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I. Introduction 

 Quantum mechanics is the branch of physics that deals with extremely small particles and other 

objects on similar scales such as atoms. The term “quantum” comes from “quantus,” which means 

“how great,” but in context, it refers to the fact that energy and other quantities like angular 

momentum take on discrete, quantized values at the scales of quantum mechanics 

Postulates of Quantum Mechanics 

Postulate 1. The state of a quantum mechanical system is completely specified by a 

function  that depends on the coordinates of the particle(s) and on time. This function, 

called the wave function or state function, has the important property 

that  is the probability that the particle lies in the volume 

element  located at  at time . 

The wavefunction must satisfy certain mathematical conditions because of this probabilistic 

interpretation. For the case of a single particle, the probability of finding it somewhere is 1, so 

that we have the normalization condition 

 

 

 

It is customary to also normalize many-particle wavefunctions to 1. The wavefunction must also 

be single-valued, continuous, and finite. 

Postulate 2. To every observable in classical mechanics there corresponds a linear, Hermitian 

operator in quantum mechanics. 

If we require that the expectation value of an operator  is real, then  must be a Hermitian 

operator. Some common operators occuring in quantum mechanics are collected in Table 1. 

Table 1: Physical observables and their corresponding quantum operators (single particle) 

Observable Observable Operator Operator 

http://vergil.chemistry.gatech.edu/notes/quantrev/node20.html#Table:Ops
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Name Symbol Symbol Operation 

Position 
 

 

Multiply by  

Momentum 
 

 

 

Kinetic energy 
 

 

 

Potential energy 
 

 

Multiply by  

Total energy 
 

 

 

Angular momentum 
 

 

 

  
 

 

 

  
 

 

 

 

 

Postulate 3. In any measurement of the observable associated with operator , the only values 

that will ever be observed are the eigenvalues , which satisfy the eigenvalue equation 
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This postulate captures the central point of quantum mechanics--the values of dynamical 

variables can be quantized (although it is still possible to have a continuum of eigenvalues in the 

case of unbound states). If the system is in an eigenstate of  with eigenvalue , then any 

measurement of the quantity  will yield . 

Although measurements must always yield an eigenvalue, the state does not have to be an 

eigenstate of  initially. An arbitrary state can be expanded in the complete set of eigenvectors 

of  (  as 

 

 

 

where  may go to infinity. In this case we only know that the measurement of  will 

yield one of the values , but we don't know which one. However, we do know 

the probability that eigenvalue  will occur--it is the absolute value squared of the 

coefficient, , leading to the fourth postulate below. 

An important second half of the third postulate is that, after measurement of  yields some 

eigenvalue , the wavefunction immediately ``collapses'' into the corresponding 

eigenstate  (in the case that  is degenerate, then  becomes the projection of  onto the 

degenerate subspace). Thus, measurement affects the state of the system. This fact is used in 

many elaborate experimental tests of quantum mechanics. 

Postulate 4. If a system is in a state described by a normalized wave function , then the 

average value of the observable corresponding to  is given by 
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Postulate 5. The wavefunction or state function of a system evolves in time according to the 

time-dependent Schrödinger equation 

 

 

 

 

Postulate 6. The total wavefunction must be antisymmetric with respect to the interchange of all 

coordinates of one fermion with those of another. Electronic spin must be included in this set of 

coordinates. 

The Pauli exclusion principle is a direct result of this antisymmetry principle. We will later see 

that Slater determinants provide a convenient means of enforcing this property on electronic 

wavefunctions. 

The Wave Function 

Wave-particle duality is one of the key concepts in quantum physics, and that’s why each particle 

is represented by a wave function. This is usually given the Greek letter Ψ (psi) and is a function 

of position (x) and time (t), and it contains all of the information that can be known about the 

particle. 

 

Think about that point again – despite the probabilistic nature of matter at the quantum scale, the 

wave function allows for a complete description of the particle, or at least as complete a description 

as is possible. The output may be a probability distribution, but it still manages to be complete in 

its description. 
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The modulus (i.e. absolute value) of this function squared tells you the probability you’ll find the 

particle being described at position x (or within a small range dx, to be precise) at time t. Wave 

functions have to be normalized (set so that the probability is 1 that it will be found somewhere) 

for this to be the case, but this is almost always done, and if it isn’t, you can normalize the wave 

function yourself by summing the modulus squared over all values of x, setting it to equal 1 and 

defining a normalization constant accordingly. 

 

You can use the wave function to calculate the expectation value for the position of a particle at 

time t, which is essentially the average value you would obtain for the position over many 

measurements. 

 

You calculate the expectation value by surrounding the “operator” for the observable (e.g. for 

position, this is just x) with the wave function and its complex conjugate (like a sandwich) and 

then integrating over all of space. You can use this same approach with different operators to 

calculate expectation values for energy, momentum and other observables. 

 

The Schrodinger Equation 

The Schrodinger equation is the most important equation in quantum mechanics, and it describes 

the evolution of wave function with time, and allows you to determine the value of it. It’s closely 

related to the conservation of energy and is ultimately derived from it, but it plays a role similar to 

that played by Newton’s laws in classical mechanics. The simplest way to write the equation is: 
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This acts on the wave function to describe it’s evolution in space and time, and in the time-

independent version of the Schrodinger equation, it can be considered the energy operator for the 

quantum system. Quantum mechanical wave functions are solutions to the Schrodinger equation. 

Heisenberg Uncertainty Principle 

The Heisenberg uncertainty principle is one of the most famous principles of quantum mechanics, 

and states that the position x and momentum p of a particle cannot both be known with certainty, 

or more specifically, to an arbitrary degree of precision. 

There is a fundamental limit to the level of accuracy with which you can measure both of these 

quantities simultaneously. The result comes from the particle wave duality of quantum mechanical 

objects, and specifically the way they are described as a wave packet of multiple component waves. 

While the position and momentum uncertainty principle is the most well-known, there is also the 

energy-time uncertainty principle (which says the same thing about energy and time) but also the 

generalized uncertainty principle. 

In short, this states that two quantities which do not “commute” with each other (where AB – BA 

≠ 0) can’t be known simultaneously to arbitrary precision. There are many other quantities which 

do not commute with each other, and so many pairs of observables that can’t be precisely 

determined at the same time – precision in one measurement means a huge amount of uncertainty 

in the other. 

This is one of the main things about quantum mechanics that’s hard to understand from our 

macroscopic perspective. Objects you encounter on a day-to-day basis all have clearly defined 

values for things like their position and their momentum at all times, and measuring the 

corresponding values in classical physics is only limited by the precision of your measuring 

equipment. 
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In quantum mechanics, though, nature itself sets a limit to the precision you can measure two non-

commuting observables to. It’s tempting to think this is simply a practical problem and you’ll be 

able to achieve it one day, but that simply isn’t the case: It’s impossible. 

Interpretations of Quantum Mechanics  

The weirdness implied by the mathematical formalism of quantum mechanics gave physicists a 

lot to think about: What was the physical interpretation of the wave function, for example? Was 

an electron really a particle or a wave, or could it really be both? The Copenhagen interpretation 

is the most well-known attempt to answer questions like this and still the most widely-accepted 

one. 

The interpretation essentially says that the wave function and the Schrodinger equation are a 

complete description of the wave or particle, and any information that cannot be derived from them 

simply doesn’t exist. 

For example, the wave function spreads across space, and this means that the particle itself doesn’t 

have a fixed location until you measure it, at which point the wave function “collapses,” and you 

obtain a definite value. In this view, the wave-particle duality of quantum mechanics doesn’t mean 

that a particle is both a wave and a particle; it simply means that a particle like an electron will 

behave as a wave in some circumstances and as a particle in others. 

Niels Bohr, the biggest proponent of the Copenhagen interpretation, would reportedly criticize 

questions like, “Is the electron actually a particle, or is it a wave?” 

He said they were meaningless, because in order to find out you have to conduct a measurement, 

and the form of the measurement (i.e. what they were designed to detect) would determine the 

result you obtained. In addition, all measurements are fundamentally probabilistic, and this 

probability is built into nature rather than being due to a lack of knowledge or precision on the part 

of the scientists. 
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Other Interpretations of Quantum Mechanics 

There is still a lot of disagreement about the interpretation of quantum mechanics, though, and 

there are alternative interpretations that are worth learning about too, in particular the many worlds 

interpretation and the de Broglie-Bohm interpretation. 

The many worlds interpretation was proposed by Hugh Everett III, and essentially removes the 

need for the collapse of the wave function entirely, but in doing so proposes multiple parallel 

“worlds” (which has a slippery definition in the theory) coexisting with your own. 

In essence, it says that when you make a measurement of a quantum system, the result you obtain 

doesn’t involve the wave function collapsing onto one particular value for the observable, but 

multiple worlds untangling and you finding yourself in one and not the others. In your world, for 

example, the particle is at position A rather than B or C, but in another world it will be at B, and 

in yet another it will be at C. 

This is in essence a deterministic (rather than a probabilistic theory), but it’s your uncertainty about 

which world you inhabit that creates the apparently probabilistic nature of quantum mechanics. 

The probability really relates to whether you're in world A, B or C, not where the particle is within 

your world. However, the “splitting” of worlds arguably raises as many questions as it answers, 

and so the idea is still quite a controversial one. 

The de Broglie-Bohm interpretation is sometimes called pilot wave mechanics, and it follows from 

the Copenhagen interpretation in that particles are described by wave functions and the 

Schrodinger equation. 

However, it states that every particle has a definite position even when it isn’t being observed, but 

it is guided by a “pilot wave,” for which there is another equation you use to calculate the evolution 

of the system. This describes the wave-particle duality by essentially saying that a particle “surfs” 

at a definite position on a wave, with the wave guiding it’s motion, but it still exists even when not 

observed. 
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Compton’s formula established that an electromagnetic wave can behave like a particle of light 

when interacting with matter. In 1924, Louis de Broglie proposed a new speculative hypothesis 

that electrons and other particles of matter can behave like waves. Today, this idea is known as de 

Broglie’s hypothesis of matter waves. In 1926, De Broglie’s hypothesis, together with Bohr’s early 

quantum theory, led to the development of a new theory of wave quantum mechanics to describe 

the physics of atoms and subatomic particles. Quantum mechanics has paved the way for new 

engineering inventions and technologies, such as the laser and magnetic resonance imaging (MRI). 

These new technologies drive discoveries in other sciences such as biology and chemistry. 

According to de Broglie’s hypothesis, massless photons as well as massive particles must satisfy 

one common set of relations that connect the energy E with the frequency f, and the linear 

momentum p with the wavelength   
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  Phase velocity 

The phase velocity of a wave is the rate at which the phase of the wave propagates in space. 

This is the velocity at which the phase of any one frequency component of the wave travels. For 

such a component, any given phase of the wave (for example, the crest) will appear to travel 

at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and 

time period T. 

Group velocity 

The group velocity of a wave is the velocity with which the overall envelope shape of the 

wave's amplitudes. 

The phase velocity is the ratio of the angular frequency to the wave number.  The group 

velocity is the derivative of the angular frequency with respect to the wave number. 

Davisson and Germer Experiment 

The experimental setup for the Davisson and Germer experiment is enclosed w i t h i n  a  

vacuum chamber. Thus the deflection and scattering of electrons by the medium are prevented. The 

main parts of the experimental setup are as follows: 
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➢ Electron gun: An electron g u n  i s  a  T u n gs t e n  f i l a m e n t  t h a t  emits 

electrons via thermionic emission i.e. it emits electrons when heated to a 

particular temperature. 

➢ Electrostatic particle accelerator: Two opposite charged plates (positive and 

negative plate) are used to accelerate the electrons at a known potential. 

➢ Collimator: The accelerator is enclosed within a cylinder that has a narrow passage 

for the electrons along its axis. Its function is to render a narrow and straight 

(collimated) beam of electrons ready for acceleration. 

➢ Target: The target is a Nickel crystal. The electron beam is fired normally on 

the Nickel crystal. The crystal is placed such that it can be rotated about a fixed 

axis. 

➢ Detector: A detector is used to capture the scattered electrons from the Ni crystal. 

The detector can be moved in a semicircular arc as shown in the diagram above. 

Browse more Topics under Dual Nature of Radiation and Matter 

• Electron Emission 

• Experimental Study of Photoelectric Effect 

• Wave Nature of Matter 

• Einstein’s Photoelectric Equation: Energy Quantum of 

Radiation  The Thought Behind the Experimental Setup 

The basic thought behind the Davisson and Germer experiment was that the waves reflected from 

two different atomic layers of a Ni crystal will have a fixed phase difference. After reflection, these 

waves will interfere either constructively or destructively. Hence producing a diffraction pattern. In 

the Davisson and Germer experiment waves were used in place of electrons. These electrons 

formed a diffraction pattern. The dual nature of matter was thus verified. We can relate the 

de Broglie equation and the Bragg’s law as shown below: 

From the de Broglie equation, we have: 

λ = h/p 

= h/\(\sqrt[]{2mE}\) 

= h/\(\sqrt[]{2meV}\) … (1) 
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where, m is the mass of an electron, e is the charge on an electron and h is the Plank’s constant. 

Therefore for a given V, an electron will have a wavelength given by equation (1). 

The following equation gives Bragg’s Law: 

nλ = 2d sin(\( 90^{0} \)-θ/2) …(2) 

Since the value of d was already known from the X-ray diffraction experiments. Hence for various 

values of θ, we can find the wavelength of the waves producing a diffraction pattern from equation 

(2). 

Observations of the Davisson and Germer Experiment 

The detector used here can only detect the presence of an electron in the form of a particle. As 

a result, the detector receives  the electrons in the form of an electronic current.  The 

intensity (strength) of this electronic current received by the detector and the scattering angle is 

studied. We call this current as the electron intensity. 

The intensity of the scattered electrons is not continuous. It shows a maximum and a minimum 

value corresponding to the maxima and the minima of a diffraction pattern produced by X-rays. It 

is studied from various angles of scattering and potential difference. For a particular voltage 

(54V, say) the maximum scattering happens at a fixed angle only as shown below: 

 
 

Plots between I – the intensity of scattering (X-axis) and the angle of scattering θ for given values of 

Potential difference. 

Results of the Davisson and Germer Experiment 

From the Davisson and Germer experiment, we get a value for the scattering angle θ and 

a corresponding value of the potential difference V at which the scattering of electrons is 
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maximum. Thus these two values from the data collected by Davisson and Germer, when used in 

equation (1) and (2) give the same values for λ. Therefore, this establishes the de Broglie’s wave-

particle duality and verifies his equation as shown below: 

From (1), we have: 

λ = h/\(\sqrt[]{2meV}\) 

For V = 54 V, we have 

λ = 12.27/\(\sqrt[]{54}\) = 0.167 nm …. (3) 

Now the value of ‘d’ from X-ray scattering is 0.092 nm. Therefore for V = 54 V, the angle 

of scattering is \( 50^{0} \), using this in equation (2), we have: 

nλ = 2 (0.092 nm)sin( \( 90^{0}-50^{0}/2)\) 

For n = 1, we have: 

λ = 0.165 nm ….. (4) 

Therefore the experimental results are in a close agreement with the theoretical values got from 

the de Broglie equation. The equations (3) and (4) verify the de Broglie equation. 
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G P Thomson Experiment 
 

 

 
 

Electrons from an electron source were accelerated towards a positive electrode into which 

a small hole was drilled. The resulting narrow beam of electrons was directed towards a 

thin, rolled foil of gold. After passing through the hole in the gold foil, the electron beam was 

received on a photographic plate placed perpendicular to the direction of the beam. The 

diffraction pattern was in the form of continuous, alternate black and white rings as 

diffraction was due to the crystalline grains which were randomly oriented at all possible angles 

in the gold foil. 

Electrons were scattered at different angles from the atoms of crystallites and produced 

interference pattern with maxima corresponding to those angles satisfying the Bragg condition. 

In terms of the probabilistic interpretation of matter waves, the probability of finding an electron 

scattered at an angle is exactly equal to computed intensity pattern of interfering waves 

associated with electron beam. 

The diffraction pattern due to poly crystalline material was similar to the powder diffraction 

pattern of X-rays having wavelength equal to the de Broglie wavelength of electrons. The 

wavelength of electrons was varied by changing the incident energy of the electrons, then 

diameters of the diffraction rings changed proportionately according to the Bragg’s equation. 
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Uncertainty principle, also called Heisenberg uncertainty principle or indeterminacy 

principle, statement, articulated (1927) by the German physicist Werner Heisenberg, that the 

position and the velocity of an object cannot both be measured exactly, at the same time, even 

in theory. 

The uncertainty principle is alternatively expressed in terms of a particle’s momentum 

and position. The momentum of a particle is equal to the product of its mass times its velocity. 

Thus, the product of the uncertainties in the momentum and the position of a particle equals 

h/(4π) or more.  The   principle   applies   to   other   related   (conjugate)   pairs   of   observables,   

such as energy and time: the product of the uncertainty in an energy measurement and the 

uncertainty in the time interval during which the measurement is made also equals h/(4π) or 

more. The same relation holds, for an unstable atom or nucleus, between the uncertainty in the 

quantity of energy radiated and the uncertainty in the lifetime of the unstable system as it 

makes a transition to a more stable state. 
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Review Questions 

Part A  
1. Physically interpreting a wave function, Analyse.                                 
2. Summarise the commutators of quantum mechanics.                               
3. Analyse the condition for normalisation.                              
4. State any two postulates of quantum mechanics.  
5. Illustrate the uncertainty principle.  
6. Discuss properties of wave function  
7. Point the physical significance of wave function  
8. Analyse the condition for orthogonality  
9. Discuss the linearity principle  
10. Discuss the superposition principle  
11. Derive the operators for kinetic energy and potential energy.  
12. Compose the most important limitations on the wave function.  
13. Differentiate group velocity and phase velocity  
14. Calculate the de Broglie wavelength of an electron which has kinetic energy 

equal to 15 eV. 
 

15. An electron has a speed of 1.05 x 104 m/s within the accuracy of 0.01%. Calculate 

the uncertainty in the position of electron. 
 

Part B 
 

1. Deduce the radius of the Bohrs first orbit using uncertainty principle.  
2. Report all the postulates of Quantum mechanics  
3. Explain uncertainty principle with any one example  
4. Evaluate the commutation relation between momentum and Hamiltonian  
5. Assess the condition for physical significance and physical interpretation of 

wave function. 
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UNIT – II- Schrodinger Wave Equation – SPH1314 
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Part A  

1. Discuss the significance of Schrodinger wave equation  

2. Write notes on stationary waves and energy packets  

3. Explain the terms node and excited energy states with example  

4. Define the terms Eigen values and Eigen functions  

5. Explain probability current density   

6. Discuss time dependent Schrodinger wave equation  

7. What do you mean by Hamiltonian operator?  

8. Deduce the commutation relation between energy and momentum operator.  

9. Explain the operator formalism in quantum mechanics  

10. Show that the Eigen values are discrete using Schrodinger wave equation  

11. Differentiate real and complex wave functions  

12. Appraise on the utility of normalisation of wave function  

Part B  

1. Deduce time independent Schrodinger wave equation  

2. Deduce the expression for time dependent Schrodinger wave equation  

3. Deduce the Eigen values, energy states and Hamiltonian of time dependent 

Schrodinger wave equation 

 

4. Explain the concept of probability current density  

5. Discuss the commutation rules for the components of quantum mechanics   
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UNIT – III- General Discussion on boundary states – SPH1314 
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Review Questions 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Part A                        

1. Write notes on bound states  

2. Explain the continuity of wave function  

3. Appraise on discrete energy levels  

4. What do you mean by zero point energy?  

5. Explain reflection coefficient  

6. Discuss transmission coefficient  

7. Predict the energy equation of particle in a box  

8. Analyse, why particle trapped in a box cannot be at rest?  

9. Find the lowest energy of an electron confined to move in a 1 dimensional box 

of length 1 Å 

. 

 

10.  Calculate the energy Eigen value for the motion of a particle in One dimensional 

box 

10.  Calculate the energy Eigen value for the motion of a particle in One dimensional 

box 

 

11. A beam of electrons incident on the square barrier potential, from left. Find the 

fraction of electrons reflected & transmitted if the energy of the incident 

electrons is 
𝑉0

2
 & 2𝑎

√𝑚𝑉0

ℏ
=

3

2
 

 

Part B 
 

1. Write notes on Bound states, Continuity of wave function, Eigen values and 

Eigen functions. 

 

2. Deduce Schrodinger equation for a particle in Square well potential and obtain 

energy Eigen functions 

 

3. Write down Schrodinger equation for a particle in a box. Solve it to obtain Eigen 

functions and show that the Eigen values are discrete. 

 

4. Deduce Schrodinger equation for a linear harmonic oscillator and solve it to 

obtain the Eigen values and Eigen functions. 

 

5. Infer the reflection coefficient for a rectangular barrier of width ‘a’ and height 

V0 for the case E < V0 
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UNIT – IV- Quantum theory of Hydrogen like atom – SPH1314 
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Review Questions 

  

Part A                        

1. Discuss spherical symmetry  

2. Time independent Schrodinger equation in spherical polar coordinates, illustrate  

3. Discuss the steps of solution of radial wave equation  

4. Explain the shapes of probability density for ground state and first excited state  

5. Define and explain angular momentum operator  

6. What do you mean by Quantum numbers  

7. Demonstrate the solution of radial wave function  

Part B 
 

1. Write the time independent Schrodinger wave equation for the hydrogen atom 

in spherical polar coordinates.  

 

2. Solve angular-dependent Portion of the Schrodinger Equation in spherical polar 

coordinates.  

 

3. Write notes on Shapes of hydrogen atom wave functions: s orbitals  

4. Discuss radial probability distribution.  
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UNIT – V- Atoms in Electric and Magnetic fields – SPH1314 
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Review Questions 
Part A                        

1. Define electron angular momentum  

2. Express Eigen functions and Eigen values of angular momentum  

3. What do you mean by space quantization  

4. Appraise on the terms electron spin and spin angular momentum  

5. State Larmors theorem  

6. Differentiate spin magnetic moment and electron magnetic moment  

7. Demonstrate the principle of Stern Gerlach experiment  

8. Describe Zeeman effect  

9. What do you mean by Electron Magnetic energy  

10. Write about Gyromagnetic ratio and Bohr magneton  

Part B 
 

1. Deduce Eigen functions and Eigen values of angular momentum in spherical 

polar coordinates 

 

2. Explain in detail Stern Gerlach experiment with schematic diagram  

3. Discuss electron spin and spin angular momentum  

4. Summarise about Larmors theorem in Quantum mechanics  

 
 


