

Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF PHYSICS

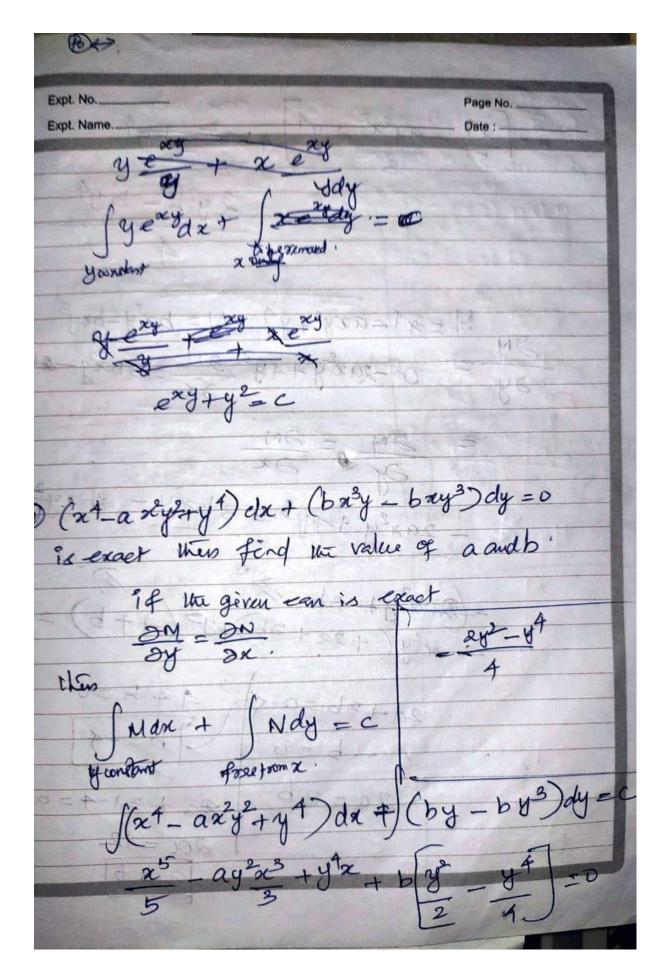
UNIT-I - Calculus of functions of more than one variable -SPH1215

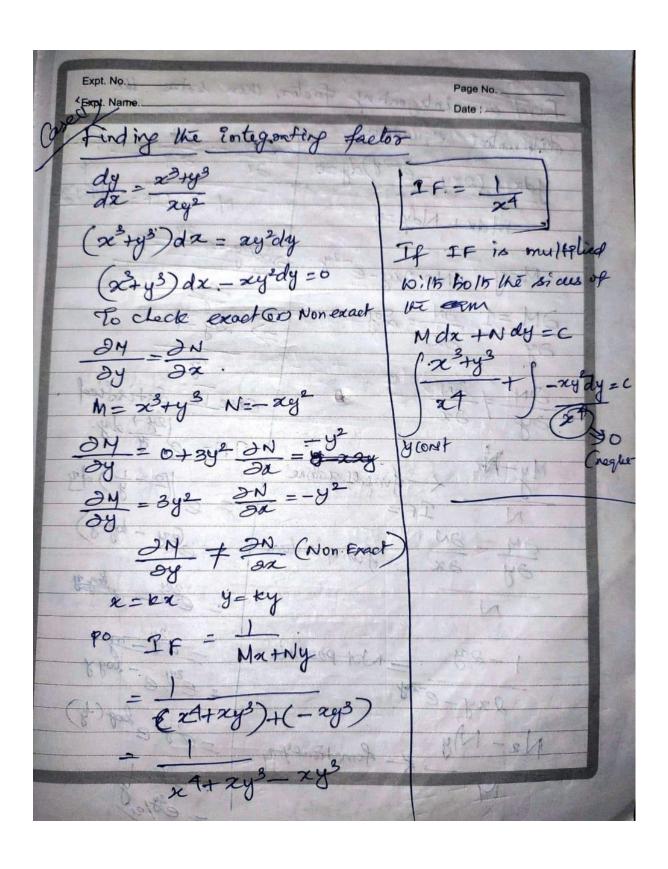
Unit 1

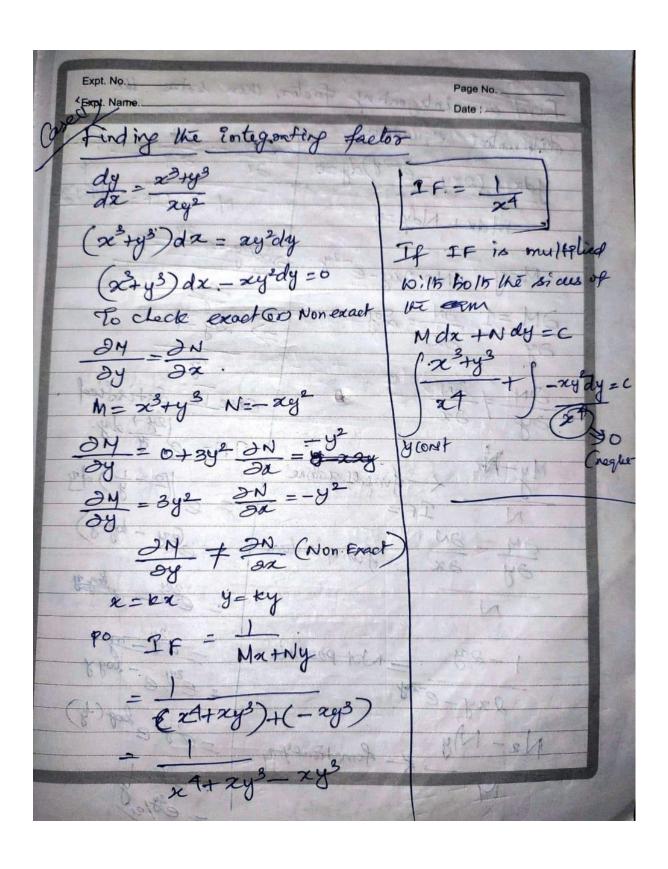
Calculus of functions of more than one variable

Find the solution of (xex 2y)dy + yexydx

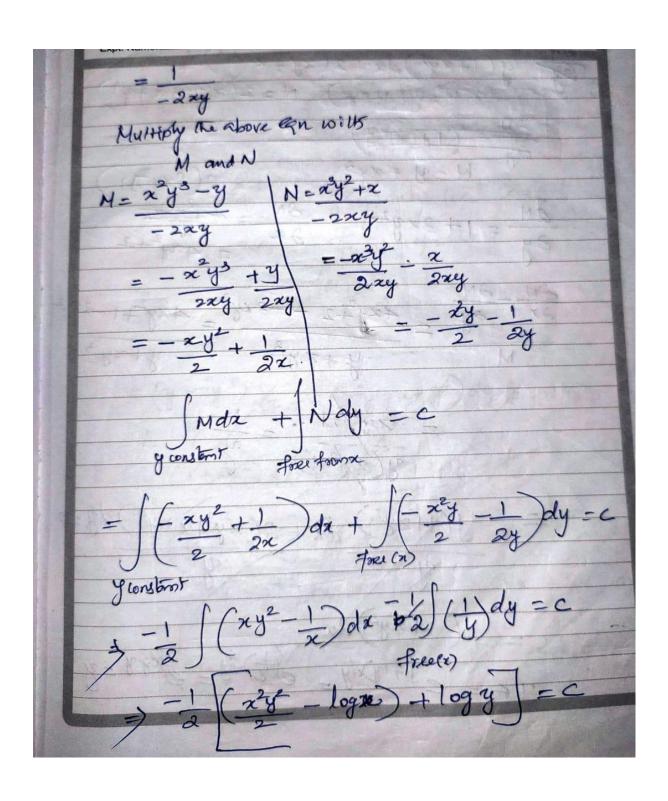
N The above esn is in the former Mdx+Ndy M=yery N= xery Dy To Check Whether the given can is exact @0 in exact. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ = yezya+ezy = xyezy+ezy-c J Mdx + S Ndy = 0 Yeorstans Armetron Jeers 2 y de f y de ende Jyex dx + 2 x g x dy



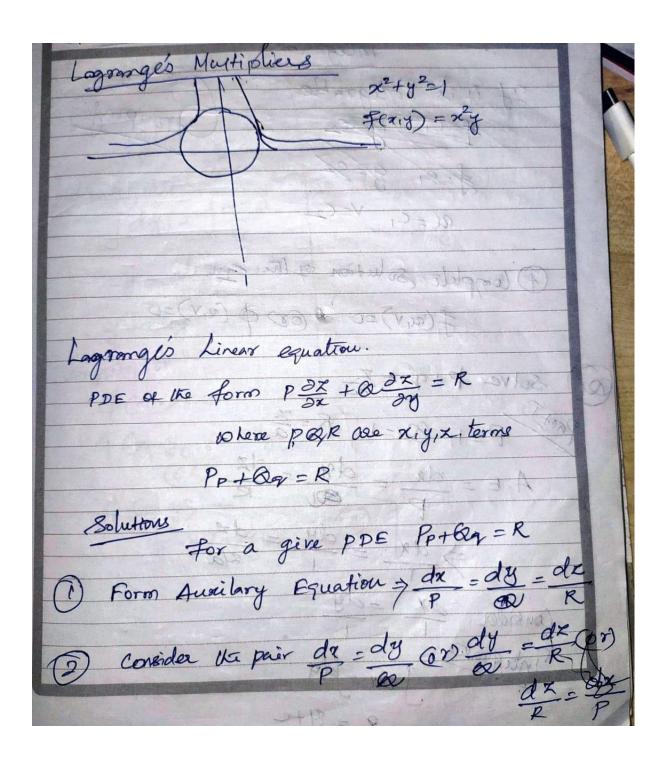




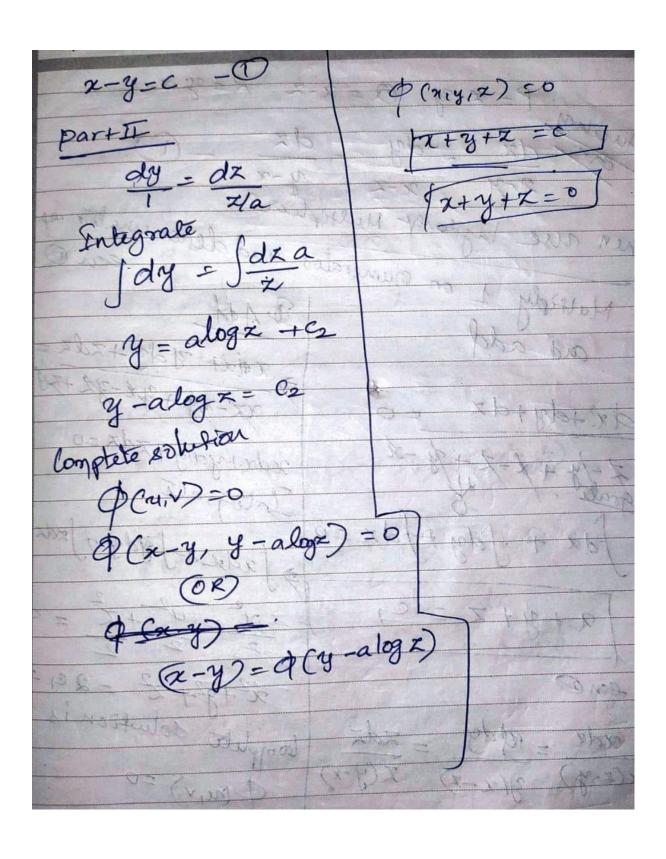
Case 4 $\frac{(x^3y^2 + x)dy + (x^2y^2 - y)dx = 0}{M = x^2y^2 - y} = 3x^2y^2 - 1 = 3x^2y^2 + 1$ $\frac{\partial M}{\partial y} = 3x^2y^2 - 1 = 3x^2y^2 + 1$ ay + an x (x2y2+x) dy + g(x2y2-1)dx =0 2g(xy)dy + yf(xy)dz =0 x(x2y3-y) - (x2y2+x)y



Inexact equation wills case
$$\frac{2\pi}{3\pi}$$
 $\frac{2}{3}(1+xy^2)dx + 2(x^2y^2 + x+y^4)dy = 0}{1+x^2y^2}$ $\frac{2}{3}(1+xy^2)$ $\frac{2$



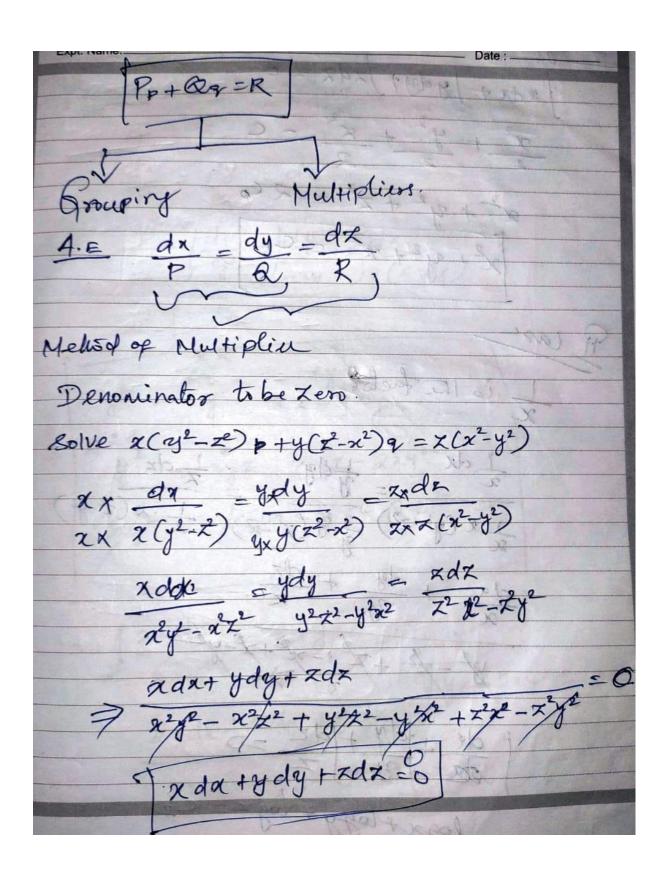
The above integer care straightly Integrable If it is integrable 8=81 g= gt u=c, V=C2 Dooplete solution of the orn. f(u,v)=0 600 \$ (u,v)=0 Part P=1 00=1 R= = A.E = de = de = dz $\Rightarrow \frac{dx}{dx} = \frac{dy}{x} = \frac{dx}{xa}$ Consider dx - dy Integrate 2= yte



801ve (2-y) p + (x-2) q = y-x Availary P = x - y Q = x - x R = y - xAvailary $\frac{dx}{2-y} = \frac{dy}{x-z} = \frac{dx}{y-x}$ Then ruse lagrancy Multiplier

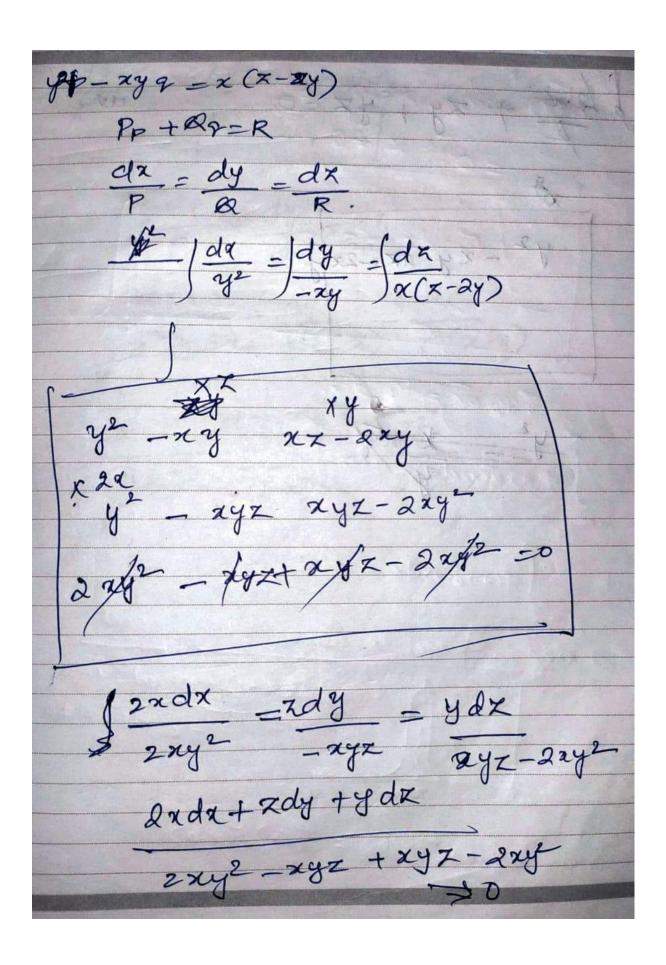
The ruse lagrancy Multiplier Multiply 1 on onemerator and denominator of 3 dx+dy+dz =0 3 xdx+ ydy+xdz= xx-xy+yx-yx+xd Fotografie -x + x-2+y-x Integrals

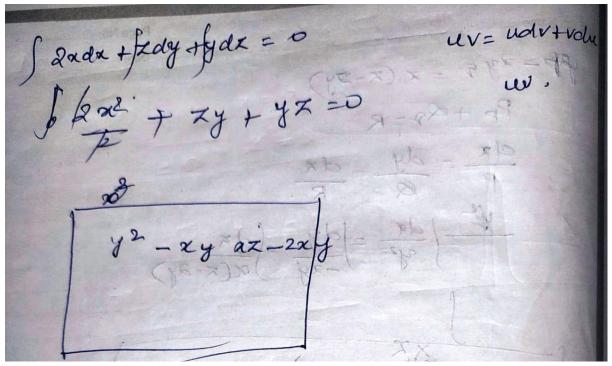
They all they are a series of the 2 + y + X = 0 aty+z=0, $\frac{\chi dx}{\chi(z-y)} = \frac{ydy}{y(\chi-x)} = \frac{\chi d\chi}{\chi(y-x)}$ $\frac{\chi(y-x)}{\chi(y-x)} = \frac{\chi d\chi}{\chi(y-x)}$ $\frac{\chi(y-x)}{\chi(y-x)} = \frac{\chi(y-x)}{\chi(y-x)}$ $\frac{\chi(y-x)}{\chi(y-x)} = \frac{\chi(y-x)}{\chi(y-x)}$



 $\int x dx + \int y dy + \int z dx = 0$ $\frac{x^2 + y^2 + z^2}{2} = C$ 2 + y² + z² = 2 c₀

x² + y² + z² = c₁ $\frac{1}{x} \text{ is the facts;}$ $\frac{1}{x} \text{ of } \frac{1}{x} \text{ of }$ da + dy + dx de tody tode =0





$O = \frac{\sqrt{(y-z)}}{\sqrt{x}} + \frac{\sqrt{(x-x)}q}{\sqrt{x}} = \frac{(x-x)}q}{\sqrt{x}} = \frac{\sqrt{(x-x)}q}{\sqrt{x}} = \frac{\sqrt{(x-x)}q}{\sqrt{x}} = \sqrt{(x$
$\frac{1}{2} \frac{dx}{dx} = \frac{dy}{dx} = \frac{dx}{R}$ $\frac{dx}{2} \frac{dy}{2} = \frac{dx}{2}$ $\frac{dx}{2} \frac{dy}{2} = \frac{dx}{2}$ $\frac{dx}{2} \frac{dy}{2} = \frac{dx}{2}$
$\frac{1}{a^2} dx + \frac{1}{y^2} dy + \frac{1}{z^2}$ $(y-2) (\overline{y}-x) \overline{z} - \overline{z}$

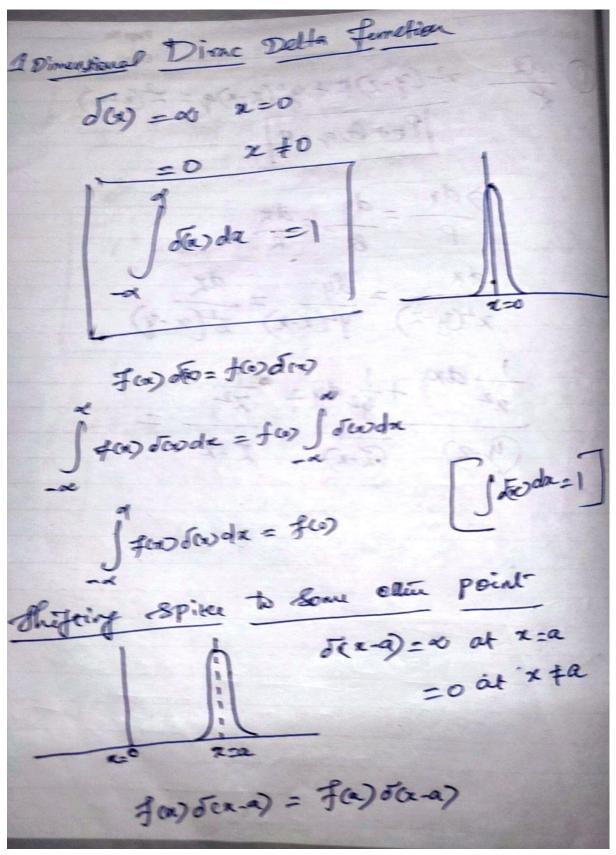
N. - 2N = g(y) only (or) Constant-Ty - 2n = g(y) only (or) Constant-Function of only. y. $= (y+xy^3)ydx + 2y(x^2+x+y^4)dy =$ $= (y^2+xy^4)dx + (2x^2y^3+2yx+2y^5)dy$ $= xy^2+x^2y^4+6x^2y^4+2y^6=0$

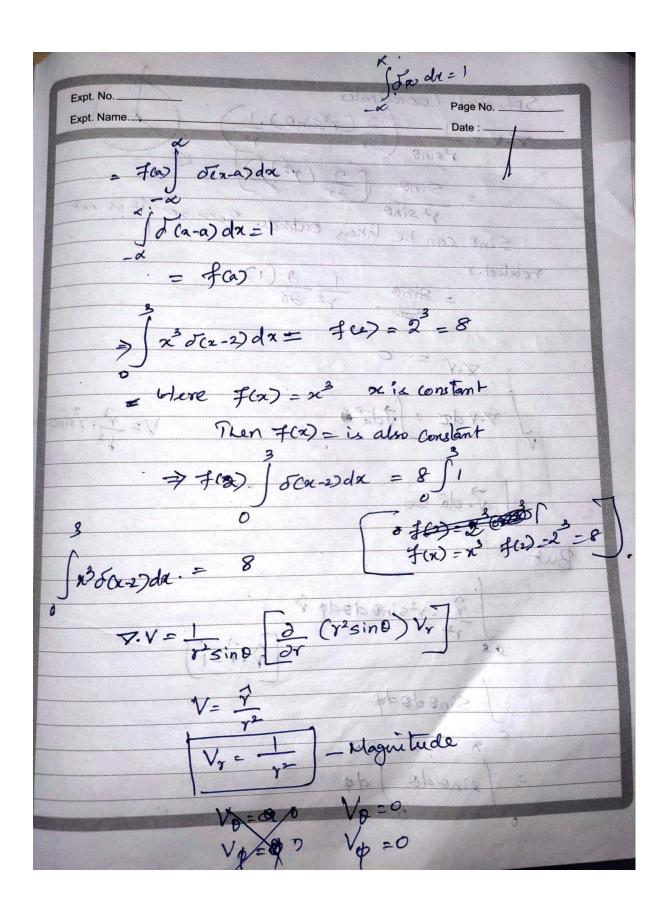
INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

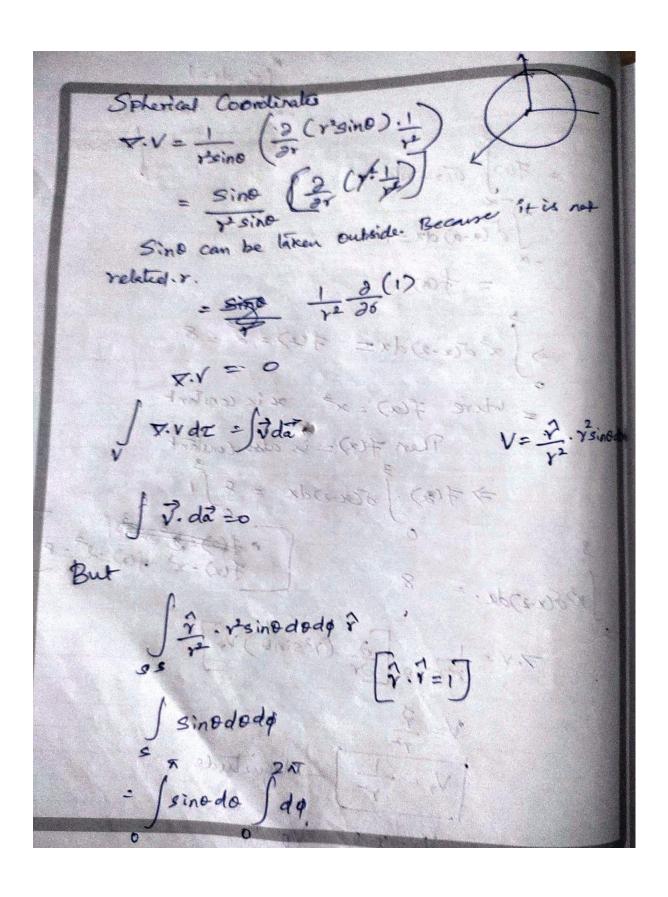
SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF PHYSICS

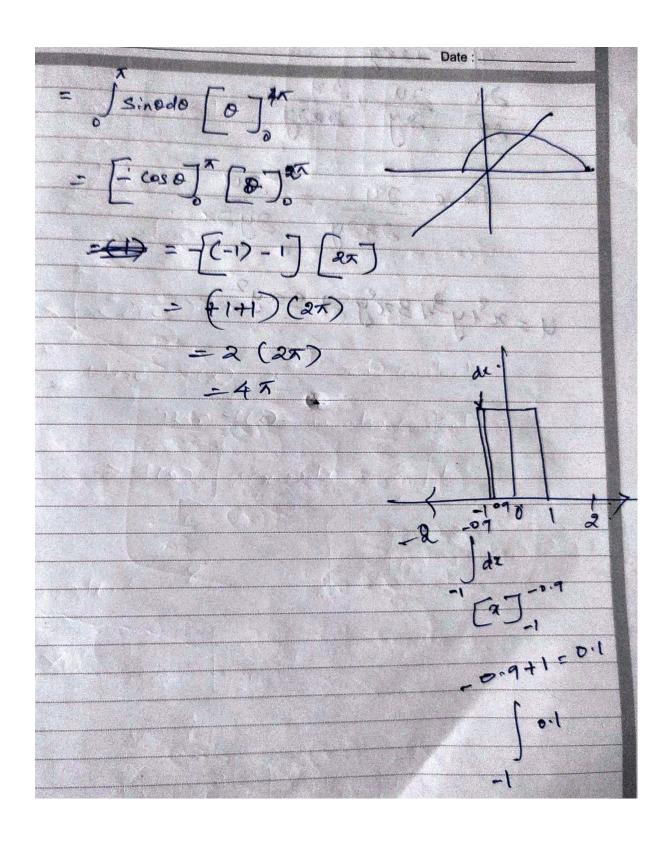
UNIT – II - Dirac Delta function and its properties – SPH1215

Unit 2
Dirac Delta function and its properties

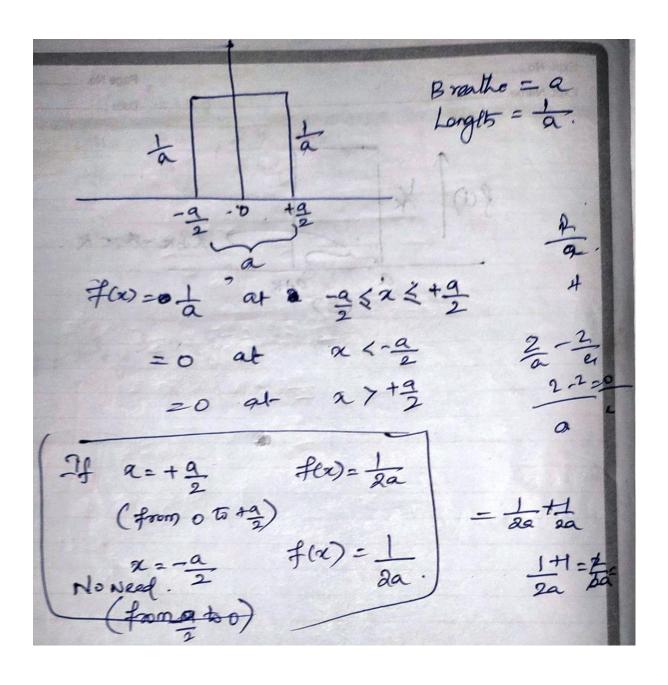






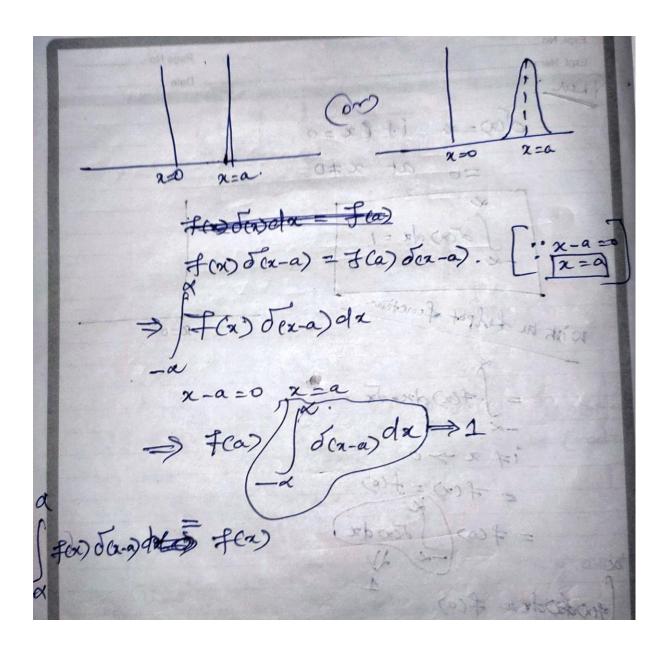


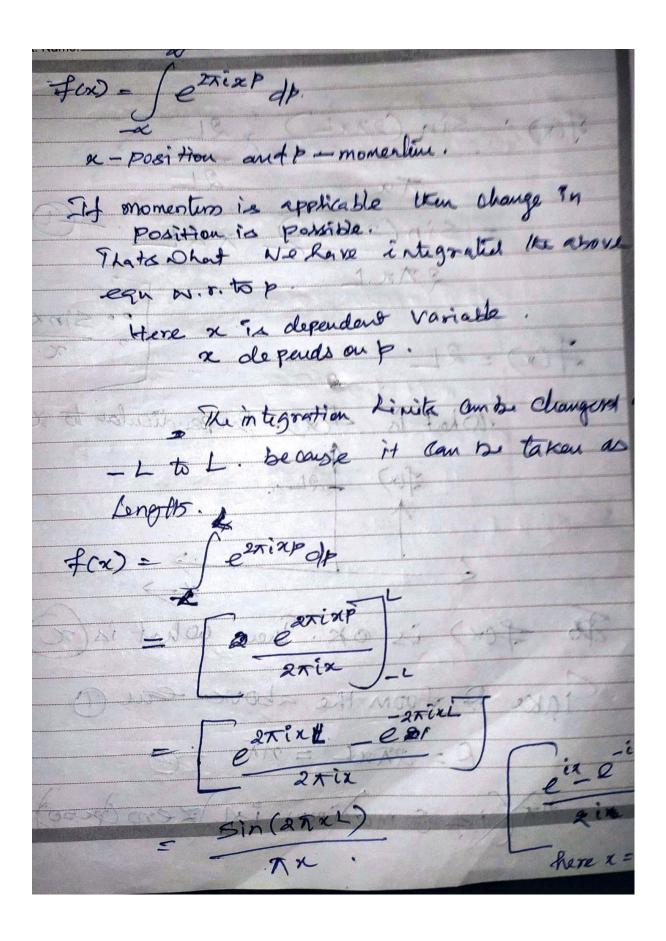
M= x3+3x2y ay 129 4= 23+3+32g +

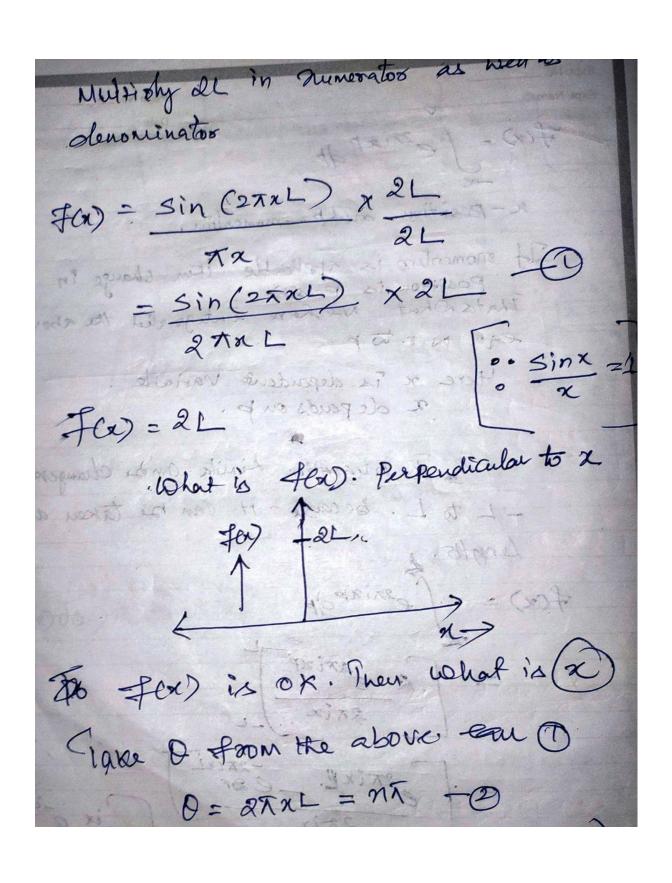


fcv=1 つまくなくすっ = 0 2 < - 9 =0 2/ +9 2f a >>> [a tends to zero: this is not of Zero, becoming zero (redress) Then ox = 0 $f(\alpha) = \frac{1}{\alpha} = \frac{1}{\Omega} = \infty$ This means the gap inbetween - a and +a becomes Zero. Ital mours reduced. Limits fla) -> o(x) there - a and + a moving towards the centre and clombined to getter. Hen becomes infinely

fcv=1 つまくなくすっ $=0 \quad 2 < -\frac{a}{2}$ =0 2/ +9 2f a >>> [a tends to zero: this is not of Zero, becoming zero (redress) Then ox = 0 $f(\alpha) = \frac{1}{\alpha} = \frac{1}{\Omega} = \infty$ This means the gap inbetween - a and +a becomes Zero. Ital mours reduced. Limits fla) -> 50x) there - 9 and + 9 moving towards the centre and clombined to getter. Hen becomes infinely





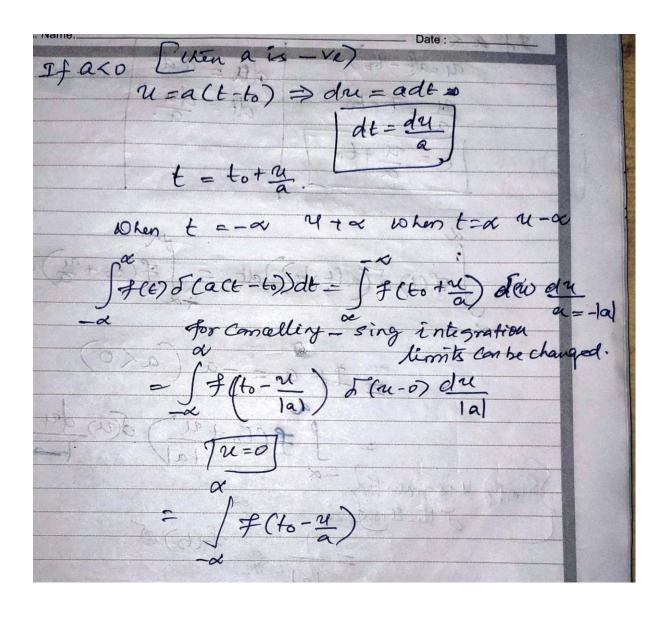


dol born to Corresponding angle in 98

11 ps definitely reminental 188

The difference between the interval 800c Joon 2 DALL =nx Hene 1 = 00 t (C) 0-2

Soct-tolter Normalization. JFC+) SCE-to)dt =f(to) [t=to]
localization If (a) of (a(t-to) d2=? f(ato) x Let $u = a(t-t_0)$ to $\frac{u}{a} = t-t_0$ du = adt (ov) dt = du $t = t_0 + u$ du = adt (ov) dt = du29 a70 when t= 00 ne=00 $f = t_0 + \frac{u}{a}$ $\int f(t_0 + \frac{u}{a}) \int f(u) \frac{du}{a}$ = \f(\frac{1}{2}) \int(\frac{1}{2}) \int(\frac{1}{2} - \frac{1}{2}) \int(\frac{1}{2} - \frac{1}) \int(\frac{1}{2} - \frac{1}{2}) \int(\frac{1}{2} - \frac{1}{2



Pince Delta function

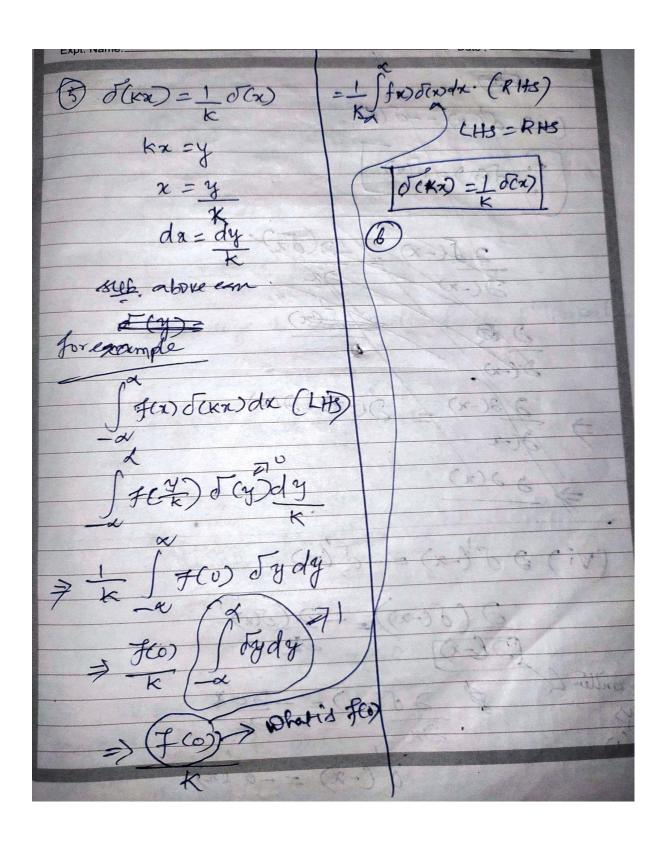
Dolar = 0,240

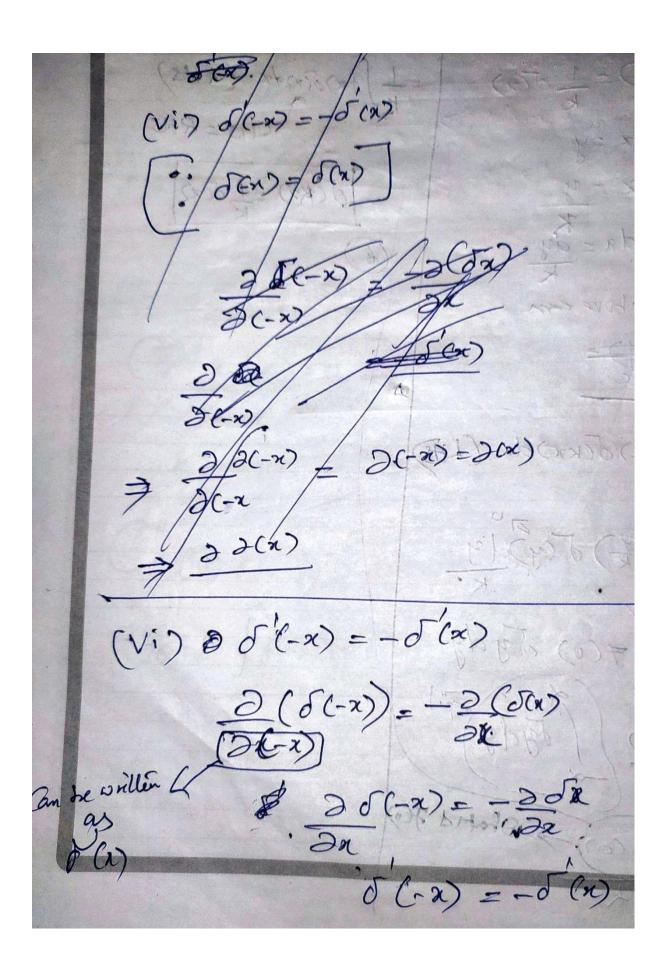
\$\frac{1}{2} \text{out} \text{out}

\text{Database}

\

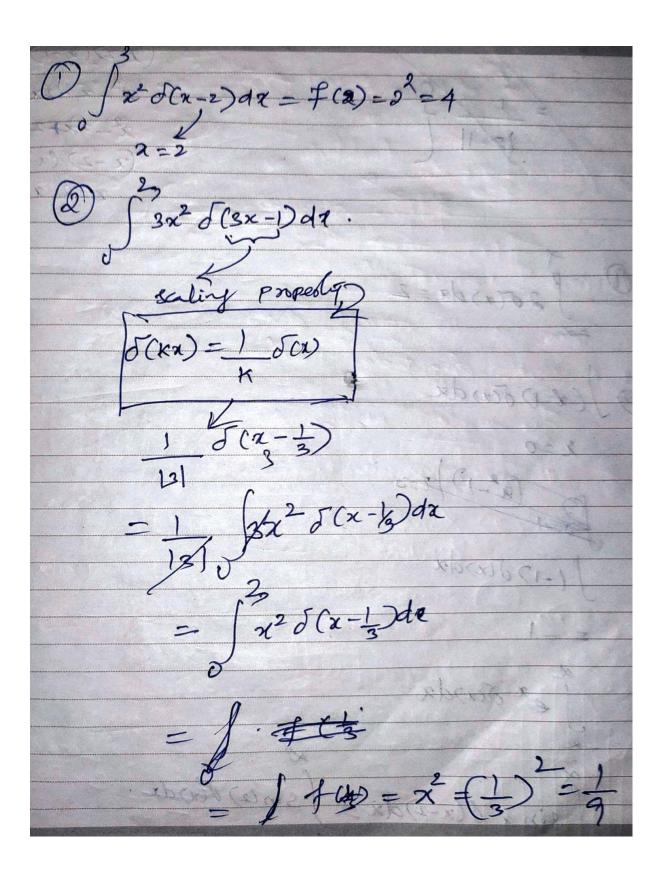
Properties of Dirae Delta Fernction \mathcal{T} $\mathcal{T}(-x) = \mathcal{T}(x)$ \mathcal{T} - everywhere then x (50-13) (16-x) will change wort change. (2+ is too small) x &(x) 20 10 10 10 10 10 20 220 60 + 6 2 \$0 dex) =0 0 = 0 = 0 = 0 (3) (iii) $F(x) \delta x = f(0) \delta x$ $(F) (ID) \int_{-\alpha}^{\alpha} f(x) dx dx = \int_{-\alpha}^{\alpha} f(x) \int_{-\alpha}^{\alpha} dx dx$ $= f(x) \int_{-\alpha}^{\alpha} dx dx$ $= -\alpha$ = f(0)



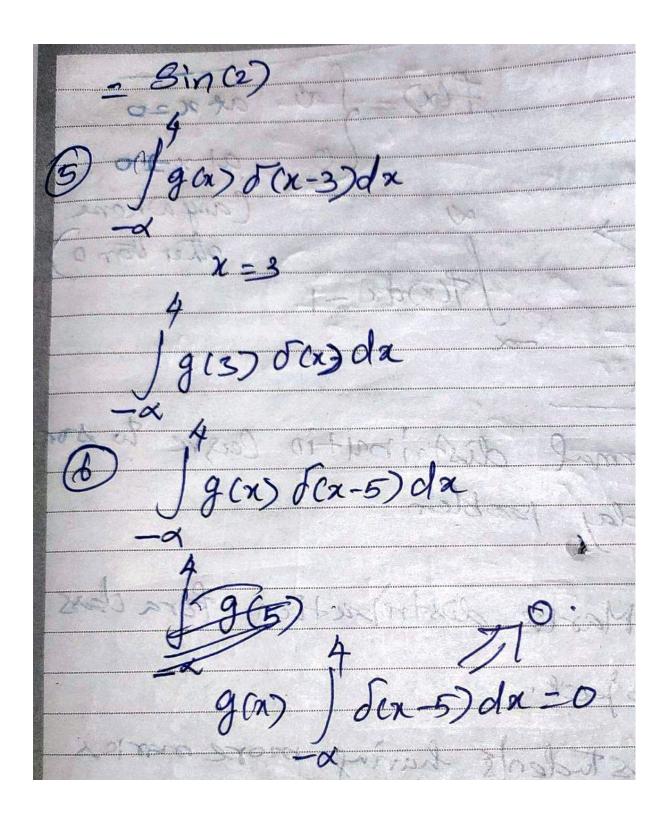


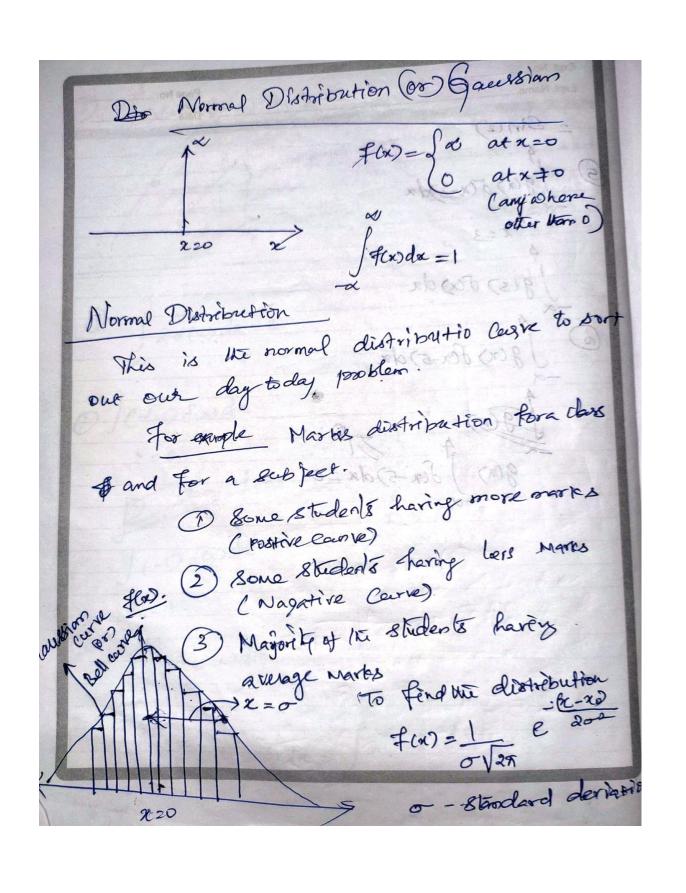
2 des - Sous da. According to Dirac Deltra function 2^{Nd} properties $2 \frac{d}{dx} \int dx = -\int dx_0 dx_1$ $2 \frac{d}{dx} \int dx_1 = -\int dx_1 \int dx_2$ $2 \frac{d}{dx} \int dx_2 = -\int dx_1 \int dx_2$ $3 \int dx_1 = -\int dx_1 \int dx_2$ $4 \int dx_2 = -\int dx_1 \int dx_2$ $4 \int dx_1 = -\int dx_1 \int dx_2$ $5 \int dx_1 = 0$ $5 \int dx_2 = 0$ $5 \int dx_1 = 0$ $5 \int dx_2 = 0$ $4 \int dx_1 = 0$ $4 \int dx_2 = 0$ $4 \int dx_3 = 0$ $5 \int dx_1 = 0$ $4 \int dx_2 = 0$ $4 \int dx_3 = 0$ $5 \int dx_1 = 0$ $4 \int dx_2 = 0$ $5 \int dx_3 = 0$ $5 \int dx_1 = 0$ $4 \int dx_2 = 0$ $4 \int dx_3 = 0$ $5 \int dx_1 = 0$ $4 \int dx_2 = 0$ $5 \int dx_3 = 0$ $6 \int dx_1 = 0$ $6 \int dx_2 = 0$ $6 \int dx_3 = 0$

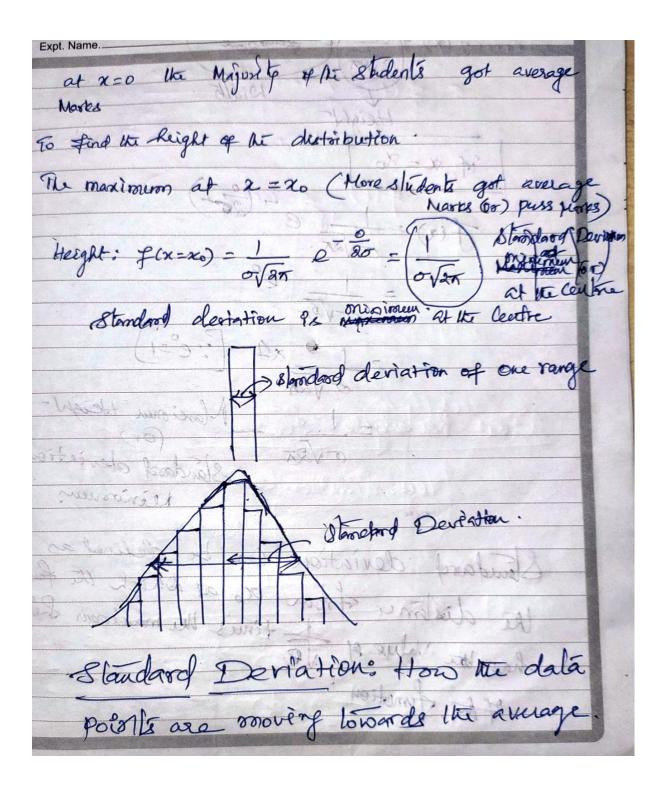
fenséensda = fco) - standard equation Then the above can be written as

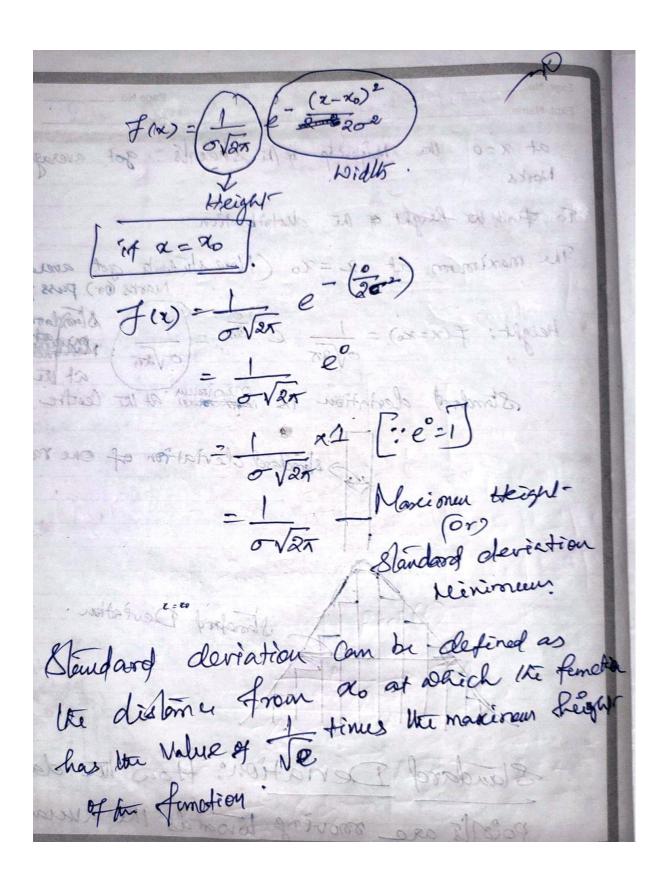


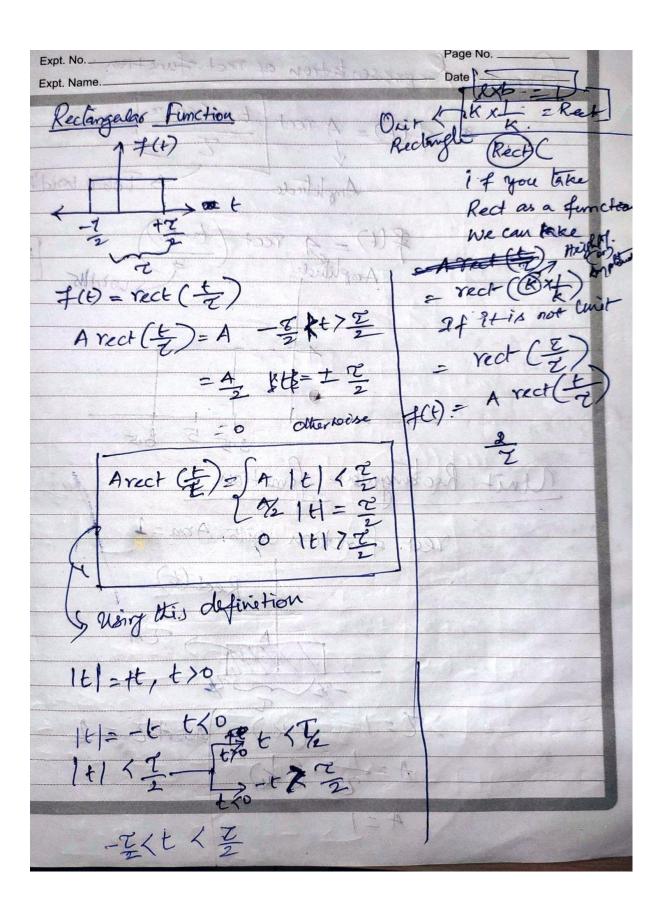
(2+1) 5(x-2) (x-1)dx (2-2)(x-1) @ f 20(x) dx=2 1-17 Jaxola. er Scanda sin x o(x-2)dx = Since) vousde.

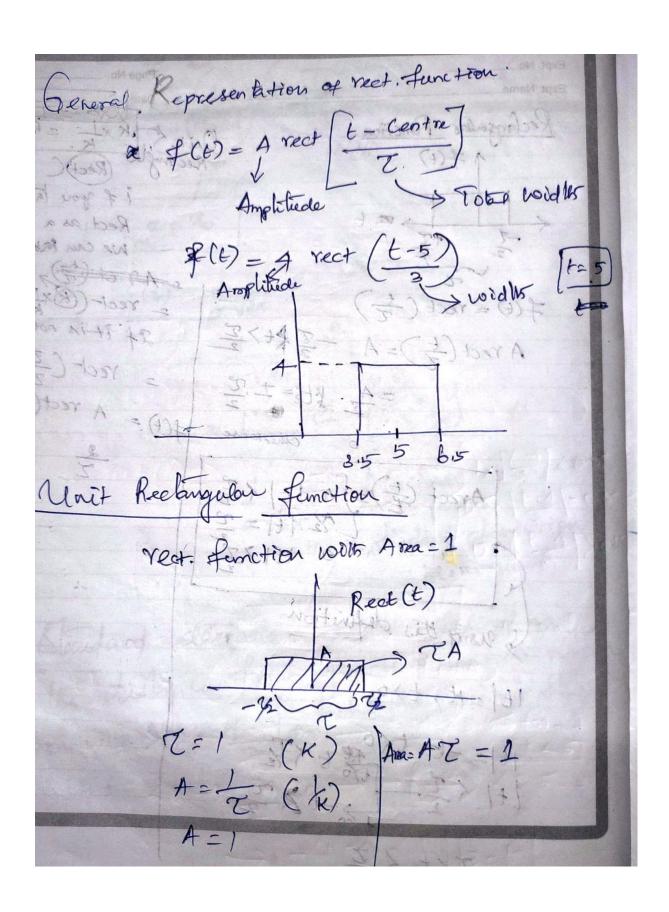


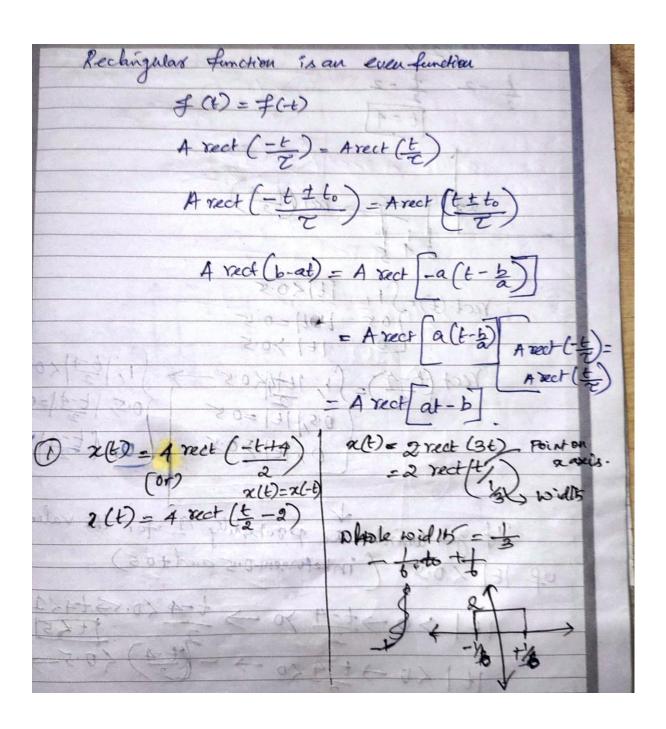


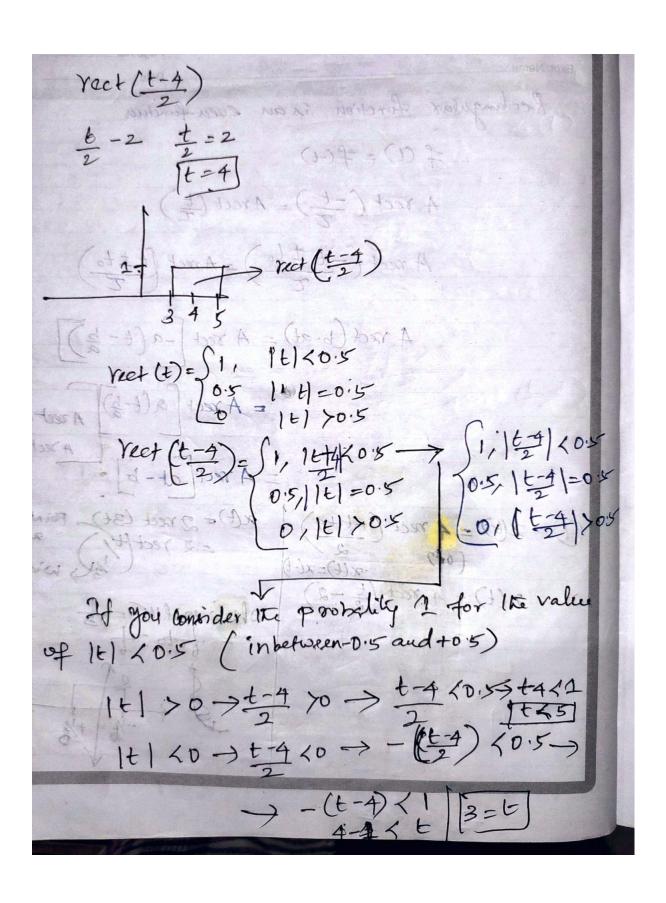


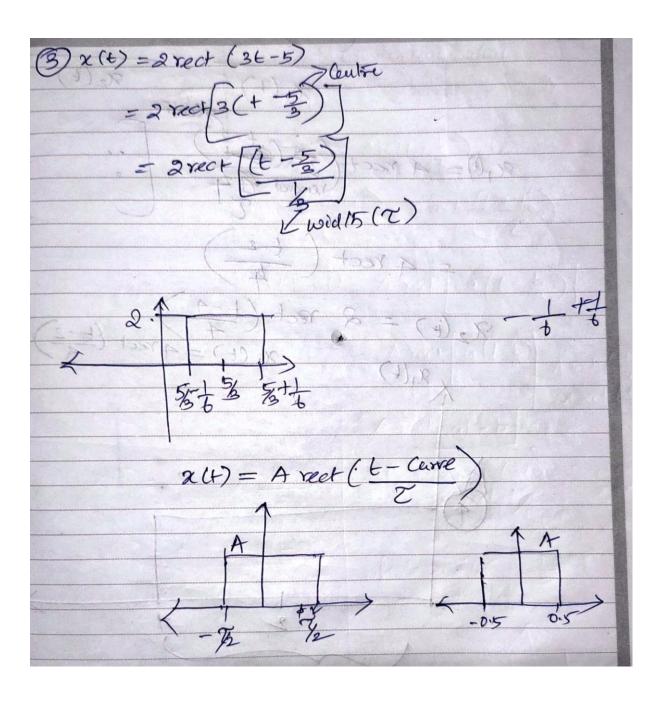


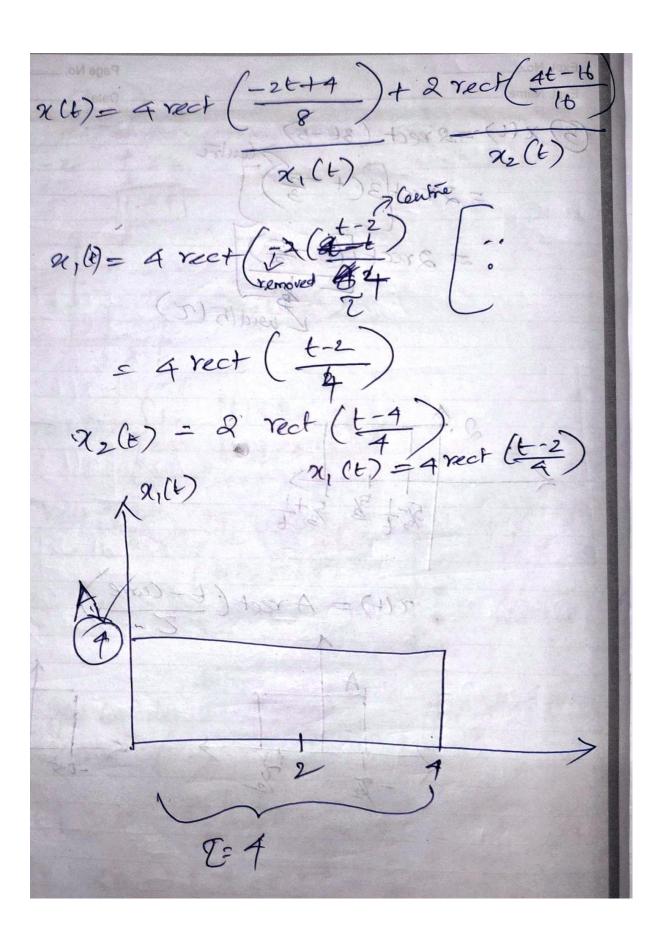


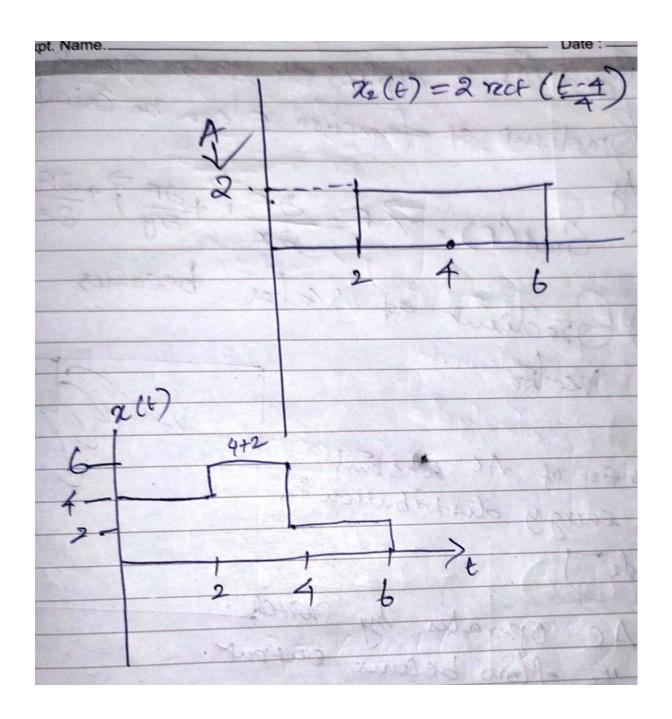












Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

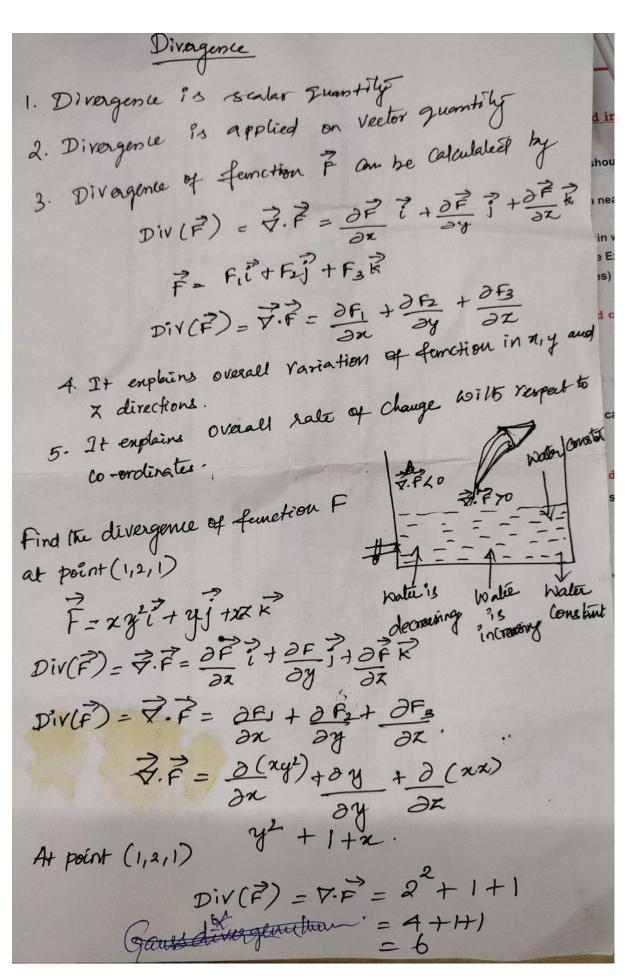
www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF PHYSICS

UNIT – III - Orthogonal Curvilinear Coordinates – SPH1215

Unit 3

Orthogonal Curvilinear Coordinates
Gradient
D'Gradient is applied on salar quantity
D'Gradient is applied on scalar quantity D'Gradient of femotion & can be calculated
6 Grad (F) = 7 F = 2 F 7 + 2 F 7 + 2 F 2
Gradient et scalar becomes Neertor
Neetos
Position of AC bonsbut- but its energy dustribution is
but its energy dustrion
14 AC Operates by Switch. (4) Its flow becomes output
N 09315-36924 - Chemencherry



ママ = Lim タデ·ds AV>O AV → DJ F. F dV = JF. de Gans Divagere heorem Curl Curl is a Vector quantité Cart of function F can be calculated by Curt operator on Vector only. Curl (F) = FXF 件是产二本日产十月了十月了 $Curl(\vec{F}) = \vec{\nabla} \times \vec{F} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 3 & 3 \\ 4 & 1 & 3 \end{bmatrix}$ $F_1 = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 3 & 3 \\ 4 & 1 & 3 \end{bmatrix}$ $F_1 = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 3 & 3 \\ 4 & 1 & 3 \end{bmatrix}$ => => == Lim JF.dl As>0 As= JZxFds=JF.dl Hobes thone

1.3 COORDINATE SYSTEMS

Coordinate system is defined as a system which is used to represent a point space. Basically coordinate systems are of three types.

- Cartesian (or) Rectangular coordinate system.
- Circular cylindrical coordinate system. 2.
- 3. Spherical coordinate system.

The simplest among these coordinate systems is the cartesian coordinate system

1.3.1 Cartesian (or) Rectangular Coordinate System

The cartesian coordinates are represented in figure 1.3. The three axes x, y, z are mutually perpendicular to each other. These are said to be orthogonal to each other. The unit vectors along the coordinate axes are represented by $\overrightarrow{a_x}$, $\overrightarrow{a_y}$ and $\overrightarrow{a_z}$.

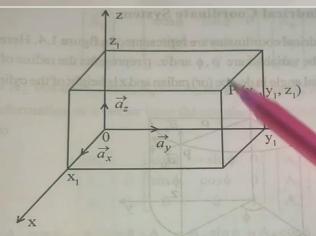
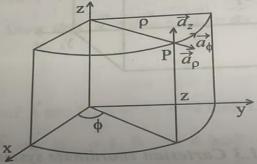


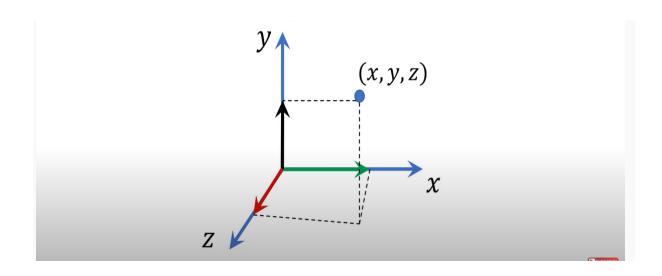
Figure 1.3 Cartesian coordinate system

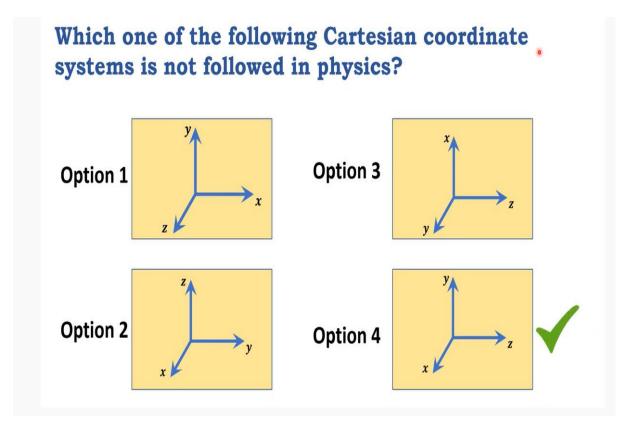
Here a point, P is represented by P (x, y, z). The variables are x, y and represents the width of the rectangular in metre, y is length of the rectangular in metre and z is height of the rectangular in metre.

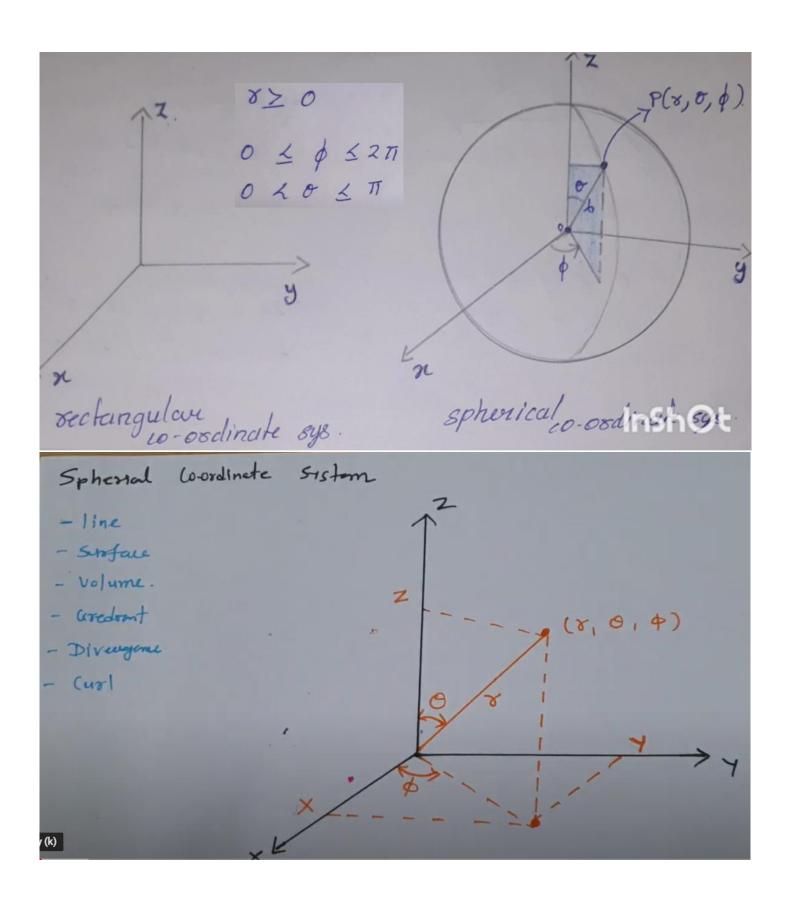
1.3.2 Circular Cylindrical Coordinate System

The circular cylindrical coordinates are represented in figure 1.4. Here a poin represented $P(\rho, \phi, z)$. The variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. ρ represents the radius of a cylindrical property of the variables are ρ, ϕ and z. represented $P(p, \phi, z)$. The variation of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in degree (or) radian and z is height of the cylinder in metre, ϕ is called azimuthal angle in the cylinder in metre, ϕ is called azimuthal angle in the cylinder in the cylinder







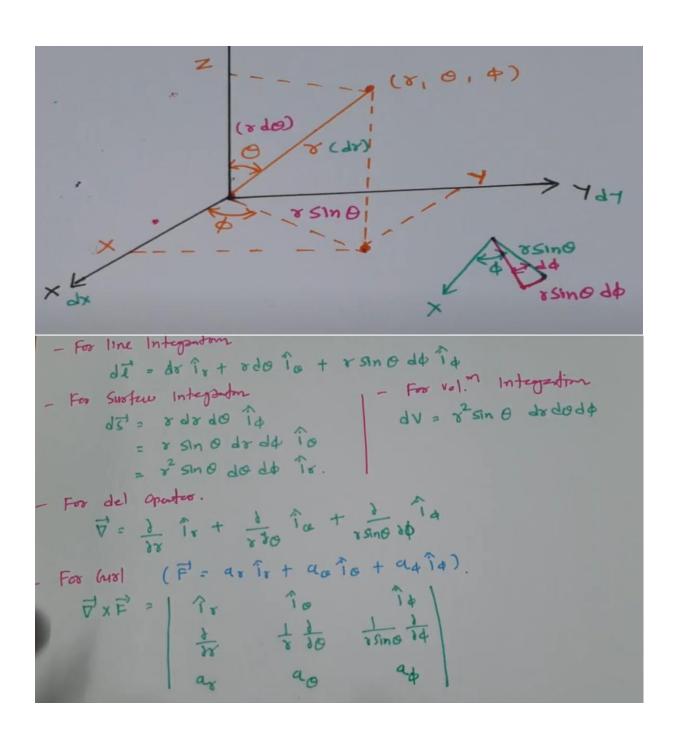


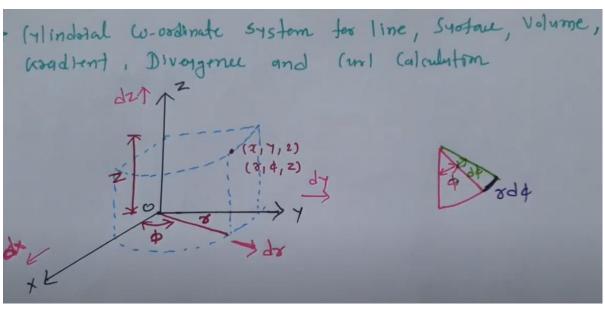
Curl

Z

Laplacom > div gradient of a femetion = 7 (2.7)

Spherical Co-ordinatu Syshw 735ino (0,0,0)





Velocity & acceleration in spherical co-ordinals
$(\gamma, 0, \phi)$ $\hat{\gamma}, \hat{\rho}, \hat{\phi}$
my to find firming is at = drift rdo o trsino ar = drift de indicate di drift de indicate de i
de = dri + rdo + rsino (1) carenam comando
$\vec{d}s = d(\hat{u}\hat{i}) = d\hat{u}\hat{i} + td\hat{i} \left(\vec{i} = \hat{u}\hat{i}\right)$
$\hat{I} = \sin\theta \cos\phi \hat{1} + \sin\theta \sin\phi \hat{1} + \cos\theta \hat{R} - \Theta$
$dl = d \left(Sino cosp \hat{i} + Sino Sino \hat{j} + coso \hat{k} \right)$
= i (cos 0 do) cos \$] + i [Sin 0 (-sin \$ do)]
(coso (a) sin o] + Sin o (a)
+ [-sinodig k] 6
= do [cosocosq i + cososing] - sin od] +
+ da [-sin o sin p dq i + sin o cosp j]
$= \hat{O}d\theta + d\phi \sin \theta \left[-\sin \phi \hat{i} + \cos \phi \hat{j} \right]$
= êdo + dp sino p J Put in en O
Put in an O
PWD in (1)

Pute in ()
$$\frac{d^2}{dr^2} = \frac{dr^2}{dr^2} + r \frac{dr}{dr} + r \frac{dr}{dr} = \frac{dr^2}{dr^2} + r \frac{dr}{dr} + r \frac{dr}{dr}$$

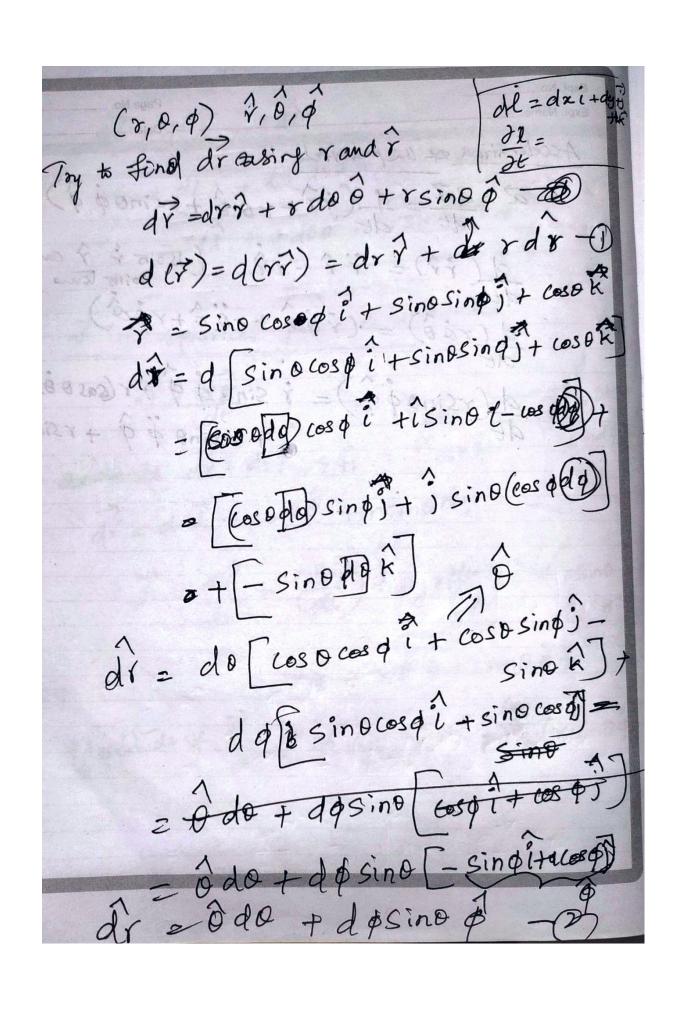
$$\frac{\partial \vec{l}}{\partial t} = d\ell \, \hat{l} + l \, d\hat{\ell}$$

$$= d\ell \, \hat{l} + l \, d\theta \, \hat{\theta} + d\phi \sin \phi \, \hat{\phi}$$

$$= d\ell \, \hat{\ell} + l \, d\theta \, \hat{\theta} + r \sin \phi \, d\phi \, \hat{\phi}$$

$$= d\ell \, \hat{\ell} + l \, d\theta \, \hat{\theta} + r \sin \phi \, d\phi \, \hat{\phi}$$

$$\vec{l} = d\ell \, \hat{\ell}$$

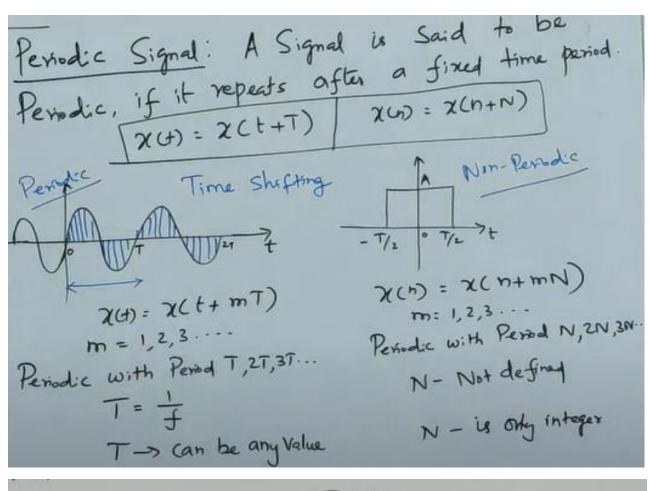


Acceleration of the particle $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\dot{\vec{v}} \hat{\vec{v}} + \dot{\vec{v}} \cdot \hat{\vec{v}} + \dot{\vec{v}} \cdot \dot{\vec{v}} + \dot{\vec{v}} \cdot \dot{\vec{v}} \right) \\
\vec{d}t \qquad dt \qquad (Bolfs \dot{\vec{v}} \cdot \hat{\vec{v}} \cdot \dot{\vec{v}} \cdot \dot{\vec{v}}$

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES **DEPARTMENT OF PHYSICS**

UNIT – IV - Fourier Series – SPH1215



1)
$$\chi(4) = \cos(t + T/4)$$
 $\chi(4) = \cos(2\pi f t + \phi)$
 $2\pi f = 1$
 $2\pi = 1$
 $T = 1$
 $T = 1$
 $T = 2\pi$

2) $\chi(4) = \sin(2\pi f t + \phi)$
 $\chi(4) = \cos(2\pi f t + \phi)$
 $\chi(4) = \sin(2\pi f t + \phi)$
 $\chi(4) = \cos(2\pi f t + \phi)$
 $\chi(4) = \sin(2\pi f t + \phi)$
 $\chi(4) = \cos(2\pi f t + \phi)$

$$\chi(t) = \chi_{1}(t) + \chi_{2}(t)$$

$$\chi_{1}(t) = \chi_{1}(t+mT_{1})$$

$$\chi_{2}(t) = \chi_{2}(t+kT_{2})$$

$$\chi(t) = \chi(t+T)$$

$$T = mT_{1} = kT_{2}$$

$$T_{1} = \frac{K}{m} = \gamma_{1} + \gamma_{2} + \gamma_{3} + \gamma_{4} + \gamma_{5} + \gamma_{5}$$

3)
$$\chi(t) = (os(T_{\frac{1}{3}}) + sm(T_{\frac{1}{4}})$$

 $\chi_{1}(t) = \chi_{2}(t)$
 $2Tf_{1} = T_{\frac{1}{3}}$
 $2Tf_{1} = T_{\frac{1}{3}}$
 $T_{1} = \frac{1}{8}$
 $T_{2} = \frac{1}{8}$
 $T_{1} = \frac{1}{8}$
 $T_{2} = \frac{1}{8}$

4)
$$\pi(d) = cost + Sin \sqrt{2}t$$
 $\pi_2(1)$
 $\pi_2($

$$\chi(n) = \cos(2\pi f n)$$

$$\chi(n+N) = \cos(2\pi f (n+N))$$

$$= \cos\left[2\pi f n + 2\pi f N\right]$$

$$= \cos\left[2\pi f n + 2\pi f N\right]$$

$$A \quad B$$

$$\cos(2\pi f n + 2\pi f N)$$

$$A \quad B$$

$$\cos(2\pi f n + 2\pi f N)$$

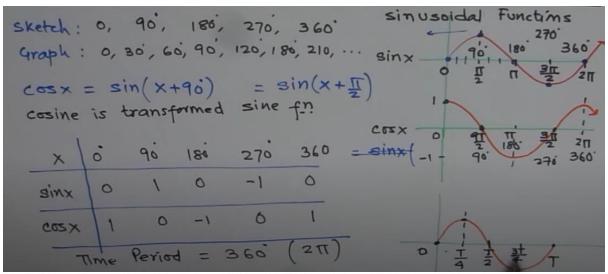
$$\sin(2\pi f n + 2\pi f N)$$

$$\sin(2\pi f n + 2\pi f N)$$

$$\cos(2\pi f n + 2\pi f N)$$

$$\sin(2\pi f n + 2\pi f N)$$

$$\sin($$



Orthogonality of Sine and Cosine Functions

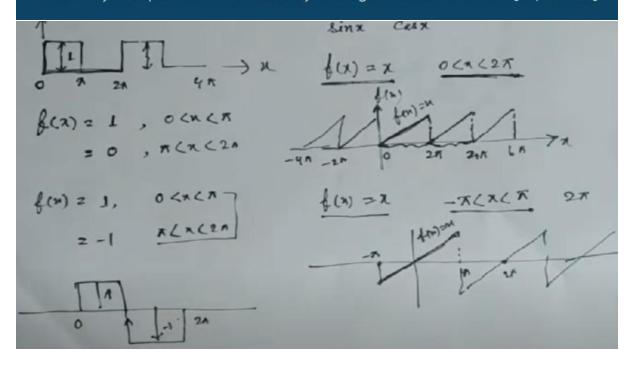
Mutually orthogonal functions

• The condition for two functions f (x) and g (x) to be mutually orthogonal in interval [a, b] is $\int_{a}^{b} f(x) g(x) dx = 0$

The set of functions

$$\{1,\cos\frac{\pi x}{1},\cos\frac{2\pi x}{1},\cos\frac{3\pi x}{1},...,\sin\frac{\pi x}{1},\sin\frac{2\pi x}{1},\sin\frac{3\pi x}{1},...\}$$

is linearly independent and mutually orthogonal in an interval $[\alpha, \alpha + 2L]$



```
Taylor: f(x) = Co + C1(x-a) + C2(x-a)2 + C3(x-a)3 + ... Cn= f(n)(a)
Fourier: f(x) = a_0 + a_1 cos(1x) + a_2 cos(2x) + a_3 cos(3x) + \cdots a_0 = \frac{1}{2\pi i} cos(1x) + b_2 c_3 in(2x) + b_3 c_3 in(3x) + \cdots
           f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} b_n sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(nx) + \sum_{n=1}^{\infty} a_n cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n 
 Fourier: f(x) = a. + a. cos(1x) + a. cos(2x) + a. cos(3x) + ... a. = 271 = 16(x) d.
                                                                                                                                                                                                                                                                                                 + b, sin(1x) + b25in(2x) + b3 sin(3x) +...
                                                                                                                                          f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)

\frac{1}{n} = \frac{1
    Taylor: f(x) = Co + C1(x-a) + C2(x-a) + C3(x-a) + ..., Cn= f(x)
Fourier: f(x) = a_0 + a_1 cos(1x) + a_2 cos(2x) + a_3 cos(3x) + \cdots
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx
+ b_1 sin(1x) + b_2 sin(2x) + b_3 sin(3x) + \cdots
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx
    f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) \cos(nx) \cos(nx)
f(x) = a_0 + \sum_{n=1}^{\infty} a_n 
ON [-TT, TT]
```

Problems to be Solved:

1.
$$f(x) = x^2$$
, $[-\Pi, \Pi]$

2. $f(x) = e^{-x}$, $[0, 2\Pi]$

3. $f(x) = x - x^2$, $[-\Pi, \Pi]$

4. $f(x) = \sqrt{(1 - \cos x)}$, $[0, 2\Pi]$

5. $f(x) = x \sin x$, $[0, 2\Pi]$

Sol Here, $f(x) = x - x^2$ and $b - a = 2\pi$ TUTORIALS

The fourier series for $f(x) = x - x^2$ is

 $x - x^2 = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$
 $a_0 = \frac{1}{11} \int_{a}^{b} f(x) dx = \frac{1}{11} \int_{-\Pi}^{\Pi} (x - x^2) dx$
 $= \frac{1}{11} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{-\Pi}^{\Pi} = \frac{1}{11} \left[\frac{\Pi^2}{2} - (-\Pi)^2 - \frac{\Pi^3}{3} + (-\Pi)^3 \right]_{-R}^{R}$

 $= \frac{1}{11} \left[\frac{\pi^2}{2} - \frac{\pi^2}{2} - \frac{\pi^3}{3} - \frac{\pi^3}{3} \right] = -\frac{2\pi^3}{3\pi} = \left[-\frac{2\pi^2}{3} - a_0 \right]$

$$\frac{1}{\Pi} \int_{0}^{\pi} f(x) (\cos nx) dx = \frac{1}{\Pi} \int_{-\Pi}^{\pi} (x - x^{2}) (\cos nx) dx = \frac{1}{\Pi} \left[(x - x^{2}) \frac{\sin nx}{\eta} - (1 - 2x) \left(-\frac{\cos nx}{\eta^{2}} \right) + (-2) \left(-\frac{\sin nx}{\eta^{3}} \right) \right] \\
= \frac{1}{\Pi} \left[(x - x^{2}) \frac{\sin nx}{\eta} + (1 - 2x) \frac{(\cos nx)}{\eta^{2}} + 2 \frac{\sin nx}{\eta^{3}} \right]^{\Pi} \\
= \frac{1}{\Pi} \left[(\Pi - \Pi^{2}) \frac{\sin n\pi}{\eta} - (-\Pi - \Pi^{2}) \frac{\sin n(-\Pi)}{\eta} + (1 - 2\pi) \frac{(\cos n\pi)}{\eta^{2}} - (1 + 2\pi) \frac{(\cos n\pi)}{\eta^{2}} - 2 \frac{\sin n\pi}{\eta^{3}} - 2 \frac{\sin n\pi}{\eta^{3}} - 2 \frac{\sin n\pi}{\eta^{3}} \right]^{\Pi}$$

$$= \frac{1}{\Pi} \left[(x - x^{2}) \frac{(\cos n\pi)}{\eta^{3}} - (1 + 2\pi) \frac{(\cos n\pi)}{\eta^{3}} + 2 \frac{\sin n\pi}{\eta^{3}} \right]^{\Pi}$$

$$= \frac{1}{\Pi} \left[(\pi - \pi^{2}) \frac{\sin n\pi}{1} + (1 - 2\pi) \frac{(\cos n\pi}{1} + 2 \frac{\sin n\pi}{1} \right]$$

$$= \frac{1}{\Pi} \left[(\Pi - \Pi^{2}) \frac{\sin n\Pi}{1} - (-\Pi - \Pi^{2}) \frac{\sin n\pi}{1} \right]$$

$$+ (1 - 2\pi) \frac{(\cos n\Pi}{1} - (1 + 2\pi) \frac{(\cos n\pi)(-\Pi)}{1}$$

$$+ 2 \frac{\sin n\pi}{1} - 2 \frac{\sin n\pi}{1} - 2 \frac{\sin n\pi}{1}$$

$$= \frac{1}{\Pi} \left[(-2\pi) \frac{(-1)^{n}}{1} - (1 + 2\pi)(-1)^{n} \right]$$

$$= \frac{1}{\Pi^{2}} \left[(-2\pi) \frac{(-1)^{n}}{1} - (1 + 2\pi)(-1)^{n} \right]$$

$$= \frac{1}{\Pi^{2}} \left[(-1)^{n} - 2\pi (-1)^{n} - (-1)^{n} - 2\pi (-1)^{n} \right] = \frac{-4(-1)^{n}}{1} = \frac{4\pi}{1} \left[(-1)^{n} - 2\pi (-1)^{n} - 2\pi (-1)^{n} \right]$$

$$b_{\eta} = \frac{1}{\Pi} \int_{0}^{b} f(x) \sin n\pi dx = \frac{1}{\Pi} \int_{-\Pi}^{\Pi} (x - x^{2}) \sin n\pi dx$$

$$= \frac{1}{\Pi} \left[(x - x^{2}) \left(-\frac{\cos n\pi}{n} \right) - (1 - 2\pi) \left(-\frac{\sin n\pi}{n^{2}} \right) + (-2) \frac{\cos n\pi}{n^{3}} \right]_{-\Pi}^{\Pi}$$

$$= \frac{1}{\Pi} \left[(x^{2} - \pi) \frac{(\cos n\pi) + (1 - 2\pi)}{n^{2}} \frac{\sin n\pi}{n^{2}} - 2 \frac{(\cos n\pi)}{n^{3}} \right]_{-\Pi}^{\Pi}$$

$$= \frac{1}{\pi} \left[(\pi^{2} - \pi) (\underline{osn\pi} - (\pi^{2} + \pi) (\underline{osn}(-\pi) + (1-2\pi) \underbrace{\tau}_{1} + 2 (\underline{osn}(-\pi) - (1+2\pi) (\underline{osn}(-\pi) - 2 (\underline{osn\pi} + 2 (\underline{osn}(-\pi) - 2 (\underline{osn}($$

Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF PHYSICS

UNIT – V - Frobenius Method and Some Special Integrals – SPH1215

Unit V Frobenius Method and Some Special Integrals

Irregular singular point:

Either It (x-a) P(x) (Ox) It (x-a)2 Q(x) does not exists then the point x=a is an irregular singular point.

xy"+ (1-x)y"+ = y = 0

regular singular points of $xy'' + (1-x)y' + \frac{1}{x}y = 0$

$$\begin{array}{l} \Rightarrow \\ xy'' + (1-x)y' + \frac{1}{x}y = 0 & \dots > 0 \\ \text{Here } f(x) = x \\ f(0) = 0 \end{array}$$

.: x =0 is a singular point $xy'' + (1-x)y' + \frac{1}{x}y = 0$

$$y'' + \frac{1-x}{x}y' + \frac{1}{x^2}y = 0$$

$$P(x) = \frac{1-x}{x}$$
, $Q(x) = \frac{1}{x^2}$

(i) Lt $(x-a)p(x) = Lt x = \frac{1-x}{x} = Lt (1-x) = 1$

Ci) It
$$(x-o^2Q(x) = It x^2 \cdot \frac{1}{x^2} = It = 1$$

(i) & (ii) both are exists.

: x=0 is a regular singular point.

at
$$x = 1$$

(i) Lt $(x-a) p(x) = Lt (x/b) \frac{1}{(x+1)(x-1)^2}$

$$= Lt \frac{1}{(x+1)(x-1)}$$

$$= \frac{1}{0}$$

$$= \infty$$

... $x = 1$ is an irregular singular point.

Frobenius Method

$$3x \frac{d^2y}{dx^2} + 2dy + y = 0$$

$$y'' + P y' + Q y = 0$$

$$3x \frac{d^2y}{dx^2} + 2dy + y = 0$$

$$y'' + P y' + Q y = 0$$

$$3x \frac{y'' + \frac{2}{3x}}{y'' + \frac{4}{3x}} = 0$$

$$(x - x_0) P(n) = 2x \times \frac{2}{3x} = \frac{2}{3} \neq \infty$$

$$(x - x_0)^2 Q(x) |_{n - x_0} = x^2 \times \frac{2}{3} = 0 \neq 0$$

$$3x \frac{d^{2}y}{dx^{2}} + 20\frac{dy}{dx} + y = 0$$

$$y = \sum_{h=0}^{\infty} a_{h} x^{h+k}$$

$$h = 0 \quad (n+k) \quad a_{h} x^{h+k-1}$$

$$y'' = \sum_{h=0}^{\infty} \frac{(n+k)(n+k-1)}{(n+k-1)} \frac{a_{h} x^{h+k-2}}{a_{h} x^{h+k}}$$

$$\sum_{h=0}^{\infty} \frac{a_{h}(n+k)(n+k-1)}{a_{h} x^{h+k-1}} + 2a_{h} x^{h+k-1}(n+k)$$

$$a_{h} x^{h+k}$$

$$a_{h} x^{h+k}$$

The coeff of lowest degree term and The coeff of nent lowest term xte 3a, (k+1) k+2a, k+1 +a =0 $\alpha_1 = \frac{-\alpha_0}{(3k+2)(k+2)}$ Egnate xn+k-0 3 anti (n+k+1)(n+k) + 2anti (n+k+1) + an-0 anti= - un (h+K+1)(3n+3k+2)

Put
$$k = 0$$
 $a_1 = -\frac{a_0}{2}$
 $a_2 = \frac{a_0}{20}$
 $a_3 = -\frac{a_0}{480}$
 $a_4 = \frac{a_0}{20}$
 $a_4 = \frac{a_0}{20}$
 $a_5 = \frac{a_0}{180}$
 $a_6 = \frac{a_0}{180}$
 $a_6 = \frac{a_0}{180}$
 $a_7 = \frac{a_0}{1680}$
 $a_7 = \frac{a_0}{1680}$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{-x} & -e^{-x} \\ -1 & -1 \end{bmatrix}$$

Expt. Namo.	
Lim [x"e-x]	
2→~ 1, ~~	
Lim xh x > xx ell	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$= 0 + n \int_{e^{-x}}^{\infty} x^{n-1} dx$	
[n+1 = n [n]	
	T = 1
[n = 1 ]	In+1 = min
	n+1 - n!
[hn = 1/9]	1/2 = 1
	<i>-</i> '
[5/2 = [3+1 ([n+1)	
- 3/3/2	
= 3 [3]	
T ( P	
- 3 1 11	
= 3,1/2	
	<b>新疆域的</b>