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I. REVIEW OF THE LAWS OF THERMODYNAMICS AND 

THEIR CONSEQUENCES 

 

Thermodynamics is essentially the study of the internal motions of many body 

systems. Virtually all substances which we encounter in everyday life are many body systems 

of some sort or other (e.g., solids, liquids, gases, and light). Not surprisingly, therefore, 

thermodynamics is a discipline with an exceptionally wide range of applicability. 

Thermodynamics is certainly the most ubiquitous sub-field of Physics outside Physics 

Departments. Engineers, Chemists, and Material Scientists do not study relatively or particle 

physics, but thermodynamics is an integral, and very important, part of their degree courses. 

Energy exists in many forms, such as heat, light, chemical energy, and electrical energy. 

Energy is the ability to bring about change or to do work. Thermodynamics is the study of 

energy. 

 

First Law of Thermodynamics: Energy can be changed from one form to another, but it 

cannot be created or destroyed. The total amount of energy and matter in the Universe 

remains constant, merely changing from one form to another. The First Law of 

Thermodynamics (Conservation) states that energy is always conserved, it cannot be created 

or destroyed. In essence, energy can be converted from one form into another.  

The Second Law of Thermodynamics states that "in all energy exchanges, if no energy 

enters or leaves the system, the potential energy of the state will always be less than that of 

the initial state." This is also commonly referred to as entropy. A watch spring-driven watch 

will run until the potential energy in the spring is converted, and not again until energy is 

reapplied to the spring to rewind it. A car that has run out of gas will not run again until you 

walk 10 miles to a gas station and refuel the car. Once the potential energy locked in 

carbohydrates is converted into kinetic energy (energy in use or motion), the organism will 

get no more until energy is input again. In the process of energy transfer, some energy will 

dissipate as heat. Entropy is a measure of disorder: cells are NOT disordered and so have low 

entropy. The flow of energy maintains order and life. Entropy wins when organisms cease to 

take in energy and die. 

 Heat capacity or thermal capacity is a measurable physical quantity equal to the ratio 

of the heat added to (or removed from) an object to the resulting temperature change. The SI 

http://www2.estrellamountain.edu/faculty/farabee/Biobk/BioBookglossS.html#second%20law%20of%20thermodynamics%20%28e
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unit of heat capacity is joule per Kelvin (J/K) and the dimensional form is L2MT−2. Specific 

heat is the amount of heat needed to raise the temperature of a certain mass by 1 degree 

Celsius. 

Heat capacity is an extensive property of matter, meaning it is proportional to the size 

of the system. When expressing the same phenomenon as an intensive property, the heat 

capacity is divided by the amount of substance, mass, or volume, so that the quantity is 

independent of the size or extent of the sample. The molar heat capacity is the heat capacity 

per unit amount (SI unit: mole) of a pure substance and the specific heat capacity, often 

simply called specific heat, is the heat capacity per unit mass of a material. Occasionally, in 

engineering contexts, the volumetric heat capacity is used. 
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EQUILIBRIUM CONDITIONS 
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ISOLATED SYSTEMS 
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SUMMARY OF THERMODYNAMIC POTENTIALS 
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Thermodynamic Potentials and Maxwell’s Relations 
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Nernst's Heat Theorem of third law 

The third law of thermodynamics is concerned with the limiting behavior of systems as the 

temperature approaches zero. The bulk of the thermodynamics does not require this postulate 

because in thermodynamics calculations usually only entropy differences are used. 

Consequently, the zero point of the entropy scale is often not important. However, we discuss 

the third law at this point because it is it closes the postulatory basis of thermodynamics. 

The temperature is defined as 

.                                                                                                (1) 

Therefore, the third law states that 

.                                                                                                          (2) 

 

 

Historically, Walter Nernst's formulation of the third law, called Nernst's Heat Theorem, in 

1907 was somewhat weaker. He stated: 

 

http://casey.brown.edu/chemistry/research/crp/Edu/Documents/00_Chem201/3_second_law/Chem201_3_second_law.htm#eq_3_61
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"Any entropy changes in an isothermal reversible process approach zero as the 

temperature approaches zero, or 

.                                                                                              (3) 

We shall see in the following that Nernst's Heat Theorem is enclosed in the definition of the 

third law. The formulation of the third law that we are using (equation (2)) emerged several 

decades later through the work of Francis Simons and the formulation of Max Planck. 

There are several ways to state the third law of thermodynamics. It turns out that all of them 

are equivalent, and that one can derive one from the other. Let us start with the following 

form, a statement that summarizes a lot of experimental observations: 

"It is impossible reduce the temperature of any systems to absolute zero in a finite 

number of steps." 

Let's discuss this in more detail. 

Assume a system to be cooled by varying a parameter X from the initial state i to the finale 

state f Xi to Xf. This cools the system from the temperature Ti to Tf. Using only the second law 

we can write for the entropy of the initial state 

,                                                                 (4)  

and for the final state 

,               (5) 

 

 

 

We can write dS as 

.                                    (6) 

Equations (6) can be rewritten as: 

.                                                                                                          (7) 
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Heat capacities are positive. Thus, maximum cooling can be obtained only if the process if 

reversible and only without thermal contact to the environment, i.e. adiabatically. 

Reversibility implies: 

                                               (8) 

According to the third law (2) 

.                                                 (9) 

The temperature of the final state is zero, i.e., Tf = 0. This implies: 

.                                        (10) 

This is impossible. We showed that absolute zero temperature cannot be achieved in a finite 

step and, consequently, on a finite number of steps. The fact that the entropies of all systems 

must be equal (zero) at T=0. 

 

Chemical Potential 

 The chemical potential of a substance i is the partial molar derivative of the free energy G, 

the enthalpy H, the Helmholtz energy A, or the internal energy U of substance i: 

 

Matter flows spontaneously from a region of high chemical potential to a region of low 

chemical potential just like electric current flows from a region of high electric potential to a 

region of low electric potential and mass flows from a position of high gravitational potential 

to a position of low gravitational potential. The chemical potential can therefore be used to 

determine whether or not a system is in equilibrium. When the system is in equilibrium, the 

chemical potential of each substance will be the same in all the phases appearing in the 

system. 
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The ideal solution can be defined as a solution in which the chemical potential of each 

species is given by the expression: 

 

In this expression, μi
0(T,P) is the chemical potential of pure species i in the same state of 

aggregation as the solution; i.e. in a liquid mixture μi
0(T,P) is the chemical potential of pure 

liquid i at temperature T and pressure P.μi
0(T,P) is referred to as the standard state chemical 

potential. From the expression above, it is seen that the chemical potential of a species in an 

ideal solution is lower than the chemical potential of the pure component: the mole fraction is 

less than one and the second term is therefore negative. 
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QUESTION BANK 

 

PART-A 

1. State and explain first law of thermodynamics. 

2. Explain Heat capacity of gas molecules. 

3. What is specific heat capacity? 

4. Explain entropy and enthalpy in kinetics? 

5. State and explain the second law of thermodynamics. 

6. What is thermodynamic potential of a gas? 

7. What is thermal equilibrium? 

8. State and explain the third law of thermodynamics? 

9.  Explain about chemical potential of gas. 

10.  Explain the energy of particles in kinetics? 

11.  Write a note on Gibb’s phase rule. 

 

PART-B 

1. Explain entropy of a gas? Obtain an expression of entropy with its energy? Show that 

the entropy is constant in all reversible process of thermodynamic system. 

2. Derive Maxwell’s thermodynamic expression and deduce the other relations. 

3. Derive Gibb’s Helmholtz equations and obtain an expression for H. 

4. Derive the first and second TdS equation.  

5. a. Explain Nernst theorem of kinetics. 

b. Derive the expressions for thermodynamic potential. 
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II. KINETIC THEORY 

 

Equilibrium states dilute gas 

 

A gas consists of a very large number of particles (typically 1024 or many orders of 

magnitude more) occupying a volume of space that is very large compared to the size (10−10 

m ) of any typical atom or molecule. A system may be characterized as dilute based on the 

“average” spacing between its molecules 

3
1

n
  or  3

3

1





n
  

where n is the number density (number of atoms per unit volume) and σ is the effective 

“diameter” of the molecule. We see that the relevant quantity here is the non-dimensional 

number density n∗ = nσ3. If n∗ ≪ 1 , then the system can be described as dilute, in other 

words, the volume per particle (∼ n−1) is much larger than the volume of the particle (∼σ3), or 

alternatively, the relative spacing δ/σ is large. 

In a dilute system one expects collisions between particles to be infrequent and, because of 

the absence of other interactions, particles to travel most of the time in straight lines. 

 

Binary collisions 

 

The molecular collisions are responsible for establishing the equilibrium condition. In 

the absence of equilibrium, intermolecular interactions result in transport of macroscopic gas 

quantities, such as mass, momentum and energy. Under equilibrium conditions the 

distribution of molecular velocities is the same Maxwell-Boltzmann distribution at every 

configuration space location. In other words the effects of molecular collisions cancel each 

other (the distribution function is constant in time and configuration space) and therefore the 

details of individual collisions do not play a role in determining the distribution of molecular 

velocities. The situation is entirely different if we allow even the slightest deviation from 

equilibrium. In this case molecular collisions result in the transport of macroscopic quantities 

(such as mass, momentum and energy) accompanied by a gradual approach to the equilibrium 

velocity distribution. The details of the macroscopic transport and change of the distribution 

function are controlled by the specific nature of the molecular collision process. Molecular 

collisions represent the microscopic process governing all macroscopic transport phenomena. 
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We consider the process of two particle (or binary) collisions. For the sake of 

simplicity it will be assumed that the gas is composed of monatomic molecules which do not 

possess any internal degrees of freedom (or if the molecules are not monatomic their states of 

internal motion are assumed to be unaffected by the collisions). 

 

Center of mass and relative position coordinates 

It will be assumed that the molecules can be represented as point centers of force and they 

interact via conservative forces directed along the line connecting the two molecules. 

Let us consider two molecules with masses m1 and m2, position vectors r1 and r2, and 

velocities v1 and v2. It can be shown that the interaction between these two molecules 

depends only on their relative position and velocity. We introduce the radius vector of center 

of mass, rc: 

                  
21

2211

mm

rmrm
rc




     ----------------------- (1)  

The other quantity of physical interest is the relative position vector of the two particles, r: 

    21 rrr     ------------------------ (2) 

 

The two molecules move under each other's influence and the two equations of motion can be 

written in the following form: 

122

1

2

1 F
dt

rd
m   212

2

2

2 F
dt

rd
m    ------------------------ (3)  

 

Here F12 and F21 are forces acting on molecules 1 and 2 due to the presence of the other 

molecule, respectively. These forces depend only on the relative position of the molecules, r, 

and the fact that the forces acting on the two particles are of equal magnitude and point in 

opposite directions, F12(r)= −F21(r). It can be easily seen that there is no force acting on the 

center of mass and consequently it does not accelerate (moves with constant velocity): 

  0
1

21

2112

2

2

2

22

1

2

1

21

2

2



















mm

FF

dt

rd
m

dt

rd
m

mmdt

rd c  ------------ (4)  

One can also readily calculate the relative acceleration of the two molecules with respect to 

each other: 

  12

212

21

1

12

2

2

2

2

1

2

2

2 11
F

mmm

F

m

F

dt

rd

dt

rd

dt

rd








   -------------- (5) 
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Equation (5) can be written as an equation of motion for a single particle with mass m* 

(where m* is the reduced mass of the two molecules) in a central field of force: 

e
dr

rdU

dt

rd
m

)(
2

2

     --------------------- (6) 

where eτ represents the unit vector along the relative position vector of the two molecules and 

U(r) is the potential of the conservative intermolecular force, F12: 

   e
dr

rdU
F

)(
12             ----------------------- (7) 

 

These results show that one may introduce a new set of independent variables which simplify 

the description of the collision. These new variables refer to the center of mass of the two 

molecules and to their relative position, velocity and acceleration. It was shown that the 

center of mass velocity remains constant during the interaction of the two molecules, while 

the relative motion of the molecules can be described as the motion of a single particle with 

mass m* under the influence of a conservative central field of force characterized by potential 

U(r). 

 

Boltzmann Transport Equation 

In physics, specifically non-equilibrium statistical mechanics, the Boltzmann equation 

or Boltzmann transport equation (BTE) describes the statistical behaviour of a 

thermodynamic system not in thermodynamic equilibrium. It was devised by Ludwig 

Boltzmann in 1872. The classic example is a fluid with temperature gradients in space 

causing heat to flow from hotter regions to colder ones, by the random transport of particles. 

In the modern literature the term Boltzmann equation is often used in a more general sense 

and refers to any kinetic equation that describes the change of a macroscopic quantity in a 

thermodynamic system, such as energy, charge or particle number. 

The equation arises not by statistical analysis of all the individual positions and 

momenta of each particle in the fluid; rather by considering the probability that a number of 

particles all occupy a very small region of space (mathematically written d3r, where d means 

"differential", a very small change) centered at the tip of the position vector r, and have very 

nearly equal small changes in momenta from a momentum vector p, at an instant of time. 

The Boltzmann equation can be used to determine how physical quantities change, 

such as heat energy and momentum, when a fluid is in transport, and other properties 

characteristic to fluids such as viscosity, thermal conductivity also electrical conductivity (by 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Non-equilibrium_statistical_mechanics
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Temperature_gradient
https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Position_vector
https://en.wikipedia.org/wiki/Momenta
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Differential_of_a_function
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Electrical_conductivity
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treating the charge carriers in a material as a gas) can be derived. The equation is a linear 

stochastic partial differential equation, since the unknown function in the equation is a 

continuous random variable.  

The phase space and density function 

 

The set of all possible positions r and momenta p is called the phase space of the system; in 

other words a set of three coordinates for each position coordinate x, y, z, and three more for 

each momentum component px, py, pz. The entire space is 6-dimensional: a point in this space 

is  (r, p) = (x, y, z, px, py, pz), and each coordinate is parameterized by time t.  

The small volume ("differential volume element") is written 

zyx dpdpdxdydzdpprdd 33
 

Since the probability of N molecules which all have r and p within d3rd3p is in question, at 

the heart of the equation is a quantity f which gives this probability per unit phase-space 

volume at an instant of time t. This is a probability density function: f(r, p, t), defined so that, 

prddtprFdN 33),,(  

is the number of molecules which all have positions lying within a volume element d3r about 

r and momenta lying within a momentum space element d3p about p, at time t. Integrating 

over a region of position space and momentum space gives the total number of particles 

which have positions and momenta in that region: 


momentapositions

tprpfdrdN ),,(33
 

which is a 6-fold integral. While f is associated with a number of particles, the phase space is 

for one-particle (not all of them, which is usually the case with deterministic many-body 

systems), since only one r and p is in question. It is not part of the analysis to use r1, p1 for 

particle 1, r2, p2 for particle 2, etc. up to rN, pN for particle N. 

It is assumed the particles in the system are identical (so each has an identical mass m). For a 

mixture of more than one chemical species, one distribution is needed for each, see below. 

https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Stochastic_partial_differential_equation
https://en.wikipedia.org/wiki/Continuous_random_variable
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Coordinates
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Parametric_equation
https://en.wikipedia.org/wiki/Volume_element
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Momentum_space
https://en.wikipedia.org/wiki/Integration_%28calculus%29
https://en.wikipedia.org/wiki/Multiple_integral
https://en.wikipedia.org/wiki/Deterministic
https://en.wikipedia.org/wiki/Many_body_problem
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Chemical_species
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Principal statement 

The general equation can then be written:  

colldiffforce t

f

t

f

t

f

t

f











































 

Where the "force" term corresponds to the forces exerted on the particles by an external 

influence (not by the particles themselves), the "diff" term represents the diffusion of 

particles, and "coll" is the collision term - accounting for the forces acting between particles 

in collisions. Expressions for each term on the right side are provided below.  

The force and diffusion terms 

Consider particles described by f, each experiencing an external force F not due to other 

particles. Suppose at time t some number of particles all have position r within element d3r 

and momentum p within d3p. If a force F instantly acts on each particle, then at time t + Δt 

their position will be r + Δr = r + pΔt/m and momentum p + Δp = p + FΔt.  

Then, in the absence of collisions, f must satisfy 

  prddtprfprddtttFpt
m

p
rf 3333 ,,,, 








  

Note that we have used the fact that the phase space volume element d3rd3p is constant, 

which can be shown using Hamilton's equations. However, since collisions do occur, the 

particle density in the phase-space volume d3rd3p changes, so 

prddt
t

f
dN

coll

coll

333











      ---------------- (1) 

=   prddtprfprddtttFpt
m

p
rf 3333 ,,,, 








  

 prddf 33.  

Where Δf is the total change in f.  

Dividing (1) by d3rd3pΔt  and  taking the limits Δt → 0 and Δf → 0, we have 

collt

f

dt

df





















    --------------------- (2) 

 

https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Collision
https://en.wikipedia.org/wiki/Hamilton%27s_equations
https://en.wikipedia.org/wiki/Boltzmann_equation#math_1
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The total differential of f is: 
























































 z

z

y

y

x

x

dp
p

f
dp

p

f
dp

p

f
dx

z

f
dy

y

f
dx

x

f
dt

t

f
df  

 
















 dp

p

f
drfdt

t

f
..      -------------------- (3) 

 
















 Fdt

p

f

m

pdt
fdt

t

f
..  

Where ∇ is the gradient operator, · is the dot product, 

Dividing (3) by dt and substituting into (2), we get; 

collt

f

p

f
Ff

m

p

t

f






















..

              -------------------- (4)

 

In this context, F(r, t) is the force field acting on the particles in the fluid, and m is the mass 

of the particles. The term on the right hand side is added to describe the effect of collisions 

between particles; if it is zero then the particles do not collide. The collisionless Boltzmann 

equation is often called the Vlasov equation. 

Validity of Boltzmann Transport Equation 

This equation was originally derived for dilute gases. In the following some of the 

approximations of the Boltzmann transport equation and their implications are addressed. The 

solution of the Boltzmann transport equation with an external force F(r) provides the 

distribution function fn(r,P,t) from which macroscopic quantities can be derived. The right-

hand side of (4) describes the changes to the distribution function induced by scattering. The 

particle's Group velocity is determined from the semiconductor band structure En(P) as 

)()( 1 PEPv npn   .  

In the parabolic band approximation,   mPPEnK /)(1   and the particle's group 

velocity can be calculated from the effective mass tensor . The distribution function 

rPddtPrf n

33),,( defines the probability density to find a particle in rPdd 33 at a given time

. Obviously, such a statistical description can only be appropriate when the number of 

carriers is large. Extremely down-scaled devices may contain too few carriers to justify this 

kind of statistical treatment. 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Boltzmann_equation#math_3
https://en.wikipedia.org/wiki/Boltzmann_equation#math_2
https://en.wikipedia.org/wiki/Mass
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Since carriers interact through their electric fields, the distribution function fn(r,P,t) at 

a particular point in the six dimensional position-momentum (phase) space at a given time 

can only be determined from the knowledge of fn in all other points. This would involve a 

treatment using an N-particle system and an N-particle distribution function. However, if the 

carrier-carrier correlations are weak, the N-particle distribution function can be contracted to 

a one-particle distribution function. Alternatively, the influence of other carriers can be 

treated through the self-consistent electric field and schemes where the Pauli exclusion 

principle is included.  

A main assumption of the Boltzmann transport equation is that particles can be treated 

semi-classically, obeying Newton's law. Quantum mechanics enters the equation only 

through the band structure and the description of the collision term. Since both the position 

and the momentum of a particle are arguments of the distribution function, apparently the 

quantum mechanical uncertainty principle is 2/ rp   violated. Assuming a spread in 

particle energy of kBT, one finds that the spread in position is  

 

(5) 

Here, B denotes the particle's thermal average wavelength. Thus, one should not attempt to 

localize the particle's position exactly with respect to its thermal average wavelength. If the 

potential varies sharply on the scale of B , which is typically in the order of 10 nm to 20 nm 

at room temperature, condition (5) is not satisfied, and instead of the Boltzmann equation a 

wave equation must be solved to study the propagation of a carrier wave through the device. 

 

THE H-THEOREM 

 

 

zyxii dpdpdxdydzdpffH ln    --------------- (1) 

Boltzmann began by defining the function H for a dilute gas comprised of spherical particles 

where f is a distribution function which determines the number of particles ni located in the 

spatial region (dx,dy,dz) and having momentum in the range (dpx, dpy, dpz) through the 

relation 

                      
zyxzyxi dpdpdxdydzdptpppzyxfn ,,,,,,             ------------------- (2) 

 

http://www.iue.tuwien.ac.at/phd/ungersboeck/node62.html#e:pcondition
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The term zyx dpdpdxdydzdp , is denoted π dV  and is referred to as the "volume" of a cell in 6-

dimensional μ -space. The cells occupy equal "volumes" of μ-space. Each particle has six 

degrees of freedom and could be completely specified by a point in μ-space. Thus, a quantity 

of gas containing N particles can be represented by a swarm of N points in  μ-space and the 

distribution function f tells us how these N points are partitioned among the cells of μ-space. 

The summation in Eq. (1) is taken over all of the cells in μ-space. As indicated in Eq. (2), the 

distribution function could depend upon position, momentum, and time. 

 

The function H can be restated as  

tcons
N

n

N

n
NH i

i

i tanln      ------------------ (3) 

If ni/N could be taken as the probability of a particle being found in the ith cell of μ -space, 

we could write Eq. (3) as  

tconsPPNH i

i

i tanln                ------------------- (4) 

The first right-hand term of Eq. (4) would appear to be related to the statistical mechanical 

entropy, but it must be remembered that the latter quantity refers to an equilibrium state and 

therefore the Pi’s should be the cell occupation probabilities when the equilibrium 

distribution prevails. Our substitution of ni/N for Pi  implies that the following relationship 

between H and S is valid only as equilibrium is approached 

 

  tcons
k

S
H tan              -------------------- (5) 

            (or) 

  
dt

dS

dt

dH
k              -------------------- (6) 

 

The time derivative of S can therefore be obtained from the time derivative of H which in 

turn depends on the change in f with time. Particle collisions provide the mechanism for 

changes in f and when molecular chaos is assumed, it can be shown that  

   0
dt

dH
              ------------------- (7) 

As per Eq. (6) this results in 
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   0
dt

dS
                         ------------------- (8) 

Thus, H can never increase and if Eq. (5) is valid, S can never decrease. These derivatives 

become zero at equilibrium where together forward and reverse collisions zero out and the 

Maxwell-Boltzmann distribution prevails 

Maxwell-Boltzmann Distributions 

The Maxwell-Boltzmann equation, which forms the basis of the kinetic theory of gases, 

defines the distribution of speeds for a gas at a certain temperature. From this distribution 

function, the most probable speed, the average speed, and the root-mean-square speed can be 

derived. 

 

Introduction 

The kinetic molecular theory is used to determine the motion of a molecule of an ideal 

gas under a certain set of conditions. However, when looking at a mole of ideal gas, it is 

impossible to measure the velocity of each molecule at every instant of time. Therefore, the 

Maxwell-Boltzmann distribution is used to determine how many molecules are moving 

between velocities v and v + dv. Assuming that the one-dimensional distributions are 

independent of one another, that the velocity in the y and z directions does not affect the x 

velocity, for example, the Maxwell-Boltzmann distribution is given by 

dve
Tk

m

N

dN Tk

mc

B

B2

2/1 2

2














   -------------------------- (1) 

Where 

dN/N is the fraction of molecules moving at velocity v to v + dv, 

m is the mass of the molecule, 

kb is the Boltzmann constant, and 

T is the absolute temperature. 

Additionally, the function can be written in terms of the scalar quantity speed c instead of the 

vector quantity velocity. This form of the function defines the distribution of the gas 

molecules moving at different speeds, between c1 and c2, thus 



 

11 
 

Tk

mc

B

Be
Tk

m
ccf

2
2

3

2

2

2
4)(














            ------------------- (2) 

Finally, the Maxwell-Boltzmann distribution can be used to determine the distribution of the 

kinetic energy of for a set of molecules. The distribution of the kinetic energy is identical to 

the distribution of the speeds for a certain gas at any temperature.  

 

Plotting the Maxwell-Boltzmann Distribution Function 

Figure 1 shows the Maxwell-Boltzmann distribution of speeds for a certain gas at a certain 

temperature, such as nitrogen at 298 K. The speed at the top of the curve is called the most 

probable speed because the largest number of molecules has that speed.  

 
Figure 1 The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at 

higher temperatures.  

 

Figure 2 shows how the Maxwell-Boltzmann distribution is affected by temperature. At 

lower temperatures, the molecules have less energy. Therefore, the speeds of the molecules 

are lower and the distribution has a smaller range. As the temperature of the molecules 

increases, the distribution flattens out. Because the molecules have greater energy at higher 

temperature, the molecules are moving faster.  

  Figure 3 shows the dependence of the Maxwell-Boltzmann distribution on molecule 

mass. On average, heavier molecules move more slowly than lighter molecules. Therefore, 
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heavier molecules will have a smaller speed distribution, while lighter molecules will have a 

speed distribution that is more spread out. 

 

 
Figure 2: The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened 

at higher temperatures.  

 

  

 
Figure 3: The speed probability density functions of the speeds of a few noble gases at a 

temperature of 298.15 K (25 °C). The y-axis is in s/m so that the area under any section of 

the curve (which represents the probability of the speed being in that range) is dimensionless.  
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Related Speed Expressions 

Three speed expressions can be derived from the Maxwell-Boltzmann distribution: the most 

probable speed, the average speed, and the root-mean-square speed. The most probable speed 

is the maximum value on the distribution plot. This is established by finding the velocity 

when the following derivative is zero. 

  0
)(


Cmpdc

cdf
 

which is 
M

RT
Cmp

2
              ------------------- (3) 

 

The average speed is the sum of the speeds of all the molecules divided by the number of 

molecules. 





0

8
)(

M

RT
dcccfCavg


             ------------------ (4) 

The root-mean-square speed is square root of the average speed-squared.  

   
M

RT
Crms

3
      ------------------ (5) 

 Where 

R is the gas constant,  

 T is the absolute temperature and  

 M is the molar mass of the gas. 

It always follows that for gases that follow the Maxwell-Boltzmann distribution (if 

thermallized)        

mpC
< avgC

< rmsC
 

 

The Most probable Distribution 

We are ultimately interested in the probability that a given distribution will occur. The reason 

for this is that we must have this information in order to obtain useful thermodynamic 

averages. The method used to obtain the distribution function of the ensemble of systems is 

known as the method of the most probable distribution. We begin with the statistical entropy,   

                                S = k lnW.  
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The weight, W (or thermodynamic probability) is the number of ways that distinguishable 

particles can be arranged into groups such a0 is the number in the zeroth group, a1 is the 

number in the first group etc. where A is the total number of systems in the ensemble. 

A = total number of systems.  

a0, a1, a2… = occupation numbers for system in each quantum state.  

The overall probability that Pj that a system is in the jth quantum state is obtained by 

averaging aj/A over all the allowed distributions.  

Thus, Pj is given by 

 

where the angle brackets indicate an ensemble average. Using this definition we can calculate 

any average property (i.e. any thermodynamic property) using the Gibbs postulate. 

 

The method of the most probable distribution is based on the idea that the average over 

áajñ/A is identical to the most probable distribution (i.e. that the distribution is arbitrarily 

narrow in width). Physically, this results from the fact that we have so many particles in a 

typical system that the fluctuations from the mean are extremely (immeasurably) small.  

If we think only of translation motion, McQuarrie shows that the number of states 

increases dramatically as the energy (and quantum number increase). Although the number of 

states is an increasing function the kinetic energy is fixed and must be distributed in some 

statistical manner among all of the available molecules.  

The equivalence of the average probability of an occupation number and the most probable 

distribution is expressed as follows: 

 

To find the most probable distribution we maximize the probability function subject to two 

constraints. 

Conservation of energy requires: 

 

where εj is the energy of the jth system in its quantum state. 

Conservation of mass requires: 
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which says only that the total number of the all of the systems in the ensemble must be A. 

Using S = k lnW we can reason that the system will tend towards the distribution among the 

aj that maximizes S. This can be expressed as Sj(¶S/¶aj) = 0.  

This condition is satisfied by  

Sj(¶ln W/¶aj) = 0  

Subject to constraints  

 
 

The most probable distribution is aj/A = ea-bej 

 

Now we need to find the undetermined multipliers a and b. 

 The left hand side is 1. Thus, we have 

 

This determines a and defines the Boltzmann distribution.  

We will show that b=1/kT. This identification will show the importance of temperature in the 

Boltzmann distribution. The distribution represents a thermally equilibrated most probable 

distribution over all energy levels. 

The sum over all factors e-be is given a name. It is called the molecular partition function, q. 

 

The molecular partition function q gives an indication of the average number of states that are 

thermally accessible to a molecule at the temperature of the system. 

 

Transport Phenomena  

In engineering, physics and chemistry, the study of transport phenomena concerns 

the exchange of mass, energy, and momentum between observed and studied systems. Mass, 

momentum, and heat transport all share a very similar mathematical framework, and the 

parallels between them are exploited in the study of transport phenomena. The fundamental 

analyses in all three subfields of mass, heat, and momentum transfer are often grounded in 
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the simple principle that the sum total of the quantities being studied must be conserved by 

the system and its environment. Thus, the different phenomena that lead to transport are each 

considered individually with the knowledge that the sum of their contributions must equal 

zero.  

In physics, transport phenomena are all irreversible processes of statistical nature 

stemming from the random continuous motion of molecules, mostly observed in fluids. Every 

aspect of transport phenomena is grounded in two primary concepts: the conservation laws, 

and the constitutive equations. The conservation laws, which in the context of transport 

phenomena are formulated as continuity equations, describe how the quantity being studied 

must be conserved. The constitutive equations describe how the quantity in question responds 

to various stimuli via transport. Prominent examples include Fourier's Law of Heat 

Conduction and the Navier-Stokes equations, which describe, respectively, the response of 

heat flux to temperature gradients and the relationship between fluid flux and the forces 

applied to the fluid. These equations also demonstrate the deep connection between transport 

phenomena and thermodynamics, a connection that explains why transport phenomena are 

irreversible. Almost all of these physical phenomena ultimately involve systems seeking their 

lowest energy state in keeping with the principle of minimum energy. As they approach this 

state, they tend to achieve true thermodynamic equilibrium, at which point there are no longer 

any driving forces in the system and transport ceases. The various aspects of such equilibrium 

are directly connected to a specific transport: heat transfer is the system's attempt to achieve 

thermal equilibrium with its environment, just as mass and momentum transport move the 

system towards chemical and mechanical equilibrium. 

Examples of transport processes include heat conduction (energy transfer), fluid flow 

(momentum transfer), molecular diffusion (mass transfer), radiation and electric charge 

transfer in semiconductors.  

Transport phenomena have wide application. For example, in solid state physics, the motion 

and interaction of electrons, holes and phonons are studied under "transport phenomena". 

Another example is in biomedical engineering, where some transport phenomena of interest 

are thermoregulation, perfusion, and microfluidics. In chemical engineering, transport 

phenomena are studied in reactor design, analysis of molecular or diffusive transport 

mechanisms, and metallurgy. 

 

 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Reversible_process_%28thermodynamics%29
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Molecules
https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Conservation_law_%28physics%29
https://en.wikipedia.org/wiki/Constitutive_equation
https://en.wikipedia.org/wiki/Continuity_equations
https://en.wikipedia.org/wiki/Constitutive_equations
https://en.wikipedia.org/wiki/Fourier%27s_Law_of_Heat_Conduction
https://en.wikipedia.org/wiki/Fourier%27s_Law_of_Heat_Conduction
https://en.wikipedia.org/wiki/Navier-Stokes_equations
https://en.wikipedia.org/wiki/Heat_flux
https://en.wikipedia.org/wiki/Temperature_gradient
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Forces
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Principle_of_minimum_energy
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Mechanical_equilibrium
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The transport of mass, energy, and momentum can be affected by the presence of external 

sources: 

 An odor dissipates more slowly (and may intensify) when the source of the odor 

remains present. 

 The rate of cooling of a solid that is conducting heat depends on whether a heat source 

is applied. 

 The gravitational force acting on a rain drop counteracts the resistance or drag 

imparted by the surrounding air. 

 

Mean Free Path 

 Mean Free Path (l), the mean length of the path traversed by a particle between two 

successive collisions with other particles. The concept of mean free path is used extensively 

in calculations of various transfer processes, such as viscosity, heat conduction, diffusion, and 

electrical conduction. 

According to the kinetic theory of gases, molecules move uniformly and rectilinearly 

from collision to collision. If a molecule traverses an average path v in 1 sec, undergoing in 

the process v elastic collisions with similar molecules, then 

ī = v/v = 1/nσ√2 

where n is the number of molecules per unit volume (the density of the gas) and σ is the 

effective cross section of the molecule. As the density of the gas (its pressure) increases, the 

mean free path decreases, since the number of collisions v per sec increases. A rise in 

temperature or in the intensity of motion of the molecules leads to a certain decline in cr and 

consequently to an increase in σ. For ordinary molecular gases under normal conditions (at 

atmospheric pressure and 20°C), l ~ 10-5 cm, which is approximately 100 times greater than 

the average distance between molecules. 

In many cases the concept of mean free path is also applicable to particles whose 

motion and interaction conform to the laws of quantum mechanics (such as conduction 

electrons in a solid, neutrons in weakly absorbing mediums, and photons in stars), but the 

calculation of the mean free path for such particles is more difficult. 
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Commonalities among phenomena 

An important principle in the study of transport phenomena is analogy between phenomena. 

Diffusion 

There are some notable similarities in equations for momentum, energy, and mass transfer 

which can all be transported by diffusion, as illustrated by the following examples: 

 Mass: the spreading and dissipation of odors in air is an example of mass diffusion. 

 Energy: the conduction of heat in a solid material is an example of heat diffusion. 

 Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an 

example of momentum diffusion (the rain drop loses momentum to the surrounding 

air through viscous stresses and decelerates). 

The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, 

and Fick's law for mass are very similar. One can convert from one transfer coefficient to 

another in order to compare all three different transport phenomena. 

Momentum transfer 

In momentum transfer, the fluid is treated as a continuous distribution of matter. The study of 

momentum transfer or fluid mechanics can be divided into two branches: fluid statics (fluids 

at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x direction 

parallel to a solid surface, the fluid has x-directed momentum, and its concentration is υxρ. By 

random diffusion of molecules there is an exchange of molecules in the z direction. Hence the 

x-directed momentum has been transferred in the z-direction from the faster- to the slower-

moving layer. The equation for momentum transport is Newton's Law of Viscosity written as 

follows: 

 
z

v
T x

zx






 

where τzx is the flux of x-directed momentum in the z direction, ν is μ/ρ, the momentum 

diffusivity z is the distance of transport or diffusion, ρ is the density, and μ is the viscosity. 

Newtons Law is the simplest relationship between the flux of momentum and the velocity 

gradient. 
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Mass transfer 

When a system contains two or more components whose concentration vary from point to 

point, there is a natural tendency for mass to be transferred, minimizing any concentration 

difference within the system. Mass Transfer in a system is governed by Fick's First Law: 

'Diffusion flux from higher concentration to lower concentration is proportional to the 

gradient of the concentration of the substance and the diffusivity of the substance in the 

medium. Mass transfer can take place due to different driving forces. Some of them are:  

 Mass can be transferred by the action of a pressure gradient(pressure diffusion) 

 Forced diffusion occurs because of the action of some external force 

 Diffusion can be caused by temperature gradients (thermal diffusion) 

 Diffusion can be caused by differences in chemical potential 

This can be compared to Fourier's Law for conduction of heat: 

y

Ca
DJ ABAY




  

where D is the diffusivity constant. 

 

Energy transfer 

All process in engineering involves the transfer of energy. Some examples are the heating 

and cooling of process streams, phase changes, distillations, etc. The basic principle is the 

first law of thermodynamics which is expressed as follows for a static system: 

dx

dT
Kq   

The net flux of energy through a system equals the conductivity times the rate of change of 

temperature with respect to position. 

For other systems that involve turbulent flow, complex geometries or difficult boundary 

conditions another equation would be easier to use: 

TAhQ  ..  
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where A is the surface area,  is the temperature driving force, Q is the heat flow per unit time, 

and h is the heat transfer coefficient. 

Within heat transfer, two types of convection can occur: 

Forced convection can occur in both laminar and turbulent flow. In the situation of laminar 

flow in circular tubes, several dimensionless numbers are used such as Nusselt number, 

Reynolds number, and Prandtl. The commonly used equation is: 

K

Dh
Nu a

a   

Natural or free convection is a function of Grashof and Prandtl numbers. The complexities of 

free convection heat transfer make it necessary to mainly use empirical relations from 

experimental data.  

 

Special Cases of Navier-Stoke equation: 

 Incompressible fluid - In fluid dynamics, an incompressible fluid is a fluid whose 

density is constant. It is the same throughout space and it does not change through 

time. According to the continuity equation, it also implies   u = 0. It is an 

idealization used to simplify analysis. In reality, all fluids are compressible to some 

extent. 

 Inviscid or Stokes flow - Viscous problems are those in which fluid friction have 

significant effects on the solution. Problems for which friction can safely be neglected 

are called inviscid. The Reynolds number (R=( usL)/ , where us is the mean fluid 

velocity, and L is the characteristic length, e.g., the cross-section of the pipe) can be 

used to evaluate whether viscous or inviscid equations are appropriate to the problem. 

High Reynolds numbers indicate that the inertial forces are more significant than the 

viscous forces. However, even in high Reynolds number regimes certain problems 

require that viscosity be included. In particular, problems calculating net forces on 

bodies (such as the wings on aircraft) should use viscous equations. Stokes flow 

occurs at very low Reynold's numbers, such that inertial forces can be neglected 

compared to viscous forces. 
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 Steady flow - Another simplification of the equations is to set all changes of fluid 

properties with time to zero. These are called steady flow, and are applicable to a 

large class of problems, such as lift and drag on a wing or flow through a pipe. 

 Boussinesq approximation - In fluid dynamics, the Boussinesq approximation is 

used in the field of buoyancy-driven flow. It states that density differences are 

sufficiently small to be neglected, except where they appear in terms multiplied by g, 

the acceleration due to gravity. The essence of the Boussinesq approximation is that 

the difference in inertia is negligible but gravity is sufficiently strong to make the 

specific weight appreciably different between the two fluids. Boussinesq flows are 

common in nature (such as atmospheric fronts, oceanic circulation, downhill winds), 

industry (dense gas dispersion, fume cupboard ventilation), and the built environment 

(natural ventilation, central heating). The approximation is extremely accurate for 

many such flows, and makes the mathematics and physics simpler. 

Laminar vs turbulent flow - Turbulence is flow dominated by recirculation, eddies, and 

apparent randomness (see Figure 01). Flow in which turbulence is not exhibited is called 

laminar (see Figure 02). It is believed that turbulent flows obey the Navier-Stokes equations. 

However, the flow is so complex that it is not possible to solve turbulent problems from first 

principles with the computational tools available today or likely to be available in the near 

future. Turbulence is instead modeled using one of a number of turbulence models and 

coupled with a flow solver that assumes laminar flow outside a turbulent region. Turbulence 

usually occurs below a Reynold's numbers of 3000. It causes increased energy loss (as heat), 

more drag (on the moving body), and generates sound wave (noise). Modern vehicle and 

aircraft designs always try to minimize the turbulence by adopting a smooth surface and 

streamlined contour. 

 

 

 

 

 

 

          Figure 1 Turbulent Flow     Figure 02 Laminar Flow 

 

https://universe-review.ca/I13-23-turbulent.jpg
https://universe-review.ca/I13-23-laminar.jpg
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QUESTION BANK 

Part-A 

 

  
1. Explain mean free path of a gas molecules and describe “λ” of a gas molecules.  

2. Explain transport phenomena of a gas.  

3 Explain different conservation laws in kinetics. 

4. What is hydrodynamics-Explain viscous hydrodynamics? 

5. Describe TdS equation in Thermodynamics.  

6. Explain binary collisions in gas molecules.  

7. What are the limitations of Boltz-Man distribution law?  

8. What is zero order approximation?  

9. What is first order approximation?  

10. What are the postulates of kinetic theories of gases? 

  

 

PART-B 

               
1. Derive Boltzmann-H theorem of gas molecules. 

2. Derive Maxwell’s Boltzmann distribution law and obtain most probable distribution 

equation of velocity. 

3. Explain about the transport phenomena of gas molecules and obtain the expression for 

λ   using viscous hydrostatics. 

4. Explain different types of conservation laws of mass, energy and momentum. 

5. Obtain the expression for Navier-Stokes equation. What is  the importance of  this 

equation in Thermodynamics 

6. Describe Zero and first order approximation of a gas and deduce the expression. 

7. Describe the theory of viscous hydrodynamics and give one example in viscous 

hydrodynamics. 
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III. CLASSICAL STATISTICAL MECHANICS 

 

 

Microstate and Macrostate  

In statistical mechanics, a microstate is a specific microscopic configuration of a 

thermodynamic system that the system may occupy with a certain probability in the course of 

its thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic 

properties, such as its temperature, pressure, volume and density. Treatments on statistical 

mechanics, define a macrostate as follows. A particular set of values of energy, number of 

particles and volume of an isolated thermodynamic system is said to specify a particular 

macrostate of it. In this description, microstates appear as different possible ways the system 

can achieve a particular macrostate. 

A macrostate is characterized by a probability distribution of possible states across a 

certain statistical ensemble of all microstates. This distribution describes the probability of 

finding the system in a certain microstate. In the thermodynamic limit, the microstates visited 

by a macroscopic system during its fluctuations all have the same macroscopic properties. 

 Kinetic theory studies the macroscopic properties of large numbers of particles, starting from 

their (classical) equations of motion. Thermodynamics describes the equilibrium behavior of 

macroscopic objects in terms of concepts such as work, heat, and entropy. The 

phenomenological laws of thermodynamics tell us how these quantities are constrained as a 

system approaches its equilibrium. At the microscopic level, we know that these systems are 

composed of particles (atoms, molecules), whose interactions and dynamics are reasonably 

well understood in terms of more fundamental theories. If these microscopic descriptions are 

complete, we should be able to account for the macroscopic behavior, i.e. derive the laws 

governing the macroscopic state functions in equilibrium. Kinetic theory attempts to achieve 

this objective. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Statistical_ensemble_%28mathematical_physics%29
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Thermodynamic_limit
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Statistical equilibrium 

 

Statistical equilibrium is that state of closed statistical system in which the average values of 

all the physical quantities characterizing the state are independent of time. 

Statistical equilibrium is one of the basic concepts of statistical mechanics, where it plays the 

same role as the thermodynamics 

equilibrium in thermodynamics.Statistical equilibrium is not balanced in the mechanical sens

e, since small fluctuations 

do not cease in the system when this state obtains. The theory of statistical 

equilibrium is given in statistical mechanics, which describes statistical equilibrium in 

terms of Gibb’s microcanonical, canonical or grand canonical ensembles depending on the 

type of contact between the system and its surroundings. 

 

Phase Space  

 Phase Space: a concept of classical Statistical Mechanics   

 Each Phase Space dimension corresponds to a particle degree of freedom 

 3 dimensions correspond to Position in (real) space: x, y, z  

 • 3 dimensions correspond to Momentum: px, py, pz (or Energy and direction: E, θ, φ) 

 More dimensions may be envisaged, corresponding to other possible degrees of 

freedom, such as quantum numbers: spin, etc.  

 Each particle is represented by a point in phase space  

 Time can also be considered as a coordinate, or it can be considered as an independent 

variable: the variation of the other phase space coordinates as a function of time (the 

trajectory of a phase space point) constitutes a particle “history”. 

 

Consider an isolated system with N particles (components). The complete description of 

this system is given by the generalized coordinates: 

q = (q1, . . . , q3N), 

p = (p1, . . . , p3N). 

We define the phase space as follows. 

Phase space: 6N-dimensional space whose points are given by the 6N values of  

 (q1, . . . , q3N, p1, . . . , p3N). 
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Properties of phase space: 

 Phase space is a cartesian space; 

 It is non-metric, i.e., one cannot define invariant distances in the phase space.  This is 

also the case for the PV -state space. 

 

For N particles, the total numbers of degrees of freedom is 6N, and therefore the total phase 

space is 6N-dimensional. The motion of the particles is governed deterministically 

by the Hamiltonian 

   

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Where V ( iq − jq ) is the inter-particle potential. The equations of motion of the particles 

are 

i

i
q

H
p






.

 

i

i
p

H
q






.

 

                     i = 1, . . . , 6N, with certain initial conditions. 

 

The phase space is also called  -space. A point (representative point) in this space 

corresponds to a state of the N-body system at a given time, i.e, to the microstate of the 

system. 

A trajectory in the phase space corresponds to the time evolution of the microstate. This 

trajectory never intersects with itself since the solution of the system of equations of motion 

is unique given certain initial conditions (self-avoiding random walk).  

If H does not depend explicitly on time, in which case energy is a conserved quantity, all 

trajectories in phase space lie on an energy surface which is a hypersurface in  -space.  
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Ensembles 

A key concept in statistical mechanics is the ensemble.  An ensemble is a collection of 

microstates of system of molecules, all having in common one or more extensive properties.  

An ensemble is also defined as a large number of points in the phase space that can be 

described by a density function  ii pq , . Additionally, an ensemble defines a probability  

distribution π accords a weight to each element (microstate) of the ensemble.  These 

statements require some elaboration.  A microstate of a system of molecules is a complete 

specification of all positions and momenta of all molecules (i.e., all atoms in all molecules, 

but for brevity we will leave this implied).  This is to be distinguished from a thermodynamic 

state, which entails specification of very few features, e.g. just the temperature, density and 

total mass.  An extensive quantity is used here in the same sense it is known in 

thermodynamics—it is a property that relates to the total amount of material in the system.  

Most frequently we encounter the total energy, the total volume, and/or the total number of 

molecules (of one or more species, if a mixture) as extensive properties.  Thus an ensemble 

could be a collection of all the ways that a set of N molecules could be arranged (specifying 

the location and momentum of each) in a system of fixed volume.  As an example, in 

Illustration 1 we show a few elements of an ensemble of five molecules. 

 

If a particular extensive variable is not selected as one that all elements of the ensemble have in 

common, then all physically possible values of that variable are represented in the collection.  

For example, Illustration 2 presents some of the elements of an ensemble in which only the 

total number of molecules is fixed.   
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The elements are not constrained to have the same volume, so all possible volumes from zero 

to infinity are represented.  Likewise in both Illustrations 1 and 2 the energy is not selected as 

one of the common extensive variables.  So we see among the displayed elements 

configurations in which molecules overlap.  These high-energy states are included in the 

ensemble, even though we do not expect them to arise in the real system.  The likelihood of 

observing a given element of an ensemble—its physical relevance—comes into play with the 

probability distribution π that forms part of the definition of the ensemble. 

Any extensive property omitted from the specification of the ensemble is replaced by its 

conjugate intensive property.  So, for example, if the energy is not specified to be common to 

all ensemble elements, then there is a temperature variable associated with the ensemble.  

These intensive properties enter into the weighting distribution π in a way that will be 

discussed shortly.  It is common to refer to an ensemble by the set of independent variables 

that make up its definition.  Thus the TVN ensemble collects all microstates of the same 

volume and molecular number, and has temperature as the third independent variable.  The 

more important ensembles have specific names given to them.  These are 

 Microcanonical ensemble (EVN) 

 Canonical ensemble (TVN) 

 Isothermal-isobaric ensemble (TPN) 

 Grand-canonical ensemble (TVµ) 



7 
 

Microcanonical ensemble (EVN) 

In statistical mechanics, a microcanonical ensemble is the statistical ensemble that is used to 

represent the possible states of a mechanical system which has an exactly specified total 

energy. The system is assumed to be isolated in the sense that the system cannot exchange 

energy or particles with its environment, so that (by conservation of energy) the energy of the 

system remains exactly known as time goes on. The system's energy, composition, volume, 

and shape are kept the same in all possible states of the system. 

The macroscopic variables of the microcanonical ensemble are quantities such as the 

total number of particles in the system (symbol: N), the system's volume (symbol: V) each 

which influence the nature of the system's internal states, as well as the total energy in the 

system (symbol: E). This ensemble is therefore sometimes called the NVE ensemble, as each 

of these three quantities is a constant of the ensemble. 

In simple terms, the microcanonical ensemble is defined by assigning an equal 

probability to every microstate whose energy falls within a range centered at E. All other 

microstates are given a probability of zero. Since the probabilities must add up to 1, the 

probability P is the inverse of the number of microstates W within the range of energy, 

 
W

P
1

  

The range of energy is then reduced in width until it is infinitesimally narrow, still centered at 

E. In the limit of this process, the microcanonical ensemble is obtained. 

The microcanonical ensemble is sometimes considered to be the fundamental 

distribution of statistical thermodynamics, as its form can be justified on elementary grounds 

such as the principle of indifference: the microcanonical ensemble describes the possible 

states of an isolated mechanical system when the energy is known exactly, but without any 

more information about the internal state. Also, in some special systems the evolution is 

ergodic in which case the microcanonical ensemble is equal to the time-ensemble when 

starting out with a single state of energy E (a time-ensemble is the ensemble formed of all 

future states evolved from a single initial state). 

In practice, the microcanonical ensemble does not correspond to an experimentally 

realistic situation. With a real physical system there is at least some uncertainty in energy, 

due to uncontrolled factors in the preparation of the system. Besides the difficulty of finding 

an experimental analogue, it is difficult to carry out calculations that satisfy exactly the 

https://en.wikipedia.org/wiki/Ergodic
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requirement of fixed energy since it prevents logically independent parts of the system from 

being analyzed separately. Moreover there are ambiguities regarding the appropriate 

definitions of quantities such as entropy and temperature in the microcanonical ensemble.  

Systems in thermal equilibrium with their environment have uncertainty in energy, 

and are instead described by the canonical ensemble or the grand canonical ensemble, the 

latter if the system is also in equilibrium with its environment in respect to particle exchange. 

  

Properties 

 Statistical equilibrium (steady state): A microcanonical ensemble does not evolve 

over time, despite the fact that every constituent of the ensemble is in motion. This is 

because the ensemble is defined strictly as a function of a conserved quantity of the 

system (energy).  

 Maximum information entropy: For a given mechanical system (fixed N, V) and a 

given range of energy, the uniform distribution of probability over microstates (as in 

the microcanonical ensemble) maximizes the ensemble average −⟨log P⟩.  

 Three different quantities called "entropy" can be defined for the microcanonical 

ensemble. Each can be defined in terms of the phase volume function v(E) which 

counts the total number of states with energy less than E. 

Grand canonical ensemble 

In statistical mechanics, a grand canonical ensemble is the statistical ensemble that is used 

to represent the possible states of a mechanical system of particles that is being maintained in 

thermodynamic equilibrium (thermal and chemical) with a reservoir. The system is said to be 

open in the sense that the system can exchange energy and particles with a reservoir, so that 

various possible states of the system can differ in both their total energy and total number of 

particles. The system's volume, shape, and other external coordinates are kept the same in all 

possible states of the system. 

The thermodynamic variables of the grand canonical ensemble are chemical potential 

(symbol: µ) and absolute temperature (symbol: T). The ensemble is also dependent on 

mechanical variables such as volume (symbol: V) which influence the nature of the system's 

https://en.wikipedia.org/wiki/Canonical_ensemble
https://en.wikipedia.org/wiki/Grand_canonical_ensemble
https://en.wikipedia.org/wiki/Chemical_potential
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internal states. This ensemble is therefore sometimes called the µVT ensemble, as each of 

these three quantities are constants of the ensemble. 

Properties 

 Uniqueness: The grand canonical ensemble is uniquely determined for a given system 

at given temperature and given chemical potentials, and does not depend on arbitrary 

choices such as choice of coordinate system (classical mechanics) or basis (quantum 

mechanics).  

 Statistical equilibrium (steady state): A grand canonical ensemble does not evolve 

over time, despite the fact that the underlying system is in constant motion. Indeed, 

the ensemble is only a function of the conserved quantities of the system (energy and 

particle numbers).  

 Thermal and chemical equilibrium with other systems: Two systems, each described 

by a grand canonical ensemble of equal temperature and chemical potentials, brought 

into thermal and chemical contact[note 2] will remain unchanged, and the resulting 

combined system will be described by a combined grand canonical ensemble of the 

same temperature and chemical potentials.  

 Maximum entropy: For given mechanical parameters (fixed V), the grand canonical 

ensemble average of the log-probability −<log P> (also called the "entropy") is the 

maximum possible for any ensemble (i.e. probability distribution P) with the same 

<E>, <N1>, etc.  

 Minimum grand potential: For given mechanical parameters (fixed V) and given 

values of T, µ1, …, µs, the ensemble average <E + kT log P − µ1N1 − … µsNs> is the 

lowest possible of any ensemble.  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Grand_canonical_ensemble#cite_note-5
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Liouville's Theorem 

Consider a large number of particles, perhaps in a beam. These particles can be described by 

one point in phase space per particle. For really large numbers of particles in a system, or if 

we consider a theoretical ensemble of particles, the system can be described as a density 

 ii pq ,  which is a function of the position in phase space.  

Liouville's Theorem states that the density of particles in phase space is a constant 

0
dt

d ,  so we wish to calculate the rate of change of the density of particles. Imagine we 

shoot a burst of particles at the moon. The burst is localized in space and in momentum. The 

burst moves toward the moon and so clearly the density near the earth is decreased, however, 

the density we are interested in is essentially, the density around one of the particles, not the 

density at some fixed point. That is, the point in phase space at which we wish to measure the 

density, moves with the particles. The bunch of particles spreads out in coordinates space but 

the coordinate is highly correlated with the momentum so the density in phase space can 

remain constant.  

To prove Liouville's theorem, we will calculate the rate of change of the number of particles 

in an infinitesimal hypercube in phase space. Consider the cube face perpendicular to qk for 

example. The flow of particles through the face is kk
dpq

.

  times all the other dimensions of 

the face dqjdpj for kj  . Then the rate of change of the number of particles in the hypercube, 

due to flow through this face and the one opposite it is,  

 

and the net flow into the hypercube due to all of the faces is  

 

Calculate the rate of change of the density by dividing by the volume of the hypercube.  
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So that is the rate of change due to the other particles flowing, the partial derivative. To this 

we should add the rate of change due to the particle we are following moving.  

 
 

  

  

 

 

  

  

 

 

  

  

  

  

  

 

Now, we apply Hamilton's equations.  

 
 

    

  

 

    

 

 

    

This is true in the presence of any external forces or focusing elements. One cannot change 

the density in phase space of a bunch of particles, a beam of light, or any other collection of 

particles.  

 

Maxwell-Boltzmann distribution law 

In statistics, the Maxwell–Boltzmann distribution is a particular probability distribution 

named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used in 

physics (in particular in statistical mechanics) for describing particle speeds in idealized gases 

where the particles move freely inside a stationary container without interacting with one 
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another, except for very brief collisions in which they exchange energy and momentum with 

each other or with their thermal environment. Particle in this context refers to gaseous 

particles (atoms or molecules), and the system of particles is assumed to have reached 

thermodynamic equilibrium. While the distribution was first derived by Maxwell in 1860 on 

heuristic grounds, Boltzmann later carried out significant investigations into the physical 

origins of this distribution. 

A particle speed probability distribution indicates which speeds are more likely: a 

particle will have a speed selected randomly from the distribution, and is more likely to be 

within one range of speeds than another. The distribution depends on the temperature of the 

system and the mass of the particle. The Maxwell–Boltzmann distribution applies to the 

classical ideal gas, which is an idealization of real gases. In real gases, there are various 

effects (e.g., van der Waals interactions, vertical flow, relativistic speed limits, and quantum 

exchange interactions) that can make their speed distribution different from the Maxwell–

Boltzmann form. However, rarefied gases at ordinary temperatures behave very nearly like an 

ideal gas and the Maxwell speed distribution is an excellent approximation for such gases. 

Thus, it forms the basis of the Kinetic theory of gases, which provides a simplified 

explanation of many fundamental gaseous properties, including pressure and diffusion. 

The Maxwell–Boltzmann distribution is the function 

kT
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m
vf 2
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Where m is the particle mass and KT is the product of Boltzmann's constant and 

thermodynamic temperature. 

This probability density function gives the probability, per unit speed, of finding the particle 

with a speed near v. This equation is simply the Maxwell distribution with distribution 

parameter mkTa  . In probability theory the Maxwell–Boltzmann distribution is a chi 

distribution with three degrees of freedom and scale parameter mkTa  . 

The simplest ordinary differential equation satisfied by the distribution is: 
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or in unit less presentation: 
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 Distribution of energy 

The energy distribution is found imposing 

PdPfdEEf pE

3)()(          ----------------- (1) 

Where d3P is the infinitesimal phase-space volume of momenta corresponding to the energy 

interval dE. Making use of the spherical symmetry of the energy-momentum dispersion 

relation mPE 2
2

 , this can be expressed in terms of as 

  dEmEmPdPPd 244
23         ----------------- (2) 

Using then (2) in (1), and expressing everything in terms of the energy E, we get 
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And finally, 
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    ------------------ (3) 

Since the energy is proportional to the sum of the squares of the three normally distributed 

momentum components, this distribution is a gamma distribution; in particular, it is a chi-

squared distribution with three degrees of freedom. 

By the equipartition theorem, this energy is evenly distributed among all three degrees 

of freedom, so that the energy per degree of freedom is distributed as a chi-squared 

distribution with one degree of freedom:  

https://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#math_8
https://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#math_7
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Where,   is the energy per degree of freedom. At equilibrium, this distribution will hold true 

for any number of degrees of freedom. For example, if the particles are rigid mass dipoles of 

fixed dipole moment, they will have three translational degrees of freedom and two additional 

rotational degrees of freedom. The energy in each degree of freedom will be described 

according to the above chi-squared distribution with one degree of freedom, and the total 

energy will be distributed according to a chi-squared distribution with five degrees of 

freedom. This has implications in the theory of the specific heat of a gas. 

Distribution for the velocity vector 

 

Recognizing that the velocity probability density fv is proportional to the momentum 

probability density function by 
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which is the Maxwell–Boltzmann velocity distribution. The probability of finding a particle 

with velocity in the infinitesimal element [dvx, dvy, dvz] about velocity v = [vx, vy, vz] is 

    
zyxzyxv dvdvdvvvvf ,,  

Like the momentum, this distribution is seen to be the product of three independent normally 

distributed variables vx, vy and vz but with variance mkT / . It can also be seen that the 

Maxwell–Boltzmann velocity distribution for the vector velocity [vx, vy, vz] is the product of 

the distributions for each of the three directions: 
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Where the distribution for a single direction is 
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https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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Each component of the velocity vector has a normal distribution with mean  

0 vzvyvx   and standard deviation 
m

kT
vzvyvx    , so the vector has a 3-

dimensional normal distribution,  a particular kind of multivariate normal distribution, with 

mean 0v  and standard deviation  
m

kT
v   

The Maxwell–Boltzmann distribution for the speed follows immediately from the distribution 

of the velocity vector, above.  

Note that the speed is 

  222

zyx vvvv   

And the volume element in spherical coordinates  

 

  ddvdvdvdvdv zyx sin2  

Where  and  are the "course" (azimuth of the velocity vector) and "path angle" (elevation 

angle of the velocity vector). 

Integration of the normal probability density function of the velocity, above, over the course 

(from 0 to 2π) and path angle (from 0 to π), with substitution of the speed for the sum of the 

squares of the vector components, yields the speed distribution. 

 

Equipartition of energy 

Equipartition of energy, law of statistical mechanics stating that, in a system in thermal 

equilibrium, on the average, an equal amount of energy will be associated with each 

independent energy state. Based on the work of physicists James Clerk Maxwell of Scotland 

and Ludwig Boltzmann of Germany, this law states specifically that a system of particles in 

equilibrium at absolute temperature T will have an average energy of 1/2kT associated with 

each degree of freedom, in which k is the Boltzmann constant. In addition, any degree of 

freedom contributing potential energy will have another 1/2kT associated with it. For a system 

of s degrees of freedom, of which t have associated potential energies, the total average 

energy of the system is 1/2(s + t)kT. 

For example, an atom of a gas has three degrees of freedom (the three spatial, or 

position, coordinates of the atom) and will, therefore, have an average total energy of 3/2kT. 

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Volume_element
https://en.wikipedia.org/wiki/Spherical_coordinates
http://www.britannica.com/science/statistical-mechanics
http://www.britannica.com/science/energy
http://www.britannica.com/biography/James-Clerk-Maxwell
http://www.britannica.com/science/Boltzmann-constant
http://www.britannica.com/science/potential-energy
http://www.britannica.com/science/atom
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For an atom in a solid, vibratory motion involves potential energy as well as kinetic energy, 

and both modes will contribute a term 1/2kT, resulting in an average total energy of 3kT. 

 

Energy Fluctuation 

In the canonical ensemble, the system acquire a temperature by having a thermal contact 

with a thermostat (heat bath) with temperature T. Thus the system is no longer isolated any 

more. Its total energy, i.e., Hamiltonian H(qi, pi) is no longer conserved. In other words, we 

should expect some fluctuation of total energy in the canonical ensemble. On the other hand, 

fluctuations are not considered in thermodynamics. At constant N, V, T the appropriate 

thermodynamics potential is A(N, V, T), from which we can compute a definite value for 

energy E = A + TS, with 
VNT

A
S

,













 . 

Hence, in thermodynamics, we expect the system to simultaneously have a definite 

temperature T and total energy E. In statistical mechanics, if the system has a well defined 

temperature, its total energy E must fluctuate. 

 

Partition functions  

 

Partition functions describe the statistical properties of a system in thermodynamic 

equilibrium. It is a function of temperature and other parameters, such as the volume 

enclosing a gas. Most of the aggregate thermodynamic variables of the system, such as the 

total energy, free energy, entropy, and pressure, can be expressed in terms of the partition 

function or its derivatives. There are actually several different types of partition functions, 

each corresponding to different types of  statistical ensemble (or, equivalently, different types 

of  free energy). The canonical partition function applies to a canonical ensemble , in which 

the system is allowed to exchange heat with the environment at fixed temperature, volume, 

and number of particles. The grand canonical partition function applies to a grand canonical 

ensemble, in which the system can exchange both heat and particles with the environment, at 

fixed temperature, volume, and chemical potential. Other types of partition functions can be 

defined for different circumstances.  

 

http://www.britannica.com/science/solid-state-of-matter
http://www.britannica.com/science/kinetic-energy
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Meaning and significance 

It may not be obvious why the partition function, as we have defined it above, is an important 

quantity. First, let us consider what goes into it. The partition function is a function of the 

temperature T and the microstate energies E1, E2, E3, etc. The microstate energies are 

determined by other thermodynamic variables, such as the number of particles and the 

volume, as well as microscopic quantities like the mass of the constituent particles. This 

dependence on microscopic variables is the central point of statistical mechanics. With a 

model of the microscopic constituents of a system, one can calculate the microstate energies, 

and thus the partition function, which will then allow us to calculate all the other 

thermodynamic properties of the system.  

The partition function can be related to thermodynamic properties because it has a very 

important statistical meaning. The probability Ps that the system occupies microstate s is  

 

    SE
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e


is the well-known Boltzmann factor. The partition function thus plays the role of a 

normalizing constant (note that it does not depend on s), ensuring that the probabilities sum 

up to one:  

   1
11




 Z
Z

e
E

P SE

S

S


 

 

This is the reason for calling Z the "partition function": it encodes how the probabilities are 

partitioned among the different microstates, based on their individual energies. The letter Z 

stands for the German word Zustandssumme, "sum over states". This notation also implies 

another important meaning of the partition function of a system: it counts the (weighted) 

number of states a system can occupy. Hence if all states are equally probable (equal 

energies) the partition function is the total number of possible states. Often this is the 

practical importance of Z. 

 

Relation to thermodynamic variables 

In this section, we will state the relationships between the partition function and the various 

thermodynamic parameters of the system. These results can be derived using the method of 

the previous section and the various thermodynamic relations.  
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As we have already seen, the thermodynamic energy is  
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The variance in the energy (or "energy fluctuation") is 
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The heat capacity is 
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where A is the Helmholtz free energy defined as A = U - TS, where U=<E> is the total 

energy and S is the entropy, so that 

 

   ZTkTSEA B ln . 

 

Boltzmann's Entropy equation 

Boltzmann's equation is a probability equation relating the entropy S of an ideal gas to the 

quantity W, which is the number of microstates corresponding to a given macrostate: 

          

where kB is the Boltzmann constant, which is equal to 1.38065 × 10−23 J/K. 

In short, the Boltzmann formula shows the relationship between entropy and the number of 

ways the atoms or molecules of a thermodynamic system can be arranged. In 1934, Swiss 

physical chemist Werner Kuhn successfully derived a thermal equation of state for rubber 

molecules using Boltzmann's formula, which has since come to be known as the entropy 

model of rubber. 

https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Microstate_%28statistical_mechanics%29
https://en.wikipedia.org/wiki/Macrostate
https://en.wikipedia.org/wiki/Boltzmann_constant
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Werner_Kuhn
https://en.wikipedia.org/wiki/Equation_of_state
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The term Boltzmann entropy is also sometimes used to indicate entropies calculated 

based on the approximation that the overall probability can be factored into an identical 

separate term for each particle i.e., assuming each particle has an identical independent 

probability distribution, and ignoring interactions and correlations between the particles. This 

is exact for an ideal gas of identical particles, and may or may not be a good approximation 

for other systems.  

The Boltzmann entropy is obtained if one assumes one can treat all the component 

particles of a thermodynamic system as statistically independent. The probability distribution 

of the system as a whole then factorises into the product of N separate identical terms, one 

term for each particle; and the Gibbs entropy simplifies to the Boltzmann entropy 

 

Where the summation is taken over each possible state in the 6-dimensional phase space of a 

single particle (rather than the 6N-dimensional phase space of the system as a whole). 

This reflects the original statistical entropy function introduced by Ludwig Boltzmann in 

1872. For the special case of an ideal gas it exactly corresponds to the proper thermodynamic 

entropy. 

However, for anything but the most dilute of real gases, it leads to increasingly wrong 

predictions of entropies and physical behaviours, by ignoring the interactions and correlations 

between different molecules. Instead one must follow Gibbs, and consider the ensemble of 

states of the system as a whole, rather than single particle states. 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Ideal_gas
https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Entropy
https://en.wikipedia.org/wiki/Statistical_ensemble
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QUESTION BANK 

 

PART-A 

 

1. What are macroscopic and microscopic states? 

2. Explain statistical equilibrium in Thermodynamics? 

3. Explain the phase space  

4. What is an ensemble of thermodynamic system? Give an example? 

5. Explain the principles of equi-partition of energy. 

6. What do you mean by energy fluctuations? 

7. What is grand canonical ensemble of statistical mechanics? 

8. Compare the  basic concepts of Bose-Einstein’s statistics and Fermi-Dirac statistics 

9. Compare the basic concepts of Fermi-Dirac statistics and Maxwell-Boltzmann 

statistics. 

10. What are the different kinds of ensemble? 

 

        PART-B 

 

1. Show that the density of phase points is an integral of motion by Liouville’s Theorem. 

2. Explain the basic concepts of Bose-Einstein’s and Fermi Dirac statistics? 

3. Derive the relation between the partition function and thermodynamic quantities. 

4. Explain distribution of energy and velocity of particles by Maxwell-Boltzmann 

distribution law. 
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IV. QUANTUM STATISTICAL MECHANICS 
 

 

Quantum statistical mechanics is based on the quantum-mechanical description of 

many-particle systems. Therefore, even before introducing statistical distributions (for 

microscopic states), we have to face the intrinsic probabilistic nature of quantum mechanical 

predictions. It is very important to distinguish carefully between the intrinsic statistical nature 

of quantum mechanics and the statistical aspects introduced by the probability distribution of 

quantum-mechanical states. 

Black body 

An idealized physical body that absorbs all incident electromagnetic radiation, regardless of 

frequency or angle of incidence, is called Black body. Although black body is a theoretical 

concept, you can find approximate realizations of black body in nature. 

A black body in thermal equilibrium (i.e. at a constant temperature) emits 

electromagnetic radiation called black body radiation. Black body radiation has a 

characteristic, continuous frequency spectrum that depends only on the body's temperature. 

Max Planck, in 1901, accurately described the radiation by assuming that electromagnetic 

radiation was emitted in discrete packets (or quanta). Planck's quantum hypothesis is a 

pioneering work, heralding advent of a new era of modern physics and quantum theory. 

Explaining the properties of black-body radiation was a major challenge in theoretical 

physics during the late nineteenth century. Predictions based on classical theories failed to 

explain black body spectra observed experimentally, especially at shorter wavelength . The 

puzzle was solved in 1901 by Max Planck in the formalism now known as Planck's law of 

black-body radiation. Contrary to the common belief that electromagnetic radiation can take 

continuous values of energy, Planck introduced a radical concept that electromagnetic 

radiation was emitted in discrete packets (or quanta) of energy.  

https://www.boundless.com/physics/textbooks/boundless-physics-textbook/atomic-physics-29/overview-184/planck-s-quantum-hypothesis-and-black-body-radiation-682-6361/
https://www.boundless.com/physics/textbooks/boundless-physics-textbook/atomic-physics-29/overview-184/planck-s-quantum-hypothesis-and-black-body-radiation-682-6361/
https://www.boundless.com/physics/textbooks/boundless-physics-textbook/atomic-physics-29/overview-184/planck-s-quantum-hypothesis-and-black-body-radiation-682-6361/
https://www.boundless.com/physics/definition/frequency
https://www.boundless.com/physics/definition/wavelength
https://www.boundless.com/physics/definition/law
https://www.boundless.com/physics/definition/energy
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Black body radiation spectrum 

 

 

Typical spectrum from a black body at different temperatures is shown in blue, green and red 

curves. As the temperature decreases, the peak of the black-body radiation curve moves to 

lower intensities and longer wavelengths. Black line is a prediction of a classical theory for 

an object at 5,000K, showing catastropic discrepancy at shorter wavelength. 

Planck’s radiation law, a mathematical relationship formulated in 1900 by German 

physicist Max Planck to explain the spectral-energy distribution of radiation emitted by a 

blackbody (a hypothetical body that completely absorbs all radiant energy falling upon it, 

reaches some equilibrium temperature, and then reemits that energy as quickly as it absorbs 

it). Planck assumed that the sources of radiation are atoms in a state of oscillation and that the 

vibrational energy of each oscillator may have any of a series of discrete values but never any 

value between. Planck further assumed that when an oscillator changes from a state of energy 

E1 to a state of lower energy E2, the discrete amount of energy E1 − E2, or quantum of 

radiation, is equal to the product of the frequency of the radiation, symbolized by the Greek 

http://www.britannica.com/biography/Max-Planck
http://www.britannica.com/science/blackbody
http://www.britannica.com/science/energy
http://www.britannica.com/science/vibration
http://www.britannica.com/science/energy-state
http://www.britannica.com/science/quantum
http://www.britannica.com/science/frequency-physics
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letter ν and a constant h, now called Planck’s constant, that he determined from blackbody 

radiation data; i.e., E1 − E2 = hν. 

Planck’s law for the energy Eλ radiated per unit volume by a cavity of a blackbody in 

the wavelength interval λ to λ + Δλ (Δλ denotes an increment of wavelength) can be written 

in terms of Planck’s constant (h), the speed of light (c), the Boltzmann constant (k), and the 

absolute temperature (T): 

 

The wavelength of the emitted radiation is inversely proportional to its frequency, or              

λ = c/ν. The value of Planck’s constant is found to be 6.62606957 × 10−34 Js.  

For a blackbody at temperatures up to several hundred degrees, the majority of the 

radiation is in the infrared radiation region of the electromagnetic spectrum. At higher 

temperatures, the total radiated energy increases, and the intensity peak of the emitted 

spectrum shifts to shorter wavelengths so that a significant portion is radiated as visible light. 

Phonons  

Considering the regular lattice of atoms in a uniform solid material, you would expect there 

to be energy associated with the vibrations of these atoms. But they are tied together with 

bonds, so they can't vibrate independently. The vibrations take the form of collective modes 

which propagate through the material. Such propagating lattice vibrations can be considered 

to be sound waves, and their propagation speed is the speed of sound in the material.  

The vibrational energies of molecules, e.g., a diatomic molecule, are quantized and 

treated as quantum harmonic oscillators. Quantum harmonic oscillators have equally spaced 

energy levels with separation DE = hυ. So the oscillators can accept or lose energy only in 

discrete units of energy hυ.  

The evidence on the behavior of vibrational energy in periodic solids is that the collective 

vibrational modes can accept energy only in discrete amounts, and these quanta of energy 

have been labeled "phonons". Like the photons of electromagnetic energy, they obey Bose-

Einstein statistics. Phonons are bosons possessing zero spin. 

Considering a solid to be a periodic array of mass points, there are constraints on both 

the minimum and maximum wavelength associated with a vibrational mode.  

http://www.britannica.com/science/Plancks-constant
http://www.britannica.com/science/blackbody
http://www.britannica.com/science/speed-of-light
http://www.britannica.com/science/Boltzmann-constant
http://www.britannica.com/science/infrared-radiation
http://www.britannica.com/science/spectrum
http://www.britannica.com/science/light
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/souspe2.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibspe.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/mod2.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbe.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbe.html#c1
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By associating a phonon energy 

 

with the modes and summing over the modes, Debye was able to find an expression for the 

energy as a function of temperature and derive an expression for the specific heat of the 

solid. In this expression, vs is the speed of sound in the solid.  

 

Partition function for a Harmonic oscillator 

Consider a one-dimensional harmonic oscillator in equilibrium with a heat reservoir at 

temperature . The energy of the oscillator is given by  

 

(1) 

 

where the first term on the right-hand side is the kinetic energy, involving the momentum P 

and mass , and the second term is the potential energy, involving the displacement x and 

the force constant . Each of these terms is quadratic in the respective variable. So, in the 

classical approximation the equipartition theorem yields:  

kT
m

P

2

1

2

2

           (2) 

kTxk
2

1

2

1 2            (3) 
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That is, the mean kinetic energy of the oscillator is equal to the mean potential energy which 

equals (1/2)kT. It follows that the mean total energy is  

 

(4) 

According to quantum mechanics, the energy levels of a harmonic oscillator are equally 

spaced and satisfy  

 

(5) 

where is a non-negative integer, and  

 

(6) 

 

The partition function for such an oscillator is given by  

 

(7) 

Now,  

 

(8) 

 

         is simply the sum of an infinite geometric series, and can be evaluated immediately,  

 

(9) 

Thus, the partition function takes the form  

 

(10) 

 

and 

 

(11) 

 

The mean energy of the oscillator is given by  
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(12) 

or 

 

(13) 

 

Consider the limit  

 

(14) 

 

in which the thermal energy is large compared to the separation between the 

energy levels. In this limit,  

 

(15) 

 

so 

 

(16) 

 

giving 

 

(17) 

 

Thus, the classical result (4) holds whenever the thermal energy greatly exceeds the typical 

spacing between quantum energy levels.  

Consider the limit  

 

(18) 

 

in which the thermal energy is small compared to the separation between the energy levels. In 

this limit,  

 

(19) 

http://farside.ph.utexas.edu/teaching/sm1/lectures/node68.html#e7.109
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    and so  

 

(20) 

Thus, if the thermal energy is much less than the spacing between quantum states then the 

mean energy approaches that of the ground-state (the so-called zero point energy). Clearly, 

the equipartition theorem is only valid in the former limit, where kT , and the oscillator 

possess sufficient thermal energy to explore many of its possible quantum states.  

Specific heats of solids  

The amount of energy required to raise the temperature of one kilogram of the substance by 

one kelvin is called specific heat. The SI unit for specific heat capacity is the joule per 

kilogram kelvin, J·kg-1·K-1.By heat capacity, it is often referred that heat capacity at constant 

volume, which is more fundamental than the heat capacity at constant pressure.The heat 

capacity at constant volume is defined as  

   
VV

V
T

U

T

S
TC 

























      ----------------- (1) 

Where S is the entropy, U is the energy, and T is temperature. 

The experimental facts about the heat capacity of solids are these: 

1. In room temperature range the value of the heat capacity of nearly all monoatomic 

solids is close to 3Nk, or 25 J mol-1 deg -1. 

2. At lower temperatures the heat capacity drops rapidly and approaches zero as T3 in 

insulators and as T in metals.If metal becomes semiconductor, the drop is faster than 

T.  

The Debye model is developed by Peter Debye in 1912.He estimated the phonon 

contribution to the heat capacity in solids. The Debye model treats the vibration of the lattice 

as phonons in a box, in contrast to Einstein model, which treats the solid as non-interacting 

harmonic oscillators. The Debye model predicts the low temperature dependence of heat 

capacity T3 that confirms the experimental results. Moreover, it covers the high temperature 

limits like the Einstein model.  

 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Joule
http://en.wikipedia.org/wiki/Kilogram
http://en.wikipedia.org/wiki/Kelvin
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EINSTEIN MODEL 

The average energy of an oscillator of frequency  , is n . For N oscillators in one 

dimension, all having same frequency, the thermal energy is  

                               
1/ 












e

N
nNU     ------------------ (2) 

Where kT  , k Boltzmann constant and n  is the thermal average of the number of 

phonons in an elastic wave of given frequency. 

Then the heat capacity of oscillator is  

                               2/

/2

)1( 












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



















e

e
Nk

T

U
C

V

V   -----------------  (3) 

(a)  At high temperatures   kT  and e kT
kT







 1  

U
N

NkT RT
kT

  
3

3 3



   ----------------- (4) 

Also C = dU/dT = 3R, in agreement with experiment.  

(b) At low temperatures                    kT  and e kT



 1 

U N e kT


3 





                ---------------- (5) 

And C can be found as follows,  

C Nk
kT

e

R
T

e

kT

E T

E



























3

3

2

2

 





    ----------------- (6) 

Therefore, it can be seen that Einstein model successfully predicts that C decreases with 

decreasing T. However, exponential decrease is not observed; if low frequencies are present, 

then   will be small, much smaller than kT even at low temperatures; C will remain at 3kT 

to much lower frequencies and the fall off is not as dramatic as predicted by the Einstein 

model.  
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This graph indicates the heat capacity of several solid metals as a function of the Einstein 

temperature: θE=hv/kB. 

DEBYE MODEL 

Debye improved on Einstein’s theory by treating the coupled vibrations of the solid in terms 

of 3N normal modes of vibration of the whole system, each with its own frequency. The 

lattice vibrations are therefore equivalent to 3N independent harmonic oscillators with these 

normal mode frequencies. For low frequency vibrations, defined as those for which the 

wavelength is much greater than the atomic spacing, λ>> a, the crystal may be treated as a 

homogeneous elastic medium. The normal modes are the frequencies of the standing waves 

that are possible in the medium. 

Debye derived an expression for the number of modes with frequency between ν and ν+dν in 

such a medium.  




 dd
v

V
dg 2

3

24
)(   

where V is the crystal volume and v is the propagation velocity of the wave. This expression 

applies only to low frequency vibrations in a crystal. Debye used the approximation that it 

applied to all frequencies, and introduced a maximum frequency νD 

(the Debye frequency) such that there were 3N modes in total. i.e.  

D

Ndg
0

3)(   
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The Debye frequency corresponds to λ= 2a, when neighbouring atoms vibrate in antiphase 

with each other. With this approximation in place, Debye integrated over all of the 

frequencies to find the internal energy of the crystal, and then calculated the heat capacity 

using   
V

V
T

U
C 












            

 The resulting expression is given below.  
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where x =hν/kT, and xD=hνD/kT= θD/T. The Debye heat capacity depends only on the Debye 

temperature θD. The integral cannot be evaluated analytically, but the bracketed function is 

tabulated.  

At high temperatures (T >>θD, xD<< 1), we may rewrite the integrand as follows:  

 

    xee

x

ee

x

e

ex




 111

4

2

4

 

   .....4/2/1)cosh(22 42

44







xx

x

x

x
 

Retaining only the x2 term in the denominator gives  
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To determine the low temperature limit (T << θD, xD>> 1), we note that the integrand tends 

towards zero rapidly for large x. This allows us to replace the upper limit by ∞ and turn the 

integral into a standard integral, to give  
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We see that the Debye heat capacity decreases as T3 at low temperatures, in agreement with 

experimental observation. This is a marked improvement on Einstein’s theory.  
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Extension: Einstein-Debye Specific Heat 

This T3 dependence of the specific heat at very low temperatures agrees with experiment for 

nonmetals. For metals the specific heat of highly mobile conduction electrons is 

approximated by Einstein Model, which is composed of single-frequency quantum harmonic 

oscillators. The temperature dependence of Einstein model is just T. It becomes significant at 

low temperatures and is combined with the above lattice specific heat in the Einstein-Debye 

specific heat. 

Cmetal=Celectron+Cphonon=  

3

3

422

5

12

2
T

T

Nk
T

E

Nk

D

B

f




 

Finally, experiments suggest that amorphous materials do not follow the Debye T3 law even 

at temperatures below 0.01TD.  

Diatomic molecule 

In case of an ideal gas of diatomic molecules, the presence of internal degrees of freedom are 

apparent. In addition to the three translational degrees of freedom, there are rotational and 

vibrational degrees of freedom. In general, the number of degrees of freedom, f, in a molecule 

with na atoms is 3na: 

anf 3  

Mathematically, there are a total of three rotational degrees of freedom, one corresponding to 

rotation about each of the axes of three-dimensional space. However, in practice only the 

existence of two degrees of rotational freedom for linear molecules will be considered. This 

approximation is valid because the moment of inertia about the internuclear axis is 

vanishingly small with respect to other moments of inertia in the molecule (this is due to the 

very small rotational moments of single atoms, due to the concentration of almost all their 

mass at their centers; compare also the extremely small radii of the atomic nuclei compared 

to the distance between them in a diatomic molecule). Quantum mechanically, it can be 

shown that the interval between successive rotational energy Eigen states is inversely 

proportional to the moment of inertia about that axis. Because the moment of inertia about the 

internuclear axis is vanishingly small relative to the other two rotational axes, the energy 

http://en.wikipedia.org/wiki/Einstein_model
https://en.wikipedia.org/wiki/Eigenstates
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spacing can be considered so high that no excitations of the rotational state can occur unless 

the temperature is extremely high. It is easy to calculate the expected number of vibrational 

degrees of freedom (or vibrational modes). There are three degrees of translational freedom, 

and two degrees of rotational freedom, therefore 

1236  rottransvib ffff  

Each rotational and translational degree of freedom will contribute R/2 in the total molar heat 

capacity of the gas. Each vibrational mode will contribute R to the total molar heat capacity, 

however. This is because for each vibrational mode, there is a potential and kinetic energy 

component. Both the potential and kinetic components will contribute R/2 to the total molar 

heat capacity of the gas. Therefore, a diatomic molecule would be expected to have a molar 

constant-volume heat capacity of 

R
R

RR
R

C mv 5.3
2

7

2

3
,   

Where the terms originate from the translational, rotational, and vibrational degrees of 

freedom, respectively. 

The following is a table of some molar constant-volume heat capacities of various diatomic 

gases at standard temperature (25 °C = 298 K) 

Diatomic gas CV, m (J/(mol⋅K)) CV, m / R 

H2 20.18 2.427 

CO 20.2 2.43 

N2 19.9 2.39 

Cl2 24.1 3.06 

Br2 (vapour) 28.2 3.39 

From the above table, clearly there is a problem with the above theory. All of the diatomics 

examined have heat capacities that are lower than those predicted by the equipartition 

https://en.wikipedia.org/wiki/Vibrational_modes
https://en.wikipedia.org/wiki/Equipartition_theorem
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theorem, except Br2. However, as the atoms composing the molecules become heavier, the 

heat capacities move closer to their expected values. One of the reasons for this phenomenon 

is the quantization of vibrational, and to a lesser extent, rotational states. In fact, if it is 

assumed that the molecules remain in their lowest energy vibrational state because the inter-

level energy spacings for vibration-energies are large, the predicted molar constant volume 

heat capacity for a diatomic molecule becomes just that from the contributions of translation 

and rotation: 

R
R

R
R

C mv 5.2
2

5

2

3
,   

which is a fairly close approximation of the heat capacities of the lighter molecules in the 

above table. If the quantum harmonic oscillator approximation is made, it turns out that the 

quantum vibrational energy level spacings are actually inversely proportional to the square 

root of the reduced mass of the atoms composing the diatomic molecule. Therefore, in the 

case of the heavier diatomic molecules such as chlorine or bromine, the quantum vibrational 

energy level spacings become finer, which allows more excitations into higher vibrational 

levels at lower temperatures. This limit for storing heat capacity in vibrational modes, as 

discussed above, becomes 7R/2 = 3.5 R per mole of gas molecules, which is fairly consistent 

with the measured value for Br2 at room temperature. As temperatures rise, all diatomic gases 

approach this value. 

Ideal Bose gas 

We consider an ideal gas of Bose particles. This is a gas of any integral spin (e.g. zero spin) 

particles at a temperature low enough that quantum effects are important. Quantum effects 

become important when the thermal wavelength   212 2/ mkThT   of the particles is 

comparable or greater than the interparticle spacing, i.e. .13 Tn  

The prime physical example is a gas of 4He atoms. In fact the 4He-4He interatomic interaction 

is strong enough that the gas condenses into a liquid at low temperature, below 4.2 K. In spite 

of this, liquid 4He properties are often compared with similar properties in the perfect Bose 

gas. In 1924 Einstein proposed that a Bose gas at low temperature would undergo a 

\condensation" in which a macroscopic or large fraction of the particles condense into the 

lowest energy single particle state (the zero momentum state). This Bose-Einstein 

condensation was a logical consequence of the new statistics introduced by Bose. Although 

https://en.wikipedia.org/wiki/Equipartition_theorem
https://en.wikipedia.org/wiki/Harmonic_oscillator
https://en.wikipedia.org/wiki/Reduced_mass
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there is not yet a fully satisfactory theory of Liquid 4He this condensation is observed in 

liquid 4He at T-Tλ= 2.17 K. At Tλ a fraction of atoms begin to condensate into the condensate 

state. At T‒ 0 K 7.25: 75 % of the fluid is in the condense state. 

Bose-Einstein condensation 

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of bosons cooled to 

temperatures very close to absolute zero (that is, very near 0 K or −273.15 °C). Under such 

conditions, a large fraction of bosons occupy the lowest quantum state, at which point 

macroscopic quantum phenomena become apparent.  

The statistical description of a collection of non-interacting bosons was first considered by 

Bose in 1924 in the context of photons and the Planck’s distribution. In 1925, Einstein 

realized that for material particles whose number must be conserved, these statistics (now 

known as Bose-Einstein statistics) could force the particles to undergo a phase transition in 

which they form a macroscopic occupation of the lowest energy level of the container. This 

phase transition is known a s Bose-Einstein condensation, and it occurs when the temperature 

and density are such that the deBroglie waves of the atoms begin to overlap. 

Ideal-gas atoms are considered as non-interacting quantum mechanical version of a 

classical ideal gas. It is composed of bosons, which have an integer value of spin, and obey 

Bose-Einstein statistics. Considering, properties of a system of N noninteracting particles 

(say bosonic atoms) of mass m, in thermodynamic equilibrium at temperature T, the mean 

number of particles occupying a single quantum state of energy ϵv is given by the Bose-

Einstein distribution.  

      
1

1
/




 Tkv
Bcve

f


      ---------------- (1) 

Where µc and kB corresponds to chemical potential and Boltzmann constant, respectively. 

Note that the exponential part of this distribution function is bounded below by 1, this 

function allows arbitrarily high occupancy of any state. This surprising result allows for the 

possibility that certain number of massive particles may exist simultaneously in a single 

quantum state. That is, more than one particle may be described by exactly the same single-

particle Schrodinger wave function. The physical implications of this statement indicate that 

two or more bosons are observed at the same position. The chemical potential µc as a function 

https://en.wikipedia.org/wiki/State_of_matter
https://en.wikipedia.org/wiki/Boson
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Macroscopic_quantum_phenomena
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of temperature and the total number of particles gives the dependence of Bose-Einstein 

distribution on N.  

The chemical potential is the energy required to add a particle to the system while 

keeping the entropy and volume are fixed. It is determined from the constraint that the total 

number of particles in the system is fixed, so we have 

      





v

Bcv Tk
e

N



1

1
/         ------------ (2) 

If the Bose-Einstein distribution varies slowly on the scale of the energy level spacing, then 

the summation in Eq. (2) can be replaced by an integral over a density of states. If µc → 0, 

however, the distribution has a singularity at εv = 0, which signifies the possibility of the 

ground state to accommodate very large number of particles. In addition, this state is actually 

neglected by the density of states, which does not provide a good description of the lowest 

energy levels. The simplest way to deal with these problems is it correct usage ground state 

contribution for special treatment, and use a density of states for the remaining levels. Eq. (2) 

can therefore be written as 

     dgfNN )()(0         ----------- (3) 

where N0 is the number of particles in the ground state and G(ε) is the density of states for the 

homogeneous gas in three-dimensional (3D) box and is given by 
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where V is the volume of the system. The integral over the density of states in Eq. (3) gives 

the number of excited particles Nex, i.e. those which are not in the ground state. Eq. (1) shows 

that the Bose-Einstein distribution is a monotonically increasing function of both µ and T. If 

the system is cooled, µc must therefore increase so that the total number of particles is 

constant. Since we must also have µc < 0, we can find maximum number of particles in the 

excited states by setting µc = 0 in the integral of Eq. (3), we have 
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where    is the Riemann zeta function. For uniform ideal Bose gas in a 3D box, the value 

of   (3/2) = 2.612. At high temperature  µc ≪ 0, Nex > N and essentially all the particles are 

in the excited states. As the system is cooled, however, µc increases towards zero and we 

eventually reach a critical temperature Tc at which Nex = N.  

From Eq. (5) the transition temperature Tc is given by 

   
32

2

3031 n
mk

T
B

c 










          ------------ (6) 

Where n = N/V is the particle number density. At the transition temperature, the number of 

particles in the excited state is given by 
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Below the critical temperature, the particles can no longer be accommodated in the 

excited states, so further cooling results in the formation of a macroscopic population of the 

lowest energy level. In this regime, the chemical potential is essentially fixed at zero. Upon 

substitution Eq. (7) into Eq. (3), the condensate population varies with temperature as 
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Thus, below the critical temperature a finite fraction of all the particles occupy a single state. 

This is one of the defining features of Bose-Einstein condensation. The particle in a box 

model is simple to deal with, there are practical difficulties in implementing exactly cubic 

traps experimentally. As such, its primary purpose lies in providing the most basic theoretical 

illustration of BEC. An alternative model which is no more complicated to deal with but far 

more practicable is obtained by replacing the box containment with a radially symmetric 

harmonic potential,  

   222222

2

1
)( zyxmrV zxyx    

Rigorously speaking, for an ideal Bose gas of N bosonic atoms in a harmonic potential, the 

condition of phase-space density   232 /2 Bmkn  >2.612 is replaced by     23
/ TkN Bho > 

1.202 where ωℎo≡ (ωxωyωz)
1/3 is the geometric means of the harmonic trapping frequencies. 

Using exactly the same arguments that are usually employed to solve the box model, the 

density of states is 
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Below Tc, the condensate population varies with temperature as 
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The above relation indicates that the number of particles condensed into the single quantum 

state in harmonic potential varies with temperature. 

 

 

Liquid Helium 

The chemical element helium exists in a liquid form only at the extremely low 

temperature of −269 °C (about 4 K or −452.2 °F). Its boiling point and critical point depend 

on which isotope of helium is present: the common isotope helium-4 or the rare isotope 

helium-3. These are the only two stable isotopes of helium. See the table below for the values 

of these physical quantities. The density of liquid helium-4 at its boiling point and a pressure 

of one atmosphere (101.3 kilopascals) is about 0.125 grams per cm3, or about 1/8th the 

density of liquid water.  

 

Characteristics 

The temperature required to produce liquid helium is low because of the weakness of the 

attractions between the helium atoms. These interatomic forces in helium are weak to begin 

with because helium is a noble gas, but the interatomic attractions are reduced even more by 

the effects of quantum mechanics. These are significant in helium because of its low atomic 

mass of about four atomic mass units. The zero point energy of liquid helium is less if its 

atoms are less confined by their neighbors. Hence in liquid helium, its ground state energy 

can decrease by a naturally-occurring increase in its average interatomic distance. However at 

greater distances, the effects of the interatomic forces in helium are even weaker.  

Because of the very weak interatomic forces in helium, this element would remain a liquid at 

atmospheric pressure all the way from its liquefaction point down to absolute zero. Liquid 
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helium solidifies only under very low temperatures and great pressures. At temperatures 

below their liquefaction points, both helium-4 and helium-3 undergo transitions to 

superfluids. (See the table below).  

Liquid helium-4 and the rare helium-3 are not completely miscible. Below 0.9 kelvin at their 

saturated vapor pressure, a mixture of the two isotopes undergoes a phase separation into a 

normal fluid (mostly helium-3) that floats on a denser superfluid consisting mostly of helium-

4. This phase separation happens because the overall mass of liquid helium can reduce its 

thermodynamic enthalpy by separating. 

At extremely low temperatures, the superfluid phase, rich in helium-4, can contain up to 6% 

of helium-3 in solution. This makes possible the small-scale use of the dilution refrigerator, 

which is capable of reaching temperatures of a few milli-kelvins. Superfluid helium-4 has 

substantially different properties than ordinary liquid helium. 

Fermi-Dirac statistics 

The counting is the same as in the boson case, except that the 3 states of the system where the 

particles are in the same single particle state are excluded. Thus there are 3 states in total. The 

relative probability for finding two particles in the same state is zero, of course.  

We can see how the statistics controls the number of states. More interestingly, we 

can see that the relative probability for finding particles in the same state is greatest for 

identical bosons and least for identical fermions, with distinguishable particles somewhere in 

between. Thus one can say that by their very nature, identical bosons “like" to be in the same 

state compared to identical fermions and other particles.  

Degenerate Fermi Gas  

It is easy to check that for an electron at room temperature the quantum length is 

about 4 nm so the quantum volume is about 64 nm3. Consider a metal where, with about one 

conduction electron per atom, the volume per conduction electron is approximately 10−2 nm3. 

Thanks to the relatively low mass of the electron and the relatively low (room) temperature, 

the conduction electrons in a metal must be treated quantum mechanically-the fermionic 

nature of the particle can be expected to be important. We will now explore 

the simplest possible model of a quantum electrons { the degenerate Fermi gas. This provides 

an elementary model of conduction electrons in a metal as well as an explanation for 

phenomena like white dwarf stars. 

The degenerate Fermi gas is obtained by treating a collection of electrons as non-

interacting fermions at zero temperature. As T→0 you expect the system to settle into its 
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unique lowest energy state. If it weren't for the fact that the electrons were fermions, this 

lowest energy state would arise by putting all the particles in the lowest single-particle state. 

But we can only put 1 electron per single particle state, so we have to fill more and more 

states. Eventually we have placed all the particles, say N of them, in the lowest available 

energy states. The particles will have occupied all (1-particle) energies up to some value, call 

it ϵF − the Fermi energy. This leads to behavior with thermodynamic features − even at zero 

temperature! 

As a simple illustration of the Fermi energy, let us return to our identical particles A 

and B. Let us suppose that states 1, 2, 3, have energies 1eV, 2eV, 3eV, respectively. The 

Fermi energy is 2eV. What we'd like to do now with the degenerate Fermi gas is to compute 

the Fermi energy as well as a few other observables like the internal energy and pressure of 

the gas, all as functions of the volume and number of particles. To do this we need to get a 

handle on the 1-particle states. We will model the electrons as a “particle in a box". This 

means the following. 

For a free particle in a cubic box with sides of length L, the states of a particle with a 

given energy ϵ have wave functions of the form 
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Where the n's can be any integer greater than equal to 1. Note that the wave function vanishes 

on the edges of the box which are taken to be at x; y; z = 0; L. The state is determined by the 

choice of the n's and the spin state of the electron, the latter can be up or down along some 

(arbitrarily chosen) axis. The ground state is when nx = ny = nz = 1, irrespective of the spin 

state (so the ground state is doubly degenerate). The first excited states are obtained by 

setting 2 of the 3 n's to unity and the third n is set equal to 2, e.g., nx = ny = 1, nz = 2. Thus the 

ground state is doubly degenerate and the first excited state is 6-fold degenerate. The energy ε 

of a single particle state determined by a given choice of the n's is 
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Where m is the electron mass. 

So much for the energy states of a single particle. The idea is now that, for the T  0 ground 

state of the gas, each electron occupies one of the energy states such that the gas has the 

lowest possible energy. Actually, one can put two electrons in each energy state because there 
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are two spin states the electron can be in for any given energy. The maximum 1-particle 

energy which occurs is the Fermi energy, which we write as 
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Where 2

maxn  is the largest value for 222

zyx nnn   which occurs. To get a handle on εF we use 

a geometric interpretation of this formula which arises for a macroscopic gas. The filled 1-

particle states determine a sphere of radius nmax. Actually, only 1/8 of a sphere is used since 

the vectors n  have all components being non-negative. For a large enough number of 

particles, it is not to hard to see that the volume of this 1/8 of a sphere is approximately 1/2 

the number of states which are filled, which is 1/2 the number of particles N. (The 1/2 comes 

because there are two particles per energy state due to the two spin states of an electron). 

Thus, for N >> 1, we have 
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Use this formula to eliminate nmax in εF and set V = L3.  

We then get a nice formula for the Fermi energy: 
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For a typical metal the Fermi energy is on the order of an electron volt or so. At room 

temperature, the average thermal energy per electron is about kT =1=40 eV . We see that the 

internal energy per electron is at least an order of magnitude bigger than the average thermal 

energy of an electron. What this means is that at room temperature the fermionic effects are 

dominating the thermal effects, although the latter effects aren't completely negligible. This 

justifies setting T = 0 as a first approximation. 

More generally, we can define a Fermi temperature: 
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Pauli paramagnetism 

The ground state of a noninteracting Fermi gas is nonmagnetic, with spin up and 

down states equally populated. On general grounds we therefore expect that in the presence 

of an external magnetic field these spin states will be split by the eigen values of the Zeeman 
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HZ = −μ · B = S
g B
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,  ±μBB.  

Ignoring orbital e↵ ects of the magnetic field (that we will consider in the next subsection), 

together with the kinetic energy the single-electron spectrum is then given by 

,
2

22

B
m

k
Bk  


  1  

Pauli linear susceptibility is 
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to be compared to the Curie susceptibility  Curie =μ2
B/kBT , with the role of kBT replaced by 

F . As with the qualitative discussion of the low-temperature excitation energy and the heat 

capacity, above, here too we can understand the result of the temperature-independent Pauli 

susceptibility in terms of Curie susceptibility of the reduced, temperature dependent number 

of excitations confined by the Pauli principle to the kBT/ F .  shell around the Fermi surface. 

This reproduces the detailed result via 
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Above we have focused on magnetic response to an external field due to spins, ignoring 

orbital effects of charged electrons. 

 

The density matrix and patrician function 

The density matrix or density operator is an alternate representation of the state of a quantum 

system for which we have previously used the wave function. Although describing a quantum 

system with the density matrix is equivalent to using the wave function, one gains significant 

practical advantages using the density matrix for certain time-dependent problems – 

particularly relaxation and nonlinear spectroscopy in the condensed phase.  

The density matrix is formally defined as the outer product of the wave function and 

its conjugate.  

      ttt  )(     ------------------------ (1) 

 

This implies that if you specify a state  ,  the integral gives the probability of 

finding a particle in the state  . Its name derives from the observation that it plays the 
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quantum role of a probability density. If you think of the statistical description of a classical 

observable obtained from moments of a probability distribution P, then ρ plays the role of P 

in the quantum case:  

 

 dAAAPA           ----------------- (2) 

  ATrAA           ----------------- (3) 

 

Where Tr[…] refers to tracing over the diagonal elements of the matrix.  

The last expression is obtained as follows. For a system described by a wave function. 
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The expectation value of an operator is 
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Also, from eq. (1) we obtain the elements of the density matrix as 
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We see that ρ
nm 

, the density matrix elements, are made up of the time-evolving expansion 

Coefficients.  

Substituting into eq. (5) we see that 
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In practice this makes evaluating expectation values as simple as tracing over a product of 

matrices. 

It is a practical tool when dealing with mixed states. Pure states are those that are 

characterized by a single wave function. Mixed states refer to statistical mixtures in which we 

have imperfect information about the system, for which we must perform statistical averages 

in order to describe quantum observables. A mixed state refers to any case in which we 

subdivide a microscopic or macroscopic system into an ensemble, for which there is initially 
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no phase relationship between the elements of the mixture. Examples include an ensemble at 

thermal equilibrium, and independently prepared states.  
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QUESTION BANK 

 

PART-A 

 

1. Explain the black body radiation (or) Photon Gas? 

2. State and explain the Bose-Einstein Statistics. 

3. How to find the degeneracy of gas molecules. 

4. Discuss the electron gas by quantum mechanics. 

5. What is called Fermi Energy level? 

6. How do electrons contribute to specific heat of solids? 

7. Distinguish between Einstein and Debye models of solids. 

  

            PART-B 

 

1. Discuss the specific heat capacity of solids by Debye’s Theory. 

2. Discuss how the properties of Liquid Helium vary using its Phase diagram. 

3. Explain Pauli paramagnetism by quantum mechanics. 

4. Explain the density matrix of a thermodynamic system by quantum statistical 

mechanics. 
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UNIT – V - Thermodynamics and Statistical Mechanics – SPHA5202 

 



 

V.      ADVANCED TOPICS IN STATISTICAL MECHANICS 

 

Phase transitions and critical Phenomena 

As an introduction to the physics of phase transitions and critical phenomena, we 

explain in this chapter a number of basic ideas such as phases, phase transitions and 

critical phenomena. Intuitive accounts are given to the concepts of scaling and 

renormalization, which are powerful, systematic tools to analyze critical behavior of 

macroscopic systems. Also explained are several model systems, on the basis of which 

phase transitions and critical phenomena have been studied. 

Phase and phase diagram 

We are surrounded by a number of substances in different states. A phase is a 

state of matter in which the macroscopic physical properties of the substance are uniform 

on a macroscopic length scale, e.g. 1 mm. Familiar examples are ice, liquid water, and 

water vapor, each of which is a phase of water as a collection of macroscopic numbers of 

H2O molecules. Roughly speaking, we call the length scale that we encounter in our 

daily life the macroscopic scale, which is to be contrasted with the microscopic scale as 

the standard of length in the atomic world. The goal of statistical mechanics is to 

elucidate physical phenomena occurring on the macroscopic scale as a result of the 

interactions among microscopic constituents. A phase is characterized by a 

thermodynamic function, typically the free energy. A thermodynamic function is a 

function of a few macroscopic parameters such as the temperature and the pressure. 

Thus, the phase of a macroscopic substance is determined by the values of these 

parameters. A phase diagram is a graph with those parameters as the axes, on which the 

phase is specified for each point. An example of a 

phase diagram is given in Fig. 1.1. A typical phase diagram has several specific features 

including phase boundaries, a critical point (point C in Fig. 1.1), and a triple point(point 

TP). A phase boundary separates different phases. A change in parameterssuch as the 

temperature across a phase boundary causes a sudden change in the phaseof a substance. 

For example, a solid phase changes into a liquid phase at the meltingtemperature. This is 

a phase transition. A phase boundary sometimes disappears ata critical point, where the 

two phases become indistinguishable and the substanceshows anomalous behavior. The 



theory of critical phenomena explains this anomalous behaviour. 

 

Phase transitions 

A phase transition is a phenomenon in which a drastic change between 

thermodynamic phases occurs as the system parameters such as the temperature and 

pressure are varied. A familiar example is the melting of ice at 0 ◦C near 1 atm. The 

characterization of a phase transition as a drastic change of macroscopic properties is 

described theoretically as the emergence of singularities (non-analyticities) in functions 

representing physical quantities. As shown in Fig. 1.2, quantities such as the entropy S, 

the volume V and the specific heat C show such singularities as a discontinuity (jump),a 

cusp or a divergence. An example is the melting of ice, in which latent heat must be 

supplied to the system and consequently the entropy jumps as illustrated in Fig. 

1.2(a).When water boils and changes to vapor, the volume changes discontinuously. 

From a physics standpoint the reason behind the occurrence of a phase transition is the 

competition between the (internal) energy E and the entropy S of the system, which 

together determine its free energy F = E − TS. While the first 

term (E) favors order, the second (S) privileges disorder, and depending on the value of 

the external parameters (such as T), one of the two terms dominates. According to the 

conventional classification, phase transitions are roughly divided into two types by the 

degree of singularity in physical quantities. When the first-order derivative of the free 

energy F shows a discontinuity, the transition is of first order.The transition is called 

continuous if the second- or higher-order derivatives of the free energy show a 

discontinuity or a divergence. It is also common to name phase transitions by the order 

of the derivative that first shows a discontinuity or divergence, e.g. it is called second 

order if it is the second-order derivative of the free energy that first displays the 

discontinuity or divergence. 

 

 

 

 

 

 

 



Mean field theories 

 

 

Weiss-Molecular Field of an Ising System 

 

 

 

 



 

 

 

 

  



 

Phase transition 

A phase transition is the transformation of a thermodynamic system from one 

phase or state of matter to another one by heat transfer. The term is most commonly used 

to describe transitions between solid, liquid and gaseous states of matter, and, in rare 

cases, plasma. A phase of a thermodynamic system and the states of matter have uniform 

physical properties. During a phase transition of a given medium certain properties of the 

medium change, often discontinuously, as a result of the change of some external 

condition, such as temperature, pressure, or others. For example, a liquid may become 

gas upon heating to the boiling point, resulting in an abrupt change in volume. The 

measurement of the external conditions at which the transformation occurs is termed the 

phase transition. Phase transitions are common in nature and used today in many 

technologies. 
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Phase transitions occur when the thermodynamic free energy of a system is non- 

analytic for some choice of thermodynamic variables (cf. phases). This condition 

generally stems from the interactions of a large number of particles in a system, and does 

not appear in systems that are too small. It is important to note that phase transitions can 

occur and are defined for non-thermodynamic systems, where temperature is not a 

parameter. Examples include: quantum phase transitions, dynamic phase transitions, and 

topological (structural) 

phase transitions. In these types of systems other parameters take the place of 

temperature. For instance, connection probability replaces temperature for percolating 

networks. 

 

At the phase transition point (for instance, boiling point) the two phases of a 

substance, liquid and vapor, have identical free energies and therefore are equally likely 

to exist. Below the boiling point, the liquid is the more stable state of the two, whereas 

above the gaseous form is preferred. 

 

Critical Indices 

 

Critical indices describe the behaviour of physical quantities near continuous phase 

transitions. It is believed, though not proven, that they are universal, i.e. they do not 

depend on the details of the physical system, but only on, the dimension of the system, 

the range of the interaction, the spin dimension. 

 

These properties of critical exponents are supported by experimental data. The 

experimental results can be theoretically achieved in mean field theory for higher-

dimensional systems (4 or more dimensions). The theoretical treatment of lower-

dimensional systems (1 or 2 dimensions) is more difficult and requires the 

renormalization group. Phase transitions and critical exponents appear also in 

percolation systems. However, here the critical dimension above which mean field 

exponents are valid is 6 and higher dimensions.[1] Mean field critical exponents are 

also valid for random graphs, such as Erdős–Rényi graphs, which can be regarded as 

infinite dimensional systems. 
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Heisenberg model 

The Heisenberg model is a statistical mechanical model used in the study of critical points 

and phase transitions of magnetic systems, in which the spins of the magnetic systems are 

treated quantum mechanically. In the prototypical Ising model, defined on a d-dimensional 

lattice, at each lattice site, a spin    represents a microscopic magnetic dipole to 

which the magnetic moment is either up or down. Except the coupling between magnetic 

dipole moments, there is also a multi-polar version of Heisenberg model called the multipolar 

exchange interaction. 

 

For quantum mechanical reasons (see exchange interaction or the subchapter "quantum- 

mechanical origin of magnetism" in the article on magnetism), the dominant coupling 

between two dipoles may cause nearest-neighbors to have lowest energy when they are 

aligned. Under this assumption (so that magnetic interactions only occur between adjacent 

dipoles) the Hamiltonian can be written in the form 

 

Where, is the coupling constant for a 1-dimensional model consisting of N dipoles, 

represented by classical vectors (or "spins") σj, subject to the periodic boundary condition

. The Heisenberg model is a more realistic model in that it treats the spins 

quantum-mechanically, by replacing the spin by a quantum operator (Pauli spin-1/2 matrices 

at  spin  1/2),  and  the  coupling  constants  and   . As such in 3-dimensions, the 

Hamiltonian is given by 

 

Where the on the right-hand side indicates the external magnetic field, with periodic 

boundary conditions, and at spin  ,  

The spin matrices are given by 
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The Hamiltonian then acts upon the tensor product , of dimension  . The objective is to 

determine the spectrum of the Hamiltonian, from which the partition function can be 

calculated, from which the thermodynamics of the system can be studied. 

 

A simplified version of Heisenberg model is the one-dimensional Ising model, where the 

transverse magnetic field is in the x-direction, and the interaction is only in the z-direction: 

 

 

At small g and large g, the ground state degeneracy is different, which implies that there must 

be a quantum phase transition in between. It can be solved exactly for the critical point using 

the duality analysis. The duality transition of the Pauli matrices is and 

, where and are also Pauli matrices which obey the Pauli matrix 

algebra. Under periodic boundary conditions, the transformed Hamiltonian can be shown is 

of a very similar form: 

 

 

but for the attached to the spin interaction term. Assuming that there's only one critical 

point, we can conclude that the phase transition happens at  . 

 

The most widely known type of Heisenberg model is the Heisenberg XXZ model, which 

occurs in  the case  . The spin 1/2 Heisenberg model in one 
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dimension may be solved exactly using the Bethe ansatz, while other approaches do so 

without Bethe ansatz. 

 

The physics of the Heisenberg model strongly depends on the sign of the coupling constant J 

and the dimension of the space. For positive the ground state is always ferromagnetic. At 

negative the ground state is antiferromagnetic in two and three dimensions; it is from this 

ground state that the Hubbard model is given. In one dimension the nature of correlations in 

the antiferromagnetic Heisenberg model depends on the spin of the magnetic dipoles. If the 

spin is integer then only short-range order is present. 

 

Energy fluctuations in the canonical ensemble 

In the canonical ensemble, the total energy is not conserved. ( ). 

What are the fluctuations in the energy? The energy fluctuations are given by the root 

mean square deviation of the Hamiltonian from its average  
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Therefore 

 

But 

 

Thus, 

 

 

Therefore, the relative energy fluctuation is given by 

 

 

Now consider what happens when the system is taken to be very large. In fact, we will 

define a formal limit called the thermodynamic limit, in which h 

and such that N/V remains constant. 

 

Since  and E are both extensive variables, and , 

 

But             would be exactly 0 in the micro canonical ensemble. Thus, in the thermodynamic 

limit, the canonical and micro canonical ensembles are equivalent, since the energy 

fluctuations become vanishingly small. 

 

 

 



Wiener-Khinchin Theorem 

The Wiener–Khinchin theorem (also known as the Wiener–Khintchine theorem and 

sometimes as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem) 

states that the power spectral density of a wide-sense-stationary random process is the Fourier 

transform of the corresponding autocorrelation function. 

 

Recall the definition of the autocorrelation function C(t) of a function E(t) , 

 

 

Also recall that the Fourier transforms of  is defined by 

 

Giving a complex conjugate of 

 

Plugging  and   into the autocorrelation function therefore gives 

 

 

(1) 

 

 

 

(2) 

 

 

 

(3) 

 

(4) 

(5) 
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(6) 

(7) 

(8) 

(9) 

 

 

so, amazingly, the autocorrelation is simply given by the Fourier transform of the absolute 

square of  . The Wiener-Khinchin theorem is a special case of the cross-correlation 

theorem with . 

 

Reversible and Irreversible Thermodynamic process 

In science, a process that is not reversible is called irreversible. This concept arises most 

frequently in thermodynamics. In thermodynamics, a change in the thermodynamic state of a 

system and all of its surroundings cannot be precisely restored to its initial state by 

infinitesimal changes in some property of the system without expenditure of energy. A 

system that undergoes an irreversible process may still be capable of returning to its initial 

state; however, the impossibility occurs in restoring the environment to its own initial 

conditions. An irreversible process increases the entropy of the universe. However, because 

entropy is a state function, the change in entropy of the system is the same whether the 

process is reversible or irreversible. The second law of thermodynamics can be used to 

determine whether a process is reversible or not. 

All complex natural processes are irreversible. The phenomenon of irreversibility results 

from the fact that if a thermodynamic system, which is any system of sufficient complexity, 

of interacting molecules is brought from one thermodynamic state to another, the 

configuration or arrangement of the atoms and molecules in the system will change in a way 

that is not easily predictable. A certain amount of "transformation energy" will be used as the 

molecules of the "working body" do work on each other when they change from one state to 

another. During this transformation, there  will  be  a  certain  amount  of  heat  energy  loss 

or dissipation due to intermolecular friction and collisions; energy that will not be  

recoverable if the process is reversed. 
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 Onsager reciprocal relations  

In thermodynamics, the Onsager reciprocal relations express the equality of 

certain ratios between flows and forces in thermodynamic systems out of equilibrium, 

but where a notion of local equilibrium exists. "Reciprocal relations" occur between 

different pairs of forces and flows in a variety of physical systems. For example, 

consider fluid systems described in terms of temperature, matter density, and pressure. In 

this class of systems, it is known that temperature differences lead to heat flows from the 

warmer to the colder parts of the system; similarly, pressure differences will lead to 

matter flow from high-pressure to low- pressure regions. What is remarkable is the 

observation that, when both pressure and temperature vary, temperature differences at 

constant pressure can cause matter flow (as in convection) and pressure differences at 

constant temperature can cause heat flow. Perhaps surprisingly, the heat flow per unit of 

pressure difference and the density (matter) flow per unit of temperature difference are 

equal. This equality was shown to be necessary by Lars Onsager using statistical 

mechanics as a consequence of the time reversibility of microscopic dynamics 

(microscopic reversibility). The theory developed by Onsager is much more general than 

this example and capable of treating more than two thermodynamic forces at once, with 

the limitation that "the principle of dynamical reversibility does not apply when 

(external) magnetic fields or Coriolis forces are present", in which case "the reciprocal 

relations break down" 

 

ONSAGER's Theorem 

 

A rigorous description of thermal influences on the electrical current and vice versa has 

been presented by ONSAGER in 1931. His theory discusses the relations of reciprocity 

of reversible and irreversible processes, where the coupling of the electrical and the 

thermal subsystems are investigated. For instance, if the electrical driving force is 

denoted as  X1= E and the thermodynamic driving force is expressed as, 

 

                                       (1) 

Where has been identified as the absolute temperature by CARNOT , the corresponding 

equation system can be formulated with independent equations as 
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Where R1  and   R2  are   the   electrical   resistivity   and   the   thermal   ``heat  resistance'', 

respectively. The heat resistance is also called thermal resistance Rth in this thesis.  

The quantities J1 and J2 are the electrical and the thermal current, respectively.   

The thermal current density J2 is also called heat flow density qth. Equations R12 and 

R2 1  are coupled. Introducing the standard notation, these equations can be adapted by 

cross coefficients   and represent the ONSAGER   relations 

 

(4) 

(5) 

 

 

For this equation system, THOMSON proposed the relation 

 

                                      (6) 

 

Which is also called ``reciprocity theorem'' of the ONSAGER relations. However, 

implies that this relation follows from symmetric principles of thermodynamic theory. 

Hence, the reciprocity theorem neglects the loss during heat conduction and energy 

conversion and relation assumes a balanced energy flow between the two subsystems. 

Thus, a steady stage is assumed with the request of, where equilibrium conditions are 

applicable only within short range. 

 

The principle of microscopic reversibility in Rij is less general than the second fundamental 

law of thermodynamics. For further investigated coupled systems, the currents may have 

different signs due to the different directions of the energy flows. 

 Therefore,  0 St  is not sufficient enough to fulfill the second law of thermodynamics. 

Hence, the necessary condition for the equation system consisting of and to guarantee the 

second law with yields 

                                 (7) 

(2) 

 

(3) 

 



This necessary condition has been originally proposed by BOLTZMANN in 1887. 

Writing the ONSAGER relations and as functions of driving forces Xi 

 

 

(8) 

(9) 

 

 

where the necessary condition of type  remains valid accordingly for Lij as 

 

                             (10) 

 

To consider the ONSAGER relations in terms of energy, and can be multiplied by  X1and X2, 

respectively, leading to 

 

 

(11) 

 

(12) 

 

These equations represent the products of the driving forces Xi and displacements of types 

of flow J1. 

The result of  and  can be described as the dissipated energy per volume and per time and 

reads 

                                              

(13) 

where   is the entropy generation rate per unit volume and follows from the second law of 

thermodynamics 

 

(14) 
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where the entropy generation rate  St   can be determined by the sum of the power 

densities   of all contributing subsystems. Hereby, the parts of the sums can be identified 

as the power densities of the participating systems which are determined by chemical 

reactions, the power loss due to heat transfer and JOULE's self-heating, and the power 

loss due to diffusion processes. The power density of chemical reactions can be 

expressed by scalar-valued quantities as 

 

  

(17) 

 

Where, 
chem

iJ   is determined by the chemical reaction rate jt  per unit volume .  

 

The chemical driving force is represented by ,  

 

Where, vj denotes the chemical potential and the j stoichiometric coefficient of the 

participating atom. The electrical power density can be identified by 

                                                                                                       

(18) 

                                                                                                                                 



Where   and   are the electrical current density and the electrical field,                    

respectively. The electric field can be expressed by the spatial gradient of an electrical 

potential. For electro- magnetical subsystems, the power density has to be appropriately 

adapted as discussed in Section . Another important contribution to the global entropy 

increase is the power loss due to thermal heat flow, which can be expressed in terms of by 

 

                                                                                                                        (19) 

 

Where, thq  represents the local heat flux density. The second term in depicts the 

thermal driving force according to FOURIER's empirical law. For diffusion 

processes, the power density can be identified as 

 

                                                                                     (20) 

Where mol

iJ  is the mole number per unit area and time of the contributing species i . 

The driving force of diffusion processes is determined by the gradient of the chemical 

potential and by the gradient of the temperature. 

Since the power density of diffusion processes has been determined for no external 

forces, an extension for the applied electrical field has to be made by introducing an 

additional term that depicts the force acting on charged particles inside the simulation 

domain. Hence, equation has to be modified as 

 

               (21) 

 

 

 



Where *

iZ  is the effective valence charge of the species    , ni is the species concentration 

per mole, and i  is the corresponding electrical potential.  

To conclude ONSAGER's thermodynamical treatment, the overall power density is thus 

given by the sum of the power densities of all contributing subsystems as 

 

(22)   

 

 

 

 

 

 

  (23) 

 

where, the  thermodynamic power density is determined by the contributing 

chemical reactions, the electrical burden, heat flows, and molar diffusion processes. 
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QUESTION BANK 

 

  PART-A 

1. What is called Critical Phenomena? 

2. Describe the Phase Transitions in Thermodynamics. 

3. Explain the process of Ferromagnetic Transition by statistical mechanics. 

4. How to get the Critical indices in Thermodynamics 

5. Explain the irreversible process in Thermodynamics. 

6. What do you mean by Fluctuations? 

7.  Explain the elements of non-equilibrium phenomena in Thermodynamics? 

 

    PART-B 

 

1. Discuss in detail the Mean Field Theory of Ferromagnetism (or) Weiss theory of 

Ferromagnetism. 

2. Explain the Phase Transition phenomena in Ferromagnetic materials. 

3. Discuss and derive Weiner-Khinchine Theorem  

4. Derive Onsagar’s reciprocity relations in statistical mechanics. 
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