

arr It returns the base address of an array Consider 2000

*

arr It gives zeroth element of an array 51




Expression Description Example

*(arr+0) It also gives zeroth element of an array 51

*(arr+1) It gives first element of an array 32

So whenever we tried accessing array using arr[i] then it returns an element at the location*(arr
+ i)

Accessing array a[i] means retrieving element from address (a + i).

Example Program2: Accessing array

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] =

{51,32,43,24,5,26}; int i;
for(i=0; i<=5; i++) {
printf("\n%d %d %d %d",arr[i],*(i+arr),*(arr+i),i[arr]);
}

getch();

}

Output:

51 51 5151

32 32 3232

43 43 4343

24 24 2424

5 555

26 26 2626

Operations with One Dimensional Array

71 Deletion — Involves deleting specified elements form an array.
71 Insertion — Used to insert an element at a specified position in an array.

71 Searching — An array element can be searched. The process of seeking specific
elements in an array is called searching.




5. Merging — The elements of two arrays are merged into a single one.
6. Sorting — Arranging elements in a specific order either in ascending or in descending
order.
Example Programs:

1. C Program for deletion of an element from the specified 1location
from an Array

#include<stdio.h>

int main() {

int arr[30], num, i, loc;

printf("\nEnter no of

elements:"); scanf("%d", &num);

//Read elements in an array

printf("\nEnter %d elements :",

num); for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

//Read the location

printf("\nLocation of the element to be deleted
:"); scanf("%d", &loc);

/* loop for the deletion */
while (loc < num) {

arr[loc - 1] =

arr[loc]; loc++; }

num--; // No of elements reduced by 1
//Print Array

for (i = 0; 1 < num; i++)
printf("\n %d", arr[i]);
return (0);

}

Output:

Enter no of elements: 5

Enter 5 elements: 3 417 8




Location of the element to be deleted: 3
3478

2. C Program to delete duplicate elements from an array
int main() {

int arr[20], i, j, k, size;
printf("\nEnter array size:

"); scanf("%d", &size);

printf("\nAccept Numbers: ");

for (i = @; i < size; i++)

scanf("%d", &arr[i]);

printf("\nArray with Unique list:

"); for (i = 0; i < size; i++) {

for (j =1+ 1; j < size;) {

if (arr[j] == arr[i]) {

for (k = j; k < size; k++) {
arr[k] = arr[k + 1]; } size-
-5}

else

J++5 )

}

for (i = 0; i < size; i++) {
printf("%d ", arr[i]); }
return (0);

}
Output:

Enter array size: 5

Accept Numbers: 1 3 45 3

Array with Unique list: 1 3 4 5

3. C Program to insert an element in an array
#include<stdio.h>

int main() {




int arr[30], element, num, i,
location; printf("\nEnter no of
elements:"); scanf("%d", &num);
for (i = 0; i < num; i++)

{ scanf("%d", &arr[i]); }
printf("\nEnter the element to be

inserted:"); scanf("%d", &element);

printf("\nEnter the location");

scanf("%d", &location);

//Create space at the specified location
for (i = num; i >= location; i--) {
arr[i] = arr[i - 1]; }

num++;

arr[location - 1] = element;

//Print out the result of insertion
for (i = 0; 1 < num; i++)

printf("n %d",

arr[i]); return (0);

}
Output:

Enter no of elements:
512345

Enter the element to be inserted: 6
Enter the location: 2

162345

4. C Program to search an element in an array

#include<stdio.h>

int main() {

int a[30], ele, num, i;
printf("\nEnter no of elements:");

scanf("%d", &num);




printf("\nEnter the values :");
for (i = 0; i < num; i++) {
scanf("%d", &a[i]); }

//Read the element to be searched

printf("\nEnter the elements to be searched
:"); scanf("%d", &ele);

//Search starts from the zeroth

location i = 9;

while (i < num && ele != a[i])

{ i++; }

//If i < num then Match

found if (i < num) {

printf("Number found at the location = %d", i + 1);
}

else {

printf("Number not found");
} return (9);

}
Output:

Enter no of elements:
5 11 22 33 44 55

Enter the elements to be searched:

44 Number found at the location = 4

5. C Program to copy all elements of an array into another array
#include<stdio.h>

int main() {

int arril[30], arr2[30], i, num;

printf("\nEnter no of

elements:"); scanf("%d", &num);

//Accepting values into Array

printf("\nEnter the values:");




for (i = 0; i < num; i++) {
scanf("%d", &arril[i]); }

/* Copying data from array 'a' to array 'b */

for (i = 0; i < num; i++) {

arr2[i] = arrl[i]; }

//Printing of all elements of array
printf("The copied array is:");

for (i = @; i < num; i++)
printf("\narr2[%d] = %d", i, arr2[i]);
return (0);

}

Output:

Enter no of elements: 5

Enter the values: 11 22 33 44 55

The copied array is: 11 22 33 44 55
6. C program to merge two arrays in C Programming
#include<stdio.h>

int main() {

int arril[30], arr2[30],

res[60]; int i, j, k, nl, n2;
printf("\nEnter no of elements in 1st
array:"); scanf("%d", &nl);

for (1 = 0; i< nl; i++) {

scanf("%d", &arrl[i]); }
printf("\nEnter no of elements in 2nd
array:"); scanf("%d", &n2);

for (1 = 9; 1 < n2; i++)

{ scanf("%d", &arr2[i]);

}i=0;




// Merging starts

while (i < nl1 & & j < n2)
{ if (arrl[i] <= arr2[j])
{ res[k] = arrl[i];

i++;

k++; }

else {

res[k] =
arr2[jl; k++;

J++5 )

}

/*Some elements in array ‘'arrl' are still remaining where as the array
‘arr2' is exhausted*/

while (i < nl1) {

res[k] =

arrl[i]; i++;

k++; }

/*Some elements in array ‘'arr2' are still remaining where as the array
‘arrl' is exhausted */

while (j < n2) {

res[k] =

arr2[j]; k++;

J++5 )

//Displaying elements of array

res' printf("\nMerged array is:");
for (1 = @; i < nl + n2;

i++) printf("%d ", res[il]);

return (0);

}

Enter no of elements in 1st array:
4 11 22 33 44




Enter no of elements in 2nd array: 3

10 40 80

Merged array is: 10 11 22 33 40 44 80

Bisection Method

#include<stdio.h>

#include<conio.h>

void main()

{

int 1;

float f,x,a,b;

printf("Enter the value of a ::");
scanf("%f",&a);

printf("Enter the value of b ::");
scanf("%f",&b);

do

{

x = (a+b)/2.00;

f = (x*x*x)-(x)-1; // any equation can be put here
if (£>0)

b=x;

else

a=x;

printf("\n\n\ta = %f b = %f f= %f",a,b,f);
}while(b-a>0.0001);

printf("\n\t The Root of the equation is %f",x);
getch();

}

/* Output */
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Newton Raphson Method In C Programming

#include<conio.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

int user_power,i=0,cnt=0,flag=0;
int coef[10]={0};

float x1=0,x2=0,t=0;

float fx1=0,fdx1=0;

void main()

{

clrscr();
printf("\n\n\t\t\t PROGRAM FOR NEWTON RAPHSON GENERAL");
printf("\n\n\n\tENTER THE TOTAL NO. OF POWER:::: ");
scanf("%d",&user_power);
for(i=0;i<=user_power;i++)
{
printf("\n\t x*%d::",1);
scanf("%d",&coef[i]);
}
printf("\n");
printf("\n\t THE POLYNOMIAL IS ::: ");
for(i=user_power;1>=0;1--)//printing coeff.
{
printf(" %dx"%d" coef[i],1);
}
printf("\nMINTIAL X1---->");
scanf("%f",&x1);

printf("\n ***********>X<>X<>X<>I<>I<>I<>}<>X<>X<>I<>I<>I<>X<>X<>I<>I<>I<>X<>X<>X<>I<>I<>I<********************”)

printf("\n ITERATION X1 FX1 FXI1 ");

.
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printf("\n
>l<***********************>}<>}<>}<>I<>I<>I<>X<>X<>X<>l<>l<***********************");
do
{
cnt++;
fx1=fdx1=0;
for(i=user_power;i>=1;i--)
{
fx1+=coef[i] * (pow(x1,1)) ;
}
fx1+=coef[0];
for(i=user_power;1>=0;i--)
{
fdx14+=coef[i]* (i*pow(x1,(1-1)));
}
t=x2;
x2=(x1-(fx1/fdx1));
x1=x2;
printf("\n %d 9% .3f %.3f %.3f",cnt,x2,fx1,fdx1);

}while((fabs(t - x1))>=0.0001);
printf("\n\t THE ROOT OF EQUATION IS %f",x2);
getch();

}

>I<>X<>X<>X<>I<>I</
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Lagrange's Interpolation Method For Finding F(X) In C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
float x[10],y[10],temp=1,f[10],sum,p;
int 1,n,j,k=0,c;
clrscr();
printf("\nhow many record you will be enter: ");
scanf("%d",&n);
for(i=0; i<n; i++)
{
printf("\n\nenter the value of x%d: ",1);
scanf("%f",&x[i]);
printf("\n\nenter the value of f(x%d): ",1);
scanf("%f",&yl[i1]);
}
printf("\n\nEnter X for finding f(x): ");
scanf("%t",&p);

for(i=0;i<n;i++)

{
temp = 1;
k=1
for(j=0;j<n;j++)
{
if(k==j)
{ .
continue;
}
else
{
temp = temp * ((p-x[j1/(x[k]-x[j]);
}
}

fli]l=y[i]*temp;
}




for(i=0;i<n;i++)
{

sum = sum + f[i];

}
printf("\n\n f(%.1f) = %t ",p,sum);
getch();

/*OUTPUT

how many record you will be enter: 4

enter the value of x8: @

the value of F{x@>: 2

the value of x1: 1

the value of

the value of x2: 2

the value of Fox2>: 12

the value of x3: 5

the value of FCx3>: 147

Enter ¥ for finding fCx>: 3

£f<3.8> = 35.008080

Code for SIMPSON'S 1/3 RULE in C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()

{
float x[10],y[10],sum=0,h,temp;




int 1,n,j,k=0;
float fact(int);
clrscr();
printf("\nhow many record you will be enter: ");
scanf("%d",&n);
for(i=0; i<n; i++)
{
printf("\n\nenter the value of x%d: ",1);
scanf("%f",&x[i]);
printf("\n\nenter the value of f(x%d): ",1);
scanf("%t",&yl[1]);
}
h=x[1]-x[0];
n=n-1;
sum = sum + y[0];
for(i=1;i<n;i++)
{
if(k==0)
{
sum = sum + 4 * y[i];
k=1;
}
else
{
sum = sum + 2 * y[i];
k=0;
}
}
sum = sum + y[i];
sum = sum * (h/3);
printf("\n\n I = %f ",sum);
getch();
}

/*_OUTPUT

how many record you will be enter: 5




enter the value of x0: 0

enter the value of f(x0): 1

enter the value of x1: 0.25
enter the value of f(x1): 0.8
enter the value of x2: 0.5

enter the value of f(x2): 0.6667
enter the value of x3: 0.75
enter the value of f(x3): 0.5714
enter the value of x4: 1

enter the value of f(x4): 0.5

[=0.693250

TRAPEZOIDAL RULE in C Programming

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
float x[10],y[10],sum=0,h,temp;
int 1,n,j,k=0;
float fact(int);
clrscr();

printf("\nhow many record you will be enter: ");

scanf("%d",&n);
for(i=0; i<n; 1++)

{




printf("\n\nenter the value of x%d: ",i);
scanf("%f",&x[1]);

printf("\n\nenter the value of f(x%d): ",1);
scanf("%f",&yl[i1]);

}
h=x[1]-x[0];
n=n-1;
for(i=0;i1<n;i++)
{

if(k==0)

{

sum = sum + y[i];

k=1;

}

else

sum = sum + 2 * y[i];

}

sum = sum + y[i];
sum = sum * (h/2);
printf("\n\n I = %t ",sum);

getch();
}
[*
OUT PUT

how many record you will be enter: 6
enter the value of x0: 7.47

enter the value of f(x0): 1.93

enter the value of x1: 7.48

enter the value of f(x1): 1.95

enter the value of x2: 7.49




enter the value of f(x2): 1.98
enter the value of x3: 7.50
enter the value of f(x3): 2.01
enter the value of x4: 7.51
enter the value of f(x4): 2.03
enter the value of x5: 7.52
enter the value of f(x5): 2.06

I=0.099652

Euler’s Method in C:

#include<stdio.h>
float fun(float x,float y)
{
float f;
f=x+y;
return f;
}
main()
{
float a,b,x,y,h,t.k;
printf("\nEnter x0,y0,h,xn: ");
scanf(" %f%t%f%f" ,&a,&b,&h,&t);
X=a;
y=b;
printf("\n x\t y\n");
while(x<=t)
{
k=h*fun(x,y);
y=y+k;
x=x+h;
printf("%0.3f\t%0.3\n" x,y);







SPH5107 - NUMERICAL METHODS AND COMPUTER PROGRAMMING

UNIT -5

NEED FOR OBJECT ORIENTED PROGRAM:

Procedure Oriented Programming (POP)

The high level languages, such as BASIC, COBOL, C, FORTRAN are commonly

known as Procedure Oriented Programming.

Using this approach, the problem is viewed in sequence of things to be done, like

reading, processing and displaying or printing. To carry out these tasks the function
concepts must be used.

¢

¢

¢

Main Program
] I

A 4 A 4 \ 4

Fun 1 Fun 2 Fun 3

NSON

Fun 2 Fun 2

This concept basically consists of number of statements and these statements are
organized or grouped into functions.

While developing these functions the programmer must care about the data that is
being used in various functions.

A multi-function program, the data must be declared as global, so that data can be
accessed by all the functions within the program & each function can also have its

own data called local data.
Global Data
A

Global Data

Fun 1 Fun 2 Fun 3 Fun 4

Th global data can be accessed anywhere in the program. In large program it is very
difficult to identify what data is accessed by which function. In this case we must
revised about the external data and as well as the functions that access the global data.
At this situation there is so many chances for an error.

OBJECT ORIENTED PROGRAMMING (OOP)




¢ This programming approach is developed to reduce the some of the drawbacks
encountered in the Procedure Oriented Programming Approach.

¢ The OO Programming approach treats data as critical element and does not allow the
data to freely around the program.

¢ It bundles the data more closely to the functions that operate on it; it also protects data
from the accidental modification from outside the function.

¢ The object oriented programming approach divides the program into number of
entities called objects and builds the data and functions that operates on data around
the objects.

¢ The data of an object can only access by the functions associated with that object.

Object X Object Y
Communication
Data < > Data
Functions Functions
Object 2
. Communication
Communication
Data
Functions

Difference between C & C++

S.No | Procedure oriented Programming (C) | Object Oriented Programming (C++)

1. Programs are divided into smaller | Programs are divided into objects &
sub-programs known as functions classes

2. Here global data is shared by most of | Objects are easily communicated with
the functions each other through function.

3. It is a Top-Down Approach It is a Bottom-Up Approach

4. Data cannot be secured and available | Data can be secured and can be

to all the function

Here, the reusability is not possible;
hence redundant code cannot be
avoided.

available in the class in which it is
declared

Here, we can reuse the existing one
using the Inheritance concept




Benefits or Advantages of OOPS

The complexity of software can be managed easily.

Data hiding concept help the programmer to build secure programs

Through the class concept we can define the user defined data type

The inheritance concept can be used to eliminate redundant code

The message-passing concept helps the programmer to communicate between
different objects.

New data and functions can be easily added whenever necessary.

¢ OOPS ties data elements more closely to the functions that operates on.

* & & o o

*

Basics of C++ Programming

C++ was developed by BJARNE STROUSSTRUP at AT&T BELL Laboratories
in Murry Hill, USA in early 1980’s.

Strousstrup combines the features of ‘C’ language and ‘SIMULAG67’ to create
more powerful language that support OOPS concepts, and that language was named as
“C with CLASSES”. In late 1983, the name got changed to C++.

The idea of C++ comes from ‘C’ language increment operator (++) means more
additions.

C++ is the superset of ‘C’ language, most of the ‘C’ language features can also
applied to C++, but the object oriented features (Classes, Inheritance, Polymorphism,
Overloading) makes the C++ truly as Object Oriented Programming language.

Structure of C++ Program

Include files

Class Definition

Member function Definitions

Main function Program

Include files provides instructions to the compiler to link functions from the system
library.
Eg: #include <iostream.h>




#include - Preprocessor Directive
iostream.h - Header File

¢ A class is a way to bind and its associated functions together. It is a user defined
datatype. It must be declared at class declaration part.

¢ Member function definition describes how the class functions are implemented. This
must be the next part of the C++ program.

¢ Finally main program part, which begins program execution.

main( )

{
}

Program execution begins at the opening brace and ends at the closing brace. The
closing brace of the main function is the logical and of the program.

Input / Output statements

Input Stream

Syntax:
cin >> varl >> var2 >>;

cin — Keyword, it is an object, predefined in C++ to correspond to the standard input
stream.

>> - is the extraction or get from operator

Extraction operation (>>) takes the value from the stream object on its left and places it
in the variable on its right.

Eg:
cin>>x;
cin>>a>>b>>c;
Output Stream:
Syntax:

cout<<varl<<var?2;

cout - object of standard output stream
<< - 1is called the insertion or put to operator

It directs the contents of the variable on its right to the object on its left.
Output stream can be used to display messages on output screen.

Eg:
cout<<a<<b;




cout<<’value of x i1s"<<Xx;
cout<<”Value of x is”<<x<<”less than’<<y;

Tokens

The smallest individual units in a program are known as tokens.
C++ has the following tokens
¢ Keywords
¢ Identifiers
¢ Constants
¢ Strings
¢ Operators

Keywords

¢ [t has a predefined meaning and cannot be changed by the user
e Keywords cannot be used as names for the program variables.

Keywords supported by C++ are:

asm double new switch
auto else operator template
break enum private this

case extern protected throw
catch float public try

char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while

The specific C++ Keywords

There are several keywords specific to C++

asn new template
catch operator this
class private throw
delete protected try
friend public virtual
inline

Identifiers

Identifiers refer to the names of variables, functions, arrays, classes, etc. created
by the programmer.




Rules for naming these identifiers:

Only alphabetic characters, digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

A declared keyword cannot be used as a variable name.

L=

(i) Variables:

It is an entity whose value can be changed during program execution and is
known to the program by a name.

A variable can hold only one value at a time during program execution.

Eg:

Allowable variable names Invalid names

i 1_.B - 1" letter must be alphabet
sum $xy - 1*'letter must be alphabet
A_B x+b - special symbol ‘+’ not allowed
A-1B

Declaration of Variables

Syntax
datatype variablename;

Datatype

It is the type of data, that is going to be processed within the program

C++ datatype

User Defined type Built-in type Defined type
Eg: Eg:

structure array

Union function
Class pointer
enumeration reference

Integral type void Floating type
Eg: Eg:

int float

char double




Eg:

int X;

float y,z;

char a;
A variable can be declared anywhere in the program before its first use.
Constants

A quantity that does not change is known as constants.

Types of constants:

Integer constants - Eg: 123,25 - without decimal point
e (Character constants - Eg: ‘A’, ‘B’, ¥, ‘1’
e Real constants - Eg: 12.3,2.5 - with decimal point
Strings

A sequence of characters is called string. String constants are enclosed in double
quotes as follows

“Hello”
Operators

An operator is a symbol that tells the computer to perform certain mathematical or
logical manipulations.

Types of Operators

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators

4. Assignment Operators
5. Increment & decrement Operators
6. Conditional Operators
7. Bitwise Operators

8. Special Operators

9. Manipulators

10. Memory allocate / delete Operators

An expression is a combination of variables, constants and operators written according to
the syntax of the language.




Arithmetic Operators

C++ has both unary & binary arithmetic operators.

e Unary operators are those, which operate on a single operand.
e Whereas, binary operators on two operands +, -, *, /, %

Examples for Unary Operators:
1. intx=10;
y =-x; (The value of x after negation is assigned to y ie. y becomes —5.)
2. intx=35;
sum = -X;

Examples for Unary Operators:

I. intx =16, y=5;
x+y = 21; (result of the arithmetic expression)
x-y=11;
x*y=80;

/ - Division Operator

Eg:
x=10,y=3;
x/y=3; (The result is truncated, the decimal part is discarded.)

% - Modulo Division

The result is the remainder of the integer division only applicable for integer
values.

x=11,y=2
x%y =1

Relational Operators

e A relational operator is used to make comparison between two expressions.
e All relational operators are binary and require two operands.
<, <=, >, >=, ++, 1=
Relational Expression
Expressionl relational operator Expression2

Expressionl & 2 — may be either constants or variables or arithmetic expression.

Eg:




a < b (Compares its left hand side operand with its right hand side operand)
10==15
al=b

® An relational expression is always return either zero or 1, after evaluation.

Eg: (a+b) <= (c+d)

arithmetic expression

Here relational operator compares the relation between arithmetic expressions.

Logical Operators

&& - Logical AND

" - Logical OR

! - Logical NOT
Logical operators are used when we want to test more than one condition and make
decisions.

Eg: (a<b) && (x==10)

An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression.

Like simple relational expressions, a logical expression also yields a value of one or zero,
according to the truth table.

Operand 1 Operand 2 AMD OR NOT OP1 NOT OP2
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 1
1 1 1 1 0 0
Eg:

(10 > 5) && (3 < 13))

y

N

T

T

(11 <3) 1! (10!= 5))

v v

E noT

\/
T




Assignment Operators

Assignment operators are used to assign the result of an expression to a variable.

Eg: a=10;
a=a+b;
X=Y;

Variable operator = operand

OP =is called as shorthand assignment operator.

VOP =exp
is equivalent to v = v op exp
Eg: x+=y;=> X =X+y;

Increment & Decrement Operators

e Increment ++, this operator adds 1 to the operand
Decrement --, this operator subtracts 1 from the operand
¢ Both are unary operators

Eg:

m = 5;

y = ++m; (adds 1 to m value)

x = --m; (Subtracts 1 from the value of m)
Types

e Pre Increment / Decrement OP:
e Post Increment / Decrement OP:

If the operator precedes the operand, it is called pre increment or pre decrement.
Eg: ++i, --i;

If the operator follows the operand, it is called post increment or post decrement.
Eg: ++i, --i;

In the pre Increment / Decrement the operand will be altered in value before it is
utilized for its purpose within the program.
Eg: x =10;

Y = ++x;
e 1" x value is getting incremented with 1.
e Then the incremented value is assigned to y.

In the post Increment / Decrement the value of the operand will be altered after it is
utilized.
Eg: y=11

X = y++;

10




e 1" x value is getting assigned to x & then the value of y is getting increased.

Conditional Operator

?:

General Form is

Conditional exp ? exp 1 : exp 2;
Conditional exp - either relational or logical expression is used.
Expl & exp 2 : are may be either a variable or any statement.

Eg:
(a>b)?a:b;
¢ (Conditional expression is evaluated first.
e [f the resultis ‘1’ is true, then expressionl is evaluated.
e [f the result is zero, then expression2 is evaluated.

Eg: lar = (10>5)?10:5;

Bitwise Operators - Used to perform operations in bit level

Operators used:

& - Bitwise AND
[ - Bitwise OR

A - Exclusive OR
<< - Left shift

>> - Right shift

~ - One’s complement

Special Operators
® sizeof
e comma(,)

® size of operators returns the size the variable occupied from system memory.
Eg:

var = sizeof(int)

cout<<var; Ans: 2

x = size of (float);

cout << X; Ans: 4
inty;

x = sizeof (y);

cout<<y; Ans: 2

Precedence of Operators
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Name Operators Associatively
Unary -,++,--,1, sizeof | R> L
Operators
Mul, div & */, % L2>R
mod
Add, Sub +, - L-> R
Relational <. <=, >, >= L2>R
Equality ==, = L->R
Logical AND && L2>R
Logical OR I L2>R
Example
X =10,y=2mz=10.5
a = (x+y) — (x/y)*z;
=12-5*10.5;
=12-52.5;
a =-42.5
Manipulators

Manipulators are operators used to format the data display. The commonly used
manipulators are endl, setw.

endl manipulators

It is used in output statement causes a line feed to be inserted, it has the same
effect as using the newline character “\n” in ‘C’ language.

#include <iostream.h>

main()

{
int a=10, b=20;
cout << “C++ language” << endl;
cout << “A value: “ << a << endl;
cout << “B value:” << b << endl;

}
O/P:
C++ language

A value: 10
B value: 20
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Setw Manipulator

The setw manipulator is used or specify the field width for printing, the content of
the variable.

Syntax: setw(width);
where width specifies the field width.

inta=10;
cout << ““ A value” << setw(5) << a << endl;

Output:
A value 10
Note: Remaining operators will be discussed in 4™ unit.

Symbolic Constant

Symbolic constants are constants to which symbolic names are associated for the
purpose of readability and ease of handling.

e #define preprocessor directive
e const keyword
e enumerated data type

#define preprocessor directive

It associates a constant value to a symbol and is visible throughout the function in
which it is defined.

Syntax:
#define symbol name constant value
Eg
#define max_value 100
#define pi 3.14
The value of symbolic constant will not change throughout the program.

const keyword

Syntax:
const datatype var = constant;

Eg: const int max = 100;
main()

{

char x[max];
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const size = 10;

Allowable statement, default symbolic constant type is integer. Here size is of type int.

Reference Variable:

A reference variable provides an alias (alternative name) for a previously defined

variable.

For example, if we make the variable sum a reference to the variable total, then

sum & total can be used interchangeably to represent that variable.
A reference variable is created as follows:

datatype & ref_name = var_name;
Eg:
float total = 100;
float & sum = total;
cout << sum << total;
Both the variables refer to the same data object in the memory i.e.

total, sum
100
Type Conversion:
(1) Implicit type conversion

(ii) Explicit type conversion

Implicit type conversion

It will be done by the compiler, by following the rule of lower type converted to

higher type.
Eg: inty=10;
float z = 10.5,x;
X = y+z; (y is converted to float type by compiler)
x =10.0 + 10.5
x=20.5 (result var. x is must be float)

Explicit type conversion

It will be performed by the programmer. According to the need of this in the

program.

Syntax: datatype (var)
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Eg: inty=10;
float z = 2.5;(resultant type of y+z is float, that is converted explicitly to int type)
x =int (y + 2);

Now the result is of int type.

CONTROL INSTRUCTIONS

¢ In real world, several activities are sequenced or repeated based on some decisions.
¢ (Constructing control instructions can program such activities.

Types of control Instruction

Sequential Control Instruction
Selection Control Instruction
Loop Control Instruction
Case Control Instruction

el .

SEQUENTIAL CONTROL INSTRUCTION
Here instructions are executed sequential manner
e That is the same order in which they appear in the program.
e By default the instructions in a program are executed sequentially.

Example:

#include<iostream.h>

void main()

{

int a,b;

cout<<”Enter the value of a&b”:
cin>>a>>b;

int x=a+b;

cout<<”Sum of a & b is”<<x;

}

RUN
Enter the value of a& b
10 5
Sumofa&bis 15

In the above program instructions are executed one after another, in which they appear in
the program.

SELECTION CONTROL INSTRUCTION

e Many times, we want a set of instructions to be executed in one situation, and an
entirely different set of instruction to be executed in another situation.
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e This kind of situation is dealt in C++ by constructing selection control instructions.

The following Statements are supporting to construct selection control instructions:
1. simple if statement

2. if-else statement

3. Nested if- else statement

4. Else-if statement

1. Simple if statement(one way decision stmt):
It is a powerful decision making statement, which is used to control the sequence
of the execution of statements.

Syntax:
If(test expression)
{
statement Block;
}

statement-Xx;
Execution Procedure:

The statement Block may be a single statement or a group of statements. If the
test expression is true, the statement block is executed; otherwise the statement block will
be skipped and the execution will jump to the statement x. Remember when the condition
is true both the statement block and statement x are executed in sequence.

Example:

if( category =="’sports”)

{

marks = marks + bouns_marks;
}
cout<<marks;

The program tests the type of category of the student. If the student belongs to the
SPORTS category, then additional bouns_marks are added to his marks befor they are
printed. For others, bouns_marks are not added.

2. The if-else statement ( two way decision stmt)
It performs some action even when the test expression fails.

Syntax:
if( test expression)
{ true block statements;
}
else
{

false block statements;
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{

statement X;
Execution Procedure:

If the test expression is true, then the true block statement, immediately
following the statement is executed; otherwise, the false block statements are
executed. In either case, either true or false block will be executed, not both. In
both the cases, the control is transferred subsequently to statement X.

Example:
# include<iostream.h>
void main()
{ .
Int age;
cout<<”Enter your age”;
cin>>age;
if((age>12)&&(age<20))
{
cout<<’you are a teen aged person”:
}
else
{
cout<<’You are not a teen aged person’’;
}
cout<<”Program terminated”;
}
Runl
Enter your age
16
You are a teen aged person
Program Terminated
Run 2

Enter your age

23

You are not teen aged person
Program Terminated

3. Nesting of if else statements(Multi way decision stmt)
When a series of decisions involved, we may have to use more than on if — else
statement is nested form as follows:

if(test condition 1)

{

if( test condition 2)
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statement 1;

}
else
{
statement 2;
}
}
else
{
statement 3
}

Statement X;

Execution Procedure:

If the condition —1 is false, the statement 3 will be executed; otherwise it
continues to perform the second test. If the condition 2 is true, the statement —1 will bee
evaluated; otherwise statement 2 will be executed and then the control, is transferred to
statement X.

Example: Program to find largest of 3 nos

#Include<iostream.h>
void main()

{
int a,b,c;
cout<<” three nos’;
cin>>a>>b>>c;
If(a>b)
{
if(a>c)
{
cout<<’ais greatest”;
}
else
{
cout<<’’c is greatest”;
}
}
else
{
if(b>c)
{
cout<<’b is greatest”;
}
else
{
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cout<<’’c is greatest”;

Run:
Enter 3 nos:
24 56 34

b is greatest

4. else - if statement

There 1s another way of putting ifs together when multipath decisions are involved. A
multipath decision is a chain of ifs in which the statement associated with each else is

an if.

It takes the following
general form:

if( test condition])

{
statement];
}
else if (test condition2)
{
statement 2;
}
else if(test condition3)
{
statement 3;
}
else
{ statement 4;
}

statement X;

Execution Procedure:

This construct is known as else if ladder. The condition evaluated from the top,
downwards. As soon as the true condition is found, the statement associated with it is
executed and the control is transferred to the statement x (skipping the rest of the ladder).
When all the conditions become false, then the final else containing the statement will be

executed.

Let us consider an example of grading the student in an academic institution. The grading

is done according to the following rules:
Average marks

80-100

Grade
Honours
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60-79
50- 69
40- 49
0-39

First Division
Second Division
Third Division
Fail

This grading can be done using the else if ladder as follows:

#include<iostream.h>

void main()

{
int marks;
cout<<”’enter ur marks”
cin>>marks;
If(marks>79)

Grade="Honours”;

else if(marks>59)

Grade=""First Division”;

else if(marks>49)

Grade="Second Division’;

else if(marks>39)

Grade="Third Division”;

else

Grade="Fail”;

cout<<QGrade;

Enter ur mark
67
First Division

Run

LOOP CONTROL INSTRUCTIONS

® Loop causes a section of code to be executed repeatedly until a termination condition

18 met.

e A program loop therefore consists of two segments, one known as the body of the
loop and the other known as the control statement.

¢ Control statement tests certain conditions and then directs the repeated execution of
the statements contained in the body of the loop.

The following Statements are supporting to construct loop control instructions:

1. while statement
2. do - while statement
3. for statement
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while statement(Entry controlled Loop)
While is used when the number of iterations to be performed is not known in

advance.
Syntax:
while(test condition)
{
body of the loop
}

Statement X;

Execution Procedure:

The test condition is evaluated and if the condition is true, then the body of the
loop is executed. After execution of the body, the test condition is once again evaluated
and if it is true, the body is executed once again. This process of repeated execution of
the body continues until the test condition finally becomes false and the control is
transferred out of the loop.

Example: Display 1----N numbers

#include<iostream.h>
void main()
{
int n;
cout<<’how many integers to be displayed”;
cin>>n;
int I=1;
while(I<=n)
{
cout<<I<<endl;
I++;
}

cout<<”Program Terminated”;

}

Run
How many integers to be displayed:

DN AW~

Program Terminated
do-while statement (Exit controlled loop stmt)

e Some times, it is desirable to execute the body of a while loop only once,, even if the
test expression evaluates to false during the first iteration.
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e This requires testing of termination expression at the end of the loop rather than the
beginning as in the while loops.
e So, the do- while loop is called bottom tested loop.
e The loop is executed as long as the test condition remains true.
Syntax:
do
{
body of the loop;
} while(test condition);
statement X;

Execution Procedure:

On reaching the do statement, the program proceeds to evaluate the body of the
loop first. At the end of the loop, the test condition in the while statement is evaluated. 1
the condition is true, the program continues to evaluate the body of the loop once again.
This process continues as long as the condition is true.

When the condition becomes false, the loop will be terminated and the control
goes to the statement that appears immediately after the while statement.

Example: Display 1----N numbers

#include<iostream.h>
void main()
{
int n;
cout<<’how many integers to be displayed”;
cin>>n;
int I=1;
do
{
cout<<I<<endl;
[++;
}while(I<=n);
cout<<”Program Terminated”;

}

Run
How many integers to be displayed:

DN AW~

Program Terminated

for loop statement
For loop is useful while executing a statement a fixed number of times.
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For statement is the compact way to express a loop.

Syntax
for(initialization; condition; increment/decrement)
{
Body of the loop;
}

statement x;

Execution Procedure:

The Initialization part is executed only once. Next the test condition is evaluated.
If the test evaluates to false, then the next statement after the for loop is executed. If the
test expression evaluates to true, then body of the loop is executed. After executing the
body of the loop, the increment/ decrement part is executed. The test is evaluated again
and the whole process is repeated as long as the test expression evaluates to true.

Example: display numbers 1.....n using for loop
#include<iostream.h>

void main()

{

int n;

cout<<’how many integers to be displayed”;
cin>>n;

int I;

for(I=1;I<=n;I++)

{
}

cout<<”Program Terminated”;

}

cout<<I<<endl;

Run
How many integers to be displayed:

DN AW N — |

Program Terminated

JUMPING STATEMENTS
BREAK Statement

e We often come across situations where we want to jump out of a loop instantly,
without waiting to get back to the conditional test.
e The keyword break allows us to do this.
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e [tis used to terminate the loop. When the keyword break is used inside any c++ loop,

control automatically transferred to the first statement after the loop.
e A break usually associated with if statement.
¢ Syntax : break;

Example:

#include<iostream.h>
void main()

{

int I;

for(I=1;I<=10;1++)

{
if(I<=6)

break;

cout<<I;

}

}

Output: 12345

Here the cout statement print value of I upto 5 when I reaches 6 the if statement is true.
So the break statement transfer the control to the outside of the for loop.

Example: to determine whether a no is prime or not.
// a prime number which is divisible only by 1 and itself.

#include<iostream.h>
void main()

int n;

cout<<”Enter a number”’;
cin>>num;

for(I=2;I<num;I++)

{
if(num%I==0)
{
cout<<” number is not prime”;
break;
}
}
if(num==I)
{
cout<<”’Prime number’’;
}
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¢ In this progam the moment num%I turns out to be 0, num is exactly divisible by I, the

message “not prime no” is printed and the control breaks out of the while loop.
e  Why does the program require the if statement after the while loop at all ?
1. it jumped out because the number proved to be not prime.
1l The loop causes to an end because the value of I became equal to num.

e  When the loop terminates in the second case, it means that there was no number
between 2 & num-1 that would exactly divide num. That is num is indeed a prime.
e If this is true, the program should print out the message “Prime number”.

CONTINUE Statement

¢ In some programming situation we want to take the control to the beginning of the
loop, by passing the statement inside the loop, which have not yet been executed.

e The keyword continue allows us to do this. When the keyword continue is
encountered inside a c++ loop, control automatically passes to the beginning of the
loop

¢ Continue statement usually associated with if statement.

e Syntax: continue;

Example: sum of the +ve numbers(2, -3,4,-2,9,5)
int Sum=0;
for(int I=0;I<10;1++)
{ .

cin>>no;

if(no<0)

continue;
Sum=sum-+no;

}

cout<<sum;

In the above program when the entered number is less than 0, then it is —ve number, so
move the control to read the next number without performing summation.

Unconditional statement

e goto is the unconditional statement. Which is used to move the control anywhere
inside the program.

e (Goto require a lable in order to identify the place where the control is to be moved. A

label is a valid variable name & a colon must follow it.

e The label is placed immediately before the statement where the control is to be
transferred.

e (General form:

goto label; label;
......... statement;
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statement, ...

the label can be anywhere in the program either befor or after the goto statement.

Example:

main()
!
Int X,y;
read:
cin>>x;
if(x<0)
goto read;
y=X*X;
cout<<x<<y;

}

CASE CONTROL INSTRUCTION
o The control statement, which allows user to make a decision from the number of
choices, is called a switch case statement.
e [t allows user to execute a group of statements from several available group of
statements.
¢ Syntax:
switch( expression)

{

case valuel:
blockl1;
break;

case value2:
blockl1;
break;

case value3:
blockl1;
break;

default:
deafult block;

}

statement X;

Rules to be followed to construct case control instructions

1. The expression in switch statement must be an integer value or a character constant.

2. No case values are identical
3. Each case block must end with break statement.
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4. The case keyword must terminate with colon(:)
5. Default is optional.

Execution Procedure:

®*  When switch is executed, the value of the expression is successively compared
against the values valuel, value2 —etc.

e [f acase is found whose value matches with the value of the expression, then the
block of statements that follows the case are executed.

e The break statement at the end of each block signals the end of a particular case and

causes an exit from the switch statement transferring the control to the statement x
following the switch.

e The default is optional case, when present, it will be executed if the value of the
expression does not match with any case values.

e If not present action takes place if all matches fails and the control goes to the
statement X.

Example: Read a number between 0-9 and print it in words.

cout<<”enter any number between 0-9”;
cin>>num;
switch(num)
{
case 0:
cout<<’ZERQO”;
break;

cout<<’ONE”;
break;

cout<<"TWO”;
break;

cout<<”Num is not within 0-9*;

RUN

Enter a no between 0-9
9

NINE

The input value matches with case 9, so the corresponding block is getting executed.
Remaining cases are all skipped from execution.
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ARRAYS

What are arrays?

For understanding the arrays properly, let us consider the following program.
main( )
{ .

int x;

Xx=35;

x =10;

couts<x;

e This program will print the value of x as 10. Why so? Because when a value 10 is
assigned to x the earlier value of x, i.e., 5, is lost. These ordinary variables are
capable of holding only one value at a time.

o However, there are situations in which we want to store more than one value at a time
in a single variable.

¢ For example, suppose we wish to arrange the percentage of marks obtained by 100
students in ascending order.

¢ In such a case we have two options to store these marks in memory:

(1) Construct 100 variables to store percentage of marks obtained by 100 different
student i.e., each variable containing one student’s marks.
(i1) Construct one variable capable of storing or holding all the hundred values.

e The second one is better. The reason is it would be much easier to handle one
variable than handling 100 different variables.

® An array is a group of logically related data items of the same data type addressed by
a common name, and all the items are stored in contiguous memory locations.

Array Declaration

Like other normal variables, the array variable must be defined before it use.

Syntax:
Datatype Arrayname[array-size];

Arraysize — indicates the maximum number of elements the array can hold.
Example:
int marks[100]; // Integer array of size 100

float salary[25]; //Floating print array of size 25
char name[50]; //character array of size 50

Accessing Array Elements
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® Once an array variable is defined, its element can be accessed by using an index or
position.

Syntax:
Arrayname[index];

e To access a particular element in the array, specify the array name followed by an
integer constant or variable (array index) enclosed within square braces.

® Array index indicates the element of the array, which has to be accessed.

Example:

name[4]; //Accesses the 5" element of the array name.

¢ Note that, in an array of N elements, the first element is indexed by zero & the last
element of an array is indexed by N-1
e The loop used to read the elements of the array is
for(int i=0; i<5; i++)

{
}

e The variable i varies from O to N-1.
¢ Note that, the expression age[i] can also be represented as i[age], similarly, the
expression age[3] is equivalent to 3[age].

cin>>namel[i];

Array Initialization at Definition (at compile time)

e Arrays can be initialized at the point of their definition as follows:
datatype array-name[size] = {list of values separated by comma};

For instance, the statement,
int age[5] = {19,21,16,1,50};

e Defines an array of integers of size 5.
e In this case, the 1*' element of the array age is initialized with 19, 2" with 21, and so
on.
e The array size is omitted when the array is initialized during at compile time.
int age[ ] = {19,21,16,1,50};
¢ In such a cases, the compiler assumes the array size to be equal to the number of
elements enclosed within the curly braces.
® Hence, the above statement, size of the array is considered as five.
int age[5] = {19,21,16,1,50};
(or)
int age[ ] = {19,21,16,1,50};

Example: Sum of Array Elements
#include<iostream.h>
void main( )

{
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int a[10];

cout<<”Enter the no. of elements, max<10>";
cin>>n;

cout<<’Enter elements”;

for(int I = 0; I<n; I++)

{
}

int sum = 0;
for(int I = 0; I<n; I++)

{
}

cout<<”Sum of entered elements”’<<sum;

cin>>al[l];

sum = sum + a[I];

Two Dimensional Array

Matrix is a two dimensional array & two subscripts are required to access each
element.
Declaration:

datatype Array-name[sizel][size2];

sizel — no. of rows in a matrix.

size2 — no. of columns in a matrix.
Example:

int x[3][3];

Representation of 2-D array in memory:

Matrix is allocated into the memory according to row wise (row by row
allocation).

Example:
A=1 5
3 4
Accessing 2-D Array elements:
The elements of a 2-D array can be accessed by the following statement
Ali][j]
i — row number

J — column number

Initialization of 2-D Array
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A 2-dimenstional array can be initialized during its definition.

datatype matrixname [row size][col size] = {elements of first row, elements of 2" row...
elements of n-1 row};

Example:

int a[3][3] = {1,2,3,4,5,6,7,8,9}
or
for more readability each row elements can be grouped:

int a[3][3] = {{1,2,3},{4,5,6},{7,89} };
or

intal ][3] = {{1,2,3},{4.5,6},{7.8.9} };
Row size can be omitted.
Example: // Read & display a matrix

#include<iostream.h>
void main( )
{
int a[5][5];
cout<<”Enter row and col value of a matrix max<5>"";
cin>>r>>c;
cout<<”Enter elements in a Matrix”’;
for(int i = 0; i<n; i++)
{
for(int j = 0; j<n; j++)

{

}

}

cout<<”Display of given Matrix”;
for(i = 0; i<n; i++)

{

for(int j = 0; j<n; j++)

{
}

cout<<endl;

}

cin>>ali][j];

cout<<al[i][jl<<setw(5);

}

Run:

Enter row and col value of a matrix max<5>
22
Enter elements in a Matrix”’;
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Introduction

FUNCTIONS

e [t is difficult to implement a large program even if it is algorithm is available.

¢ To implement such a program in an easy manner, it should be split into a number
of independent tasks, which can be easily designed, implemented, and managed.

e This process of splitting a large program into small manageable tasks and
designing them independently is called Modular Programming.

® A repeated group of instruction in a program can be organized as a function.

® A function is a set of program statements that can be processed independently.

Advantages

® Reduction in the amount of work and development time.
e Program and function debugging is easier.
e Reduction in size of the program due to code Reusability.

FUNCTION COMPONENTS

Function declaration or prototype
Function Definition

Function call

Function parameters

Function return statement

1. Function Prototype or Declaration:
It provides the following information to the compiler

The name of the function

The type of the value returned(optional, default is an integer)
The number and type of the arguments that must be supplied in a
call to the function.

Syntax:

Return type function_name(argul,argu2,...... argun);

Return type- specifies the data type of the value in the return
statement.
Fun_name- name of the function.
Argul,argu2...argun — type of argument to be passed from
calling function to the called function
Examples:

int max(int,int);
It informs the compiler that the function max has 2 arguments of
the type integer. The function max() returns an integer values.
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void max();
It informs the compiler that the function max has no arguments,
max() is not returning any value.
max();
It informs the compiler that the function max has no arguments.
The function max() returns an integer values.
¢ In function prototype default return type is integer.
2. Function definition:
The function itself is referred to a function definition.
Syntax:
return type function_name(argul,argu2,...... argun) //function declarator

{
}

function body;

e The first line of the function definition is known as function
declarator, and is followed by the function body.

e The function delcarator and declaration must use the same function
name, the number of arguments, the arguments type and the return
type.

® Function definition is allowed to write in a program either above or
below the main ().

e [f the function is defined before main (), then function declarator is
optional.

e Example:

int max(int x, int y)

{
if(x>y)

return(x);
else
return(y);

}

For this function max() definition, it is declaration must be :
int max(int,int);
3. Function call:
¢ A function, which gets life only when a call to the function is made.
¢ A function call specified by the function name followed by the arguments
enclosed in parenthesis and terminated by a semi colon.
e Syntax:
Function_name(argul,argu2,...... argun) ;

e If a function contains a return type the function call is of the following
form:
var= Function_name(argul,argu2,...... argun) ;
e Example:
c=max(a,b);
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Executing the call statement causes the control to be transferred to the first
statement in the function body and after execution of the function body the
control is returned to the statement following the function call.

/I Greatest among 2 numbers

#include<iostream.h>
void main()

{

int a,b;

int max(int,int); //function declaration
cout<<”’Enter any 2 integers”’;
cin>>a>>b;

int c= max(a,b);

cout<<’’Greatest is: ‘“‘<<c;

}
int max(int x,int y)
{
if (x>y)
return(x);
else
return(y);
}
Run:
Enter any 2 integers
40
35

Greatest is: 40

The max() returns the maximum of the parameters a and b. The return value is
assigned to local variable ¢ in main ().

4. Function Parameters

The parameters specified in the function call are known as actual
parameters and those specified in the function declarator (definition) are
known as formal parameters

for example in the main(), the statement c=max(a,b); passes the
parameters(actual parameters) a and b to max().

The parameters x and y are formal parameters.

When a function call is made, a one to one correspondence is established
between the actual and the formal parameters.

The scope of the formal parameters is limited to its function only.

5. Function Return

Functions can be grouped into two categories:
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1. A Function does not have a return value (void function)
ii. Functions that have a return value.
The statements: return(x); and return(y);in function max() are
called function return statements. The caller must be able to
receive the value returned by the function.
In the statement c=max(a,b)
The value returned by the function max() returning a value to the
caller.

Limitation of return

A key limitation of the return statement is that it can be used to return only one item from
a function.

PASSING DATA TO FUNCTIONS

The entity used to convey the message to a function is the function argument. It can be a
numeric constant, a variable, multiple variables, user defined data type, etc.

Passing constants as arguments

The following program illustrates the passing of a numeric constant as an
argument to a function. This constant argument is assigned to the formal parameter which
is processed in the function body

/I Greatest among 2 numbers
#include<iostream.h>
void main()
{
int a,b;
int max(int,int); //function declaration
int c= max(40,35);
cout<<’Greatest is: ‘‘<<c;

}
int max(int x,int y)
{
if (x>y)
return(x);
else
return(y);
}
Run:
Enter any 2 integers
40
35

Greatest is: 40
In main(), the statement c=max(40,35); invoke the function max with the constants.
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Passing variable as arguments:

Similarly to constants, varables can also be passed as arguments to a function.

/l Greatest among 2 numbers

#include<iostream.h>
void main()

{

int a,b;

int max(int,int); //function declaration

cout<<’enter two integer ”’;

cin>>a>>b;
int c= max(a,b);

cout<<’Greatest is: ‘“‘<<c;

}

int max(int x,int y)

{

if (x>y)
return(x);
else
return(y);
}
Run:

Enter any 2 integers
40

35

Greatest is: 40

In main(), the statement c=max(a,b); invoke the function max with the values of a & b

PARAMETER PASSING

[

1. Pass by Value
2. Pass by Address
3. Pass by Reference

. Pass by Value

Parameter passing is a mechanism for communication of data and information
between the calling function and the called function.

It can be achieved by either by passing values or address of the variable.

C++ supports the following 3 types of parameter passing schemes:

® The default mechanism of parameter passing is called pass by value.
e Pass by value mechanism does not change the contents of the argument
variable in the calling function, even if they are changed in the called

function.
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e Because the content of the actual parameter in a calling function is copied
to the formal parameter in the called function.Changes to the parameter
within the function will affect only the copy (formal parameters)

¢ And will have no effect on the actual argument.

e Example:

#include<iostream.h>

void swap(int x,int y)

{ .
int t;

cout<<”value of x& y in swap() before exchange”;

cout<<x<<setw(5)<<y<<endl;

=x;

cout<<”’value of x& y in swap() after exchange”;
cout<<x<<setw(5)<<y<<endl;

}

void main()

{

int a,b;

cout<<’enter two integers”;

cin>>a>>b;

swap(a,b);

cout<<’value of a and b on swap(a,b) in main()”;
cout<<a<<setw(5)<<b;

}

Run:

enter two integers

30

50

value of x& y in swap() before exchange
30 50

value of x& y in swap() after exchange
50 30

value of a and b on swap(a,b) in main()
30 50

Explanation:
¢ In main(), the statement swap(a,b) invokes the function swap()and assigns the
contents of the actual parameters a & b to the formal parameters x & y
respectively
¢ In swap() function, the input parameters are exchanged, however it is not reflected
in the calling function; actual parameters a & b do not get modified.

2. Pass by Address:
e (C++ provides another means of passing values to a function known as pass by
address mechanism.
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¢ Instead of passing the value, the address of the variable is passed.
¢ In function, the address of the argument is copied into a memory location instead
of the value.
e Example:
#include<iostream.h>
void swap(int *x,int *y)

{ .

int t;

t="*x;

kx="*y;

*y:t;

}

void main()
{
int a,b;
cout<<’enter two integers”;
cin>>a>>b;
swap(&a,&b);
cout<<’value of a and b after calling swap() in main()”;
cout<<a<<setw(5)<<b;
}
Run:
enter two integers
30
50
value of a and b after calling swap() in main()”;
50 30
Explanation:

¢ In main(), the statement swap(&x, &y) invokes the function swap and assigns the
address of the actual parameters a and b to the formal parameters x & y
respectively.

e In swap(), the statement t="*x; assigns the contents of the memory location
pointed to by the pointer (address) stored in the variable x. similarly, the
parameters y holds the address of the parameter b.

¢ Any modification to the memory contents using these address will be reflected in
the calling function, the actual parameter a & b gets modified.

3. Pass by Reference

¢ Passing parameters by reference has the functionality of pass by address and
the syntax of pass by value.

® Any modification made through the formal parameter is also reflected in the
actual parameter.

e To pass as argument by reference, the function call is similar to that of call by
value.
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¢ In function declarator, those parameters, parameters, which are to be received by
reference, must be preceded by the address ( & )operator.
¢ The reference type formal parameters are accessed in the same way as normal
value parameters.
* However, any modification to them will also be reflected in the actual parameters.
e Example:
#include<iostream.h>
void swap(int &x,int &y)
{ .
nt t=Xx;
X=Y;
y=t
}

void main()

{

int a,b;

cout<<’enter two integers”;

cin>>a>>b;

swap(a,b);

cout<<’value of a and b after swap(a,b) in main()”;
cout<<a<<setw(5)<<b;

}

Run:

enter two integers

30

50

value of a and b after swap(a,b) in main()
50 30

* In main(), the statement swap( a, b); is translated into swap( &a,&b); internally
during compilation.

e The function declarator void swap(int &a, int &b) indicates that the formal
parameters are of reference type and hence, they must be bound to the memory
location of the actual parameters

e Thus any access made to the reference formal parameters in the swap() reflects to
the actual parameters.

DEFAULT ARGUMENTS

e Normally a function should specify all the arguments used in the function definition.
¢ In a c++ function call, when one or more arguments are omitted, the function may be
defined to take default values for the omitted arguments by providing the default

values in the function prototype.

¢ Hence the feature of default arguments allows the same function to be called with
fewer arguments than defined in the function prototype.

e To establish a default value, the function declaration must be used.
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e The compiler checks the function prototype with the arguments in the function call to
provide default values to those arguments, which are omitted.

e Default arguments reduce the burden of passing arguments explicitly at the point of
the function call.

e Example:

#include<iostream.h>
void greatest(int = 50;int=25,int =35);

void main()
{
greatest();
greatest(10);
greatest(75,12);
greatest(15,2,55);
}
void greatest(int x,int y,int z)
{
if((x>y)&&(x>z))
cout<<”I st number is greatest”;
else if(y>z))
cout<<”Il nd number is greatest’;
else
cout<<”IIl rd number is greatest”;
}

In the main (), when the compiler encounters the statement greatest(), it is replaced by the
statement greatest(50,25,35); Internally substituting the missing arguments. Similarly
when the compilers encounters the statement greatest (10); it is replaced by the statement
greatest (10, 25, 35); internally substituting the remaining two missing arguments and so
on for all the remaining function calls.

Variable names can be omitted while assigning default values in the
prototype.

INLINE FUNCTIONS:

One of the objectives of using functions in a program is to save memory,
which becomes appreciable when a function is likely to be called many times.
However, every time a function is called, it takes a lot of extra time in
executing a series of instructions, for task such as jumping to the function, and
returning to the calling function.

When a function is small, the time required to execute a function is less than
the switch time.

In C++ a new feature called inline function is used to solve the above
problem.

An inline function is a function that is expanded in line when it is called.
That is, the compiler replaces the function call with the corresponding
function code.

Inline functions are defined as follows
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inline return type fun_name(arguments)

{
function body
}
Example
inline double cube(double a)
{
return(a*a*a);
}

The above inline function can be called by statements like

c=cube(3.0);

d=cube(2.5+1.5);
The keyword inline send a request to the compiler. The compiler may ignore
this request if the function definition is too long or too complicated and
compile the function as a normal function
Example:

#include<iostream.h>
inline int square(int num)

{

return(num*num);

}

void main()

{

int n;

cout<<”Enter a number:”;

cin>>n;

cout<<”Its square ="<<square(n)<<endl;
cout<<’square(10) = "<<square(10);

}

Run

Enter a number: 5
Its square =25
Square(10)=100

¢ In the main(), the statement cout<<”Its square=""<<square(num);

Invokes the inline function square(), It will be suitably replaced by the
instruction(s) of the body of the function square() by the compiler.

e The Execution time of the function square() is less than the time
required to establish a linkage between the calling function and called
function.
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PROGRAMS:
1. Program for Fibonacci Series

#include<iostream.h>
#include<conio.h>
void main()

{

int a=0,b=1,i,c,n;
clrscr();
cout<<"ENTER THE VALUE FOR 'N':"";
cin>>n;

cin>>a>>b;
cout<<a<<b;
for(i=3;i<=n;i++)

{

c=a+b;

cout<<c;

a=b;

b=c;

}

getch();

}

2.Program for Perfect Number

#include<iostream.h>
#include<conio.h>

void main()

{

int sum=0,i,n;

clrscr();

cout<<'"Enter the number :'’;

cin>>n;

for(i=1;i<n;i++)

{

if(n %i==0)

sum=sum-+i;

}

if(sum==n)

cout<<'' The Number Is Perfect''<<n;
else

cout<<'' The Number Is Not Perfect''<<n;
getch();

}

3.Program for finding factorial
#include<iostream.h>
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#include<conio.h>
int n,i,c;

void fact()

{

int f=n;

if(n==0)

cout<<''The factorial of %d is 1''<<n;
else

for(i=0;i>0;i--)

f*=i;

cout<<''The Factorial of <<n<<f;

}

void main()

{

clrscr();

cout<<'' Enter the number '';
cin>>n;

fact();

getch();

}

4.Program for Prime Number
#include<iostream.h>
#include<conio.h>
void main()
{
/lclrscr();
int number,count=0;
cout<<"ENTER NUMBER TO CHECK IT IS PRIMEOR NOT "
cin>>number;

for(int a=1;a<=number;a++)

{ if(number % a==0)
{ count++; }
}
if(count==2)
{
cout<<'" PRIME NUMBER \n"’;
}
else
{
cout<<" NOT A PRIME NUMBER \n"'; }  /lgetch();
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5.Program for Armstrong Number
#include<iostream.h>
#include<conio.h>
#include<math.h>

void main()

{

clrscr();

int n,m=0,X,y;

cout<<“Enter any three digit numnber:”;
cin>>n;

y=n,

while(n!=0)

{

x=n%10;

m+=pow(x,3);

n=n/10;

}

if(y==m)

cout<<“The number is an Armstrong number”;
else

cout<<“The number is not an Armstrong number”;
getch();

}

OBJECT ORIENTED PROGRAMMING IN C++
Characteristics of OOPS

e Programs are divided into known objects
¢ Builds the data and functions around these objects or entities.

Organization of data and functions in OOP
e Hence object may communicate with each other through functions.
e Now data and functions can be easily added whenever necessary.
e Follows bottom-up approach in program design.

Concepts of OOPS

General concepts of OOPS comprises the following
1. Object
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2. Class

3. Data abstraction

4. Inheritance

5. Polymorphism

6. Dynamic Binding

7. Message passing.
Object

Object is an entity that can store data and send and receive messages. They are
run time entities they may also represent user-defined data.

When a program is executed the object interacts by sending messages to one
another.

Every object will have the data structure called attributes (or property or data) and
behavior called operations.

Eg: Consider the object account

Structure (General format) Eg:
Object Name Account
Attribute 1 Structure Account Number attribute
Attribute 2 Account Type
Attribute N Name
Balance
Operation 1 Behaviour Deposit( ) Operation
Operation 2 Withdraw( )
Operation N Enquire( )
Classes

The objects with the same data structure (attribute) and behaviour (operations) are
grouped into a class. All these objects possessing similar properties and grouped into the
same unit.

Eg: In the person class all person having similar attributes like Name, Age, Sex and the
similar operations like speak, listen, walk. So, boy and girls objects are grouped into the
person class.

This should be represented as person objects.

Two different Person class
persons Abstract o Attributes: Name, Age, Sex
(Eg: boy, girl) into g Operations: Speak( ), Listen( ), Walk( )

Representation of Class:
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Class account
{ .
private:
char name[20];
int accounttype; Data members
int accountnumber;
float balance;

public:
Deposit( ); .
Withdraw( ): Member functions
Enquire( );
|5

In this the account class groups the object such as saving account, current account, etc,
Thus, objects having the same structural and behavioral propositions are grouped together
to form a class.

The following points on classes can be noted:

1. A class is a template that unites data and operations.
2. A class is a abstraction of the real world entities with similar properties.
3. A class identifies a set of similar objects.

Definition of OOPS:

OOP is a method of implementation in which programs are organized as co-
operative collections of objects, each of which represent an instance of some class and
whose classes are all members of a hierarchy of classes united through the property called
inheritance.

CLASSES AND OBJECTS:

Class Specification:

The class can be described as a collection of data member along with member
functions. This property of C++, which allows association of data and functions into a
single unit, is called encapsulation. Sometimes classes may not contain any data
members or member function called empty classes.

Syntax for class specification
Keyword

Userdefined name of the class

C(:ss classname

{
//body of a class

}; end of class requires semicolon

More than one object can be created with a single statement as,
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Class student s1,s2,s3;
Or
Student s1,s2,s3.

Object can also be created by placing these names immediately after the closing brace.

Thus the definition
Class student

Accessing class members:

Once an object of a class has been created, there must be a provision to access its
members. This is achieved by using the member access operator, dot(.).

Syntax: for accessing datamember of a class

Object name . datamember

l

Name of the class Member access
defined object specifier

Datamember of a class

Syntax for accessing member function of a class

Objectname inctioangement\

Name of the class Name of the

defined object Member access member function
specifier

Arguments to the
function

Eg: sl.setdata(10, “Ram”);
s1.outdata( );

The object sl can be used to access the member functions setdata and outdata
respectively.

Consider the following program

#include <iostream.h>
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#include <string.h>
class student
{ .
private:
int roll_no;
char name[20];
public:
void setdata(int roll_no_in, char name_in)
{
roll_no =roll_no_in;
strcpy(name, name_in);
}
void outdata( ) //display data members
{
cout<<’rollno = “<< roll_no <<endl;
cout<<’name = “ << name << endl;

}

|5

void main( )

{
student s1;
sl.setdata(1, “Ram”);
s2.setdata(10,”Kumar”);
cout<<”Student details . . .”<<endl;
sl.outdata( );
s2.outdata( );

}
Output:

Student details
Rollno =1
Name = Ram
Rollno =10
Name = Kumar

Defining member function:

The data members of a class must be declared within the body of the class, whereas the
member functions of the class can be defined in any one of the following ways.

¢ Inside the class specification
¢ OQutside the class specification

The syntax of a member function definition changes depending on whether it is defined
inside or outside the class specification, but it performs the same operation.

(a) Member function inside the class body:

All the member functions defined within the body of a class.
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Eg:

Class classname

{

private:
int age;
int setage(int agein); //member function

age = agein; //body of the function

int b;
void rect( )

{
}

// body of a function
b
(b) Member functions outside the class body
To declare function prototype within the body of a class and then define it outside

the body of a class. This is done by using the ‘scope resolution operator’ (::). It acts as
an identity-label to inform the compiler, the class to which the function belongs.

G.F or Syntax:
class classname
{
Returntype memberfunction (arguments); /[function declaration
b
returntype classname :: memberfunction (arguments) //function definition
{
//body of the function
}

Accessing member functions within the class

A member of a class is accessed by the objects of that class using the dot operator.
Ex:
#include <iostream.h>
class number
{

int numl, num?2; /lprivate by default

public:

void read( )
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cout<<”Enter first number: “);

cin>>numl;
cout<<”Enter second number: *);
cin>>num?2;
}
int max( )
{
if(num1>num?2)
return numl;
else
return num?2;
}

//Nesting of member function
void showmax( )

{
cout<<’maximum = “<<max( ) ;

}

B

void main( )

{
number nl;
nl.read( );
nl.showmax( );

}

Output:

Enter first number : 5
Enter second number : 10
Maximum = 10

This member function of a class can call any other member function of its own class is
called ‘nesting of member function’.

Data Hiding:

Data is hidden inside a class, so the unauthorized access is not possible, which is
the key feature of OOP.

All the data and functions defined in a class are private by default. Normally the
data members are declared as private and member functions are declared as public.

Methods of Data hiding:
e Private
e Public

e Protected
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These keywords are called access-control specifiers.
Private members:

In this only the member functions of the same class can access these members.
The private members of a class are inaccessible outside the class.

class person

{
private:
int age; /lprivate data
int getage( ): //private function
}
person pl;
a=pl.age; /[cannot access private data //error
pl.getage(); //Error access

i.e., we can access the private members by using objects.
Protected member:

The access control of the protected members is similar to that of private members.
The access control of protected members is shown below:

Class person

{
protected:
int age; /[ protected data
int getage( ): //protected function
b
person pl;
a=pl.age; Cannot access protected members

pl.getage();
Public Members

All data members and function declared in the public section of the class can be
accessed without any restriction from anywhere in the program.

Eg:

class person

{
public:
int age; //public data
int getage( ); //public function
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}

person pl;
a= pl.age; // can access public data
pl.getage( ); // can access public function

Nesting of member function

A member function of a class can be called only by an object of that class using a
dot operator. In nesting of member function, the member function can be called by using
its name inside another member function of the same class is called nesting member
function.

Consider the following example

#include <iostream.h>

class set
{
int m,n;
public:
void input(void);
void display(void);
void largest(void);
B
int set :: largest(void)
{
if(m>=n)
return(m);
else
return(n);
}
void set:: input (void)
{
cout<<”input values of m and n” << “\n*;
}
void set:: display(void)
{
cout<<”largest value” << largest( )<<*“\n*;
}
void main( )
{
set A:
A input( );
A.set();
}

Arrays within a class
The arrays can be used as member variables in a class. That is more than one
related variable or data are grouped under the common name,
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Eg:

Class abc
{
int a[size]; //a is name of the array size — represents the size of the array
public:
void setdata(void);
void display(void);
b

Empty classes (or Stubs)

Main reason for using a class is to encapsulate data and code, it is however,
possible to have a class that has neither data nor code. In other words, it is possible to
empty classes.

The declaration of empty classes is as follows:

class xyz
{

B

class abc
{

B

Such an empty classes are also called as stubs

Passing Objects arguments:

e [t is possible to have functions which accept objects of a class as arguments, just
as there are functions which accept other variables as arguments.

® An object can be passed as an argument to a function by the following ways:
1. Passing object by value, a copy of the entire object is passed to the
function
2. Passing object by reference, only the address of the object is passed
implicitly to the function.
3. Passing object by pointer, the address of the object is passed explicitly
to the function

¢ Passing Object by value

In this case a copy of the object is passed to the function and any
modifications made to the object inside the function are not reflected in the object
used to call the function.

Example:
#include<iostream.h>
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class test

{

int ml,m2;

public:

void get()

{

cin>>m1>>m2;

}

void read(test t3)

{

ml=t3.ml;

m2=t3.m2;

}

void display()

{

cout<<ml<<m?2;

}

b

void main()

{
test t1;
cout<<”Enter Ist object data”;
tl.get();
cout<<”display Ist object data”;
t1.display();
test t2;
cout<<”copy of objectl to object2”;
t2. read(tl);
cout<<”display 2nd object data”;
t2.display();

}

Run:

Enter Ist object data

34

56

display Ist object data

34

56

copy of object] to object2

display 2nd object data

34

56

The members of t1 are copied to t2. Any modification made to the data members
of the objects tl and t2 are not visible to the caller’s actual parameter

e Passing objects by Reference:
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Accessibility of the objects passed reference is similar to those passed by
value. Modifications carried out on such objects in the called function will
also be reflected in the calling function.

Example:
#include<iostream.h>
class test

{

int m1,m2;

public:

void get()

{

cin>>ml>>m2;

}
void read(test &t3)

{

ml=t3.ml;

m2=t3.m2;

}

void display()

{

cout<<ml<<m?2;

}

b

void main()

{
test t1;
cout<<”Enter Ist object data”;
tl.get();
cout<<”display Ist object data”;
t1.display();
test t2;
cout<<”copy of object] to object2”;
t2. read(tl);
cout<<”display 2nd object data”;

t2.display();
}
Run:
Enter Ist object data
34
56
display Ist object data
34
56
copy of object] to object2
display 2nd object data
34
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Program for Student Data Base
#include

#include

class student

{

int id,mrks;

char nm[20],stm[2];
private:

int st_id;

char name[20];

char strm[2];

int marks;

public:

void dta_entry()

{

clrscr();

cout<<"enter the entries below:-\n";
cout<<"student id: \n";
cin>>id;

cout<<"student name: \n";
scanf("%s",nm);
cout<<"stream: \n";
scanf("%s",stm);
cout<<"marks: \n";
cin>>mrks;

}

void show_details()

{

cout<<" \nstudent name:"<< nm;
cout<<" \nid:"<< id;

cout<<" \nstream:"<< stm;
cout<<" \nmarks:"<< mrks;
cout<<"\n\n";

}

void mod_mrks(int inc)
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{ mrks=mrks-+inc;
cout<<"marks has been incremented.\n";
}

b

void main()

{

student stl,st2,st3;
clrscr();
stl.dta_entry();
st2.dta_entry();
st3.dta_entry();

clrscr();

cout<<"the entered records are as follows:\n";

stl.show_details();
st2.show_details();
st3.show_details();
getch();

clrser();
stl.show_details();
cout<<"\nmodified records of shobhit:";
stl.mod_mrks(10);
stl.show_details();
getch();

}
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