

 NUMERICAL METHODS AND COMPUTER PROGRAMMING – SPHA5203

SCHOOL OF SCIENCE AND HUMANITIES

DEPARTMENT OF MATHEMATICS

I YEAR M.SC PHYSICS

SPHA5203

NUMERICAL METHODS AND COMPUTER PROGRAMMING

NUMERICAL METHODS AND COMPUTER PROGRAMMING
(SPH 5107)

UNIT 1

SYSTEM OF EQUATIONS

NEWTON –RAPHSON METHOD:

SOLUTION OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS:

variables

NUMERICAL METHODS AND COMPUTER PROGRAMMING (SPH5107)

UNIT – II

INTERPOLATION, CURVE FITTING AND STATISTICS

NEWTON FORWARD INTERPOLATION FORMULA

NEWTON BACKWARD INTERPOLATION FORMULA

PROBLEM 1

PROBLEM 2

PROBLEM 3

Apply third degree polynomial for the set of values given by to estimate the value of f(10.3) by taking

LAGRANGES INTERPOLATION FORMULA

PROBLEM 1

SOLUTION:

CURVE FITTING BY METHOD OF LEAST SQUARES

PROBLEM 1.

PROBLEM 2:

Problem:

Calculate the correlation co-efficient?

Rank correlation problem:

Solution:

Repeated rank problem:

Problems on Regression:

Find the lines of regression for the following data:

Solution:

.

2.

Problem 4:

SPH5107 NUMERICAL METHODS AND COMPUTER PROGRAMMING

UNIT 3

NUMERICAL DIFFERENTIATION AND INTEGRATION

EXAMPLE 3::

NUMERICAL INTEGRATION

TRAPEZOIDAL RULE FOR INTEGRATION:

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL

EQUATIONS

SPH5107 – COMPUTER PROGRAMMING

Unit - 4

Overview of C

A brief history

C is a programming language developed at “AT & T’s Bell Laboratories” of USA in 1972.
It was written by Dennis Ritchie (Fig 2).

Fig 2. Dennis Ritchie

The programming language C was first given by Kernighan and Ritchie, in a classic book

called “The C Programming Language, 1
st

 edition”. For several years the book “The C
Programming Language, 1

st
 edition” was the standard on the C programming. In 1983 a

committee was formed by the American National Standards Institute (ANSI) to develop a

modern definition for the programming language C . In 1988 they delivered the final standard

definition ANSI C.

Features of C

• Portability

• Modularity

• Extensible

• Speed

• Mid-level programming language

• Flexibility

• Rich Library

Advantages of C

1. A C program written in one computer can easily run on another computer without

making any change

2. It has variety of data types and powerful operators

3. A C program is a collection of functions supported by the C library. So we can easily

add our own functions to C library. Hence we can extend any existing C program

according to the need of our applications

4. Since C is a structured language, we can split any big problem into several sub

modules. Collection of these modules makes up a complete program. This modular

concept makes the testing and debugging easier

Structure of a C program

Documentation Section

Preprocessor Section

Definition Section

Global Declaration Section

main()

{

Declaration Section

Execution Section

}
Sub Program Section
{

Body of the program

}

Documentation Section:

• It consist of a set of comment lines

• The comment lines begins with /* and ends with */ or a single set of // in the beginning
of the line

• These lines are not executable

• Comments are very helpful in identifying the program features

Preprocessor Section:

• It is used to link system library files, for defining the macros and for defining the
conditional inclusion

• Eg: #include<stdio.h>, #include<conio.h>, #define MAX 100, etc.,

Global Declaration Section:

• The variables that are used in more than one function throughout the program are

called global variables

• Should be declared outside of all the functions i.e., before main().

main():

Every ‘C’ program must have one main() function, which specifies the starting of a ‘C’ program.
It contains the following two parts

Declaration Part:

• This part is used to declare the entire variables that are used in the executable part of

the program and these are called local variables

Execution Part:

• It contains at least one valid C Statement.

• The Execution of a program begins with opening brace ’{‘ and ends with closing
brace ’}’

• The closing brace of the main function is the logical end of the program

Sub Program section:

• Sub programs are basically functions are written by the user (user defined functions)

• They may be written before or after a main () function and called within main ()
function

• This is optional to the programmer

Constraints while writing a C program

• All statements in ‘C’ program should be written in lower case letters. Uppercase letters
are only used for symbolic constants

• Blank space may be inserted between the words. Should not be used while declaring a
variable, keyword, constant and function

• The program statements can be written anywhere between the two braces following the
declaration part

• All the statements should end with a semicolon (;)

Example Program

/* addition.c – To find the average of two numbers and print them

out together with their average */

#include <stdio.h>

void main()
{

int first, second;

float avg;

printf("Enter two numbers: ");

scanf("%d %d", &first, &second);

printf("The two numbers are: %d, %d", first, second);

avg = (first + second)/2;
printf("Their average is %f", avg);

}

Compilation and Execution of C program

1. Creating the program
2. Compiling the Program
3. Linking the Program with system library
4. Executing the program

Creating the program:

• Type the program and edit it in standard ‘C’ editor and save the program with .c as an

extension.

• This is the source program

Compiling (Alt + F9) the Program:

• This is the process of converting the high level language program to Machine level

Language (Equivalent machine instruction) -> Compiler does it!

• Errors will be reported if there is any, after the compilation

• Otherwise the program will be converted into an object file (.obj file) as a result of the
compilation

• After error correction the program has to be compiled again

Linking the program with system Library:

• Before executing a c program, it has to be linked with the included header files and

other system libraries -> Done by the Linker

Executing the Program:

• This is the process of running (Ctrl + F9) and testing the program with sample data. If

there are any run time errors, then they will be reported.

Creating the

program

Compilation
and Linking

Executing

The above illustration provides a lucid description of how to compile and execute a C

program.

C Tokens

C tokens, Identifiers and Keywords are the basic elements of a C program. C tokens are the
basic buildings blocks in C. Smallest individual units in a C program are the C tokens. C tokens
are of six types. They are,

1. Keywords (eg: int, while),
2. Identifiers (eg: main, total),
3. Constants (eg: 10, 20),
4. Strings (eg: “total”, “hello”),
5. Special symbols (eg: (), {}),
6. Operators (eg: +, /,-,*)

1. Keywords

Keywords are those words whose meaning is already defined by Compiler. They cannot be

used as Variable Names. There are 32 Keywords in C. C Keywords are also called as
Reserved words. There are 32 keywords in C. They are given below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

2. Identifiers

Identifiers are the names given to various program elements such as variables , arrays

& functions. Basically identifiers are the sequences of alphabets or digits.

Rules for forming identifier name
� The first character must be an alphabet (uppercase or lowercase) or an underscore.

� All succeeding characters must be letters or digits.

� No space and special symbols are allowed between the identifiers.

� No two successive underscores are allowed.

� Keywords shouldn’t be used as identifiers.

3. Constants

The constants refer to fixed values that the program may not change or modify during

its execution. Constants can be of any of the basic data types like an integer constant, a floating
constant and a character constant. There is also a special type of constant called enumeration
constant.

Eg:

Integer Constants- 45, 215u

Floating Constants- 3.14, 4513E-5L

Character Constants- \t, \n

4. Strings

A string in C is actually a one-dimensional array of characters which is terminated by a null

character '\0'.

Eg:

char str = {‘S’, ’A’, ’T’, ’H’, ’Y’, ’A’, ’B’, ’A’, ’M’, ’A’}

5. Special Symbols

The symbols other than alphabets, digits and white spaces for example - [] () {} , ; : * … =

are the special symbols.

6. Operators

An Operator is a symbol that specifies an operation to be performed on the operands. The

data items that operators act upon are called operands. Operators which require two operands

are called Binary operators. Operators which require one operand are called Unary Operators.

Types of Operators

Depending upon their operation they are classified as

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators

5. Increment and Decrement Operators
6. Conditional Operators
7. Bitwise Operators
8. Sizeof() Operators

Arithmetic Operators

Arithmetic Operators are used to perform mathematical calculations like

addition, subtraction, multiplication, division and modulus.

S.NO Operators Operation Example

1 + Addition A+B

2 - Subtraction A-B

3 * multiplication A*B

4 / Division A/B

5 % Modulus A%B

Rules For Arithmetic Operators

1. C allows only one variable on left hand side of = eg. c=a*b is legal, but a*b=c is

not legal.

2. Arithmetic operations are performed on the ASCII values of the characters and not
on characters themselves

3. Operators must be explicitly written.

4. Operation between same type of data yields same type of data, but operation
between integer and float yields a float result.

Example Program

#include <stdio.h>

int main()
{

int m=40,n=20, add,sub,mul,div,mod;

add = m+n;

sub = m-n;

mul = m*n;

div = m/n;

mod = m%n;

printf(“Addition of m, n is : %d\n”, add);

printf(“Subtraction of m, n is : %d\n”, sub);

printf(“Multiplication of m, n is : %d\n”,

mul); printf(“Division of m, n is : %d\n”,

div); printf(“Modulus of m, n is : %d\n”, mod);
}
Output

Addition of m, n is : 60
Subtraction of m, n is : 20
Multiplication of m, n is : 800
Division of m, n is : 2
Modulus of m, n is : 0

Relational Operators

Relational Operators are used to compare two or more operands. Operands
may be variables, constants or expression

S.NO Operators Operation Example

1 > is greater m > n

 than

2 < is less than m <n

3 >= is greater m >= n

 than or equal

 to

4 <= is less than m <= n

 or equal to

5 == is equal to m == n

6 != is not equal m!=n

 to

Example Program

#include
<stdio.h> int
main()

{
int m=40,n=20;
if (m == n)
{

printf(“m and n are equal”);
}

else
{

printf(“m and n are not equal”);
}

}

Output

m and n are not equal

Logical Operators

Logical Operators are used to combine the results of two or more conditions. It

is also used to test more than one condition and make decision.

S.NO Operators Operation Example Description

1 && logical (m>5)&&(n<5) It returns true when both

 AND conditions are true

2 || logical OR (m>=10)||(n>=10) It returns true when at-

 least one of the condition

 is true

3 ! logical !((m>5)&&(n<5)) It reverses the state of the

 NOT operand “((m>5) &&

 (n<5))”

 If “((m>5) && (n<5))” is

 true, logical NOT operator

 makes it false

Example Program

#include <stdio.h>

int main()
{

int a=40,b=20,c=30;
if ((a>b)&& (a >c))
{
printf(“ a is greater than b and c”);
}

else

if(b>c)

printf(“b is greater than a and

c”); else
prinf(“c is greater than a and b”);
}

Output

a is greater than b and c.

Conditional Operator

It itself checks the condition and executed the statement depending on the condition.

Syntax:

Condition? Exp1:Exp2

Example:

X=(a>b)?a:b

The ‘?:’ operator acts as ternary operator. It first evaluate the condition, if it is true then

exp1 is evaluated, if condition is false then exp2 is evaluated. The drawback of

Assignment operator is that after the ? or : only one statement can occur.

Example Program

#include <stdio.h>
int main()
{
int x,a=5,b=3;
x = (a>b) ? a : b ;
printf(“x value is %d\n”, x);
}

Output

x value is 5

Bitwise Operators

Bitwise Operators are used for manipulation of data at bit level. It operates on integer
only.

S.NO Operators Operation Example Description

1 & Bitwise AND X & Y Will give 1 only when both

 inputs are 1

2 | Bitwise OR X | Y Will give 1 when either of

 input is 1

3 ^ Bitwise XOR X ^ Y Will give 1 when one input

 is 1 and other is 0

4 ~ 1’s ~X Change all 1 to 0 and all 0

 Complement to 1

5 << Shift left X<<Y X gets multiplied by

 2
Y
number of times

6 >> Shift right X>>Y X gets divided by 2
Y

 number of times

Example Program

#include <stdio.h>

main()
{

int c1=1,c2;

c2=c1<<2;
printf(“Left shift by 2 bits c1<<2=%d”,c2);
}

Output

Left shift by 2 bits c1<<2=4

Special operators:

sizeof () operator:

1. Sizeof operator is used to calcualte the size of data type or variables.
2. Sizeof operator will return the size in integer format.
3. Sizeof operator syntax looks more like a function but it is considered as an operator in c

programming

Example of Size of Variables

#include<stdio.h>

int main()
{

int ivar = 100;

char cvar = 'a';

float fvar = 10.10;

printf("%d", sizeof(ivar));

printf("%d", sizeof(cvar));

printf("%d", sizeof(fvar));

return 0;
}

Output :

2 1 4

In the above example we have passed a variable to size of operator. It will print the value of
variable using sizeof() operator.

Example of Sizeof Data Type

#include<stdio.h>

int main()
{

printf("%d", sizeof(int));

printf("%d", sizeof(char));

printf("%d",

sizeof(float)); return 0;
}

Output :

2 1 4

In this case we have directly passed an data type to an sizeof.

Example of Size of constant

#include<stdio.h>

int main()
{

printf("%d", sizeof(10));

printf("%d", sizeof('A'));

printf("%d",

sizeof(10.10)); return 0;
}

Output :

2 1 4

In this example we have passed the constant value to a sizeof operator. In this case sizeof
will print the size required by variable used to store the passed value.

Example of Nested sizeof operator

#include<stdio.h>

int main()
{

int num = 10;

printf("%d",

sizeof(sizeof(num))); return 0;
}

Output:

2

We can use nested sizeof in c programming. Inner sizeof will be executed in normal fashion
and the result of inner sizeof will be passed as input to outer sizeof operator.
Innermost Sizeof operator will evaluate size of Variable “num” i.e 2 bytes Outer Sizeof will
evaluate Size of constant “2” .i.e 2 bytes

Comma(,) Operator:

1. Comma Operator has Lowest Precedence i.e it is having lowest priority so it is evaluated
at last.
2. Comma operator returns the value of the rightmost operand when multiple comma
operators are used inside an expression.
3. Comma Operator Can acts as –
• Operator : In the Expression

• Separator: Function calls, Function definitions, Variable declarations and Enum
declarations

Example:

#include<stdio.h>

void main()
{

int num1 = 1, num2 =

2; int res;

res = (num1, num2);

printf("%d", res);
}

Output
2

Consider above example
int num1 = 1, num2 = 2;// In variable Declaration as separator
res = (num1, num2);// In the Expression as operator

In this case value of rightmost operator will be assigned to the variable. In this case value of
num2 will be assigned to variable res.

Examples of comma operator:

Type 1 : Using Comma Operator along with Assignment

#include<stdio.h>

int main()
{

int i;

i = 1,2,3;

printf("i:%d\n",i);

return 0;
}

Output:

i:1

Explanation:

i = 1,2,3;

1. Above Expression contain 3 comma operator and 1 assignment operator.
2. If we check precedence table then we can say that “Comma” operator has lowest
precedence than assignment operator
3. So Assignment statement will be executed first .
4. 1 is assigned to variable “i”.

Type 2 : Using Comma Operator with Round Braces

#include<stdio.h>

int main()
{

int i;

i = (1,2,3);

printf("i:%d\n",i);

return 0;
}

Output:

i:3
Explanation:
i = (1,2,3);
1. Bracket has highest priority than any operator.
2. Inside bracket we have 2 comma operators.
3. Comma operator has associativity from Left to Right.
4. Comma Operator will return rightmost operand
i = (1,2,3) Assign 3 to variable i.

Type 3 : Using Comma Operator inside printf statement

#include<stdio.h>

#include< conio.h>

void main()

{
clrscr();
printf("Computer","Programming");
getch();
}

Output:

Computer

You might feel that answer of this statement should be “Programming” because comma
operator always returns rightmost operator, in case of printf statement once comma is read
then it will consider preceding things as variable or values for format specifier.

Type 4 : Using Comma Operator inside Switch cases.

#include<stdio.h>

#include< conio.h>

void main()
{

int choice = 2 ;

switch(choice)
{

case 1,2,1:

printf("\nAllas");

break;

case 1,3,2:

printf("\nBabo");

break;

case 4,5,3:

printf("\nHurray");

break;
}

}
Output :

Babo

Type 5 : Using Comma Operator inside For Loop

#include<stdio.h>

int main()
{

int i,j;
for(i=0,j=0;i<5;i++)
{

printf("\nValue of J : %d",j);
j++;
}

return(0);
}

Output:

Value of J : 0
Value of J : 1
Value of J : 2
Value of J : 3
Value of J : 4

Type 6 : Using Comma Operator for multiple Declaration

#include<stdio.h>

int main()
{

int num1,num2;

int a=10,b=20;

return(0);
}

Note : Use of comma operator for multiple declaration in same statement.

Variable:

• A variable is an identifier that is used to represent some specified type of information

within a designated portion of the program.

• A variable may take different values at different times during the execution

Rules for naming the variable

• A variable name can be any combination of 1 to 8 alphabets, digit, or underscore

• The first character must be an alphabet or an underscore (_).

• The length of variable should not exceed 8 characters length, and some of the ‘C’
compiler can be recognize upto 31 characters.

Data Types in C

C has a concept of 'data types' which are used to define a variable before its use. The

definition of a variable will assign storage for the variable and define the type of data that will
be held in the location.

The value of a variable can be changed any time.

C has the following basic built-in datatypes.

• int

• float

• double

• char

The bytes occupied by each of the primary data types are

Data type Description Memory bytes Control String Example

Int Integer Quantity 2 bytes %d or %i int a=12;

Char Single Character 1 bytes %C char s=’n’;

float Floating Point 4 bytes %f float f=29.777

Double Double precision 8 bytes %lf double d=

 floating pointing 5843214

 no’s

Scope of a variable

A scope in any programming is a region of the program where a defined variable can

have its existence and beyond that variable cannot be accessed. There are three places
where variables can be declared in C programming language:

1. Inside a function or a block is called local variable,

2. Outside of all functions is called global variable.

3. In the definition of function parameters which is called formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They
can be used only by statements that are inside that function. Local variables are not known
to functions outside their own. Following is the example using local variables. Here all the
variables a, b and c are local to main() function.

#include <stdio.h>

main ()

{

/* local variable declaration */

int a, b, c;

/* actual initialization */

a = 10;

b = 20;

c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

}

Global Variables

Global variables are defined outside of a function, usually on top of the program. The global
variables will hold their value throughout the lifetime of your program and they can be accessed
inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is the example using global and
local variables:

#include <stdio.h>

/* global variable declaration */

int g;

main ()

{

/* local variable declaration */

int a, b;

/* actual initialization */

a = 10;

b = 20;

g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

}

PRECEDENCE AND ASSOCIATIVELY OF OPERATORS

If an arithmetic expression is given, there are some rules to be followed to evaluate

the value of it. These rules are called as the priority rules. They are also called as the
hierarchy rules. According to these rules, the expression is evaluated as follows;

Rule 1 :- If an expression contains parentheses , the expression within the parentheses will
be performed first. Within the parentheses , the priority is to be followed.
Rule 2 :- If it has more than parentheses , the inner parenthesis is performed first.
Rule 3:- If more than one symbols of same priority , it will be executed from left to right.

C operators in order of precedence (highest to lowest). Their associativity indicates in what
order operators of equal precedence in an expression are applied

Operator Operation Associativity Priority
() Parentheses

[] Brackets (array subscript) left-to-right 1
. Dot operator

-> Structure operator

++ -- Postfix increment/decrement

++ -- Prefix inc/decrement right-to-left 2

+ - Unary plus/minus

! ~ Not operator,complement

(type) Type cast

* Pointer operator

& Address operator

sizeof Determine size in bytes

* / % Multiplication/division/modulus left-to-right 3
+ - Addition/subtraction left-to-right 4
<< Bitwise shift left left-to-right 5
>> Bitwise shift right

< Relational less than left-to-right 6
<= less than or equal to

> Relational greater than

>= greater than or equal to

== Relational is equal to left-to-right 7
!= is not equal to

& Bitwise AND Bitwise left-to-right 8
 exclusive

^ Bitwise exclusive OR left-to-right 9
| Bitwise inclusive OR left –to-right 10
&& Logical AND left-to-right 11
|| Logical OR left-to-right 12
?: Ternary conditiona right-to-left 13

= Assignment right-to-left 14
+= -= Addition/subtraction

*= /= assignment

%= &= Multiplication/division

^= |= assignment

<<= >>= Modulus/bitwise AND

 assignment

 Bitwise exclusive/inclusive OR

 assignment
 Bitwise shift left/right

 assignment

, Comma left-to-right 15

Example for evaluating an expression

Let X = 2 , Y =5 then the value of the expression

(((Y - 1) / X) * (X + Y)) is calculated
as:-(Y - 1) = (5 - 1) = 4 = T1
(T 1 / X) = (4 / 2) = 2 = T2
(X + Y) = (2 + 5) = 7 = T3
(T2 * T3) = (2 * 7) = 14

The evaluations are made according to the priority rule.

Type conversion in expressions.

Type conversion is the method of converting one type of data into another data type.

There are two types of type conversion.

1. Automatic type conversion

2. Type casting

Automatic type conversion

� This type of conversion is done automatically. The resultant value of an expression depends

upon the operand which occupies more space, which means the result value converted into
highest data type.

� The compiler converts all operands into the data type of the largest operand.

� This type of type conversion is done implicitly,this method is called as implicit type
conversion.

Eg.1

float a,b,c;a=10,b=3;

c=a/b

output= > c= 3.3 {4 bytes(float) (All the variables are same datatype} Eg.2

int a,b,c; a=10,b=3; c=a/b;

output= >c=3{2 bytes(int)} Eg.3

int a; float b,c; a=10,b=3;

c=a/b;

output=> c=3.3 {4 bytes(float) highest datatype is float}

Type casting

�

 This method is used,when user wants to change the type of the data. General Format for

type casting is

(datatype)operand

Eg.1

int x=10, y=3; z=(float)x/y;(ie z=10.0/3;)

output=>z=3.3(float) Eg:2

int x=10,y=3; z=x/(float)y;(ie z=10/3.0;)

output=>3.3(float)

• The type of the x is not changed,only the type of the value can be changed

• Since the type of conversion is done explicitly,this type conversion is called as
explicit type conversion

The following rules have to be followed while converting the expression from one type

to another to avoid the loss of information:

1. All integer types to be converted to float.

2. All float types to be converted to double.

3. All character types to be converted to integer

Input and Output statements

In ‘c’ language several functions ara available for input/output

operations.These functions are collectively known as the standard I/O library.

1.Unformatted input /output statements

2. Formatted input /output statements

Unformatted Input /Output statements

These statements are used to input /output a single /group of characters from/to the

input/output devices .Here the user cannot specify the type of data that is going to be

input/output.

The following are the Unformatted input /output statements available in ‘C’.

Input Output

getchar() putchar()

getc() putc()

gets() Puts()

single character input-getchar() function:

A getchar() function reads only one character through the

keyboard. Syntax: char variable=getchar();

Example:

char x;

x=getchar();

single character output-putchar() function:

A putchar() function is used to display one character at a time on the standard output

device.

Syntax: putchar(charvariable);

Example:

char x;

putchar(x);

the getc() function

This is used to accept a single character from the standard input to a character variable.

Syntax: character variable=getc();

Example:

char c;

c=getc();

the putc() function

This is used to display a single character variable to standard output device.

Syntax: putc(character variable);

Example:

char c;

putc(c);

the gets() and puts() function

The gets() function is used to read the string from the standard input device.

Syntax: gets(string variable);

Example:

gets(s);

The puts() function is used to display the string to the standard output

device. Syntax: puts(string variable);

Example:

puts(s);

Proram using gets and puts function

#include<stdio.h>

main()
{

char scientist[40];

puts("Enter name");

gets(scientist);

puts("Print the Name");

puts(scientist);

}
output:

Enter Name:Abdul Kalam

Print the Name:Abdul Kalam

Formatted input /output statements

The function which is used to give the value of variable through keyboard is called

input function. The function which is used to display or print the value on the screen is called

output function.

Note : - In C language we use two built in functions, one is used for reading and another is

used for displaying the result on the screen. They are scanf() and printf() functions. They are

stored in the header file named stdio.h.

General format for scanf() function

scanf(“control string”, &variable1, &variable2,……)

The control sting specifies the field format in which the data is to be

entered. %d –integer

%f – float

%c- char

%s –

string

% ld – long integer

%u – Unsigned Integer

Example:

scanf(“%d”,&x) – reading an integer value, the value will be stored in x

scanf(“%d%f”,&x,&a) - reading a integer and a float value In the above scanf () function , we

don’t use any format. This type of Input is called as the Unformatted Input function.

Formatted Input of Integer

The field speciation for reading the integer number is:

%wd

Where The percentage sign(%) indicates that a conversion specification follows. w – is

the field width of the number to be read. d will indicates as data type in integer number.

Example:

scanf(“%2d %5d”, &num1,&num2);

data line is 50 31425

the value 50 is assigned to num1 and 31425 is assigned to num2. suppose the input data is as

follows

31425 50 , then the variable num1 will be assigned 31 and num2 will be assigned to 425

and the 50 is unread.

An input field may be skipped by specifying * in the place of field width.

Example the statement scanf(“%d %*d %d),&a,&b); will assign the data 123 456 789

as follows: 123 is assigned to a , 456 skipped because of * and 789 to b

Output Function : To print the value on the screen or to store the value on the file, the

output functions are used. printf() is the function which is use to display the output on the

screen. The General format of the printf() function is

printf(“control string”,variable1,variable2,…..);

Example

printf(“%d”,x) – printing the integer value x.

printf(“%d%f”, x,a)- printing a integer and float value using a single printf function.

Formatted Output of Integer :Similar to formatted input , there is a formatted output also to

have the output in a format manner.

In this control string consists of three types of items.

• Characters that will be printed on the screen as they appear

• Format specification that define the output format for display of each item

• Escape sequence characters such as

\n – new line

\b – back space

\f – form feed

\r – carriage return

\t - horizontal tab

\v – vertical tab

The format speciation is as follows %wd

Where w – is the field width of the number to be write . d will indicates as data type in

integer number.

Examples:

Printf(“%d”,9876); // output:

9876 printf(“%6d”,9876);

output:

1 2 3 4 5 6

 9 8 7 6

printf(“%-

6d”,9876); output:

1 2 3 4 5 6

9 8 7 6

printf(“%06”,9876);

output:

1 2 3 4 5 6

0 0 9 8 7 6

Formatted input of Real(float) Numbers:

. The field speciation for reading the real number is:

%w.pf

Where w – is the field width of the number to be read . p indicates the number of digits

to be read after the decimal point f – indicates that data type in float(real) number.

Example

scanf(“%2.1f %5.2f”,&num1,&num2);

data line is 50.1 31425.20

the value 50.1 is assigned to num1 and 31425.20 is assigned to num2.

An input field may be skipped by specifying * in the place of field width.

Example: the statement scanf(“%f %*f %f), &a,&b); will assign the data 12.3 4.56 78.9

as follows: 12.3 is assigned to a , 4.56 skipped because of * and 78.9 to b.

Formatted output of Real(float) Numbers:

The field speciation for reading the real number is:

%w.pf

Where w – is the field width of the number to be read . p indicates the number of digits

to be displayed after the decimal point f – indicates that data type in float(real) number.

Example:

Float y = 98.7682

Printf(“ %f ”, y); // output: 98.7682

printf(“%7.2f ”,y);

output:

1 2 3 4 5 6 7

 9 8 . 7 6

printf(“%-7.2f ”,y);

output:

1 2 3 4 5 6 7

9 8 . 7 6

Formatted input of Single characters or strings:

The field speciation for reading the character

strings: %ws or %wc

where,

%c is used to read a single character.

Example:

Char name;

Scanf(“%c”, &name); \\ I / P : a

Char name[20];

Scanf(%s”,&name); \\ I / P : sathyabama

Printing of a Single Character:

The field speciation for reading the character

strings: %ws or %wc

where,

%s – A sequence of characters can be displayed.

%c – A single character can be displayed.

The character will be displayed right-justified in the field of w, left-justified by

placing a minus sign before the integer w.

Example:

Char x = ‘a’;
Char name[20] = “anil kumar gupta”;
Printf(“%c”, x); // output: a
Printf(“%s”,name); // output: anil kumar gupta
Printf(“%20s”, name);

Output:

1 2 3 4 5 6 6 8 9 10 11 12 13 14 15 16 17 18 19 20

 a n i l k u m a r g u p t a

Printf(“%-20.10s”, name);

Output:

1 2 3 4 5 6 6 8 9 10 11 12 13 14 15 16 17 18 19 20

a n i l k u m a r

Printf(“%.5s”, name);

Output:

g u p t a

CONTROL STRUCTURE

Control Statements

Conditional Unconditional

 1.goto

Decision Making Statement Loop Control Statement 2. continue

1. if Statement 1. for 3. break

2. if.. else statement 2. while

3. nested if statement 3. do-while

4. if..else ladder

5. switch statement

CONDITIONAL STATEMENT

Decision Making Statement
If Statement:

♣ The if statement is a decision making statement.

♣ It is used to control the flow of execution of the statement and also used to the
logically whether the condition is true or false

♣ It is always used in conjunction with condition.

Condition

False

True

Statements

Syntax:

If(condition)
{

True statements;

}
♣ If the condition is true, then the true statements are executed.

♣ If the condition is false then the true statements are not executed, instead the
program skips past them.

♣ The condition is given by relational operators like ==,<=,>=,!=,etc.

Example 1: //program to check whether the entered number is less than 25

#include<stdio.h>
#include<conio.h>
void main()

{
int i;
clrscr();
printf(“Enter one
value”); scanf(“%d”,&i);
if(i<=25)

printf(“The entered no %d is <
25”,i); getch();
}

Output:

Enter one value 5
The entered no 5 is < 25

Example 2: //program to calculate the sum and multiplication using if Statement

#include<stdio.h>

#include<conio.h>
void main()
{
int a,b,n;
clrscr();
printf(“Enter two values”);
n=scanf(“%d%d”,&a,&b);
if(n==2)

{
printf(“the sum of two numbers : %d”,a+b);
printf(“the product of two numbers:%d”,a*b);
}
getch();

}

Output:

Enter two value 5 10
the sum of two numbers : 15

the product of two numbers : 50

if.. else statement:

♣ It is basically two way decision making statement and always used in conjunction

with condition.

♣ It is used to control the flow of expression and also used to carry the logical test and
then pickup one of the two possible actions depending on the logical test.

♣ If the condition is true, then the true statements are executed otherwise false
statements are executed.

♣ The true and false statements may be single or group of statements.

Condition

 True Statements False Statements

Syntax:
If (condition)

True statements;

else
False statements;

Example 1: //program to find the greatest of two number.

#include<stdio.h>

#include<conio.h>
void main()
{

int a,b;

printf(“Enter two value”);
scanf(“%d%d”,&a,&b);
if(a>b)

printf(“The given no %d is greatest”,a);

else
printf(“The given no %d is greatest”,b);

}

Output:

Enter two value 5 10

The given no 10 is greatest

Nested if..else Statement:

When a series of if_else statements are needed in a program, we can write an entire

if_else statement inside another if and it can be further nested. This is called nesting if.

Syntax:

if(condition 1)

{
if(condition 2)

{
True statement 2;

else
False statement 2;

}
else
False statement 1;

}

Example 1: //program to find the greatest of three numbers.

#include <stdio.h>

int main ()

{
/* local variable definition */
int a = 100;

int b = 200;

/* check the boolean condition */
if(a == 100)

{
/* if condition is true then check the following */
if(b == 200)

{
/* if condition is true then print the following */

printf("Value of a is 100 and b is 200\n");

}

}
printf("Exact value of a is : %d\n", a);
printf("Exact value of b is : %d\n", b);

return 0;

}

Output:

Value of a is 100 and b is 200

Exact value of a is : 100
Exact value of b is : 200

If_else Ladder:

1. Nested if statements will become complex, if several conditions have to be checked.

2. In such situations we can use the else if ladder .

Syntax:

if(condition 1)
{

if(condition 2)
{

True statement 2;
}
elseif(condition 3)
{

True statement 3;
else

False statement 3;
}

else
False statement 1;

}

Switch Statement

• The switch statement is used to execute a particular group of statements from
several available groups of statements.

• It allows us to make a decision from the number of choices.

• It is a multi-way decision statement.

Rules for writing switch () statement.

1. The expression in switch statement must be an integer value or a character
constant.

2. No real numbers are used in an expression.
3. Each case block and default block must be terminated with break statement.

4. The default is optional and can be placed anywhere, but usually placed at end.

5. The ‘case’ keyword must terminate with colon(:).

6. Cases should not be identical.

7. The values of switch expression is compared with the case constant expression in
the order specified i.e., from top to bottom.

switch
(Expression)

case 1:
statements break;

case 2:

statements break;

default: statements
break;

Syntax:

switch(expression)
{

case 1:
state
ment;
break;

case 2:
state
ment;
break;

default: statement;

break;
}

// program to print the give number is odd / even using switch case statement.

#include<stdio.h>
#include<conio.h> void main()

{
int a,b,c;
printf(“Enter one value”);
scanf(“%d”,&a); switch(a%2)

{

case 0:
printf(“The given no %d is even”,
a); break;

default :
printf(“The given no %d is odd”,
a); break;

}
}

Output:

Enter one value 5
The given no 5 is odd

Unconditional statement

Break statement
5. The break statement is used to terminate the loop.

6. When the keyword break is used inside any loop, control automatically transferred to
the first statement after the loop.

Syntax:

break;

//program to print the number upto 5 using break statement

#include<stdio.h>

#include<conio.h>
void main()
{
int i;
for(i=1;i<=10;i++)

{

if(i==6)

break;

printf(“%d”,i);

}

}

Output:

1 2 3 4 5

While(condition) Do for(initialize;condition; incr/dec)

{ …….. { …….. { ……..

if(condition) if(condition) if(condition)

beak;
break;

break;

………. ………. ……….

} }while(condition); }

Continue Statement

• In some situation, we want to take the control to the beginning of the loop, bypassing
the statement inside the loop which have not been executed, for this purpose the
continue is used.

• When the statement continue is encountered inside any loop, control automatically
passes to the beginning of the loop.

Syntax:

continue;

While(condition)
{
……..
if(condition)
continue;
……….
}

While(condition) Do for(initialize;condition; incr/dec)

{ …….. { …….. { ……..

if(condition) if(condition) if(condition)

continue;

 continue;

 continue;

………. ………. ……….

} } while (condition); }

Difference between break and continue

Break Continue

Break statement takes the control to the Continue statement takes the control to be
outside of the loop beginning of the loop
It is also in switch statement This can be used only in loop statements

Always associated with if condition in loop This is also associated with if condition

Goto Statement:

• C provides the goto statement to transfer control unconditionally from one place to

another place in the program.

• A goto statement can change the program control to almost anywhere in the program
unconditionally.

• The goto statement require a label to identify the place to move the execution.

• The label is a valid variable name and must be ended with colon(:).

Syntax:

1. goto label;

2.label:

…… …..……

……. ………..

label: goto label;

/* program to print the given both number is equal or not*/

#include<stdio.h>
#include<conio.h>
void main()
{

int a,b;
printf(“Enter the numbers”);
scanf(“%d%d”,&a,&b);
if(a==b)

goto equal;
else
{
printf(“%d and %d are not
equal”,a,b); exit(0);

}
equal: printf(“%d and %d are equal”,a,b);

}

Output:

Enter the numbers 4 5

4 and 5 are not equal

Enter the numbers 5 5

5 and 5 are equal

LOOPING STATEMENTS

A loop statement allows us to execute certain block of code repeatedly until test condition
is false.

There are 3 types of loops in C programming:

� for loop
� while loop
� do...while loop

for loop:

The syntax for a for loop is

for (variable initialization; condition; variable update)
{

Code to execute while the condition is true
}

The initialization statement is executed only once at the beginning of the for loop. Then the test
expression is checked by the program. If the test expression is false, for loop is terminated. But
if test expression is true then the code/s inside body of for loop is executed and then update
expression is updated. This process repeats until test expression is false.

for loop example

Write a program to find the sum of first n natural numbers where n is entered by user.
Note: 1,2,3... are called natural numbers.

#include <stdio.h>
void main(){

int n, count, sum=0;

printf("Enter the value of
n.\n"); scanf("%d",&n);
for(count=1;count<=n;++count) //for loop terminates if count>n

{
sum+=count; /* this statement is equivalent to
sum=sum+count */

}

printf("Sum=%d",sum);

}

Output

Enter the value of
n. 19
Sum=190

In this program, the user is asked to enter the value of n. Suppose you entered 19 then, count is
initialized to 1 at first. Then, the test expression in the for loop,i.e., (count<= n) becomes true. So,
the code in the body of for loop is executed which makes sum to 1. Then, the expression ++count
is executed and again the test expression is checked, which becomes true. Again, the body of for
loop is executed which makes sum to 3 and this process continues. When count is 20, the test
condition becomes false and the for loop is terminated.

/* C program to check whether a number is prime or not. */

#include <stdio.h>
int main()
{
int n, i, flag=0;
printf("Enter a positive integer: ");
scanf("%d",&n);
for(i=2;i<=n/2;++i)

{
if(n%i==0)

{
flag=1;

break;
}
}

if (flag==0)
printf("%d is a prime number.",n);
else
printf("%d is not a prime number.",n);
return 0;
}

Output

Enter a positive integer: 29
29 is a prime number.

This program takes a positive integer from user and stores it in variable n. Then, for loop is
executed which checks whether the number entered by user is perfectly divisible by i or not
starting with initial value of i equals to 2 and increasing the value of i in each iteration. If the
number entered by user is perfectly divisible by i then, flag is set to 1 and that number will not
be a prime number but, if the number is not perfectly divisible by i until test condition i<=n/2 is
true means, it is only divisible by 1 and that number itself and that number is a prime number.

FUNCTIONS

LIBRARY FUNCTIONS

Definition

C Library functions are inbuilt functions in C language which are clustered in a group and
stored in a common place called Library. Each and every library functions in C executes explicit
functions. In order to get the pre- defined output instead of writing our own code, these library
functions will be used. Header file consists of these library functions like Function prototype and
data definitions.

3. Every input and output operations (e.g., writing to the terminal) and all
mathematical operations (e.g., evaluation of sines and cosines) are put into
operation by library functions.

4. The C library functions are declared in header files (.h) and it is represented as
[file_name].h

5. The Syntax of using C library functions in the header file is declared as

“#include<file_name.h>”. Using this syntax we can make use of those library functions.

6. #include<filename.h>” command defines that in C program all the codes are included
in the header files followed by execution using compiler.

7. It is required to call the suitable header file at the beginning of the program in terminal
in order to use a library function. A header file is called by means of the pre-processor
statement given below,

#include<filename.h>

Whereas the filename represents the header file name and #include is a pre - processor directive. To

access a library function the function name must be denoted, followed by a list of
arguments, which denotes the information being passed to the function.

Example

In case if you want to make use of printf() function, the header file <stdio.h> should be included at
the beginning of the C program.

#include <stdio.h>
int main()

{

/* NOTE: Error occurs if printf() statement is written without
using the header file */

printf(" Hello World");

}

The „main() function� is also a library function which is called at the initial of the program.

Example

To find the square root of a number we use our own part of code to find them but this may

not be most efficient process which is time consuming too. Hence in C programming by declaring
the square root function sqrt() under the library function “math.h” will be used to find them rapidly
and less time consuming too. Square root program using the library functions is given below:

Finding Square root Using Library Function

#include <stdio.h>
#include <math.h>
int main(){

float num,root;

printf("Enter a number to find square
root."); scanf("%f",&num);

root=sqrt(num); /* Computes the square root of num and stores

in root. */
printf("Square root of
%.2f=%.2f",num,root); return 0;

}

List of Standard Library Functions in C Programming

C Header Files

ctyp e.h stdio.h conio.h string .h m ath .h stdlib .h tim e.h

Adding User Defined functions in C library:

¬ In C Programming we can declare our own functions in C library which is called as user-
defined functions.

¬ It is possible to include, remove, change and access our own user defined function to or
from C library functions.

¬ Once the defined function is added to the library it is merely available for all C programs

which are more beneficial of including user defined function in C library function

¬ Once it is declared it can be used anywhere in the C program just like using other C library
functions.

¬ By using these library functions in GCC compilers (latest version), compilation time can be
consumed since these functions are accessible in C library in the compiled form.

¬ Commonly the header files in C program are saved as ”file_name.h” in which all library

functions are obtainable. These header files include source code and this source code
is further added in main C program file where we include this header file via “#include
<file_name.h>” command.

Steps for adding user defined functions in C library:

Step 1:

For instance, hereby given below is a test function that is going to be included in the

C library function. Write and save the below function in a file as “addition.c”

addition(int a, int b)
{

int sum;
total =a + b;
return sum;
}

Step 2:

Compile “addition.c” file by using Alt + F9 keys (in turbo C).

step 3:

A compiled form of “addition.c” file would be created as “addition.obj”.
Step 4:

To add this function to library, use the command given below (in turbo
C). c:\> tlib math.lib + c:\ addition.obj
+ represents including c:\addition.obj file in the math
library. We can delete this file using – (minus).

Step 5:

Create a file “addition.h” and declare sample of addition() function like
below. int addition (int a, int b);
Now “addition.h” file has the prototype of function “addition”.

Note : Since directory name changes for each and every IDE, Kindly create, compile
and add files in the particular directory.

Step 6:

Here is an example to see how to use our newly added library function in a C program.

4. include <stdio.h>
 User defined function is included here.

5. include “c:\\addition.h”
int main ()
{

int total;

// calling function from library
total = addition (10, 20); printf
("Total = %d \n", total);

}

Output:
Total = 30

• Source code checking for all header files can be checked inside “include” directory
following C compiler that is installed in system.

• For instance, if you install DevC++ compiler in C directory in our system, “C:\Dev-
Cpp\include” is the path where all header files will be readily available.

Mostly used header files in C:

C library functions and header files in which they are declared in conio.h is listed below:

S.No Header file Description

1 stdio.h A standard input/output header file where Input/ Output functions are
 declared

2 conio.h Console input/output header file

3 string.h String functions are defined in this header file

4 stdlib.h The general functions used in the C program is defined in this header file.

5 math.h Mathematical related functions are defined in this header file.

6 time.h Time and clock allied functions are defined in this header file.

7 ctype.h Every character managing functions are declared in this header file

8 errno.h This header file contains Error handling functions.

9 assert.h Diagnostics functions are declared in this header file.

C – conio.h library functions

The entire C programming inbuilt functions that are declared in conio.h header file are
given below. The source code for conio.h header file is also given below for your reference.
List of inbuilt conio.h file C functions:

S.no Function Description

1 clrscr() This function is used to clear the output screen.

2 getch() It reads character from keyboard

3 getche() It reads character from keyboard and echoes to o/p screen

4 textcolor() This function is used to change the text colour

5 textbackground() This function is used to change text background

C – stdio.h library functions

Inbuilt functions of C declared in stdio.h header file are given below.

S.no Function Description

1 printf() This function is used to print the character, string, float, integer, octal
 and hexadecimal values onto the output screen

2 scanf() This function is used to read a character, string, numeric data from keyboard.

3 getc() It reads character from file

4 gets() It reads line from keyboard

5 getchar() It reads character from keyboard

6 puts() It writes line to o/p screen

7 putchar() It writes a character to screen

8 clearerr() Clears the error indicators

9 f open() All file handling functions are defined in this header file.

10 f close() closes an opened file

11 getw() reads an integer from file

12 putw() writes an integer to file

13 f getc() reads a character from file

14 putc() writes a character to file

15 f putc() writes a character to file

16 f gets() reads string from a file, per line at a time

17 f puts() writes string to a file

18 f eof() finds end of file

19 f getchar reads a character from keyboard

20 f getc() reads a character from file

21 f printf() writes formatted data to a file

22 f scanf() reads formatted data from a file

23 f getchar reads a character from keyboard

24 f putchar writes a character from keyboard

25 f seek() moves file pointer position to given location

26 SEEK_SET moves file pointer position to the beginning of the file

27 SEEK_CUR moves file pointer position to given location

28 SEEK_END moves file pointer position to the end of file.
 29 f tell() gives current position of file pointer

 30 rewind() moves file pointer position to the beginning of the file

 31 putc() writes a character to file

 32 sprint() writes formatted output to string

 33 sscanf() Reads formatted input from a string

 34 remove() deletes a file

 35 fflush() flushes a file

Functions

• A function is a group of statement that is used to perform a specified task which
repeatedly occurs in the main program. By using function, we can divide the
complex problem into a manageable problem.

• A function can help to avoid redundancy.

• Function can be of two types, there are

1. Built-in Function (or) Predefined Function (or)
Library Function

2. User defined Function

Functions

Predefined Function User-defined
Function

Difference between Predefined and User-defined Functions

Predefined Function User-defined function

Predefined function is a function which is User- Defined function is a function which is

already defined in the header file (Example: created by the user as per requirement of its

math.h, string.h, etc) owner

Predefined Function is a part of a header file, User- Defined function are part of the program

which are called at runtime which are compiled at runtime

The Predefined function name is given by the User- Defined function name created by the

developer user

Predefined Function name cannot be changed User defined Function name can be changed

User Defined Functions

• The function defined by the users according to their context (or) requirements is

known as a user defined function.

• The User defined function is written by the programmer to perform specific task (or)
operation, which is repeatedly used in the main program.

• These functions are helpful to break down the large program into a number of the
smaller function.

• The user can modify the function in order to meet their requirements.
• Every user define function has three parts namely

Function Declaration
Function Calling
Function Definition

Need for user-defined function

• While it is possible to write any complex program under the function, and it leads to a

number of problems, such as
� The problem becomes too large and complex.

� The user can�t go through at a glance

� The task of debugging, testing and maintenance become difficult.

• If a problem is divided into a number of parts, then each part may be independently
coded and later it combined into a single program. These subprograms are called
functions, it is much easier to understand, debug and test the program.

Merits of User-Defined Function

5. The length of the source program can be reduced by dividing it into smaller functions

6. It provides modularity to the program
7. It is easy to identify and debug an error

8. Once created a user defined function, can be reused in other programs

9. Function facilitates top-down programming approach

10. The Function enables a programmer to build a customized library of repeatedly used
routines

11. Function helps to avoid coding of repeated programming of the similar instruction

Elements of User-Defined Function
5. Function Declaration
6. Function Call
7. Function Definition

Function Declaration

 Like normal variable in a program, the function can also be declared before they
defined and invoked

 Function declaration must end with semicolon (;)
 A function declaration must declare after the header file
 The list of parameters must be separated by comma.
 The name of the parameter is optional, but the data type is a must.

� • If the function does not return any value, then the return type void is must.

 If there are no parameters, simply place void in braces.

• The data type of actual and formal parameter must match.

Syntax:

Return_type function_name (datatype parameter1, datatype parameter2,…);
Description:

Return type : type of function
Function_name : name of the function
Parameter list or argument list : list of parameters that the function

can convey.

Example:

int add(int x,int y,int z);

Function Call

The function call be called by simply specifying the name of the function,
return value and parameters if presence.

Syntax: function_name();
function_name(parameter);
return_value =function_name (parameter);

Description:

function_name : Name of the function
Parameter : Actual value passed to the calling function

Example

fun();
fun(a,b);

fun(10,20);

c=fun(a,b);
e=fun(2.3,40);

Function Definition

• It is the process of specifying and establishing the user defined function by specifying

all of its element and characteristics.
Syntax:

Return_type function_name (datatype parameter1, datatype parameter2)

Example 1
#include<stdio.h>
#include<conio.h>

void add(); //Function Declaration void sub();//Function Declaration
void main()
{

clrscr();

add(); //Function call
sub(); //Function call
getch();

}

void add() //Function Definition
{

int a,b,c;

printf(“Enter two values”);
scanf(“%d%d”,&a,&b); c=a+b;
printf(‚add=%d‛,c);

}
void sub() //Function Definition

{
int a,b,c;

printf(“Enter two values”);
scanf(“%d%d”,&a,&b);
c=a-b;
printf(“sub=%d”,c);

}

Example 2 :

//Program to check whether the given number is odd or even
#include<stdio.h>

#include<conio.h>
void oddoreven()
{

printf("Enter One value");
scanf("%d",&oe);
if(oe%2==0)

printf("The Given Number%d is
even"); else
printf("The Given Number %d is odd");
}

void main()
{

clrscr();
oddoreven();
getch();

}

Function Parameter

• The Parameter provides the data communication between the calling function and

called function.

• There are two types of parameters.

o Actual parameter: passing the parameters from the calling function to

the called function i.e the parameter, return in function is called actual
parameter

3. Formal parameter: the parameter which is defined in the called
function i.e. The parameter, return in the function definition is called
formal parameter

Example:

main()
{

………..

 Where

………..

a,b are the actual

Fun(a,b);

parameters

………..

………..

} x,y are formal parameter

Fun(int x,int y)

{

…………

…………

}

Example Program

#include<stdio.h>

#include<conio.h>

void add(int,int); //Function Declaration Output:

void sub(float,int);//Function Declaration

void main() add=7

{ sub=-2.500000

clrscr();

add(3,4); //Function call

sub(2.5,5); //Function call

getch();

}

void add(int a,int b)//Function Definition

{

int c;

c=a+b;

printf(“add=%d”,c);

}

void sub(float a, int b) //Function Definition

{

float c;

c=a-b;

printf(“sub=%f”,c);

}

Example 2:

//program for factorial of given

number #include<stdio.h>

#include<conio.h> void main()

{

int fact(int); Output:

int f; Enter one value 5

clrscr(); The Factorial of given

printf("Enter one value");

 number 5 is 120

scanf("%d",&f);

printf("The Factorial of given number %d is
%d",f,fact(f)); getch();
}
int fact(int f)

{
if(f==1)
return 1;
else
return(f*fact
(f-1));
}

Function Prototype (or) Function Interface

• The functions are classified into four types depends on whether the

arguments are present or not, whether a value is returned or not. These are

called function prototype.

• In ‘C’ while defining user defined function, it is must to declare its prototype.

• A prototype states the compiler to check the return type and arguments type

of the function.

• A function prototype declaration consists of the function’s return type, name

and argument. It always ends with semicolon. The following are the function

prototypes

o Function with no argument and no return

value. o Function with argument and no return

value.

o Function with argument and with return

value. o Function with no argument with

return value.

Function with no argument and no return value

• In this prototype, no data transfer takes place between the calling function

and the called function. i.e., the called program does not receive any data

from the calling program and does not send back any value to the calling

program.

Syntax:-

main() void Fun()

{ {

The dotted lines indicates that,

………..
there is only transfer of control,

………..

……….. but no data transfer.

………..

Fun();

……….. }

………..

}

Example program 1

#include<stdio.h>

 Output:

#include<conio.h> Enter two values 6 4

void mul();
 mul=24

void main()

{

clrscr();

mul();

getch();

}

void mul()

{

int a,b,c;

printf(“Enter two values”);

scanf(“%d%d”,&a,&b); c=a*b;

printf(“mul=%d”,c);

}

Example program 2

//Program for finding the area of a circle using Function with no argument

and no return value

I#include<stdio.h>

#include<conio.h>

void circle();

Output:
void main()

Enter radius 5
{

 The area of circle 78.500000 circle();

}

void circle()

{

int r;

float cir;

printf("Enter radius");

scanf("%d",&r);

cir=3.14*r*r;

printf("The area of circle is %f",cir);

}

Function with argument and no return value

• In this prototype, data is transferred from the calling function to called function.

i.e., the called function receives some data from the calling function and does

not send back any values to calling function

• It is one way data communication.

Syntax:-

main() void Fun(x,y)

{ {

……….. ………..

……….. ………..

Fun(a,b);
……….. }

………..
}

Example program 1:

#include<stdio.h>

#

i

nclude<conio.h>

void add(int,int);

void main()

{

clrscr();

int a,b;

printf(“Enter two values”);

scanf(“%d%d”,&a,&b);

add(a,b);

getch();

}

void add(int x,int y)

{

int c;

c=x+y;

printf(“add=%d”,c);

}

Example program 2:

The solid lines indicate data

transfer and dotted line indicates

a transfer of control.

a and b are the actual

parameters

x and y are formal parameters

Output:

Enter two values 6 4
add=10

//Program to find the area of a circle using Function with argument and no return value

#include<stdio.h>

#include<conio.h>

void circle(int);

void main()

{

int r;

clrscr();

printf("Enter radius");

scanf("%d",&r);

circle(r);

}

void circle(int r)

{

float cir;

cir=3.14*r*r;

printf("The area of circle is

%f",cir); getch();

}

Output:

Enter radius 5
The area of circle 78.500000

Function with argument and with return value.

• In this prototype, the data is transferred between the calling function and

called function. i.e., the called function receives some data from the calling

function and sends back returned value to the calling function.

• It is two way data communication

Syntax:-

main() int Fun(x,y)

{ {

……….. ………..
……….. ………..

c=Fun(a,b); retur n(z);

……….. }
}

Example program 1:

#include<stdio.h>

#include<conio.h>

void add(int,int);

The solid lines indicates data transfer

takes place in between thecalling

program and called program

a,b are the actual parameter

x,y are formal parameter

Output:

Enter two values 6 4
Add=10

void main()

{

clrscr();

int a,b,c;

printf(“Enter two values”);

scanf(“%d%d”,&a,&b);

c=add(a,b);

printf(“Add=%d”,c); getch();

}

void add(int x,int y)

{

int m;

m=x+y;

return m;

}

Example Program 2

// Program to find the area of a circle using Function with argument

and with return value

#include<stdio.h>

#include<conio.h> float

circle(int); void main()

{

int r; clrscr();

printf("Enter radius");

scanf("%d",&r);

printf("the area of

circle is

%f",circle(r)); getch();

}

Enter radius 5

the area of circle 78.500000

Output:

float circle(int r)

{

float cir;

cir=3.14*r*r;

return cir;

}

Function with no argument with return value

• In this prototype, the calling function cannot pass any arguments to the called

function, but the called program may send some return value to the calling function.

• It is one way data communication

Syntax:-

main() int F un()

{ {

………..
………..

………..
………..

Fun();
return(z);

……….. }

………..
}

Example program 1

#include<stdio.h>

#include<conio.h>

int add();

void main()

{

clrscr();

int z;

z=add();

printf(“Add=%d”,z);

getch();

}

int add()

{

 NOTE: The dotted line indicates a
control transfer to the called program and the solid
line indicates data return to the calling program

Output:

Enter two values 6 4
Add=10

Example Program 2

// Program to the area of a circle using no argument with a return

value

#include<stdio.h>

#include<conio.h>

float circle();

void main()

{

clrscr();

printf("the area of circle is

%f",circle()); getch();

}

float circle()

{

float cir; int r;

printf("Enter radious"); scanf("%d",&r);

cir=3.14*r*r;

return cir;

}

 Enter radius 5

the area of circle 78.500000

 Output:

Parameter Passing Methods (or) Passing Arguments to Function

• Function is a good programming style in which we can write reusable code that

can be called whenever required.

• Whenever we call a function, the sequence of executable statements gets

executed. We can pass some of the information (or) data to the function for

processing is called a parameter.

• In ‘C’ Language there are two ways a parameter can be passed to a function.

They are

o Call by value

o Call by reference

Call by Value:

• This method copies the value of the actual parameter to the formal parameter of the

function.

• Here, the changes of the formal parameters cannot affect the actual parameters,

because formal parameter are photocopies of the actual parameter.

• The changes made in formal arguments are local to the block of the called function.

Once control returns back to the calling function the changes made disappears.

Example Program

#include<stdio.h>

#include<conio.h>

void cube(int);

int cube1(int);

void main()

{

int a;

clrscr();

printf(“Enter one values”);

scanf(“%d”,&a);

Output:

Enter one values 3
Value of cube function is 3

Value of cube1 function is 27

printf(“Value of cube function is=%d”, cube(a));

printf(“Value of cube1 function is =%d”, cube1(a

)); getch();

}

void cube(int x)

{

x=x*x*x;

return x;

}

int cube1(int x)

{

x=x*x*x;

return x;

}

Call by reference

• Call by reference is another way of passing parameter to the function.

• Here the address of the argument is copied into the parameter inside the function, the

address is used to access arguments used in the call.

• Hence, changes made in the arguments are permanent.

• Here pointer is passed to function, just like any other arguments.

Example Program

#include<stdio.h>

#include<conio.h>

void swap(int,int);

Output:

void main() Before swapping a=5 b=10

{
After swapping a=10 b=5

int a=5,b=10;

clrscr();

printf(“Before swapping a=%d b=%d”,a,b);

swap(&a,&b);

printf(“After swapping a=%d

b=%d”,a,b); getch();

}

void swap(int *x,int *y)

{

int *t;

t=*x;

*x=*y;

*y=t;

}

Nesting of function call in c programming

If we are calling any function inside another function call, then it is known as Nesting

function call. In other words, a function calling different functions inside is termed as Nesting
Functions.

Example:
// C program to find the factorial of a number.

#include <stdio.h>

//Nesting of functions

//calling function inside another
function //calling fact inside
print_fact_table function

void print_fact_table(int); // function declaration

int fact(int); // function declaration

void main() // main function

{

print_fact_table(5); // function call

}

void print_fact_table(int n) // function definition

{

int i;

for (i=1;i<=n;i++)

printf("%d factorial is %d\n",i,fact(i)); //fact(i)-- function call

}

int fact(int n) // function definition

{
if (n == 1)

return 1;
else

return n * fact(n-1);
}

Output:
1 factorial is 1

2 factorial is 2
3 factorial is 6

4 factorial is 24
5 factorial is 120

Recursion

A function calling same function inside itself is called as recursion.

Example: // C program to find the factorial of a number.

#include <stdio.h>
int fact(int); // function declaration
void main()
{
printf("Factorial =%d",fact(5)); // fact(5) is the function call

}
int fact(int n) // function definition
{

if (n==1) return 1; else
return n * fact(n-1); // fact(n-1) is the recursive function call

}

Output:

Factorial = 120

Discussion:

For 1! , the functions returns 1, for other values, it executes like the one below:

 // main function

When the value is 5, it comes to else part and calculates like this,

= 5 * fact (5-1) = 5 * fact (4)

= 5* 4* fact (4-1) = 5 * 4* fact (3)

= 5* 4* 3* fact (3-1) = 5 * 4* 3* fact (2)

= 5* 4* 3* 2* fact (2-1) = 5 * 4* 3* 2* fact (1)

= 5* 4* 3* 2* 1 (if (n==1) then return 1, hence we get 1)

=120

ARRAYS

Introduction:

So far we have used only single variable name for storing one data item. If we need to store

multiple copies of the same data then it is very difficult for the user. To overcome the difficulty a

new data structure is used called arrays.
An array is a linear and homogeneous data structure

An array permits homogeneous data. It means that similar types of elements are stored
contiguously in the memory under one variable name.
An array can be declared of any standard or custom data type.

Example of an Array:

Suppose we have to store the roll numbers of the 100 students the we have to declare 100

variables named as roll1, roll2, roll3, ……. roll100 which is very difficult job. Concept of C

programming arrays is introduced in C which gives the capability to store the 100 roll numbers

in the contiguous memory which has 100 blocks and which can be accessed by single variable

name.
� C Programming Arrays is the Collection of Elements

� C Programming Arrays is collection of the Elements of the same data type.

� All Elements are stored in the Contiguous memory

� All elements in the array are accessed using the subscript variable (index).

Pictorial representation of C Programming Arrays

The above array is declared as int a [5];

a[0] = 4; a[1] = 5; a[2] = 33; a[3] = 13; a[4] = 1;

In the above figure 4, 5, 33, 13, 1 are actual data items. 0, 1, 2, 3, 4 are index variables.

Index or Subscript Variable:

1.Individual data items can be accessed by the name of the array and an integer enclosed in

square bracket called subscript variable / index

2. Subscript Variables helps us to identify the item number to be accessed in the contiguous

memory.

Characteristics of an array:

2. The declaration int a [5] is nothing but creation of five variables of integer types in

memory instead of declaring five variables for five values.

3. All the elements of an array share the same name and they are distinguished from one

another with the help of the element number.

4. The element number in an array plays a major role for calling each element.

5. Any particular element of an array can be modified separately without disturbing the

other elements.

6. Any element of an array a[] can be assigned or equated to another ordinary variable or

array variable of its type.

7. Array elements are stored in contiguous memory locations.

Array Declaration:

 Array has to be declared before using it in C Program. Array is nothing but the collection of

elements of similar data types.

Syntax: <data type> array name [size1][size2].....[sizen];

Syntax Parameter Significance

Data type Data Type of Each Element of the array

Array name Valid variable name

Size Dimensions of the Array

Array declaration requirements

Requirement Explanation

Data Type
Data Type specifies the type of the array. We can compute the size

required for storing the single cell of array.

Valid Identifier
Valid identifier is any valid variable or name given to the array.

Using this identifier name array can be accessed.

Size of Array It is maximum size that array can have.

What does Array Declaration tell to Compiler?

� Type of the Array

� Name of the Array

� Number of Dimension

� Number of Elements in Each Dimension

Types of Array

� Single Dimensional Array / One Dimensional Array

� Multi Dimensional Array

Single / One Dimensional Array:

� Single or One Dimensional array is used to represent and store data in a linear form.

� Array having only one subscript variable is called One-Dimensional array

� It is also called as Single Dimensional Array or Linear Array

Single Dimensional Array Declaration and initialization:

Syntax for declaration: <data type> <array name> [size];

Examples for declaration: int iarr[3]; char carr[20]; float farr[3];

Syntax for initialization: <data type> <array name> [size] = {val1, val2, …, valn};

Examples for initialization: int

iarr[3] = {2, 3, 4};

char carr[20] = “program”; float

farr[3] = {12.5, 13.5, 14.5};

Different Methods of Initializing 1-D Array

Whenever we declare an array, we initialize that array directly at compile time.
Initializing 1-D Array is called as compiler time initialization if and only if we assign certain set of

values to array element before executing program. i.e. at compilation time.

Example Program

#include <stdio.h>

int main()

int num[] = {2,8,7,6,0};

int i;

for (i=0;i<5;i++) {

printf(“\n Array Element num [%d] = %d”,i, num[i]); }

return 0; }

Output:

Array Element num[0] = 2

Array Element num[1] = 8

Array Element num[2] = 7

Array Element num[3] = 6

Array Element num[4] = 0

Accessing Array

� We all know that array elements are randomly accessed using the subscript variable.

� Array can be accessed using array-name and subscript variable written inside pair of

square brackets [].

Consider the below example of an array

In this example we will be accessing array like this

arr[3] = Forth Element of Array

arr[5] = Sixth Element of Array

whereas elements are assigned to an array using below way

arr[0] = 51; arr[1] = 32; arr[2] = 43; arr[3] = 24; arr[4] = 5; arr[5] =26;

Example Program1: Accessing array

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] = {51,32,43,24,5,26};

int i;

for(i=0; i<=5; i++) {

printf("\nElement at arr[%d] is %d",i,arr[i]);

}

getch();

}

Output:

Element at arr[0] is 51

Element at arr[1] is 32

Element at arr[2] is 43

Element at arr[3] is 24

Element at arr[4] is 5

Element at arr[5] is 26

How a[i] Works?

We have following array which is declared like int arr[] = { 51,32,43,24,5,26};

As we have elements in an array, so we have track of base address of an array. Below things

are important to access an array.

Expression Description Example

arr It returns the base address of an array Consider 2000

*arr It gives zeroth element of an array 51

Expression Description Example

*(arr+0) It also gives zeroth element of an array 51

*(arr+1) It gives first element of an array 32

So whenever we tried accessing array using arr[i] then it returns an element at the location*(arr

+ i)

Accessing array a[i] means retrieving element from address (a + i).

Example Program2: Accessing array

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[] =

{51,32,43,24,5,26}; int i;

for(i=0; i<=5; i++) {

printf("\n%d %d %d %d",arr[i],*(i+arr),*(arr+i),i[arr]);

}

getch();

}

Output:

51 51 51 51

32 32 32 32

43 43 43 43

24 24 24 24

5 5 5 5

26 26 26 26

Operations with One Dimensional Array

� Deletion – Involves deleting specified elements form an array.

� Insertion – Used to insert an element at a specified position in an array.

� Searching – An array element can be searched. The process of seeking specific

elements in an array is called searching.

5. Merging – The elements of two arrays are merged into a single one.

6. Sorting – Arranging elements in a specific order either in ascending or in descending

order.

Example Programs:

1. C Program for deletion of an element from the specified location

 from an Array

#include<stdio.h>

int main() {

int arr[30], num, i, loc;

printf("\nEnter no of

elements:"); scanf("%d", &num);

//Read elements in an array

printf("\nEnter %d elements :",

num); for (i = 0; i < num; i++) {

scanf("%d", &arr[i]); }

//Read the location

printf("\nLocation of the element to be deleted

:"); scanf("%d", &loc);

/* loop for the deletion */

while (loc < num) {

arr[loc - 1] =

arr[loc]; loc++; }

num--; // No of elements reduced by 1

//Print Array

for (i = 0; i < num; i++)

printf("\n %d", arr[i]);

return (0);

}

Output:

Enter no of elements: 5

Enter 5 elements: 3 4 1 7 8

Location of the element to be deleted: 3

3 4 7 8

2. C Program to delete duplicate elements from an array

int main() {

int arr[20], i, j, k, size;

printf("\nEnter array size:

"); scanf("%d", &size);

printf("\nAccept Numbers: ");

for (i = 0; i < size; i++)

scanf("%d", &arr[i]);

printf("\nArray with Unique list:

"); for (i = 0; i < size; i++) {

for (j = i + 1; j < size;) {

if (arr[j] == arr[i]) {

for (k = j; k < size; k++) {

arr[k] = arr[k + 1]; } size-

-; }

else

j++; }

}

for (i = 0; i < size; i++) {

printf("%d ", arr[i]); }

return (0);

}

Output:

Enter array size: 5

Accept Numbers: 1 3 4 5 3

Array with Unique list: 1 3 4 5

3. C Program to insert an element in an array

#include<stdio.h>

int main() {

int arr[30], element, num, i,

location; printf("\nEnter no of

elements:"); scanf("%d", &num);

for (i = 0; i < num; i++)

{ scanf("%d", &arr[i]); }

printf("\nEnter the element to be

inserted:"); scanf("%d", &element);

printf("\nEnter the location");

scanf("%d", &location);

//Create space at the specified location

for (i = num; i >= location; i--) {

arr[i] = arr[i - 1]; }

num++;

arr[location - 1] = element;

//Print out the result of insertion

for (i = 0; i < num; i++)

printf("n %d",

arr[i]); return (0);

}

Output:

Enter no of elements:

5 1 2 3 4 5

Enter the element to be inserted: 6

Enter the location: 2

1 6 2 3 4 5

4. C Program to search an element in an array

#include<stdio.h>

int main() {

int a[30], ele, num, i;

printf("\nEnter no of elements:");

scanf("%d", &num);

printf("\nEnter the values :");

for (i = 0; i < num; i++) {

scanf("%d", &a[i]); }

//Read the element to be searched

printf("\nEnter the elements to be searched

:"); scanf("%d", &ele);

//Search starts from the zeroth

location i = 0;

while (i < num && ele != a[i])

{ i++; }

//If i < num then Match

found if (i < num) {

printf("Number found at the location = %d", i + 1);

}

else {

printf("Number not found");

} return (0);

}

Output:

Enter no of elements:

5 11 22 33 44 55

Enter the elements to be searched:

44 Number found at the location = 4

5. C Program to copy all elements of an array into another array

#include<stdio.h>

int main() {

int arr1[30], arr2[30], i, num;

printf("\nEnter no of

elements:"); scanf("%d", &num);

//Accepting values into Array

printf("\nEnter the values:");

for (i = 0; i < num; i++) {

scanf("%d", &arr1[i]); }

/* Copying data from array 'a' to array 'b */

for (i = 0; i < num; i++) {

arr2[i] = arr1[i]; }

//Printing of all elements of array

printf("The copied array is:");

for (i = 0; i < num; i++)

printf("\narr2[%d] = %d", i, arr2[i]);

return (0);

}

Output:

Enter no of elements: 5

Enter the values: 11 22 33 44 55

The copied array is: 11 22 33 44 55

6. C program to merge two arrays in C Programming

#include<stdio.h>

int main() {

int arr1[30], arr2[30],

res[60]; int i, j, k, n1, n2;

printf("\nEnter no of elements in 1st

array:"); scanf("%d", &n1);

for (i = 0; i < n1; i++) {

scanf("%d", &arr1[i]); }

printf("\nEnter no of elements in 2nd

array:"); scanf("%d", &n2);

for (i = 0; i < n2; i++)

{ scanf("%d", &arr2[i]);

} i = 0;

j = 0;

k = 0;

// Merging starts

while (i < n1 && j < n2)

{ if (arr1[i] <= arr2[j])

{ res[k] = arr1[i];

i++;

k++; }

else {

res[k] =

arr2[j]; k++;

j++; }

}

/*Some elements in array 'arr1' are still remaining where as the array

'arr2' is exhausted*/

while (i < n1) {

res[k] =

arr1[i]; i++;

k++; }

/*Some elements in array 'arr2' are still remaining where as the array

'arr1' is exhausted */

while (j < n2) {

res[k] =

arr2[j]; k++;

j++; }

//Displaying elements of array

'res' printf("\nMerged array is:");

for (i = 0; i < n1 + n2;

i++) printf("%d ", res[i]);

return (0);

}

Enter no of elements in 1st array:

4 11 22 33 44

Enter no of elements in 2nd array: 3

10 40 80

Merged array is: 10 11 22 33 40 44 80

 Bisection Method

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

float f,x,a,b;

printf("Enter the value of a ::");

scanf("%f",&a);

printf("Enter the value of b ::");

scanf("%f",&b);

do

{

x = (a+b)/2.00;

f = (x*x*x)-(x)-1; // any equation can be put here

if (f>0)

b=x;

else

a=x;

printf("\n\n\ta = %f b = %f f = %f",a,b,f);

}while(b-a>0.0001);

printf("\n\t The Root of the equation is %f",x);

getch();

}

/* Output */

Newton Raphson Method In C Programming

#include<conio.h>

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

int user_power,i=0,cnt=0,flag=0;

int coef[10]={0};

float x1=0,x2=0,t=0;

float fx1=0,fdx1=0;

void main()

{

 clrscr();

 printf("\n\n\t\t\t PROGRAM FOR NEWTON RAPHSON GENERAL");

 printf("\n\n\n\tENTER THE TOTAL NO. OF POWER:::: ");

 scanf("%d",&user_power);

 for(i=0;i<=user_power;i++)

 {

 printf("\n\t x^%d::",i);

 scanf("%d",&coef[i]);

 }

 printf("\n");

 printf("\n\t THE POLYNOMIAL IS ::: ");

 for(i=user_power;i>=0;i--)//printing coeff.

 {

 printf(" %dx^%d",coef[i],i);

 }

 printf("\n\tINTIAL X1---->");

 scanf("%f",&x1);

 printf("\n **");

 printf("\n ITERATION X1 FX1 F'X1 ");

 printf("\n

**");

 do

 {

 cnt++;

 fx1=fdx1=0;

 for(i=user_power;i>=1;i--)

 {

 fx1+=coef[i] * (pow(x1,i)) ;

 }

 fx1+=coef[0];

 for(i=user_power;i>=0;i--)

 {

 fdx1+=coef[i]* (i*pow(x1,(i-1)));

 }

 t=x2;

 x2=(x1-(fx1/fdx1));

 x1=x2;

 printf("\n %d %.3f %.3f %.3f ",cnt,x2,fx1,fdx1);

 }while((fabs(t - x1))>=0.0001);

 printf("\n\t THE ROOT OF EQUATION IS %f",x2);

 getch();

}

/*******************************OUTPUT*****************************

******/

 Lagrange's Interpolation Method For Finding F(X) In C Programming

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 float x[10],y[10],temp=1,f[10],sum,p;

 int i,n,j,k=0,c;

 clrscr();

 printf("\nhow many record you will be enter: ");

 scanf("%d",&n);

 for(i=0; i<n; i++)

 {

 printf("\n\nenter the value of x%d: ",i);

 scanf("%f",&x[i]);

 printf("\n\nenter the value of f(x%d): ",i);

 scanf("%f",&y[i]);

 }

 printf("\n\nEnter X for finding f(x): ");

 scanf("%f",&p);

 for(i=0;i<n;i++)

 {

 temp = 1;

 k = i;

 for(j=0;j<n;j++)

 {

 if(k==j)

 {

 continue;

 }

 else

 {

 temp = temp * ((p-x[j])/(x[k]-x[j]));

 }

 }

 f[i]=y[i]*temp;

 }

 for(i=0;i<n;i++)

 {

 sum = sum + f[i];

 }

 printf("\n\n f(%.1f) = %f ",p,sum);

 getch();

}

/*OUTPUT

Code for SIMPSON'S 1/3 RULE in C Programming

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 float x[10],y[10],sum=0,h,temp;

 int i,n,j,k=0;

 float fact(int);

 clrscr();

 printf("\nhow many record you will be enter: ");

 scanf("%d",&n);

 for(i=0; i<n; i++)

 {

 printf("\n\nenter the value of x%d: ",i);

 scanf("%f",&x[i]);

 printf("\n\nenter the value of f(x%d): ",i);

 scanf("%f",&y[i]);

 }

 h=x[1]-x[0];

 n=n-1;

 sum = sum + y[0];

 for(i=1;i<n;i++)

 {

 if(k==0)

 {

 sum = sum + 4 * y[i];

 k=1;

 }

 else

 {

 sum = sum + 2 * y[i];

 k=0;

 }

 }

 sum = sum + y[i];

 sum = sum * (h/3);

 printf("\n\n I = %f ",sum);

getch();

}

/*_OUTPUT______________

how many record you will be enter: 5

enter the value of x0: 0

enter the value of f(x0): 1

enter the value of x1: 0.25

enter the value of f(x1): 0.8

enter the value of x2: 0.5

enter the value of f(x2): 0.6667

enter the value of x3: 0.75

enter the value of f(x3): 0.5714

enter the value of x4: 1

enter the value of f(x4): 0.5

 I = 0.693250

TRAPEZOIDAL RULE in C Programming

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

 float x[10],y[10],sum=0,h,temp;

 int i,n,j,k=0;

 float fact(int);

 clrscr();

 printf("\nhow many record you will be enter: ");

 scanf("%d",&n);

 for(i=0; i<n; i++)

 {

 printf("\n\nenter the value of x%d: ",i);

 scanf("%f",&x[i]);

 printf("\n\nenter the value of f(x%d): ",i);

 scanf("%f",&y[i]);

 }

 h=x[1]-x[0];

 n=n-1;

 for(i=0;i<n;i++)

 {

 if(k==0)

 {

 sum = sum + y[i];

 k=1;

 }

 else

 sum = sum + 2 * y[i];

 }

 sum = sum + y[i];

 sum = sum * (h/2);

 printf("\n\n I = %f ",sum);

getch();

}

/*

 OUT PUT

how many record you will be enter: 6

enter the value of x0: 7.47

enter the value of f(x0): 1.93

enter the value of x1: 7.48

enter the value of f(x1): 1.95

enter the value of x2: 7.49

enter the value of f(x2): 1.98

enter the value of x3: 7.50

enter the value of f(x3): 2.01

enter the value of x4: 7.51

enter the value of f(x4): 2.03

enter the value of x5: 7.52

enter the value of f(x5): 2.06

 I = 0.099652

Euler’s Method in C:

#include<stdio.h>

float fun(float x,float y)

{

 float f;

 f=x+y;

 return f;

}

main()

{

 float a,b,x,y,h,t,k;

 printf("\nEnter x0,y0,h,xn: ");

 scanf("%f%f%f%f",&a,&b,&h,&t);

 x=a;

 y=b;

 printf("\n x\t y\n");

 while(x<=t)

 {

 k=h*fun(x,y);

 y=y+k;

 x=x+h;

 printf("%0.3f\t%0.3f\n",x,y);

 }

}

 1

SPH5107 – NUMERICAL METHODS AND COMPUTER PROGRAMMING

UNIT - 5

NEED FOR OBJECT ORIENTED PROGRAM:

Procedure Oriented Programming (POP)

 The high level languages, such as BASIC, COBOL, C, FORTRAN are commonly
known as Procedure Oriented Programming.

 Using this approach, the problem is viewed in sequence of things to be done, like
reading, processing and displaying or printing. To carry out these tasks the function
concepts must be used.

♦ This concept basically consists of number of statements and these statements are
organized or grouped into functions.

♦ While developing these functions the programmer must care about the data that is
being used in various functions.

♦ A multi-function program, the data must be declared as global, so that data can be
accessed by all the functions within the program & each function can also have its
own data called local data.

♦ Th global data can be accessed anywhere in the program. In large program it is very
difficult to identify what data is accessed by which function. In this case we must
revised about the external data and as well as the functions that access the global data.
At this situation there is so many chances for an error.

OBJECT ORIENTED PROGRAMMING (OOP)

Main Program

Fun 1 Fun 2 Fun 3

Fun 2 Fun 2

Global Data Global Data Global Data

Fun 2 Fun 3 Fun 4 Fun 1

 2

♦ This programming approach is developed to reduce the some of the drawbacks
encountered in the Procedure Oriented Programming Approach.

♦ The OO Programming approach treats data as critical element and does not allow the
data to freely around the program.

♦ It bundles the data more closely to the functions that operate on it; it also protects data
from the accidental modification from outside the function.

♦ The object oriented programming approach divides the program into number of
entities called objects and builds the data and functions that operates on data around
the objects.

♦ The data of an object can only access by the functions associated with that object.

Difference between C & C++

S.No Procedure oriented Programming (C) Object Oriented Programming (C++)

1.

2.

3.

4.

5.

Programs are divided into smaller
sub-programs known as functions

Here global data is shared by most of
the functions

It is a Top-Down Approach

Data cannot be secured and available
to all the function

Here, the reusability is not possible;
hence redundant code cannot be
avoided.

Programs are divided into objects &
classes

Objects are easily communicated with
each other through function.

It is a Bottom-Up Approach

Data can be secured and can be
available in the class in which it is
declared

Here, we can reuse the existing one
using the Inheritance concept

Object X

Data

Functions

Object Y

Data

Functions

Object 2

Data

Functions

Communication

Communication
Communication

 3

Benefits or Advantages of OOPS

♦ The complexity of software can be managed easily.

♦ Data hiding concept help the programmer to build secure programs

♦ Through the class concept we can define the user defined data type

♦ The inheritance concept can be used to eliminate redundant code

♦ The message-passing concept helps the programmer to communicate between
different objects.

♦ New data and functions can be easily added whenever necessary.

♦ OOPS ties data elements more closely to the functions that operates on.

Basics of C++ Programming

 C++ was developed by BJARNE STROUSSTRUP at AT&T BELL Laboratories
in Murry Hill, USA in early 1980’s.

 Strousstrup combines the features of ‘C’ language and ‘SIMULA67’ to create
more powerful language that support OOPS concepts, and that language was named as
“C with CLASSES”. In late 1983, the name got changed to C++.

 The idea of C++ comes from ‘C’ language increment operator (++) means more
additions.

 C++ is the superset of ‘C’ language, most of the ‘C’ language features can also
applied to C++, but the object oriented features (Classes, Inheritance, Polymorphism,
Overloading) makes the C++ truly as Object Oriented Programming language.

Structure of C++ Program

Include files provides instructions to the compiler to link functions from the system
library.
 Eg: #include <iostream.h>

Include files

Class Definition

Member function Definitions

Main function Program

 4

#include – Preprocessor Directive
iostream.h – Header File

♦ A class is a way to bind and its associated functions together. It is a user defined
datatype. It must be declared at class declaration part.

♦ Member function definition describes how the class functions are implemented. This
must be the next part of the C++ program.

♦ Finally main program part, which begins program execution.

main()
{

}

 Program execution begins at the opening brace and ends at the closing brace. The
closing brace of the main function is the logical and of the program.

Input / Output statements

Input Stream

Syntax:
 cin >> var1 >> var2 >>;

cin – Keyword, it is an object, predefined in C++ to correspond to the standard input
stream.
>> - is the extraction or get from operator
Extraction operation (>>) takes the value from the stream object on its left and places it
in the variable on its right.

Eg:
 cin>>x;
 cin>>a>>b>>c;

Output Stream:

Syntax:

 cout<<var1<<var2;

cout - object of standard output stream
<< - is called the insertion or put to operator

 It directs the contents of the variable on its right to the object on its left.

Output stream can be used to display messages on output screen.

Eg:
 cout<<a<<b;

 5

 cout<<”value of x is”<<x;
 cout<<”Value of x is”<<x<<”less than”<<y;

Tokens

 The smallest individual units in a program are known as tokens.
C++ has the following tokens

♦ Keywords

♦ Identifiers

♦ Constants

♦ Strings

♦ Operators

Keywords

• It has a predefined meaning and cannot be changed by the user

• Keywords cannot be used as names for the program variables.

Keywords supported by C++ are:

asm double new switch
auto else operator template
break enum private this
case extern protected throw
catch float public try
char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while

The specific C++ Keywords

There are several keywords specific to C++

 asn new template
 catch operator this
 class private throw
 delete protected try
 friend public virtual
 inline

Identifiers

 Identifiers refer to the names of variables, functions, arrays, classes, etc. created
by the programmer.

 6

Rules for naming these identifiers:

1. Only alphabetic characters, digits and underscores are permitted.
2. The name cannot start with a digit.
3. Uppercase and lowercase letters are distinct.
4. A declared keyword cannot be used as a variable name.

(i) Variables:

 It is an entity whose value can be changed during program execution and is
known to the program by a name.

 A variable can hold only one value at a time during program execution.
Eg:

Allowable variable names Invalid names
i 1_B – 1st letter must be alphabet
sum $xy - 1st letter must be alphabet
A_B x+b - special symbol ‘+’ not allowed
A-1B

Declaration of Variables

Syntax
 datatype variablename;

Datatype

 It is the type of data, that is going to be processed within the program

C++ datatype

User Defined type
Eg:
structure
Union
Class
enumeration

Built-in type Defined type
Eg:
array
function
pointer
reference

Integral type
Eg:
int
char

Floating type
Eg:
float
double

void

 7

Eg:

 int x;
 float y,z;
 char a;

A variable can be declared anywhere in the program before its first use.

Constants

 A quantity that does not change is known as constants.

Types of constants:

• Integer constants - Eg: 123, 25 – without decimal point

• Character constants - Eg: ‘A’, ‘B’, ‘*’, ‘1’

• Real constants - Eg: 12.3, 2.5 - with decimal point

Strings

 A sequence of characters is called string. String constants are enclosed in double
quotes as follows

 “Hello”

 Operators

 An operator is a symbol that tells the computer to perform certain mathematical or
logical manipulations.

Types of Operators

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators
5. Increment & decrement Operators
6. Conditional Operators
7. Bitwise Operators
8. Special Operators
9. Manipulators
10. Memory allocate / delete Operators

An expression is a combination of variables, constants and operators written according to
the syntax of the language.

 8

Arithmetic Operators

C++ has both unary & binary arithmetic operators.

• Unary operators are those, which operate on a single operand.

• Whereas, binary operators on two operands +, -, *, /, %

Examples for Unary Operators:
1. int x = 10;
 y = -x; (The value of x after negation is assigned to y ie. y becomes –5.)
2. int x = 5;

sum = -x;

Examples for Unary Operators:

1. int x = 16, y=5;

x+y = 21; (result of the arithmetic expression)
x-y = 11;
x*y=80;

/ - Division Operator

Eg:

x = 10, y = 3;
x/y=3; (The result is truncated, the decimal part is discarded.)

% - Modulo Division

 The result is the remainder of the integer division only applicable for integer
values.

 x=11, y = 2
 x%y = 1

Relational Operators

• A relational operator is used to make comparison between two expressions.

• All relational operators are binary and require two operands.
<, <=, >, >=, ++, !=

Relational Expression

 Expression1 relational operator Expression2

Expression1 & 2 – may be either constants or variables or arithmetic expression.

Eg:

 9

a < b (Compares its left hand side operand with its right hand side operand)
10 = = 15
a != b

• An relational expression is always return either zero or 1, after evaluation.

Eg: (a+b) <= (c+d)

arithmetic expression
Here relational operator compares the relation between arithmetic expressions.

Logical Operators
 && - Logical AND
 !! - Logical OR
 ! - Logical NOT
Logical operators are used when we want to test more than one condition and make
decisions.

Eg: (a<b) && (x= =10)

An expression of this kind, which combines two or more relational expressions, is termed
as a logical expression.

Like simple relational expressions, a logical expression also yields a value of one or zero,
according to the truth table.

Operand 1 Operand 2 AMD OR NOT OP1 NOT OP2

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 1
1 1 1 1 0 0

Eg:
((10 > 5) && (3 < 13))

 T && T

 T

((11 <3) !! (10!= 5))

 F !! T

 T

 10

Assignment Operators

 Assignment operators are used to assign the result of an expression to a variable.

Eg: a = 10;
 a = a + b;
 x = y;

OP = is called as shorthand assignment operator.

VOP = exp
is equivalent to v = v op exp
Eg: x+=y; x = x+y;

Increment & Decrement Operators

• Increment ++, this operator adds 1 to the operand

• Decrement --, this operator subtracts 1 from the operand

• Both are unary operators

Eg:
 m = 5;
 y = ++m; (adds 1 to m value)
 x = --m; (Subtracts 1 from the value of m)

Types

• Pre Increment / Decrement OP:

• Post Increment / Decrement OP:

If the operator precedes the operand, it is called pre increment or pre decrement.
Eg: ++i, --i;

If the operator follows the operand, it is called post increment or post decrement.
Eg: ++i, --i;

In the pre Increment / Decrement the operand will be altered in value before it is
utilized for its purpose within the program.
Eg: x = 10;
 Y = ++x;

• 1st x value is getting incremented with 1.

• Then the incremented value is assigned to y.

In the post Increment / Decrement the value of the operand will be altered after it is
utilized.
Eg: y = 11;
 x = y++;

Variable operator = operand

 11

• 1st x value is getting assigned to x & then the value of y is getting increased.

Conditional Operator

? :

General Form is
 Conditional exp ? exp 1 : exp 2;
Conditional exp - either relational or logical expression is used.
Exp1 & exp 2 : are may be either a variable or any statement.

Eg:
 (a>b)?a:b;

• Conditional expression is evaluated first.

• If the result is ‘1’ is true, then expression1 is evaluated.

• If the result is zero, then expression2 is evaluated.

Eg: lar = (10>5)?10:5;

Bitwise Operators - Used to perform operations in bit level

Operators used:

 & - Bitwise AND
 | - Bitwise OR
 ^ - Exclusive OR
 << - Left shift
 >> - Right shift
 ~ - One’s complement

Special Operators

• sizeof

• comma(,)

• size of operators returns the size the variable occupied from system memory.
Eg:
 var = sizeof(int)
 cout<<var; Ans: 2

x = size of (float);
 cout << x; Ans: 4
 int y;
 x = sizeof (y);
 cout<<y; Ans: 2

Precedence of Operators

 12

Name Operators Associatively

Unary
Operators

-,++,--,!, sizeof R� L

Mul, div &
mod

*, /, % L� R

Add, Sub +, - L� R

Relational <. <=, >, >= L� R

Equality = =, != L� R

Logical AND && L� R

Logical OR || L� R

Example

 x =10, y = 2m z = 10.5
 a = (x+y) – (x/y)*z;
 = 12 – 5 * 10.5;
 = 12 – 52.5;
 a = -42.5

Manipulators

 Manipulators are operators used to format the data display. The commonly used
manipulators are endl, setw.

endl manipulators

 It is used in output statement causes a line feed to be inserted, it has the same
effect as using the newline character “\n” in ‘C’ language.

#include <iostream.h>
main()
{
 int a=10, b=20;
 cout << “C++ language” << endl;
 cout << “A value: “ << a << endl;
 cout << “B value:” << b << endl;
}

O/P:

C++ language
A value: 10
B value: 20

 13

Setw Manipulator

 The setw manipulator is used or specify the field width for printing, the content of
the variable.

Syntax: setw(width);
where width specifies the field width.

int a = 10;
cout << “ A value” << setw(5) << a << endl;

Output:
 A value 10
Note: Remaining operators will be discussed in 4th unit.

Symbolic Constant

 Symbolic constants are constants to which symbolic names are associated for the
purpose of readability and ease of handling.

• #define preprocessor directive

• const keyword

• enumerated data type

#define preprocessor directive

 It associates a constant value to a symbol and is visible throughout the function in
which it is defined.

Syntax:

 #define symbol name constant value

Eg

 #define max_value 100
 #define pi 3.14
The value of symbolic constant will not change throughout the program.

const keyword

Syntax:
 const datatype var = constant;

Eg: const int max = 100;
 main()
 {
 char x[max];

 14

 }
const size = 10;

Allowable statement, default symbolic constant type is integer. Here size is of type int.

Reference Variable:

A reference variable provides an alias (alternative name) for a previously defined
variable.

For example, if we make the variable sum a reference to the variable total, then

sum & total can be used interchangeably to represent that variable.

A reference variable is created as follows:

 datatype & ref_name = var_name;
Eg:
 float total = 100;
 float & sum = total;
 cout << sum << total;
Both the variables refer to the same data object in the memory i.e.

total, sum

Type Conversion:

(i) Implicit type conversion
(ii) Explicit type conversion

Implicit type conversion

 It will be done by the compiler, by following the rule of lower type converted to
higher type.

Eg: int y = 10;
 float z = 10.5,x;
 x = y+z; (y is converted to float type by compiler)
 x = 10.0 + 10.5
 x= 20.5 (result var. x is must be float)

Explicit type conversion

 It will be performed by the programmer. According to the need of this in the
program.

Syntax: datatype (var)

100

 15

Eg: int y = 10;
 float z = 2.5;(resultant type of y+z is float, that is converted explicitly to int type)
 x = int (y + z);
Now the result is of int type.

 CONTROL INSTRUCTIONS

• In real world, several activities are sequenced or repeated based on some decisions.

• Constructing control instructions can program such activities.

Types of control Instruction

1. Sequential Control Instruction
2. Selection Control Instruction
3. Loop Control Instruction
4. Case Control Instruction

 SEQUENTIAL CONTROL INSTRUCTION

• Here instructions are executed sequential manner

• That is the same order in which they appear in the program.

• By default the instructions in a program are executed sequentially.

Example:

#include<iostream.h>
void main()
{
int a,b;
cout<<”Enter the value of a&b”:
cin>>a>>b;
int x=a+b;
cout<<”Sum of a & b is”<<x;
}

RUN
 Enter the value of a& b

10 5
Sum of a & b is 15

In the above program instructions are executed one after another, in which they appear in
the program.

 SELECTION CONTROL INSTRUCTION

• Many times, we want a set of instructions to be executed in one situation, and an
entirely different set of instruction to be executed in another situation.

 16

• This kind of situation is dealt in C++ by constructing selection control instructions.

The following Statements are supporting to construct selection control instructions:
1. simple if statement
2. if-else statement
3. Nested if- else statement
4. Else-if statement

1. Simple if statement(one way decision stmt):

It is a powerful decision making statement, which is used to control the sequence
of the execution of statements.

 Syntax:
 If(test expression)
 {
 statement Block;
 }
 statement-x;
Execution Procedure:
 The statement Block may be a single statement or a group of statements. If the
test expression is true, the statement block is executed; otherwise the statement block will
be skipped and the execution will jump to the statement x. Remember when the condition
is true both the statement block and statement x are executed in sequence.

Example:

 if(category ==”sports”)
 {
 marks = marks + bouns_marks;
 }
 cout<<marks;

The program tests the type of category of the student. If the student belongs to the
SPORTS category, then additional bouns_marks are added to his marks befor they are
printed. For others, bouns_marks are not added.

2. The if-else statement (two way decision stmt)

It performs some action even when the test expression fails.

Syntax:
 if(test expression)
 {
 true block statements;
 }
 else
 {
 false block statements;

 17

 {
 statement x;

Execution Procedure:

 If the test expression is true, then the true block statement, immediately
following the statement is executed; otherwise, the false block statements are
executed. In either case, either true or false block will be executed, not both. In
both the cases, the control is transferred subsequently to statement x.

Example:
 # include<iostream.h>
 void main()
 {
 int age;
 cout<<”Enter your age”;
 cin>>age;
 if((age>12)&&(age<20))
 {
 cout<<”you are a teen aged person”:
 }
 else
 {
 cout<<”You are not a teen aged person”;
 }
 cout<<”Program terminated”;
 }

Run1

Enter your age
16
You are a teen aged person
Program Terminated

Run 2

Enter your age
23
You are not teen aged person
Program Terminated

3. Nesting of if else statements(Multi way decision stmt)

When a series of decisions involved, we may have to use more than on if – else
statement is nested form as follows:

if(test condition 1)
{
 if(test condition 2)

 18

 {
 statement 1;
 }
 else
 {
 statement 2;
 }
}
else
{
 statement 3
}
Statement x;

Execution Procedure:
If the condition –1 is false, the statement 3 will be executed; otherwise it

continues to perform the second test. If the condition 2 is true, the statement –1 will bee
evaluated; otherwise statement 2 will be executed and then the control, is transferred to
statement x.

Example: Program to find largest of 3 nos

#Include<iostream.h>
void main()
{
int a,b,c;
cout<<” three nos”;
cin>>a>>b>>c;

If(a>b)
 {
 if(a>c)
 {
 cout<<”a is greatest”;
 }
 else
 {
 cout<<”c is greatest”;
 }
 }
 else
 {
 if(b>c)
 {
 cout<<”b is greatest”;
 }
 else
 {

 19

 cout<<”c is greatest”;
 }
 }

Run:
Enter 3 nos:
24 56 34
b is greatest

4. else – if statement

There is another way of putting ifs together when multipath decisions are involved. A
multipath decision is a chain of ifs in which the statement associated with each else is
an if.

It takes the following
general form:

 if(test condition1)
 {
 statement1;
 }
 else if (test condition2)

 {
 statement 2;
 }
 else if(test condition3)
 {
 statement 3;
 }
 else
 { statement 4;

 }
 statement x;

Execution Procedure:

This construct is known as else if ladder. The condition evaluated from the top,

downwards. As soon as the true condition is found, the statement associated with it is
executed and the control is transferred to the statement x (skipping the rest of the ladder).
When all the conditions become false, then the final else containing the statement will be
executed.

Let us consider an example of grading the student in an academic institution. The grading
is done according to the following rules:
 Average marks Grade

80-100 Honours

 20

60-79 First Division
50- 69 Second Division
40- 49 Third Division
 0-39 Fail

This grading can be done using the else if ladder as follows:

#include<iostream.h>
void main()
{
 int marks;
 cout<<”enter ur marks”
 cin>>marks;
 If(marks>79)
 Grade=”Honours”;
 else if(marks>59)
 Grade=”First Division”;
 else if(marks>49)
 Grade=”Second Division”;
 else if(marks>39)
 Grade=”Third Division”;
 else
 Grade=”Fail”;

 cout<<Grade;
}

Run
Enter ur mark
67
First Division

 LOOP CONTROL INSTRUCTIONS

• Loop causes a section of code to be executed repeatedly until a termination condition
is met.

• A program loop therefore consists of two segments, one known as the body of the
loop and the other known as the control statement.

• Control statement tests certain conditions and then directs the repeated execution of
the statements contained in the body of the loop.

The following Statements are supporting to construct loop control instructions:

1. while statement
2. do - while statement
3. for statement

 21

while statement(Entry controlled Loop)
While is used when the number of iterations to be performed is not known in
advance.
Syntax:

 while(test condition)
 {
 body of the loop
 }

Statement x;

Execution Procedure:
 The test condition is evaluated and if the condition is true, then the body of the
loop is executed. After execution of the body, the test condition is once again evaluated
and if it is true, the body is executed once again. This process of repeated execution of
the body continues until the test condition finally becomes false and the control is
transferred out of the loop.

Example: Display 1----N numbers

#include<iostream.h>
void main()
{
int n;
cout<<”how many integers to be displayed”;
cin>>n;
int I=1;
while(I<=n)
{
 cout<<I<<endl;
 I++;
}
cout<<”Program Terminated”;
}

Run
How many integers to be displayed:
5
1
2
3
4
5
Program Terminated

do-while statement (Exit controlled loop stmt)

• Some times, it is desirable to execute the body of a while loop only once,, even if the
test expression evaluates to false during the first iteration.

 22

• This requires testing of termination expression at the end of the loop rather than the
beginning as in the while loops.

• So, the do- while loop is called bottom tested loop.

• The loop is executed as long as the test condition remains true.
Syntax:
 do
 {
 body of the loop;
 } while(test condition);
 statement x;

Execution Procedure:
 On reaching the do statement, the program proceeds to evaluate the body of the
loop first. At the end of the loop, the test condition in the while statement is evaluated. I
the condition is true, the program continues to evaluate the body of the loop once again.
This process continues as long as the condition is true.
 When the condition becomes false, the loop will be terminated and the control
goes to the statement that appears immediately after the while statement.

Example: Display 1----N numbers

#include<iostream.h>
void main()
{
int n;
cout<<”how many integers to be displayed”;
cin>>n;
int I=1;
do
{
 cout<<I<<endl;
 I++;
}while(I<=n);
cout<<”Program Terminated”;
}

Run
How many integers to be displayed:
5
1
2
3
4
5
Program Terminated

for loop statement

For loop is useful while executing a statement a fixed number of times.

 23

For statement is the compact way to express a loop.

Syntax
for(initialization; condition; increment/decrement)
{
 Body of the loop;
}
statement x;

Execution Procedure:
 The Initialization part is executed only once. Next the test condition is evaluated.
If the test evaluates to false, then the next statement after the for loop is executed. If the
test expression evaluates to true, then body of the loop is executed. After executing the
body of the loop, the increment/ decrement part is executed. The test is evaluated again
and the whole process is repeated as long as the test expression evaluates to true.

Example: display numbers 1…..n using for loop
#include<iostream.h>
void main()
{
int n;
cout<<”how many integers to be displayed”;
cin>>n;
int I;
for(I=1;I<=n;I++)
{
 cout<<I<<endl;
}
cout<<”Program Terminated”;
}

Run
How many integers to be displayed:
5
1
2
3
4
5
Program Terminated

 JUMPING STATEMENTS

BREAK Statement

• We often come across situations where we want to jump out of a loop instantly,
without waiting to get back to the conditional test.

• The keyword break allows us to do this.

 24

• It is used to terminate the loop. When the keyword break is used inside any c++ loop,
control automatically transferred to the first statement after the loop.

• A break usually associated with if statement.

• Syntax : break;

Example:

#include<iostream.h>
void main()
{
int I;
for(I=1;I<=10;I++)
{
 if(I<=6)
 break;
 cout<<I;
}
}

Output: 1 2 3 4 5

Here the cout statement print value of I upto 5 when I reaches 6 the if statement is true.
So the break statement transfer the control to the outside of the for loop.

Example: to determine whether a no is prime or not.

 // a prime number which is divisible only by 1 and itself.

#include<iostream.h>
void main()
{
int n;
cout<<”Enter a number”;
cin>>num;

for(I=2;I<num;I++)

{
 if(num%I==0)

{
 cout<<” number is not prime”;

break;
 }
}
if(num==I)
{
 cout<<”Prime number”;
}

 25

}

• In this progam the moment num%I turns out to be 0, num is exactly divisible by I, the
message “not prime no” is printed and the control breaks out of the while loop.

• Why does the program require the if statement after the while loop at all ?
i. it jumped out because the number proved to be not prime.
ii. The loop causes to an end because the value of I became equal to num.

• When the loop terminates in the second case, it means that there was no number
between 2 & num-1 that would exactly divide num. That is num is indeed a prime.

• If this is true, the program should print out the message “Prime number”.

CONTINUE Statement

• In some programming situation we want to take the control to the beginning of the
loop, by passing the statement inside the loop, which have not yet been executed.

• The keyword continue allows us to do this. When the keyword continue is
encountered inside a c++ loop, control automatically passes to the beginning of the
loop

• Continue statement usually associated with if statement.

• Syntax: continue;

Example: sum of the +ve numbers(2, -3,4,-2,9,5)
int Sum=0;
for(int I=0;I<10;I++)
{
 cin>>no;
 if(no<0)
 continue;
 sum=sum+no;
}
cout<<sum;

In the above program when the entered number is less than 0, then it is –ve number, so
move the control to read the next number without performing summation.

Unconditional statement

• goto is the unconditional statement. Which is used to move the control anywhere
inside the program.

• Goto require a lable in order to identify the place where the control is to be moved. A
label is a valid variable name & a colon must follow it.

• The label is placed immediately before the statement where the control is to be
transferred.

• General form:

goto label; label;
……… statement;

 26

……… ………
label: Goto label;
statement; ………

the label can be anywhere in the program either befor or after the goto statement.

Example:

main()
{
int x,y;
read:
cin>>x;
if(x<0)
 goto read;
y=x*x;
cout<<x<<y;
}

CASE CONTROL INSTRUCTION

• The control statement, which allows user to make a decision from the number of
choices, is called a switch case statement.

• It allows user to execute a group of statements from several available group of
statements.

• Syntax:
switch(expression)
{
 case value1:
 block1;
 break;
 case value2:
 block1;
 break;
 case value3:
 block1;
 break;
 ………
 ………
 default:
 deafult block;
}
statement x;

Rules to be followed to construct case control instructions

1. The expression in switch statement must be an integer value or a character constant.
2. No case values are identical
3. Each case block must end with break statement.

 27

4. The case keyword must terminate with colon(:)
5. Default is optional.

Execution Procedure:

• When switch is executed, the value of the expression is successively compared
against the values value1, value2 –etc.

• If a case is found whose value matches with the value of the expression, then the
block of statements that follows the case are executed.

• The break statement at the end of each block signals the end of a particular case and
causes an exit from the switch statement transferring the control to the statement x
following the switch.

• The default is optional case, when present, it will be executed if the value of the
expression does not match with any case values.

• If not present action takes place if all matches fails and the control goes to the
statement x.

Example: Read a number between 0-9 and print it in words.

cout<<”enter any number between 0-9”;
cin>>num;
switch(num)
{
 case 0:
 cout<<”ZERO”;
 break;

 case 1:
 cout<<”ONE”;
 break;
 case 2:
 cout<<”TWO”;
 break;
 …………
 …………
 deault:
 cout<<”Num is not within 0-9”;
}

RUN
Enter a no between 0-9
9
NINE

The input value matches with case 9, so the corresponding block is getting executed.
Remaining cases are all skipped from execution.

 28

 ARRAYS

What are arrays?

For understanding the arrays properly, let us consider the following program.
main()
{
 int x;
 x = 5;
 x = 10;

cout<<x;
}

• This program will print the value of x as 10. Why so? Because when a value 10 is
assigned to x the earlier value of x, i.e., 5, is lost. These ordinary variables are
capable of holding only one value at a time.

• However, there are situations in which we want to store more than one value at a time
in a single variable.

• For example, suppose we wish to arrange the percentage of marks obtained by 100
students in ascending order.

• In such a case we have two options to store these marks in memory:
(i) Construct 100 variables to store percentage of marks obtained by 100 different

student i.e., each variable containing one student’s marks.
(ii) Construct one variable capable of storing or holding all the hundred values.

• The second one is better. The reason is it would be much easier to handle one
variable than handling 100 different variables.

• An array is a group of logically related data items of the same data type addressed by
a common name, and all the items are stored in contiguous memory locations.

Array Declaration

Like other normal variables, the array variable must be defined before it use.

Syntax:

Datatype Arrayname[array-size];

Arraysize – indicates the maximum number of elements the array can hold.

Example:

 int marks[100]; // Integer array of size 100
 float salary[25]; //Floating print array of size 25
 char name[50]; //character array of size 50

Accessing Array Elements

 29

• Once an array variable is defined, its element can be accessed by using an index or
position.

Syntax:

Arrayname[index];

• To access a particular element in the array, specify the array name followed by an
integer constant or variable (array index) enclosed within square braces.

• Array index indicates the element of the array, which has to be accessed.
Example:

 name[4]; //Accesses the 5th element of the array name.

• Note that, in an array of N elements, the first element is indexed by zero & the last
element of an array is indexed by N-1

• The loop used to read the elements of the array is
for(int i=0; i<5; i++)
{
 cin>>name[i];
}

• The variable i varies from 0 to N-1.

• Note that, the expression age[i] can also be represented as i[age], similarly, the
expression age[3] is equivalent to 3[age].

Array Initialization at Definition (at compile time)

• Arrays can be initialized at the point of their definition as follows:
datatype array-name[size] = {list of values separated by comma};

For instance, the statement,

 int age[5] = {19,21,16,1,50};

• Defines an array of integers of size 5.

• In this case, the 1st element of the array age is initialized with 19, 2nd with 21, and so
on.

• The array size is omitted when the array is initialized during at compile time.
 int age[] = {19,21,16,1,50};

• In such a cases, the compiler assumes the array size to be equal to the number of
elements enclosed within the curly braces.

• Hence, the above statement, size of the array is considered as five.
int age[5] = {19,21,16,1,50};

 (or)
int age[] = {19,21,16,1,50};

Example: Sum of Array Elements
#include<iostream.h>
void main()
{

 30

 int a[10];
 cout<<”Enter the no. of elements, max<10>”;
 cin>>n;
 cout<<”Enter elements”;
 for(int I = 0; I<n; I++)
 {
 cin>>a[I];
 }
 int sum = 0;

for(int I = 0; I<n; I++)
 {
 sum = sum + a[I];
 }
 cout<<”Sum of entered elements”<<sum;
}

Two Dimensional Array

 Matrix is a two dimensional array & two subscripts are required to access each
element.
Declaration:
 datatype Array-name[size1][size2];

 size1 – no. of rows in a matrix.
 size2 – no. of columns in a matrix.
Example:
 int x[3][3];

Representation of 2-D array in memory:

 Matrix is allocated into the memory according to row wise (row by row
allocation).

Example:

A= 1 5
 3 4

Accessing 2-D Array elements:

 The elements of a 2-D array can be accessed by the following statement
 A[i][j]
 i – row number
 j – column number

Initialization of 2-D Array

 31

 A 2-dimenstional array can be initialized during its definition.

datatype matrixname [row size][col size] = {elements of first row, elements of 2nd row…

elements of n-1 row};

Example:

 int a[3][3] = {1,2,3,4,5,6,7,8,9}

or
for more readability each row elements can be grouped:

 int a[3][3] = {{1,2,3},{4,5,6},{7,8,9}};

or
 int a[][3] = {{1,2,3},{4,5,6},{7,8,9}};

Row size can be omitted.

Example: // Read & display a matrix

#include<iostream.h>
void main()
{
 int a[5][5];
 cout<<”Enter row and col value of a matrix max<5>”;
 cin>>r>>c;
 cout<<”Enter elements in a Matrix”;
 for(int i = 0; i<n; i++)
 {
 for(int j = 0; j<n; j++)
 {
 cin>>a[i][j];

}
}

 cout<<”Display of given Matrix”;
for(i = 0; i<n; i++)

 {
 for(int j = 0; j<n; j++)
 {
 cout<<a[i][j]<<setw(5);

}
cout<<endl;
}

}

Run:
Enter row and col value of a matrix max<5>
2 2
Enter elements in a Matrix”;

 32

1 2
2 4
Display of given Matrix
1 2
2 4

 FUNCTIONS

Introduction

• It is difficult to implement a large program even if it is algorithm is available.

• To implement such a program in an easy manner, it should be split into a number
of independent tasks, which can be easily designed, implemented, and managed.

• This process of splitting a large program into small manageable tasks and
designing them independently is called Modular Programming.

• A repeated group of instruction in a program can be organized as a function.

• A function is a set of program statements that can be processed independently.

Advantages

• Reduction in the amount of work and development time.

• Program and function debugging is easier.

• Reduction in size of the program due to code Reusability.

FUNCTION COMPONENTS

• Function declaration or prototype

• Function Definition

• Function call

• Function parameters

• Function return statement

1. Function Prototype or Declaration:
It provides the following information to the compiler

• The name of the function

• The type of the value returned(optional, default is an integer)

• The number and type of the arguments that must be supplied in a
call to the function.

• Syntax:

Return type function_name(argu1,argu2,……argun);

Return type- specifies the data type of the value in the return
statement.
Fun_name- name of the function.
Argu1,argu2…argun – type of argument to be passed from
calling function to the called function

• Examples:

int max(int,int);
It informs the compiler that the function max has 2 arguments of
the type integer. The function max() returns an integer values.

 33

 void max();

It informs the compiler that the function max has no arguments,
max() is not returning any value.
 max();
It informs the compiler that the function max has no arguments.
The function max() returns an integer values.

• In function prototype default return type is integer.
2. Function definition:

The function itself is referred to a function definition.
 Syntax:
 return type function_name(argu1,argu2,……argun) //function declarator
 {

 function body;

 }

• The first line of the function definition is known as function
declarator, and is followed by the function body.

• The function delcarator and declaration must use the same function
name, the number of arguments, the arguments type and the return
type.

• Function definition is allowed to write in a program either above or
below the main ().

• If the function is defined before main (), then function declarator is
optional.

• Example:

int max(int x, int y)

{

 if(x>y)

 return(x);

 else

 return(y);

}

For this function max() definition, it is declaration must be :

 int max(int,int);

3. Function call:

• A function, which gets life only when a call to the function is made.

• A function call specified by the function name followed by the arguments
enclosed in parenthesis and terminated by a semi colon.

• Syntax:

Function_name(argu1,argu2,……argun) ;

• If a function contains a return type the function call is of the following
form:

var= Function_name(argu1,argu2,……argun) ;

• Example:

c=max(a,b);

 34

• Executing the call statement causes the control to be transferred to the first
statement in the function body and after execution of the function body the
control is returned to the statement following the function call.

// Greatest among 2 numbers

#include<iostream.h>

void main()

{

int a,b;

int max(int,int); //function declaration

cout<<”Enter any 2 integers”;

cin>>a>>b;

int c= max(a,b);

cout<<”Greatest is: “<<c;

}

int max(int x,int y)

{

 if (x>y)

 return(x);

 else

 return(y);

}

Run:

Enter any 2 integers

40

35

Greatest is: 40

The max() returns the maximum of the parameters a and b. The return value is
assigned to local variable c in main ().

4. Function Parameters

• The parameters specified in the function call are known as actual

parameters and those specified in the function declarator (definition) are
known as formal parameters

• for example in the main(), the statement c=max(a,b); passes the
parameters(actual parameters) a and b to max().

• The parameters x and y are formal parameters.

• When a function call is made, a one to one correspondence is established
between the actual and the formal parameters.

• The scope of the formal parameters is limited to its function only.

5. Function Return

• Functions can be grouped into two categories:

 35

i. A Function does not have a return value (void function)
ii. Functions that have a return value.
The statements: return(x); and return(y);in function max() are
called function return statements. The caller must be able to
receive the value returned by the function.
In the statement c=max(a,b)
The value returned by the function max() returning a value to the
caller.

Limitation of return

A key limitation of the return statement is that it can be used to return only one item from
a function.

PASSING DATA TO FUNCTIONS

The entity used to convey the message to a function is the function argument. It can be a
numeric constant, a variable, multiple variables, user defined data type, etc.

Passing constants as arguments

 The following program illustrates the passing of a numeric constant as an
argument to a function. This constant argument is assigned to the formal parameter which
is processed in the function body

 // Greatest among 2 numbers

#include<iostream.h>

void main()

{

int a,b;

int max(int,int); //function declaration

int c= max(40,35);

cout<<”Greatest is: “<<c;

}

int max(int x,int y)

{

 if (x>y)

 return(x);

 else

 return(y);

}

Run:

Enter any 2 integers

40

35

Greatest is: 40
In main(), the statement c=max(40,35); invoke the function max with the constants.

 36

Passing variable as arguments:

 Similarly to constants, varables can also be passed as arguments to a function.

 // Greatest among 2 numbers

#include<iostream.h>

void main()

{

int a,b;

int max(int,int); //function declaration

cout<<”enter two integer ”;

cin>>a>>b;

int c= max(a,b);

cout<<”Greatest is: “<<c;

}

int max(int x,int y)

{

 if (x>y)

 return(x);

 else

 return(y);

}

Run:

Enter any 2 integers

40

35

Greatest is: 40
In main(), the statement c=max(a,b); invoke the function max with the values of a & b

PARAMETER PASSING

• Parameter passing is a mechanism for communication of data and information
between the calling function and the called function.

• It can be achieved by either by passing values or address of the variable.

• C++ supports the following 3 types of parameter passing schemes:
1. Pass by Value

2. Pass by Address

3. Pass by Reference

1. Pass by Value

• The default mechanism of parameter passing is called pass by value.

• Pass by value mechanism does not change the contents of the argument
variable in the calling function, even if they are changed in the called
function.

 37

• Because the content of the actual parameter in a calling function is copied
to the formal parameter in the called function.Changes to the parameter
within the function will affect only the copy (formal parameters)

• And will have no effect on the actual argument.

• Example:
#include<iostream.h>
void swap(int x,int y)
{
 int t;
cout<<”value of x& y in swap() before exchange”;
cout<<x<<setw(5)<<y<<endl;
t=x;
x=y;
y=t;
cout<<”value of x& y in swap() after exchange”;
cout<<x<<setw(5)<<y<<endl;

 }

void main()
{
int a,b;
cout<<”enter two integers”;
cin>>a>>b;
swap(a,b);
cout<<”value of a and b on swap(a,b) in main()”;
cout<<a<<setw(5)<<b;
}
Run:
enter two integers
30
50
value of x& y in swap() before exchange
 30 50
value of x& y in swap() after exchange
50 30
value of a and b on swap(a,b) in main()
30 50

Explanation:

• In main(), the statement swap(a,b) invokes the function swap()and assigns the
contents of the actual parameters a & b to the formal parameters x & y
respectively

• In swap() function, the input parameters are exchanged, however it is not reflected
in the calling function; actual parameters a & b do not get modified.

2. Pass by Address:

• C++ provides another means of passing values to a function known as pass by
address mechanism.

 38

• Instead of passing the value, the address of the variable is passed.

• In function, the address of the argument is copied into a memory location instead
of the value.

• Example:
#include<iostream.h>
void swap(int *x,int *y)
{
 int t;
 t=*x;
 *x=*y;
 *y=t;

 }

void main()
{
int a,b;
cout<<”enter two integers”;
cin>>a>>b;
swap(&a,&b);
cout<<”value of a and b after calling swap() in main()”;
cout<<a<<setw(5)<<b;
}
Run:
enter two integers
30
50
value of a and b after calling swap() in main()”;
50 30

Explanation:

• In main(), the statement swap(&x, &y) invokes the function swap and assigns the
address of the actual parameters a and b to the formal parameters x & y
respectively.

• In swap(), the statement t=*x; assigns the contents of the memory location
pointed to by the pointer (address) stored in the variable x. similarly, the
parameters y holds the address of the parameter b.

• Any modification to the memory contents using these address will be reflected in
the calling function, the actual parameter a & b gets modified.

3. Pass by Reference

• Passing parameters by reference has the functionality of pass by address and

the syntax of pass by value.

• Any modification made through the formal parameter is also reflected in the
actual parameter.

• To pass as argument by reference, the function call is similar to that of call by
value.

 39

• In function declarator, those parameters, parameters, which are to be received by
reference, must be preceded by the address (&)operator.

• The reference type formal parameters are accessed in the same way as normal
value parameters.

• However, any modification to them will also be reflected in the actual parameters.

• Example:
#include<iostream.h>
void swap(int &x,int &y)
{

int t=x;
x=y;
y=t;

 }

void main()
{
int a,b;
cout<<”enter two integers”;
cin>>a>>b;
swap(a,b);
cout<<”value of a and b after swap(a,b) in main()”;
cout<<a<<setw(5)<<b;
}

Run:
enter two integers
30
50
value of a and b after swap(a,b) in main()
50 30

• In main(), the statement swap(a, b); is translated into swap(&a,&b); internally
during compilation.

• The function declarator void swap(int &a, int &b) indicates that the formal
parameters are of reference type and hence, they must be bound to the memory
location of the actual parameters

• Thus any access made to the reference formal parameters in the swap() reflects to
the actual parameters.

DEFAULT ARGUMENTS

• Normally a function should specify all the arguments used in the function definition.

• In a c++ function call, when one or more arguments are omitted, the function may be
defined to take default values for the omitted arguments by providing the default
values in the function prototype.

• Hence the feature of default arguments allows the same function to be called with
fewer arguments than defined in the function prototype.

• To establish a default value, the function declaration must be used.

 40

• The compiler checks the function prototype with the arguments in the function call to
provide default values to those arguments, which are omitted.

• Default arguments reduce the burden of passing arguments explicitly at the point of
the function call.

• Example:

#include<iostream.h>
void greatest(int = 50;int=25,int =35);
void main()
{
 greatest();
 greatest(10);
 greatest(75,12);
 greatest(15,2,55);
}
void greatest(int x,int y,int z)
{
 if((x>y)&&(x>z))
 cout<<”I st number is greatest”;
 else if(y>z))
 cout<<”II nd number is greatest”;
 else
 cout<<”III rd number is greatest”;
}

In the main (), when the compiler encounters the statement greatest(), it is replaced by the
statement greatest(50,25,35); Internally substituting the missing arguments. Similarly
when the compilers encounters the statement greatest (10); it is replaced by the statement
greatest (10, 25, 35); internally substituting the remaining two missing arguments and so
on for all the remaining function calls.

• Variable names can be omitted while assigning default values in the
prototype.

INLINE FUNCTIONS:

• One of the objectives of using functions in a program is to save memory,
which becomes appreciable when a function is likely to be called many times.

• However, every time a function is called, it takes a lot of extra time in
executing a series of instructions, for task such as jumping to the function, and
returning to the calling function.

• When a function is small, the time required to execute a function is less than
the switch time.

• In C++ a new feature called inline function is used to solve the above
problem.

• An inline function is a function that is expanded in line when it is called.

• That is, the compiler replaces the function call with the corresponding
function code.

• Inline functions are defined as follows

 41

inline return type fun_name(arguments)
{
 function body
}

• Example
inline double cube(double a)
{
 return(a*a*a);
}

• The above inline function can be called by statements like
c=cube(3.0);
d=cube(2.5+1.5);

• The keyword inline send a request to the compiler. The compiler may ignore
this request if the function definition is too long or too complicated and
compile the function as a normal function

• Example:
#include<iostream.h>
inline int square(int num)
{
return(num*num);
}

void main()
{
 int n;
cout<<”Enter a number:”;
cin>>n;
cout<<”Its square =”<<square(n)<<endl;
cout<<”square(10) = ”<<square(10);
}

Run
Enter a number: 5
Its square =25
Square(10)=100

• In the main(), the statement cout<<”Its square=”<<square(num);
Invokes the inline function square(), It will be suitably replaced by the
instruction(s) of the body of the function square() by the compiler.

• The Execution time of the function square() is less than the time
required to establish a linkage between the calling function and called
function.

 42

PROGRAMS:

1. Program for Fibonacci Series

#include<iostream.h>

#include<conio.h>

void main()

{

int a=0,b=1,i,c,n;

clrscr();

cout<<"ENTER THE VALUE FOR 'N' :";

cin>>n;

cin>>a>>b;

cout<<a<<b;

for(i=3;i<=n;i++)

{

c=a+b;

cout<<c;

a=b;

b=c;

}

getch();

}

2.Program for Perfect Number

 #include<iostream.h>

#include<conio.h>

void main()

{

int sum=0,i,n;

clrscr();

cout<<"Enter the number :";

cin>>n;

for(i=1;i<n;i++)

{

if(n%i==0)

sum=sum+i;

}

if(sum==n)

cout<<" The Number Is Perfect"<<n;

else

cout<<" The Number Is Not Perfect"<<n;

getch();

}

3.Program for finding factorial

#include<iostream.h>

 43

#include<conio.h>

int n,i,c;

void fact()

{

int f=n;

if(n==0)

cout<<"The factorial of %d is 1"<<n;

else

for(i=0;i>0;i--)

f*=i;

cout<<"The Factorial of <<n<<f;

}

void main()

{

clrscr();

cout<<" Enter the number ";

cin>>n;

fact();

getch();

}

4.Program for Prime Number
#include<iostream.h>

#include<conio.h>

 void main()

 {

 //clrscr();

 int number,count=0;

cout<<"ENTER NUMBER TO CHECK IT IS PRIMEOR NOT ";

 cin>>number;

 for(int a=1;a<=number;a++)

 { if(number%a==0)

 { count++; }

 }

 if(count==2)

 {

 cout<<" PRIME NUMBER \n";

 }

 else

 {

 cout<<" NOT A PRIME NUMBER \n"; } //getch(); }

 44

5.Program for Armstrong Number

#include<iostream.h>

#include<conio.h>

#include<math.h>

void main()

{

clrscr();

int n,m=0,x,y;

cout<<“Enter any three digit numnber:”;

cin>>n;

y=n;

while(n!=0)

{

x=n%10;

m+=pow(x,3);

n=n/10;

}

if(y==m)

cout<<“The number is an Armstrong number”;

else

cout<<“The number is not an Armstrong number”;

getch();

}

OBJECT ORIENTED PROGRAMMING IN C++

Characteristics of OOPS

• Programs are divided into known objects

• Builds the data and functions around these objects or entities.

Organization of data and functions in OOP

• Hence object may communicate with each other through functions.

• Now data and functions can be easily added whenever necessary.

• Follows bottom-up approach in program design.

Concepts of OOPS
 General concepts of OOPS comprises the following

1. Object

 45

2. Class
3. Data abstraction
4. Inheritance
5. Polymorphism
6. Dynamic Binding
7. Message passing.

Object

 Object is an entity that can store data and send and receive messages. They are
run time entities they may also represent user-defined data.

When a program is executed the object interacts by sending messages to one
another.

Every object will have the data structure called attributes (or property or data) and
behavior called operations.

Eg: Consider the object account

Structure (General format) Eg:

Object Name Account

Attribute 1
Attribute 2
Attribute N

Structure Account Number attribute

Account Type

Name

Balance

Operation 1 Behaviour Deposit() Operation

Operation 2 Withdraw()

Operation N Enquire()

Classes
The objects with the same data structure (attribute) and behaviour (operations) are
grouped into a class. All these objects possessing similar properties and grouped into the
same unit.
Eg: In the person class all person having similar attributes like Name, Age, Sex and the
similar operations like speak, listen, walk. So, boy and girls objects are grouped into the
person class.

This should be represented as person objects.

Representation of Class:

Two different
persons

(Eg: boy, girl)

Abstract

into

Person class
Attributes: Name, Age, Sex

Operations: Speak(), Listen(), Walk()

 46

 Class account
 {
 private:
 char name[20];
 int accounttype;
 int accountnumber;
 float balance;

 public:
 Deposit();
 Withdraw();
 Enquire();
 };

In this the account class groups the object such as saving account, current account, etc,
Thus, objects having the same structural and behavioral propositions are grouped together
to form a class.

The following points on classes can be noted:

1. A class is a template that unites data and operations.
2. A class is a abstraction of the real world entities with similar properties.
3. A class identifies a set of similar objects.

Definition of OOPS:

 OOP is a method of implementation in which programs are organized as co-
operative collections of objects, each of which represent an instance of some class and
whose classes are all members of a hierarchy of classes united through the property called
inheritance.

CLASSES AND OBJECTS:

Class Specification:
 The class can be described as a collection of data member along with member
functions. This property of C++, which allows association of data and functions into a
single unit, is called encapsulation. Sometimes classes may not contain any data
members or member function called empty classes.

Syntax for class specification

 Class classname
 {
 //body of a class
 }; end of class requires semicolon

More than one object can be created with a single statement as,

Data members

Member functions

Userdefined name of the class

Keyword

 47

 Class student s1,s2,s3;
 Or
 Student s1,s2,s3.

Object can also be created by placing these names immediately after the closing brace.
Thus the definition
Class student
 {

 } s1,s2,s3;

Accessing class members:

 Once an object of a class has been created, there must be a provision to access its
members. This is achieved by using the member access operator, dot(.).

Syntax: for accessing datamember of a class

 Object name . datamember

Syntax for accessing member function of a class

 Objectname.Functionname (Actual arugements)

Eg: s1.setdata(10, “Ram”);
 s1.outdata();

The object s1 can be used to access the member functions setdata and outdata
respectively.

Consider the following program

#include <iostream.h>

Name of the class

defined object

Member access

specifier

Datamember of a class

Member access

specifier

Name of the class

defined object

Name of the

member function

Arguments to the

function

 48

#include <string.h>
class student
{
 private:
 int roll_no;
 char name[20];
 public:
 void setdata(int roll_no_in, char name_in)
 {
 roll_no = roll_no_in;
 strcpy(name, name_in);
 }
 void outdata() //display data members
 {
 cout<<”rollno = “<< roll_no <<endl;
 cout<<”name = “ << name << endl;
 }
};
void main()
{
 student s1;
 s1.setdata(1, “Ram”);
 s2.setdata(10,”Kumar”);
 cout<<”Student details . . .”<<endl;
 s1.outdata();
 s2.outdata();
}

Output:

 Student details
 Rollno = 1
 Name = Ram
 Rollno = 10
 Name = Kumar

Defining member function:

The data members of a class must be declared within the body of the class, whereas the
member functions of the class can be defined in any one of the following ways.

• Inside the class specification

• Outside the class specification
The syntax of a member function definition changes depending on whether it is defined
inside or outside the class specification, but it performs the same operation.

(a) Member function inside the class body:

All the member functions defined within the body of a class.

 49

Eg:

 Class classname
 {
 private:
 int age;
 int setage(int agein); //member function
 {
 age = agein; //body of the function
 }
 ………..
 public:
 int b;
 void rect()
 {
 // body of a function
 }
 };

(b) Member functions outside the class body

 To declare function prototype within the body of a class and then define it outside
the body of a class. This is done by using the ‘scope resolution operator’ (::). It acts as
an identity-label to inform the compiler, the class to which the function belongs.

G.F or Syntax:

class classname
{

 Returntype memberfunction (arguments); //function declaration

};
returntype classname :: memberfunction (arguments) //function definition
{
 //body of the function
}

Accessing member functions within the class

 A member of a class is accessed by the objects of that class using the dot operator.
Ex:
#include <iostream.h>
class number
{
 int num1, num2; //private by default
 public:
 void read()

 50

 {
 cout<<”Enter first number: “);
 cin>>num1;
 cout<<”Enter second number: “);
 cin>>num2;
 }
 int max()
 {
 if(num1>num2)
 return num1;
 else
 return num2;
 }
 //Nesting of member function

 void showmax()
 {
 cout<<”maximum = “<<max() ;

 }
};
void main()
{
 number n1;
 n1.read();
 n1.showmax();
}

Output:

Enter first number : 5
Enter second number : 10
Maximum = 10

This member function of a class can call any other member function of its own class is
called ‘nesting of member function’.

Data Hiding:

 Data is hidden inside a class, so the unauthorized access is not possible, which is
the key feature of OOP.

 All the data and functions defined in a class are private by default. Normally the
data members are declared as private and member functions are declared as public.

Methods of Data hiding:

• Private

• Public

• Protected

 51

These keywords are called access-control specifiers.

Private members:

 In this only the member functions of the same class can access these members.
The private members of a class are inaccessible outside the class.

class person
{
 private:
 int age; //private data
 int getage(): //private function

}
person p1;
a = p1.age; //cannot access private data //error
p1.getage(); //Error access
i.e., we can access the private members by using objects.

Protected member:

 The access control of the protected members is similar to that of private members.
The access control of protected members is shown below:

Class person
{
 protected:

 int age; // protected data
 int getage(): //protected function

};
person p1;
a = p1.age;
p1.getage();

Public Members

 All data members and function declared in the public section of the class can be
accessed without any restriction from anywhere in the program.

Eg:

class person
{
 public:
 int age; //public data
 int getage(); //public function

Cannot access protected members

 52

}
person p1;
a = p1.age; // can access public data
p1.getage(); // can access public function

Nesting of member function

 A member function of a class can be called only by an object of that class using a
dot operator. In nesting of member function, the member function can be called by using
its name inside another member function of the same class is called nesting member
function.

Consider the following example

#include <iostream.h>
class set
{
 int m,n;
 public:
 void input(void);
 void display(void);
 void largest(void);
};
int set :: largest(void)
{
if(m>=n)
 return(m);
else
 return(n);
}
void set:: input (void)
{
 cout<<”input values of m and n” << “\n“;
}
void set:: display(void)
{
 cout<<”largest value” << largest()<<“\n“;
}
void main()
{
 set A:
 A input();
 A.set();
}

Arrays within a class
 The arrays can be used as member variables in a class. That is more than one
related variable or data are grouped under the common name,

 53

Eg:

Class abc
{
 int a[size]; //a is name of the array size – represents the size of the array
 public:
 void setdata(void);
 void display(void);
};

Empty classes (or Stubs)

 Main reason for using a class is to encapsulate data and code, it is however,
possible to have a class that has neither data nor code. In other words, it is possible to
empty classes.

 The declaration of empty classes is as follows:

class xyz
{
};
class abc
{
};

Such an empty classes are also called as stubs

Passing Objects arguments:

• It is possible to have functions which accept objects of a class as arguments, just
as there are functions which accept other variables as arguments.

• An object can be passed as an argument to a function by the following ways:
1. Passing object by value, a copy of the entire object is passed to the
function
2. Passing object by reference, only the address of the object is passed
implicitly to the function.
3. Passing object by pointer, the address of the object is passed explicitly
to the function

• Passing Object by value

In this case a copy of the object is passed to the function and any

modifications made to the object inside the function are not reflected in the object
used to call the function.
Example:
#include<iostream.h>

 54

class test
{
int m1,m2;
public:
void get()
{
cin>>m1>>m2;
}
void read(test t3)
{
m1=t3.m1;
m2=t3.m2;
}
void display()
{
cout<<m1<<m2;
}
};
void main()
{
 test t1;
 cout<<”Enter Ist object data”;
 t1.get();
 cout<<”display Ist object data”;
 t1.display();
 test t2;
 cout<<”copy of object1 to object2”;
 t2. read(t1);
 cout<<”display 2nd object data”;
 t2.display();
}

Run:
Enter Ist object data
34
56
display Ist object data
34
56
copy of object1 to object2
display 2nd object data
34
56

The members of t1 are copied to t2. Any modification made to the data members
of the objects t1 and t2 are not visible to the caller’s actual parameter

• Passing objects by Reference:

 55

Accessibility of the objects passed reference is similar to those passed by
value. Modifications carried out on such objects in the called function will
also be reflected in the calling function.

Example:
#include<iostream.h>
class test
{
int m1,m2;
public:
void get()
{
cin>>m1>>m2;
}
void read(test &t3)
{
m1=t3.m1;
m2=t3.m2;
}
void display()
{
cout<<m1<<m2;
}
};
void main()
{
 test t1;
 cout<<”Enter Ist object data”;
 t1.get();
 cout<<”display Ist object data”;
 t1.display();
 test t2;
 cout<<”copy of object1 to object2”;
 t2. read(t1);
 cout<<”display 2nd object data”;
 t2.display();
}

Run:
Enter Ist object data
34
56
display Ist object data
34
56
copy of object1 to object2
display 2nd object data
34

 56

56

Program for Student Data Base

#include

#include

class student

{

int id,mrks;

char nm[20],stm[2];

private:

int st_id;

char name[20];

char strm[2];

int marks;

public:

void dta_entry()

{

clrscr();

cout<<"enter the entries below:-\n";

cout<<"student id: \n";

cin>>id;

cout<<"student name: \n";

scanf("%s",nm);

cout<<"stream: \n";

scanf("%s",stm);

cout<<"marks: \n";

cin>>mrks;

}

void show_details()

{

cout<<" \nstudent name:"<< nm;

cout<<" \nid:"<< id;

cout<<" \nstream:"<< stm;

cout<<" \nmarks:"<< mrks;

cout<<"\n\n";

}

void mod_mrks(int inc)

 57

{ mrks=mrks+inc;

cout<<"marks has been incremented.\n";

}

};

void main()

{

student st1,st2,st3;

clrscr();

st1.dta_entry();

st2.dta_entry();

st3.dta_entry();

clrscr();

cout<<"the entered records are as follows:\n";

st1.show_details();

st2.show_details();

st3.show_details();

getch();

clrscr();

st1.show_details();

cout<<"\nmodified records of shobhit:";

st1.mod_mrks(10);

st1.show_details();

getch();

}

