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Dielectric and its Polarization - External Field of a Dielectric Medium - Electric Field Inside a Dielectric -
Dielectric Constant and Displacement Vector - Relation Between D, P and E-Polarization of Non-Polar Molecules
(Clausius-Mossotti Relation) - Polarization of Polar Molecules - Electrostatic Energy. Magnetostatics: Ampere's

Circuital Law - Magnetic Scalar Potential - Magnetic Vector Potential - Magnetisation and Magnetisation Current -
Magnetic Intensity — Magnetic Susceptibility and Permeability.

1.0 Aims and Objectives

This lesson deals with potential and fields due to electric dipole. The relation
between electric susceptibility, polarization, displacement will be obtained. The molecular
field, dertvation of claussion mossotti relation for non-polar molecules, Debge formula for
polar molecules are explained in detail. The derivation of electrostatic energy and energy

density who has has discussed.



Polarization of Dielectrics

Dielectries are materials which have no free charges; all electrons are bound and associated with the nearest
atoms. An external electric field causes a small separation of the centres of the electron cloud and the
positive ion core so that each infinitessimal element of volume behaves as an electric dipole. Dielectrics
may be subdivided into two groups :

Non-Polar which behave as above
Polar in which the molecules or atoms possess a permanent dipole moment which is
ordinarily randomly oriented, but which become more or less oriented by the

application of an external electric field. E (applied)

The induced dipole field opposes the applied field. In the diagram

shown opposite the volume element indicated could represent an atom,
a molecule, or a small region.

The type of polarization on a microscopic scale is determined by the @ @ Q
material. Most materials exhibit polarization only in the presence of an |

external field. A few however show permanent polarization:

Vol element

Ferroelectric  crystals exhibit spontaneous permanent polarization.

Electrets become permanently polarized if allowed to solidify in the presence of a strong
electric field.

The type of polarization may be additionally subdivided into the following categories :
Electronic a displacement of the electronic cloud w.r.t the nucleus.
Ionic separation of +ve and -ve ions in the crystal.
Orientational  alignment of permanent dipoles (molecules).
Space-charge  free electrons are present, but are prevented from moving by barriers such as grain

boundaries - the electrons "pile up".

The Electric Polarization P is the dipole moment per unit volume at a given point.

P = Np where p is the average dipole moment per molecule L.
N 1s the number of molecules per unit volume.

Any molecule develops a dipole moment which is proportional to the applied field
P = «E where « is the polarizabilty. 2.
Example The electronic polarizability of a simple atom.

With an applied field the electron cloud is displaced until the mutual attractive force between it and the ion
core 1s 1s just balanced by that produced by the field E
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gives p = er = 476R'E = a,E

where @, = electronic polarizabilty = 4sre,R3



The Electric Field at an Exterior point

Consider a block of dielectric, P = dipole moment
per unit volume.
We need to calculate the potential I at an exterior

point.
dt’
1 P ¢
dv = T 4
dmey 12 'v
1 1
Vo= j'P-V’(—)dr’ 5.
dme, 7t ¥
integrating over the block
Now V- fA=f(V - A)+A-Vf
1
50, putting f= (—) and P = A
r
1 P 1 (V-P
o e Yo LOB,
dme, 7t r e, &

By the divergence theorem this becomes

1 P da’ 1 v.r ,
r= dmeg L - J.r dv

r dTeg r

tor the potential due to the dipoles at the external point.

Both of the terms in equation 8 have the form of potentials produced by charge distributions ;

le. a surface charge density o, = P+ n where n is the outward unit normal vector
and  avolume charge density p, = —V'+P
1 oy da dt . ,
Thus V= [ J. G I Pe ] due to the dielectric only
dmey s r Ty

and

E - vy - 1 “)abdnr_l_.‘-)pbn’r r}

dreg Iz 2

The Macroscopic Field

To the above must be added the effects of the external charge distributions that are responsible for the

polarization. These are simply additive.

- 1 D- (07 + Op) d’a+J‘Mdr]

dmey r 4 r
1 o + o) F + F
E - [J- @ +o)F [ (pr + py) dr}
4mey Ls 2 T 2

This expression is completely general.

The eftect of these expressions is that for the purposes of calculation the dielectric may be replaced by the

equivalent bound charge distributions oy, and py, without affecting the field outside the dielectric.
Example cylindrical electret.

10.



The Bound Charge Densities p; and o,

We now demonstrate how the displacement of charges within E
the dielectric results in net volume and surface charge
densities. €
Consider a small volume inside the dielectric, where the ——
electric field E is the resultant of an external field and the O+
field due to the dipoles. The positive and negative charges G &
are separated by an average distance s due to the influence of
E. Consider the element of surface da and the charge which C )
has crossed it. If we fix the origin in the negative charges we

need only consider the movement of the positive charges.

%)
9

Then, the amount of charge 40 crossing da is just the amount of positive charge within the volume
dr=s-da

ie. dQ=NQs-da QOs=p, NQOs =P

ie. dQ=P-da 13.

If da is on the surface of the material, this charge accumulates there in a layer of thickness s - n ( which 1s
small, of molecular dimensions) and the charge can be treated as a surface layer with density

o, = dQ/da = P-n 14.
We can similarly show that =V - P represents a real volume density of charge as follows.

The net charge flowing out of a volume 7 across the elementary area da of its surface is P - da as found
above in (13). Thus the total charge flowing out of the surface bounding 7 is the integral of this over the
surface, i.e.

0=[P da

and the net charge remaining within is — Q.
If the density of this remaining charge is pj, then

[pdr=-0=-[P- aa 15.
= —J. (V- P)dr
hence m=-V: P 16.

i.e. the bound charge density is numerically equal to minus the divergence of the polarization. An
mmportant consequence of this is that if the polarization is uniform within a region and its divergence is zero,
then so is the bound charge density py,.

div E in Dielectrics

Gauss's law states

jE-da:j'V-Edr:Q 17.

€
O here is the total charge enclosed, which for dielectrics must include free as well as bound charges. i.e.
0 = L(pf + p,g,) dt 18.

where the integration is intended to cover both volume and surface distributions. Hence substituting (18)
mto (17) and equating the integrands of the volume integrals then



V. E-= 19.
&o
or
v.E=? 20.
&g

This 1s Gauss's law in its more general form and is one of the four Maxwell's Equations.. In obtaining it
we have implicitly assumed that space derivatives of E exist. This is not the case at the interface between
media and where this applies we must use the integral form i.e we must integrate E - da over a closed
surface.

N.B. Since E =—VV this leads to V2V'=—p/e, Poisson's equation.

The Electric Displacement

Now
py = -V - P 21.
V-E=—(p;-V-P) 22
€0

or V. (&E + P) = Pr 23.

i.e. the vector (¢,E + P) has a divergence that depends only on p;.
This is called the Displacement, D = (¢ ,E + P) 24.
ie. V-D=p; 25

This 1s the equivalent Maxwell's equation for a dielectric. Note it does not contain the permittivity ¢ and is
thus independent of the medium. It can be regarded as Gauss's law for D. In its integral form it becomes

D-da = dr 26.
I J.or
Note that both divD and | . D - da are unaffected by bound charges.
From the definition of displacement (D =¢,E +P) we have
E=—-— 27.

&o 2]
i.e. the electric field inside the dielectric is the resultant of two fields,
D/e associated with free charges, since V- (D/eg) = ps/ &g 28.

and — P/e; associated with bound charges, since V- (—Pleg)=pp/€g 29.

NB Lines of D begin and end only on free charges.
Lines of E begin and end on either free or bound charges.

In writing down expressions for the divergence of E and P we have implicitly assumed their existence. It
should be noted that the space derivatives do not exist at a point charge or at the interface between two
media. In such cases the integral form of Gauss's law must be used.






The Susceptibility

Provided that P e E , which it is in practice for moderate fields
since D = ¢ggE+P
eE(l + x.) %o = Pley E

xe 18 the electric susceptibility
ie. P = &5 x. E indicates the relative ease of polarization.

The Permittivity
D = 80(1 + Xe )E
eoe,E &, 1s the relative permittivity
or dielectric constant
D = ¢E invacuumy =0, gork = 1

where £ = €p8; is the permittivity.

&, or k are usually in the range 1 - 7, but some non-linear materials have k as high as 105
Pure water has k ~ 80. For all materials k is a function of frequency.

In class A dielectrics D e« E. and then since ¢, is a constant for class A, then

and if ¢, # f(x.y.z) V-E=p /e
: Vv = —py/e  Poisson's equation for class A dielectrics

If the material is not class A then

V2V = —p, /69 = (ps + pp)/ &

The Relationship between prand p,,

In a class A dielectric

P=D_gFE=2"1p
£,
g — 1
VP( )V-D(l——)pf
g, &
I L
) S _ _ P
The total charge density is o= pr+pp=p -V - P=—

&

.
This is smaller than p,.  ps and p; have opposite signs.

Note also that if psis zeri (in class A dielectrics) then so 1s py,. This is nearly always the case. Thus the
bound charges will nearly always be located only on the surface of the dielectric.

The Surface Charge Densities o, and oy

At the interface between dielectric and conductor there is :
a bound charge density o on the dielectric
a free charge density o, on the conductor.

In the steady state E =0 inside the conductor, and inside the dielectric, from Gauss's Law
ek = or + 0p

7%
[¥5]

(V5] (9%}
h =,

[#3)
(=2}

W L) W
o e A

40.

41.

44,

45.



and D =¢E = 6 E = of from Gauss 46.
Hence or + 0p = 0f/E, (cf 44) 47.

Boundary Conditions

The calculation of electric field variation across a boundary between two media needs a knowledge of the
boundary conditions. These are :
At the boundary between media

. V is continuous v, =V,
(else the field 1s mfinite)

. The normal component of D is continuous
or discontinuous by the free charge density at the interface D, =Dy (o)

This can be shown by applying Gauss's Law to a small pillbox at the boundary. The net outward
displacement = free charge enclosed. Note that between dielectrics the free charge density o¢ is usually
zero. At a dielectric / conductor interface, if E is constant. then D = 0 inside the conductor, and D, = o in
the dielectric.

. The tangential component of E is continuous. Eq =En

This can be shown by evaluating the line integral 5EE - dl around a thin rectangular loop lying
parallel to the boundary. If the boundary is between a dielectric and a conductor, then E = 0 in the
conductor, and hence E; = 0 in both media. Therefor E must be normal at the surface of a conductor.

Forces on Dielectrics
A dipole in a uniform field experiences a forque, but no net force

T=pXE
A net force is experienced only in a non-uniform field
F=@p VE
or force per unit volume F = N(p - V)E = (P - V)E
and P = (¢ — &) E

Fe(e-e)E VE= %(g — &) VE

-ty (L)
)

fors

Ex. Calculate the force in the dielectric of a coaxial cable. radii R,. R, permitivitty £ with charge per unit
length 4.

By Gauss E = 2 ) Vo= I&Edp = th&
2mep R 2me R
A 4
E = =
2nep pln (R/R)
; E_ lEo (& - 1)L o gl = D7 , radial, inwards.
T 2 In2(R/R) | p? n?(R/R) p?




1.6 MOLECULAR FIELD IN A DIELECTRIC (CLAUSIUS-MOSSOTTI RELATION)

The aim of this section is to examine the molecular nature of the dielectric and to

consider how the electric field & responsible for polarizing the molecule is related to the

macroscopic electric filed. The electric field which is responsible for polarizing a molecule of



the dielectric is called the molecular field. This 1s the electric field at a molecular field or
local field or local field is produced by all external sources and by all polarized molecules in

the dielectric, except one molecule under consideration.

= g §=s
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=
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- . = E +1

Spherical cavity T T S,
Fig.1.6(a) Fig.1.6(b)

The molecular field, E;;, may be calculated in the following way. Let us cut a
spherical cavity of radius » (such that its dimensions are very great as compared to the
molecular dimensions and very small as compared to the volume of the dielectric)
surrounding the point at which the molecular field is to be computed. The dielectric which is
now left, will be treated as a continuum. The cavity is put in its original position in the
dielectric (molecule by molecule) except the molecule where the molecular field is to be
computed. The molecules which are just replaced in the cavity are treated as individual

dipoles and not as a continuum.



Let the dielectric be placed in the uniform electric field between two parallel plates
(of a condenser) as shown in fig (1.6b). The dotted lines show the boundary of the dielectric.

Let the surface density of real charges on the capacitor plates be o. Again let the surface of

cavity has polarized charges of surface density o,,.



The field experienced by the molecule of the dielectric at the centre of the cavity C,

Ein. given by

Where

Ei“=E1+E2+E3+E4

(1) E; is the field between two plates with no dielectric, so that E; = ¢/ &,

(i1)  E; 1is the field at C due to polarized charges on the plane suifaces of the
dielectric facing the capacitor plates and is given by Ea = G, / 0.

(1)  Ejz is the field at C due to polarized charges on the surface of cavity, to be
calculated.

(1v)  E4 is the field at C due to permanent dipoles. But in present case for non-polar

isotropic dielectrics E4 = 0.

o O,
Thus, E,=—-—+E, (1)

n
S s

0 0

Evaluation of Ez: Consider a small elemental area ds on the surface of cavity of an

angular width 40 and an angle 0 with the direction field E. The vector P shows the direction

of displacement at the centre of ds, Fig (1.6a). The normal component of displacement is

Px=P cos 0.

By definition of polarization, it is the surface charge per unit area. Such a charge on ds to

provide flux normal to ds is,

Px=Pcos B ds



and the electric intensity at C due to this charge is given by,

_ PcosOds

2

4ne 1
where r 1s the radius of cavity. The field is directed along the radius CA. Resolving the

intensity along and perpendicular to the applied field, we have the components



~ PcosBds

- ,cos6 along the field
4ne,r
~ Pcosbds . 0
- Wsm perpendicular to field
0

If the area ds be taken round through 2n radians about LM, it will describe a ring, the
surface area of which is given by,
= 2nr sin0.r.do
= 21’ sinBd6
Therefore intensity at C due to ring in the field direction is

_ Pcos’ds

2

dre 1

27 sinBdo

cos’ 0 sinBdo

2

2e, 1

while the normal components of intensity due to the ring cancel each other.

Integrating the intensity at C due to charges on the surface of cavity, we have

E, = L[ cos? 0 sin0do
2g, %




therefore the total intensity or Ei, at C is given by eq.(1) as

(e} (e}

P
E,=———"F+_— (2)
g, £, 3¢,

The resultant field, E between the plates is



0 0
Therefore E, =E+-
3E,
Further we know that D=c¢E=¢g E+P
o P
So that e —¢,
Putting this value in eq.(2) for E;;,, we get
P P
Er’:l = -
e—-¢g, 3g,
_r e+ 2e, \I .
e, e—¢, ) (3)

if the number of the molecules per unit volume . o molecular polarizability then polarization,

P. is defined as electric moment per unit volume . That is
P=nak,

Putting this value in eq,(3), we get



where ¢, is the relative permittivity or dielectric constant. Equation (6) is well known
Claussius-Mossotti relation.
We know that g, = LLgZ where L, 15 the refractive index of gas. Hence equation (6) can

be expressed in terms of refractive index. The relation in that case is

no. p, -1

W @

2
38, W

called Lorent= formula and is valid only as long as &, 1s frequency independent.
Validity of Claussius-Mossotti Relation:
The number of molecules per unit volume is proportional to the density of gas. If

g —1

r

molecular polarizability a 1s taken fo be a constant, the number n is proportional to

r+2

Also the constant o 1s proportional to the cube of the radius of molecule. Hence finding &,
experimentally and calculating n from the density at definite temperature and pressure, the
value of the radius of the molecule of dielectric may be reckoned. The values, so obtained,

fairly agree with the values obtained by other methods and proves the validity of the relation.
It is true only in case of monatomic gases and weak solutions. The experimental and
theoretical values disagree in case of strong solutions and solids. It is due to the fact that in
these cases the interaction forces among molecules are sufficiently great, the account of

which has not been taken.

__iEyEg =1
/e, +2
FICL e, —1

3l gl s
;



The Magnetic Field

let us consider a +ve test chare qo, with a velocity v through a point
P. If this charge experiences a side-way deflecting force F, then a magnetic
field is said to exist at that point. This field is defined by means of a vector
quantity B and is called magnetic Induction, shown in Y axis.

If a charge moving through a point P in a magnetic field experiences
no side way deflecting force then the direction of motion of the charge 1s
defined as the direction of B. Conditions are
(1) when V is parallel to B (in the same direction) F is minimum. (2) when V
1s perpendicular to B, F is maximum.

Definition: If a +ve test charge qo moving with velocity v through point P in

a magnetic field experiences a deflecting force F, then magnetic induction B

at P is defined by

F=qoVxB--------- (1)
The above relation defines both the direction and magnitude of B 1s
F=qoV B sinb

B=F / qoV sin® ; 0 1is angle between V x B.
From the above V 1s parallel to B, 6 =0 ; F =0 (min) v is perpendicular
0=90 ; F=BqoV (max)
Units; Newton / amp —turn

Z F




Ampere’s force law (Force on current element)

The concept of magnetic field is introduced by considering a test
charge q moving in a region of space with velocity V. Suppose the charge
experiences a force F, then the region is said to be having magnetic tfield B,

we write

The above equation in terms of current i.e. the current crossing a surface is

defined as the rate at which charge flows across the surface,
ie [=dq / dt ------—-- (2)

ie, the force experienced (dF) by the charge dq moving with velocity V then
Eqg. (1) becomes
dF = dq VxB
=1 dt VxB.
Suppose in the time dt, charge dq travels along the length ‘dl’ of the
conductor then

V=dl/dtie., dF =1dt (dl /dt) x B

this 18 Ampere’s force law
The total force experienced by the total volume containing the charge can be

calculated by integrating the above equation

F=vo (JxB)dv [ie,I=J.ds and ds.dl = V]

Ampere Circuital law



(4) It depends upon the nature of the medium

- +

]

<X

Fig. 2.4 Two currents I1 and I2

The force exerted on current element dl2 by current element dl; 1s given by

dF21 =(uo /4) (I1,I2) (1 / r21) [dlox (dl1 X 121 /r21) |

(uo / 4) ——————- arises due to (4) ---———- nature of the media
I, [ - due to (1)
(1 / r221) -===---————-—- due to (2)

[dl2x ((dl1 x r21 /r21) | anse due to (3) r21 / r21
represents unit vector along ro;
The above equation dF21 can be written for whole lengths of the conductors

as

Fa2i=(uo/4) (I1,I2) 1 2 [dlix(dlixr2)] /321 - (2)

The above equations not does have much practical value because of r3;; The
force cannot expressed as the interaction of current I1 with field current I2 .

However the above equation. can be written as,

For=T1 1dlix[pu /4 Io2 (dl2 xr21)/ r*21 ——-- (3)
Fa1 Iodl2 xBs:

Where B1 =(po /4 ) 2dl2 xr21 /1’21 - (4)
B1 1s called the magnetic induction, magnetic flux density or magnetic field
current. Unit is web / m? or Tesla. In general the magnetic induction B at a

position r due to a current carrying circuit of element I dl will be

B=(uo /4) Idlxr/ 13



This is Biot savart law

Point (1) If the current [ is distributed in space with a current density J
then I dl = Jd
HereB=no /4 Jxr/r3d

Point (2) If a single charge q moving with velocity v then
B=w /4 q(vxr/ rd
or
B=(u ovxqr) /4 ord
But o 0=1/c?2and E=qr/4 or3
B=vxE /2
The above gives the relation between electric (E) and magnetic fields (B) of a

uniformally moving charge as v<<c.

THE DIVERAGENCE OF THE MAGNETIC INDUCTION B



We had demonstrated that the magnetic field of moving charges were
such that ¥V . B = 0. It is also possible to arrive at this same result for
steady currents starting from the Biot — Savart law. We know that,

B=(o/4) ¢ dixry/r*d’ v (1)

V-B=u /4 )rJsr1) /2 *dr'=(uo /¥ ) . (Jfxr1/r3)d’
v o (Jexri/r?) ri /25 xJf)-Jdin( xri/r?)

Where the first term on the right is zero because Jr is a function of the
source point X', v', z' while the del operator involves derivatives with respect

to the field point x , v, z. The second term on the right is also zero because

1 ] k |
(V xry/r2 =(v Xr)/r3=‘ / x /v | z 0

x-x)/r° (y-y)/r®  (z-2)/r°

Then

v.B=0 e (2)
This equation follows form the definition of B given in Eq.(1) we also know
that it i1s a consequence of Coulomb’s law and of the Lorentz transformation.
The fact thatV. . B is zero means that these cannot be sources of B.
The net flux of magnetic induction through any closed surfaces is
equal to zero since

Bda=: wBdr=0 » Bda = : v Bdr=0 - (3)



The Vector Potential A (Magnetic Vector Potential)

The calculation of electric fields was much simplified by the
introduction of the electrostatic potential. For an electrostatic field, the

relation between electrostatic field E and electrostatic potential V 1s given by

E=VV

Here V 1s a scalar quantity
In the case of a magnetic field,
div B=0
Since the divergence of any curl is zero, it 1s reasonable to assume that the

magnetic induction may be written as,
B=CurlA=V xA

'A' refers to magnetic potential and 1s called the magnetic vector potential.
Therefore the magnetic vector potential A can be defined as the vector,
whose curl at any point gives the vale of the magnetic fields B at that point.

The only other requirement placed on A is that
V xB=V x [fxA]l=uwJ

The unit of Ais Wb / m
Derivation of the magnetic vector potential of a current loop:-
According to the Biot-Savart law, the magnetic induction at a distance

r from the element of length 1 carrying a current I (Fig. 2.6) is given by

B=pl/4 . 1xr/13-————(1)



We have /(1 /r1)=-1 /r3--—-(2)
B =l /4 ) 1 x{-v (1/r)}

=(uol / 4) {V x1/1)x 1} - (3)
We have the vector identity.
vV ox(A) =(v )xA+ (Vx A
Where is a scalar and A 1s a vector

Or (V )xA =V x (A) - (VXA

S0 v (/0)x 1= x (1/1)-1/r(v x 1) ——(4)
Using Eq. (4) in Eq.(3) we get

B=(wl/4)[vx(l/n-1/r(V x 1) —-- (5)

In this equation, v x 1= 0 because the operator V 1s a function of (x,y,z)
and the current element is not a function of (x,v,z) as shown in the Fig. 2.6

Then Eq. (5) reduces to
B= (uwl/4 ) v x (1/1)-——- (6)

Therefore the total magnetic induction at the given point by a closed loop
carrying current is given by

B=(uwl/4) Vv x(dl/r) ——-- (7)
The operation V¥ x 1is independent of the integration of dI /r around the
closed loop.

The Eq.(7) can be rewritten as

B=vx[uwl/4 di/r]= (curlpel /4 ) dI/r ------ (8)



Thus, we conclude that a vector exists such that by taking its curl, the
magnetic induction produced at any point by a closed loop carrying current

may be obtained. This vector is known as magnetic vector potential

A. Thus
B=curl A -—--- (9)
Where magnetic vector potential A= (uol / 4) dI/r -—-——---—--- (10)
Eq. (9) 1s frequently used to derive magnetic induction B at any point from
the magnetic vector potential A at that point.
If the current is flowing through the length element is distributed over

a cross-sectional area a, we writel = Ja. Eq (10) 1s thus written as
A=mw/4 +J/1)xdV - (11)

The vector potential defined by Eq. (11) is not uniquely defined. We find
that we can add any term, whose curl is zero to the vector potential and it
still gives the same magnetic field. Unlike V, A does not have a physical

significance. It serves as a convenient intermediate step for the computation

of B.

2.7 THE CURL OF THE MAGNETIC INDUCTION B
We have shown that the magnetic induction is always equal to the

curl of the vector potential : B= v x A. We shall now show that

Vv xB=podg -——-— (1)
assuming a steady state and the absence of magnetic materials. In terms of

A

»

V xB=V xVxA=vV (v .A)-VZA---(2)

We have already shown that i/ . A is proportional to the time derivative of

the electric potential V, then, with the above assumptions.

For the second term we have from the definition of A that



VE2A=(o/4) 12 (Ur/1)xd e )

Where we have interchanged the order of differentiation and integration.

Let us imagine At the field point P (x,v,z) where we wish to compute 2 A,
we form the vector J d'/ r, where Jf of and d ' are respzctively the current
density and the volume element at the source point P', and where r is the
distance form P'to P. We compute the Laplacian of this vector at P by
taking the appropriate derivatives with respect to the coordinates x, y, z of P.
We then sum the contributions from all such sources in the volume ' which
includes all points at which Jf exists. The volume ' may include the field
point P, where r = 0.

Figure 2.7 Source point P' and field point P for the calculation ofi7 2 A

Pyl

Since Jf 1s not a function of the coordinates of P, we can write the

integral as

VZA=(w /4) JeV2(1/n)d" - (5)
Now, by differentiation of
(1/1)= 1/ (=) + [y - )2 + (2 - 2)2 % ——(6)

we find that 2 (1/r) =01f r 0. There can thus be no contribution to the
integral from any element d ' except possibly if P and P' coincide and r 1s
zero

To investigate the integral at r = O we consider a small volume
enclosing the point P, where we wish to calculate 17 2 A, situated inside the
current distribution.

We take the volume so small that Js does not change appreciably

within 1t; Jf may then be removed from the integral:



v2A=(oJi/4) 1o y2(1/)d’ ——(7)

The meaning of this integral is as follows. For each element of volume d '

centered at the point P' within ' we calculate
(/) =02/ =+ 2[y2+ 2/ 2)* 1 [ (xxP+(y-y)+(z-2) (8

Multiply by d ' and sum the results. SinceV2 (1/r) =v' 2 (1 /1)

v2A=(uJds/4) o v2(1/1)d " (9)
=(oJs/4) »ov ' (1I/1)d" (10)
(woJe/4) s oy ' (1/1).da - (11)

from the divergence theorem,

v2A=-(woJt/4) 0 (rn.da)/r2—-(12)

where ri is the unit vector from the source point to the field point. In this
case ri1 points inward toward the point P, Thus

2A=-(uods/4) o d - (13)
where d is the element of solid angle subtended at the point P by the

element of area da. Since the surface S' completely surrounds P,

V2A=_MOJf ——————— (14)

and YV x B = uo Jf - (15)
This result is again valid only for static fields and in the absence of

macnetic matenials.

Magnetic Scalar Potential



Consider a closed current loop carrying current [ (Fig 2.9). Consider a
point P (r) having position vector r relative to current element [ dI. From
Biot - Savart law, the magnetic induction B at P due to whole loop is

B=(uo/ 4) Idlxr /1
Let the point of observation P(r) be moved through an infinitesimal distance

dr say from P (r) to Q (r+dr). then,

Bdr=(uw/4) (Id)xr/r3.dr
(wol/ 4) dr. dIxr) /13

wol/ 4 (drxdI).r / r3
When the point P is shifted to Q, the solid angle subtended by the loop at P
changes by d . But we can also get the same change in solid angle d
keeping P fixed and giving every point of the loop the same but opposite

displacement (-dx). Then, the above equation becomes

Bdr=- pol/4 (-drxdl).r /3



But, -dx * dI = dS = area traced out by current element dI during the
displacement (-dx)

Therefore B. dr = -pol/4 dS.r /13

But, (dS.r) / r3 =d = Change in solid angle subtended by current loop

when point P 1s displaced to Q
Therefore B.dr=-(uol/4) d --—---—--- (1)

Since 1s a scalar function of (x,y,z)

Hence Eq. (1) becomes
Bdr=-(uwl/4 )V .d
Or
B=-(ul/4)V =+ [wl /4 ] -—(2)
The direction of B is that of - \/ |, so that B points away from the loop along
its positive normal.
Comparing Eq.(2) with B =-VVm we get
Magnetic Scalar Potential Vi = (uol )/ 4

= uo /4 x current x solid angle ------ (3)

Negative gradient of Vm gives the magnetic induction B.

Q (r+dr)




Magnetization and Susceptibility

The H-field inside a long solenoid is n/. If there is a vacuum inside the solenoid, the B-field is
W H = pnl. If we now place an iron rod of permeability p inside the solenoid, this doesn't change
H, which remains n/ . The B-field, however, is now B = uAH. This is greater than poH, and we
can write

B =u,(H + M).

The quantity M is called the magnertization of the material. In SI units it is expressed in A m™". We
see that there are two components to B. There is the p,H = p,n/, which is the externally imposed
field, and the component peM, originating as a result of something that has happened within the
material.

It might have occurred to vou that you would have preferred to define the magnetization from B = g + M. s0o that
the magnetization would be the excess of B over oA. The equation B = lipH + M. would be analogous to the familiar
D= EDE + P, and the magnetization would then be expressed in tesla rather than in A m™ . This viewpoint does

indeed have much to commend it. but so does B = [ (H + M). The latter is the recommended definition in the
ST approach, and that is what we shall use here.

The ratio of the magnetization M ("the result") to A ("the cause"), which is obviously a measure of
how susceptible the material is to becoming magnetized, is called the magnetic susceptibility ¥, of
the material:

M=y H.

On combining this with equation 12.3.1 and B = pH, we readily see that the magnetic
susceptibility (which is dimensionless) is related to the relative permeability u, = p/p, by
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Aim and Objectives

continuity equation, displacement current and also the derivation of
Maxwell’s equations in differential and integral form also you study about

the scalar (®) and vector potential (A) and its relation to Lornetz and

Coulomb gauge.



Equation of Continuity

According to the principle of conservation of charge the net amount of
charge in an i1solated system remains constant. The principle can be stated
as follows.

In the net charge crossing a surface bounding a closed volume is not
zero, then the charge density within the volume must change with time in a
manner that the time rate of decrease of charge within the volume equals
the net rate of flow of charge out of the volume. This statement can be

expressed by the equation of continuity.

Derivation: Let us consider that charge density p, i1s a function of time. The
transport of charge constitutes the current 1.e.,
I=dq /dt=d/dt vp.dV - (1)
Here we have considered that the current is extended in space of volume V
closed by the surface 'S'. The net amount of charge which crosses a unit
area (normal to the direction of charge flow) of a surface in unit time 1s
defined as the current density J. We know, if a net amount of current is
flowing outward closed surface the charge contained within that volume
should decrease at the rate
-dq /dt=1-——---- (2)
Where I is the total current flowing through surface S. if J is the current

density, then by definition, total current I will le

From equations (2) and (3) we get



sJ.ds =-dq/dt
=-d/dt vp.dV - (4)

{Using equ. (1) }
Because it is p which is changing with time, we can write
d/dt vp.dV= v p./ t.dV
so that equ. (4) becomes

sJds=- 4 p/t).dV - (5)

From divergence theorem, we have
sJ.ds = -y (divJ) dV
so that equ (5) becomes
vidivJ)dv=- v( p/ t). dV
(o1)
v(divd+ p/ t)dV =0 - (6)

Since Eq. (6) holds for any arbitrary volume, we can put integral equal to
Zero. 1.e.,

divd+ p/t=0---—-- (7)
It is referred to as the equation of continuity. It is the mathematical
expression for the conservation of charge. It states that the “ total current
flowing out of some volume must be equal to the rate of decrease of charge
within the volume, assuming that charge cannot the created or destroyed.
1.e., no sources and sinks are present in that volume”. In case of stationary
currents, charge density at any point within the region remain constant
re.., p/t=0

)

So that div J=0 orV .J =0 which express the fact — that there 1s no net

outward flux of current density J.

Displacement current (D)



Maxwell changed the definition of total current density to adapt the
equation of continuity to time dependent fields
Ampere’s circuital law 1s
s B. dl = uel
sH.dp=1= <J.ds

Changing line integral into surface integral, by stoke’s theorem,

scurl H.ds = <J.ds
(or)
curl H=J --———--—-- (1)

Let us substitute it in equation of continuity, then
divd=- p/t
we get div(curl H=- p/ t
O=-p/t
Here equ (1) leads to steady state condition in which charge density is not
changing. Therefore for time dependent (changing) fields, Eq (1) should be
modified. Maxwell suggested that the definition of total current density is
inmcomplete and advised to add something to it. Let it be J' then Eq (1)
becomes
CurlH= (J+J) - (2)
In order to identity J', we take divergence of Eq (2) That 1s
div (curl H) = div(J+ J')
O=div J+div J'
(or)

divJ' =-divJ= p/ t-—-—-—o- (3)



We know that

So that Eq. (3) becomes
divJ'= /t = (v .D)
=V .D/ t
=div(D / t
(or)
div [J'-(D / §]= 0 v (4)

Eq. (4) is true for any arbitrary volume, we can have

J=(D [ 1) ()
Therefore the modified form of the ampere's law 1s

Curl H=J+( D / t) -——---- (6)
Note: 1. Since J' arises due to the variation of electric displacement D
with time, it is termed as displacement current density . According to

Maxwell 1t 1s just as effective as J, the conduction current density in
producing magnetic field. (2) The important inference that we get from Eq.
(6) 1s that, since displacement current J' 1s related to the electrtic field vector
D (as D =c¢E ) it is not possible in case of time varying fields to deal
separately with electric and magnetic fields but, instead the two fields are
interlinked giving rise to electromagnetic fields. Thus J' results into

unification of electric and magnetic phenomenon.

The Maxwell’s equations ( Differential form)



The four equations of Maxwell’s are.,

'

(1) v .D = p ---—- obtained by the application of Gauss theorem in
electrostatics. D is the electric displacement in coulomb / meter2and p is

the free charge density in coulomb/meters-

(1) 7 . B =0; obtained by the application of Gauss theorem to magnetic

field and B 1s the magnetic induction in Weber/mt?

b

(m) v E =-B/ t; obtained by Faraday's and Lenz's law 1in
electromagnetic induction and E i1s the electric intensity in volt /

meter

!

(v} < xH=J+ D/ t: obtained by Maxwell’s modification of Ampere’s
law in a circuital form for magnetic field accompanying an electric
current and H 1s magnetic field intensity in ampere/meter and. J 1s
the current density in ampere /meter? .

(A) Dernvation of Maxwell’s equations

(1) dav D=p

Consider a surface S bounding a volume V in a dielectric medium. From
Gauss theorem the integral E.ds of the normal component of E over any
closed surface is equal to the total charge enclosed within the surface. Also

we know that the total charge must include both the free and the



polarisation charges or the total charge density pp = -div p and p 1s the free
charge density at a point in a small volume element dV. Thus total charge
density at that point will be, p - (divp) then Gauss law can be expressed as
s E.ds = vdivE.dV= 1/ o (p-div p) dV
(or)
div ( oE+P)dV = pdV
the quantity ( oE+P) 1s D called electric displacement, so that
divDdV = pdV
(or)

(divD-p)dV=0

Since this equation is true for all volume, the integrand in this equation
must vanish i.e., Div D=p
when the medium is isotropic the three vectors D,E, P are in the same
direction and for small field, D is proportional to E, that is

D=¢E



Where ¢ 1s called dielectric constant of the medium.

(i1) div B= 0

Since the magnetic lines of force are either closed or go off to infinity, the
number of magnetic line of force entering any arbitrary closed surface is
exactly the same as leaving it. It means that the flux of magnetic induction
B across any closed surface 1s always zero 1.e..,

B.ds=0
Transforming the surface integral into volume integral, we have

divBdV=0

The integrand should vanish for the surface boundary as the volume 1s
arbitrary, 1.e.,

div B=0
(111) curl E- B/ t

By Faraday law we know that emf induced in a closed loop 1s given by
e=- Jt= B/t.ds

Since the flux = s B.ds where S is any surface having the loop as
boundary. E.m.f “e” can also be found by calculating the work done in
carrying a unit charge completely around the loop. Thus e = E. dl where E
is the intensity of the electric field associated with induced em f

Therefore, equating above two equations, we get
Edl=-5 B/ t.ds

Applying stokes™ theorem, the line integral can be transformed into surface
integral 1.e.,

)

s fv xE).ds=-<(B/ t).ds



This equation must be true for any surface whether small or large in the
field. Therefore the two vectors in the integrands must be equal at every

point, 1.e.,

VxE =- B/t
CrulE=- B/ t
(IV) - Curl H=J+ D/ t

Ampere’s law in the circuital form gives this equation. According to this law,
the work done in carrying a unit magnetic pole once round closed arbitrary

path linked with the current is expressed as
H.dl=1(or) = J.ds

where the integral on the right is taken over the surface through which the
charge flow corresponding to the current I take place. Now changing the

line integral into surface integral by stoke’s theorem

scurl Hds = J.ds

Curl H=J
The above relation, derived on the basis of Amperes” law, stands only for
steady closed current. But for the changing electric fields, the current

density should be modified. The divergence of the above equation is

div (curlH) =0 (or)
div J=0 which conflicts with the equation of continuity div J = (- p/ t.)
Adding J we get curl H= (J+J'). Taking divergence of the above equation, we

get



div (curl H) = (divJ+divJ'") (or)
0= div J+divJ' (or)
divJ' =-divJ =+ p / t.

¥

we know thatp = V. D
Substituting this value in the expression for Div J', we get

)
DivJ'= / t(w .D)
1] 1]

v.J= (@.D/J ¢
therefore the Maxwell’s fourth relation can be written as

CurlH=J+ ( D/ ¢

3.4 Maxwell’'s equation in free space

In the free space, where the current density J and volume charge
density p are zero, Maxwell’s equations reduce to
v .D=0
)
v .B=0
)
v xE=- B/ t
)
v xH= D/ t
Maxwell’s equations in linear Isotropic Media
In linear isotropic media
D= E
and H=B/u
Where is the dielectric constant, u permeability of the medium.
The Maxwell’'s equations become

vV .E=p/



)
v .H=0
)

v xE+tu(H/ t) =0

H

v xH- (E/ t)=Jd.

Energy in electromagnet fields: Poynting vector — ( Poynting

theorem)



Energy may be transported through space by means of e.m. waves.
Let the material inside S be isotropic homogenous and characterised by
permeability u, permittivity and conductivity . For derivation, consider a

volume V bounded by a closed surface S.

Maxwell’s third and fourth relations are
CurlE=-B/ t
CurlH=J+ D/ t
Taking scalar product of both sides of the above equations with H and E
respectively and subtracting, we get
E.curl H.HeurlE=J. E+[(E.(D/ t)+H (B/t)] (1)
But we know that
H. curl E-E. curl H = div (ExH)
So that equ. (1) becomes
-div(ExH)=J.E[E.(/ t)(.E)+H(/ t) (nH)]
(or) JE+(1/2. / t(E?)+1/2. / t(uH?) + diwv (ExH) =0
(or) JE+(1/2. / t(E. E)+1/2. / t(H.uH) +div (ExH) =0
(or) JE+(1/2. / t(E.D)+ 1/2. / t(H.B) + div (ExH) =0 --(2)
Integrating over the volume V bounded by the surface S, we get
v(J.E)dv++v1/2. / t(E.D+H. B) +vdiv (ExH) dv = 0 ----(3)
But as v div (ExH) dv = (ExH).ds
We write equation (3) as
v(J.B)ydv+ +v1/2 / t(E.D + H.B) = - s (ExH).ds ---- (4)
Integrating the second term of Equ. (4) we get
1/2 / t(E.D+H.B)dv= 1/2. / t(E.E+ H .uH)dv

=/t(1/2.E2+1/2 uH2)dv --—- ()
The first and second term on right hand side represent the time rate of
immcrease of energy stored in the electric and magnetic fields respectively in

the volume V. Considering the Eq.(4), LHS of this represents the sum of the



power expended by the fields due to the motion of charge and the time rate
of increase of stored energy in the fields. On the other hand RHS of Eq. (4)
must represent the power flow into the volume V across the surface S, or the
power flow out of the volume V across the surface S

= s(ExH) . ds

= sP.ds

where P= (ExH) ----(6)

It then follows that the vector P has the meaning of power density associated
with the electromagnetic filed at that point. The statement represented by
Eq.(6) 1s known as poynting theorem and the vector P 1s known as the

poynting vector.

3.6 Electromagnetic potentials — Maxwell’s equations is terms of
electromagnetic Potentials
Consider the Maxwell’s equations
uCurl H= pJ+u D/ t - (1)
CurlB= uJ+u E/ t-——-- (2)
Where and u are permittivity and permeability, Substituting for B (1.e. B =
Curl A) and E(-grad ¢ A/ t) (where A and @ are electromagnetic potentials),
we get
Curl (CurlA)=uJ +u  / t (-grad @ A/ t)
1e.., grad div A-vV2A=pJ-u [/ t (grad @-pn 2A/ t2?)
re.,, v2A-u  2A/ t?—grad (dwvA+u @/ A) = -uJd ----(3)
Considering other Maxwell’s equations, namely
DivD=p
divE=p
re., div (- grad ¢ A/ t) =p/
rLe.,v 2= [/ tldivA) =-p/
Adding and subtracting u  ¢?/ t?it becomes



v3e-pn 2/ t2-/ tdivA+tu @/ t)=-p/ (4
Equations (3) and (4) are field equations in terms of electromagnetic
potentials. Here Maxwell’s equations are reduced from four to two by
electromagnetic potentials,
Note: Electromagnetic potential define the field vectors uniquely though
they themselves are non-unique. We get the same field vectors when we use
the set (A, @ or (A, ¢). These transformations are called gauge
transformations.
3.7 Lorentz Gauge
Maxwell’s field equations in terms of electromagnetic potentials are

v 2A-p  2A/ t?-grad (divA+tu @/ t) = -ud ---(1)

v2@-p 29/ t2+ / t(div Aty @/ t)= -p/ —(2)
The above equations may be simplified as

divA+uy @/ t=0--—(3)
This requirement is called the Lorentz condition and when the vector and
scalar potential satisfy it, the gauge is known as Lorentz gauge.
So with Lorentz condition field equations reduce to
vZA-n (A ) = -ud - (4)
and v2e-u (29/ t2)=-p/ - (5)
But we knowu =1/v2(i.e., V=1 u )
Hence Equations (4) and (5) can be written as
2A=-pd —--- (6)
29=-p/ - (7)
and 2=y 2-1/v2*(2A / t2)

Equations (6) and (7) are inhomogenous wave equations and are known as
D' Alembertian equations and can be solved. The potentials obtained by
solving these equations are called retarded potentials.
To determine the requirement that Lorentz condition A, we substitute A' and

@' from equations already given earlier.

Div(Al-grad A)+pu /Jt(@g+A/t)=0
e, divA'“u ( @/ t)=v2A-u( 20 / t3)

Hence A' and ¢ will satisfy the equations (3) 1.e.., Lorentz condition provides



VA-u(?A [/ ¥)=0-—-—- (8)
Le.,, 2A=0
Lorentz condition is invariant under those gauge transformations for which
the gauge functions are solutions of the homogeneous wave equations.
Advantages:
(1) It makes equations for A and ¢ independent of each other.
(2) It leads to the wave equation.
(3) It 18 a concept which is independent of Co — ordinate system.
3.8 Coulomb Gauge
Consider the field equations in terms of electromagnetic potentials we get,
¢ 2ot/ t(divA)=-p/ —(1)
If we assume divA =0
The above equation (1) reduces to Poisson’s equation
v 2 Qe =plr't)) —(2)
Whose solution i1s
Qo =1/4  (p (r't)/R) d '—(3)
1.e., the scalar potential 1s just the instantaneour Colombian potential due to
charge p (¥, ¥, 2',1). This 1s the origin of the name coulomb gauge.
From equations (2) (3) we get
v2{l/4 (p(t)/Rpd"}=-p(r, 0/ —(4
As Poisson’s equations holds good for both scalar and vectors replacing

p (r't) by J we get

G4 (/R A=) e (5)

'

As J' 1s confined to the volume the surface contributions will vanish, so
V(0 /Rd'= (¢ /R) d' ——m(6)

(Since J'=-(1/4)v v. J /R d' +1/4 yvxvx (J /R¥ d]

We know v x (J' /R)=1/R/'xJ' % ' (1/R)
=( 'xJ)/Rd 2+ (J /R)xds
(as VxVd 2=-,Vxds)
As J' confined to volume ' surface contribution will vanish so

vx (J/Rd'=F'xJ /R *d — (7)



Nowas 'xJ'= w/[-1/4V( "“"J/B& --—---— (8)
e,y xJ' =0 (as curl grad @ =0)
andy .J'=vV  x V'xJ /R) d'
re.V .J=0 (as div curl V = 0)
In terms of vector potential
V2A-(1/v3) 2A/ t2=-pJd
2A=-uJ

1.e.., the equation for A can be expressed entirely interms of the transverse

current.

The Coulomb gauge has a certain advantage. In it the scalar potential is

exactly the electrostatic potential and electric field 1s given by

E=-grad p- A/ t

It 1s separable into an electrostatic field V = @ and a wave field given by -

A/ t. This gauge is used when no sources are present. If ¢ = 0 and A

satisfies the homogeneous wave equation, the tfield is given by

E=- A/tand B=V x A
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Unit 3

Propaqgation of Plane Electromagnetic Waves

Electromagnetic Waves in Free Space — Propagation of Electromagnetic Waves in Isotropic Dielectrics
Anisotropic Dielectric — In Conducting Media — In lonized Gases. Interaction of EMW with Matter o

Macroscopic Scale: Boundary Condition of inter faces — Reflection and Refraction — Fresnell's Formula
Brewster's Law and Polarization of EMW — Total Internal Reflection and Critical Angle — Reflection from

Metallic Surface — Wave Guides — Rectangular Wave Guide.

In this chapter, our major goal is to solve Maxwell’s equations and derive EM wave
motion in the following media:

. Free space (0 = 0, & = g,. 0 = p)

2. Lossless dielectrics (o = 0, & = g,£,, t = ffly, OF 0 << WE)
3. Lossy dielectrics (¢ # 0, & = £,84, 0 = fito)

4. Good conductors (0 == 2,8 = £, pb = Efte, OF 0 2> wE)



Electromagnetic Waves in Free Space

We start with the source-free, instantaneous Maxwell’s equations writte:
in terms of E and H only. Note that conduction current in the source-fre

region 1s accounted for in the oF term.

VXE=—p.y )
ot
VXH=0E+(=_@ @
ot
V-E=0 @
V-H=0 @

Taking the curl of @

VXVXE=—u%(V><H)

and mserting @ gives



VXV xE = _ME(UE+EG_E]

ot ot
2
= _I-LUE_IJ-EE @
ot ot
Taking the curl of @
VxVxH=0(VXE) + Eag(VxE)
[

and mserting @ yields

VXVXH:U(—IJ_S‘_H} +E£[_|‘LE]

ot ot ot
2
= — pga_H ol 113 a_H
ot ot?
Using the vector identity
VxVxF=V(V-F)-V*F (for any vector F)

in & and ® gives

O om0
' 2
VXVXE=V(V/E) _V2E - —pUZ—E _pe2E

t ot?

0 (lrom 1) 3 52
VxVxH=V(V/H)-V?H=-pc 2 ¢ H
ot or?

2
VZE:IJ.UB_E -|-|J'.Ea—‘E
o or* [nstant
nslantancous

oH o02H VeClor Wiy e e ualions

VZH=po— +pe——

ot 9¢2 (Hclmholts cquations)



For time-harmonic fields, the instantaneous (time-domain) vector F i1s
related to the phasor (frequency-domain) vector F, by

F < F,
oF

= W
ot JOs
2
ZTf -  (joyF,

Using these relationships. the instantaneous vector wave equations are
transformed into the phasor vector wave equations:

VZE =po(o)E, +pe (Jo) E, =jop(o +jwe)E,
VZH =po(jo)H, +pe(jo)H, =jop(c+joe)H,
If we let
jop(o+jwe) =y’
the phasor vector wave equations reduce to
V2E,-y*E, =0 Phiasor s cclon
V:H, -y*H =0 W e egutions

(Hctmholt cquations)
The complex constant vy 1s defined as the propagation constant.

Y=vVjop(o+jwe)=a+jp

The real part of the propagation constant (c) 1s defined as the arfenuation
constant while the imaginary part (3) 1s defined as the p/ase constant. The
attenuation constant defines the rate at which the fields of the wave are
attenuated as the wave propagates. An electromagnetic wave propagates
in an ideal (lossless) media without attenuation (.= 0). The phase constant
defines the rate at which the phase changes as the wave propagates.



Separate but equivalent units are defined for the propagation,
attenuation and phase constants in order to identify each quantity by its
units [similar to complex power, with units of VA (complex power). W
(real power) and VAR (reactive power)].

Y propagation constant (m™)
o attenuation constant (Np/m)
B phase constant (rad/m)

Given the properties of the medium (p, €, 0), we may determine equations
for the attenuation and phase constants.

Y =jop(o+jwe) = (a +jB)? = a? +2ap - p?

Rey? =a? - B? = -w?pe

Im"{2=2aﬂ=mu0 [.‘ Solve [ol [_L|}

2
_ HE c
Ce=w,| —|[,[{]1+] —| -1
N 2|\ [me] |

o | Bl [14[2),
P=oy 5! (me] d



Summary of Wave Characteristics - Lossy Media (General case)

Lossymedia = (0>0,p=p,p,,e=€,€,)

Y =Vjop(o+jwe) =a +;B (complex)
€ g |2
w,| B 1+(—] +1
2 WE
u:E )‘.=2_TIJ n-= _}’(0—|J. (complex)
B B \l C+jwe

Summary of Wave Characteristics - Lossless Media
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Losslessmedia =  (0=0, p=p,p ., €=€,€,)

Yy =y -0’pe =jo/pe = +jp (imaginary)

a=0 ﬁ=m‘/ﬁ=m13prpae,ea=%1fprer

u=2__2¢ a=2T *r]:\I7E (real)
p M€, B €




Wave Propagation in Free Space

Air 1s typically very low loss (negligible attenuation) with little
polarization or magnetization. Thus, we may model air as free space
(vacuum) with 0=0, e=€,, and p=p, (¢,=1, p,=1). We may specialize the
lossless medium equations for the case of free space.

{x=0 B:E I'LPEP':E
C c
u:E:L:c l:Z_TE:E
B Jue B f
n=n,= |t2=3770
EO

-

Wave Propagation in Good Conductors (0 = we)

In a good conductor, displacement current is negligible in comparison
to conduction current.

I otat = conduct +Jd,3p1 =0E +jweE
| condtuction| > | dispiacement| if (o0»>we)

Although this inequality 1s frequency dependent, most good conductors
(such as copper and aluminum) have conductivities on the order of 10’ U/m
and negligible polarization (e,=1. e=€,=8.854> 107" F/m) such that we
never encounter the frequencies at which the displacement current becomes
comparable to the displacement current. Given o »>we, the propagation
constant within a good conductor may be approximated by

Yy=a+jB=y/jop(otjwe)~y/jopo=ywpo/90°=yJopo £45°




Reflection and Refraction (transmission) at Bound-
aries

We have seen how plane wave propagate in vacuum or in isotropic homogencous
linear media. The next thing Maxwell equation can give us is a description of the
propagation of light across a boundary between two media described by different
values of € and .

L

mL
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L

=

oL
£
F
mL

e by

First we will derive the well-known Snell’s law, which determines are the reflected
and transmitted angles of a incident waves at the boundary. Afterwards. the bound-
ary conditions of an electromagnetic waves at the boundaries between two different
materials will be discussed. Finally, the amplitude of the reflected and transmitted
waves can be estimated by the Fresnel's formulac.

Snell’s law

Incident
_
Kk
I
i )
! Reflected
>
x
_
K¢
Transmitted
¥
k4 "l

z

Consider a plane harmonic wave incident upon a plane boundary separating two
different optical media. There will be a reHected wave and a transmitted wave. The
space-time dependence of these three waves, aside from constant amplitude factors,
is given by the following complex expressions:



Boundary conditions at the interface

We consider the case where no charges or current are present near the boundary,
which is generally true for most optical problems. so the source-free Maxwell equation

may be used, and in integral form

§.D-d5=0
§.B-ds=0
FE- dl——%fﬁ dsT’

First we consider the first two closed surface integrals. Assume the media interface
is surrounded by a cylinder whose faces lie parallel to and each on one side of the

interface, as shown in the graph below.

dA

7 is the unit vector from medium ¢ to ¢; d5 = —ndA in region 7 and ds = ndA in
region t. Therefore, the first two Maxwell equation gives us,

D; - n=D;-n

= A — A

B, -n=DB;-n

which means that “the normal components of D and B are continuous across the
interface”. Note that }jt B; and Dt, B} are the total electric displacement and total
magnetic field intensity at media 7 and n. respectively.

Now consider the line integrals of the latter two Maxwell equation by constructing a

infinitesimal loop across the interface,

dA

e
-




t is the unit vector parallel to the interface. As dh — 0, the fluxes ¢p = [[B-d5=0
and ¢p = [, D - ds = 0; therefore, we have

E;E:E}E
H‘i‘f:ﬁt'f

which further implies that “the tangential components of E and H are continuous
across the interface”. Same here that Ej;, H; and E,, H, are the total electric field
and total magnetic field at media 2z and n, respectively.

Brewster’s angle
In the above graphs, there is a particular angle at which the reflectivity is zero for p
polarization light wave, and this angle is known as the “Brewster’s angle”. From the

equation of reflection coefficient of p polarized light,

rp = % — 0 when 6; + 6, = 90°

This situation will happen, according to Snell’s law

14 sin #; sin #;

ni sin(90° — 6;) ~ cos 0;

By defining this angle as Brewster’s angle 6,

Op = tmfl(::—*)

T

In other words, at Brewster’'s angle, all P polarized light is transmitted through the
interface, and this happens for both n; > n; and n; > n,.

Total internal reflection

Total internal reflection only happens when light propagates from an optically “denser”
medium into a “less dense” medium, i.e. n; > n,. (For example, light going from
water into air). From Snell’s law,

T

f; = sin~'(— sin 6;
, = sin (ﬂ»c sin 6;)

When n; > ny. it is possible to have E—; sinf; > 1. Lets define the critical angle 8. by
requiring that 2—: sinf, = 1, we have



6. =sin~! ()

At the critical angle of incidence, the transmitted beam has 6; = 90°, i.e. the beam
runs exactly along the interface.
Writing down the general expression for the transmitted wave

Et ~ e—t.k--r' — 8—1kt{x sin #;+z cos 0;)

We can rewrite Snell’s law as

. n; .
sinf, = —sinf; =

and also

sin 6, 9

cosby = £\/1 —sin?f, = £/1 — (

Now when 6; > 6. the cosine becomes purely imaginary. For notational convenience,
select the negative root and

sin 0,

where

The transmitted wave can be written in this notation as
- _—ik¢(xsin B¢+ cos 0
E, ~ e il )
Et — e—kgaze—-zkt:c\/ 1+a?

The transmitted wave propagates parallel to the surface (i.e., along the z axis) and is
attenuated exponentially in the z direction (i.e. normal to the propagation direction).
Such a damped wave is called an evanescent wave. Except when the incident wave



Reflection from a conductor

When deriving the Fresnel equations for reflection, there are only two assumptions
have been made, which are 1) the material response is linear, and 2) € and p are
constant on each side of the interface. Therefore, the Fresnel equations for reflection
and transmission will also hold for a complex diclectric constants.

Thus the Fresnel field reflectivity is the same for a conductor, but the transmission
angle 6; is now complex. Therefore, the Snell’s law becomes

sin {i = T—i sin 6;
Ty
The fact that the reflection coefficient becomes complex means there is a phase
shift between incident and reflected waves. Thus linearly polarized light can become
clliptically polarized on reflection under certain circumstances. We will not concern
ourselves with the details of the general case, but restrict our attention solely to
power reflection at normal incidence.

R = |pff = Bzl =l _ (o=l
S T A+l o+l T (n+l1)2+(nk)?
o o 4n
=1 (n+1)24+(nk)2

Note that if the index were purely imaginary, i.e. 7 = ink, then we would have

_ (imk—1)(—ink —1)

— =1
(ink + 1)(—ink + 1)

It becomes a “perfect reflector”. Indeed, the imaginary part of the refractive index
of most metals dominate over the real part, due to the high conductivities of most
metals (k= wq/u(e — 1—0)J And very high reflectivities (90 to 95%) are observed for

most metals. That is the reason why metal coatings are often used to made mirrors.

Wave Guides — Rectangular Wave Guide



Waveguides

Waveguides, like transmission lines, are structures used to guide
electromagnetic waves from point to point. However, the fundamental
characteristics of waveguide and transmission line waves (modes) are quite
different. The differences in these modes result from the basic differences
in geometry for a transmission line and a waveguide.

Transmission line

* Two or more conductors
separated by some insulating
medium  (two-wire, coaxial,
microstrip, etc.).

* Normal operating mode 1s the
TEM or quasi-TEM mode (can
support TE and TM modes but
these modes are typically
undesirable).

* No cutoff frequency for the TEM
mode.

» Significant signal attenuation at
high frequencies due to
conductor and dielectric losses.

Ideal Waveguide
(PEC tube, perfect insulator inside)

Waves propagate along the
waveguide (+z-direction) within the
waveguide through the lossless
dielectric. The electric and magnetic
fields of the guided waves must satisfy

Waveguide

Typically one enclosed conductor
filled with an insulating medium
(rectangular, circular, etc.).
Operating modes are TE or TM
modes (cannot support a TEM
mode).

Must operate the waveguide at a
frequency above the respective
TE or TM mode cutoff frequency
for that mode to propagate.
Lower signal attenuation at high
frequencies than transmission
lines.

Ay
(1.€,0=0)




the source-free Maxwell’s equations.

Assumptions:
(1) the waveguide is infinitely long, oriented along the z-axis,
and uniform along its length.
(2) thewaveguide is constructed from ideal materials (enclosing
PEC conductor is filled with a perfect insulator).
(3) fields are time-harmonic.

The electric and magnetic fields associated with the waves propagating
inside the waveguide must satisfy the source free Maxwell’s equations
given by

VXE =-jouH,
VxH_ =jweE_
These equations can be manipulated into wave equations for the electric

and magnetic fields as was shown in the case of unguided waves. These
wave equations are

2 2 —
V2E +k*E_=0
VPH_ +k*H_=0

For certain waveguide geometries, the individual components of the fields
can be determined using the separation of variables technique. Fora wave
propagating along the waveguide in the z-direction, the electric and
magnetic fields may be written in rectangular coordinates as

E (x.y,.z)=e/(x,y)e "

H (x,y,z) = h (x.y)e "

The constant vy is the waveguide propagation constant defined by
Yy=o+jB
where « is the waveguide attenuation constant and [3 is the waveguide

phase constant. In general, the waveguide propagation constant has very
different characteristics than the transmission line propagation constant.



The vectors e (x,v) and & (x,v) in the waveguide field expressions may
contain both transverse field components (a,, a,) and longitudinal field
components (a.). By expanding the curl operator of Maxwell’s equations
in rectangular coordinates, and noting that the derivatives of the transverse
components with respect to z can be evaluated as

oE CwE aEyS CvE
oz Vs oz Yo%
oH. oH
- —yH x - yH
0z ¥ s 0z Y0

If we equate the vector components on each side of the two Maxwell curl
equations, we find

JweE = —=+yH (1a)
‘weE u - (1)
weE = - -

/ v = M ox

OH, oH,
jweE, = —* - (1¢)
0x dy
oF,

JwpH, = —=+YE (2a)

oE_

JOpH, = -YE - (20)

¥ Ox
0E, OF_

JopH, =—* - (2¢)

ox dy

Equations (1) and (2) are valid for any wave (guided or unguided)
propagating in the z-direction in a source-free region with a propagation
constant of y. We may use Equations (1) and (2) to solve for the
longitudinal field components in terms of the transverse field components.



1 ( OB, . 0H,
solve (la) and (2b) for H E_ = -y - jOuU
g h*\  ox oy
1 ( 0B, . OH,
solve (1b) and (2a) for H E = -y +jOH
P p dy ox
1 oE_, o0H
solve (1b) and (2a) for E H =—|jwe -y
g h2\ oy 0x
1 oE, oH,
solve (la) and (2b) for E H =—|-jwe -y
h?\ ox oy

where the constant / is defined by

h2=‘Y2+&)2}l€=Y2+k2 - Y= h2_k2

The equations for the transverse fields in terms of the longitudinal fields
describe the different types of possible modes for guided and unguided
waves.

Transverse electromagnetic F =H =0 plane waves,
(TEM) modes R transmission lines

Transverse electric (TE) E.+0,H =0  waveguide modes

modes ) o
Transverse magnetic (TM) E =0.H. =0 waveguide modes
modes c T

Hybrid (EH or HE) modes E.+0,H, 0 waveguide modes



For TEM modes, the only way for the transverse fields to be non-zero with
E_=H_=01istfor 7 =0, which yields

Y=v-k*=jk=a+jPB = B=%k  (TEM modes)

For the waveguide modes, /# cannot be zero since this would yield
unbounded results for the transverse fields. Thus, B # £ and the waveguide
propagation constant can be written as

2 2
“_] (2
k? k

The ratio of 4/k can be written in terms of the curoff frequency f. for the
given waveguide mode.

h__ h _ kL
k' w/pe 2nffpe S
f, = h (waveguide cuto