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. REVIEW OF THE LAWS OF THERMODYNAMICS AND
THEIR CONSEQUENCES

Thermodynamics is essentially the study of the internal motions of many body
systems. Virtually all substances which we encounter in everyday life are many body systems
of some sort or other (e.g., solids, liquids, gases, and light). Not surprisingly, therefore,
thermodynamics is a discipline with an exceptionally wide range of applicability.
Thermodynamics is certainly the most ubiquitous sub-field of Physics outside Physics
Departments. Engineers, Chemists, and Material Scientists do not study relatively or particle
physics, but thermodynamics is an integral, and very important, part of their degree courses.
Energy exists in many forms, such as heat, light, chemical energy, and electrical energy.
Energy is the ability to bring about change or to do work. Thermodynamics is the study of

energy.

First Law of Thermodynamics: Energy can be changed from one form to another, but it
cannot be created or destroyed. The total amount of energy and matter in the Universe
remains constant, merely changing from one form to another. The First Law of
Thermodynamics (Conservation) states that energy is always conserved, it cannot be created
or destroyed. In essence, energy can be converted from one form into another.
The Second Law of Thermodynamics states that "in all energy exchanges, if no energy
enters or leaves the system, the potential energy of the state will always be less than that of
the initial state.” This is also commonly referred to as entropy. A watch spring-driven watch
will run until the potential energy in the spring is converted, and not again until energy is
reapplied to the spring to rewind it. A car that has run out of gas will not run again until you
walk 10 miles to a gas station and refuel the car. Once the potential energy locked in
carbohydrates is converted into kinetic energy (energy in use or motion), the organism will
get no more until energy is input again. In the process of energy transfer, some energy will
dissipate as heat. Entropy is a measure of disorder: cells are NOT disordered and so have low
entropy. The flow of energy maintains order and life. Entropy wins when organisms cease to
take in energy and die.

Heat capacity or thermal capacity is a measurable physical quantity equal to the ratio

of the heat added to (or removed from) an object to the resulting temperature change. The S
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unit of heat capacity is joule per Kelvin (J/K) and the dimensional form is L?MT 2. Specific
heat is the amount of heat needed to raise the temperature of a certain mass by 1 degree
Celsius.

Heat capacity is an extensive property of matter, meaning it is proportional to the size
of the system. When expressing the same phenomenon as an intensive property, the heat
capacity is divided by the amount of substance, mass, or volume, so that the quantity is
independent of the size or extent of the sample. The molar heat capacity is the heat capacity
per unit amount (SI unit: mole) of a pure substance and the specific heat capacity, often
simply called specific heat, is the heat capacity per unit mass of a material. Occasionally, in

engineering contexts, the volumetric heat capacity is used.

Entropy

Once set up, the checkerboard stays set up until we decide to change it, a
situation which we can refer to as static disorder. As we have found, most physical
systems change with time, a situation we can refer to as dynamic disorder. Because a
system changes with time, the large ratio of the number of disordered situations relative
to an ordered situation can be used to predict how the system will change with time.
Based on the number of disordered situations compared to the number of ordered
situations, it is extremely unlikely that a system will go by itself from a disordered to an
ordered condition. If the system is ordered, it is likely to become disordered. It is
useful to define a quantity § called enfropy, which is a measure of the degree of
disorder in a system. The entropy of a system increases as the disorder of the system
increases.

We now focus on the molecular motion of a system, which gives rise to the
internal energy of this system. Adding heat to this system increases the disorder
because the heat increases the randomness of the molecular motion. So, the entropy of
the system increases. The effect of adding heat to a system increases the molecular
motion, and this results in more disorder of the system. The effect of adding heat to a



cold system, one that has small molecular motion, produces more disorder than would
happen if one added the same amount of heat to the system if it were at a higher
temperature. Why? It is because the hot system already has more molecular motion
than the cold system, so the percentage change in motion is not as great.

If the change in entropy only comes about because the internal energy of the
system changes, the result is called a reversible process. In this case, the change in
entropy 4S8 is given by equation .1.

change inentropy = change in the heat of the system

temperature
or
A8 = # (Equation 1)
where
4S8 = change in entropy of a reversible process (joules/Kelvin or calories/Kelvin)
4Q = change in the heat of the system (joules or calories)
T = temperature (Kelvin)

A good example is found in an ice cube at 0 °C placed in a well-insulated chest at
20 °C. The ice cube is the system and the chest is the environment. Heat flows from
the chest to the ice cube because there is a difference in their temperatures. As heat is
added to the system (the ice cube), after some time the ice cube becomes a puddle of
water at 0 °C. If we wait long enough, the puddle of water and the chest will reach the
same temperature, which will be less than 20 °C.

Equation 1 must be applied carefully, because it is valid only if the temperature
of the substance remains approximately constant. However, we learned in Chapter 5
the amount of heat needed to change one gram of ice at 0 °C to one gram of water at
0 °C. This is the latent heat, which is 80 calories/gram for ice. If the ice cube has a
mass of 100 grams (0.1 kg), we can find the heat added, which equals the increase in
thermal energy, using Equation 5.3.

Q = Lpeat X M = = 80cal/g x 100g = 8,000 cal
These 8,000 calories are the difference between the initial and final thermal energy.

During this phase change, the temperature remains at 0 °C. This means that we can
find the change in entropy by using Equation 1.



SECOND LAW OF THERMODYNAMICS

Definition by Clausius:

" There 18 no thermodynamic transformation whose sole effect is to deliver heat
from a reservoir of lower temperature to a reservoir of higher temperature.”

Summary: heat does not flow upwards.

Definition by Kelvin:

"There 1s no thermodynamic transtormation whose sole effect is to extract heat
from a reservoir and convert it entirely to wark

Summary: a perpetmum mobile of second type does not exist.

In order to prove that both definition are equivalent, we will AN
show that the falsehood of one implies the falsehood of the Q4 Ty

other. For that purpose, we consider two heat reservoirs with
temperatures 17, and T, with T} > Ty,

(1) If Kelvin's statement were false, we could extract heat Q-
from T, and convert it entirely to work. We could then t T
convert the work back to heat entirely and deliver it to 7j

(there is no law against this) (Fig. 4.5). Thus, Clausius’ Figure 4.5: Qy = W =
statement would be negated. Q, process.

(2) If Clausins’ statement were false, we could let an amount
of heat (), flow from T, to T} (T3 < T7). Then, we could
connect a Carnot engine between 77 and T, such as to
extract (J from T} and return an amount |y < @ back to T, The net work
output of such an engine would be |@Q;| — |@Qs| > 0, which would mean that an
amount of heat || — Qs is converted into work, without any other effect. This
would contradict Kelvin's statement.
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From the microscopic point of view
- heat transfer 1s an exchange of energy due to the random motion of atoms:
- work’s performance requires an organized action of atoms.

In these terms, heat being converted entirely into work means chaos changing sponta-
neously to order, which is a very improbable process.

— Usually,
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= ANy COnngurartions correspordd to chaos,



Thermodynamic potentials

Thermodynamic potentials are state functions that, together with the corresponding equa-
tions of state, describe the equilibriuin behavior of a system as a function of so-called
"natural variables”. The natural variables are a set of appropriate variables that allow to
compute other state functions by partial differentiation of the thermodynamic potentials.

1 Internal energy U

The basic relation of thermodynamics is given by the equation

m &
dU=TdS + Y Fdg + > psdN;| (1)

=1 =1

where { F, q} denote the set of conjugate intensive and extensive variables that characterize
a system. For instance, for a gas

{F.q} = {-PV}

for a magnetic systeim
{F. q} b {Bf.f'\ff}.

In (1), N is the munber of particles in the system (an extensive variable): the index j
(7 = 1.....a) denotes different sets of particles that may constitute the system.
Chemical potential u (an intensive variable): is defined as the energy needed to add a
particle to a thermally and mechanically isolated system.

The last term in eq. (1), pdN, is needed if the nunber of particles in the system is not

kept constant, i.e. if particles enter or leave the system.
For a gas, eq. 11) is written as

4]
dU = TdS — PdV + " pdNj,

i=1



which means that

U=U(S,V,N)|

Since dU is a total differential, through differentiation of I/ as a function of 5, V, and N
one obtains thermal and caloric equations of state:

ou
T = (==) .
( a8 ) VN

oU
P = (=) .,
(iﬂ") SN

;- ()
Hi = 5_-'\} S-N-Ni:i#'

The experimentally important response functions are obtained by second-order differen-

tiation:
PUN o _(oTy  _[(38\ | T _
5% J v n - 98 J v n - aT ) n - Cy
oy 17
=T = .
= CTL |:( 952 )1’\} ;
FPU oP 1
——— = _ by . S—— =
a‘/ 2 SN a‘/ SN ‘/ ks
L [roevy 17
=> ks = "7 [(W)s"\,] 5 (2)
Maxwell relations
A Mazuwell relation follows from the differentiability of U:
2(2) - &(2)
oV \ dS - 95 \ov
aT JdP .
= (07)3 = - (ﬁ)v (Maxwell relation). (.3)

Ezample: monoatomic ideal gas. The behavior of a monoatomic ideal gas obeys the

following relations:
PV = nRT,



INTERNAL ENERGY U

.3
L -— ERHT._

3
Cy = =nh.
2
Let us use this information and derive an expression for U in terms of its natural variables:

dU + PdV dT a'V

S(T.V) = Cv Iu( ) +nRIn (;) + 5

= Cy In( U ) +nRln (E) + 55,
Vo

=

5—-5 U ni Vv
= (7)  mn () )
Since
nR:Cp—CV =
nk Cp=Cy _ 9 _ 2

we can write eq. (4) as
ssm (U (V\®
= () (w)

™l g
U(S.V) = Us (V) e 5)

from which

Vv

follows. Eq. (5) is the fundamental equation for the ideal gas, with U(S,V) as the
thermodyvnamic potential and S, V' as independent natural variables.

Comllary: the natural variables for U are S and V', which means that if the function
U(5.V) is known for a given system we can obtain all the thermodynamic properties of
the system through the differentiation of U(S. V).

On the contrary, in the equation of state
U=U(T.V.N) (.6)

U is not an appropriate thermodynamic potential any more since from the first derivatives

of eq. (.6), -
(5), =



and 9U -
(5v), =2 (), -~
we do not obtain the dependent variables S and P.

If we rewrite eq. (1) as

I R T
d.5' - ?ﬁr{: - TPI:”. - ?Eﬁjff:\ M
it becomes clear that
S =58(UV.N)

is also a thermodynamic potential.

HELMHOLTZ FREE ENERGY

By replacing the independent variable S by T in U(S, V. N), we define the free energy F:

. ol =
[F-v-s5(3) =-T=T3)

F=F(T.V.N)| — Free energy.

In

dF =dU —d(TS)=dlU — 5dT — TdS

we substitute dU from eq. (5.1) and get

dF = —8dT — PdV + Y p;dN; |
i=l1

The natural variables of the free energy are {T,V,N}. The dependent variables are
obtained out of the first derivatives:

JF I E
-5 = (d—) . P=— (d—r) —  thermal state equations
T )y vV Jr
and 55 5P
(T) . = (d_T) ; — Mazwell relation.
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ENTHALPY

Enthalpy

H=H(S P.N)

is obtained when we substitute the variable V by P in U(S, V. N):
|H=U-+PV|
The total differential of H is derived as follows.

ou
H=v-v[(<) |
{ ( av ) SN

P

dH =dU +d(PV) = dU +VdP + PdV

= Td5— PdV + Z p;dN; - VdP + PdV =
j=1

= |dH =TdS+VdP+> udN;|
j=1

The natural variables of the enthalpy are {S. P. N}. Out of the first order derivatives we

oH
T=(%=%) .
(fﬂ»‘i’)m

v aH
- \OP gy’

&),
OP) o \I5)px|

obtain

and the Maxwell relation

11



EQUILIBRIUM CONDITIONS

An important property of the thermodynamic potentials is that, by keeping constant
certain variables and changing others, one can calculate how the energy exchange with
the environment happens.

Ezample: internal energy of a gas.
a)S = const : dU = —PdV (work)
dU =TdS - PdV =
b)V = const : dU = TdS (heat)

The second law of thermodynamics,
a
TdS > 6Q = dU + PdV — Y _ u;dNj, (7)
j=1
can be written in very simple forms for the various exchanges between the system and its
environment by using various thermodynamic potentials. The thermodynamic potentials

allow for the description of the development of a system towards equilibrium state itself.
Depending on a specific experimental situation, an adequate potential is to be used.

Both systems will interchange particles and energy until equilibrium is attained. In the
equilibrium state

0 = d5=d58, +dS

- (&) ()
1/ v v, M /) v, x,
a5, .55
N _ iV
{ (a]’rl )Ul M1 (a a) Uz, N2 } o
N ( 05 ) _ (@)
(3.-' ?1 W a"l 72 2, Va

Since U7, V1, and N are independent variables, each curly bracket {} has to be zero.

Therefore,
h=T=T. P=FP=FP =y =
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ISOLATED SYSTEMS

In an isolated system

dU = 0 (6Q = 0),

dV =0,
dN = 0.
Then, according to eq. ( 7 ).
dS >0

dS = 0 in equilibrium.

* In all irreversible processes, under the conditions

U = const,
V = wnst,
N = const,

the entropy increases and is maximum in the stationary equilibrium. S evolves to
a maximum under conditions of fixed U, V. N. This is an exfremum principle.

13



SUMMARY OF THERMODYNAMIC POTENTIALS

Potential Natural Conjugated Maxwell relations
independent dependent and others
variables variables
aU
I‘. TRN TNE Yen's T: o
NTERNAL ENERGY 55)1-:3\'
arr o7 drP
VN =_ (= =) = (==
‘ > (fﬂ) SN (51"— g (55 v
- (%)
PN SV
] ] 1 [d5
ENTROPY T = ( 5'(—-');.—_5\-
e a- P a5
: .V, N _ —
B (95
T \ON/ya
N __ (9t 95y _(oF
FREE ENERGY 5 (éﬂT . éﬂ-"') = éiT) o
dF o & F
F=U-T! T V. N P=—| — T =-T"— | =
v (7). | v="ar (7)
aF
=
# IN J 1y
oH
ENTHALPY T'=|—
93/ p
. . . . oH aT dl
H=U+PFPV S5 P A V=[— — ] ==
AP ) .. arP), ~\as )/,
p=\| =
i g p
oG ds dl
(GIBBS ENTHALPY S=—| =5 -] =—| =
G=H-TS=Nu| T, PN g=-19 (&
or \T
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Potential Natural Conjugated Maxwell relations
independent dependent and others
variables variables

- o

GRAND CANONICAL S=—|—
T ) v,

. Y

POTENTIAL T V. u P=—-|—
v T 40

oy

Q=F—uN=—PV N=_ (_)
g )

CHEMICAL POTENTIAL T § = -

R
- \aT ),

3
N
G V oyt
=N P "‘T_(a_P)T

Thermodynamic Potentials and Maxwell’s Relations

The energy and entropy representations

We have noted that both S(I". V. N') and U (5. V. N') contain complete thermodynamic information
We will use the fundamental thermodynamic identity

dU = 7TdS — pdV + pdN

as an aid to memorizing the of temperature, pressure, and chemical potential from the consideratio
of equilibrium conditions. by calculating the appropriate partial derivatives we have

() _r
05y

h

(57) ., =
ov ) ey U

.

()"
ON /sy -

.

and

We can also write the fundamental thermodynamic identity in the entropy representation:
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from which we find

o5\ _1
o)y T
9%y _k
v )y T

95 _ &
@_Y I'N B T

By calculating the second partial derivatives of these quantities we find the Maxwell relatic
Maxwell relations can be used to relate partial derivatives that are easily measurable to those t

are not. Starting from
ot ov
— =T, and | = = —p,
( a5 ) V.V - (‘Eﬂ" ) S.N g

U or and _5;}2(,-' — (%
avos — \ov )., T asav — T \dS ),

Now since under appropriate conditions

82U 827
= and

avas a5V

o\ _ _ (%
WV )sn a5 ) yn

This result is called a Maxwell relation. By considering the other second partial derivatives, we find
two other Maxwell relations from the energy representation of the fundamental thermodynamic

identity. These are:
or = @ and — p = ﬂ
ON ) sy \0S)yy ON )5y NV ) gn

Similarly, in the entropy representation, starting from

and

we can calculate

then

dsS = T - %dl-" - %(l_\'

05 L ﬁ =¥ 05 = _K
U)oy T \OV), o T oN), . T

we find the Maxwell relations:

()., (), (39),, -~ (), = (5),, (%),

and the results
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Enthalpy H(S,p,N)

We have already defined enthalpy as H = [ + pl/. We can calculate its differential and combine
it with the fundamental thermodynamic identity to show that the natural variables of H are S, p0,
and N,

H=U+pV

we have
dH =dU7 = d(pV') = dU = pdV + Vdp,

and so inserting
dlU = TdS — pdV + pdN

we have
dH =TdS — pdV + pdN + pdV + Vdp

resulting in
dH =TdS + Vdp + pdN.

Thus, we can see that we can write H = H(S.p. N), and as already noted S, p, and N are the
natural variables of H. We can continue as above to generate the definitions

E:?H) (dH) . (dH)
— =T, | — =V, and | — = U.
(6‘3 N I J ¢ x anN. Sp

and the Maxwell relations

(), -2, ()~ (), = (%), - ()
dp ) g.n ds, ;r]__".'- ON S.p as, p.N ON S.p dp 9..\"

In the above. as we transformed from U7 to H. we changed independent variables, ie., we
replaced the variable V7 with its conjugate p. (Variables = and y that are related through the partial
derivative of some function £ such that %r‘i = y are called conjugate variables.) This is an example
of a Legendre transform. In a Legendre transform, to replace one independent variable with its
conjugate, a new function ¢ is defined by the addition or subtraction of the product of the conjugates
z and y. In other words we define { = £ = zy. In the case of enthalpy we addedpV’ ., as we shall
see, this was due to the presence of the term “pd 1’ in the fundamental thermodynamic identity. To
eliminate the variables S and NV in terms of their conjugates, it will be necessary to subtract the
products of the conjugate variables, as we shall soon see.

Helmholtz Free Enerygy F(T,V,N)

This time we as we transform froml’ to F', we replace the independent variable S with its conjugate
T'. In a Legendre transform, to replace one independent variable with its conjugate, a new function

17



is defined by the addition or subtraction of the product of the conjugates. Thus in this case we
define the new function F by subtracting T'S from U,

Starting from
F(T,ZV,N)=U(5,V,N)-TS
calculating the differentials
dF =dU —d(TS)=dU —=TdS — 5dT,

then inserting
dU = TdS — pdV + pdN

we find
dF =T7d5 — pdV + pdN — TdS — 5dT

resulting in
dF = =5dT — pdV + pdN.

Thus, we have F = F(T.V. N) as desired. We continue as above to generate the definitions

(:PF) _S,E:JF) o I@F) B
oT Jyn  \OV )¢y o dnN, T.R-'_“I

and the Maxwell relations

Gibbs Free Energy G(T,p,N)

This time we as we transform from U to G, we replace the independent variables S and V" witl

their conjugates T and p. We can think of this as a double Legendre transform of " or a single
Legendre transform of either H or F.

Starting from
GT.p.N)=U(S,V,N)=-TS - pV
calculating the differentials

dG =dU —d(TS) +d(pV) = dU — TdS — SdT + pdV — Vdp,

then inserting
dU = TdS — pdV + pdN

we find
dG =T7dS5 — pdV + pdN —=TdS — 5dT + pdV = Vdp

18



resulting in
dG = —5d7T + Vdp + pdN.

Thus, we have G = G(T. p. N') as desired. We continue as above to generate the definitions

(E:i'(;') =-5 (E:i'(;') = V. and (E) = U
T ), v T\ dp )y ‘ ON )7, ;

and the Maxwell relations
(25) () () - () e () - (Z)
Ip )+ aT p__\.l oON Tp aT N ON Tp dp T__\.'

The Grand Potential Q(T. V., 1)

This time we as we transform from [ to €2, we replace the independent variables V7 and N wit!
their conjugates, p and . We can think of this as a double Legendre transform of U7 or a singl
transform of F'. The grand potential is far less common in elementary work than the other poten
tials. It is used in open systems, that is systems that can exchange particles with the environment
We will, however, make some use of it.

Starting from
QT.V.u)=U(S,V.N)=T85 — uN

calculating the differentials
dQ=dU —d(TS) —d(pN)=dU — 5dT —TVdS — pdN — Ndp,

then inserting
dU = TdS — pdV + pdN

we find
d? =T7dS — pdV + pdN — TdS5 — 5dT — pdN — Ndp

resulting in
dQ = —pdV — §5dT — Ndp.

Thus, we have 2 = Q(T. V., i) as desired. We continue as above to generate the definitions

0 2 2
— =—p | — = —5, and (—) = —N.
(dT‘" )T.g; (dT)n-:u )y

and the Maxwell relations

), (), (), -3, = (2, - &
T ), \oV ). \ou) )y, on)ry \0T),,
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The Gibbs-Helmholtz Equation

Derivation of the Gibbs-Helmholtz Equation
The Gibbs-Helmholtz equation provides information about the temperature dependence of the Gibbs free energy.
The derivation of the Gibbs-Helmholtz equation begins with the fundamental equation for the Gibbs free energy G,

dG = =847 + VdP . (h

Using the relationships for an exact differential, we have that

!

[':5(; s )

T

Substituting this result for —§ into the equation defining the Gibbs free energy, G = H =15, yvields

G -H+1Z| (3)
AT )y
Dividing both sides of Eq. (3) by T leads to the result
G H rea
-2y ] . (4)
T T \ar),

The Gibbs-Helmholtz equation involves the partial derivative with respect to temperature (at constant pressure) of
the quantity on the left side of Eq. (4), G /T, Taking the partial derivative gives

AGIT) ; rel
Ar) .6 LK) 5)
ar |, T T\l ),
Note that in Eq. (5), since G is a function of temperature, (¢ = G(T'i}, the product rule was employed in order to
evaluate the derivative of G /T . Factaring 1/T out from the right side of Eq. (3) vields
HGIT) ;[ aG)
aAem)) _ LG, (5| ®)
ar ), T T \or),
Substituting the relation for G /7 from Eq. (4) gives the result
dGIT)) 1| G . '.-;n:;‘]
a p T T AT
_ l _ £+ [ﬁﬁ‘] (:5‘(}]
| |t \ar), ar ],
aG T]] H -
- - — 7
. 3
a ), T

Equation (7) provides one form of the Gibbs-Helmholtz equation.

20



Another useful form of the Gibbs-Helmholtz equation may be obtained by considering the derivative

(G IT)) L(dGIT))
), -

) T ar )

VAT R - e

The result in Eq. (8) may be derived by making the substitution u = 1/T such that du = -dT IT*, Substituting the
result for the partial derivative on the right from Eq. (7) leads to the primary form for the Gibbs-Helmholtz equation,

| AGIT) ‘

| = A (9)
AT 7

P‘

Written in terms of the change in free energy, the Gibbs-Helmholtz equation is

(d(AGIT) ‘

—— 1| - AH. (10
) ), 19

Nernst's Heat Theorem of third law

The third law of thermodynamics is concerned with the limiting behavior of systems as the
temperature approaches zero. The bulk of the thermodynamics does not require this postulate
because in thermodynamics calculations usually only entropy differences are used.
Consequently, the zero point of the entropy scale is often not important. However, we discuss

the third law at this point because it is it closes the postulatory basis of thermodynamics.

The temperature is defined as

T = [E]
as |y M

Therefore, the third law states that

lirn 5 =10
TS0 (2)

Historically, Walter Nernst's formulation of the third law, called Nernst's Heat Theorem, in

1907 was somewhat weaker. He stated:

21
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"Any entropy changes in an isothermal reversible process approach zero as the
temperature approaches zero, or

i ASp =10
=0 . (3)

We shall see in the following that Nernst's Heat Theorem is enclosed in the definition of the
third law. The formulation of the third law that we are using (equation (2)) emerged several

decades later through the work of Francis Simons and the formulation of Max Planck.

There are several ways to state the third law of thermodynamics. It turns out that all of them
are equivalent, and that one can derive one from the other. Let us start with the following

form, a statement that summarizes a lot of experimental observations:

"It is impossible reduce the temperature of any systems to absolute zero in a finite

number of steps.™
Let's discuss this in more detail.

Assume a system to be cooled by varying a parameter X from the initial state i to the finale
state f X to Xt. This cools the system from the temperature T; to Tr. Using only the second law

we can write for the entropy of the initial state

ST, X=500%,)+ ][%L_j’f

: 4)
and for the final state
I
S(T}jf):*g(ﬂﬁ}ff}"[ E|ar
), .
: — (5)
We can write dS as
A5 = & g7
& (6)
Equations (6) can be rewritten as:
). -%
aT), T )

22



Heat capacities are positive. Thus, maximum cooling can be obtained only if the process if
reversible and only without thermal contact to the environment, i.e. adiabatically.

Reversibility implies:

S[U,Xiﬁj[%] ar=50.%,) [BS]
=X, KmX (8)

According to the third law (2)

5(0,.%,) = 500, %, )

The temperature of the final state is zero, i.e., Tr=0. This implies:

(&), .

This is impossible. We showed that absolute zero temperature cannot be achieved in a finite
step and, consequently, on a finite number of steps. The fact that the entropies of all systems

must be equal (zero) at T=0.

Chemical Potential

The chemical potential of a substance i is the partial molar derivative of the free energy G,

the enthalpy H, the Helmholtz energy A, or the internal energy U of substance i:

oG _|oH OA oU
o anl TPH On" SPn al’l! TV.*? an" SVn

Matter flows spontaneously from a region of high chemical potential to a region of low

chemical potential just like electric current flows from a region of high electric potential to a
region of low electric potential and mass flows from a position of high gravitational potential
to a position of low gravitational potential. The chemical potential can therefore be used to
determine whether or not a system is in equilibrium. When the system is in equilibrium, the
chemical potential of each substance will be the same in all the phases appearing in the

system.
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The ideal solution can be defined as a solution in which the chemical potential of each

species is given by the expression:
1, = 1P (T, P)+ RT In x;

In this expression, xi°(T,P) is the chemical potential of pure species i in the same state of
aggregation as the solution; i.e. in a liquid mixture pi°(T,P) is the chemical potential of pure
liquid i at temperature T and pressure P.ui%(T,P) is referred to as the standard state chemical
potential. From the expression above, it is seen that the chemical potential of a species in an
ideal solution is lower than the chemical potential of the pure component: the mole fraction is

less than one and the second term is therefore negative.
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QUESTION BANK

PART-A

State and explain first law of thermodynamics.
Explain Heat capacity of gas molecules.

What is specific heat capacity?

Explain entropy and enthalpy in kinetics?

State and explain the second law of thermodynamics.
What is thermodynamic potential of a gas?

What is thermal equilibrium?

State and explain the third law of thermodynamics?

Explain about chemical potential of gas.

. Explain the energy of particles in kinetics?

. Write a note on Gibb’s phase rule.

PART-B

Explain entropy of a gas? Obtain an expression of entropy with its energy? Show that
the entropy is constant in all reversible process of thermodynamic system.

Derive Maxwell’s thermodynamic expression and deduce the other relations.

Derive Gibb’s Helmholtz equations and obtain an expression for H.

Derive the first and second TdS equation.

a. Explain Nernst theorem of kinetics.

b. Derive the expressions for thermodynamic potential.
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Il.  KINETIC THEORY

Equilibrium states dilute gas

A gas consists of a very large number of particles (typically 10%* or many orders of
magnitude more) occupying a volume of space that is very large compared to the size (10—10
m ) of any typical atom or molecule. A system may be characterized as dilute based on the

“average” spacing between its molecules

5z3\/I or éz3 13
n (o} nNo

where n is the number density (number of atoms per unit volume) and ¢ is the effective

“diameter” of the molecule. We see that the relevant quantity here is the non-dimensional
number density n* = nc®. If n* < 1, then the system can be described as dilute, in other
words, the volume per particle (~ n™?) is much larger than the volume of the particle (~c°), or
alternatively, the relative spacing 6/c is large.

In a dilute system one expects collisions between particles to be infrequent and, because of

the absence of other interactions, particles to travel most of the time in straight lines.

Binary collisions

The molecular collisions are responsible for establishing the equilibrium condition. In
the absence of equilibrium, intermolecular interactions result in transport of macroscopic gas
quantities, such as mass, momentum and energy. Under equilibrium conditions the
distribution of molecular velocities is the same Maxwell-Boltzmann distribution at every
configuration space location. In other words the effects of molecular collisions cancel each
other (the distribution function is constant in time and configuration space) and therefore the
details of individual collisions do not play a role in determining the distribution of molecular
velocities. The situation is entirely different if we allow even the slightest deviation from
equilibrium. In this case molecular collisions result in the transport of macroscopic quantities
(such as mass, momentum and energy) accompanied by a gradual approach to the equilibrium
velocity distribution. The details of the macroscopic transport and change of the distribution
function are controlled by the specific nature of the molecular collision process. Molecular

collisions represent the microscopic process governing all macroscopic transport phenomena.



We consider the process of two particle (or binary) collisions. For the sake of
simplicity it will be assumed that the gas is composed of monatomic molecules which do not
possess any internal degrees of freedom (or if the molecules are not monatomic their states of

internal motion are assumed to be unaffected by the collisions).

Center of mass and relative position coordinates
It will be assumed that the molecules can be represented as point centers of force and they
interact via conservative forces directed along the line connecting the two molecules.
Let us consider two molecules with masses mi and mp, position vectors ry and rz, and
velocities vi1 and v.. It can be shown that the interaction between these two molecules
depends only on their relative position and velocity. We introduce the radius vector of center
of mass, re:

L — ®
The other quantity of physical interest is the relative position vector of the two particles, r:

r=rn—-r, e (2

The two molecules move under each other's influence and the two equations of motion can be
written in the following form:
d’r,

d’r,
i o

= I:12 m2 dt2 - F21 """""""""""""" (3)

Here F12 and F21 are forces acting on molecules 1 and 2 due to the presence of the other
molecule, respectively. These forces depend only on the relative position of the molecules, r,
and the fact that the forces acting on the two particles are of equal magnitude and point in
opposite directions, Fi2(r)= —F21(r). It can be easily seen that there is no force acting on the
center of mass and consequently it does not accelerate (moves with constant velocity):
dr, _ 1 [m d’n, dzrz}z F,+Fy
dt2  m+m,| T dt? ?dt? | m +m,

=0 e @

One can also readily calculate the relative acceleration of the two molecules with respect to

each other:

dzr:dzrl_dzrzzi_i:i 1 .
dt2  dt>? dt? m, m, (m m, )"



Equation (5) can be written as an equation of motion for a single particle with mass m*
(where m* is the reduced mass of the two molecules) in a central field of force:
. dr du (r
m—=- ( )er
dt dr
where e represents the unit vector along the relative position vector of the two molecules and

U(r) is the potential of the conservative intermolecular force, Fio:

() .~
S (7)

F,=-

These results show that one may introduce a new set of independent variables which simplify
the description of the collision. These new variables refer to the center of mass of the two
molecules and to their relative position, velocity and acceleration. It was shown that the
center of mass velocity remains constant during the interaction of the two molecules, while
the relative motion of the molecules can be described as the motion of a single particle with
mass m* under the influence of a conservative central field of force characterized by potential
u(r).

Boltzmann Transport Equation

In physics, specifically non-equilibrium statistical mechanics, the Boltzmann equation
or Boltzmann transport equation (BTE) describes the statistical behaviour of a
thermodynamic system not in thermodynamic equilibrium. It was devised by Ludwig
Boltzmann in 1872. The classic example is a fluid with temperature gradients in space
causing heat to flow from hotter regions to colder ones, by the random transport of particles.
In the modern literature the term Boltzmann equation is often used in a more general sense
and refers to any kinetic equation that describes the change of a macroscopic quantity in a
thermodynamic system, such as energy, charge or particle number.

The equation arises not by statistical analysis of all the individual positions and
momenta of each particle in the fluid; rather by considering the probability that a number of
particles all occupy a very small region of space (mathematically written d®, where d means
"differential”, a very small change) centered at the tip of the position vector r, and have very
nearly equal small changes in momenta from a momentum vector p, at an instant of time.

The Boltzmann equation can be used to determine how physical quantities change,
such as heat energy and momentum, when a fluid is in transport, and other properties

characteristic to fluids such as viscosity, thermal conductivity also electrical conductivity (by
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treating the charge carriers in a material as a gas) can be derived. The equation is a linear
stochastic partial differential equation, since the unknown function in the equation is a

continuous random variable.

The phase space and density function

The set of all possible positions r and momenta p is called the phase space of the system; in
other words a set of three coordinates for each position coordinate X, y, z, and three more for
each momentum component px, py, Pz. The entire space is 6-dimensional: a point in this space

is (r, p) =(X, Y, Z, px, Py, Pz), and each coordinate is parameterized by time t.

The small volume ("differential volume element™) is written

d*rd* p = dxdydzdp, dp, dp,

Since the probability of N molecules which all have r and p within d®rd®p is in question, at
the heart of the equation is a quantity f which gives this probability per unit phase-space

volume at an instant of time t. This is a probability density function: f(r, p, t), defined so that,

dN = F(r, p,t)d°rd*p

is the number of molecules which all have positions lying within a volume element d®r about

r and momenta lying within a momentum space element dp about p, at time t. Integrating

over a region of position space and momentum space gives the total number of particles

which have positions and momenta in that region:

N=[d°r [d*pf(r,p.1)

positions momenta

which is a 6-fold integral. While f is associated with a number of particles, the phase space is
for one-particle (not all of them, which is usually the case with deterministic many-body
systems), since only one r and p is in question. It is not part of the analysis to use ri, p1 for
particle 1, ro, p2 for particle 2, etc. up to rn, pn for particle N.

It is assumed the particles in the system are identical (so each has an identical mass m). For a

mixture of more than one chemical species, one distribution is needed for each, see below.
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Principal statement

The general equation can then be written:

w55
- = — +| — +| —
at at force at diff at coll

Where the "force" term corresponds to the forces exerted on the particles by an external
influence (not by the particles themselves), the "diff" term represents the diffusion of
particles, and "coll" is the collision term - accounting for the forces acting between particles

in collisions. Expressions for each term on the right side are provided below.

The force and diffusion terms

Consider particles described by f, each experiencing an external force F not due to other
particles. Suppose at time t some number of particles all have position r within element d®r
and momentum p within d®p. If a force F instantly acts on each particle, then at time t + At
their position will be r + Ar = r + pAt/m and momentum p + Ap = p + FAL.

Then, in the absence of collisions, f must satisfy
f(r + P At p+FaLt +At)d3rd3p = f(r, p,t)d’rd*p
m

Note that we have used the fact that the phase space volume element d®rd®p is constant,
which can be shown using Hamilton's equations. However, since collisions do occur, the

particle density in the phase-space volume d®rd*p changes, so

of
dN_ . =| —1| At¥d°rd®p
el (atjcoll p (1)

= f(r+£At, P+ FAt,t+Atjd3rd3p— f(r,p,t)d%rd*p
m

= Af.d’rd®p
Where Af is the total change in f.
Dividing (1) by d®rd®pAt and taking the limits At — 0 and Af — 0, we have

Qe ——
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The total differential of f is:

df :th+ @dx+ﬂdy+@dx + ﬂdeJridperidpz
ot OX oy 0z op, op, op,
= idt+Vf.dr+§.dp ____________________ (3)
ot op
[ X g vr PAL T gy
ot m op

Where V is the gradient operator, - is the dot product,
Dividing (3) by dt and substituting into (2), we get;

q+£.Vf + F.q :(qj
6': m ap at coll

In this context, F(r, t) is the force field acting on the particles in the fluid, and m is the mass
of the particles. The term on the right hand side is added to describe the effect of collisions
between particles; if it is zero then the particles do not collide. The collisionless Boltzmann

equation is often called the Vlasov equation.

Validity of Boltzmann Transport Equation

This equation was originally derived for dilute gases. In the following some of the
approximations of the Boltzmann transport equation and their implications are addressed. The
solution of the Boltzmann transport equation with an external force F(r) provides the
distribution function f,(r,P,t) from which macroscopic quantities can be derived. The right-
hand side of (4) describes the changes to the distribution function induced by scattering. The

particle’s Group velocity is determined from the semiconductor band structure En(P) as
V,(P) ="'V E, (P).

In the parabolic band approximation, #7'V, E, (P) =#P/m" and the particle's group
velocity can be calculated from the effective mass tensor z*. The distribution function
f_(r,P,t)d*Pd°r defines the probability density to find a particle in d*Pd°rat a given time

t. Obviously, such a statistical description can only be appropriate when the number of
carriers is large. Extremely down-scaled devices may contain too few carriers to justify this

kind of statistical treatment.
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Since carriers interact through their electric fields, the distribution function f,(r,P,t) at
a particular point in the six dimensional position-momentum (phase) space at a given time
can only be determined from the knowledge of f, in all other points. This would involve a
treatment using an N-particle system and an N-particle distribution function. However, if the
carrier-carrier correlations are weak, the N-particle distribution function can be contracted to
a one-particle distribution function. Alternatively, the influence of other carriers can be
treated through the self-consistent electric field and schemes where the Pauli exclusion
principle is included.

A main assumption of the Boltzmann transport equation is that particles can be treated
semi-classically, obeying Newton's law. Quantum mechanics enters the equation only
through the band structure and the description of the collision term. Since both the position
and the momentum of a particle are arguments of the distribution function, apparently the

quantum mechanical uncertainty principle is ApAr >7%/2 violated. Assuming a spread in

particle energy of kT, one finds that the spread in position is
Ar = B/(2+/2m*kpT) = A\g /2 . (5)

Here, A,denotes the particle's thermal average wavelength. Thus, one should not attempt to
localize the particle's position exactly with respect to its thermal average wavelength. If the
potential varies sharply on the scale of 1, which is typically in the order of 10 nm to 20 nm

at room temperature, condition (5) is not satisfied, and instead of the Boltzmann equation a

wave equation must be solved to study the propagation of a carrier wave through the device.

THE H-THEOREM

H =>" f, In f,dxdydzdp,dp,dp,

Boltzmann began by defining the function H for a dilute gas comprised of spherical particles
where f is a distribution function which determines the number of particles n; located in the
spatial region (dx,dy,dz) and having momentum in the range (dpx, dpy, dp;) through the

relation

n = f(xy.z,p,p, P, tldxdydzdp dp,dp, @)


http://www.iue.tuwien.ac.at/phd/ungersboeck/node62.html#e:pcondition

The term dxdydzdp,dp, dp, , is denoted dV,, and is referred to as the "volume" of a cell in 6-

dimensional p -space. The cells occupy equal "volumes" of p-space. Each particle has six
degrees of freedom and could be completely specified by a point in p-space. Thus, a quantity
of gas containing N particles can be represented by a swarm of N points in p-space and the
distribution function f tells us how these N points are partitioned among the cells of p-space.
The summation in Eq. (1) is taken over all of the cells in p-space. As indicated in Eq. (2), the

distribution function could depend upon position, momentum, and time.

The function H can be restated as
n.. n.
H =Nzﬁ'lnﬁ'+constant .................. 3)

If ni/N could be taken as the probability of a particle being found in the i cell of p -space,
we could write Eq. (3) as

H=N)PhP+constant @)

The first right-hand term of Eq. (4) would appear to be related to the statistical mechanical
entropy, but it must be remembered that the latter quantity refers to an equilibrium state and
therefore the Pi’s should be the cell occupation probabilities when the equilibrium
distribution prevails. Our substitution of ni/N for P; implies that the following relationship

between H and S is valid only as equilibrium is approached

H =—%+C0nstant ____________________ -
(or)
_gdH _dS 6
e & T (6)

The time derivative of S can therefore be obtained from the time derivative of H which in
turn depends on the change in f with time. Particle collisions provide the mechanism for

changes in f and when molecular chaos is assumed, it can be shown that

As per Eq. (6) this results in



Boo ©

dt
Thus, H can never increase and if Eqg. (5) is valid, S can never decrease. These derivatives
become zero at equilibrium where together forward and reverse collisions zero out and the

Maxwell-Boltzmann distribution prevails

Maxwell-Boltzmann Distributions

The Maxwell-Boltzmann equation, which forms the basis of the kinetic theory of gases,
defines the distribution of speeds for a gas at a certain temperature. From this distribution
function, the most probable speed, the average speed, and the root-mean-square speed can be
derived.

Introduction

The kinetic molecular theory is used to determine the motion of a molecule of an ideal
gas under a certain set of conditions. However, when looking at a mole of ideal gas, it is
impossible to measure the velocity of each molecule at every instant of time. Therefore, the
Maxwell-Boltzmann distribution is used to determine how many molecules are moving
between velocities vand v + dv. Assuming that the one-dimensional distributions are
independent of one another, that the velocity in the y and z directions does not affect the x

velocity, for example, the Maxwell-Boltzmann distribution is given by

12 —mc?
d N — m e 2kgT dv __________________________ (1)
N 27k,T

Where

dN/N is the fraction of molecules moving at velocity v to v + dv,
m is the mass of the molecule,
ky is the Boltzmann constant, and

T is the absolute temperature.

Additionally, the function can be written in terms of the scalar quantity speed c instead of the
vector quantity velocity. This form of the function defines the distribution of the gas

molecules moving at different speeds, between c1 and c2, thus
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m % -mc?

f(c) = 4nc? g 2T
27K T

Finally, the Maxwell-Boltzmann distribution can be used to determine the distribution of the

kinetic energy of for a set of molecules. The distribution of the kinetic energy is identical to

the distribution of the speeds for a certain gas at any temperature.

Plotting the Maxwell-Boltzmann Distribution Function

Figure 1 shows the Maxwell-Boltzmann distribution of speeds for a certain gas at a certain
temperature, such as nitrogen at 298 K. The speed at the top of the curve is called the most

probable speed because the largest number of molecules has that speed.

Vrms

Probability
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Figure 1 The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at
higher temperatures.

Figure 2 shows how the Maxwell-Boltzmann distribution is affected by temperature. At
lower temperatures, the molecules have less energy. Therefore, the speeds of the molecules
are lower and the distribution has a smaller range. As the temperature of the molecules
increases, the distribution flattens out. Because the molecules have greater energy at higher
temperature, the molecules are moving faster.

Figure 3 shows the dependence of the Maxwell-Boltzmann distribution on molecule

mass. On average, heavier molecules move more slowly than lighter molecules. Therefore,
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heavier molecules will have a smaller speed distribution, while lighter molecules will have a

speed distribution that is more spread out.

Probability

velocity v (m/s)

Figure 2: The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened
at higher temperatures.

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases
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Figure 3: The speed probability density functions of the speeds of a few noble gases at a
temperature of 298.15 K (25 °C). The y-axis is in s/m so that the area under any section of
the curve (which represents the probability of the speed being in that range) is dimensionless.
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Related Speed Expressions

Three speed expressions can be derived from the Maxwell-Boltzmann distribution: the most
probable speed, the average speed, and the root-mean-square speed. The most probable speed
is the maximum value on the distribution plot. This is established by finding the velocity
when the following derivative is zero.
df (c)
de

=0

Cmp

o 2RT
which is Cop = -~ 3)

The average speed is the sum of the speeds of all the molecules divided by the number of

T 8RT
Cag = j cf (c)dc=,/m ------------------ @)

The root-mean-square speed is square root of the average speed-squared.
/SRT
Crms = V ------------------ (5)

R is the gas constant,
T is the absolute temperature and
M is the molar mass of the gas.

molecules.

Where

It always follows that for gases that follow the Maxwell-Boltzmann distribution (if

thermallized)

Mp < T aV0 & ~rms

The Most probable Distribution

We are ultimately interested in the probability that a given distribution will occur. The reason

for this is that we must have this information in order to obtain useful thermodynamic

averages. The method used to obtain the distribution function of the ensemble of systems is

known as the method of the most probable distribution. We begin with the statistical entropy,
S=kInW.
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The weight, W (or thermodynamic probability) is the number of ways that distinguishable
particles can be arranged into groups such ap is the number in the zeroth group, a: is the
number in the first group etc. where A is the total number of systems in the ensemble.
A = total number of systems.
ao, a1, &2... = occupation numbers for system in each quantum state.
The overall probability that P; that a system is in the jth quantum state is obtained by
averaging aj/A over all the allowed distributions.
Thus, Pj is given by

p_{) _ 1 T W@aa

g A A %‘, W)

where the angle brackets indicate an ensemble average. Using this definition we can calculate

any average property (i.e. any thermodynamic property) using the Gibbs postulate.

(M) =T asp,
The method of the most probable distribution is based on the idea that the average over
aajfi/A is identical to the most probable distribution (i.e. that the distribution is arbitrarily
narrow in width). Physically, this results from the fact that we have so many particles in a
typical system that the fluctuations from the mean are extremely (immeasurably) small.

If we think only of translation motion, McQuarrie shows that the number of states
increases dramatically as the energy (and quantum number increase). Although the number of
states is an increasing function the kinetic energy is fixed and must be distributed in some
statistical manner among all of the available molecules.

The equivalence of the average probability of an occupation number and the most probable

distribution is expressed as follows:

To find the most probable distribution we maximize the probability function subject to two
constraints.

Conservation of energy requires:

a. &=k
%‘, FJ

where ¢j is the energy of the jth system in its quantum state.

Conservation of mass requires:
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>a; =4

J
which says only that the total number of the all of the systems in the ensemble must be A.
Using S = k InW we can reason that the system will tend towards the distribution among the
aj that maximizes S. This can be expressed as S;j(1S/a;) = 0.
This condition is satisfied by
Si(fIn W/a;)) =0
Subject to constraints

S sda . =0
) 5
J
The most probable distribution is aj/A = e
.
2 =%} e
J /—1 J

Now we need to find the undetermined multipliers a and b.
The left hand side is 1. Thus, we have

d; _ e by

A E a2 fey

This determines a and defines the Boltzmann distribution.

We will show that b=1/KT. This identification will show the importance of temperature in the
Boltzmann distribution. The distribution represents a thermally equilibrated most probable
distribution over all energy levels.

The sum over all factors e is given a name. It is called the molecular partition function, g.
g p— Z 8_ IE'EJf
J
The molecular partition function q gives an indication of the average number of states that are

thermally accessible to a molecule at the temperature of the system.

Transport Phenomena

In engineering, physics and chemistry, the study of transport phenomena concerns
the exchange of mass, energy, and momentum between observed and studied systems. Mass,
momentum, and heat transport all share a very similar mathematical framework, and the
parallels between them are exploited in the study of transport phenomena. The fundamental

analyses in all three subfields of mass, heat, and momentum transfer are often grounded in
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the simple principle that the sum total of the quantities being studied must be conserved by
the system and its environment. Thus, the different phenomena that lead to transport are each
considered individually with the knowledge that the sum of their contributions must equal
zero.

In physics, transport phenomena are all irreversible processes of statistical nature
stemming from the random continuous motion of molecules, mostly observed in fluids. Every
aspect of transport phenomena is grounded in two primary concepts: the conservation laws,
and the constitutive equations. The conservation laws, which in the context of transport
phenomena are formulated as continuity equations, describe how the quantity being studied
must be conserved. The constitutive equations describe how the quantity in question responds
to various stimuli via transport. Prominent examples include Fourier's Law of Heat
Conduction and the Navier-Stokes equations, which describe, respectively, the response of
heat flux to temperature gradients and the relationship between fluid flux and the forces
applied to the fluid. These equations also demonstrate the deep connection between transport
phenomena and thermodynamics, a connection that explains why transport phenomena are
irreversible. Almost all of these physical phenomena ultimately involve systems seeking their
lowest energy state in keeping with the principle of minimum energy. As they approach this
state, they tend to achieve true thermodynamic equilibrium, at which point there are no longer
any driving forces in the system and transport ceases. The various aspects of such equilibrium
are directly connected to a specific transport: heat transfer is the system's attempt to achieve
thermal equilibrium with its environment, just as mass and momentum transport move the
system towards chemical and mechanical equilibrium.

Examples of transport processes include heat conduction (energy transfer), fluid flow
(momentum transfer), molecular diffusion (mass transfer), radiation and electric charge
transfer in semiconductors.

Transport phenomena have wide application. For example, in solid state physics, the motion
and interaction of electrons, holes and phonons are studied under “transport phenomena”.
Another example is in biomedical engineering, where some transport phenomena of interest
are thermoregulation, perfusion, and microfluidics. In chemical engineering, transport
phenomena are studied in reactor design, analysis of molecular or diffusive transport

mechanisms, and metallurgy.
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The transport of mass, energy, and momentum can be affected by the presence of external

sources:

e An odor dissipates more slowly (and may intensify) when the source of the odor
remains present.

e The rate of cooling of a solid that is conducting heat depends on whether a heat source
is applied.

e The gravitational force acting on a rain drop counteracts the resistance or drag
imparted by the surrounding air.

Mean Free Path

Mean Free Path (l), the mean length of the path traversed by a particle between two
successive collisions with other particles. The concept of mean free path is used extensively
in calculations of various transfer processes, such as viscosity, heat conduction, diffusion, and
electrical conduction.

According to the kinetic theory of gases, molecules move uniformly and rectilinearly
from collision to collision. If a molecule traverses an average path v in 1 sec, undergoing in
the process v elastic collisions with similar molecules, then

T=vh=1/nc\2

where n is the number of molecules per unit volume (the density of the gas) and o is the
effective cross section of the molecule. As the density of the gas (its pressure) increases, the
mean free path decreases, since the number of collisions v per sec increases. A rise in
temperature or in the intensity of motion of the molecules leads to a certain decline in cr and
consequently to an increase in . For ordinary molecular gases under normal conditions (at
atmospheric pressure and 20°C), | ~ 10° cm, which is approximately 100 times greater than
the average distance between molecules.

In many cases the concept of mean free path is also applicable to particles whose
motion and interaction conform to the laws of quantum mechanics (such as conduction
electrons in a solid, neutrons in weakly absorbing mediums, and photons in stars), but the

calculation of the mean free path for such particles is more difficult.
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Commonalities among phenomena

An important principle in the study of transport phenomena is analogy between phenomena.

Diffusion

There are some notable similarities in equations for momentum, energy, and mass transfer

which can all be transported by diffusion, as illustrated by the following examples:

e Mass: the spreading and dissipation of odors in air is an example of mass diffusion.

o Energy: the conduction of heat in a solid material is an example of heat diffusion.

e Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an
example of momentum diffusion (the rain drop loses momentum to the surrounding

air through viscous stresses and decelerates).

The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat,
and Fick's law for mass are very similar. One can convert from one transfer coefficient to
another in order to compare all three different transport phenomena.

Momentum transfer

In momentum transfer, the fluid is treated as a continuous distribution of matter. The study of
momentum transfer or fluid mechanics can be divided into two branches: fluid statics (fluids
at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x direction
parallel to a solid surface, the fluid has x-directed momentum, and its concentration is vxp. By
random diffusion of molecules there is an exchange of molecules in the z direction. Hence the
x-directed momentum has been transferred in the z-direction from the faster- to the slower-
moving layer. The equation for momentum transport is Newton's Law of Viscosity written as

follows:

sz = aPVx
0z

where 12« is the flux of x-directed momentum in the z direction, v is w/p, the momentum
diffusivity z is the distance of transport or diffusion, p is the density, and x is the viscosity.
Newtons Law is the simplest relationship between the flux of momentum and the velocity

gradient.
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Mass transfer

When a system contains two or more components whose concentration vary from point to
point, there is a natural tendency for mass to be transferred, minimizing any concentration
difference within the system. Mass Transfer in a system is governed by Fick's First Law:
‘Diffusion flux from higher concentration to lower concentration is proportional to the
gradient of the concentration of the substance and the diffusivity of the substance in the

medium. Mass transfer can take place due to different driving forces. Some of them are:

e Mass can be transferred by the action of a pressure gradient(pressure diffusion)
o Forced diffusion occurs because of the action of some external force
« Diffusion can be caused by temperature gradients (thermal diffusion)

« Diffusion can be caused by differences in chemical potential

This can be compared to Fourier's Law for conduction of heat:

oCa
J AY — _DAB D
oy

where D is the diffusivity constant.

Energy transfer
All process in engineering involves the transfer of energy. Some examples are the heating
and cooling of process streams, phase changes, distillations, etc. The basic principle is the

first law of thermodynamics which is expressed as follows for a static system:

dT
q=-K-——
dx
The net flux of energy through a system equals the conductivity times the rate of change of
temperature with respect to position.
For other systems that involve turbulent flow, complex geometries or difficult boundary

conditions another equation would be easier to use:

Q = h.AAT
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where A is the surface area, is the temperature driving force, Q is the heat flow per unit time,

and h is the heat transfer coefficient.

Within heat transfer, two types of convection can occur:

Forced convection can occur in both laminar and turbulent flow. In the situation of laminar

flow in circular tubes, several dimensionless numbers are used such as Nusselt number,

Reynolds number, and Prandtl. The commonly used equation is:

Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of

free convection heat transfer make it necessary to mainly use empirical relations from

experimental data.

Special Cases of Navier-Stoke equation:

Incompressible fluid - In fluid dynamics, an incompressible fluid is a fluid whose
density is constant. It is the same throughout space and it does not change through
time. According to the continuity equation, it also implies V - u= 0. It is an
idealization used to simplify analysis. In reality, all fluids are compressible to some
extent.

Inviscid or Stokes flow - Viscous problems are those in which fluid friction have

significant effects on the solution. Problems for which friction can safely be neglected

are called inviscid. The Reynolds number (R=(#usL)/ #, where us is the mean fluid
velocity, and L is the characteristic length, e.g., the cross-section of the pipe) can be
used to evaluate whether viscous or inviscid equations are appropriate to the problem.
High Reynolds numbers indicate that the inertial forces are more significant than the
viscous forces. However, even in high Reynolds number regimes certain problems
require that viscosity be included. In particular, problems calculating net forces on
bodies (such as the wings on aircraft) should use viscous equations. Stokes flow
occurs at very low Reynold's numbers, such that inertial forces can be neglected

compared to viscous forces.
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o Steady flow - Another simplification of the equations is to set all changes of fluid
properties with time to zero. These are called steady flow, and are applicable to a
large class of problems, such as lift and drag on a wing or flow through a pipe.

e Boussinesq approximation - In fluid dynamics, the Boussinesq approximation is
used in the field of buoyancy-driven flow. It states that density differences are
sufficiently small to be neglected, except where they appear in terms multiplied by g,
the acceleration due to gravity. The essence of the Boussinesq approximation is that
the difference in inertia is negligible but gravity is sufficiently strong to make the
specific weight appreciably different between the two fluids. Boussinesq flows are
common in nature (such as atmospheric fronts, oceanic circulation, downhill winds),
industry (dense gas dispersion, fume cupboard ventilation), and the built environment
(natural ventilation, central heating). The approximation is extremely accurate for

many such flows, and makes the mathematics and physics simpler.

Laminar vs turbulent flow - Turbulence is flow dominated by recirculation, eddies, and
apparent randomness (see Figure 01). Flow in which turbulence is not exhibited is called
laminar (see Figure 02). It is believed that turbulent flows obey the Navier-Stokes equations.
However, the flow is so complex that it is not possible to solve turbulent problems from first
principles with the computational tools available today or likely to be available in the near
future. Turbulence is instead modeled using one of a number of turbulence models and
coupled with a flow solver that assumes laminar flow outside a turbulent region. Turbulence
usually occurs below a Reynold's numbers of 3000. It causes increased energy loss (as heat),
more drag (on the moving body), and generates sound wave (noise). Modern vehicle and

aircraft designs always try to minimize the turbulence by adopting a smooth surface and

streamlined contour.
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Figure 1 Turbulent Flow Figure 02 Laminar Flow
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QUESTION BANK
Part-A

Explain mean free path of a gas molecules and describe “A” of a gas molecules.
Explain transport phenomena of a gas.

Explain different conservation laws in Kkinetics.

What is hydrodynamics-Explain viscous hydrodynamics?

Describe TdS equation in Thermodynamics.

Explain binary collisions in gas molecules.

What are the limitations of Boltz-Man distribution law?

What is zero order approximation?

What is first order approximation?

What are the postulates of kinetic theories of gases?

PART-B

Derive Boltzmann-H theorem of gas molecules.

Derive Maxwell’s Boltzmann distribution law and obtain most probable distribution

equation of velocity.

Explain about the transport phenomena of gas molecules and obtain the expression for

A using viscous hydrostatics.

Explain different types of conservation laws of mass, energy and momentum.

Obtain the expression for Navier-Stokes equation. What is the importance of this

equation in Thermodynamics

Describe Zero and first order approximation of a gas and deduce the expression.

Describe the theory of viscous hydrodynamics and give one example in viscous

hydrodynamics.
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I11. CLASSICAL STATISTICAL MECHANICS

Microstate and Macrostate

In statistical mechanics, a microstate is a specific microscopic configuration of a
thermodynamic system that the system may occupy with a certain probability in the course of
its thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic
properties, such as its temperature, pressure, volume and density. Treatments on statistical
mechanics, define a macrostate as follows. A particular set of values of energy, number of
particles and volume of an isolated thermodynamic system is said to specify a particular
macrostate of it. In this description, microstates appear as different possible ways the system

can achieve a particular macrostate.

A macrostate is characterized by a probability distribution of possible states across a
certain statistical ensemble of all microstates. This distribution describes the probability of
finding the system in a certain microstate. In the thermodynamic limit, the microstates visited
by a macroscopic system during its fluctuations all have the same macroscopic properties.

Kinetic theory studies the macroscopic properties of large numbers of particles, starting from
their (classical) equations of motion. Thermodynamics describes the equilibrium behavior of
macroscopic objects in terms of concepts such as work, heat, and entropy. The
phenomenological laws of thermodynamics tell us how these quantities are constrained as a
system approaches its equilibrium. At the microscopic level, we know that these systems are
composed of particles (atoms, molecules), whose interactions and dynamics are reasonably
well understood in terms of more fundamental theories. If these microscopic descriptions are
complete, we should be able to account for the macroscopic behavior, i.e. derive the laws
governing the macroscopic state functions in equilibrium. Kinetic theory attempts to achieve

this objective.
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Statistical equilibrium

Statistical equilibrium is that state of closed statistical system in which the average values of

all the physical quantities characterizing the state are independent of time.

Statistical equilibrium is one of the basic concepts of statistical mechanics, where it plays the

same role as the thermodynamics

equilibrium in thermodynamics.Statistical equilibrium is not balanced in the mechanical sens

e, since small fluctuations

do not cease in the system when this state obtains. The theory of statistical

equilibrium is given in statistical mechanics, which describes statistical equilibrium in

terms of Gibb’s microcanonical, canonical or grand canonical ensembles depending on the

type of contact between the system and its surroundings.

Phase Space

Phase Space: a concept of classical Statistical Mechanics

Each Phase Space dimension corresponds to a particle degree of freedom

3 dimensions correspond to Position in (real) space: X, Y, z

* 3 dimensions correspond to Momentum: px, py, pz (or Energy and direction: E, 6, ¢)
More dimensions may be envisaged, corresponding to other possible degrees of
freedom, such as quantum numbers: spin, etc.

Each particle is represented by a point in phase space

Time can also be considered as a coordinate, or it can be considered as an independent
variable: the variation of the other phase space coordinates as a function of time (the

trajectory of a phase space point) constitutes a particle “history”.

Consider an isolated system with N particles (components). The complete description of

this system is given by the generalized coordinates:

g=(ql, ..., q3N),
p=(pl,...,p3N).

We define the phase space as follows.

Phase space: 6N-dimensional space whose points are given by the 6N values of

(1,...,093N, pl,...,p3N).



Properties of phase space:
e Phase space is a cartesian space;
e Itis non-metric, i.e., one cannot define invariant distances in the phase space. This is

also the case for the PV -state space.

For N particles, the total numbers of degrees of freedom is 6N, and therefore the total phase
space is 6N-dimensional. The motion of the particles is governed deterministically

by the Hamiltonian

—_—

NP2l —
Hpa)=2 5 5 vl -a)
Where V (qﬁ— q?) is the inter-particle potential. The equations of motion of the particles
are
p,=—
- oo,
G M
Lop
i=1,...,6N, with certain initial conditions.

The phase space is also called I'-space. A point (representative point) in this space
corresponds to a state of the N-body system at a given time, i.e, to the microstate of the
system.

A trajectory in the phase space corresponds to the time evolution of the microstate. This
trajectory never intersects with itself since the solution of the system of equations of motion
IS unique given certain initial conditions (self-avoiding random walk).

If H does not depend explicitly on time, in which case energy is a conserved quantity, all

trajectories in phase space lie on an energy surface which is a hypersurface in T"-space.



Ensembles

A key concept in statistical mechanics is the ensemble. An ensemble is a collection of
microstates of system of molecules, all having in common one or more extensive properties.
An ensemble is also defined as a large number of points in the phase space that can be

described by a density function ,o(qi , P ) Additionally, an ensemble defines a probability

distribution © accords a weight to each element (microstate) of the ensemble. These
statements require some elaboration. A microstate of a system of molecules is a complete
specification of all positions and momenta of all molecules (i.e., all atoms in all molecules,
but for brevity we will leave this implied). This is to be distinguished from a thermodynamic
state, which entails specification of very few features, e.g. just the temperature, density and
total mass. An extensive quantity is used here in the same sense it is known in
thermodynamics—it is a property that relates to the total amount of material in the system.
Most frequently we encounter the total energy, the total volume, and/or the total number of
molecules (of one or more species, if a mixture) as extensive properties. Thus an ensemble
could be a collection of all the ways that a set of N molecules could be arranged (specifying
the location and momentum of each) in a system of fixed volume. As an example, in

Ilustration 1 we show a few elements of an ensemble of five molecules.

:'j e :'j e

If a particular extensive variable is not selected as one that all elements of the ensemble have in

common, then all physically possible values of that variable are represented in the collection.
For example, Illustration 2 presents some of the elements of an ensemble in which only the

total number of molecules is fixed.



etfe 0
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The elements are not constrained to have the same volume, so all possible volumes from zero
to infinity are represented. Likewise in both Illustrations 1 and 2 the energy is not selected as
one of the common extensive variables. So we see among the displayed elements
configurations in which molecules overlap. These high-energy states are included in the
ensemble, even though we do not expect them to arise in the real system. The likelihood of
observing a given element of an ensemble—its physical relevance—comes into play with the

probability distribution = that forms part of the definition of the ensemble.

Any extensive property omitted from the specification of the ensemble is replaced by its
conjugate intensive property. So, for example, if the energy is not specified to be common to
all ensemble elements, then there is a temperature variable associated with the ensemble.
These intensive properties enter into the weighting distribution = in a way that will be
discussed shortly. It is common to refer to an ensemble by the set of independent variables
that make up its definition. Thus the TVN ensemble collects all microstates of the same
volume and molecular number, and has temperature as the third independent variable. The

more important ensembles have specific names given to them. These are
e Microcanonical ensemble (EVN)

e Canonical ensemble (TVN)

e Isothermal-isobaric ensemble (TPN)

e Grand-canonical ensemble (TVL)



Microcanonical ensemble (EVN)

In statistical mechanics, a microcanonical ensemble is the statistical ensemble that is used to
represent the possible states of a mechanical system which has an exactly specified total
energy. The system is assumed to be isolated in the sense that the system cannot exchange
energy or particles with its environment, so that (by conservation of energy) the energy of the
system remains exactly known as time goes on. The system's energy, composition, volume,
and shape are kept the same in all possible states of the system.

The macroscopic variables of the microcanonical ensemble are quantities such as the
total number of particles in the system (symbol: N), the system's volume (symbol: V) each
which influence the nature of the system's internal states, as well as the total energy in the
system (symbol: E). This ensemble is therefore sometimes called the NVE ensemble, as each
of these three quantities is a constant of the ensemble.

In simple terms, the microcanonical ensemble is defined by assigning an equal
probability to every microstate whose energy falls within a range centered at E. All other
microstates are given a probability of zero. Since the probabilities must add up to 1, the
probability P is the inverse of the number of microstates W within the range of energy,

p-t
W

The range of energy is then reduced in width until it is infinitesimally narrow, still centered at
E. In the limit of this process, the microcanonical ensemble is obtained.

The microcanonical ensemble is sometimes considered to be the fundamental
distribution of statistical thermodynamics, as its form can be justified on elementary grounds
such as the principle of indifference: the microcanonical ensemble describes the possible
states of an isolated mechanical system when the energy is known exactly, but without any
more information about the internal state. Also, in some special systems the evolution is
ergodic in which case the microcanonical ensemble is equal to the time-ensemble when
starting out with a single state of energy E (a time-ensemble is the ensemble formed of all
future states evolved from a single initial state).

In practice, the microcanonical ensemble does not correspond to an experimentally
realistic situation. With a real physical system there is at least some uncertainty in energy,
due to uncontrolled factors in the preparation of the system. Besides the difficulty of finding

an experimental analogue, it is difficult to carry out calculations that satisfy exactly the
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requirement of fixed energy since it prevents logically independent parts of the system from

being analyzed separately. Moreover there are ambiguities regarding the appropriate

definitions of quantities such as entropy and temperature in the microcanonical ensemble.
Systems in thermal equilibrium with their environment have uncertainty in energy,

and are instead described by the canonical ensemble or the grand canonical ensemble, the

latter if the system is also in equilibrium with its environment in respect to particle exchange.

Properties

e Statistical equilibrium (steady state): A microcanonical ensemble does not evolve
over time, despite the fact that every constituent of the ensemble is in motion. This is
because the ensemble is defined strictly as a function of a conserved quantity of the
system (energy).

e Maximum information entropy: For a given mechanical system (fixed N, V) and a
given range of energy, the uniform distribution of probability over microstates (as in
the microcanonical ensemble) maximizes the ensemble average —(log P).

e Three different quantities called "entropy" can be defined for the microcanonical
ensemble. Each can be defined in terms of the phase volume function v(E) which

counts the total number of states with energy less than E.

Grand canonical ensemble

In statistical mechanics, a grand canonical ensemble is the statistical ensemble that is used
to represent the possible states of a mechanical system of particles that is being maintained in
thermodynamic equilibrium (thermal and chemical) with a reservoir. The system is said to be
open in the sense that the system can exchange energy and particles with a reservoir, so that
various possible states of the system can differ in both their total energy and total number of
particles. The system's volume, shape, and other external coordinates are kept the same in all

possible states of the system.

The thermodynamic variables of the grand canonical ensemble are chemical potential

(symbol: p) and absolute temperature (symbol: T). The ensemble is also dependent on

mechanical variables such as volume (symbol: V) which influence the nature of the system's
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internal states. This ensemble is therefore sometimes called the uVT ensemble, as each of

these three quantities are constants of the ensemble.
Properties

e Uniqueness: The grand canonical ensemble is uniquely determined for a given system
at given temperature and given chemical potentials, and does not depend on arbitrary
choices such as choice of coordinate system (classical mechanics) or basis (quantum
mechanics).

o Statistical equilibrium (steady state): A grand canonical ensemble does not evolve
over time, despite the fact that the underlying system is in constant motion. Indeed,
the ensemble is only a function of the conserved quantities of the system (energy and
particle numbers).

o Thermal and chemical equilibrium with other systems: Two systems, each described
by a grand canonical ensemble of equal temperature and chemical potentials, brought
into thermal and chemical contact!™®-2 will remain unchanged, and the resulting
combined system will be described by a combined grand canonical ensemble of the
same temperature and chemical potentials.

e Maximum entropy: For given mechanical parameters (fixed V), the grand canonical
ensemble average of the log-probability —<log P> (also called the “entropy") is the
maximum possible for any ensemble (i.e. probability distribution P) with the same
<E>, <N1>, etc.

e Minimum grand potential: For given mechanical parameters (fixed V) and given
values of T, [, ..., Us, the ensemble average <E + KT log P — paN1 — ... 4sNs> is the

lowest possible of any ensemble.
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Liouville's Theorem

Consider a large number of particles, perhaps in a beam. These particles can be described by
one point in phase space per particle. For really large numbers of particles in a system, or if
we consider a theoretical ensemble of particles, the system can be described as a density

p(qi, pi) which is a function of the position in phase space.
Liouville's Theorem states that the density of particles in phase space is a constant

dp _ o, so we wish to calculate the rate of change of the density of particles. Imagine we
dt

shoot a burst of particles at the moon. The burst is localized in space and in momentum. The
burst moves toward the moon and so clearly the density near the earth is decreased, however,
the density we are interested in is essentially, the density around one of the particles, not the
density at some fixed point. That is, the point in phase space at which we wish to measure the
density, moves with the particles. The bunch of particles spreads out in coordinates space but
the coordinate is highly correlated with the momentum so the density in phase space can

remain constant.

To prove Liouville's theorem, we will calculate the rate of change of the number of particles
in an infinitesimal hypercube in phase space. Consider the cube face perpendicular to gk for
example. The flow of particles through the face is qu dp, times all the other dimensions of

the face dg;dp; for j = k. Then the rate of change of the number of particles in the hypercube,

due to flow through this face and the one opposite it is,

ON — 9(pgr)
A dg.;d
ot “Bar H 459Pj

and the net flow into the hypercube due to all of the faces is

ON Ipgr) | O(ppr)
ot Zk:[ DG Oprc H 45 9P3-

Calculate the rate of change of the density by dividing by the volume of the hypercube.

Op _ Z O(pqr) N O(ppr)
ot OqrK Opr

10



So that is the rate of change due to the other particles flowing, the partial derivative. To this

we should add the rate of change due to the particle we are following moving.

dp Op dp . op .
L +
dt ot Zk: [aqK U opr Lk

dp _ = [3(19@;%) N 3(ppk)] Y [ dp it dp pk]

dt 0q OpK 0qK OpK

dp [ Op . O dp Opr p dp
_~ ———p— —p— —DPp— — P+ — G+ ——
dt Xk: Bax qr Bqx Opxc Pk deP Dax qk 8prk
dp o Aqr. o Opr.

dt Z [ Oq K de] r

Now, we apply Hamilton's equations.

. OH

q:::, :apz_

. oH

Pi 9q;
d D H 2 H
D R e I’
dt p Oqr OpK OprOqK

This is true in the presence of any external forces or focusing elements. One cannot change
the density in phase space of a bunch of particles, a beam of light, or any other collection of

particles.

Maxwell-Boltzmann distribution law

In statistics, the Maxwell-Boltzmann distribution is a particular probability distribution
named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used in
physics (in particular in statistical mechanics) for describing particle speeds in idealized gases

where the particles move freely inside a stationary container without interacting with one
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another, except for very brief collisions in which they exchange energy and momentum with
each other or with their thermal environment. Particle in this context refers to gaseous
particles (atoms or molecules), and the system of particles is assumed to have reached
thermodynamic equilibrium. While the distribution was first derived by Maxwell in 1860 on
heuristic grounds, Boltzmann later carried out significant investigations into the physical
origins of this distribution.

A particle speed probability distribution indicates which speeds are more likely: a
particle will have a speed selected randomly from the distribution, and is more likely to be
within one range of speeds than another. The distribution depends on the temperature of the
system and the mass of the particle. The Maxwell-Boltzmann distribution applies to the
classical ideal gas, which is an idealization of real gases. In real gases, there are various
effects (e.g., van der Waals interactions, vertical flow, relativistic speed limits, and quantum
exchange interactions) that can make their speed distribution different from the Maxwell-
Boltzmann form. However, rarefied gases at ordinary temperatures behave very nearly like an
ideal gas and the Maxwell speed distribution is an excellent approximation for such gases.
Thus, it forms the basis of the Kinetic theory of gases, which provides a simplified
explanation of many fundamental gaseous properties, including pressure and diffusion.

The Maxwell-Boltzmann distribution is the function

3
mv?

f(v)= (L) Anvie 2T
27KT

Where m is the particle mass and KT is the product of Boltzmann's constant and
thermodynamic temperature.
This probability density function gives the probability, per unit speed, of finding the particle

with a speed near v. This equation is simply the Maxwell distribution with distribution
parametera =,/kT/m . In probability theory the Maxwell-Boltzmann distribution is a chi
distribution with three degrees of freedom and scale parameter a =,/kT/m .

The simplest ordinary differential equation satisfied by the distribution is:

KTV (v) + f (v)(mv? — 2kT)=0,

_m 92
F(Q) = |2e 0 (ﬂj
V4 KT

or in unit less presentation:
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a?xf'(x) +(x? —2a%)f (x) =0,

1
[
f()= ”—3
a

Distribution of energy

The energy distribution is found imposing

fe(E)E=f (PP e 1)

Where d°P is the infinitesimal phase-space volume of momenta corresponding to the energy

interval dE. Making use of the spherical symmetry of the energy-momentum dispersion

relation E = |P|2/2m , this can be expressed in terms of as

d°P = 4z|P|*d|P| = 4zmV2mEdE =~ e 2)

Using then (2) in (1), and expressing everything in terms of the energy E, we get

E
f_(E) 1 W am2mEdE

(22mkT)**

E(1)\" —E
fo (E)dE =2 |— — “E e
=(F) ﬂ(ij eXp(ij

And finally,

E(1)* [(-E
fE(E)=2\/;(ﬁ) exp[Fj

Since the energy is proportional to the sum of the squares of the three normally distributed
momentum components, this distribution is a gamma distribution; in particular, it is a chi-
squared distribution with three degrees of freedom.

By the equipartition theorem, this energy is evenly distributed among all three degrees
of freedom, so that the energy per degree of freedom is distributed as a chi-squared

distribution with one degree of freedom:
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f(e)d e= | exp(_—eJ
KT kT) 4

Where, e is the energy per degree of freedom. At equilibrium, this distribution will hold true
for any number of degrees of freedom. For example, if the particles are rigid mass dipoles of
fixed dipole moment, they will have three translational degrees of freedom and two additional
rotational degrees of freedom. The energy in each degree of freedom will be described
according to the above chi-squared distribution with one degree of freedom, and the total
energy will be distributed according to a chi-squared distribution with five degrees of

freedom. This has implications in the theory of the specific heat of a gas.

Distribution for the velocity vector

Recognizing that the velocity probability density fv is proportional to the momentum
probability density function by

3

f,d%v = fp(d—Pj d®v
dv

And using p=mv, we get

32 mlv? +v2 +v?
fV(VX,Vy,VZ :[ m j eXp|:— (x y z)

27KT 2kT

which is the Maxwell-Boltzmann velocity distribution. The probability of finding a particle
with velocity in the infinitesimal element [dvx, dvy, dv;] about velocity v = [vy, vy, V4] is

f, (vX Vi,V )dvxdvydvZ
Like the momentum, this distribution is seen to be the product of three independent normally
distributed variables vy, vy and v; but with variancekT/m. It can also be seen that the
Maxwell-Boltzmann velocity distribution for the vector velocity [vx, vy, V-] is the product of

the distributions for each of the three directions:
£, (Vv v, )= £, (0 ) f,(v,) f,(v,)

Where the distribution for a single direction is

m "2 mv?
fV(VX)Z[znij exp{_zkd
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Each component of the velocity vector has a normal distribution with mean

- [kT
My = My, = M, =0 and standard deviation o, =o,, =0,, =,/— , S0 the vector has a 3-
m

dimensional normal distribution, a particular kind of multivariate normal distribution, with

i kT
mean x, =0 and standard deviation o, =.|—
m

The Maxwell-Boltzmann distribution for the speed follows immediately from the distribution
of the velocity vector, above.

Note that the speed is

_ 2 2 2
V= Vi +VS 4V,

And the volume element in spherical coordinates

dv, dv,dv, =v?sin alvdedg
Where ¢gand Gare the "course” (azimuth of the velocity vector) and "path angle” (elevation

angle of the velocity vector).
Integration of the normal probability density function of the velocity, above, over the course
(from 0 to 2m) and path angle (from 0 to x), with substitution of the speed for the sum of the

squares of the vector components, yields the speed distribution.

Equipartition of energy

Equipartition of energy, law of statistical mechanics stating that, in a system in thermal
equilibrium, on the average, an equal amount of energy will be associated with each
independent energy state. Based on the work of physicists James Clerk Maxwell of Scotland
and Ludwig Boltzmann of Germany, this law states specifically that a system of particles in
equilibrium at absolute temperature T will have an average energy of /okT associated with
each degree of freedom, in which k is the Boltzmann constant. In addition, any degree of
freedom contributing potential energy will have another Y/,kT associated with it. For a system
of s degrees of freedom, of which t have associated potential energies, the total average
energy of the system is /(s + t)kT.

For example, an atom of a gas has three degrees of freedom (the three spatial, or
position, coordinates of the atom) and will, therefore, have an average total energy of 3/2kT.
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For an atom in a solid, vibratory motion involves potential energy as well as Kinetic energy,

and both modes will contribute a term /2kT, resulting in an average total energy of 3kT.

Energy Fluctuation

In the canonical ensemble, the system acquire a temperature by having a thermal contact

with a thermostat (heat bath) with temperature T. Thus the system is no longer isolated any
more. Its total energy, i.e., Hamiltonian H(qi, pi) is no longer conserved. In other words, we
should expect some fluctuation of total energy in the canonical ensemble. On the other hand,
fluctuations are not considered in thermodynamics. At constant N, V, T the appropriate
thermodynamics potential is A(N, V, T), from which we can compute a definite value for

energy E= A+ TS, with S = —(a—A] :
T Juy

Hence, in thermodynamics, we expect the system to simultaneously have a definite
temperature T and total energy E. In statistical mechanics, if the system has a well defined

temperature, its total energy E must fluctuate.

Partition functions

Partition functions describe the statistical properties of a system in thermodynamic
equilibrium. 1t is a function of temperature and other parameters, such as the volume
enclosing a gas. Most of the aggregate thermodynamic variables of the system, such as the
total energy, free energy, entropy, and pressure, can be expressed in terms of the partition
function or its derivatives. There are actually several different types of partition functions,
each corresponding to different types of statistical ensemble (or, equivalently, different types
of free energy). The canonical partition function applies to a canonical ensemble , in which
the system is allowed to exchange heat with the environment at fixed temperature, volume,
and number of particles. The grand canonical partition function applies to a grand canonical
ensemble, in which the system can exchange both heat and particles with the environment, at
fixed temperature, volume, and chemical potential. Other types of partition functions can be

defined for different circumstances.
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Meaning and significance

It may not be obvious why the partition function, as we have defined it above, is an important
quantity. First, let us consider what goes into it. The partition function is a function of the
temperature T and the microstate energies Ei, E2, Es, etc. The microstate energies are
determined by other thermodynamic variables, such as the number of particles and the
volume, as well as microscopic quantities like the mass of the constituent particles. This
dependence on microscopic variables is the central point of statistical mechanics. With a
model of the microscopic constituents of a system, one can calculate the microstate energies,
and thus the partition function, which will then allow us to calculate all the other
thermodynamic properties of the system.

The partition function can be related to thermodynamic properties because it has a very
important statistical meaning. The probability Ps that the system occupies microstate s is

PS =£e’ﬂE5
E

e " is the well-known Boltzmann factor. The partition function thus plays the role of a
normalizing constant (note that it does not depend on s), ensuring that the probabilities sum

up to one:

This is the reason for calling Z the "partition function™: it encodes how the probabilities are
partitioned among the different microstates, based on their individual energies. The letter Z
stands for the German word Zustandssumme, "sum over states". This notation also implies
another important meaning of the partition function of a system: it counts the (weighted)
number of states a system can occupy. Hence if all states are equally probable (equal
energies) the partition function is the total number of possible states. Often this is the

practical importance of Z.

Relation to thermodynamic variables
In this section, we will state the relationships between the partition function and the various
thermodynamic parameters of the system. These results can be derived using the method of

the previous section and the various thermodynamic relations.
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As we have already seen, the thermodynamic energy is

_ 0z
()=~

The variance in the energy (or “energy fluctuation") is

(o8 = (- (E)f) - SE2

The heat capacity is

The entropy is

S=—k; > PINP, =k(InZ + B(E)) =a—_|_(kB In Z)Z_a_

where A is the Helmholtz free energy defined as A = U - TS, where U=<E> is the total
energy and S is the entropy, so that

A=(E)-TS=—k,ThZ.

Boltzmann's Entropy equation

Boltzmann's equation is a probability equation relating the entropy S of an ideal gas to the
quantity W, which is the number of microstates corresponding to a given macrostate:

S=kgnW¥W
where kg is the Boltzmann constant, which is equal to 1.38065 x 1072 J/K.

In short, the Boltzmann formula shows the relationship between entropy and the number of
ways the atoms or molecules of a thermodynamic system can be arranged. In 1934, Swiss
physical chemist Werner Kuhn successfully derived a thermal equation of state for rubber
molecules using Boltzmann's formula, which has since come to be known as the entropy

model of rubber.
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The term Boltzmann entropy is also sometimes used to indicate entropies calculated
based on the approximation that the overall probability can be factored into an identical
separate term for each particle i.e., assuming each particle has an identical independent
probability distribution, and ignoring interactions and correlations between the particles. This
is exact for an ideal gas of identical particles, and may or may not be a good approximation

for other systems.

The Boltzmann entropy is obtained if one assumes one can treat all the component
particles of a thermodynamic system as statistically independent. The probability distribution
of the system as a whole then factorises into the product of N separate identical terms, one
term for each particle; and the Gibbs entropy simplifies to the Boltzmann entropy

SB = —i“"lr'rkB Z Pi In P

Where the summation is taken over each possible state in the 6-dimensional phase space of a
single particle (rather than the 6N-dimensional phase space of the system as a whole).

This reflects the original statistical entropy function introduced by Ludwig Boltzmann in
1872. For the special case of an ideal gas it exactly corresponds to the proper thermodynamic

entropy.

However, for anything but the most dilute of real gases, it leads to increasingly wrong
predictions of entropies and physical behaviours, by ignoring the interactions and correlations
between different molecules. Instead one must follow Gibbs, and consider the ensemble of

states of the system as a whole, rather than single particle states.
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QUESTION BANK

PART-A

What are macroscopic and microscopic states?

Explain statistical equilibrium in Thermodynamics?

Explain the phase space

What is an ensemble of thermodynamic system? Give an example?
Explain the principles of equi-partition of energy.

What do you mean by energy fluctuations?

What is grand canonical ensemble of statistical mechanics?

Compare the basic concepts of Bose-Einstein’s statistics and Fermi-Dirac statistics

© 00 N o Ok WD

Compare the basic concepts of Fermi-Dirac statistics and Maxwell-Boltzmann
statistics.

10.What are the different kinds of ensemble?

PART-B

Show that the density of phase points is an integral of motion by Liouville’s Theorem.
Explain the basic concepts of Bose-Einstein’s and Fermi Dirac statistics?

Derive the relation between the partition function and thermodynamic quantities.
Explain distribution of energy and velocity of particles by Maxwell-Boltzmann

distribution law.
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IV. QUANTUM STATISTICAL MECHANICS

Quantum statistical mechanics is based on the quantum-mechanical description of
many-particle systems. Therefore, even before introducing statistical distributions (for
microscopic states), we have to face the intrinsic probabilistic nature of quantum mechanical
predictions. It is very important to distinguish carefully between the intrinsic statistical nature
of quantum mechanics and the statistical aspects introduced by the probability distribution of

quantum-mechanical states.
Black body

An idealized physical body that absorbs all incident electromagnetic radiation, regardless of
frequency or angle of incidence, is called Black body. Although black body is a theoretical
concept, you can find approximate realizations of black body in nature.

A black body in thermal equilibrium (i.e. at a constant temperature) emits
electromagnetic radiation called black body radiation. Black body radiation has a
characteristic, continuous frequency spectrum that depends only on the body's temperature.
Max Planck, in 1901, accurately described the radiation by assuming that electromagnetic
radiation was emitted in discrete packets (or quanta). Planck's quantum hypothesis is a
pioneering work, heralding advent of a new era of modern physics and quantum theory.

Explaining the properties of black-body radiation was a major challenge in theoretical
physics during the late nineteenth century. Predictions based on classical theories failed to
explain black body spectra observed experimentally, especially at shorter wavelength . The
puzzle was solved in 1901 by Max Planck in the formalism now known as Planck's law of
black-body radiation. Contrary to the common belief that electromagnetic radiation can take
continuous values of energy, Planck introduced a radical concept that electromagnetic

radiation was emitted in discrete packets (or quanta) of energy.
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Black body radiation spectrum
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Typical spectrum from a black body at different temperatures is shown in blue, green and red
curves. As the temperature decreases, the peak of the black-body radiation curve moves to
lower intensities and longer wavelengths. Black line is a prediction of a classical theory for

an object at 5,000K, showing catastropic discrepancy at shorter wavelength.

Planck’s radiation law, a mathematical relationship formulated in 1900 by German
physicist Max Planck to explain the spectral-energy distribution of radiation emitted by a
blackbody (a hypothetical body that completely absorbs all radiant energy falling upon it,
reaches some equilibrium temperature, and then reemits that energy as quickly as it absorbs
it). Planck assumed that the sources of radiation are atoms in a state of oscillation and that the
vibrational energy of each oscillator may have any of a series of discrete values but never any
value between. Planck further assumed that when an oscillator changes from a state of energy
E: to a state of lower energy E», the discrete amount of energy E1 — E», or quantum of

radiation, is equal to the product of the frequency of the radiation, symbolized by the Greek
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letter v and a constant h, now called Planck’s constant, that he determined from blackbody

radiation data; i.e., E1 — E2 = hv.

Planck’s law for the energy E; radiated per unit volume by a cavity of a blackbody in
the wavelength interval A to A + AA (AA denotes an increment of wavelength) can be written
in terms of Planck’s constant (h), the speed of light (c), the Boltzmann constant (k), and the

absolute temperature (T):

8he |
W= NG X ¥ .
A exp (he/kTh) = 1

The wavelength of the emitted radiation is inversely proportional to its frequency, or
A = c/v. The value of Planck’s constant is found to be 6.62606957 x 1073* Js.

For a blackbody at temperatures up to several hundred degrees, the majority of the
radiation is in the infrared radiation region of the electromagnetic spectrum. At higher
temperatures, the total radiated energy increases, and the intensity peak of the emitted

spectrum shifts to shorter wavelengths so that a significant portion is radiated as visible light.

Phonons

Considering the regular lattice of atoms in a uniform solid material, you would expect there
to be energy associated with the vibrations of these atoms. But they are tied together with
bonds, so they can't vibrate independently. The vibrations take the form of collective modes
which propagate through the material. Such propagating lattice vibrations can be considered
to be sound waves, and their propagation speed is the speed of sound in the material.

The vibrational energies of molecules, e.g., a diatomic molecule, are quantized and
treated as quantum harmonic oscillators. Quantum harmonic oscillators have equally spaced
energy levels with separation DE = hv. So the oscillators can accept or lose energy only in
discrete units of energy hv.
The evidence on the behavior of vibrational energy in periodic solids is that the collective
vibrational modes can accept energy only in discrete amounts, and these quanta of energy
have been labeled "phonons". Like the photons of electromagnetic energy, they obey Bose-
Einstein statistics. Phonons are bosons possessing zero spin.

Considering a solid to be a periodic array of mass points, there are constraints on both

the minimum and maximum wavelength associated with a vibrational mode.
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with the modes and summing over the modes, Debye was able to find an expression for the
energy as a function of temperature and derive an expression for the specific heat of the

solid. In this expression, vs is the speed of sound in the solid.

Partition function for a Harmonic oscillator

Consider a one-dimensional harmonic oscillator in equilibrium with a heat reservoir at

temperature 1". The energy of the oscillator is given by

2
p 1 5 1)
EFE=—"—+4+—-kzx
2m 2 ’
where the first term on the right-hand side is the Kkinetic energy, involving the momentum P
and mass 17, and the second term is the potential energy, involving the displacement x and
the force constant k. Each of these terms is quadratic in the respective variable. So, in the

classical approximation the equipartition theorem yields:

—

;:%kT %)
m

%k?:%kT (3)



That is, the mean kinetic energy of the oscillator is equal to the mean potential energy which
equals (1/2)KT. It follows that the mean total energy is

— 1 1
E:EkT—i—EkT:kT. (4)

According to quantum mechanics, the energy levels of a harmonic oscillator are equally

spaced and satisfy

E,=(n+1/2)hw, ®)
where 71is a non-negative integer, and
we = (6)
m

The partition function for such an oscillator is given by

Z =3 exp(—fE,) = exp|—(1/2) fh] 3 exp(—nfhw). ()
Now, ) )
S exp(—n fhw) = 1 +exp(—fhw) + exp(—20hw) +---  ®

is simply the sum of an infinite geometric series, and can be evaluated immediately,

— 1

exp—nfhw) = : 9
L) = T )
Thus, the partition function takes the form

7 _ e:xp[—(l/?) &} hw] (10)

1 —exp(—fhw)’

and

InZ = —%,ﬁhw—lu[l—exp(—,ﬁﬁw)] (11)

The mean energy of the oscillator is given by



E:_imzz_[_Ehw_ﬂp(_ﬁhw)ﬁw], (12)

E:awli+ L ] (13

Consider the limit

hw
,ﬁ Lo L <= .

in which the thermal energy & T'is large compared to the separation 7w between the

energy levels. In this limit,

exp(Fhw) ~ 1+ fhw, (15)
50
— 1 1 1

~ |~ S (16)

E hw[2+ﬁﬁw] hw[ﬂhw]’

giving
o - = kT )
B

Thus, the classical result (4) holds whenever the thermal energy greatly exceeds the typical
spacing between quantum energy levels.
Consider the limit

ﬁﬁwzi—;}l, (18)

in which the thermal energy is small compared to the separation between the energy levels. In
this limit,

exp(Ahw) > 1, (19)
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and so

_ 1
E =~ hw(l/2 +exp(-fhw)] ~ ;s how. (20)
Thus, if the thermal energy is much less than the spacing between quantum states then the

mean energy approaches that of the ground-state (the so-called zero point energy). Clearly,

the equipartition theorem is only valid in the former limit, where kT))%w, and the oscillator

possess sufficient thermal energy to explore many of its possible quantum states.
Specific heats of solids

The amount of energy required to raise the temperature of one kilogram of the substance by
one kelvin is called specific heat. The SI unit for specific heat capacity is the joule per
kilogram kelvin, J-kg™*-K.By heat capacity, it is often referred that heat capacity at constant

volume, which is more fundamental than the heat capacity at constant pressure.The heat

capacity at constant volume is defined as

SR RS

Where S is the entropy, U is the energy, and T is temperature.
The experimental facts about the heat capacity of solids are these:

1. In room temperature range the value of the heat capacity of nearly all monoatomic

solids is close to 3Nk, or 25 J mol™ deg *

2. At lower temperatures the heat capacity drops rapidly and approaches zero as T2 in
insulators and as T in metals.If metal becomes semiconductor, the drop is faster than

T.

The Debye model is developed by Peter Debye in 1912.He estimated the phonon
contribution to the heat capacity in solids. The Debye model treats the vibration of the lattice
as phonons in a box, in contrast to Einstein model, which treats the solid as non-interacting
harmonic oscillators. The Debye model predicts the low temperature dependence of heat
capacity T2 that confirms the experimental results. Moreover, it covers the high temperature

limits like the Einstein model.
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EINSTEIN MODEL

The average energy of an oscillator of frequency @, is{n)hw . For N oscillators in one

dimension, all having same frequency, the thermal energy is

N7
U= N<n>ha):ehw/—w __________________ @

-1

Where 7=KT , k Boltzmann constant and (n) is the thermal average of the number of

phonons in an elastic wave of given frequency.

Then the heat capacity of oscillator is

ou hC{)Z eha)/f
C = — :Nk _________________
(3 ( : j(eh”” L o

ho
(a) Athightemperatures 7w <<KT and €XT ~ 1+ "%q

3N#7
U=

_3NKT =3RT e (@)

ho,
kT

Also C = dU/dT = 3R, in agreement with experiment.

ho
(b) At low temperatures ho>>KT and KT >>1
_heo
U=3Nawe © (5)

And C can be found as follows,

ha))2 o
C= 3Nk( T e

(%) et X
= T e

Therefore, it can be seen that Einstein model successfully predicts that C decreases with
decreasing T. However, exponential decrease is not observed; if low frequencies are present,
then 7i will be small, much smaller than KT even at low temperatures; C will remain at 3kT

to much lower frequencies and the fall off is not as dramatic as predicted by the Einstein

model.
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This graph indicates the heat capacity of several solid metals as a function of the Einstein
temperature: Ge=hv/kB.

DEBYE MODEL

Debye improved on Einstein’s theory by treating the coupled vibrations of the solid in terms
of 3N normal modes of vibration of the whole system, each with its own frequency. The
lattice vibrations are therefore equivalent to 3N independent harmonic oscillators with these
normal mode frequencies. For low frequency vibrations, defined as those for which the
wavelength is much greater than the atomic spacing, A>> a, the crystal may be treated as a
homogeneous elastic medium. The normal modes are the frequencies of the standing waves
that are possible in the medium.

Debye derived an expression for the number of modes with frequency between v and v+dv in

such a medium.

47\ v?

3 do = av’do
Y

g(v)dv =

where V is the crystal volume and v is the propagation velocity of the wave. This expression
applies only to low frequency vibrations in a crystal. Debye used the approximation that it

applied to all frequencies, and introduced a maximum frequency vp

D
(the Debye frequency) such that there were 3N modes in total. i.e. Ig(u)du =3N
0
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The Debye frequency corresponds to A= 2a, when neighbouring atoms vibrate in antiphase
with each other. With this approximation in place, Debye integrated over all of the
frequencies to find the internal energy of the crystal, and then calculated the heat capacity

using C, (GU)
oT

The resulting expression is given below.
Xp ,4.X
C, = aNK| > [ XL
Xp 0 (ee —1)
where x =hv/kT, and xp=hvp/kT= 0p/T. The Debye heat capacity depends only on the Debye
temperature Op. The integral cannot be evaluated analytically, but the bracketed function is

tabulated.
At high temperatures (T >>0p, Xp<< 1), we may rewrite the integrand as follows:

x‘e* _ X’
(ee _1)2 e°-1f1-e*)
x* x*

" 2(2cosh(x)-1)  (x*/2+x"/4+....)
Retaining only the x? term in the denominator gives
3%,
C, = 3Nk£—3 [x dx] = 3Nk
XD 0

To determine the low temperature limit (T << 0p, Xp>> 1), we note that the integrand tends
towards zero rapidly for large x. This allows us to replace the upper limit by co and turn the

integral into a standard integral, to give

C, _3N|{ DM3I Xfx ] 4Nk[9Dj3

We see that the Debye heat capacity decreases as T2 at low temperatures, in agreement with

experimental observation. This is a marked improvement on Einstein’s theory.
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Extension: Einstein-Debye Specific Heat

This T2 dependence of the specific heat at very low temperatures agrees with experiment for
nonmetals. For metals the specific heat of highly mobile conduction electrons is
approximated by Einstein Model, which is composed of single-frequency quantum harmonic

oscillators. The temperature dependence of Einstein model is just T. It becomes significant at
low temperatures and is combined with the above lattice specific heat in the Einstein-Debye

specific heat.

ZNk?2 127Nk
7°Nk T, 1em \ B3
2E, 5T 3

Cmetal:Celectron+cphonon=

Finally, experiments suggest that amorphous materials do not follow the Debye T2 law even

at temperatures below 0.01Tp.
Diatomic molecule

In case of an ideal gas of diatomic molecules, the presence of internal degrees of freedom are
apparent. In addition to the three translational degrees of freedom, there are rotational and
vibrational degrees of freedom. In general, the number of degrees of freedom, f, in a molecule

with na atoms is 3na:
f =3n,

Mathematically, there are a total of three rotational degrees of freedom, one corresponding to
rotation about each of the axes of three-dimensional space. However, in practice only the
existence of two degrees of rotational freedom for linear molecules will be considered. This
approximation is valid because the moment of inertia about the internuclear axis is
vanishingly small with respect to other moments of inertia in the molecule (this is due to the
very small rotational moments of single atoms, due to the concentration of almost all their
mass at their centers; compare also the extremely small radii of the atomic nuclei compared
to the distance between them in a diatomic molecule). Quantum mechanically, it can be
shown that the interval between successive rotational energy Eigen states is inversely
proportional to the moment of inertia about that axis. Because the moment of inertia about the

internuclear axis is vanishingly small relative to the other two rotational axes, the energy
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spacing can be considered so high that no excitations of the rotational state can occur unless
the temperature is extremely high. It is easy to calculate the expected number of vibrational
degrees of freedom (or vibrational modes). There are three degrees of translational freedom,

and two degrees of rotational freedom, therefore

foo=f—f

vi

f,=6-3-2=1

trans

Each rotational and translational degree of freedom will contribute R/2 in the total molar heat
capacity of the gas. Each vibrational mode will contribute R to the total molar heat capacity,
however. This is because for each vibrational mode, there is a potential and kinetic energy
component. Both the potential and kinetic components will contribute R/2 to the total molar
heat capacity of the gas. Therefore, a diatomic molecule would be expected to have a molar
constant-volume heat capacity of

3R 7R

C,,=—+R+R=—-=35R
2 2

v,

Where the terms originate from the translational, rotational, and vibrational degrees of

freedom, respectively.

The following is a table of some molar constant-volume heat capacities of various diatomic

gases at standard temperature (25 °C = 298 K)

Diatomic gas||Cv, m (J/(mol-K))(|ICv,m / R
H2 20.18 2.427
CO 20.2 2.43
N2 19.9 2.39
Clz 24.1 3.06

Brz (vapour) 28.2 3.39

From the above table, clearly there is a problem with the above theory. All of the diatomics

examined have heat capacities that are lower than those predicted by the equipartition
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theorem, except Br.. However, as the atoms composing the molecules become heavier, the
heat capacities move closer to their expected values. One of the reasons for this phenomenon
is the quantization of vibrational, and to a lesser extent, rotational states. In fact, if it is
assumed that the molecules remain in their lowest energy vibrational state because the inter-
level energy spacings for vibration-energies are large, the predicted molar constant volume
heat capacity for a diatomic molecule becomes just that from the contributions of translation

and rotation:

=R R="R_25R
’ 2 2
which is a fairly close approximation of the heat capacities of the lighter molecules in the

above table. If the quantum harmonic oscillator approximation is made, it turns out that the

quantum vibrational energy level spacings are actually inversely proportional to the square
root of the reduced mass of the atoms composing the diatomic molecule. Therefore, in the
case of the heavier diatomic molecules such as chlorine or bromine, the quantum vibrational
energy level spacings become finer, which allows more excitations into higher vibrational
levels at lower temperatures. This limit for storing heat capacity in vibrational modes, as
discussed above, becomes 7R/2 = 3.5 R per mole of gas molecules, which is fairly consistent
with the measured value for Br, at room temperature. As temperatures rise, all diatomic gases

approach this value.

Ideal Bose gas
We consider an ideal gas of Bose particles. This is a gas of any integral spin (e.g. zero spin)

particles at a temperature low enough that quantum effects are important. Quantum effects
become important when the thermal wavelength A, —(h2/27zka)]/2 of the particles is

comparable or greater than the interparticle spacing, i.e. nA> >1.

The prime physical example is a gas of *He atoms. In fact the *He-*He interatomic interaction
is strong enough that the gas condenses into a liquid at low temperature, below 4.2 K. In spite
of this, liquid “He properties are often compared with similar properties in the perfect Bose
gas. In 1924 Einstein proposed that a Bose gas at low temperature would undergo a
\condensation" in which a macroscopic or large fraction of the particles condense into the
lowest energy single particle state (the zero momentum state). This Bose-Einstein

condensation was a logical consequence of the new statistics introduced by Bose. Although
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there is not yet a fully satisfactory theory of Liquid “He this condensation is observed in
liquid “He at T-T,= 2.17 K. At T, a fraction of atoms begin to condensate into the condensate
state. At T— 0 K 7.25: 75 % of the fluid is in the condense state.

Bose-Einstein condensation

A Bose—Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to
temperatures very close to absolute zero (that is, very near 0 K or —273.15 °C). Under such
conditions, a large fraction of bosons occupy the lowest quantum state, at which point

macroscopic quantum phenomena become apparent.

The statistical description of a collection of non-interacting bosons was first considered by
Bose in 1924 in the context of photons and the Planck’s distribution. In 1925, Einstein
realized that for material particles whose number must be conserved, these statistics (now
known as Bose-Einstein statistics) could force the particles to undergo a phase transition in
which they form a macroscopic occupation of the lowest energy level of the container. This
phase transition is known a s Bose-Einstein condensation, and it occurs when the temperature
and density are such that the deBroglie waves of the atoms begin to overlap.

Ideal-gas atoms are considered as non-interacting quantum mechanical version of a
classical ideal gas. It is composed of bosons, which have an integer value of spin, and obey
Bose-Einstein statistics. Considering, properties of a system of N noninteracting particles
(say bosonic atoms) of mass m, in thermodynamic equilibrium at temperature T, the mean
number of particles occupying a single quantum state of energy €y is given by the Bose-

Einstein distribution.

1
1 e e e —— @

Where | and ks corresponds to chemical potential and Boltzmann constant, respectively.
Note that the exponential part of this distribution function is bounded below by 1, this
function allows arbitrarily high occupancy of any state. This surprising result allows for the
possibility that certain number of massive particles may exist simultaneously in a single
quantum state. That is, more than one particle may be described by exactly the same single-
particle Schrodinger wave function. The physical implications of this statement indicate that

two or more bosons are observed at the same position. The chemical potential j1c as a function
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of temperature and the total number of particles gives the dependence of Bose-Einstein
distribution on N.

The chemical potential is the energy required to add a particle to the system while
keeping the entropy and volume are fixed. It is determined from the constraint that the total
number of particles in the system is fixed, so we have

1
N :Zm ------------ @)

If the Bose-Einstein distribution varies slowly on the scale of the energy level spacing, then
the summation in Eq. (2) can be replaced by an integral over a density of states. If pc — 0,
however, the distribution has a singularity at &y = 0, which signifies the possibility of the
ground state to accommodate very large number of particles. In addition, this state is actually
neglected by the density of states, which does not provide a good description of the lowest
energy levels. The simplest way to deal with these problems is it correct usage ground state
contribution for special treatment, and use a density of states for the remaining levels. Eq. (2)

can therefore be written as

N=Ny+[f(e)gle)de 3)

where Np is the number of particles in the ground state and G(¢) is the density of states for the

homogeneous gas in three-dimensional (3D) box and is given by

3/2
G(s) = LZ(Z—TJ 1 (4)
A\ h
where V is the volume of the system. The integral over the density of states in Eq. (3) gives
the number of excited particles Ney, i.e. those which are not in the ground state. Eq. (1) shows
that the Bose-Einstein distribution is a monotonically increasing function of both pand T. If
the system is cooled, yc must therefore increase so that the total number of particles is
constant. Since we must also have pc < 0, we can find maximum number of particles in the

excited states by setting e = 0 in the integral of Eq. (3), we have

mk,T T/ ?

N, =VZ(3/2
o =V )(W
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where ¢(a) is the Riemann zeta function. For uniform ideal Bose gas in a 3D box, the value
of ¢ (3/2) =2.612. At high temperature pc << 0, Nex > N and essentially all the particles are
in the excited states. As the system is cooled, however, ¢ increases towards zero and we

eventually reach a critical temperature T at which Nex = N.
From Eqg. (5) the transition temperature T is given by

hZ
T, = 303{—Jn2/3 ____________ ©6)
mkg

Where n = N/V is the particle number density. At the transition temperature, the number of
particles in the excited state is given by

3/2
T
N ex — N (T_j """""" (7)

c
Below the critical temperature, the particles can no longer be accommodated in the
excited states, so further cooling results in the formation of a macroscopic population of the
lowest energy level. In this regime, the chemical potential is essentially fixed at zero. Upon

substitution Eqg. (7) into Eq. (3), the condensate population varies with temperature as

Thus, below the critical temperature a finite fraction of all the particles occupy a single state.
This is one of the defining features of Bose-Einstein condensation. The particle in a box
model is simple to deal with, there are practical difficulties in implementing exactly cubic
traps experimentally. As such, its primary purpose lies in providing the most basic theoretical
illustration of BEC. An alternative model which is no more complicated to deal with but far
more practicable is obtained by replacing the box containment with a radially symmetric

harmonic potential,
1
V(r)= Em(a)xzx2 + a)jy2 + a)zzxzz)
Rigorously speaking, for an ideal Bose gas of N bosonic atoms in a harmonic potential, the

condition of phase-space density n(27h’ /ka)3/2>2.612 is replaced by N(na,, /k,T)**>

1.202 where mn= (0xmym,)'? is the geometric means of the harmonic trapping frequencies.
Using exactly the same arguments that are usually employed to solve the box model, the

density of states is
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h
and the critical temperature T, = 0.94(k—a)ij/3

B

Below T¢, the condensate population varies with temperature as

3
T
N,=N l_(T_] .......... (10)

c

The above relation indicates that the number of particles condensed into the single quantum

state in harmonic potential varies with temperature.

Liquid Helium

The chemical element helium exists in a liquid form only at the extremely low
temperature of —269 °C (about 4 K or —452.2 °F). Its boiling point and critical point depend
on which isotope of helium is present: the common isotope helium-4 or the rare isotope
helium-3. These are the only two stable isotopes of helium. See the table below for the values
of these physical quantities. The density of liquid helium-4 at its boiling point and a pressure
of one atmosphere (101.3 kilopascals) is about 0.125 grams per cm?®, or about 1/8th the

density of liquid water.

Characteristics

The temperature required to produce liquid helium is low because of the weakness of the
attractions between the helium atoms. These interatomic forces in helium are weak to begin
with because helium is a noble gas, but the interatomic attractions are reduced even more by
the effects of quantum mechanics. These are significant in helium because of its low atomic
mass of about four atomic mass units. The zero point energy of liquid helium is less if its
atoms are less confined by their neighbors. Hence in liquid helium, its ground state energy
can decrease by a naturally-occurring increase in its average interatomic distance. However at

greater distances, the effects of the interatomic forces in helium are even weaker.

Because of the very weak interatomic forces in helium, this element would remain a liquid at

atmospheric pressure all the way from its liquefaction point down to absolute zero. Liquid
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helium solidifies only under very low temperatures and great pressures. At temperatures
below their liquefaction points, both helium-4 and helium-3 undergo transitions to
superfluids. (See the table below).

Liquid helium-4 and the rare helium-3 are not completely miscible. Below 0.9 kelvin at their
saturated vapor pressure, a mixture of the two isotopes undergoes a phase separation into a
normal fluid (mostly helium-3) that floats on a denser superfluid consisting mostly of helium-
4. This phase separation happens because the overall mass of liquid helium can reduce its
thermodynamic enthalpy by separating.

At extremely low temperatures, the superfluid phase, rich in helium-4, can contain up to 6%
of helium-3 in solution. This makes possible the small-scale use of the dilution refrigerator,
which is capable of reaching temperatures of a few milli-kelvins. Superfluid helium-4 has

substantially different properties than ordinary liquid helium.

Fermi-Dirac statistics

The counting is the same as in the boson case, except that the 3 states of the system where the
particles are in the same single particle state are excluded. Thus there are 3 states in total. The
relative probability for finding two particles in the same state is zero, of course.

We can see how the statistics controls the number of states. More interestingly, we
can see that the relative probability for finding particles in the same state is greatest for
identical bosons and least for identical fermions, with distinguishable particles somewhere in
between. Thus one can say that by their very nature, identical bosons “like" to be in the same
state compared to identical fermions and other particles.

Degenerate Fermi Gas

It is easy to check that for an electron at room temperature the quantum length is
about 4 nm so the quantum volume is about 64 nm3. Consider a metal where, with about one
conduction electron per atom, the volume per conduction electron is approximately 1072 nm?3,
Thanks to the relatively low mass of the electron and the relatively low (room) temperature,
the conduction electrons in a metal must be treated quantum mechanically-the fermionic
nature of the particle can be expected to be important. We will now explore
the simplest possible model of a quantum electrons { the degenerate Fermi gas. This provides
an elementary model of conduction electrons in a metal as well as an explanation for
phenomena like white dwarf stars.

The degenerate Fermi gas is obtained by treating a collection of electrons as non-

interacting fermions at zero temperature. As T—0 you expect the system to settle into its
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unique lowest energy state. If it weren't for the fact that the electrons were fermions, this
lowest energy state would arise by putting all the particles in the lowest single-particle state.
But we can only put 1 electron per single particle state, so we have to fill more and more
states. Eventually we have placed all the particles, say N of them, in the lowest available
energy states. The particles will have occupied all (1-particle) energies up to some value, call
it er — the Fermi energy. This leads to behavior with thermodynamic features — even at zero
temperature!

As a simple illustration of the Fermi energy, let us return to our identical particles A
and B. Let us suppose that states 1, 2, 3, have energies 1eV, 2eV, 3eV, respectively. The
Fermi energy is 2eVV. What we'd like to do now with the degenerate Fermi gas is to compute
the Fermi energy as well as a few other observables like the internal energy and pressure of
the gas, all as functions of the volume and number of particles. To do this we need to get a
handle on the 1-particle states. We will model the electrons as a “particle in a box". This
means the following.

For a free particle in a cubic box with sides of length L, the states of a particle with a
given energy € have wave functions of the form

o

L

Where the n's can be any integer greater than equal to 1. Note that the wave function vanishes
on the edges of the box which are taken to be at x; y; z = 0; L. The state is determined by the
choice of the n's and the spin state of the electron, the latter can be up or down along some
(arbitrarily chosen) axis. The ground state is when ny = ny = n; = 1, irrespective of the spin
state (so the ground state is doubly degenerate). The first excited states are obtained by
setting 2 of the 3 n's to unity and the third n is set equal to 2, e.g., nx = ny = 1, n, = 2. Thus the
ground state is doubly degenerate and the first excited state is 6-fold degenerate. The energy €

of a single particle state determined by a given choice of the n's is

2

~ smL?2

Where m is the electron mass.

(nf+n§+nf)

5

So much for the energy states of a single particle. The idea is now that, for the T~0 ground
state of the gas, each electron occupies one of the energy states such that the gas has the

lowest possible energy. Actually, one can put two electrons in each energy state because there
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are two spin states the electron can be in for any given energy. The maximum 1-particle
energy which occurs is the Fermi energy, which we write as
= hz n2

smL> ™

Where n?,, is the largest value for n} +n7 +n; which occurs. To get a handle on &r we use

&

a geometric interpretation of this formula which arises for a macroscopic gas. The filled 1-
particle states determine a sphere of radius nmax. Actually, only 1/8 of a sphere is used since

the vectors n have all components being non-negative. For a large enough number of
particles, it is not to hard to see that the volume of this 1/8 of a sphere is approximately 1/2
the number of states which are filled, which is 1/2 the number of particles N. (The 1/2 comes
because there are two particles per energy state due to the two spin states of an electron).

Thus, for N >> 1, we have

1 4
N =2x-x2nd
8 3
Use this formula to eliminate nmax in &F and set V = L2,

We then get a nice formula for the Fermi energy:

g_ﬂxﬁg“
Fo8m\av

For a typical metal the Fermi energy is on the order of an electron volt or so. At room
temperature, the average thermal energy per electron is about KT =1=40 eV . We see that the
internal energy per electron is at least an order of magnitude bigger than the average thermal
energy of an electron. What this means is that at room temperature the fermionic effects are
dominating the thermal effects, although the latter effects aren't completely negligible. This
justifies setting T = 0 as a first approximation.

More generally, we can define a Fermi temperature:

T_E_W(wfs
Tk 8mk\av

Pauli paramagnetism
The ground state of a noninteracting Fermi gas is nonmagnetic, with spin up and
down states equally populated. On general grounds we therefore expect that in the presence

of an external magnetic field these spin states will be split by the eigen values of the Zeeman
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Ignoring orbital e< ects of the magnetic field (that we will consider in the next subsection),
together with the kinetic energy the single-electron spectrum is then given by

h*k?
€, = om +ougB, o=%1

Pauli linear susceptibility is
/‘f/PauIi = :uég(EF )
to be compared to the Curie susceptibility y curie =p%e/keT , with the role of ksT replaced by

€q . As with the qualitative discussion of the low-temperature excitation energy and the heat
capacity, above, here too we can understand the result of the temperature-independent Pauli
susceptibility in terms of Curie susceptibility of the reduced, temperature dependent number
of excitations confined by the Pauli principle to the ksT/e.. shell around the Fermi surface.
This reproduces the detailed result via

kgT KT p2 _,u_é

ZPauIi ~ ZCurie = -
€r e kpT e;

Above we have focused on magnetic response to an external field due to spins, ignoring

orbital effects of charged electrons.

The density matrix and patrician function

The density matrix or density operator is an alternate representation of the state of a quantum
system for which we have previously used the wave function. Although describing a quantum
system with the density matrix is equivalent to using the wave function, one gains significant
practical advantages using the density matrix for certain time-dependent problems —
particularly relaxation and nonlinear spectroscopy in the condensed phase.

The density matrix is formally defined as the outer product of the wave function and

its conjugate.
p®O=[yO)w®) e (1)

This implies that if you specify a state|z), (x|p|x)the integral gives the probability of

finding a particle in the state |;5> Its name derives from the observation that it plays the
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quantum role of a probability density. If you think of the statistical description of a classical
observable obtained from moments of a probability distribution P, then p plays the role of P

in the quantum case:

(A =[AP(AMA e @)

(A= [Ap)=TrlAp] e ©)

Where Tr[...] refers to tracing over the diagonal elements of the matrix.

The last expression is obtained as follows. For a system described by a wave function.

wt)=>c.tn) (4)
The expectation value of an operator is

(Am)=Yc,0c,@mAn) e (5)

Also, from eq. (1) we obtain the elements of the density matrix as

pl1)= 3¢, 0, ln)(m

SSpmOmml e ©)

We see that p, , the density matrix elements, are made up of the time-evolving expansion

Coefficients.

Substituting into eq. (5) we see that

<A(t)> = Zm: NP 27 v (3) R —— -

In practice this makes evaluating expectation values as simple as tracing over a product of
matrices.

It is a practical tool when dealing with mixed states. Pure states are those that are
characterized by a single wave function. Mixed states refer to statistical mixtures in which we
have imperfect information about the system, for which we must perform statistical averages
in order to describe quantum observables. A mixed state refers to any case in which we

subdivide a microscopic or macroscopic system into an ensemble, for which there is initially
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no phase relationship between the elements of the mixture. Examples include an ensemble at
thermal equilibrium, and independently prepared states.
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QUESTION BANK

PART-A

Explain the black body radiation (or) Photon Gas?
State and explain the Bose-Einstein Statistics.

How to find the degeneracy of gas molecules.

Discuss the electron gas by quantum mechanics.

What is called Fermi Energy level?

How do electrons contribute to specific heat of solids?

Distinguish between Einstein and Debye models of solids.

PART-B

Discuss the specific heat capacity of solids by Debye’s Theory.

Discuss how the properties of Liquid Helium vary using its Phase diagram.

Explain Pauli paramagnetism by quantum mechanics.

Explain the density matrix of a thermodynamic system by quantum statistical

mechanics.
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V. ADVANCED TOPICS IN STATISTICAL MECHANICS

Phase transitions and critical Phenomena

As an introduction to the physics of phase transitions and critical phenomena, we
explain in this chapter a number of basic ideas such as phases, phase transitions and
critical phenomena. Intuitive accounts are given to the concepts of scaling and
renormalization, which are powerful, systematic tools to analyze critical behavior of
macroscopic systems. Also explained are several model systems, on the basis of which
phase transitions and critical phenomena have been studied.

Phase and phase diagram

We are surrounded by a number of substances in different states. A phase is a
state of matter in which the macroscopic physical properties of the substance are uniform
on a macroscopic length scale, e.g. 1 mm. Familiar examples are ice, liquid water, and
water vapor, each of which is a phase of water as a collection of macroscopic numbers of
H20 molecules. Roughly speaking, we call the length scale that we encounter in our
daily life the macroscopic scale, which is to be contrasted with the microscopic scale as
the standard of length in the atomic world. The goal of statistical mechanics is to
elucidate physical phenomena occurring on the macroscopic scale as a result of the
interactions among microscopic constituents. A phase is characterized by a
thermodynamic function, typically the free energy. A thermodynamic function is a
function of a few macroscopic parameters such as the temperature and the pressure.
Thus, the phase of a macroscopic substance is determined by the values of these
parameters. A phase diagram is a graph with those parameters as the axes, on which the
phase is specified for each point. An example of a
phase diagram is given in Fig. 1.1. A typical phase diagram has several specific features
including phase boundaries, a critical point (point C in Fig. 1.1), and a triple point(point
TP). A phase boundary separates different phases. A change in parameterssuch as the
temperature across a phase boundary causes a sudden change in the phaseof a substance.
For example, a solid phase changes into a liquid phase at the meltingtemperature. This is
a phase transition. A phase boundary sometimes disappears ata critical point, where the

two phases become indistinguishable and the substanceshows anomalous behavior. The



theory of critical phenomena explains this anomalous behaviour.

Phase transitions

A phase transition is a phenomenon in which a drastic change between
thermodynamic phases occurs as the system parameters such as the temperature and
pressure are varied. A familiar example is the melting of ice at 0 -C near 1 atm. The
characterization of a phase transition as a drastic change of macroscopic properties is
described theoretically as the emergence of singularities (non-analyticities) in functions
representing physical quantities. As shown in Fig. 1.2, quantities such as the entropy S,
the volume V and the specific heat C show such singularities as a discontinuity (jump),a
cusp or a divergence. An example is the melting of ice, in which latent heat must be
supplied to the system and consequently the entropy jumps as illustrated in Fig.
1.2(a).When water boils and changes to vapor, the volume changes discontinuously.
From a physics standpoint the reason behind the occurrence of a phase transition is the
competition between the (internal) energy E and the entropy S of the system, which

together determine its free energy F = E — TS. While the first

term (E) favors order, the second (S) privileges disorder, and depending on the value of
the external parameters (such as T), one of the two terms dominates. According to the
conventional classification, phase transitions are roughly divided into two types by the
degree of singularity in physical quantities. When the first-order derivative of the free
energy F shows a discontinuity, the transition is of first order.The transition is called
continuous if the second- or higher-order derivatives of the free energy show a
discontinuity or a divergence. It is also common to name phase transitions by the order
of the derivative that first shows a discontinuity or divergence, e.g. it is called second
order if it is the second-order derivative of the free energy that first displays the

discontinuity or divergence.



Mean field theories

Very few models of statistical mechanics have been solved exactly; in most of
the cases one has to rely on approximative methods. Among them. the mean-field
approximation (MFA) is one of the most widely used. The advantage of the mean-
field theory 1s its simplicity and that it correctly predicts the qualitative features of
a system in most cases.

The essence of the mean-field theory 1s the assumption of statistical indepen-
dence of the local ordenng (spins in the case of magnetic systems). The inferac-
tion terms 1n the Hamiltonian are replaced by an effective, "mean field” term. In
this way, all the information on correlations in the fluctuations is lost. Therefore,
the mean-field theory is usually inadequate n the cnifical regime. It usually gives
wrong critical exponents, i particular at low spafial dimensions when the number
of NN 15 small.

The MFA becomes exact in the limit as the number of mteracting neighbours
z — oo0. This is the case when the range of inferaction » — oc or if the spafial
dimension 1s high. In both cases. a site "feels” contnbutions from many neigh-
bours and therefore the fluctuations average out or become even irrelevant (for
Ising systems, they become irrelevant in d > 4). At low d, the MFA must be used
with caution. Not only that 1t predicts wrong crifical exponents, its predictions are
even qualitatively wrong sometunes. For example, it predicts long-range order
and finite critical temperature for the d = 1 Ising model. In the following, we
shall introduce and formulate the MEA for magnetic systems. In the Appendix A
we summarize basic thermodynamic relations for magnetic systems. The results,

Weiss-Molecular Field of an Ising System

Two formulations of the mean-field approximation. We will now formulate
the mean-field approximation in two different ways.

o A- The “Weiss molecular field theorv” according to its “inventor” Pierre
Weiss. This method is straightforward and easy to understand. It gives us
an expression for the order parameter but does not tell us anything about the
free energy or partition fiinction.

# B: The second method will be the Bragg-Williams approximation which is
more sophisticated and 1s based on the free energy minimization.

We will develop the mean-field approximation on the Ising model in an exter-
nal magnetic field.



Weiss formulated a theory of ferromagnetism in which he assumed that the effect
of the neighbouring spins on a given spin can be described by a fictitious “molec-
ular field” which 1s proportional to the average magnetization of the system.

We start with the Ising Hamiltonian in an external magnetic field:

H==0Y %S;—HI. S )
() '

The local field acting on the spin at the site i 1s:
Hi=JY" S;+ H. (2)
p]
It depends on the configuration of all the neighbouring spins around the site i.
If the lattice is such that each spin has many neighbours, then it is not a bad

approximation to replace the actual value of the neighbouring spins by the mean
value of all spins,

> Sy — zm, (.3)
1

where 2 is the number of nearest neighbours and . is the mean (average) magne-
tization per site, m - 7'q 323 S;. With (3), the local field becomes

Hy=2Jm+ H, 4)
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Figure |: Temperature dependence of the order parameter in the mean-field
approximation.

The actual local field acting on the site i was replaced by its mean value and 1s
independent of the site, /1, — H . In the mean-field approximation the original
Hamiltonian is replaced by a mean-field Hamiltonian

Harr = —Hur Y Sy, (5)
|

which is equivalent to the Hamiltonian of a non-interacting spin system in an
external magnetic field and can be solved exactly:

m = tanh(8Hys ) = tanh|B(zJm + H)|. (6)

This is a self-consistent. transcendental equation for /. It has a non-trivial solu-
tion (m +# 0) for 3zJ = 1. 1.e.. at low temperatures. The temperature dependence
of the order parameter m: for // — Oisshownin Fig 1 Itvanishes at the critical
temperature T = >J.

Phase transition

A phase transition is the transformation of a thermodynamic system from one
phase or state of matter to another one by heat transfer. The term is most commonly used
to describe transitions between solid, liquid and gaseous states of matter, and, in rare
cases, plasma. A phase of a thermodynamic system and the states of matter have uniform
physical properties. During a phase transition of a given medium certain properties of the
medium change, often discontinuously, as a result of the change of some external
condition, such as temperature, pressure, or others. For example, a liquid may become
gas upon heating to the boiling point, resulting in an abrupt change in volume. The
measurement of the external conditions at which the transformation occurs is termed the
phase transition. Phase transitions are common in nature and used today in many

technologies.
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Phase transitions occur when the thermodynamic free energy of a system is non-
analytic for some choice of thermodynamic variables (cf. phases). This condition
generally stems from the interactions of a large number of particles in a system, and does
not appear in systems that are too small. It is important to note that phase transitions can
occur and are defined for non-thermodynamic systems, where temperature is not a
parameter. Examples include: quantum phase transitions, dynamic phase transitions, and

topological (structural)

phase transitions. In these types of systems other parameters take the place of
temperature. For instance, connection probability replaces temperature for percolating

networks.

At the phase transition point (for instance, boiling point) the two phases of a
substance, liquid and vapor, have identical free energies and therefore are equally likely
to exist. Below the boiling point, the liquid is the more stable state of the two, whereas

above the gaseous form is preferred.
Critical Indices

Critical indices describe the behaviour of physical quantities near continuous phase
transitions. It is believed, though not proven, that they are universal, i.e. they do not
depend on the details of the physical system, but only on, the dimension of the system,

the range of the interaction, the spin dimension.

These properties of critical exponents are supported by experimental data. The
experimental results can be theoretically achieved in mean field theory for higher-
dimensional systems (4 or more dimensions). The theoretical treatment of lower-
dimensional systems (1 or 2 dimensions) is more difficult and requires the
renormalization group. Phase transitions and critical exponents appear also in

percolation systems. However, here the critical dimension above which mean field

exponents are valid is 6 and higher dimensions.[Y] Mean field critical exponents are
also valid for random graphs, such as Erd6s—Rényi graphs, which can be regarded as

infinite dimensional systems.
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Ising Model

The Ising model is one of the simplest and most fundamental models of statistical mechanics.
It can be used to describe such diverse phenomena as magnets; liquid/gas coeristence; alloys
of two metals; and many others, even outside of physics.

Each such system can be described by elementary variables s;, usually called “spins’
with 2 possible values s, = £1. The 2 values stand for, e.g., an elementary magnet pointing
up or down; a piece of liquid or gas; an atom of metal A or B; etc.). These variables usually
live on the sites i of some lattice. One associates an energy

E=-J ) g5 (1)
neighbors 15

with each configuration of spins, where J is some constant. Each state of the system occurs
with probability given by the Boltzmann factor

p=7 ) @)

where T is temperature, kg the Boltzmann constant, and Z a normalization factor.

Even though the Ising model is drastically simplified from realistic situations, it is able
to describe, often quantitatively, the occurence of order at low temperatures and disorder
at high temperatures, and especially the phase transition between those situation, in which
spin correlations over very large length scales become essential.

The Ising model can be solved exactly only in the simplest cases (in one spatial dimension,
and on a two-dimensional square lattice). In most cases of practical interest, one has to resort
to either analytical approrimations like series expansions for high or for low temperature, or
to numerical techniques like Markov Chain Monte Carlo simulations.



Interactive simulation

The simulation shows the two-dimensional Ising model. Every little box of the spin field
represents one of the two possible states s, = +1. The constants J and kg are omitted.

You can control the temperature either by typing a positive real number into the tem-
perature field or by adjusting the slide rule with the mouse. The critical temperature of the
model is Tiry = lu(ﬁi'ﬁ = 2.269... The magnetization is simply the mean of all spins.

You can also adjust the lattice size.

The graphs show magnetization and energy of the current configuration.

Observe the following:

1. Set the temperature to be well above the critical temperature (2.26...). You will see that
the spin arrangement converges to a nearly random arrangement, independent of the
starting state: "Cold”, or "Hot”, and fluctuates quickly. Hence, above the critical tem-
perature, there is a single thermodynamic state, with zero magnetization. At infinite
temperature the spin arrangement is truly random.

2. Start well below the critical temperature with initial state "Cold”.
All the spins will start with equal value. You will see that just a few small clusters of op-
posite spins appear, and there is a non-zero magnetization. The analogouous situation
would ocecur if initially all spins were reversed. Hence, below the critical temperature,
there are two thermodynamic states (the "up spin” state with positive magnetization
and the "down spin” state negative magnetization). With the Metropolis method the
system stays in one or the other depending on how the spins are initialized.

3. Start well below the critical temperature with initial state "Hot”.
You see that the system initially cannot make up its mind whether to go into the "up
spin” or "down spin” state. Large clusters of each spin form. Eventually, if you let the
simulation run for a long time, one of the states will win. Which one wins depends
on the random thermal fluctuations. There is equal probability for it to be in the "up
spin” or "down spin” state.

4. Start at or close to the critical temperature. You will see large clusters of spins with
the same orientation, which fluctuate only very slowly. The typical size of these clusters
is the so called correlation length £ which is maximal at the critical temperature, where
it would diverge on an infinitely large system.

The slow fluctuation of spins with the Metropolis method is called eritical slowing
doun. Fluctuations of spins travel through the lattice locally in this method, like in
a random walk. Therefore they are associated with a time scale of 7 =~ £2 iterations.
The system thus keeps a long memory of its initial state, and many iterations must
be discarded before useful averages can be taken. These then need many iterations to

converge, especially on large systems.




Heisenberg model

The Heisenberg model is a statistical mechanical model used in the study of critical points
and phase transitions of magnetic systems, in which the spins of the magnetic systems are
treated quantum mechanically. In the prototypical Ising model, defined on a d-dimensional

lattice, at each lattice site, a spin 7 =S {:H} represents a microscopic magnetic dipole to
which the magnetic moment is either up or down. Except the coupling between magnetic
dipole moments, there is also a multi-polar version of Heisenberg model called the multipolar

exchange interaction.

For quantum mechanical reasons (see exchange interaction or the subchapter "quantum-
mechanical origin of magnetism™ in the article on magnetism), the dominant coupling
between two dipoles may cause nearest-neighbors to have lowest energy when they are
aligned. Under this assumption (so that magnetic interactions only occur between adjacent
dipoles) the Hamiltonian can be written in the form

N N
H= —JZUjUj+1 —hZETJ
j=1

j=1

Where, .Jis the coupling constant for a 1-dimensional model consisting of N dipoles,
represented by classical vectors (or "spins") cj, subject to the periodic boundary condition
Tn+1 = T1. The Heisenberg model is a more realistic model in that it treats the spins

qguantum-mechanically, by replacing the spin by a quantum operator (Pauli spin-1/2 matrices

at spin 1/2), and the coupling constants JIsJysand J.. As such in 3-dimensions, the
Hamiltonian is given by

N
H=—-3) (J.050;, + Jolol, + J.0 05, +ho;)

i=1

b | =

Where the fon the right-hand side indicates the external magnetic field, with periodic

boundary conditions, and at spin & = 1/2,

The spin matrices are givenby
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The Hamiltonian then acts upon the tensor product , of dimension 2NV The objective is to
determine the spectrum of the Hamiltonian, from which the partition function can be

calculated, from which the thermodynamics of the system can be studied.

A simplified version of Heisenberg model is the one-dimensional Ising model, where the

transverse magnetic field is in the x-direction, and the interaction is only in the z-direction:

At small g and large g, the ground state degeneracy is different, which implies that there must

be a quantum phase transition in between. It can be solved exactly for the critical point using

g; = H SJ:_E

the duality analysis. Tger dua!jj{ry transition of the Pauli matrices is j<i  and

r g
0; = S'.:' Sf.:'+1, where and are also Pauli matrices which obey the Pauli matrix
algebra. Under periodic boundary conditions, the transformed Hamiltonian can be shown is

of a very similar form:

N N
H=—gl.y S5, —gl.3 &
=1 j=1

but for the Hattached to the spin interaction term. Assuming that there's only one critical

point, we can conclude that the phase transition happens at § = 1

The most widely known type of Heisenberg model is the Heisenberg XXZ model, which

occurs in the case J = Jx = Jy F Jo = A The spin 1/2 Heisenberg model in one
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dimension may be solved exactly using the Bethe ansatz, while other approaches do so
without Bethe ansatz.

The physics of the Heisenberg model strongly depends on the sign of the coupling constant J
a'r{d the dimension of the space. For positive .Jthe ground state is always ferromagnetic. At
negative .Jthe ground state is antiferromagnetic in two and three dimensions; it is from this
ground state that the Hubbard model is given. In one dimension the nature of correlations in
the antiferromagnetic Heisenberg model depends on the spin of the magnetic dipoles. If the
spin is integer then only short-range order is present.

Energy fluctuations in the canonical ensemble

In the canonical ensemble, the total energy is not conserved. ( H(x) # conat ).
What are the fluctuations in the energy? The energy fluctuations are given by the root

mean square deviation of the Hamiltonian from its average { H }

AE = \[{(H - (HW} = /{(H?) — (H)?

(H) = = 5 1n QUV, V,T)

(H?) = %C’N f dxH?(x)e A1)

1 & s
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Therefore

&
{H?) — (HY = @h@'
But
;}%mg = kT2CY,
Thus,

AF = \f‘ﬂﬂclr

Therefore, the relative energy fluctuation AE/E  is given by

AR VET2Cy
E E

Now consider what happens when the system is taken to be very large. In fact, we will

define a formal limit called the thermodynamic limit, in which h N—m

and ¥ — oo such that N/V remains constant.

Since ¢, and E are both extensive variables, Cy~N and g~ N,

AE 1
E TN

+ 0 s N —= o

But aE;‘EWOUId be exactly 0 in the micro canonical ensemble. Thus, in the thermodynamic
limit, the canonical and micro canonical ensembles are equivalent, since the energy

fluctuations become vanishingly small.



Wiener-Khinchin Theorem

The Wiener—Khinchin theorem (also known as the Wiener—Khintchine theorem and
sometimes as the Wiener—Khinchin-Einstein theorem or the Khinchin—Kolmogorov theorem)
states that the power spectral density of a wide-sense-stationary random process is the Fourier
transform of the corresponding autocorrelation function.

. . . Cr) . Eu)
Recall the definition of the autocorrelation function C(t) of a function E(t) ,

)= INE MEG+1)dT. (1)

Also recall that the Fourier transforms of E (#) is defined by

E(r)= INE e 2T gy (2)

Giving a complex conjugate of

Ein= INE.,- e dy,
| 3)

Plugging £ (t)and E (r + T)into the autocorrelation function therefore gives

Cl:ﬂ:flf E,/_Ez”'”dv‘ IE g 2TV gyt g
Y NE-,.E..f g 2T ) 2E G gy dy
INNET ©
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so, amazingly, the autocorrelation is simply given by the Fourier transform of the absolute
square of . The Wiener-Khinchin theorem is a special case of the cross-correlation
theorem withf = g.

Reversible and Irreversible Thermodynamic process

In science, a process that is not reversible is called irreversible. This concept arises most
frequently in thermodynamics. In thermodynamics, a change in the thermodynamic state of a
system and all of its surroundings cannot be precisely restored to its initial state by
infinitesimal changes in some property of the system without expenditure of energy. A
system that undergoes an irreversible process may still be capable of returning to its initial
state; however, the impossibility occurs in restoring the environment to its own initial
conditions. An irreversible process increases the entropy of the universe. However, because
entropy is a state function, the change in entropy of the system is the same whether the
process is reversible or irreversible. The second law of thermodynamics can be used to

determine whether a process is reversible or not.

All complex natural processes are irreversible. The phenomenon of irreversibility results
from the fact that if a thermodynamic system, which is any system of sufficient complexity,
of interacting molecules is brought from one thermodynamic state to another, the
configuration or arrangement of the atoms and molecules in the system will change in a way
that is not easily predictable. A certain amount of "transformation energy" will be used as the
molecules of the "working body" do work on each other when they change from one state to
another. During this transformation, there will be a certain amount of heat energy loss
or dissipation due to intermolecular friction and collisions; energy that will not be

recoverable if the process is reversed.
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Onsager reciprocal relations

In thermodynamics, the Onsager reciprocal relations express the equality of
certain ratios between flows and forces in thermodynamic systems out of equilibrium,
but where a notion of local equilibrium exists. "Reciprocal relations" occur between
different pairs of forces and flows in a variety of physical systems. For example,
consider fluid systems described in terms of temperature, matter density, and pressure. In
this class of systems, it is known that temperature differences lead to heat flows from the
warmer to the colder parts of the system; similarly, pressure differences will lead to
matter flow from high-pressure to low- pressure regions. What is remarkable is the
observation that, when both pressure and temperature vary, temperature differences at
constant pressure can cause matter flow (as in convection) and pressure differences at
constant temperature can cause heat flow. Perhaps surprisingly, the heat flow per unit of
pressure difference and the density (matter) flow per unit of temperature difference are
equal. This equality was shown to be necessary by Lars Onsager using statistical
mechanics as a consequence of the time reversibility of microscopic dynamics
(microscopic reversibility). The theory developed by Onsager is much more general than
this example and capable of treating more than two thermodynamic forces at once, with
the limitation that “the principle of dynamical reversibility does not apply when
(external) magnetic fields or Coriolis forces are present”, in which case "the reciprocal

relations break down"

ONSAGER's Theorem

A rigorous description of thermal influences on the electrical current and vice versa has
been presented by ONSAGER in 1931. His theory discusses the relations of reciprocity
of reversible and irreversible processes, where the coupling of the electrical and the
thermal subsystems are investigated. For instance, if the electrical driving force is

denoted as Xi= E and the thermodynamic driving force is expressed as,

1
XZ= — fvT'.l (1)

WhereThas been identified as the absolute temperature by CARNOT , the corresponding

equation system can be formulated with independent equations as
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X]_ =R1 J]_ (2)

Xa=Hjda, (3)

Where R; and R are the electrical resistivity and the thermal ““heat resistance",
respectively. The heat resistance is also called thermal resistance R in this thesis.

The quantities J; and J, are the electrical and the thermal current, respectively.

The thermal current density J» is also called heat flow density qw. Equations Ri> and
R21 are coupled. Introducing the standard notation, these equations can be adapted by
cross coefficients and represent the ONSAGER relations

Xi1=FKu1J1 + Kiada,

(4)
(5)
Xo=FKnd) + Eada.
For this equation system, THOMSON proposed the relation
Eyy=Hn, (6)

Which is also called reciprocity theorem" of the ONSAGER relations. However,
implies that this relation follows from symmetric principles of thermodynamic theory.
Hence, the reciprocity theorem neglects the loss during heat conduction and energy
conversion and relation assumes a balanced energy flow between the two subsystems.
Thus, a steady stage is assumed with the request of, where equilibrium conditions are

applicable only within short range.

The principle of microscopic reversibility in Rjj is less general than the second fundamental
law of thermodynamics. For further investigated coupled systems, the currents may have
different signs due to the different directions of the energy flows.

Therefore, 0,S >0 is not sufficient enough to fulfill the second law of thermodynamics.
Hence, the necessary condition for the equation system consisting of and to guarantee the
second law with yields

Fijx+ Ry < 24Ky Has. ©)



This necessary condition has been originally proposed by BOLTZMANN in 1887.

Writing the ONSAGER relations and as functions of driving forces X;

J1=L11X; 4+ L12X;
(8)

9)
Ja=L11X; + L3 X,

where the necessary condition of type remains valid accordingly for Li; as
Lyy+ Loy < 24/Lyy Ly, (10)

To consider the ONSAGER relations in terms of energy, and can be multiplied by Xiand X,
respectively, leading to

J1 - Xg=L11 X1 X3+ L1x X7 X,

(11)
Ja - Xo=La1X; Xo+ LnX: Xs,

(12)

These equations represent the products of the driving forces X; and displacements of types
of flow Ji.

The result of and can be described as the dissipated energy per volume and per time and
reads

T6=>"J; X,
(13) ':

where @ is the entropy generation rate per unit volume and follows from the second law of

thermodynamics

S=>=0 = To,5 =0, (14)
O(T8:S)
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where the entropy generation rate 0,S can be determined by the sum of the power

densities of all contributing subsystems. Hereby, the parts of the sums can be identified
as the power densities of the participating systems which are determined by chemical
reactions, the power loss due to heat transfer and JOULE's self-heating, and the power
loss due to diffusion processes. The power density of chemical reactions can be

expressed by scalar-valued quantities as

To== Z Jehem X fhem (%aﬁ'ﬁj) (— Z w#;ﬁ) )
&

(17)

Where, them is determined by the chemical reaction rate 5t§j per unit volume V.

chem __
The chemical driving force is represented by , i - = — 225 Vil

Where, vj denotes the chemical potential andthe 4 stoichiometric ~ coefficient of the

participating atom. The electrical power density can be identified by

To=3 I X{=3" 1 Ei=
a a =_ZJi'v‘piv

(18)



Where J and E are the electrical current density and the &fectrical field,
respectively. The electric field can be expressed by the spatial gradient of an electrical
potential. For electro- magnetical subsystems, the power density has to be appropriately
adapted as discussed in Section . Another important contribution to the global entropy

increase is the power loss due to thermal heat flow, which can be expressed in terms of by

]

heat he heak __ , g i —
Tohr =" Ip= X, “‘L‘—Zi:‘lth,s (Tav(,&)) -
1
:Zq.hh:i ' (—ing) M (19)

Where, q,, represents the local heat flux density. The second term in depicts the

thermal driving force according to FOURIER's empirical law. For diffusion

processes, the power density can be identified as

diff diff  rdiff_ mal | _ o VY
iy _Zi:Ji ). € _Zi:.]f“ (TE‘E'(T_))_

i

_ mol _ ) & '
_Z Ji ' ( v.ru'a + Ti vTa) ] (20)
Where J™' is the mole number per unit area and time of the contributing speciesi .

The driving force of diffusion processes is determined by the gradient of the chemical
potential and by the gradient of the temperature.

Since the power density of diffusion processes has been determined for no external
forces, an extension for the applied electrical field has to be made by introducing an
additional term that depicts the force acting on charged particles inside the simulation

domain. Hence, equation has to be modified as

TE=Z J];:n.n]. (_v#i + %ng — Z;ﬂgvi,ﬂa 1 (21)



Where Z is the effective valence charge of the species; , ni is the species concentration

per mole, and ¢, is the corresponding electrical potential.

To conclude ONSAGER's thermodynamical treatment, the overall power density is thus
given by the sum of the power densities of all contributing subsystems as

19 =Ty 6=T (65 4 6% + 6= 4 g°F) (22

+>_Jmt. (—v,u,i + %vﬂ — Z:‘n;'ﬁ'tpg) )

where, the thermodynamic power density 7@ is determined by the contributing

chemical reactions, the electrical burden, heat flows, and molar diffusion processes.
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QUESTION BANK

PART-A
What is called Critical Phenomena?
Describe the Phase Transitions in Thermodynamics.
Explain the process of Ferromagnetic Transition by statistical mechanics.
How to get the Critical indices in Thermodynamics
Explain the irreversible process in Thermodynamics.
What do you mean by Fluctuations?

Explain the elements of non-equilibrium phenomena in Thermodynamics?

PART-B

Discuss in detail the Mean Field Theory of Ferromagnetism (or) Weiss theory of
Ferromagnetism.

Explain the Phase Transition phenomena in Ferromagnetic materials.

Discuss and derive Weiner-Khinchine Theorem

Derive Onsagar’s reciprocity relations in statistical mechanics.



	Chemical Potential
	The phase space and density function
	Principal statement
	The force and diffusion terms
	Maxwell-Boltzmann Distributions
	Introduction
	The kinetic molecular theory is used to determine the motion of a molecule of an ideal gas under a certain set of conditions. However, when looking at a mole of ideal gas, it is impossible to measure the velocity of each molecule at every instant of t...
	Plotting the Maxwell-Boltzmann Distribution Function
	Related Speed Expressions
	Mean Free Path
	Commonalities among phenomena
	Diffusion


	Ensembles
	Properties
	Liouville's Theorem
	Distribution for the velocity vector

	Black body
	Black body radiation spectrum
	Typical spectrum from a black body at different temperatures is shown in blue, green and red curves. As the temperature decreases, the peak of the black-body radiation curve moves to lower intensities and longer wavelengths. Black line is a predictio...

	Phonons
	Extension: Einstein-Debye Specific Heat

	Mean field theories
	Weiss-Molecular Field of an Ising System
	Critical Indices
	Reversible and Irreversible Thermodynamic process

	ONSAGER's Theorem


