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l. Introduction

Quantum mechanics is the branch of physics that deals with extremely small particles and other
objects on similar scales such as atoms. The term “quantum” comes from “quantus,” which means
“how great,” but in context, it refers to the fact that energy and other quantities like angular

momentum take on discrete, quantized values at the scales of quantum mechanics

Postulates of Quantum Mechanics
Postulate 1. The state of a quantum mechanical system is completely specified by a

U(r, 1)
function that depends on the coordinates of the particle(s) and on time. This function,

called the wave function or state function, has the important property
o (r, t)@(r,t]d*r
that is the probability that the particle lies in the volume
element T |ocated at L. at time £.
The wavefunction must satisfy certain mathematical conditions because of this probabilistic
interpretation. For the case of a single particle, the probability of finding it somewhere is 1, so

that we have the normalization condition

f_m O (r, 8)U(r, £)dr = 1

It is customary to also normalize many-particle wavefunctions to 1. The wavefunction must also
be single-valued, continuous, and finite.
Postulate 2. To every observable in classical mechanics there corresponds a linear, Hermitian

operator in quantum mechanics.

If we require that the expectation value of an operator Alis real, then A must be a Hermitian

operator. Some common operators occuring in quantum mechanics are collected in Table 1.

Table 1: Physical observables and their corresponding quantum operators (single particle)

Observable Observable | Operator |Operator


http://vergil.chemistry.gatech.edu/notes/quantrev/node20.html#Table:Ops

Name Symbol Symbol Operation

Position I T Multiply by L
Momentum P P —th G% + 33% + fi%)
Kinetic energy T T _R_E:'a (ETEE + g_; + aa_.;)
Potential energy V(r) ‘E:’(r) Multiply by V(r)
Total energy E o _ﬁ_z; (aa_; + g_; + aa_;) +V(r)
Angular momentum Iz L. —h (’y% - za%)

L L |—ih(eZ—z2)

I, I | —ik (Iaiy — ai)

-

Postulate 3. In any measurement of the observable associated with operator A, the only values

that will ever be observed are the eigenvalues £, which satisfy the eigenvalue equation

AT = gl



This postulate captures the central point of quantum mechanics--the values of dynamical
variables can be quantized (although it is still possible to have a continuum of eigenvalues in the

case of unbound states). If the system is in an eigenstate of A with eigenvalue &, then any

measurement of the quantity A will yield &.

Although measurements must always yield an eigenvalue, the state does not have to be an
eigenstate of A initially. An arbitrary state can be expanded in the complete set of eigenvectors

R A?.llra = EI;‘B;)
of A ( as

III = ZC;‘I&

i

where IX may go to infinity. In this case we only know that the measurement of A will

&
yield one of the values , but we don't know which one. However, we do know

2N
the probability that eigenvalue  will occur--it is the absolute value squared of the

2
I

coefficient, , leading to the fourth postulate below.

An important second half of the third postulate is that, after measurement of W yields some

iy
eigenvalue , the wavefunction immediately ““collapses” into the corresponding

IIfi cr;
eigenstate (in the case that  is degenerate, then W becomes the projection of W onto the
degenerate subspace). Thus, measurement affects the state of the system. This fact is used in
many elaborate experimental tests of quantum mechanics.

Postulate 4. If a system is in a state described by a normalized wave function W, then the

average value of the observable corresponding to Ais given by



< As= fm U AUdr

Postulate 5. The wavefunction or state function of a system evolves in time according to the

time-dependent Schrédinger equation

HU(r,t) = mi—f

Postulate 6. The total wavefunction must be antisymmetric with respect to the interchange of all
coordinates of one fermion with those of another. Electronic spin must be included in this set of
coordinates.

The Pauli exclusion principle is a direct result of this antisymmetry principle. We will later see
that Slater determinants provide a convenient means of enforcing this property on electronic

wavefunctions.
The Wave Function

Wave-particle duality is one of the key concepts in quantum physics, and that’s why each particle
is represented by a wave function. This is usually given the Greek letter ¥ (psi) and is a function
of position (x) and time (t), and it contains all of the information that can be known about the

particle.

Think about that point again — despite the probabilistic nature of matter at the quantum scale, the
wave function allows for a complete description of the particle, or at least as complete a description
as is possible. The output may be a probability distribution, but it still manages to be complete in

its description.



The modulus (i.e. absolute value) of this function squared tells you the probability you’ll find the
particle being described at position x (or within a small range dx, to be precise) at time t. Wave
functions have to be normalized (set so that the probability is 1 that it will be found somewhere)
for this to be the case, but this is almost always done, and if it isn’t, you can normalize the wave
function yourself by summing the modulus squared over all values of x, setting it to equal 1 and

defining a normalization constant accordingly.

You can use the wave function to calculate the expectation value for the position of a particle at
time t, which is essentially the average value you would obtain for the position over many

measurements.

You calculate the expectation value by surrounding the “operator” for the observable (e.g. for
position, this is just x) with the wave function and its complex conjugate (like a sandwich) and
then integrating over all of space. You can use this same approach with different operators to

calculate expectation values for energy, momentum and other observables.

The Schrodinger Equation

The Schrodinger equation is the most important equation in quantum mechanics, and it describes
the evolution of wave function with time, and allows you to determine the value of it. It’s closely
related to the conservation of energy and is ultimately derived from it, but it plays a role similar to

that played by Newton’s laws in classical mechanics. The simplest way to write the equation is:



This acts on the wave function to describe it’s evolution in space and time, and in the time-
independent version of the Schrodinger equation, it can be considered the energy operator for the

quantum system. Quantum mechanical wave functions are solutions to the Schrodinger equation.

Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is one of the most famous principles of quantum mechanics,
and states that the position x and momentum p of a particle cannot both be known with certainty,
or more specifically, to an arbitrary degree of precision.

There is a fundamental limit to the level of accuracy with which you can measure both of these
quantities simultaneously. The result comes from the particle wave duality of quantum mechanical

objects, and specifically the way they are described as a wave packet of multiple component waves.

While the position and momentum uncertainty principle is the most well-known, there is also the
energy-time uncertainty principle (which says the same thing about energy and time) but also the

generalized uncertainty principle.

In short, this states that two quantities which do not “commute” with each other (where AB — BA
# 0) can’t be known simultaneously to arbitrary precision. There are many other quantities which
do not commute with each other, and so many pairs of observables that can’t be precisely
determined at the same time — precision in one measurement means a huge amount of uncertainty

in the other.

This is one of the main things about quantum mechanics that’s hard to understand from our
macroscopic perspective. Objects you encounter on a day-to-day basis all have clearly defined
values for things like their position and their momentum at all times, and measuring the
corresponding values in classical physics is only limited by the precision of your measuring

equipment.



In quantum mechanics, though, nature itself sets a limit to the precision you can measure two non-
commuting observables to. It’s tempting to think this is simply a practical problem and you’ll be

able to achieve it one day, but that simply isn’t the case: It’s impossible.

Interpretations of Quantum Mechanics

The weirdness implied by the mathematical formalism of quantum mechanics gave physicists a
lot to think about: What was the physical interpretation of the wave function, for example? Was
an electron really a particle or a wave, or could it really be both? The Copenhagen interpretation
is the most well-known attempt to answer questions like this and still the most widely-accepted

one.

The interpretation essentially says that the wave function and the Schrodinger equation are a
complete description of the wave or particle, and any information that cannot be derived from them

simply doesn’t exist.

For example, the wave function spreads across space, and this means that the particle itself doesn’t
have a fixed location until you measure it, at which point the wave function “collapses,” and you
obtain a definite value. In this view, the wave-particle duality of quantum mechanics doesn’t mean
that a particle is both a wave and a particle; it simply means that a particle like an electron will

behave as a wave in some circumstances and as a particle in others.

Niels Bohr, the biggest proponent of the Copenhagen interpretation, would reportedly criticize

questions like, “Is the electron actually a particle, or is it a wave?”

He said they were meaningless, because in order to find out you have to conduct a measurement,
and the form of the measurement (i.e. what they were designed to detect) would determine the
result you obtained. In addition, all measurements are fundamentally probabilistic, and this
probability is built into nature rather than being due to a lack of knowledge or precision on the part

of the scientists.



Other Interpretations of Quantum Mechanics

There is still a lot of disagreement about the interpretation of quantum mechanics, though, and
there are alternative interpretations that are worth learning about too, in particular the many worlds
interpretation and the de Broglie-Bohm interpretation.

The many worlds interpretation was proposed by Hugh Everett 111, and essentially removes the
need for the collapse of the wave function entirely, but in doing so proposes multiple parallel

“worlds” (which has a slippery definition in the theory) coexisting with your own.

In essence, it says that when you make a measurement of a quantum system, the result you obtain
doesn’t involve the wave function collapsing onto one particular value for the observable, but
multiple worlds untangling and you finding yourself in one and not the others. In your world, for
example, the particle is at position A rather than B or C, but in another world it will be at B, and

in yet another it will be at C.

This is in essence a deterministic (rather than a probabilistic theory), but it’s your uncertainty about
which world you inhabit that creates the apparently probabilistic nature of quantum mechanics.
The probability really relates to whether you're in world A, B or C, not where the particle is within
your world. However, the “splitting” of worlds arguably raises as many questions as it answers,

and so the idea is still quite a controversial one.

The de Broglie-Bohm interpretation is sometimes called pilot wave mechanics, and it follows from
the Copenhagen interpretation in that particles are described by wave functions and the

Schrodinger equation.

However, it states that every particle has a definite position even when it isn’t being observed, but
it is guided by a “pilot wave,” for which there is another equation you use to calculate the evolution
of the system. This describes the wave-particle duality by essentially saying that a particle “surfs”
at a definite position on a wave, with the wave guiding it’s motion, but it still exists even when not

observed.



Compton’s formula established that an electromagnetic wave can behave like a particle of light
when interacting with matter. In 1924, Louis de Broglie proposed a new speculative hypothesis
that electrons and other particles of matter can behave like waves. Today, this idea is known as de
Broglie’s hypothesis of matter waves. In 1926, De Broglie’s hypothesis, together with Bohr’s early
quantum theory, led to the development of a new theory of wave quantum mechanics to describe
the physics of atoms and subatomic particles. Quantum mechanics has paved the way for new
engineering inventions and technologies, such as the laser and magnetic resonance imaging (MRI).

These new technologies drive discoveries in other sciences such as biology and chemistry.

According to de Broglie’s hypothesis, massless photons as well as massive particles must satisty
one common set of relations that connect the energy E with the frequency f, and the linear

momentum p with the wavelength
E=hf
A= ."i'._

i
Here, E and p are. respectively, the relativistic energy and the momentum of a particle. De
Broglie’s relations are usually expressed in terms of the wave vector |, k = 27/ A, and the

wave frequency w = 2 f, as we usually do for waves:

F = hw
p="hk .

Wave theory tells us that a wave carries its energy with the group velocity. For matter waves.
this group velocity 1s the velocity u of the particle. Identifying the energy E and momentum p
of a particle with its relativistic energy mc? and its relativistic momentum mu. respectively, it
follows from de Broglie relations that matter waves satisfy the following relation:

2

_w _E/h B ome _ e
Af=F=

pih T p T u a
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Using the concept of the electron matter wave. de Broglie provided a rationale for the quantiza-
tion of the electron’s angular momentum in the hydrogen atom. which was postulated in Bohr’s
quantum theory. The physical explanation for the first Bohr quantization condition comes natu-
rally when we assume that an electron i a hydrogen atom behaves not like a particle but like a
wave. To see it clearly, imagine a stretched guitar string that is clamped at both ends and vi-
brates in one of its normal modes. If the length of the string 1s [ ((Figure)), the wavelengths of
these vibrations cannot be arbitrary but must be such that an integer k number of half-wave-
lengths A /2 fit exactly on the distance [ between the ends. This is the condition ! = kA /2 for a
standing wave on a string. Now suppose that instead of having the string clamped at the walls.
we bend its length into a circle and fasten its ends to each other. This produces a circular string
that vibrates in normal modes, satisfying the same standing-wave condition, but the number of
half-wavelengths must now be an even number k., k = 2n, and the length [ is now connected to
the radius r,, of the circle. This means that the radii are not arbitrary but must satisfy the fol-

lowing standing-wave condition:

2mr, = 2“%.

Phase velocity
The phase velocity of a wave is the rate at which the phase of the wave propagates in space.
This is the velocity at which the phase of any one frequency component of the wave travels. For
such a component, any given phase of the wave (for example, the crest) will appear to travel
at the phase velocity. The phase velocity is given in terms of the wavelength 4 (lambda) and
time period T.
Group velocity
The group velocity of a wave is the velocity with which the overall envelope shape of the

wave's amplitudes.
The phase velocity is the ratio of the angular frequency to the wave number. The group

velocity is the derivative of the angular frequency with respect to the wave number.

Davisson and Germer Experiment
The experimental setup for the Davisson and Germer experiment is enclosed within a
vacuum chamber. Thus the deflection and scattering of electrons by the medium are prevented. The

main parts of the experimental setup are as follows:

11



Electron gun: An electron gun is a Tungsten filament that emits
electrons via thermionic emission i.e. it emits electrons when heated to a
particular temperature.

Electrostatic particle accelerator: Two opposite charged plates (positive and
negative plate) are used to accelerate the electrons at a known potential.
Collimator: The accelerator is enclosed within a cylinder that has a narrow passage
for the electrons along its axis. Its function is to render a narrow and straight
(collimated) beam of electrons ready for acceleration.

Target: The target is a Nickel crystal. The electron beam is fired normally on
the Nickel crystal. The crystal is placed such that it can be rotated about a fixed
axis.

Detector: A detector is used to capture the scattered electrons from the Ni crystal.

The detector can be moved in a semicircular arc as shown in the diagram above.

Browse more Topics under Dual Nature of Radiation and Matter

Electron Emission
Experimental Study of Photoelectric Effect
Wave Nature of Matter

Einstein’s Photoelectric Equation: Energy Quantum of

Radiation The Thought Behind the Experimental Setup

The basic thought behind the Davisson and Germer experiment was that the waves reflected from

two different atomic layers of a Ni crystal will have a fixed phase difference. After reflection, these

waves will interfere either constructively or destructively. Hence producing a diffraction pattern. In

the Davisson and Germer experiment waves were used in place of electrons. These electrons

formed a diffraction pattern. The dual nature of matter was thus verified. We can relate the

de Broglie equation and the Bragg’s law as shown below:

From the de Broglie equation, we have:

A=hip
= hA(\sgrt[]{2mE}\)
= hA(\sgrt[[{2meV}) ... (1)

12



where, m is the mass of an electron, e is the charge on an electron and h is the Plank’s constant.
Therefore for a given V, an electron will have a wavelength given by equation (1).
The following equation gives Bragg’s Law:

nA = 2d sin(\( 900} \)-6/2) ...(2)
Since the value of d was already known from the X-ray diffraction experiments. Hence for various
values of 6, we can find the wavelength of the waves producing a diffraction pattern from equation
).
Observations of the Davisson and Germer Experiment
The detector used here can only detect the presence of an electron in the form of a particle. As
a result, the detector receives the electrons in the form of an electronic current. The
intensity (strength) of this electronic current received by the detector and the scattering angle is
studied. We call this current as the electron intensity.
The intensity of the scattered electrons is not continuous. It shows a maximum and a minimum
value corresponding to the maxima and the minima of a diffraction pattern produced by X-rays. It
is studied from various angles of scattering and potential difference. For a particular voltage

(54V, say) the maximum scattering happens at a fixed angle only as shown below:

t t
40V 44V 48V 54V 60V 64V 68V

Plots between | — the intensity of scattering (X-axis) and the angle of scattering & for given values of

Potential difference.

Results of the Davisson and Germer Experiment

From the Davisson and Germer experiment, we get a value for the scattering angle 6 and

a corresponding value of the potential difference VV at which the scattering of electrons is

13



maximum. Thus these two values from the data collected by Davisson and Germer, when used in
equation (1) and (2) give the same values for L. Therefore, this establishes the de Broglie’s wave-
particle duality and verifies his equation as shown below:
From (1), we have:

A = hAQsgrt[[{2meV}H)

For V =54 V, we have

A =12.27N\(\sqrt[[{54}\)) = 0.167 nm .... (3)

Now the value of ‘d” from X-ray scattering is 0.092 nm. Therefore for V = 54 V, the angle
of scattering is \( 50"{0} \), using this in equation (2), we have:
nA =2 (0.092 nm)sin( \( 90"{0}-50"{0}/2)\)
For n =1, we have:
A=0.165nm..... (4)
Therefore the experimental results are in a close agreement with the theoretical values got from
the de Broglie equation. The equations (3) and (4) verify the de Broglie equation.

Mowvable
Dt clor

/\} Ditfracted

Vacuum .
Chamber « electron beam

=
Lt

[ = . | 7 B wickel

= Electron Beam Target
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G P Thomson Experiment

[=Im D=10cm
- - - &
x-rays/electrons ‘ R=1cm
H"‘
e
H:._
source
target photographic
(t =1 micron) plate

Electrons from an electron source were accelerated towards a positive electrode into which
a small hole was drilled. The resulting narrow beam of electrons was directed towards a
thin, rolled foil of gold. After passing through the hole in the gold foil, the electron beam was
received on a photographic plate placed perpendicular to the direction of the beam. The
diffraction pattern was in the form of continuous, alternate black and white rings as
diffraction was due to the crystalline grains which were randomly oriented at all possible angles
in the gold foil.

Electrons were scattered at different angles from the atoms of crystallites and produced
interference pattern with maxima corresponding to those angles satisfying the Bragg condition.
In terms of the probabilistic interpretation of matter waves, the probability of finding an electron
scattered at an angle is exactly equal to computed intensity pattern of interfering waves
associated with electron beam.

The diffraction pattern due to poly crystalline material was similar to the powder diffraction
pattern of X-rays having wavelength equal to the de Broglie wavelength of electrons. The
wavelength of electrons was varied by changing the incident energy of the electrons, then

diameters of the diffraction rings changed proportionately according to the Bragg’s equation.

15



Uncertainty principle, also called Heisenberg uncertainty principle or indeterminacy
principle, statement, articulated (1927) by the German physicist Werner Heisenberg, that the
position and the velocity of an object cannot both be measured exactly, at the same time, even
in theory.

The uncertainty principle is alternatively expressed in terms of a particle’s momentum
and position. The momentum of a particle is equal to the product of its mass times its velocity.
Thus, the product of the uncertainties in the momentum and the position of a particle equals
h/(4w) or more. The principle applies to other related (conjugate) pairs of observables,
such as energy and time: the product of the uncertainty in an energy measurement and the
uncertainty in the time interval during which the measurement is made also equals h/(4mw) or
more. The same relation holds, for an unstable atom or nucleus, between the uncertainty in the
quantity of energy radiated and the uncertainty in the lifetime of the unstable system as it

makes a transition to a more stable state.

16



Normalization of y(x,t):
|Wix, 1))°: is the probability density for finding the particle at point x, at time t.

Because the particle must be found somewhere between x=-e= and x=+e= the wave
function must obey the normalization condition

/ﬂ W(x, )] dx = 1.

e

Without this, the statistical interpretation would be meaningless. Thus, there is a
multiplication factor. However, the wave function is a solution of the Schrodinger eq:

Al H At
—_— 4+
Bt 2m ax? t

Therefore, one can't impose an arbitrary condition on Wy without checking that the two
are consistent.

Interestingly, if wix, t) is a solution, Awl(x, t) is also a solution where A is any (complex)
constant.

Therefore, one must pick a undetermined multiplicative factor in such a way that the
Schrodinger Equation is satisfied. This process is called normalizing the wave function.

If P,.(t) be the probability of finding the particle in the range (a < x < b), at time t, then

o W,ow).

ih
Por _ Ja)-Jbt)  where  J@t)= 5 (V5w

dt

Pult) = [2|¥(z,t)%dz, so 4L = [*2 4|24,

9 pi2_ i LW e @ [ir [ 0¥ By”
6:“' m (\l’ ax* dx* \P) i [ (\P dx dx \P)]

ap. ' 8
. Pay = —Jlx, t)dr = |.I|.r.fl]i" = Jla,t) -~ J(bt).
dt Js Oz =

Probability is dimensionless, so J has the dimensions 1/time, and units second™
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For some solutions to the Schrodinger equation, the integral is infinite; in that case no
multiplicative factor is going to make it 1. The same goes for the trivial solution y= 0.
Such non-normalizable solutions cannot represent particles, and must be rejected.

Physically realizable states correspond to the “square-integrable” solutions to
Schrodinger’s equation.

What all you need is that j dﬂ;&[x, [,‘r}|3'- < o

that is, the initial state wave functions must be square integrable.

Since we may need to deal with integrals of the type

-]

f de fF(x, Nilx, 1)

-

you will require that the wave functions wix, 0) go to zero rapidly as x=»Tee often faster
than any power of x.

We shall also require that the wave functions yi(x, t) be continuous in x.

The emphasis on [, £)|* as the physically relevant quantity might Jead to the impres-
sion that the phase of the wave function is of no importance. If we write ¢ = Re”, then
indeed ¢ = R independent of 6. However, the lincarity of the equation allows us to
add solutions, as in our discussion of the electron interference pattern with two slits. We

see that
|Ri€™ + Re™|* = Rl + R} + 2R,R; cos(f, — 6)

depends on the relative phase. An overall phase in the tota] wave function can be ignored,
or chosen arbitrarily for convenience.

18



Suppose we have normalized the wave function at time t = 0. How do we know that it
will stay normalized, as time goes on and /|, f) evolves?

d [ 3 = 8 s [Mote that the integral is a function only of £,
Ejm [ (x, )" dx =j: Elw{’t‘”l dz. but the integrand is a function of x as well as t.]

=

I R S g
By the product rule, /¥ =g 4=+ ¥

The Schrodinger equation and its complex conjugate are
iR Pw e i At

T L e
W ma a - and W ma Ty
1 I a.h{ Al atye } a .-rr( UTR )'|
—¥' == (¥ ———¥]|=— =¥ — - —¥ ; il :
5o, ilrl l am dx?  dxf ix | 2 ax o "r|:_1._|-|Ei *ﬂ_w'ﬂ
ap| ir dz
i I‘**I‘ . ih Al A +x ~
Then, — Wix, O dy = —[¥*'— = — W | =1 Is the probability current.
di J_n | I Zm i dx -

Since W i(.r. f)nust go to zero as x goes to (1) infinity-otherwise the wave function would
not be normalizable. Thus, if the wave function is normalized at t = 0, it stays
normalized for all future time.

The Schrodinger equation has the property that it automatically preserves the
normalization of the wave function--without this crucial feature the Schrodinger
equation would be incompatible with the statistical interpretation.

19
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Review Questions

Part A
Physically interpreting a wave function, Analyse.
Summarise the commutators of quantum mechanics.
Analyse the condition for normalisation.
State any two postulates of quantum mechanics.
Illustrate the uncertainty principle.
Discuss properties of wave function
Point the physical significance of wave function
Analyse the condition for orthogonality
Discuss the linearity principle

. Discuss the superposition principle

. Derive the operators for kinetic energy and potential energy.

. Compose the most important limitations on the wave function.

. Differentiate group velocity and phase velocity

. Calculate the de Broglie wavelength of an electron which has kinetic energy

equal to 15 eV.

. An electron has a speed of 1.05 x 10* m/s within the accuracy of 0.01%. Calculate

the uncertainty in the position of electron.

Part B

Deduce the radius of the Bohrs first orbit using uncertainty principle.

Report all the postulates of Quantum mechanics

Explain uncertainty principle with any one example

Evaluate the commutation relation between momentum and Hamiltonian
Assess the condition for physical significance and physical interpretation of
wave function.
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Derivation of the Schréodinger Wave Equation

The Schrodinger equation has two ‘forms’, one in which time explicitly appears, and so
describes how the wave function of a particle will evolve in time. In general, the wave
function behaves like a wave, and so the equation is often referred to as the time dependent
Schrodinger wave equation. The other is the equation in which the time dependence
has been ‘removed’ and hence is known as the time independent Schrodinger equation
and is found to describe, amongst other things, what the allowed energies are of the
particle. These are not two separate, independent equations — the time independent
equation can be derived readily from the time dependent equation (except if the potential
is time dependent, a development we will not be discussing here). In the following we
will deseribe how the first, time dependent equation can be ‘derived’, and in then how the
second follows from the first.

In the discussion of the particle in an infinite potential well, it was observed that the
wave function of a particle of fixed energy E could most naturally be written as a linear
combination of wave functions of the form

E'[I‘I} - AE'E[J:‘:—;.J:!]

representing a wave travelling in the positive r direction, and a corresponding wave trav-
elling in the opposite direction, so giving rise to a standing wave, this being necessary
in order to satisfy the boundary conditions. This corresponds intuitively to our classical
notion of a particle bouncing back and forth between the walls of the potential well, which
suggests that we adopt the wave function above as being the appropriate wave function

22



for a free particle of momentum p = ik and energy F = fiw. With this in mind, -
then note that

e
— = kW
dx2
which can be written, using E = p*/2m = h*k?/2m:
LA S
2m dx*  2m
Similarly
aw .
S —
ot

which can be written, using E = fuo:

o
he— — hwd) = B
ot v

We now generalize this to the situation in which there is both a kinetic energy
potential energy present, then E = p*/2m + V(x) so that

pZ
EW = = + V()W
9 A3 bty
A" oy +V{z)¥ = {ﬁ%

 2m 1
which is the famous time dependent Schridinger wave eguation. It is setting up and
solving this equation, then analyzing the physical contents of its solutions that form the
basis of that branch of quantum mechanics known as wave mechanics.

Even though this equation does not look like the familiar wave equation that describes,
for instance, waves on a stretched string, it is nevertheless referred to as a ‘wave equation’
as it can have solutions that represent waves propagating through space. We have seen an
example of this: the harmonic wave function for a free particle of energy E and momentum

Uz, t) = Aeilpe—Et/h
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is a solution of this equation with, as appropriate for a free particle, V{x) = 0. But this
equation can have distinctly non-wave like solutions whose form depends, amongst other
things, on the nature of the potential V' (x) experienced by the particle.

In general, the solutions to the time dependent Schrodinger equation will describe the
dymamical behaviour of the particle, in some sense similar to the way that Newton’s
equation I = ma deseribes the dynamics of a particle in classical physics. However, there
is an important difference. By solving Newton's equation we can determine the position
of a particle as a function of time, whereas by solving Schriodinger’s equation, what we
get is a wave function ¥(x, t) which tells us (after we square the wave function) how the
probability of inding the particle in some region in space varies as a function of time.

It is possible to proceed from here look at ways and means of solving the full, time
dependent Schridinger equation in all its glory, and look for the physical meaning of
the solutions that are found. However this route, in a sense, bypasses much important
physics contained in the Schrodinger equation which we can get at by asking much simpler
questions. Perhaps the most important ‘simpler question’ to ask is this: what is the wave

function for a particle of a given energy E7 Curiously enough, to answer this question
requires ‘extracting’ the time dependence from the time dependent Schrodinger equation.
To see how this is done, and its consequences, we will turn our attention to the closely
related time independent version of this equation.

The Time Independent Schrodinger Equation

We have seen what the wave function looks like for a free particle of energy E — one or the
other of the harmonic wave functions — and we have seen what it looks like for the particle
in an infinitely deep potential well — see Section 5.3 — though we did not obtain that result
by solving the Schrodinger equation. But in both cases, the time dependence entered into
the wave function via a complex exponential factor exp[—iEt/h]. This suggests that to
‘extract’ this time dependence we guess a solution to the Schridinger wave equation of
the form

U(z,t) = P(a)e HN

i.e. where the space and the time dependence of the complete wave function are contained
in separate factors'. The idea now is to see if this guess enables us to derive an equation
for v(x). the spatial part of the wave function.

If we substitute this trial solution into the Schridinger wave equation, and make use of
the meaning of partial derivatives, we get:

2z ) - . - -
—%%e-*‘“ﬂ* + V(z)p(z)e EYE = ih — iE Re T E My (x) = Ey(z)e Y. (6.10)
——

We now see that the factor exp|—iEt/h] cancels from both sides of the equation, giving

L =]
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B2 d2(x
_ﬁdt—{:] + Viz)(z) = Ev(x)

If we rearrange the terms, we end up with

h* d*y(x) .
T + I:E— V[I]}i,:l[:r] =1

which is the time independent Schrodinger equation. We note here that the quantity F,
which we have identified as the energy of the particle, is a free parameter in this equation.
In other words, at no stage has any restriction been placed on the possible values for E.
Thus, if we want to determine the wave function for a particle with some specific value of E
that is moving in the presence of a potential V'(x), all we have to do is to insert this value
of E into the equation with the appropriate V(z), and solve for the corresponding wave
function. In doing so, we find, perhaps not surprisingly, that for different choices of E we
get different solutions for ¢#(x). We can emphasize this fact by writing g () as the solution
associated with a particular value of E. But it turns out that it is not all gquite as simple
as this. To be physically acceptable, the wave function ¢'g(x) must satisfy two conditions,
one of which we have seen before namely that the wave function must be normalizable (see
Eq. (5.3)). and a second. that the wave function and its derivative must be continuous.
Together, these two requirements, the first founded in the probability interpretation of the
wave function, the second in more esoteric mathematical necessities which we will not go
into here and usually only encountered in somewhat artificial problems, lead to a rather
remarkable property of physical systems described by this equation that has enormous
physical significance: the quantization of energy.

The Quantization of Energy

At first thought it might seem to be perfectly acceptable to insert any value of E into
the time independent Schridinger equation and solve it for ¢g(x). But in doing so we
must remain aware of one further requirement of a wave function which comes from its

probability interpretation: to be physically acceptable a wave function must satisfy the
normalization condition, Eq. (5.3)

400
f | (2, 8)]* dx = 1
— a0

for all time ¢. For the particular trial solution introduced above,

U(z,1) = pp(r)e BN
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the requirement that the normalization condition must hold gives, on subsi
W(x,t), the result?

+oa oo
f |'l;f{a:,t]|2.:f.-r:=f e (x)|? dx = 1.

—o —o0

Since this integral must be finite, (unity in fact), we must have p(xr) — 0 as r — Lo
in order for the integral to have any hope of converging to a finite value. The importance
of this with regard to solving the time dependent Schridinger equation is that we must
check whether or not a solution ¢g(x) obtained for some chosen value of E satisfies the
normalization condition. If it does, then this is a physically acceptable solution, if it
does not, then that solution and fthe corresponding value of the energy are not physically
acceptable. The particular case of considerable physical significance is if the potential V(x)
is attractive, such as would be found with an electron caught by the attractive Coulomb
force of an atomic nucleus, or a particle bound by a simple harmonic potential (a mass on
a spring), or, as we have seen in Section 5.3, a particle trapped in an infinite potential well.
In all such cases, we find that except for certain discrete values of the energy, the wave
function ¥ g(x) does not vanish, or even worse, diverges, as ¥ — 40, In other words, it
is only for these discrete values of the energy E that we get physically acceptable wave
functions ¢'g(x). or to put it more bluntly, the particle can never be observed to have
any energy other than these particular values, for which reason these energies are often
referred to as the ‘allowed’ energies of the particle. This pairing off of allowed energy and
normalizable wave function is referred to mathematically as ¢/g () being an eigenfunction
of the Schridinger equation, and E the associated energy eigenvalue, a terminology that
acquires more meaning when quantum mechanics is looked at from a more advanced
standpoint.

So we have the amazing result that the probability interpretation of the wave function
forees us to conclude that the allowed energies of a particle moving in a potential V'x)
are restricted to certain discrete values, these values determined by the nature of the po-
tential. This is the phenomenon known as the quantization of energy, a result of guantum
mechanics which has enormons significance for determining the structure of atoms, or, to
go even further, the properties of matter overall. We have already seen an example of this
quantization of energy in our earlier discussion of a particle in an infintely deep potential

well, though we did not derive the results by solving the Schridinger equation itself. We
will consider how this is done shortly.

The requirement that o#(x) — 0 as r — +oo is an example of a boundary condition.
Energy quantization is, mathematically speaking, the result of a combined effort: that
¥/(x) be a solution to the time independent Schridinger equation. and that the solution
satisfy these boundary conditions. But both the boundary condition and the Schrodinger
equation are derived from, and hence rooted in, the nature of the physical world: we have
here an example of the unexpected relevance of purely mathematical ideas in formulating
a physical theory.
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Continuity Conditions There is one additional proviso, which was already mentioned
briefly abowve, that has to be applied in some cases. If the potential should be discontinuous
in some way, e.z. becoming infinite, as we have seen in the infinite potential well example,
or having a finite discontinuity as we will see later in the case of the finite potential well, it is
possible for the Schridinger equation to have solutions that themselves are discontinuous.
But discontinuous potentials do not occur in nature (this would imply an infinite foree),
and as we know that for continuous potentials we always get continuous wave lunetions,
we then place the extra conditions that the wave function and its spatial derivative also
must be continuous®. We shall see how this extra condition is implemented when we look
at the finite potential well later.

Bound States and Seattering States DBut what about wave functions such as the
harmonic wave function ¥(x,f) = Aexpli(kx — wit)]? These wave functions represent a
particle having a definite energy F = fiw and so would seem to be legitimate and necessary
wave functions within the quantum theory. But the problem here, as has been pointed
out hefore in Chapter 5, is that ¥(x, 1) does not vanish as r — L0, so the normalization
condition, Eq. (6.14) cannot be satisfied. So what is going on here? The answer lies
in the fact that there are two kinds of wave funections, those that apply for particles
trapped by an attractive potential into what is known as a bound state, and those that
apply for particles that are free to travel to infinity (and beyond), otherwise known as
scattering states. A particle trapped in an infinitely deep potential well is an example
of the former: the particle is confined to move within a restricted region of space. An
electron trapped by the attractive potential due to a positively charged atomic nucleus
is also an example — the electron rarely mowves a distance more than ~10 nm from the
nucleus. A nueleon trapped within a nucleus by attractive nuclear forces is vet another. In
all these cases, the probability of inding the particle at infinity is zero. In other words, the
wave function for the particle satisfies the boundary condition that it vanish at infinity.
So we see that it is when a particle is trapped. or confined to a limited region of space
by an attractive potential V(x) (or V(r) in three dimensions), we obtain wave functions
that satisfy the above boundary condition. and hand in hand with this, we find that their
energies are gquantized. But if it should be the case that the particle is free to move as
far as it likes in space, in other words, if it is not bound by any attractive potential,
{or even repelled by a repulsive potential) then we find that the wave funetion need not
vanish at infinity, and nor is its energy quantized. The problem of how to reconcile this
with the normalization condition, and the probability interpretation of the wave function,
is a delicate mathematical issue which we cannot hope to address here, but it can be
done. Suffice to say that provided the wave function does not diverge at infinity (in

other words it remains finite, though not zero) we can give a physical meaning of such
states as being an idealized mathematical limiting case which, while it does not satisfy the
normalization condition, can still be dealt with in, provided some care is taken with the
physical interpretation, in much the same way as the bound state wave functions.

In order to illustrate how the time independent Schrodinger equation can be solved in
practice, and some of the characteristics of its solutions, we will here briefly reconsider the
infinitely deep potential well problem, already solved by making use of general properties
of the wave function, in Section 5.3. We will then move on to looking at other simple
applications.
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Solving the Time Independent Schriodinger Equation

Suppose we have a single particle of mass m confined to within a region 00 < » < L with
potential energy V' = ) bounded by infinitely high potential barriers, i.e. V' = oo for o < 0
and & > L. The potential experienced by the particle is then:

Vie)=0 0=<x< L
= r=>L; <10

In the regions for which the potential is infinite, the wave function will be zero, for exactly
the same reasons that it was set to zero in Section 5.3, that is, there is zero probability of
the particle being found in these regions. Thus, we must impose the boundary conditions

@(0) = (L) = 0.

Meanwhile, in the region 0 < = < L, the potential vanishes,
Schrodinger equation becomes:
h? d?y(x)
2m  dx?

= Eyi(x).

To solve this, we define a quantity & by

[2mE
k= B
so that Eq. (6.18) can be written

dz—i{f + k2(z) =0

whose general solution is

t(x) = Asin(kr) + Beos(kz).
P(0)=B=0

g0 that the solution is now
t(x) = Asin(kzx).

Next, applying the boundary condition at r = L gives

(L) = Asin(kL) =0

28



which tells us that either A = 0, in which case ¢'(x) = 0, which is not a useful
(it says that there is no partilce in the well at all!) or else sin(kL) = 0, which

equation for k:

kL =nm, n=0,+£1,2+2 ...

We exclude the n = 0 possibility as that would give us. once again ¢(x) = 0,
exclude the negative values of n as the will merely reproduce the same set of
(except with opposite sign®) as the positive values. Thus we have

kp = nw/L,

n=12 ...

where we have introduced a subscript n. This leads to, on using Eq.

naxth®

i
En = 2

. /2
thelx) = Esml[mr.-rfL]

=)

oI’ n=1,2,...

U< o<l

r=0, x=>L.

The Finite Potential Well

The infinite potential well iz a valuable model
since. with the minimum amount of fuss, it
shows immediately the way that energy quan-
tization as potentials do not oceur in nature.
However. for electrons trapped in a block of
metal, or gas molecules contained in a bottle,
this model serves to describe wvery aceurately
the gquantum character of such systems. In such
cases the potential experienced by an electron as
it approaches the edges of a block of metal, or as
experienced by a gas molecule as it approaches
the walls of its container are effectively infinite

1 L >

Figure 6.1: Finite potential well.

as far as these particles are concerned, at least if the particles have sufficently low kinetic
energy compared to the height of these potential barriers.

But, of course, any potential well is of finite depth, and if a particle in such a well has an
energy comparable to the height of the potential barriers that define the well, there is the
prospect of the particle escaping from the well. This is true both classically and quantum
mechanically, though, as yvou might expect. the behaviour in the quantum mechanical case
is not necessarily consistent with our classical physics based expectations. Thus we now
proceed to look at the gquantum properties of a particle in a finite potential well.
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Viz)=10 O0=<x< L

i.e. we have ‘lowered’ the infinite barriers to a finite value V. We now want to sol
time independent Schridinger equation for this potential.

To do this, we recognize that the problem can be split up into three parts: @ < 0
the potential is V', 0 < x <= L where the potential is zero and x > () where the poten
once again V. Therefore, to find the wawve function for a particle of energy E., we I
solve three equations, one for each of the regions:

2 d2y(x)
— L (E—WV)i(x) =0 <0
12 d*(a)
—_—  t Fyr(x)=0 0O i L
o dez T () < r <
i d*y(x)

T (E—V)g(z) =0 z> L.

2m  da2

The solutions to these egquations take different forms depending on whether E <
E = V. We shall consider the two cases separately.
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E<V

First define

2mE 2m(V — E)
k= 2 and a = \/ —g

Note that, as V > FE. a will be a real number, as it is square root of a positive nu
We can now write these equations as

d*y(x

2D 4R =0 0<z<L
d*y(:

w(zx) —a?P(z) =0 z>L.

Now consider the first of these equations, which will have as its solution
Y(z) = Ae " 4+ Bet™~

where A and B are unknown constants. It is at this point that we can make use «
boundary condition, namely that ¢(z) — 0 as ¥ — +oc. In particular, since the so
we are currently looking at applies for x < (). we should look at what this solutior
for # — —oo. What it does is diverge, because of the term Aexp(—ax). So, in or
guarantee that our solution have the correct boundary condition for r — —oc, we
have A = 0. Thus, we conclude that

P(x) = Be™ x=<0.

We can apply the same kind of argument when solving Eq. (6.37) for x > L. In that

the solution is
P(x) = Ce ™" + De"
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but now we want to make certain that this solution goes to zero as ¥ — oo, To guar
this, we must have I = (), so we conclude that

i) =Ce ™ x> L. [

Finally, at least for this part of the argument, we look at the region 0 < x < L.
solution of Eq. (6.36) for this region will be

Px) = Peos(kx) + Qsin(kz) 0<ax < L |

but now we have no diverging exponentials, so we have to use other means to dete
the unknown coefficients P and ).

At this point we note that we still have four unknown constants B, P, ). and C
determine these we note that the three contributions to ¢(x) do not necessarily
together smoothly at & = 0 and » = L. This awkward state of affairs has its orig
the fact that the potential is discontinuous at x = 00 and r = L which meant that w
to solve three separate equations for the three different regions. But these three sef
solutions cannot be independent of one another, i.e. there must be a relationship be
the unknown constants, so there must be other conditions that enable us to specily
constants. The extra conditions that we impose, as discussed in Section 6.1.2, are
the wave function has to be a continuous function, i.e. the three solutions:

x) = Be™™ =0 |
= Peos(kx) + Qsin(kx) 0<x < L |
= Ce” ™ x = L. i

Expectation Value of Momentum

We can make use of Schridinger’s equation to obtain an alternative expression [
expectation value of momentum given earlier in Eq. (5.13). This expression is

+-:-=: I* (. ¢ Fdr [ e
- d II:..I.‘. } [:"1;' [J"‘i 'E} Ei.‘L‘.
it at
We note that the appearance of time derivatives in this expression. If we multiply

gides by i and make use of Schridinger’s equation, we can substitute for thes:
derivatives to give

(p) = m(v(t)) = m V(1) + ¥ (2. 1)

I.ﬁ.{']-’:' -‘I']'t +'3‘: [{ .ﬁ. ﬂzlp*{_'_, fj — V(f]\[ﬁ*l{ﬂ"‘t'}}@{-ﬂ1 f-j

2m  Ox?
he 97w (x,
LB, r,}{ _ E% V{:::j\lr{a:,t]} da
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The terms involving the potential cancel. The common factor h%/2m can be moved «
the integral, while both sides of the equation can be divided through by ifi, viel
slightly less complicated experssion for (p):

{p:.=_%mf_+m- [aﬂ-:;*[;r-s} (2.8) — ¥( J}azq-[.r s}}

oo

Integrating hoth terms in the integrand by parts then gives

: TN AUtz t) e T (x,t) OO (x, 1) IV (x, )
=1 _ :
) _?tﬁ_/:m [ dx o A da ot

oy oo
+ %iﬁ[ww{mff} — U (x, :;w]

As the wave function vanishes for r — £oc, the final term here will vanish. Carryi
the derivatives in the integrand then gives

w = gin [ [%w: - ‘s}‘m—“]dm

Integrating the first term only by parts once again then gives

“+o0

p) = —m/:m @*{m,t]$ﬂ+ Lk (a, )0z, )

— o0

Onee again, the last term here will vanish as the wave function itsell vanishes for

and we are left with . v
i
(p) = —iﬁf T Lk CILI P
- ox
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This is a particularly significant result as it shows that the expectation value of moi
can be determined directly from the wave function — i.e. information on the mome
the particle is contained within the wave function, along with information on the
of the particle. This caleulation suggests making the identification
Ly O
p— —ih—
i

which further sugpests that we can make the replacement

nt— ( — r'hi]“

i
so that, for instance
4o y2
3 3 - il "I’(.I'.F
{(p=)y = —h~ P, i) ———5—dz
i o
and hence the expectation value of the kinetic energy of the particle is
Ty 2 . 3
e Vo h= toe (o k| e
() = — = —— T x, t) ———dx.
L ] 2 - d j ]
2m mof_ i

We can check this idea by turning to the classical formula for the total energy of a

+F
ro
2

+ Viz) = E.

Part A
Discuss the significance of Schrodinger wave equation
Write notes on stationary waves and energy packets
Explain the terms node and excited energy states with example
Define the terms Eigen values and Eigen functions
Explain probability current density
Discuss time dependent Schrodinger wave equation
What do you mean by Hamiltonian operator?
Deduce the commutation relation between energy and momentum operator.
Explain the operator formalism in quantum mechanics
10. Show that the Eigen values are discrete using Schrodinger wave equation
11. Differentiate real and complex wave functions
12. Appraise on the utility of normalisation of wave function

Part B

1. Deduce time independent Schrodinger wave equation

2. Deduce the expression for time dependent Schrodinger wave equation

3. Deduce the Eigen values, energy states and Hamiltonian of time dependent
Schrodinger wave equation

4. Explain the concept of probability current density

Discuss the commutation rules for the components of quantum mechanics

CoNo~LWNE

o
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UNIT — I11- General Discussion on boundary states — SPH1314
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Physical interpretation of the expansion coefficients:
Let’s consider an observable A with eigenstates 1, and eigenvalues a,,

A|¢n} = iy H‘i'n} .

If a system is in an eigenstate of this ohservable the expectation value
equal to the corresponding eigenvalue

(A) = (| At} = an (Y|t} = an.

|Tr’n,l:' = If'ul"'ﬂ,IIII

If the system, however, is in a general state | ¢}, which is a superposition ¢
the expectation value is given by the sum of all eigenvalues, weighted with
squared of the expansion coefficients

(A)

(vl Av) = ZZ{cmwml A | eathn)
= ZE ot (Ym | ) = Z [cal? ay.

Iﬁ’:l'l.'l L1y

Infinite Potential Well

v
~

7  LLAYEARI

-

TOras,s,s::s:

00 else

Viz) = {n for x € [0, L]
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This means that the quantum object is limited to a certain region between r =
r = L where it moves freely but cannot ever leave. Thus mathematically we have

Plz) =0 for = & [0, L].

Furthermore, for the wave function to be continnous we have to require that it
at the boundaries

%(0) = ¥(L) = 0.
The only region were particles are allowed is inside the well, where they bel

free particles, i.e. they are not exposed to a potential. Therefore we need to solve
(time-independent) Schrodinger equation with the boundary conditions from Eq

h* d?
—— = _(z) = Ev
Im dr? (=) v(x)
With the abbreviation
B2 2mE E v2mE
- OR? h

the free Schrodinger equation takes the following form
d .
V(@) =~k (),
where the general solution is well known, and given by
(r) = a sin(kr) + b cos (k).

Here a and b are some constants that are yet to be determined by the boundary cor
starting with ¥(0) = 0

0 = ¢(0) = a sin(0) +b cos(0) = b=10.
‘1—.‘.‘.—!"

0
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Exploiting the second boundary condition /(L) = 0, leads to discrete values of k

0=¢L) =asin(kl) =  kL=nr = k= ”_E
where n = 1,2,3,... can be any natural number. Inserting our result into Eq.

and solving it with respect to E we see that the energy is quantized. Labeling the =
energy levels by n we find

n*r?h?

E, = —.
2ml2 (

Finally, the value of the constant a follows from the normalization of the wave fu

L

L
L 2
/d$|¢|2 =1 = |af fd:n ainﬂg%r) =1 = |of = 7.
0

Thus the bound states of the infinite potential well, which form a CONS. an

given by
- 2 . nm }
n(x) = ”IE f:lﬂ(fif . (

For n = 1 we get the ground state energy and wave function E;, v, of the i
potential well, the higher states with n > 1 are called excited states.

The time-independent Schridinger equation is again our starting point where
insert the following potential V'(r) into our Hamiltonian

Vi) = {—‘h} for |z

| <
0 for |z| =

L
L
For the possible energy range E > —V|, we consider separately the two energy

—Vo = E < () for the bound states and E > () for the scatfered states. We also s
whole r-range into the three regions I, II, and I, where we solve the equations sep
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Bound States

Region I: r< —L, V(ir)=10

Here we have again the free Schrodinger equation

K 4
" 2m d:rzir{ z) = E¢(a),

which we rewrite by substituting k = %‘l,.f —2mE, where £ > () because E < (),

d*
(@) = K 9(a).

We already know that the general solution of Eq. (4.42) is given by
P(r) = Ae ™" + Be"*,

where A and B are constants, vet to be determined. Since we are in the region
x < —L < () the exponent of the first term would ever increase for r — —oo. In ¢
keep the wave function normalizable we must demand that the constant A be ide
zero, and we get as solution for region I

which, by introducing a new constant g. becomes the equation

L 4(w) = — (@) g = 2VIm(E + Vo) > 0.

with the general solution

W(z) = Ce 9" + De'* = C sin(qr) + D cos(qa).

Again, C = i(D — ') and D = C + D are some constants.
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Region II: z>L, Viz)=10

Here we have the same case as in region [ with the Schrodinger equation (4.41) and
solution

w(r) = Fe ™" + Ge™".

But now, in order to keep the wave function normalizable we have to set G = 0 ot
the corresponding exponent would ever increase for increasing r. We thus get as :
of region M

P(x) = Fe ™.

Summary: Let's summarize the solutions for the energy range —Vy < E < 0.

Be"* in region I
Y(z) = ¢ Csin(gr) + D cos(gx) in region II
Fe™ ™" in region Il
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Remark: The motion of a classical particle with energy E < 0 is strictly co
to region 0. A quantum mechanical particle, however. can penetrate into the class
forbidden regions [ and I, i.e. the probability density is non-vanishing, |i/(z)|* # 0.
far the particle can penetrate depends on the respective energy, it can reach a dej

ﬂ i — — ‘I !; — ] |

which vanishes for large energies in deep potentials. Accordingly, there exists a mome
uncertainty which a classical particle would need to overcome the potential barrier

h
&pmﬂ—zv—QmE. |
T

If we now remember Theorem 4.2 we can conclude that for the symmetric pot
defined in Eq. (4.40) there is a family of even and odd solutions, which we will call ¢
and v/(~)(z), sketched in Fig. 4.2

Be*s 1 ~Ber 1
v'"H(z) = { Dcos(qgr) I v (x) = { Csin(gr) 1 '
Be "t il Be™® il

At the boundaries of the potential well the functions that are solutions in their re
tive areas need to merge smoothly into each other. Mathematically this means, th:
total wave function needs to be smooth, i.e. the values as well as the first derivati
the respective partly solutions must match at + L.

We can summarize these two requirements into the statement. that the [og
derivative of the wave function must be continuous

logarithmic derivative: — In(v(z)) = i,.;'{:rj continuous .
dx ¥(x)
For the even solutions® this translates to
'.t_,-',.'{"']’{.rj — D g sin(g L) _ —B=r e mL
U(2) [, Deos(gL) BerE

Eq. (4.55) can then easily be rewritten as

g tan(qgL) = k.
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Since s and g depend on the energy E wvia

1 1
K = E«J-ng . g = E\fﬂm{E — W)

Eq. (4.56) becomes a formula for the permitted energies, a quantization condition
The analogous calculation as in Eq. (4.55) can be done for the odd solutions,
then gives the corresponding condition for the odd states

qeot(gL) = — k.

L
zi=gqL , =z = E\Ii?mlfi}.

To relate our old variables & and g to the new ones, we first look at

—2mE 2m(E + Vo) 2m gy
2 —
K J;2 + Ji2 2

which we multiply with L* to get

2 r2 2 2
2 -2 2 r2 2 k™ L g — % Z0\*
= NP+ @R = 5 o= =(?)—1
22
K "ﬂg . .
= — = (—) — 1 = imsert in Eq. (4.56)
q 2

ans = /(2) -1

Let us now return again to the even and odd wavefunctions, Eq. (4.53), where «

have to determine the constants B, (' and D). We first use the continuity at x = L
the equations

¢[+] . D cos(qul) = Be™ tin L : i...:,I.'—‘.I . Csin(quL) = Be~ wn L :
providing us with
E_ #nds C B E_ wnds
D=B—— = B— .
cos(gal) sin(gn L)
Finally we obtain the constant B from the normalization
slgn L . 1
o cos(al) .

- i — .Dn = T ——
W1 4+ KL - C V191 4+ kL
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We will now investigate the Schrodinger equation, including the potential from Eq. (4.40)
for positive energies £ = (). We will assume that an initial plane wave travels from
r = —o0 to our potential and study the possible states that are not bound but scattered.
i.e. transmitted or reflected by the potential, see Fig. 4.7. As before we will analyze our
problem for the regions I, I and I separately before combining our results.

Region I: r < —L, V(z)=10

In this region we have to solve the free Schriodinger equation

d*i 2mF 2mFE
j. 2.0 2
= — i = —k“1 where k° = .
dr? h2 ' h?
F 3 ol
. L L
[ - -
_ .I.;| _i I-I
I i 1M

Like in Eq. (4.46) we can write down the general solution to this equation as

) ; 1
U(z) = .,.r‘ig”‘l‘r + Be '™ with k= FV2mE > 0.
incoming  reflected

Region 1I: —-L<z <L, Vizr)=-W
In total analogy to the case for bound states, Eq. (4.45), we get in region I
Y(r) = C sin(gr) + D cos(gz) q = 3v2m(E 4+ V) > 0.

Region II: r>L, V(ir)=10
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Here we have exactly the situation as in region [, and can thus easily write de
solution as in Eq. (4.75) with new constants F' and G, but we set G = 0 since we

no reflection at infinity (the associated solution would represent a wave traveli
right to left).

! ikx
(xr) = Fé€
v(x) £
transmitted
Summarizing our solutions we have

Aeikm + Be—ik.r I
P(x) = ¢ Csin(gr) + D cos(gr) 1
Feikz m

where the constants A, B and F now characterize the incoming, reflected and tran
parts of our solution respectively. We then regard the boundary conditions, i

continuity of the wave function and its first derivative at the edges of the potential

6x) ——s Ay Beth  —_Csin(qL) + D cos(al)
¥'(x) — ik (AE—”L'L — Bg‘“‘LJ =gq (C cos(gL) + D sin(gL))
() — Csin(gL) + D cos(gl) = Fe'**

r—+

¥/(z) —— q(C cos(gL) — Dsin(qL)) =ik Fe*t .

Together with the normalization condition we thus have 5 equations for our 5 var
A B, C, D and F. To solve this system of equations we start by calculating

Eq. (4.81) - sin(qL) + Eq. (4.82) - écos{qL} =

g -

(sin®*(gL) + cos’(gL)) C = C = (Hin[qL] B ig cm;[qL]) Fettl

1

Eq. (4.81) - cos(qL) + Eq. (4.82) - 1%.*;inl{qL] =

k "
icnsz{qL} + sin”(gL) 1 D = D= (ms{qL) — t'E sin{q.[-]l) Fe'kl
1
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Then we insert the results for C' and D into Eq. (4.79) and Eq. (4.80) to get A ane
dependence of F

Ae FL 4 Be'*l = _Eq. (4.83) - sin(qL) + Eq. (4.84) - cos(qL)

k :
= (— sin®(gL) — 2i — sin(gqL) cos(qL) + msz{qL]) F¢
q

Using the following identities we can then rewrite Eq. (4.85)

cos®r — sin®x = cos(2r) ., 2sinr cosx = sin(2r)

_ k
= Ae KL L p = (cm;(quj - i sin(?qL]) F.
q

and applying the same procedure for Eq. (4.80) gives
ik (Ae *t — Be'*l) =g (Eq. (4.83) - cos(qL) + Eq. (4.84) - sin

k k :
= (i — cos®(gL) + 2 sin(gL) cos(gL) — i — :;inz(qL]+) Felkt
q q

ra. (4. A k
]:.qgﬂﬁ] AE—Z-:.‘..L - B = —t% (bln(gq:[-'] + i - M{EQL)) F .
q

At last we subtract Eq. (4.88) from Eq. (4.87) to get the coefficient B, which char:
the reflection from the potential well

Eq. (4.87) — Eq. (4.88) = 2B = i (E - g) sin(2qL) F
B ¢ -k . . *
= T =i ok sin(2gL) reflexion/transmission amplitude .

This can be understood as a balance between the reflected and the transmitt
of the wave function. To get the probability for the reflection or transmission w
to normalize each part by the amplitude of the incoming wave and to take the m
squared of each expression. We also want to express the guantities g and & by th

familiar constants m, h and 1}, using Eq. (4.75) and Eq. (4.76)

(2m)* Vg

1
(q° — kz}? — F{Em (E + Vo) — QmE}Z = i

1
4°k* = dﬁ (2m)* E(E + V) .
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Thus we find for the reflection coefficient R(FE) describing the probability of reflection

_1BP _ Vi FP?

3 = = .." 2 —_ .
R(FE) AP TEE 1TV sin“(2¢L) AP # 0

We conclude that there is a nonzero possibility for a reflection of the wave at the potential
well, a purely quantum mechanical effect that is not possible classically.

The reflection, of course, is related to the transmission of the wave. Foeussing on the
.. L . . I3 .
transmission, we can calculate the transmission coefficient T(A) = Tlf which rates the

transmitted against the incoming intensity. We first calculate the sum of Eq. (4.87) and
Eq. (4.88) to get the transmission amplitude

. k
Eq. (4.87) + Eq. (4.88) = Ae 2% =2 (r:m;(EqL] — isin(2gL) 3 (% + —)) F
q

F o k* -
= 5 = p—2ikL (CDH(Q.?L] - i% sin{?qL]) .

and by taking the modulus squared and inserting the expressions for g and k
and Eq. (14.76)) we obtain the transmission coefficient T(E)

Of course, both coefficients are related by

R(E) + T(E) = 1.
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Part A

CoNO~WNE

10.

10.

11.

Part B

Review Questions

Write notes on bound states

Explain the continuity of wave function

Appraise on discrete energy levels

What do you mean by zero point energy?

Explain reflection coefficient

Discuss transmission coefficient

Predict the energy equation of particle in a box

Analyse, why particle trapped in a box cannot be at rest?

Find the lowest energy of an electron confined to move in a 1 dimensional box
of length 1 A

Calculate the energy Eigen value for the motion of a particle in One dimensional
box

Calculate the energy Eigen value for the motion of a particle in One dimensional
box

A beam of electrons incident on the square barrier potential, from left. Find the
fraction of electrons reflected & transmitted if the energy of the incident
3

-V V
electrons is 2 & 2a —th" =

Write notes on Bound states, Continuity of wave function, Eigen values and
Eigen functions.

Deduce Schrodinger equation for a particle in Square well potential and obtain
energy Eigen functions

Write down Schrodinger equation for a particle in a box. Solve it to obtain Eigen
functions and show that the Eigen values are discrete.

Deduce Schrodinger equation for a linear harmonic oscillator and solve it to
obtain the Eigen values and Eigen functions.

Infer the reflection coefficient for a rectangular barrier of width ‘a’ and height
Vo for the case E < Vg
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UNIT — IV- Quantum theory of Hydrogen like atom — SPH1314
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THE SCHRODINGER EQUATION IN SPHERICAL COORDINATES

Depending on the symmetry of the problem it is sometimes more convenient to work
with a coordinate system that best simplifies the problem. For example, the hydrogen
atom can be most conveniently described by using spherical coordinates since the
potential energy U(r) and force F(r) both depend on the radial distance v of the electron
from the nucleus (proton).

Zke"

Ur)=- . (Z2=1)
F(r)=— dU(¥) _ Zkf‘
ar i

Since the force is a conservative force, then the energy (kinetic + potential) remains
constant and we will show that it is quantized. Since the energy is quantized, it leads to
stationary states where,

W(r.t)=(r)e™
where E=fi@ 1s the particle energy

Where (r)is the solution to the Time Independent Schrodinger Equation in spherical
coordinates:

- ;“ Vi () + U@ () = Ep(r)

Fas

Where,

, 1 éf.,e@ 1 g . & 1 &
v ==tV - +— T| sind— |+ E— —
P oor cr rosinf 08 ¢8,) risint 8 o

is the Laplacian Operator in spherical coordinates. Recall that in spherical coordinates:

Fr 00—
g: 0=
g: 0—27
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Thus, In spherical coordinates () =y (r.6.¢). Substituting the Laplacian Operator in
the TISE we get:

1 2 2
_n ii rt &y ) + ! smﬁﬂw]+ 1 A4
in' 6 8¢”

Em,‘%r1 arl, or ) r Tsing 86

}+ U(rwy = Ew

We will show that the solution to this equation will demonstrate the quantization of
ENERGY and ANGULAR. MOMENTUM! The solution will also show the origin and
physical meaning of the quantum numbers:

n = principal quantum number (describes the size and energy of an orbital)
¢ = orbital guantum number (describes the shape of the orbital)
m ¢ = magnetic quantum number (describes the orientation of orbital in space)

Using separation of variable,

(. 6.9) = R(r) £ (6)g(¢)| substitute into the TISE:

2 I B 27
[l R), Re 208, K ez yrg
2ml\ " or\ or) ¢ smn@ e cf? risin® @ g
1..:1
L8R Rg @ dg _
72 | ] 51:15‘89[5 GE-"J sin’ Hc’gﬂ
Divide both sides by Rfg:
1ofpaR), 1 7,
RBrL &r fsmaca aa; gsmﬂcqﬁ T
Rearranging:
: [ 3
Li(r: dR(r}l_l_lmr E-ty=] 1 [ df(€)| L d'2)
R(») dr ar - f(é')smﬁ‘dé‘ dg ] gld)sin® @ di

Note that the LHS is a function of r only and the RHS is a function of 6 and & only.
Since the varniables are independent, changes in r cannot effect the RHS and changes
in 8 and @ cannot effect the LHS. Thus, the two sides must be equal to the same
constant, which we will call /(7 +1)
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SOLUTION TO THE ANGULAR DEPENDENCE

1 d|fsin Ea’f{&}] N { 1 digly)
g

f(8)sinf db', dé fsin’ 6 df? }=—i(i+lj

1 dgld) ——f(f _|_]_:|.5,i_|:[2 a-

e(9) do £(8) de

sind d [ ar(e
— E-Ltllg—|
dg )

Setting both sides equal to the constant —mZ:

LHS

10 1
O
g(g) d¢
d'gld) 1
—+m g(@¢)=0
7 g(¢)
g@)=e™
Since W(r. &, ¢) must be single-valued. then:

g(p)=g(p+2m)

img _ _im{d+2)
g =g
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E.‘.ﬂw — E.'Wgr;:rm

Eﬂrﬂt — 1

2™ = cos(2mm) +isin(27m)

m=0,+1,£2,......|magnetic quantum number

RHS

(¢ +Dsin - sin @ a’[ df{ﬂ) |_

f (5] dé
Solution
wo (im0 @ 17 | |
@)= (cos” @—1) (Associated Legendre Functions)
211 | dicosd)
f=0,1.23....

m=0£112 _ *

¢ = angular momentum quantum number
fi =1

_fi':' =2cosf

Sl =siné

L =43cos’ 68-1)

Some Associated Legendre Functions

The product of the angular dependence are called the Spherical Harmonics:

Y. ¢) = (&g, (@| Spherical Harmonics

L
J,—

ico

Y= il II|— sin G
2

tl:;

Some Spherical Harmonics

mln—
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SOLUTION TO THE RADIAL DEPENDENCE

R X
1df,dR |+ 2 E_U) = A +1)
R dr dr i

2

multiply by ;- -
2mr”
1 & 2
-h Eli[r:ﬁ +({U-E)=- ﬁ _L(£+1)
2mr- R dr dr 2mr”
. Zke'
For the hydrogen atom U'{r) = — where (Z=1)
r
2 Id w0 2 2
-ﬁ Ei e —£(£+1) |IR=ER
2mr- dr\, ar) | F 2mr

The solution to this equation is:

(S
ae

Rné =—= "[':'15 [:?" "I. a{l)
¥

where L ,(#/a,) =Laguerre Polynomials

The result for the energy of the Hydrogen atom is as expected, same as the Bohr
Theorylll

2 32
E,l:—kE [E Energy of Hydrogen Atom
2a,\ n)
Wheren=123.__ _andn> /. A= o LWty - Ch=t\
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THE COMPLETE WAVEFUNCTION FOR THE HYDROGEN ATOM

W i (7. 6.0) = C R, (r]}'}m{ﬁ @)

Where C, 15 a constant determined by the normalization conditions.
THE HYDROGEN ATOM; ATOMIC ORBITALS

Atomic Spectra

When gaseous hydrogen in a glass tube is excited by a 5000-volt electrical
discharge, four lines are observed in the visible part of the emission spec-
trum: red at 656.3 nm, blue-green at 486.1 nm, blue violet at 434.1 nm and
violet at 410.2 nm:

Figure 1. Visible spectrum of atomic hydrogen.

Other series of lines have been observed in the ultraviolet and infrared
regions. Rydberg (1890) found that all the lines of the atomic hydrogen
spectrum could be fitted to a single formula

1 1 1
EZR(’H—?_’H—%)? TI-[:]..I,Q.I,B...:. Mo =Ny [:].}

where R, known as the Rydberg constant, has the value 109,677 cin—! for
hydrogen. The reciprocal of wavelength, in units of em—1!, is in general
use by spectroscopists. This unit is also designated wavenumbers, since
it represenis the number of wavelengths per em. The Balmer series of

spectral lines in the visible region, shown in Fig. 1, correspond to the
values nqy = 2, no = 3,4,5 and 6. The lines with 1, = 1 in the ultraviolet
make up the Lyman series. T'he line with ne = 2, designated the Lyman

alpha, has the longest wavelength (lowest wavenumber) in this series, with
1/A = 82258 cm™ ! or A = 121.57 nm.

Other atomic species have line spectra, which can be used as a “fin-
gerprint” to identify the element. However, no atom other than hvdrogen
has a simple relation analogous to (1) for its spectral frequencies. Bohr in
1913 proposed that all atomic spectral lines arise from transitions between
discrete energy levels, giving a photon such that

he

AFE = hv = X (2)
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This is called the Bohr frequency condition. We now understand that the
atomic transition energy AF is equal to the energy of a photon, as proposed
earlier by Planck and Einstein.

The Bohr Atom

The nuclear model proposed by Rutherford in 1911 pictures the atom as a
heavy, positively-charged nucleus, around which much lighter, negatively-
charged electrons circulate, much like planets in the Solar system. 'This
model is however completely untenable from the standpoint of classical
electromagnetic theory, for an accelerating electron (circular motion repre-
sents an acceleration) should radiate away its energy. In fact, a hydrogen
atom should exist for no longer than 5 x 101! sec, time enough for the
electron’s death spiral into the nucleus. This is one of the worst quantita-
tive predictions in the history of physics. It has been called the Hindenberg
disaster on an atomic level. (Recall that the Hindenberg, a hydrogen-filled
dirigible, crashed and burned in a famous disaster in 1937.)

Bohr sought to avoid an atomic catastrophe by proposing that certain
orbits of the electron around the nucleus could be exempted from classical
electrodynamics and remain stable. The Bohr model was quantitatively
successful for the hydrogen atom, as we shall now show.

We recall that the attraction between two opposite charges, such as
the electron and proton, is given by Coulomb’s law

e?
—— (gaussian units)
= ™ 2
e :
~Tmear? (SI units) (3)

We prefer to use the gaussian system in applications to atomic phenomena.
Since the Coulomb attraction is a central force (dependent only on r), the

potential energy is related by

v (r)
F=— 4)

We find therefore, for the mutual potential energy of a proton and electron,
Vir)=-% )
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Bohr considered an electron in a circular orbit of radius r around the proton.
To remain in this orbit, the electron must be experiencing a centripetal

acceleration
2
a=—— (6)
r

where v is the speed of the electron.
Using (4) and (6) in Newton’s second law, we find

G=" 7)

where m is the mass of the electron. For simplicity, we assume that the
proton mass is infinite (actually m, ~ 1836m.) so that the proton’s position
remains fixed. We will later correct for this approximation by introducing
reduced mass. The energy of the hydrogen atom is the sum of the kinetic
and potential energies:

0 c

_p _ 1.2 &
E=T+V=g3muv " (8)
Using Eq (7), we see that
T:—%V and E:%V:—T (9)

This is the form of the virial theorem for a force law varying as r—2. Note
that the energy of a bound atom is negative, since it is lower than the energy
of the separated electron and proton, which is taken to be zero.

For further progress, we need some restriction on the possible values
of » or v. This is where we can introduce the quantization of angular
momentum L = r x p. Since p is perpendicular to r, we can write simply

L =rp=mur (10)

Using (9), we find also that
1.2

me>

r =

(11)
We introduce angular momentum quantization, writing

L = nh, n=1,2... (12)
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excluding n = 0, since the electron would then not be in a circular orbit.
The allowed orbital radii are then given by

rn = n?ag (13)

where )

h ;
ag = —5 =529 x107"'m = 0.529 A (14)
me

which is known as the Bohr radius. The corresponding energy is

e? me*
B,=—— - = 1,2... 15
2aq n? 2h? n?2 e (15)
Rydberg’s formula (1) can now be deduced from the Bohr model. We
have | N 1
¢ 2meme
—=F,, kK, =— | == 16
A 2 ! h? (n? n%) (16)
and the Rydbeg constant can be identified as
2mme* 1
R =~ — ~ 109,737 cm (17)

The slight discrepency with the experimental value for hydrogen (109,677)
is due to the finite proton mass. This will be corrected later.

The Bohr model can be readily extended to hydrogenlike ions, systems
in which a single electron orbits a nucleus of arbitrary atomic number Z.
Thus Z = 1 for hydrogen, Z = 2 for Het, Z = 3 for Lit™*, and so on. The
Coulomb potential (5) generalizes to

2
Vi =2, (18)
the radius of the orbit (13) becomes
nay
rn=— (19)
and the energy (15) becomes
Z*e?
E, =—- 20
" 2agn? (20)
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De Broglie’s proposal that electrons can have wavelike properties was
actually inspired by the Bohr atomic model. Since

nh
L = rp=nh = 21
rp = nh o (21)
we find
nh
2mr = — =nA (22)
P

Therefore, each allowed orbit traces out an integral number of de Broglie
wavelengths.

Wilson (1915) and Sommerfeld (1916) generalized Bohr’s formula for
the allowed orbits to

jgpdr = nh, n=12... (23)

The Sommerfeld-Wilson quantum conditions (23) reduce to Bohr’s results
for circular orbits, but allow, in addition, elliptical orbits along which the
momentum p is variable. According to Kepler’s first law of planetary mo-
tion, the orbits of planets are ellipses with the Sun at one focus. Fig. 2
shows the generalization of the Bohr theory for hydrogen, including the el-
liptical orbits. The lowest energy state n = 1 is still a circular orbit. But
n = 2 allows an elliptical orbit in addition to the circular one; n = 3 has
three possible orbits, and so on. The energy still depends on n alone, so
that the elliptical orbits represent degenerate states. Atomic spectroscopy
shows in fact that energy levels with n > 1 consist of multiple states, as
implied by the splitting of atomic lines by an electric field (Stark effect) or a
magnetic field (Zeeman effect). Some of these generalized orbits are drawn
schematically in Fig. 2.
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Figure 2. Bohr-Sommerfeld orbits
for n = 1,2,3 (not to scale).

T'he Bohr model was an important first step in the historical devel-
opment of quantum mechanics. It introduced the quantization of atomic
energy levels and gave quantitative agreement with the atomic hydrogen
spectrum. With the Sommerfeld-Wilson generalization, it accounted as well
for the degeneracy of hydrogen energy levels. Although the Bohr model was
able to sidestep the atomic “Hindenberg disaster,” it cannot avoid what we
might call the “Heisenberg disaster.” By this we mean that the assumption
of well-defined electronic orbits around a nucleus is completely contrary to
the basic premises of quantum mechanics. Another flaw in the Bohr picture
is that the angular momenta are all too large by one unit, for example, the
ground state actually has zero orbital angular momentum (rather than h).

Quantum Mechanics of Hydrogenlike Atoms

In contrast to the particle in a box and the harmonic oscillator, the hydrogen
atom is a real physical system that can be treated exactly by quantum
mechanics. in addition to their inherent significance, these solutions suggest
prototypes for atomic orbitals used in approximate treatments of complex
atoms and molecules.

For an electron in the field of a nucleus of charge +Ze, the Schrédinger
equation can be written

r

h? Ze?
{—ﬁvﬂ -7 b = v (24)
It is convenient to introduce atomic units in which length is measured in
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bohrs:

}-2
a4y = — =529 107" m = 1 bohr
me
and energy in hartrees:
02
— =4.358 1071%J = 27.211eV = 1 hartree
0

Electron volts (eV) are a convenient unit for atomic energies. One eV is
defined as the energy an electron gains when accelerated across a potential
difference of 1 volt. The ground state of the hydrogen atom has an energy
of —1/2 hartree or -13.6 eV. Conversion to atomic units is equivalent to
setting

h=e=m=1

in all formulas containing these constants. Rewriting the Schrodinger equa-
tion in atomic units, we have

{__ ve_Z } D(r) = Ed(r) (25)

Since the potential energy is spherically symmetrical (a function of r
alone), it is obviously advantageous to treat this problem in spherical polar
coordinates r, 0, ¢. Expressing the Laplacian operator in these coordinates
[cf. Eq (6-20)],

l iﬁ ﬂ 1 6blrlﬂ£+ ! >
P2 or or | 72sin0 00 o0 r2sin? 0 0>

X9(r,0,6) — ZU(r,0,6) = EY(r,0,6) (20
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Substituting (27) into (26) and using the angular momentum eigenvalue
equation (6-34), we obtain an ordinary differential equation for the radial
function R(r):

1 d ,d £f+1 VA , )
{_FE EE—}_—(QT‘Z ) —¥}R(T)=EH(T‘) (28)
Note that in the domain of the variable r, the angular momentum contri-
bution £(¢ + 1)/2r? acts as an effective addition to the potential energy. It
can be identified with ecentrifugal force, which pulls the electron outward,
in opposition to the Coulomb attraction. Carrying out the successive dif-
ferentiations in (29) and simplifying, we obtain

1, 1 7 0L+ 1)
3!t (""”;R(”“)*[r 2

+E|R(r)=0 (29)

another second-order linear differential equation with non-constant coefh-
cients. It is again useful to explore the asymptotic solutions to (29), as
r — oo. In the asymptotic approximation,

R"(r) — 2|E|R(r) = 0 (30)

having noted that the energy F is negative for bound states. Solutions to
(30) are

R(r) = const etV2IEI (31)

We reject the positive exponential on physical grounds, since R(r) — oo as
r — 0o, in violation of the requirement that the wavefunction must be finite
everywhere. Choosing the negative exponental and setting F = —Z2/2, the
ground state energy in the Bohr theory (in atomic units), we obtain

R(r) = const e~ 4" (32)
It turns out, very fortunately, that this asymptotic approximation is
also an eract solution of the Schridinger equation (29) with £ = 0, just what

happened for the harmonic-oscillator problem in Chap. 5. The solutions
to Eq (29), designated R,¢(r), are labelled by n, known as the principal
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quantum number, as well as by the angular momentum £, which is a param-
eter in the radial equation. The solution (32) corresponds to Ryg(r). This
should be normalized according to the condition

[:ﬂ [Rio(r)]*r*dr =1 (33)

A useful definite integral is

o n!
/ﬂ rte”dr = e (34)
The normalized radial function is thereby given by
Rio(r) =27%2e=%" (35)
Since this function is nodeless, we identify it with the ground state of the hy-

drogenlike atom. Multipyling (35) by the spherical harmonic Ypq = 1/v/4,
we obtain the total wavefunction (27)

iy 172
Proo(r) = (A ) e (36)

?
This is conventionally designated as the 1s function 9y4(r).

Integrals in spherical-polar coordinates over a spherically-symmetrical
integrand can be significantly simplified. We can do the reduction

fgm [: /:T f(’-'“)rzsiuﬂdrdﬁd(j}:[]m [(r) dzr? dr (37)

since integration over @ and ¢ gives 4w, the total solid angle of a sphere.
The normalization of the 1s wavefunction can thus be written as

ﬁm [14(r)]* 4r? dr = 1 (38)

62



Part A

Nook~wdpE

Part B

w

Review Questions

Discuss spherical symmetry

Time independent Schrodinger equation in spherical polar coordinates, illustrate
Discuss the steps of solution of radial wave equation

Explain the shapes of probability density for ground state and first excited state
Define and explain angular momentum operator

What do you mean by Quantum numbers

Demonstrate the solution of radial wave function

Write the time independent Schrodinger wave equation for the hydrogen atom
in spherical polar coordinates.

Solve angular-dependent Portion of the Schrodinger Equation in spherical polar
coordinates.

Write notes on Shapes of hydrogen atom wave functions: s orbitals

Discuss radial probability distribution.
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UNIT — V- Atoms in Electric and Magnetic fields — SPH1314
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Angular momentum plays a central role in both classical and quantum mechanics. In
classical mechanics, all isolated systems conserve angular momentum (as well as energy and
linear momentum); this fact reduces considerably the amount of work required in calculating
trajectories of planets, rotation of rigid bodies, and many more.

Similarly, in quantum mechanics, angular momentum plays a central role in under-
standing the structure of atoms, as well as other quantum problems that involve rotational
symmetry.

Like other observable quantities, angular momentum is described in QM by an operator.
This is in fact a vector operator, similar to momentum operator. However, as we will
shortly see, contrary to the linear momentum operator, the three components of the angular
momentum operator do not commute.

In QM, there are several angular momentum operators: the total angular momentum
(usually denoted by J ), the orbital angular momentum (usually denoted by E] and the
intrinsic, or spin angular momentum (denoted by S). This last one (spin) has no classical
analogue. Confusingly, the term “angular momentum” can refer to either the total angular
momentum, or to the orbital angular momentum.

The classical definition of the orbital angular momentum, L = 7 x § can be carried
directly to QM by reinterpreting 7 and p’ as the operators associated with the position and
the linear momentum.

The spin operator, S, represents another type of angular momentum, associated with
“intrinsic rotation” of a particle around an axis; Spin is an intrinsic property of a particle

(nearly all elementary particles have spin), that is unrelated to its spatial motion. The
existence of spin angular momentum is inferred from experiments, such as the Stern-Gerlach
experiment, in which particles are observed to possess angular momentum that cannot be
accounted for by orbital angular momentum alone.

The total angular momentum, J, combines both the spin and orbital angular momentum
of a particle (or a system), namely J = L + S.
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2. Orbital angular momentum

Consider a particle of mass m, momentum § and position vector 7 (with respect to a
fixed origin, ¥ = 0). In classical mechanics, the particle’s orbital angular momentum is given
by a vector L, defined by

L=7¢xp. (1)
This vector points in a direction that is perpendicular to the plane containing © and p,
and has a magnitude L = rpsina, where « is the angle between 7 and p. In Cartesian
coordinates, the components of L are

L, =yp. — zpy:
Ly = zp, — TP.; (2)
L. = xpy — yp=.

The corresponding (QM operators representing L,, L, and L. are obtained by replacing
x, y, z and p,, p, and p. with the corresponding QM operators, giving

a0y,

L. =—ih (yé% — zﬁ) ;
L,=—ih(zZ —zZ); (3)
Lo=—in (22 —yL).

In a more compact form, this can be written as a vector operator,

L = —ih(7 x V). (4)

It is easy to verify that L is Hermitian.

Using the commutation relations derived for  and p, the commutation relations between
the different components of L are readily derived. For example:

(L, Ly] = [(yp- — 2py), (2p: — zp.)] = [yp=, 2pa] + [2Py. Tp:] — [yp-, 2p2] — [2py, 2] (5)
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Since y and p, commute with each other and with z and p., the first term reads

[yp:, 2p:| = YP=2pz — 2Pz YpP: = Yp:[p=, 2] = —ihyp: (6)

Similarly, the second commutator gives

[2py. xp:] = zpyap: — TP22py = TPY[2, P:| = ihzp, (7)
The third and forth commutators vanish; we thus find that
[Ls. Ly = ih(zp, — yp:) = thL.. (8)
In a similar way, it is straightforward to show that
[Ly. L.] = thL, (9)
and
[L.,L;] =hL, (10)

The three equations are equivalent to the vectorial commutation relation:
L x L =ihL. (11)
Note that this can only be true for operators; since, for regular vectors, clearly LxL=0.

The fact that the operators representing the different components of the angular momen-
tum do not commute, implies that it is impossible to obtain definite values for all component
of the angular momentum when measured simultaneously. This means that if the system
is in eigenstate of one component of the angular momentum, it will in general not be an
eigenstate of either of the other two components.

We define the operator representing the square of the magnitude of the orbital angular
momentum by
=12+ L2+ L. (12)

It is easy to show that L? does commute with each of the three components: L. L, or L,.
For example (using [L2, L.] = 0):
[EZ: L] = [Lﬁ + L3, L] = [LS: L]+ [L3, L]
= Ly[Ly, Le] + [Ly, Le] Ly + Le[Ls, Ly] + [Le, Ls] L. (13)
= —th(L,L.+ L.L,)+ ih(L.L, + L,L.) = 0.

Similarly,

(L% L,)=[L%L.] =0, (14)
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which can be summarized as

L2 L] =0. (15)

Physically, this means that one can find simultaneous eigenfunctions of L? and one of the
components of L. implving that both the magnitude of the angnlar momentum and one of
its components can be precisely determined. Once these are known, they fully specifv the
angular momentum.

In order to obtain the eigenvalues of L? and one of the components of L (typically, L.),
it is convenient to express the angular momentum operators in spherical polar coordinates:
r,f, ¢, rather than the Cartesian coordinates r, y. z. The spherical coordinates are related
to the Cartesian ones via

r = rsintcos o
y = rsinfl sin ¢ (16)
z=rcosf.

After some algebra, one gets:

L.=—=ih|—sin {tr% - cntﬂmé%)
s Ny . i
L,=—ih oS Q= Cﬂtﬂhln¢&¢) (17)
L. = —ihZ:
= A (. nd Ficd
L*= -k rﬁm (sinf3) + 5 e@] :

We thus find that the operators L., Ly, L. and L2 depend on # and @ only, that is they
are independent on the radial coordinate 7. All these operators therefore commute with any

function of r,

Lz f(r)] = [Ly, f(r)] = [L., f(r)] = [L2, f(r)] = 0. (18)

Also, obviously, if a wavefunction depends only on r (but not on #, @) it can be simultaneously
an eigenfunction of L., L,, L, and L? In all cases, the corresponding eigenvalue will be
0. (This is the only exception to the rule that that eigenvalues of one component (e.g., L)
cannot be simultaneously eigenfunctions of the two other components of L).

3. Eigenvalues and eigenfunctions of L* and L.

Let us find now the common eigenfunctions to L? and L., for a single particle. The
choice of L, (rather than, e.g.. L) is motivated by the simpler expression (see Equation 17).
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3.1. Eigenvalues of L.

Since, in spherical coordinates L. depends only on @, we can denote its eigenvalue by
mh and the corresponding eigenfunctions by ®,,(¢). We thus have:

L:q)m{‘;t’) = mh{bn:(¢} {lq]
namely
i
-f(é—qﬁa:-,,, (6) = m®u(0). (20)
The solutions to this equation are
|
O, (0) = e'me, (21)

wors

This is satisfied for any value of m: however, physically we require the wave function to be
single valued (alternatively: continuous), namely @, (2r) = @_,(0), from which we find

e =1, (22)

This equation is satisfied for m = 0, £1. £2, £3..... The eigenvalues of the operator L. are
thus mh, with m being integer (positive or negative) or zero. The number m is called the
magnetic quantum number, due to the role it plays in the motion of charged particles
in magnetic fields.

This means, that when measuring the z-component of an orbital angular momentum,
one can only obtain 0, £k, £2h, .... Since the choice of the 2 direction was arbitrarv, we see
that the component of the orbital angular momentum about any axis is quantized.

The wavefunctions ®,,(¢) are orthonormal, namely

2w
0
Furthermore, they form a complete set, namely every function f(¢) can be written as
+o0
f(8)= ) am®u(9), (24)

where the coeflicients a,,, are C-numbers.
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3.2. Simultaneous eigenvalues of L? and L.

Let us denote simultaneous eigenfunctions of the operator L? and L. as Yj,.(#,¢). We
will write the eigenvalues of L? as (I + 1)k* (from reason which will become clear shortly).
We then hawve:

Lz}f!ﬁ:{ﬂa‘j’] = I{E + 1}-'121/:m{5'-. ':p} {25]
and
L.Y; (8, 0) = mhYi,,. (8, o) (26)

Comparing equation 26 and equation 19, we see that we can separate Yj,,.(#, @),
Yim(H'. '5;-'-7') = H!ﬁ: {E)“pm(‘i’] {2?]

where the functions ®,,(¢) are given by Equation 21, ®,,.(¢) = ?}z_xﬂim«#.

Using the expression for L? in spherical coordinates (Equation 17), we write Equation
25 as

1 d 1 d 1 9P _
4 Y Y Y:n 'E, = =]l 1 Yﬁ, ﬁ',‘ A P
[sinefje (sﬁnﬁ'fjﬁ') +sin?efj¢.2] im(8, @) = —I(l +1)Yim(6. ¢) (28)
Using the variable separation, as well as equation 21 for tI)ml[qtr], Equation 28 becomes
1 d 1 d m2 l
[sin g of (ﬁinﬁ'ﬁ_ﬁ) + {I{f +1) - };ingﬂ}] () =0 (29)

This equation is not easy to solve. In order to proceed, we change variable, writing
w = cos# and F,,(w) = 60,,,(#). Equation 29 becomes

2 2

d il m
1—uw?) — — 2w— + {1+ 1) —
|:( “ }r:hu'z v dw +Ul+1) 1 —w?

] Fip(w) =10 (30)

This equation is known in mathematics as the Legendre’s associated differential equa-
tion (the m = () case is simply called Legendre’s differential equation), honoring the
French mathematician Adrien-Marie Legendre.

The solutions to this equation are given by the associated Legendre’s functions.

F*|(w), which are defined by

[
P () = (1 - w?)I2 (di) P(w), (31)

where Fj(w) is known as the /th Legendre polynomial, which is defined by the Rodrigues
formula,

i
Pi(w) = 5 (ﬁ) (w?® — 1)’ (32)
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In order for Rodrignes formula to make sense, | must be non-negative integer.
Moreover, if |m| = [, then Equation 31 implies F™ = (. Thus, the physically accepted
values of [ and m are

[=0,1.2, ..
T 33
m=-l,-l+1,...—-2,-1,0,1,2,...,1 — 1.1 (33)
This result can be understood physically as follows: Since L* = L? +L2 + L2, the expectation
value of L? in a given state W is (L*) = (L2) + (L) + (L3). Since L, and L, are Hermitian,

(L3) = 0 and (L) > 0, and therefore
(L*) = (L) (34)

For a state ¥ such that its angular part is an eigenfunction of both L? and L., we thus have
from Equations 25, 26 and 34
I{I+1) =m? (35)

from which the result in Equation 33, namely that m is restricted to |m| < [ follows. The
quantum number [, whose allowed values are given in Equation 33, is called the orbital
angular momentum gquantum number.

By using Rodrigues formula (Equation 32), one can immediately find the first few Leg-
endre Polynomials:

(36)

‘iu — 30w® + 3);
63w® — T0w? + 15w) ;

o
—
e
I
on = sl MI-—-MI-—'MI-—' =

=

(:

(Hu —31-',]_.
(3

(

and so on.

Using Equation 31, one can determine the associated Legendre's functions, F/". The

first few are (inserting again w = cos #):

Fl=1;
P} = cos#; P} = sin(#);
P”= 3(3cos®f —1); P; = 3sinfcos#; P} = 3sin* #0;
= 1(5cos®# — 3cosf); Py =32sinf(5c0s’ —1): P;=15sin’fcos; PJ=15sin6;
(37)
et
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(g) P§ (h) P§ (i) P§

Fig. 1.— Polar plots of r = abs[P/(#)] as a function of #.
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Plots of the first few associated Legendre functions, F™(#) are shown in Figure 1.

Using Rodrigues formula and integrating by parts, one can show that the associated
Legendre’s functions, A" are orthogonal to each other, but are not normalized to unity,
namely:

o 2 I+ |m|)!
d rlel IP'?"I Py = {5 ¥ E
f_l wh ) ) = e T ™ (38)

However, with the use of Equation 38, one can multiply " (w) with the appropriate normal-

ization factor, and obtain a normalized solution Fi,,(w) to Equation 30 - up to an uncertain
phase factor of modulus 1.

The corresponding physical solutions to equation 29 6y, (#) are given by

1142
(—1)™ [gw;f—_z_] P (cosf), m >0

le{ﬂ'} = 2 (14+m)! {3!;]
[_l}meﬂnﬂ['ﬁ} m = ().
These functions are normalized, namely
[ €380 0)sin(@)0 = . (40)
0

We can now (finally) write the simultaneous eigenfunctions Y, (#. ¢) common to the
operators L? and L. (see equations 25 and 26) as

1/2 _
_qyme | K2041) (i—m)! T i
Yim(0.0) = (1) [ ix u+m;1] P (cosfl)e™, m >0

(=1)™Y (6, ¢) m < (.

(41)

(where we have adopted the commonly use convention for the phase). These functions are
known as spherical harmonics.

The spherical harmonics are normalized to unity on a unit sphere, and are orthogonal:

2 T
/ﬁnrt“wr 0)Yim(0, 0)dft = / dﬁﬂf df sin(8) Yy, (8, 0)Yim (0, &) = due b (42)
1] 0

They further form a complete set, namely. every (arbitrary) function f = f(f. ¢) can be

expanded as
oo 4l

f(ﬂﬁﬂ = Z Z ﬂhrtﬂm['ﬁ:qﬂ {43}

=0 m=—I

The lowest order spherical harmonics are summarized in table 1.
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—.1——
0 0 Y= i
1 () FH:. = {.ﬂlj I;IEI."['_'I-E'EI

+1 Yoy =7F {:.—*"I']”E sin @ cos fe™?

1.'2 . .
+2 Yoo —F(52)" sin” fe=2id

3 0 Yyo= ()" (5cos*8 —3cosh)

+1 Yau=7F {:ﬁilﬂ}msinﬁ (Geos?l — 1) e*

+2 Y., = [%jlmsinzﬂcnﬁﬂﬂﬂiﬂf‘

Table 1: The first few spherical harmonics, Y.
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The discovery of the Zeeman effect (1896) and its theoretical interpretation demonstrated
that atoms have magnetic dipole moments. However, no constraint was placed on the ori-
entation of the moments by the "classical” explanation of the normal Zeeman effect, in
which the spectral lines of some elements in a magnetic field are split into three compo-
nents. Bohr's theory (1913) of the hydrogen atom assumed circular orbits and required
the guantization of angular momentum and, by implication, quantization of the associated
magnetic moment. Sommerfeld (1916) generalized the Bohr theory to allow elliptical orbits
described by three quantum numbers: n, &, and m. The number n = 1,2, 3..., called the
principal quantum number, corresponded to the guantum number of of the Bohr theory.
The number k= 1,2, 3..n defined the shape of the orbit which was circular for & = n. The
number m = =k, =k + 1,...,k = 1,4k, m # 0, determined the projection of the vector an-
gular momentum on any prescribed axis, a consequence of the theory that was called space
quantization. Sommerfeld showed that his theory could account for the fine structure of the
hydrogen atom (now expained in terms of spin-orbit coupling) when relativistic effects on
the motion in the elliptical orbits were considered. The Sommerfeld theory also provided an
alternative explanation of the normal Zeeman effect. Nevertheless, the question remained
as to whether space quantization really occurs, e. g., whether the projections of the angular
momentum and its associated magnetic moment on an axis defined by the direction of an
imposed magnetic field are quantized.

Otto Stern proposed (1921) a defintive experiment to decide the issue. It would consist
of passing a beam of neutral silver atoms through an inhomogeneous magnetic field and
observing how the beam was deflected by the force exerted by the field on the magnetic
dipole moments of the atoms. The detector would be a glass plate on which the silver atoms
in the deflected beam would be deposited. Since the silver atom has one valence electron,
it was assumed that k = n = 1 and m = £1 in the ground state. If the magnetic moments
were randomly oriented, then the distribution of deflections would decrease monotonically
on either side of zero deflection, reflecting a random distribution of the dipole orientations.
If space quantization was a reality, then the beam should be split into two distinet beams
corresponding to the parallel and anti-parallel alignments of the magnetic moments with
respect to the direction of the inhomogeneous magnetic field. Stern was clumsy with his

hands and never touched the apparatus of his experiments. He enlisted Walther Gerlach, a
skilled experimentalist, to collaborate in the experiment.

Stern predicted that the effect would be be just barely observable. They had difficulty in
raising support in the midst of the post war financial turmoil in Germany. The apparatus,
which required extremely precise alignment and a high vacuum, kept breaking down. Finally,
after a year of struggle, they obtained an exposure of sufficient length to give promise of an
observable silver deposit. At first, when they examined the glass plate they saw nothing.
Then, gradually, the deposit became wvisible, showing a beam separation of (0.2 millimeters!
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Apparently, Stern could only afford cheap cigars with a high sulfur content. As he breathed
on the glass plate, sulfur fumes converted the invisible silver deposit into visible black silver
sufide, and the splitting of the beam was discovered.

The new quantum mechanics of Heisenberg, Shrodinger, and Dirac (1926-1928) showed that
the orbital angular momentum of the silver atom in the ground state is actually zero. Its
magnetic moment is associated with the intrinsic spin angular momentum of the single
valence electron the projection of which has values of :I:%.. consistent with the fact that the
silver beam is split in two. If Stern had chosen an atom with L = 1, 5§ = 0, then the beam
would have split into three, and the gap between the m=+1 and m=-1 beams would have
been filled in., and no split would have been visible! Vol. 11, chapters 34 and 35, and Vol. II1,
chapters 5 and 6 of the Feyvnman Lectures gives a lucid explanation of the quantum theory of
the Stern-Gerlach experiment. Platt (1992) has given a complete analysis of the experiment
using modern quantum mechanical techniques. Here we present an outline of the essential
ideas.
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Review Questions
Part A
Define electron angular momentum
Express Eigen functions and Eigen values of angular momentum
What do you mean by space quantization
Appraise on the terms electron spin and spin angular momentum
State Larmors theorem
Differentiate spin magnetic moment and electron magnetic moment
Demonstrate the principle of Stern Gerlach experiment
Describe Zeeman effect
What do you mean by Electron Magnetic energy
0. Write about Gyromagnetic ratio and Bohr magneton

Part B

1. Deduce Eigen functions and Eigen values of angular momentum in spherical
polar coordinates

Explain in detail Stern Gerlach experiment with schematic diagram

Discuss electron spin and spin angular momentum

4. Summarise about Larmors theorem in Quantum mechanics

RBOo~NoO~WONE

w N
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