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Introduction

Introduction to Oscillations

In your school science courses you must have‘learnt about different types of motions.
You are familiar with the motion of falling bodies, planets and satellites. A body
released from rest and falling freely (under the action of gravity) moves along a
straight line. But an object dropped from an aeroplane or a ball thrown up in the air
follows a curved path (except when it 1s thrown exactly vertically). You must have
also observed the motion of the pendulum of a wall clock and vibrating string of a
violin or some other string instrument. These arc examples of oscillatory motion. The
simplest kind of oscillatory motion which can be analysed mathematically is the
Simple Harmonic Motion (SHM). We can analyse oscillatory motions of systems of
entirely different physical nature in terms of SHM. For example, the equation of
motion that we derive for a pendulum will be similar to the equation of motion of a
charge in a circuit containing an inductor and a capacitor. The form of solutions of
these equations and the time variation of energy i these systems show remarkable
similarities. However, there are many important phenomena which arise due to
superposition of two or more harmonic oscillations. For example, our ear drum
vibrates under a complex combination of harmonic vibrations. But we shall discuss
this aspect in the next unit.

In this unit we will study oscillatory systems using simple mathematical techniques.
Our emphasis would be on highlighting the similarities between different systems.

Objectives
After studying this unit you should be able to

® state the basic criteria for the simple harmonic motion of a system

establish the differential equation for a system executing SHM and solve it
® define the terms amplitude. phase and time period

® compute potential, kinetic and total energies of a body executing SHM



You all know that cack hand of a clock comes buck to a given position after the lapse
of centain tme. This is a familiar example of periodic motion. When a body in
periodic mation moves to-and-fro (or back and forth) about its position, the motion is
‘called vibrasory or oscillarory. Oscillatory motion 1s a common phenomenon. Well
known examples of oscillatory motion are: oscillating bob of a pendulum clock.
piston of an engine. vibrating strings of a musical instrument, oscillating uranium
nucleus hefore it fissions. Even large scale buildings and bridges may at times undergo
oscillatory motion. Many stars exhibit periodic variations in brightness, You must
have obscrved that normally such gscillations, left to themselves, do not continue
ndefinitely, o, they giadually die down due to various damping factors like friction
and air resistance., efe. Thus, 10 actual practice, the oscillatory motion may be quite
.complex, as lor instance, the vibrations of a violin string. We begin our study with the
discussion of the essential lcutures of SHM. For this we consider an ideglised model
of a spring-muss system, as an example of a simple harmonic oscillator.

Oscillations of a Spring-mass 'System

A spring-mass system consists of a spring of negligible mass whose one end s fixed to
a rigid support S and the other end carries a block of mass m which lies flat.on a
horizontal [rictionless table (Fig. [ 1a). Let us take the x-axis to be along the length of
the spring. When the mass 1s at rest. we mark a point on 1t and we define the origin of
the axis by this point. That 1. at equilibrium the mark lies at x = 0.

(a) =
Equilibrium |
|
|
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Compression

Fig. 1.1 A Spring-mass System as an ideal oscillator (a) The equilibrium configuration, (b) An extended
configuration, (c) A compressed configuration.



If the spring is stretched by pulling the mass longitudinally. due to elasticity a
restoring force comes into play which tends, to bring the mass back towards the
equilibrium position (Fig i.1b). If the spring were compressed the restoring force
would tend to extend the spring and restore the mass to its equilibrium position

(Fig.1.1c). More you stretch/compress the spring, more will be the restoring farce. So
the direction of the festoring force is always opposite to the displacement. If total
change m the length is small compared to the original length, then the magnitude of
restoring force 1s linearly proportional 10 the displacement. Mathematically, we can
write

F= - kx (L.1)

The negative sign signifies that the restoring force opposes the displacement. The
quantity k is called the spring constant or the force constant of the spring. It is
numerically equal to the ma;nitude of restoring force exerted by-the spring for unit
extention. Its ST unit is Nm’

SAQ1
The spring in Fig. 1.1a is stretched by 5 ¢m when a force of 2 N is applied. Calculate
the spring constant. How much will this spring be compressed by a force of 2.5 N?

How does the spring-mass system oscillate? To answer this question, we note that
when we pull the mass, the spring is stretched. The restoring force tends to bring the
mass back to its equilibrium position (x=0). Therefore, on being released, the mass
moves towards the equilibrium position. In this process it acquires kinetic energy and
overshoots the equilibrium position. Do you know why? It is because of inertia. Once
it overshoots and moves to the other side, the spring is compressed and the mass is
acted upon by a restoring Torce but in the opposite direction. Thus we can say that ,
oscillatory motion results from two intrinsic properties of the system: (i) elasticity and
(ii) inertia.

What is the direction of the restoring force vis-a-vis the equilibrium position of an
oscillating body?

The restoring force is always directed towards the equilibrium position of the
oscillating body.

In discussing the spring-mass system we observed two important points:

(1) The'restoring force is linearly proportional to the displacement of mass from its
equilibrium position.

(i) The restoring force is always directed towards the equilibrium position.

Any oscillatory motion which satisfies both these conditions is called simple harmonic
motion. The study of SMM is important because, as you will see, oscillatory motion
of systems of entirely different physical nature can be analysed in terms of it.

Let us now study the effect of gravity on oscillations of spring-mass system. Consider
a spring of negligible mass suspended from a rigid support with a mass m attached to
its lower end (Fig.1.2).



Let us choose the X-axis along the length of the spring. We take the bottom of the
spring as our reference point, X = 0, when no weight is attached to 1t (Fig. 1.2a).
When a mass m is suspended from the spring, let the reference point move to
X=Xo (Fig. 1.2b). At equilibrium, the weight, mg, balances the spring force, k.X,.
Since the net force 1s zero: we have

mg—kXoe=0 "
or mg = kXo. (1.2)
Now if the mass 1 pulled downwards so that the reference mark shifts to X,
(Fig 1.2¢), then the total restoring force will be kX', and point in the upward direction.
The net downward force will therefore be (using Eq. (1.2))

mg = kX1 =k(Xo — X)) & —kx
where x =X, — Xo.

Thus, the resulting restoring force on the mass 1is

F=—kx

where x 1s its displacement from the equilibrium position, X, This result is of the
same form as Eq. (1.1) for the horizontal arrangement. It is thus clear that gravity has
no effect on the frequency of oscillation's of a mass hanging vertically from a spring; 1
only displaces the equilibrium.



Let us now find the differential equation which describes the oscillatory motion of a
spring-mass system. The equation of motion of such a system 1s given by equating the

two forces acting on the mass:

mass ¥ acceleration = restoring force
or

where %’f— i3 the acceleration of the body,

It i3 important to note that in this equation, the equilibrium pnsifi..{:t:.l of the body 1s
taken as the origin, x = 0.
You will note that the quantity k/m has units of Nm” kg”' = (kg.ms ) kg 'm"' = p®
Hence we can replace k/m by'wi where wo is called angular frequency,. Then the above
equation takes the form
.
_‘i-;f +wsx=0 : . B ()
dt .

It may be remarked here that Eq. (1.3) 1s the differential form of Eq. (1.1) and
describes simple harmonic motion in one dimension.



Solution of the differential equation for SHM

‘To find the displacement of the m2ss at any time #, we have to solve Eq. (1.3) subject
to given initial conditions. A close inspection of Eq. (1.3) shows that x should be such
a function that its second derivative with respect to time is the negative of the function
itself, except for a multiplying factor we. From elementary calculus, we know that sine
and cosme functions have this property.

You can check that this property does not change even if sine and cosine functions
have a constant multiplying factor.

A generalsolution for x (t) can thus be expressed as a linear combination of both sine
and cosine terms, i.e.

x(t) = Ajcos at + Ay sin at (1.4)
Putting A, = A cos ¢ and A2 = — A sm @, we get
x (f) = A .cos (at *+ ¢)

LY
Differentiating this-eguation twice with respect to time and comparing the resultant
expression with Eq. (1.3), we obtain @ = * ao. The negative sign is dropped as it gives
negative frequency which is a physically absurd quantity.

Substituting e = wo m the above equation, we gei
x ()= A cos (wot + ¢). (1.5)



Let us assume that the mass is held steady at some distance a from the equilibrium
position and then released at r = 0. Thus the initial conditions are: at r=0,x =a

and %{ = 0. Then, from Eq. (1.5) we would have
t

x(att=0)=Acosf=a
and dx
? (att=0) ==A @Sm9 =0
1

These conditions are sufficient to fix A and ¢. The second conditidn tells us that ¢ 1s
either zero or n & (n = 1,2,...). We reject the second option because the first condition
requires cds ¢ to be positive. Thus with the above mitial conditions, Eq. (1.5) has the
simple form

X = a cos wel. (1.6)
SAQ2
Take 4, = Bsin # and 4; = Bcos 6 n Eq.(1.4). In this case show that the solution 1s
x (r) = Bsin (wot + 6)

We therefore observe that both cosine and sine torms are valid solutions of Eq. (1.3).
If you plot Eq. (1.5), the graph-will be a cosme curve with a definite initial phase

(Fig. 1.3)
Phase and Amplitude
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Fig. 1.3 Displacement-time graph of simple harmonic motion with an initial phase 4,



Xo = acos ¢

We know that the value of the sine and cosine functions lies between ,l and —1.
When cos (wot + @) = | or =1, the displacement has the maximum value. Let us
denote 1t by a or —a. The quantity a is called the amplitude of oscillation.

We can, therefore, rewrite Eq. (1.5) as

x (1) = a cos (wef + ¢) (1.7)

——a— X

coipesietsn

* Fig. 1.5 Time variation of displacement, velocity and acceleration of a body executing SHM (¢ = 8)'



Velocity and Acceleration

We know that the displacement ol a mass executing simple harmonic motion is given
by

x=acos(w?+ )

Therefore, the instantaneous velocity, which 1s the fiest nme derivative of
displacement, 1s given by

v = dx

2 = o v osin (wo I T @) (1.1

dt

We can rewrite it as
v=wia cos(m/2+ wy T @) (1.12a)

You may also like to know the value of v at any point x. To this end, we rewrite
Eq. (I.11) as
v=—wo[d — a cos’ (wot + ¢) 1" -
==wo(d - X" for—a<x<a (1.12b)

We also know that acceleration is the first time derivative of veloeity. From Eq. (1.11)
it readily follows that

ﬂ:—wﬁacos(wo;'l'tb]
di

= wlacos (7 + wu T ) (1.13a)

Obviously, in terms of displacement

dv _

i wh x (1.13b)



TRANSFORMATION OF ENERGY IN
OSCILLATING SYSTEMS : POTENTIAL AND
KINETIC ENERGIES

Consider the spring-mass system shown mn Fig 1.1 When the mass is pulled, the
spring is elongated. The amount of energy required to elongate the spring through a
distance dx is equal to the work done in bringing about this change. It is given by dW
= dU= F; dx, where Fu is the applied force (such as by hand). This force is balanced
by the restoring force. That 1s, its magnitude 1s same as that of F and we can write

Fs = kx. Therefore, the energy required to elongate the spring through a distance X i

1
2
This energy is stored in the spring in the form of potential energy and is responsible
for oscillations of the spring-mass system.

U=[ Rdx=k[ xdx= - k¢’ (1.14)
'] o

On substituting for the displacement from Eq. (1.7) in Eq. (1.14), we get
U= ¥ ka' cos’ (wot + ) ' (1.15)

Note that at r = 0, the potential energy is
Us = % ka’ cos’ & (1.16)



As the mass 1 released, it moves towards the equilibrium position and the potential
energy starts changm% into kinetic energy (K. E). The kinetic energy at any time ¢ 18
given by K.E = 4 mv". Using Eq. (1.11), we get

K.E=Yimwsa sin’ (wof + )

= 4 ka' sin’ (wol + @) | (1.17)
{
since wo = k/m.

One can also express K. £ in terms of the displacement by writing
K.E= % ka' [1 = cos’ (wot + ¢))

=14 ka' =V ka’ cos’ (wot + @) -
=14 ka® =% kx* = 14 k(@' — x*) (1.18)

This shows that when an oscillating body passes through the equilibrium position
(x = 0), 1ts kinetic energy 1s maximum and equal to %2 ka'.

SAQS
Show tha: the periods of potential and kinetic energies are one-half of the period of

vibration.

It 1 thus clear from the explicit time dependence of Eqs. (1.15) and (I,17) that m a
spring-mass system the-mass and the spring alternately exchange energy. Let us
consider that the initial phase ¢ = 0. At r =0, potential energy stored in the spring is
maximum and K. £ of the mass is zero. 'At 1 = T/4, the potential energy 1 zero and
K.E 1s maximum. As'the mass oscillates, energy oscillates from kinetic form to
potential form and vice versa. At any instant, the total energy, E. of the oscillator will
be sum of both these energies. Hence, from Eqs. (1.15) and (1.17), we can write

E=U+KE=% kd cos’ (a1 + ¢)+ ' ka' sin’ (wut + ¢) = ¥ ka’
(1.19)



This means that the total energy remains constant (independent of time) and 1§
proportional to the square of the amplitude. As long as there are no dissipative forces
like friction, the total mechanical energy will be conserved.

Total Energy = K F + [/ = :k u
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Fig. 1.6 Variation of potential energy (U), kinetic emergy (X E) and total energy (E) with displacement
according to Egs. (1.14), (1.18) and (1.19).

The plots of U/ and K K as a function of 1 as obtained from Egs. (1.14) and (1.18) are
shown in Fig 1.6. You will note that

(i) the shape of these curyes is parabolic, (ii) the shape & symmetric about the origin,
«nd (iil) the potential and kinetic energy curves are inverted with respect to one
another. Yhy? This 15 due to the phase difference of w2 between the displacement

and velocity of a hurmuonie pseiliatenr AL amy value ol x, the total energy is the sum of
kinetic and potential energies and i eguni wo ¥ A, This 1s represented by the
horizontal hne.

The points where-this horizontal line intersects the potential energy curve are called
the 'turning points'. The sseillating partle cannot go beyondithese and turns back
towards the equilibrium position. Ar these points, the total gnergy of the oscillator is
entirely potential (£= L= ¥, ka') and A F s zero, At the equilibrium position

(x = 0) the cnergy is entirely letu.. (k£ = E = Vi ka') s0 that the maximum speed,
Vs 18 given by the relation Yoy = Ee Juan = \f2E[m,

At any intermediate posiion, eugrey 15 |11u.|}.r kinetic and partly potential, but the
total energy always remuint the same, The seanstonmation of energy in a spring-mass

systern is shown in Fig, 1.7
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CALCULATION OF AVERAGE VALUES OF
QUJANTITIES ASSOCIATED WITH SHM

In Fig. 1.5 we have plotted displacement, velocity and acceleration as a function of
time. You will note that for any complete cyele in each case, the area under the curve
for the first half is exactly equal to the area under the curve in the second half and the
two are opposite m sign. Thus over one complete cycle the algebraic sum of these
areas 15 Zero. This means that average values of displacement, velocity and
acceleration over one complete cycle are zero. If we plot +* (or v7) versus .4, the curves
would lie m the upper half only so that the total area will be positive during one
complete cvcle. This suggests that we can talk about average values of kinetic and
potential energies.

The time average of kinetic energy over one complete cycle is defined as

T
.{[K_Edr (1.208a)

wKE>=—7]F—
r

On substituting for K E from Eq. (1.17); we get

ke’
2T

T
< KE>= $sin’ (o ¢ + @) df (1.20b)

On solving the integral in Eq. (1.20b) vou will find that its value is T/ 2. S0, the
expressioh for average kinetic energy reduces to

< KE> = =& Sl
4
Similarly, one can show that the average value of potential energy over one cycle is
<u>=H (1.22)
4

That 15, the average kinetic energy of a harmonic oscillator 1z equa! to the average
potential energy over one complete period.

Thus the sum of average kinetic and average potential encrgies & equal to the total



An Acoustic Oscillator

Consider a flask of volume V with a narrow neck of length t and area of cross-section
A such that ¥ >> A (Fig1.12). Such a system is also called Helmholtz resonator
because the system can resonate when the frequency of sound incident on it coincides
with its natural frequency. We will here calculate the expression for the natural
frequency of the resonator.

A

Flg. 112 {a) An Acoustic oseillator, (b) As air in the neck is pushed, air in the fiask is compreszed, and (c)
Due to elasticity, air in the flask exerts a restoring [0r¢e on the air in the neck.

We consider free vibrations of air 1n the neck of the flask. As the air in the neck
moves in, the air i the flask s compressed. If air in the neck goes out, the air in the
flask & rarefied. So the air in the neck behaves like the mass and the air in the flask
behaves like the spring in a2 mechanical oscillator.

Suppose that the air m the neck moves mward through a distance x from the
equilibrium position. The change m the volume of the air in the bulb AV = X A. Let
the increase in pressure over the atmospheric pressure be Ap. We know that the
volume of a gas depends on the pressure as well as the temperature. Therefore, the
pressure changes in acoustic vibrations should alternately heat and cool the air in the
flask as it gets compressed and rarefied. We assume that the pressure changes are so
rapid that they do not permit any exchange of heat. That is, the process is adiabatic.
Hence, we can write



Ap— Ey S—- Ey— l.‘l

where E, is the adiabatic elasticity of the gas. It is defined as the ratio of the stress to
volume strain. Numerically, stress is same as pressure. So we can write

Ap

5= =

The negative sign signifies the fact that as pressure increases, volume decreases and
ViCe-Versa.

This excess pressure 4p of air inside the bulb provides the restoring force F, which
acts upward. We can therefore write

EvA?

v

If p 15 the density of air, the mass of the air in the neck m = 4 p. Hence, the
equation of motion of air in the neck can be written as

FEApA=-—

d'x E A
dp —= =~ e %
P di’ v
or
fx + E?A

3 N x=0 (1.42)



This equation has the standard form for simple harmonic motion. Hence, the
frequency of oscillation of air .in the neck 5

I Er.ﬂ" L] A
V= = = - 1|| rles .43
’ 2r ¥ ¥IP 2n vl ' )

wherev, = +/ £/ p 1s the speed of sound. We know thatv, is proportional to square
root of temperature. So the frequency of vibration of air in a flask = also
proportional to the square root of temperature.

SAQ 10

A flask has a neck of radmz | cm and length |0 cm. If the capacity of the flask 5 2
litres, determine the frequency at which the system will resonate (speed of sound in air
= 350 ms™').

A Diatomic Molecule: Two-Body Oscillations

A diatomic molecule like HC/ 15 an example of a two-body system which can oscillate
along the line joining the two atoms. The atoms of a diatomic molecule are coupled
through forces which have electrostatic origin. The bonding between them mayv be
likened to a spring. Thus we may consider a diatomic molecule as a system of two
masses connected by a spring. We will now consider the oscillations of such a system.

Suppose that two masses pr, and m; are connected bv a spring of force constant k.
The masses-are constrained to oscillate along the axis of the spring (Fig. |.13a). Let
be the normal length of the spring. We choose X-axis along the line joining the two
masses. If Xy and X, are the coordinates of the two ends of the spring at time ¢, the
change m length 15 given by

x=(Xi=X)=nr _ (1.44)




Fig. 1.13 (4] A two-body ozcillator (b) An equivalent one-body oscillator.
For x > 0. x =0 and x <0, the spring i extended, normal and compressed
respectively. Suppose that at a given instant of time the spring & extended, i.e. x>0
Though the spring exerts the same force (kx)on the two masses but the force Fi (= kx)
acting on m, opposes the force F: (= — kx) on my, iLe.

Fi=kx and f'lg = =gy

Accoerding to Newton's second law. above equation can be written as

|
M - 1:‘ = kx
d
and
2
" ¢ Jr: - kx
dr’

On rearranging terms, we obtain

ANy _ ke .

- i..l‘F: iy



iand

‘iﬁf-’ S ;_‘f (1.45b)

On subtracting one [rom the other, we get

*‘“j*"'_* .0 LI | )
Iy
SImCce ru d::uc-tes a constant length of the spring, Eq. (1.44) tells us that
dx _ d{Xi— X))
ar dr’
Hence, the equation of motion of 3 diatomic molecule reduces to

x=0 ' (1.46)

where ;.:—_-(I— - l] = MM s called the reduced mass of the system.
“m M3 my +

Eq. (1.46) describes simple harmonic oscillation of frequency

w= — Vk/n (1.47)

o 1

This means that a diatomic molecule behaves as a single object of mass u, connected
by a spring of force constant k (Fig. 1.13b).

SAQ M

For an /! molecule, ro = 1.3 A . Find the value of the [orce constant and frequency
of oscillation. Given that my = 167 X 107" kz and ma = 35 my

Use L - X 10" Nm* ¢?

4orey



PRACTICE QUESTIONS

i In Figs Fig. 1.14 a, b and c, three combinations of two springs of force constants
ki and k; are given. Show that the periods of oscillation in the three cases are .

BV ). 2md il T + &)
b) 2mm/(k + k)

€) 2mvymil ki + 1]k

K

N . k

NANRANNAY | N

T
(a) ) (e

2 A smooth tunnel = bored through the earth along one of its diameters and a ball
& dropped into 1f. Show that the ball will execute simple harmonic motion with
period T = 2my/ R/g where R & radius of the earth and g is acceleration due to
gravity at the surface of the earth. Assume the earih to be a2 homogeneous
sphere of uniform density.

3 Find the angular frequency and the amplitude of harmonic oscillations of a
particle ff at distances xy and x; from the equilibrium position its velocity equals
v and v respectively.

4 Show that the centres of suspension and oscillations in a compound pendulum
are mutually interchangeable.
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Reflection, Refraction of Diffraction and Attenuation of Sound waves

In Unit | you leamt that SHM & a umiversal phenomenon. Now vou also know that
in the 1deal case the total energy of a harmonic oscillator remamns constant m time and
the displacement follows a sine curve. This implies that once such a system is set 1n
motion it will continue to oscillate forever. Such oscillations are said to befree or
undamped. Do vou know of any physical system i the real world which experiences
no damping? Probably there s none. You must have observed that oscillations of a
swing, a simple or torsional pendulum and a spring-mass system when left to
themselves, die down gradually. Similarly, the amplitude of oscillation of charge in an
LCR circuit or of the coil m a suspended tyvpe galvanometer becomes smaller and
smaller. This implies that every oscillating system loses some energy as time elapses.
The question now arnises: Where does this energy go? To answer this, we note that
when a body oscillates n a medium 1t expenences resistance to its motion. This means
that damping force comes into play. Damping force can arise within the body itself. as
well as due to the surrounding medium (air or hiquad). The work done by the
oscillating system agamst the damping forces leads to dissipation of energy of the
system. That 1s, the energy of an oscillating body 15 used up in overcoming damping.
But n some engineenng systems we knowmgly introduce damping. A familiar
example s that of brakes—we increase friction to reduce the speed of a vehiclein a
short time. In gengral, damping causes wasteful loss of energy. Therefore, we
invariably try to minimise it

Many a time it & desirable to maintain the oscillations of a system_ For this we have
to feed energy from an outside agency to make up for the energy losses due to
damping. Such oscillations are called forced oscillations. You will learn varous
aspects of such oscillations mn the next unit.

In this unit vou will learn to establish and solve the equation of motion of a damped
harmomnic oscillator. Damping mayv be quantified m terms of logarithmic decrement,
relaxation time and quality factor. You will also leamm to compute expressions for the
logarithmic decrement, power dissipated m one éycle and the quality factor.



PRINCIPLE OF SUPERPOSITION

We know that for small oscillations, a simple pendulum executes simple harmonic
motion. Let us reconsider this motion and release the bab at the instant ; = 0 when it
has initial displacement ai. Let the displacement at a subsequent time ¢ be x.. Let us
repeat the experiment with an initial displacement @:. Let the displacement after the
same interval of time ¢ be x:. Now ff we take the initial displacement to be the sum of’
the earlier displacemen'ts, viz. @y + a3, then according to the superposition principle,
the displacement x; after the same interval of time ¢ will be

n=xn+ xn

You can perform this activity by taking three identical simple pendulums. Release all
three bobs simullaneously such that their initial velocities are zero and inihal
displacements of the first, second and the third pendulum are @y, #: and ay + a,
respectivelv. You will find that at anv time the displacement x; of the third pendulum
will be the algebraic sum of the displacements of the other two. In general, the initial
velocities may be non-zero. Thus, the principle of superposition can be stated as
follows:

When we superpose the initial conditions corresponding to velocities and amplitudes,
the resultant displacement of two (or more) harmonic displacements will be simply the
algebraic sum of the individual displacements af all subsequent times.

You will note that the principle of superposition holds for any number of simple
harmonic ascillations. These mayv be in the same or mutually perpendicular directions,
i.e. m two dimensions.

In Unit 1, we observed that Eq. (1.3) describes SHM:

d
d'x _

o dr?
This & a linear homogeneous equation of second order.

g -

x (2.1)



Such an equation has an important property that the sum of its two linearly

independent solutions 15 tself a solution. We have already used this property in Unit 1

while writing Eq. (1.4).

Let x; (1) and x: (7) respectively satisfy equations

di_'n o '
e = i Xy
F)
and :ffz == nﬁ X3

Then v adding Eqs. (2.2) and (2.3), we get |

d'(x) + x3)

di’ == i (x +x3)

2.

(2.3)

(2.4)

| According to the principle of superposition, the sum of two displacements given by

x()=x(N+ x (1),
|

(2.5)

also satisfies Eq. (2.1). In other words, the superposition of two displacements satisfies
the same lmmear homogeneous differential equation which s satisfied individually by

x; and x;.

SUPERPOSITION OF TWO HARMONIC
OSCILLATIONS OF THE SAME FREQUENCY
AT.ONG THE SAME LINE

Let us superpose two collinear (along the same line) harmonic oscillations of
amplitudes a: and a; having frequency s and a phase difference of . The
displacements of these oscillations are given by

X = ay cos anl (2.5)
and X1 = @y cos (ael + m)
=" ga COS ol (2.7)

According to the principle of superposition, the resultant displacement is given by

x(t) =z (1) + x= (1)
= gy cO8 wed — J1 COS wel
= @y — a3) cos wes (2.8)

This represents a simple harmonic motion of amplitude (@) — a@:). In particular, if two
amplitudes are equal, i.e. @ = &1 the resultant displacement will be zero at all times.
Displacement-time graph depicting this situation is shown in Fig. 2.1.
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Flg. 2.1 Superposition of twa collmear harmonic oscillations of equal aniplitude but out of phase by .,



Using the expression for the cosme of the sum of two angles, this can be written as

X ()= @ COS et COS by = @) SN wel 510 by
+ @ COS wel COS gy — @2 SIN wof SIN @

Collecting the coefficients of cos wer, and sin wes, we get

x(1) = (ay cos é; + a2 cos ;) cos wal
= (@ sin &+ g3 sin &;) sin wel (2.11)

Since @, az, & and & are constant, wc can set

and 0 COS¢h =y COS ) + @1 COS (2.12)
7 Sif o :ﬂ]SiﬂdH‘l‘rI:Eiﬂlﬂ: {2]]]

where a and 4 have to be determined. Then, we can rewrite Eq. (2.11) in the form

x(f) = a cos ¢ cos wel — A SI0 ¢ SIN0 wel,
1t has the form of the cosine of the sum of two angles and can be expressed as

x(1) =a cos (wl + ¢) (2.14)
This equation has the same form as either of our original equations for separate
harmonic oscillations. Hence, we have the important result that the sum of rwo
collinear harmeonic oscillations of the same frequency is also a harmonic oscillarion of
the samefrequency and along rhe same line. But if has a new amplitude 2 and a new
phase constant ¢. The amplitude can easily be calculated by squaring Eqs. (2.12) and
{2.13) and adding the resultant expressions. On simplification we have

@ = ai + ai + 2a; a; cos (¢ = ¢1) (2.15)

Similarly. the phase & is determined by dividing Eq. (2.13) by Eq. (2.12) :

é = tan-' [ @ 310 ¢y + az 50 @y ] (2.16)

@y CO% dby + az cos da

Two harmonic oscillations of frequency we have initial phases ¢ and ¢y and
amplitudes @y and a;. Their resultant has the phase

(a) ¢ = 2= 2qmw
and D) —@d2=(2n+ 1) »

where n 1s an integer. Using Eq. (2.15), show that the amplitudes of the resultant
oscillations are equal to (@ ' a@3) and (@) = @), respectively,



Consider a thin, flexible string (piano wire, rope, etc.) of length L, linear mass density u,
under tension T, which is fixed at both ends as shown in figure 1. Two questions we might ask
are whether waves can exist in such a system and if so what is the form of the function y(x t)
which describes the propagation of the wave?

P
2, N

Hl—————— — —
-
“I
B
ks
|

(a) (b)

Figure 1

If a system will support waves, then the equation describing the behavior of the system will
have the form of the classical wave equation,

oy . Lfvﬁ -0 )
Jx< at*

Therefore, to answer the first question posed above, we need to derive the equation of motion for
our string and compare its form to that of equation (1). To answer the second question, we need
to look at the effect the fixed ends have on waves traveling down the string. In what follows we

Consider a small section of the string dm which has been displaced in the vertical direction as
shown in figure 1a. The displacement is v = v(x.1). We will assume that the displacement 1s
small and that 8 and ¢ are everywhere small so that we can use the approximations cos 8 =
cos o= 1, B=s5inb =tan B and ¢ = sin¢ =tan ¢. The element dm is acted upon by two
forces, the tension T at both ends_ (Since the string is thin_ gravitational forces can be
neglected). The forces in the horizontal and vertical directions are

Fx = Tcosg - Teos B 2a)

Fy = Tsin® - Tsin¢ (2b)



Since cos B = cos ¢ = 1,the horizontal forces cancel leaving a net force only in the v direction.
Applying the small angle approximation to equation (2b) vields

Fy = T(tan® - tano) (3

Buttan 8 = - dy/dx |z and tan ¢ = - 0V/0X |z + Ax. Substituting these expressions into equation
(3) gives

9y
O0x

9y
0x

F, = T

(4)

X 1+|".'E]

To make the notation simpler, we define a function g(x) = dv/ox |;. Substituting this into

equation (4) and rearranging terms yields

Fy = Tle(x + Ax) - g(x)] )
Applyving Newton's second law gives

may = Tleg(x + Ax) - g(x)] . (6)

But m = uAx and a;= d2y/gt? . Substituting these expressions into equation (6) and

rearranging terms yields

g(x +4%) -g(x) wdy _ 7
Ax T a2 )
+Ax) — d ay
Realizing that glx %) —g®) = elx) = — ,allows us to rewrite equation (7) in its final
Ax ox oxt
form,
oy u vy
= - == =0 . 3
axt T g2 (8)

If we let /T = 1/v2, then we see that the equation governing the motion of the string has the
same form as the classical wave equation. Therefore, waves can exist in our system. The waves
will travel with velocity v = (T/u)!2 and the function v(x 1) will be numerically equal to the ¥
displacement at a time t of a point on the string at position x.



Now that we know that waves can exist in our system, we can turn our attention to the
question of the form of the function y (x.t). The fact that the ends are fixed means that the v
amplitude must always be zero at the ends. Therefore, only those functions for which v (0.t) =0
=y (L.t) are suitable solutions. It can be shown by substitution that functions of the form y = A
sin (Kx + wt) and v =B cos (Kx + wt) [where K(wave number) and 2n/A and o (angular
frequency) = 2mv = v K], are solutions to equation (8). However, since the functions y = Bcos

(KX + wt) cannot always be zero when x =0 we can eliminate that set of functions. To
determine the form of the function v (X.t) for our system we must use waves of the form y=A

sin (Kx = wt).

The function y; = A sin (KX - wt) represents a continuous sine wave traveling to the right
down the string, and vo = A sin (KX + wt) represents one traveling to the left. If these waves are
perfectly reflected at the ends, we have two waves of equal frequency, amplitude and speed
traveling in opposite directions on the same string. The principle of superposition of waves
states that the resulting wave will be the algebraic sum of the individual waves,

v = v; +V; = Alsin(Ex - ot) + sin(Kx + wt)]

or using the trigonometric identity for the sum of the sines of two angles (sin B + sin C = 2 sin
1/2(B4+C) cosl/2(C-B)), we obtain

v = 2A sin KX cos ot (9

This function obviously satisfies the boundary conditions at x = 0, but will only satisfy the
boundary condition at X = L when K = no/LL (wheren=123 ). Limiting the values of K to
only certain values also limits the wavelength, frequency and speed of the waves {0 certain
discrete values. Therefore unlike traveling waves on an infinite string which can have any
wave- length or frequency, waves on a bounded string are quantized, restricted to only certain
wavelengths and frequencies. To note this quantization, equation (9) can be rewritten as

vn = 2Apsin KgX cosompt (109

Where K, = nn/L. w, = Kv = ﬂr“k-Tfp and n =123 ...



Equation (10) is the equation of a standing wave. Note that a particle at any particular point
X executes simple harmonic motion as time passes and that all particles vibrate with the same
frequency. Note also that the amplitude is not the same for different particles, but varies with the
location x of the particle. The amplitude, 2 A, sin K;X, has a maximum value of 2A,, at
positions where Kx = n/2_ 3n/2, 5n/2 etc. or where x = /4, 34/4 50/4 etc. These points are
called antinodes and are spaced one half wavelength apart. The amplitude has a minimum value
of zero at positions where Ex=m, 2n . 3n .etc.or x = A/2,, 30/2, 2}, etc. These points are
called nodes and are also spaced one half wavelength apart.

Finally, it should be noted that although equation (10) is a form of wave which can exist in
the bounded string system _ it is not the most general form. The most general form is

(ajcos wyt + By sin wpt) (1D
1

va(x t) =

i e

Now that we have determined that waves can exist in our system and how they can be
represented mathematically, we might ask what we would expect to see if we tried to create the
waves in an actual string. Consider then a string fixed at both ends which is being driven by a
force F cos wt. If the driving frequency is such that the distance L between the ends is neither an
integral or half-integral number of wavelengths, the initial and reflected waves will be "out of
phase" and will destructively interfere with each other. No clear pattern will be set up. If
however the string is driven with a frequency near wy 50 that L 15 an integral or half-integral
number of wavelengths, the initial and reflected waves will be "in phase" and will constructively
interfere. The standing wave yp(X.t) will be produced and will attain a large amplitude. Ifn=1
then L = A/2 and the string is said to be vibrating at its fundamental frequency. This is the
lowest frequency for which a standing wave pattern can be set up in the string. If the string is
driven at a frequency which an integral multiple of the fundamental frequency, standing waves
with different patterns will be set up. The patterns for the first four frequencies are shown in
figure 2.
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Finally it should be noted that if the string is plucked rather than driven by a periodic force,
then in general the response v(X.t) will not be a single natural frequency but a sum of many
natural frequencies.

m(X.t) = » (Ancos wnt + Bnp sin wnt) sin Knx (1)
jal

The observed pattern is very complicated in general. Howewver, it is possible to pluck the string
20 as to have one natural frequency dominate.

1721

F.

Figure 3



Consider a string of tension T. We define the amplitude of the string at a point + at time ¢ as
Alx, t). In this section, we'll sometimes write A(x, t) just as A(z) to avoid clutter. Let us treat
the string as a bunch of massless test probes connected by a elastic strings. Then we can draw

the picture as
Alx+Ax) Alx+Ax)

Alx}
//\/,\”l‘ .-
Alm+ 2l

Alx-ax)
What is the force acting on the test mass at position r (in red)?
First, consider the dowmward component of the force pulling on the test mass at = from the
miass to the left (at @ — Ar). We can draw a triangle:

< A(x)
AA=A(x)-A(x-Ax)

Alx-Ax) Ax
The force is given by
. AA
| wnwards, from W ARE — T sinll = T oo
ol from feft VAAL§ A
If the system is close to equilibrium, then the slope will be small. That is, AA <= Ax. In this
case, we can approximate vAAT + Ar? = Az and so

AA Alr)— Alr— A a4
Elwuwnnll.lmm lelt mman — TE =T {T}I ﬂ{: T} - Tm (d]

(3)

where we have taken Ax— 0 in the last step turning the difference into a derivative.
Similarly, the downward force from the mass on the right is

Alz) —Alz+ Ar)  n0A(x + Ar)

F-I']II'I'I'IIIII.I-I']!.| from right mass — T ﬁ.’l‘ T &I_‘
Thus,
GA(x + Ax oA
Fll.uhnl downwards = T[ % E ]

Now we use F'=ma, where a = %‘— is the downward acceleration. So we should have
A A
Fll.nLn.lann'llnr-r]: - ”‘-ﬁl}' = ﬂmﬁ
Plugging this into Eq. (6) we find

OA(x | Ax A
o +_ﬁ Ta*A

T Ar _;@'
Thus,
g o2 _ —
[m—v?@}ﬂ{r,t}=n with TE:JI-TI

S0 the wave equation is again satisfied with a wave speed v= V;%:

(5)

(6)

(7)

(8)

(9)

Note that the acceleration is due to a difference of forces. The force pulling up from the
right has to be different from the force pulling down from the left to get an acceleration. Each
force is proportional to a first derivative, thus the acceleration is proportional to a second deriv-

ative.



MNow lets talk about standing wave solutions in more detail. Again, we consider the wave egua-

. 22 e o -

and we would like solutions of fixed frequency w. These are solutions which are periodic in time.
We can write the general such solution as a sum of terms of the form
Al t) = Apsin(kx + oy )sin(wt + ) (28)

In this solution, Ay is the amplitude and & the wavenumber. The frequency determined from
the wavenumber through the dispersion relation

w=uk {29)
There are two phases ¢y and ¢9. Instead of using phases, we conld write the general solution as
Alx,t) = Agsin(ke)sin(wt) + Aysin( ke )cos(wt) + Ascos( ke )eos(wt) + Ascos(kr)sinwt) (30)

The two forms are equivalent and we will go back and forth between them as convenient.
Consider first the case where one of the boundary conditions is that the string is fixed at = =

). That is
A(0,t) =0 (31)

This is known as a fixed, closed, or Dirichlet boundary condition. If there were a
Agcos(kr)sin{wt) component, then the » = 0 point would oscillate as x(0, t) = Agsin(wt) meaning
it is not fixed. Thus Ag=0. Similarly, Aa = 0. Thus the general solution with A(0,#) =10 is

Az, t) = Apsin{kx)sin{wt + ¢) (32)

If we fix the other end of the string at == L then we must have sin(kL) = 0 which implies

kf=%ﬂ, n=1231,-- (33)
This tells us which frequencies can be produced
bty = ke, = T?%ﬂ , n=1,223 | hoth ends fixed {34)

This is the spectrum for 2 Dirichlet boundary conditions.

. . A .
Inthlscanclfwctakcﬂu:tuﬂwesmthatﬁ—}ﬂ‘ Thus a free end must satisfy

DAL, o
(L0 _g (31)
This is known as a free, open, or Neumann boundary condition.
Now using the # =0 fixed solution, Eq. (32), the Neumann condition at » = L implies
0= w = k Apcos( k L)sin{wt + ¢) (38)

For this to hold at all times, cos(kL) must be at a zero of the cosine curve. Now, cos(x) = 0
when x = (n+ ;—:}ﬂ'. Thus,

1
wn:vﬂl‘iﬁy ﬂ-=u¢ 112?3 L uneﬁxﬁ]mld, one free end {39]




This solution says that the lowest [requency is

i
_w:m_135 1v
=5 3T 3L (40)
the next frequency up is
1
1 1+5 3w .
M =gr—p= =37 = (1)

and so on. Thus the even harmonics are missing!! This has dramatic consequences for instru-
ments like the trumpet and the clarinet.

Finally, if = =0 is free, we must have A(z, t) = Apcos(kx)sin(wt + ¢). Then, if x = L is also
free, we find sin(k L) = 0 which implies

—
W = VF T,
The only difference between both free ends solution and both fixed end solution is that for free
ends n =0 is allowed. However, the n = 0 solution is A(x, t) = const which has k = w = 0 thus it
is not physically interesting,

Here are the lowest harmonics with different boundary conditions

n=0,1,2,3|, bothends free (42)

U both ends fixved one fined, one froe et h embs frce
L] ’
8t TeNS N i I~ ™ i
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Figure 2. Frequencies allowed for different boundary conditions

If the fundamental note (lowest frequency) is v, then we find

lowest | next | second | third
both fixed v 2 | 3w 4
one fixed, one free | v v | b Tv
both free v 2 | 3v Av




To work out the resonant frequency for a Helmholtz resonator we can use w = ﬂ'% We can

extract the spring constant k from F'= —kAx. For pressure, F' = A .dp, where A is the area, in
this case the cross sectional area of the neck. Now, p= -"& B0

d fm m dV
dp—ﬁ,(?}iv——ﬁrﬂ*’_ i (1)

Also using Eq. (16), %% = -‘r% for sonnd waves, we have

_dp . p, P
dp—-rﬁdp—'r;dp— 'Tvrﬂ" (45)
Now, dV = AAr and so0
F=A.dp= Tai%m (46)
Thus
2P g ap
k= ya2h A0 (17)

The mass on which the spring acts is the air in the neclk. It has mass m = pA L, thus

Thus Helmhboltz resonators resonate al a single frequency

y=;_-=,/% (19)

where A is the area of the opening, L is the length of the neck, and V' is the volume of the
cavily.

For example, consider a 10 em wide jar with a 10 cm long neck. Using v = 343 =, A = lem?,
L= lem, V = 1L = 1000cm®, we find v = 172Hz. The associated wavelength in air is A = : =
2m. Note that the wavelength of sound in the resonator is muoch larger than the size of the res-
onator.

Since Helmholtz resonators have only one frequency, they have no harmonics (no overtones).
However, they can have low @ values. Indeed, if you blow on a bottle, you see that the sound
does not resonate for long at all. This is good, if you are building an instrument, since you want
all the audible frequencies to resonate. On a violin, the vibrations are produced on the strings,
transmitted to the wooden body of the violin through the bridge (the part of the violin which
connects the strings to the body). The body then vibrates, exciting the air in the body which
emits sound through the holes. I can’t describe the function of the body of a violin better than
Heller. Here’s his description |Heller, p. 267|

Helmholtz resonators can be used as transducers, turning mechanical energy into
sound energy. A prime example is the violin. The violin body is basically a box
containing air, with the f-holes opening to the outside. It functions deliberately as
a Helmholtz resonator, enhancing the low frequency response of the violin, giving
it much of its richness of tone...

The violin body’s broad Helmholtz resonance peaks around 300 Hz. No doubt the
shape thin but long holes serve to increase air friction and thus lower the Q of the
Helmholtz mode, spreading the resonance over a broader frequency range. This
props up the transduction of string vibrations into sound down to the frequency of
the open D string |v ~ 300Hz|.
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Oscillation and waves applications

Reflection of Waves

Waves obey something we call the principle of linear superposition. That 1z, if two waves are
in the same region of
space at the same
time, they will ¥1 /\
interact with each

other. Linear

superposition  allows !

vs to describe how /\

they interact fairly \/ \/ \/

easily. If we were to

plot the two waves as - !

a function of time, ° 2

they might look like i
the top two waves in

the picture to the

right. Linear

superposition means

that we just add the value of each wave and plot that as the sum. So the result of this
combination of waves is another sine wave, but with an amplitude that i1s the sum of the
amplitudes of the two starting waves.

Let’s repeat this, but shaft one of the waves by 180°
Thas time, the

¥, /\ /\ /\ maximum of the first

v wave 15 at the

t- minimum  of  the

\/ \/ \/ \/ second and  wvice-

versa, so when vyou

add them up, vou get
AVANANYANYAYE-

t- When the waves

\/ \/ \/ interact so that the

sum 1s larger than the

original waves, we

ity call that constructive

t— interference. When

they interact so that

the sum 1s smaller, we

call that destructive

interference. You
can have everything




One of the reasons we care about how the waves interact with each other is because there are a
number of places where waves travel into an object — like an organ pipe — and travel out again.
Use the rope as an example. If I shake the rope, a pulse traveling down the rope will reach the
fixed end and will reflect back inverted. If I keep shaking the rope, I set up a wave train such
that, when one pulse reaches the end of the line and turns around, it will interfere with one of the
pulses still heading toward the wall. There will be some points along the rope where the waves
interact constructively and some poimnts where they interact destructively. The result 15 that there
are some points on the rope that are always standing still. We call these nodes. There are other
points at which the wave has maximum values, which we call anti-nodes. The waves that result
from this are called standing waves.

If I move my hand faster up and down, vou see that I can change the number of nodes and
antinodes. The length of the rope limits the configurations I can set up. The fundamental 1s the
configuration in which there are no nodes (except the two at the end). When vou pluck a gurtar
string, for example, vou are exciting the fundamental. If you change the length of the string by
holding 1t at one of the frets, vou change the wavelength and thus the frequency heard.

Some nomenclature:

Any frequency that is an integral multiple of the fundamental is called a harmonic.
The first harmonic is the frequency, which we'll denote as 1.

The second harmonic has a frequency exactly twice the fundamental so f; = 2

The first harmonic i1s the situation in which there i1s one node. Two nodes denote the second
harmonic, etc.

The other piece of nomenclature is the idea of an overtone. Overtones are the harmonics above
the fundamental frequency. The first overtone for a wave on a string 1s the second harmonic.
The second overtone for a wave on a string 1s the third harmonic

The other piece of nomenclature 1s the idea of an overtone. Overtones are the harmonics above
the fundamental frequency. The first overtone for a wave on a string 1s the second harmonic.
The second overtone for a wave on a string is the third harmonic

You'll notice that we don’t have many options here. There are either one, two, three, etc. nodes
on our string. This limits the number of patterns we can have. Let’s investigate how many
patterns are possible and the conditions under which they are produced. The chart at left shows

that thers 1z a

/\ pattern. The n
h1f2 = L First Harmonic harmonic is related
T . (fundamental) to the length as

/\ i
= hy=1L Second Harmonic L=—2=2
v (firzt overtone) 2
/\ /\ where n = 1 for the
- 5 3 5 32 =1L Third Harmonic first harmonic, 2 for
. _."\_/ . - (second overtone) the second
: ’ harmonic, etc.
S 2 WY _—
{ 3 g\ ¥ 2h,=L Fourth Harmonic The ma‘l.-elengtl_ls
A (third overtone) for each harmonic
- : - are given by:



ﬂ'}"ﬂ
2
oL,

“n

L=

n

The n® harmonic will always have n loops in the wave pattern.

Note that the frequency and the wavelength of each wave on the string is different, but that
the all the waves have the same velocity.

v=fili =l =1fils
and so on.
We can related the harmonics to the fundamental as follows:
2L

v . -
f, =—:substitutein L, =—
n

EXAMPLE - A guitar string has a fundamental frequency of 440 Hz and a length of 0.530 m.
a) Draw the picture of the first five overtones and find their frequencies.

b) What are the wavelengths of the waves on the string?

c) What 1s the velocity of waves on the stning?

d) What is the velocity of the sound waves produced by the string?

Solution a: The first three overtones are given by the picture above. The fourth overtone
(which 15 the same as the fifth harmonic) will have four nodes/five loops. The fifth overtone

(which 1s the same as the sixth harmonic) will have five nodes and six loops

A harmonic 1s an integral multiple of the fundamental. We will always have that f; = nf], so
f, =2f = 2{440Hz}=8801—12

f, = 3f, = 3(440Hz)=1320Hz
f, = 4f, = 4(440Hz)=1760Hz
f; =5f, =5(440Hz)=2200Hz

f; = 6f, = 6(440Hz)=2640Hz

Notice that the difference between any two harmonics that differ by one will always be equal to
the fundamental frequency.



fi—fi=4fi - 3f1 =1}
fE-fH=3f-2f1i=1

Solution b: The wavelength of the waves can be found from

) 2L
n
L

Ay = =2(050m) =10m
i’

by =2~ 050m
2

by =2 = 2050m=033m
33
;

by =22 = 1050m=025m
42

hs :%:%ﬁ_iom:ﬂzﬁm

3

Solution ¢: The velocity of waves on the string 15 given by
v=fih, =(440Hz)(100 m)=4402
Note that vou get the same thing 1f vou multiply any £, and 2!

Solution d: The velocity of the sound waves produced will be 340 m/s, which is the general
speed of sound at 15°C. Don't confuse the two velocities!

EXAMPLE A nylon string 1s stretched between supports 1.20 m apart.
a) what 1s the wavelength of waves on this string?

b) If the speed of transverse waves on a string 15 850 m/s, what 15 the frequency of the first
harmonic and the first two overtones?

a) To determine the wavelength, draw the / \

fundamental.

The fundamental is one half of a wavelength. The
wavelength 1s therefore twice the length of the
string, or 2.40 m.

b) The frequency of the first harmonic 1s given by

—120m——*

f, = l
Fq
850+

f = =350Hz=
240m

The frequency of the first two overtones are given by £ = 2f; = 700 Hz and {5 = 3f; = 1050 Hz



Waves in Tubes

String instruments produce sound by causing Making Sound with Strings
vibrations in the string. These vibrations excite the
air around the string, causing the air around the

strings to be alternately compressed and rarefied
creating sound waves. Note that the velocity of
waves on a string is not the same thing as the .
velocity of sound waves. Ear
In wind instruments, the pressure vanations are
controlled by using a column  Consider a tube of

length 1. that is open at both ends. When vou blow
into the tube, you create a longitudinal wave. The
sound wave iz thus created directly. In a string
instrument, vou create a transverse wave on the

string, which then

displacement excites _ the a
antinode surrounding the string
and creates the sound

K\\ displacement ] wave (which is

H“V longitudinal).  The
sound wave 15 created
directly by wind

instruments.

_— — Longitudinal waves
are variations in the
density of the air in a
given part of the tube. If vou set up longitudinal standing waves, we find an analogous situation
to the transverse standing waves seen on a string.  If we could take a picture of the movement of
the air molecules in each part of the standing wave, we would find the following: at some points
along the standing wave, there 1s no motion of the molecules at that position. This 1s called

displacement node, exactly like the node along a string when the string doesn’t move. Similarly,
there are points along the tube where the molecules oscillate at their maximum amplitudes.

i - - - e

These are displacement antinodes. We can plot the amplitude of the motion of the molecules to
illustrate this. Note that the diagrams for the production of sound by wind instruments are
different, because we're plotting displacement waves and not the actual shape of the air.

Waves in a pipe open at both end's.

We're going to be working in the limit of the tube length being much greater than the diameter of
the tube. This allows us to ignore effects at the ends of the tube that would complicate our
description.

At the open end of a column of air, the air molecules can move freely, so there will be a
displacement antinode at the open end of a pipe. We can use the same approach to determine the
modes of a tube of length . open at both ends are as we did in finding the waves on a string -
draw the possibilities.



For the first harmonic (fundamental), we
FistHarmonie  have half of a wavelength in the tube
Ly2=L
{h, = vilL L=2
2
For the second mode, we have a full
wavelength in the tube

Recond Harmonie

For the third mode,

3
"2
s0 in general, we can extrapolate this to:

L

Fourth Harmonie

2hy=1L
£, = vik, )
= 2vw/L L= ﬂl
=4v/2L
v
f, =n—
2L

These formulas are good for waves in a tube open on both ends.
Examples of instruments with pipes open at both ends:

o flute

& trumpet

® organ pipes

You change the length of the tube by pressing keys. In a flute, closing a kev elongates the tube.
In a trumpet or French horn, pressing keys adds additional lengths of tubing to the pipe.



Standing Waves in a Pipe Open on One End

We can also have pipes that are closed on one end and open on the other. (Closed on two ends
wouldn’t make any sense) This 1s a slightly different case, because at the closed end, we’re
required to have a displacement node, which will change the wave patterns allowed. Although
the frequencies of waves 1n a pipe open at two ends are the same as those of a string with the
same length, the case of waves in a pipe open at only one end will be quite different. We can
draw the allowed patterns as shown.

In general,
W aves in Pipes Open at One End L Ay
=n
A4 =L v
o = oy f, =n—
f.=v/ihy = v/4L 4L

but n can only be odd! Therefore, we

talk about this case having only odd

fa=wihy=3vi4L harmonics. There are only A1, Az, hs.. . We
call A1 the first overtone. is the second
overtone, etc.

L =35,/4

L = 5.4
f.=vih. = svi4L  Examples of mstruments with pipes closed
at one end include organ pipes

L = 73,04 EXAMPLE 36-4: a) Calculate the

fundamental frequency and the first three

overtones of a hollow pipe open at one
end having length 30.0 cm. b) Calculate the wavelength of each wave.

f,= vik, = Tv/4L

We have
£, :n%,but we are restricted to n odd
50

; 34pn

floe = __183H:
4L 4(030m)
3402

fi=32=3_""5 _g50H;:
T4l T 4(030m)

- i
ﬂ:jl;jﬂ:ﬂ;ﬂﬂz
4L T 4(030m)
£=72=7 3895 _1o0s0m:

4L 4(0.30m)



Bars Chladni in 1787, and Biot in 1816, conducted expenments on the longitudinal
vibration of rods. In 1824, Navier, presented an analytical equation and its solution for
the longitudinal vibration of rods.

Shafts Charles Coulomb did both theoretical and experimental studies in 1784 on the
torsional oscillations of a metal eylinder suspended by a wire [5]. By assuming that the
resulting torque of the twisted wire i1s proportional to the angle of twist, he dernived an
equation of motion for the torsional vibration of a suspended cylinder. By integrating
the equation of motion, he found that the period of oscillation is independent of the
angle of twist. The derivation of the equation of motion for the torsional vibration
of a continuous shaft was attempted by Caughy in an approximate manner in 1827
and given correctly by Poisson in 1829, In fact, Saint-Venant deserves the credit for
deniving the torsional wave eguation and finding its solution in 1849,

Beams The equation of motion for the transverse vibration of thin beams was denved
by Daniel Bernoulli in 1735, and the first solutions of the equation for various support
conditions were given by Euler in 1744, Their approach has become known as the
Euler—Bernoulli or thin beam theorv. Rayleigh presented a beam theory by including
the effect of rotary inertia. In 1921, Stephen Timoshenko presented an improved theory
of beam vibration, which has become known as the Timoshenke or thick beam theory,
by considering the effects of rotary inertia and shear deformation.

Membranes In 1766, Euler, derived equations for the vibration of rectangular mem-
branes which were comect only for the uwniform tension case. He considered the
rectangular membrane instead of the more obvious circular membrane in a drumhead,
because he pictured a rectangular membrane as a superposition of two sets of sirings
laid in perpendicular directions. The correct equations for the vibration of rectangular
and circular membranes were derived by Poisson in 1825, Although a solution corre-
sponding to axisymmetric vibration of a circular membrane was given by Poisson, a
nonaxisymmetric solution was presented by Pagani in 1829,



The method of placing sand on a vibrating plate to find its mode shapes and to
observe the various intricate modal patterns was developed by the German scientist
Chladni in 1802. In his experiments, Chladni distributed sand evenly on horizontal
plates. During vibration, he observed regular patterns of modes because of the accu-
mulation of sand along the nodal lines that had no vertical displacement. Napoléon
Bonaparte, who was a trained malitary engineer, was present when Chladni gave a
demonstration of his experiments on plates at the French Academy in 1809, Napoléon
was s0 impressed by Chladni’s demonstration that he gave a sum of 3000 francs to the
French Academy to be presented to the first person to give a satisfactory mathemati-
cal theory of the vibration of plates. When the competition was announced, only one
person, Sophie Germain, entered the contest by the closing date of October 1811 [8].
However, an error in the derivation of Germain's differential equation was noted by
one of the judges, Lagrange. In fact, Lagrange derived the correct form of the differ-
ential equation of plates in 1811, When the academy opened the competiion again,
with a new closing date of October 1813, Germain entered the competition again with
a correct form of the differential equation of plates. Since the judges were not satisfied,
due to the lack of physical justification of the assumptions she made in denving the
equation, she was not awarded the prize. The academy opened the competiion again
with a new closing date of October 1815, Again, Germain entered the contest. This
time she was awarded the prize, although the judges were not completely satisfied with
her theory. It was found later that her differential equation for the vibration of plates
was correct but the boundary conditions she presented were wrong. In fact, Kirchhoff,
in 1850, presented the correct boundary conditions for the vibration of plates as well
as the correct solution for a vibrating circular plate.

The great engineer and bridge designer Navier (1785-1836) can be considered
the originator of the modern theory of elasticity. He derived the correct differential
equation for rectangular plates with flexural resistance. He presented an exact method
that transforms the differential equation into an algebraic equation for the solution of
plate and other boundary value problems using trigonometric series. In 1829, Poisson
extended Navier's method for the lateral vibration of circular plates.

{a) &) L]

‘Water tank
(mass fi)

i

¥ty
(d) (&)
Figure 2.1 Single-degree-of-freedom systems.



VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM

The number of degrees of freedom of a vibrating system 15 defined by the minimum
number of displacement components required to describe the configuration of the sys-
tem during vibration. Each system shown in Fig. 2.1 denotes a single-degree-of-freedom
system. The essential features of a vibrating system include (1) a mass m, producing
an inertia force: mx; (2) a sprng of stiffness &, producing a resisting force: kx; and
(3) a damping mechanism that dissipates the energy. If the equivalent viscous damping
coefficient 1s denoted as ¢, the damping force produced 15 cx.

Free Vibration

In the absence of damping, the equation of motion of a single-degree-of-freedom system
is given by

mi +kx = f(r) (2.1)
where f(r) is the force acting on the mass and x(r) is the displacement of the mass
m. The free vibration of the system, in the absence of the forcing function f(r), is
governed by the equation

mx+kx =10 (2.2)

The solution of Eg. (2.2) can be expressed as
Ty
x(1) = xg coswy,t + — sin w,t (2.3)
etk

where o, 15 the natural frequency of the system, given by
[k
o=/~ 2.4)
m
xp = x(t = 0) is the initial displacement and xy = dx(r = 0)/dt is the initial velocity

of the system. Egquation (2.3) can also be expressed as

x(r) = A cos{w,! — ) (2.5)

Forced Vibration under Harmonic Force
For an undamped system subjected to the harmonic force £(r) = i cos wr, the equation
of motion is
mi + kx = fiycos at (2.22)

where fj 1s the magnitude and o i1s the frequency of the applied force. The steady-state
solution or the particular integral of Eq. (2.22) 15 given by

xplr) = X cos an (2.23)
where
X — —d0 _ = Ba _ (2.24)
&k — mor I — (e feog )~

denotes the maximum amplitude of the steady-state response and

0
su=2 2.25)
indicates the static deflection of the mass under the force fi. The ratio
X 1

— e — 2.26
B 1 — (e, )t (220

represents the ratio of the dynamic to static amplitude of motion and is called the ampli-
fication factor, magnification factor, or amplitude ratio. The varnation of the amplitude



Properties of Eigenvalues and Eigenfunetions

The fundamental propertics of eigenvalues and eigenfunctions of Sturm-Liouville prob-
lems are given below.

. Regular and periodic Sturm-Liouville problems have an infinite number of
distinet real eigenvalues Ay, A3, ... which can be arranged as
Al = Ay = e

The smallest eigenvalue A is finite and the largest one is infinity:

lim A, = >
R— 00

2. A unique eigenfunction exists, except for an arbitrary multiplicative constant,
for each eigenvalue of a regular Sturm-Liouville problem.

3. The imfinite sequence of eigenfunctions w(x), wzlx), ... defined over the inter-
vala < x = b are said to be orthogonal with respect to a weighting function r{x) = 0 if

b
f rix)wy, (x)w,(x)dx =10, mEn (6.27)
When m = n, Eq. (6.27) defines the norm of w,(x), denoted ||w,(x)||, as
b
| ()| =f rix)wl (x)dx =0 (6.28)
By normalizing the function wy,(x) as

T = et o (6.29)

Hw ()]



FLEXURAL WAVES IN BEAMS

The equation of motion for the transverse motion of a thin uniform beam, according
to Euler—Bernoulli theory, is given by

Fwix, ) 1 Pwix, 0

=10 16.84
dxd P [ ( )
where
= £l 16.85)
cC= oA (16.

It can be observed that Eq. (16.84) differs from the one-dimensional wave equation,
Eq. (16.1), studied earlier in terms of the following:
1. Equation (16.84) contains a fourth derivative with respect to x instead of the
second derivative.
2. The constant ¢ does not have the dimensions of velocity; its dimensions are
in’/sec and not the inJsec required for velocity.
Thus, the general solution of the wave equation,
wix. )= flx —ct)+ gix 4+ ct) (16.86)

will not be a solution of Eq. (16.84). As such, we will not be able to state that the
motion given by Eq. (16.84) consists of waves traveling at constant velocity and without
alteration of shape. Consider the solution of Eq. (16.84) for an infinitely long beam in
the form of a harmome wave traveling with velocity v in the positive x direction:

2
wix, 1) = Acos TT{J:—W} = Acos(kx — ax) (16.87)



where A is a constant, A 1s the wavelength, v 13 the phase veloeity, k is the wave number,
and e 15 the circular frequency of the wave, with the following interrelationships:

w=2rf =kv (16.88)
2

k= — 16.89
. i )

Substitution of Eq. (16.87) into Eq. (16.84) yields the velocity, also called the wave
velocity or phase velociiv, as

21 2w [EI
V= —C=—_ | — (16.90)
A Ay pA
Thus, unlike in the case of transverse vibration of a string, the velocity of propagation
of a harmonic flexural wave 1s not a constant but varies inversely as the wavelength.
The material or medium in which the wave velocity v depends on the wavelength 1s
called a dispersive medinm. Physically, it implies that a nonharmonic flexural pulse (of
arbitrary shape) can be considered as the superposition of a number of harmonic waves
of different wavelengths. Since each of the component harmonic waves has different
phase velocity, a flexural pulse of arbitrary shape cannot propagate along the beam
without dispersion, which results in a change in the shape of the pulse.
A pulse composed of several or a group of harmonic waves 1s called a wave packet,
and the velocity with which the group of waves travel 1s called the group velocity [4, 5].
The group velocity, denoted by vy, is the velocity with which the energy is propagated,
and its physical interpretation can be seen by considering a wave packet composed
of two simple harmonic waves of equal amplitude but slightly different frequencies
w + Aw and o — Ao, The waves can be described as

wylx, 1) = Acosikjx — ant) (16.91)
wax, 1) = Acos{kzx — anr) (16.92)

Harmonic wave 1

|
I
i

— v+ AV Harmonic wave 2

A o
Oscillation of
/ frequency w ‘/_ Envelope of frequency s

Average
velocity, v

— Group velocity, v,

Wave packet { group) composed
of waves 1 and 2

Figure 16.13 Wave packet and group velocity.



Longitudinal Waves A theory of propagation of longitudinal stress waves in a cylin-
drical rod with several step changes in the cross-sectional area was developed by
Beddone [10]. The analysis obtained a transient solution of the one-dimensional wave
equation by means of Laplace transform methods based on the concepts of traveling
waves and reflection and transmission coefficients.

Wave Propagation in Periodic Structures  The problem of free coupled longitudinal
and flexural waves of a peniodically supported beam was studied by Lee and Yeen [11].
It was shown that the charactenistic or dispersion equation can be factorized into product
form, which simplifies the analysis and classification of the dynamic nature of the
system. Sen Gupta [12] studied the propagation of fexural waves in doubly periodic
structures consisting of the repetition of a basic unit that is a periodic structure in
itself. The analysis 15 simplified by introducing a direct and a cross-chain receptance
for multispan structures and by utilizing the concept of the equivalent internal restraint.

Wave Propagation Under Moving Loads  Ju used the three-dimensional finite element
method to simulate the soil vibrations due to high-speed trains moving across bridges in
Ref. [13]. He first analyzed a bridge system passed by trains. Then the pier forces and
moments calculated were applied to a pile cap to simulate wave propagation in the soil.

Waves Through Plate or Beam Junctions In a study of elastic wave transmission
through plate-beam junctions by Langley and Heron [14], a genenc plate=beam junc-
tion was considered to be composed of an arbitrary number of plates either coupled
through a beam or coupled directly along a line. The effects of shear deformation, rotary
mertia, and warping were included in the analysis of the beam, and due allowance was
made for offsets between the plate attachment lines and the shear axis of the beam.

Vibration Analysis Using a Wave Eguation Langley showed that the vibrations
of beams and plates may be analyzed in the frequency domain by using a wave
equation instead of the conventional differential equations of motion provided that
certain assumptions are made regarding the response of the system in the vicinity of a
structural discontinuity [15].
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UNIT-1V

Acoustics

Acoustics: the study of sound waves

Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us.
As an object vibrates, it sets the surrounding air in motion, sending alternating waves of compression and
rarefaction radiating outward from the object. Sound information is transmitted by the amplitude and frequency
of the vibrations, where amplitude is experienced as loudness and frequency as pitch. The familiar movement
of an instrument string is a transverse wave, where the movement is perpendicular to the direction of travel

(See Figure 1). Sound waves are longitudinal waves of compression and rarefaction in which the air molecules
move back and forth parallel to the direction of wave travel centered on an average position, resulting in no

net movement of the molecules. When these waves strike another object, they cause that object to vibrate by

exerting a force on them.

Transverse wave Examples of transverse waves:
transverse motion . . .
of instrument string vibrating strings
water surface waves
SIS S electromagnetic waves

/\ ]\ geismic S waves

Examples of longitudinal waves:

+ . direction of propagation —»

Longitudinal wave
waves in springs

direction of propagation —» sound _“' dves
tsunami waves

HJUUU ||Illlm[.'i 1 “ HH]]"M seismic P waves

Figure 1: Transverse and longitudinal waves

longitudinal motion in a spring —»



The forces that alternatively compress and stretch the spring are similar to the forces that propagate through the
air as gas molecules bounce together. (Springs are even used to simulate reverberation, particularly in guitar
amplifiers.) Air molecules are in constant motion as a result of the thermal energy we think of as heat. (Room
temperature is hundreds of degrees above absolute zero, the temperature at which all motion stops.) At rest,
there 15 an average distance between molecules although they are all actively bouncing off each other. Regions
of compression (also called condensation) and rarefaction (expansion) radiate away from a sound source in pro-
portion to the movement of the source. It is the net force exerted by the moving air that acts on our ears and on
transducers like microphones to produce the sensation of hearing and the electrical signals that become sound
recordings. The same physics that describe oscillating mechanical systems like springs can be used to describe
the behavior of gases like air: the equations derived to describe weights on springs can also be used to describe
acoustics. Furthermore, electrical circuits exhibit similar behavior and can be described using very similar
mathematical equations. This helps unify the field of sound recording, since mechanical, acoustical and electri-
cal systems are all employed in the recording of sound.

Figure 2 shows how energy is interchanged between kinetic and potential energy in an oscillating svstem. Po-
tential energy is energy that is capable of doing work, while kinetic energy is the result of active motion. As a
mass suspended on a spring bounces up and down, it exchanges the potential energy of a raised mass and ten-
sion stored in a spring with the kinetic energy of the moving mass back and forth until friction depletes the re-
maining energy. At the top of its vertical motion, the mass has only potential energy due to the force of gravity
while the spring is relaxed and contains no energy. As the mass falls, it acquires kinetic energy while tension
builds in the spring. At the mid-point of its fall, the mass reaches its maximum velocity and then begins to slow

as the force exerted by the spring’s expansion builds to counter the force of gravity. At the bottom of its travel,
the mass stops moving and therefore no longer has kinetic energy while the spring is maximally stretched and
its potential energy is at its maximum , pulling the mass back upwards. Since air has both mass and springiness,
it behaves much the same way as the mechanical spring and mass.
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Figure 2: Oscillating mechanical systems interchange kKinetic and
potential energy - the same principle applies to acoustic systems.

Figure 3 shows how the time-varving characteristics of a sound wave may be measured. The amplitude can be
measured as either pressure, velocity, or particle displacement of the air. Pressure is often used because it is
predominantly what is perceived by the ear and by many microphones. Peaks of increased pressure and troughs
of reduced pressure alternate as they radiate away from the source. Their wavelength and period can be used

to describe the flow of the wave. The reciprocal of the time between peaks or troughs is the frequency () in
cycles/second or Hertz (Hz). The distance between peaks as they move outward is the wavelength (».). The two
quantities are related by the speed of sound (¢), about 340 m/s or 1130 ft/s.
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Figure 3. The period of a sinusoidal sound wave is the time between subsequent
pressure peaks or troughs. The wavelength is the distance between those same peaks
and troughs. As long as the speed of sound is constant, the two are related.



The pressure variations associated with sound are extremely small compared to the average air pressure. Baro-
metric pressure at sea level is about 101 kPa [Pa (pascal) = N/m?®] or 14.7 1b/in®. The pressure variation consid-
ered the threshold of andibility is 20 xPa, on the order of one billionth of atmospheric pressure! The sensitivity
of the ear is quite impressive. This also begins to explain why sound transmission is so hard to control. Further
any device used to convert sound into electricity must be similarly sensitive and able to respond over a huge
range of pressures and frequencies.

ratio of pressure to velocity energy
1

T T ""l’l[ T T T LB |
Tl 0.1 |

ratio of distance from source to wavelength

Figure 4- The ratio of energy contained in pressure to that of velocity as a function of the
ratio of the distance from the source to the wavelength of the sound wave._

As a vibrating object begins to move, it forces the air molecules in contact with its surface to move. Thus, the
air is accelerated by the sound source, causing a net increase in particle velocity. Particle velocity refers to the
movement of a hypothetical small mass of air rather than to the turbulent individual air molecules that vibrate
locally with extreme velocities but only over infinitesimal distances. (Volume velocity is also used to describe
the velocity component - it’s the flow of bulk fluid - air in this case.) The dimensions of nitrogen and oXygzen
molecules are on the order of about 3 Angstroms (10 m). This is many orders of magnitude smaller than
wavelengths of sound so considering air as a bulk mass is sensible. As the movement continues outward from
the source, the molecules are forced together, increasing the local pressure. Very near a sound source, most
of the energy is contained in the form of particle velocity while far from the source the energy is transmitted
predominantly in the form of pressure (See Figure 4) Close to a small source, the sound wavefront expands in

two dimensions as the spherical surface area grows with the square of the distance from the onigin (See Figure
5.) Far from the source, the wavefront is practically planar and the energy radiates through the same area as it
flows outward hence there is no decrease in sound pressure due to geometric dispersion. This distinction affects
how sensors respond to the sound, as some are sensifive only to pressure while others are sensitive to the veloc-
ity of the sound wave that is driven by the pressure difference along the axis of movement.

area=nr
at twice the distance,
the area is squared

D,=2D

Figure 5: Spherical waves propagate through increasingly large area a proportional to 7t 2.



The ear functions mainly as a pressure sensor as do omnidirectional microphones, designed as pressure sensors.
QOther types of microphones are sensitive to the air pressure gradient (often called velocity microphones ) These
behave differently than pure pressure sensors, as we will see when we examine microphone design and perfor-
mance. The core of thizs difference depends on the fact that pressure is a scalar quantity while velocity is a vec-
tor quantity. [A scalar quantity has only a magnitude while a vector has both magnitude and direction.] In order
for a microphone to respond differently with respect to the direction from which a sound originates_ it must be
at least somewhat sensitive to the velocity vector while pressure microphones respond only to the pressure of a
sound wave and not to the direction from which it originates.

In directional microphones. it is the pressure difference between two points (the front and back of the micro-
phone), the pressure gradient, that is responsible for the forces that are converted to electrical signals in the
transducer. While some directional microphones do respond to the velocity directly, like dynamic and ribbon
microphones, others use multiple pressure-sensitive elements to produce a signal proportional to the pressure
difference without actually moving at the equivalent velocity. For this reason, it is preferable to refer to direc-
tional microphones in general as pressure-gradient microphones.

Air i5 a gas miXture, predominantly nitrogen and oxvgen. The molecules are in constant motion. The hotter the
gas, the more frequent and energetic the molecular collisions. The kinetic energy of the gas exerts a force on
other objects in contact with the air, which we call pressure. The relationship between the pressure and volume
occupied by the gas in a closed system is reflected in the basic law of gases, Bovle's Law:

PV=nRT

where P is pressure, V is volume_ n is the amount of gas in moles, R is a constant and T is the absolute tempera-
ture. The most important aspect of this relationship is that the product of pressure and volume is constant - if
one goes up, the other goes down. (Related changes in temperature may complicate this relationship slightly )
The pressure goes up when the gas is compressed by reducing the volume it occupies because the molecules are

forced closer together where their collisions become more frequent. The compressibility of air can be observed
using a syringe. With the plunger half-way into the syringe body, block the open end of the syringe and push or
pull on the plunger. When you release the plunger, it returns to its original position much like air molecules do
during a passing sound wave.

There is plenty of confusion about how to measure sound amplitude. Sound intensity is the product of pressure
and velocity and reflects the power (energy/time) of the sound wave:

Intensity = pressure X velocity = power / area

Near the sound source, intensity decreases with the square of the distance from the source. Intensity measures
the total power of the sound wave - its ability to do work. What we hear as loudness is more closely related
to the pressure of the sound wave, which decreases linearly with distance from the source. When we are con-
cerned with our perception of loudness, we need to consider the sound pressure level rather than the inten-
sity. We can also consider only the pressure when we use omnidirectional pressure microphones. When using
directional microphones, however, we will need to also consider the velocity component of the sound wave.
Directional microphones have the ability to respond differently to sounds originating from different direc-
tions because they are sensitive to the sound wave pressure gradient, which changes as a function of the angle
from which the sound originates. It is more complicated to measure the velocity of a sound wave than it is to
measure its pressure , therefore most audio systems use sound pressure as a measure of amplitude. Most often,
amplitude is measured as sound pressure level (SPL).



The distinction between spherical and plane waves is of practical importance because it explains how differ-
ent microphone types respond depending on their distance from the sound source. For spherical waves, the
intensity decreases with the square of the distance but the sound pressure level decreases linearly with distance.
A spherical wave sound pressure decreases by 1/2 or 6 dB for a doubling of distance. In a more distant plane
wave, any decrease in sound pressure is due to absorption and scattering rather than geometric considerations.
In theory, plane wave pressures do not decrease with distance as they do for spherical waves. Equations for
spherical and plane waves are presented below. These equations show how pressure p and velocity u change as
a function of both time and distance from the source and as a function of wavelength.

Plane wave Spherical wave
p=ake? psink(ct - x) p= Spek sink(et —r)
47
. SkE[1 .
U = akesinkicf —x) U=———|—cosk(ct —r)—sink{ct —F)
dar| ke

a = particle displacement (cm)

k=20

#.= wavelength (cm)

¢ = velocity of sound (cm/sec)

p = density of air (g/cm’)

t=time (sec)

x = distance from source (cm)

§ = maximum rate of fluid (gas) emission from source (cm’/sec)
F = radius or distance from source (cm)

Though somewhat complicated, the significant difference in the equations relates to the two terms in the veloc-

ity expression for spherical waves. There_ the cosine term contributes when » is small in contrast to the case
when r 15 very large. For large r_the spherical wave velocity equation reduces to the plane wave equation.
One important feature of the behavior of sound fields near the source is that the pressure and velocity are not
in phase as they are in the more distant plane wave. In spherical waves, the velocity leads the pressure by up
to 80° for low frequency waves. Figure 6 shows the relationships between displacement, pressure and velocity
for spherical and plane waves. The relationship is simple for plane waves, but for spherical waves the relation-
ship depends on the proximity to the source in a complex way. For the purposes of understanding microphone
behavior, it is only necessary to recognize the difference between spherical and plane waves in a general way.

Z.i = = .Iﬂ -:.C

= |

The ratio of pressure p to velocity i, known as the specific acoustic impedance Z . remains constant in plane
waves but varies with distance in a spherical wave  (Velocity here is a complex number as it represents a vector
quantity while pressure is a scalar, thus Z_ iz a complex number) In a plane wave, the acoustic impedance is
also equal to the product of the density of the medium p and the velocity of sound ¢. In a spherical wave, the
acoustic impedance is a function of the distance from the source. As we will see when we discuss directional
microphones, this phenomenon is responsible for the low frequency boost known the as proximity effect.
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Figure 6. Sound wave pressure  velocity and displacement relationships

for spherical and plane waves. Exact relationship in spherical waves
depends on distance from sound source.
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Plane waves can be assumed to occur at a distance from the source that depends on the relative wavelength of
the sound itself. Low frequency sound has long wavelengths, about 17 m at 20 Hz while the wavelength at 20
kHz iz only 1.7 cm. High frequency waves can be considered planar a few centimeters from the source while
low frequency sounds require many meters of separation from the source to be close to planar. Of course, real
sounds contain many component frequencies so the issue gets complicated. The difference in behavior between
spherical and plane waves does pertain to the differences we observe between close and distant microphone
placement. Pressure gradient microphones are more sensitive to their distance from the source than are omnidi-
rectional microphones, particularly when placed close to the source.

Frequency (Hz) Loss [@ 25° C, 50%RH] (dB/km)
50 0.67
500 32
5000 37
10000 131

Figure 7: Air absorption of sound pressure varies significantly with frequency.

For very large distances, the absorption of sound energy by the air becomes the dominant cause of sound pres-
sure decrease. (See Figure 7) This is more pronounced for high frequencies than for low, a phenomenon some-
times observed at large outdoor concerts. A 1 kHz wave loses 6 dB at a distance of 20 miles purely through ab-
sorption while a 10 kHz loses 6 dB at about 1000 feet and 20 kHz loses 6 dB at just under 300 feet. Fortunately,
these distances rarely if ever affect microphone placement.



The sound field intercepted by a microphone is dependent on its distance from the source. There are alternative
ways of characterizing the qualities of the sound field created by a source. The terms near field and far field ap-
ply to individual sound sources and are based on the balance between pressure and velocity at a given distance.
The near field conditions involve spherical waves and the consequent acoustical behavior while the far field
relates to plane wave behavior. The dividing line betwen the two conditions is wavelength (frequency) depen-
dent. The terms free field (direct field) and diffuse field (reverberant field) apply to sounds measured in a room.
Near the source, the direct sound i1s dominant while further away the reverberant sound dominates. In the direct
fleld, sound pressure decreases linearly with distance while there is no decrease in sound pressure with distance
in the diffuse field. The distance at which the direct and reverberant sounds are at equal pressure is called the
critical distance.

Unfortunately, there is no direct correspondence between near field and direct field and between far field and
diffuse field. Both sets of terms are used but they are not interchangeable. While it can be helpful to understand
how the behavior of sound changes with the distance from the source, the decisions about microphone place-
ment vltimately depend on how the converted signal sounds to the engineer. The physical acoustic relationships
can help to explain why microphones sound as they do but they cannot tell you where exactly to place a micro-
phone in order to get the desired sound. That relies more on experience and careful listening.

REVERBERATION AND REVERBERATION TIME

A room with hard walls no furniture and no drapes . echoes. To hear well in a room or
auditorium it may seem that the walls should not absorb and sound .This would lead to
echoing . A room especially a large room with an excess of sound absorbing materials such as
large soft drapes and soft stuffed furniture may have a quality referred to as dead. Too much
absorption results in too low an intensity. Both these types of rooms are called poor
acoustics. A balance must be there fore obtained.

When the sound 1s switched on intensity slowly builds up when 1t 1s switched off the intensity
drops slowly . The prolongation of sound inside a room or hall even after the source
producing the sound is turned off 1s called reverberation this 1s due to multiple reflections
from the walls ceiling floor and other reflecting materials present in the hall.

The reverberation time for a room 1s the time required for the intensity to drop to one
millionth (]ﬂ'f'} of its imitial value.

Reverberation time can be expressed interms of sound levels (in dB ) rather than intensity .
If the imitial intensity 1s I; and the final intensity I¢ 15 107 I, then

dB;=10 log I; / I (standard)
dB=10log I¢ /I (standard)
dB;-dB=10 log( I/1¢)
since I; /1; = 10°
dB; —dB; =10 log 10°
=6*10=60

The reverberation time 1s the time required for the intensity to drop by 60 decibels . I't
depends on the volume V of the room.It also depends on the absorption of all parts of the
room of the room walls furmiture people and so forth . Some parts may be highly absorbent
and some absorb only httle.



BASIC REQUIREMENTS OF ACOUSTICALLY GOOD HALL

The reverberation of sound in an auditorium is mainly due to multiple reflections at various
surfaces mside. The volume and the shape of the auditorium and the sound absorption nside
influence the behaviour of sound. By varying the absorption of sound inside the hall the
reverberation time can be brought to optimum value. The following are the basic
requirements of acoustically good hall.

1) The volume of the auditorium 1s decided by the type of programme to be conducted there
and also the number of seats to be accommodated. A musical hall requires a large volume
whereas a lecture hall requires a smaller volume. In deciding the volume of the hall its
height plays an important role than its length and breadth. The ratio between the ceiling

height and breadth should in deciding the volume of the hall the following guidelines may be

followed.

1) In cinema theatres — 3.74 to4.2 m’ per seat
i) In lecture halls — 2.8 to 3.7 m’ per seat
111) In musical halls — 4.2 to 5.6 m™ per seat

2) The shape of the wall and ceiling should be so as to provide uniform distribution of sound
throughout the hall. The design of a hall requires smooth decay and growth of sound . To
ensure these factors the hall should have scattering objects walls should have irregular
surface and walls must be fixed with absorptive materials . In fig 5.1 a design which enables
uniform distribution of sound 1s presented.

3) The reverberation should be optimum 1.. €. neither too large nor too small . The
reverberation time should be 1 to 2 seconds for music and (.5 to | second for speech to
control the reverberation the sound absorbing materials are to be chosen carefully.

4) The sound heard must be sufficiently loud in every part of the hall and no echoes should
be present.

5) The total quality of the speech and music must be unchanged 1.e. the relative intensities of
the several components of a complex sound must be maintained .

6) For the sake of clarity the successive syllables spoken must be clear and distinct 1.e. there
must be no confusion due to overlapping of syllables.

7) There should be no concentration of sound n any part of the hall.

8) The boundaries should be sufficiently sound proof to exclude extraneous noise.
9) The should be no Echelon effect.
10) There should be no resonance within the building .

11} The hall must be full of audience.



ABSORPTION COEFFICIENT

Since different matenals absorb sound energy differently absorption of all the matenals are
expressed in terms of absorption coefficient.

The coefficient of absorption of a matenal 1s defined as the ratio of sound energy absorbed by
the surface to that of the total sound energy incident on the surface.

Sound energy absorbed by the surface

1.e. Abdortion coefficienta =
Total sound energy incident on the surface

As all sound waves falling on an open window a pass through an open window 1s taken to be
a iperfect absorber of sound and absorption coefficient of all substance are measured in terms
of open window unit(O. W. U) Absorption coefficient of a surface 1s also defined as the

reciprocal of its area which absorbs the same sound energy as absorbed by unit area of an
open window. The absorption coefficient of a given material depends on the frequency of the

sound also . It 1s generally higher at higher frequencies.

Sound absorption coefficient of some matenals (at 500 H, frequency range)

Meterial Absorption coefficient
O.WwW.uU
Marble 0.01
Concrete 0.17
Cork 0.23
Asbestos 0.26
Carpet 0.30
Fibre board 0.50
Heavy curtains 0.50
Fibre glass 0.75
Perforated cellulose fibre tiles 0.80
Human body 0.50

Open window 1.0



SABINE’'S FORMULA FOR REVERBERATION TIME

Now we are going to derive an expression for reverberation time inside a room of volume
V. Sound 1s produced by a source inside the room. There sound waves spread and fall on the

walls they are partly absorbed and pertly reflected . The sound energy inside the room at any
instant 1s given by

Rate of growth of energy in the space = rate of supply of energy by the source —
Inside the room rate of absorption by all the surface

After getting an expression for the above 1f we switch off the source supplying energy then
due to absorption of energy by all the surfaces energy inside the room will decay and from
the decay rate reverberation time can be calculated. This derivation is based on the
assumption that there 1s a uniform distribution of sound energy inside the room.

1) Rate of supply of energy by the source

Rate of supply of energy by the source 1s nothing but the power of the source P.

2) Rate of absorption of sound inside the room

In order to calculate the absorption by the wall we consider a small element ds on a plane
wall AB as shown 1n fig 5.2 this element receives sound energy from the volume infront of it
Energy received by this element per second can be calculated by constructing a hemisphere
around this element with radius “v* where v 1s the velocity of sound . Energy from every
volume element with 1n this hemisphere will reach the element ds per elements ds . From the
same centre with radn y and y+dy two circles are drawn in the plane containing the normal.
At angles 0 and 6 +d6 with respect to the normal two radii are and the area (shaded in the
figure) enclosed by these two radi between the circle 1s considered.

This surface element 1s rotated about the normal through an angle dd and the circumferential
distance moved by this elements is r sin6dd.

Volume traced out by this area element = area of the element * distance moved
dV=rdfdr(r sin 6 dD)
=’ sin 0d0drd®

If E is the sound energy density 1.e. energy per unit volume then energy present in the 1s
volume =EdV. Since the sound energy from this volume element propagates n all directions

(i.e. through solid angle 4x)



EdV
The energy traveling per unit solid angle =--------
4n
The energy traveling towards surface element ds alone falls on ds.
The energy traveling towards ds =energy traveling per unit solid anle *solid angle
Subtended by ds at the volume element dV

ds cosf
The solid angle subtended by area ds at =
this elements of volume dV r
EdV ds cosf
Hence energy traveled towards ds from the = -———eeeeeee .
WVolume element dV 4 r
E.r sin 8d0drdd .  ds cosf
4 r
Eds
= mmmmeema-- sinf cosd dodddr
4

Total energy received by ds in one second from the whole
Eds
Volume mn its front = —---cmemeeee —f sin B cosBdodddr
4n

This equation has three variable sincewe consider the energy received per second r varies
between () and v where 1s the velocity of sound 0 varies between O and n / 2, @ varies
between 0 and 2.

Hence energy received by ds per second

S o*? sinBcosBdO,/ 2 dd,[* dr

Eds

—- e vE27*[? sinfBcosfde
4n

Evds

= cee- o™ 2 sinBcosBd
4



Evds
= ——e—(since,["” 2sinfcosOdO=1)
4

If a 1s the EbSGI‘pTi{}Il of coefficient of the material of the wall ABthen energy
absorbed by the surface element ds per second  Ewvds

Where Zads = A the total absorption a on all the surface on which sound falls.
3) The growth and decay of sound energy in the room

Let p be the power output 1.e. rate of emission of energy from the surface and V the total
volume of the room . Then the total energy in the room at the instant when energy density 1s
E will be EV

d dE
Rate of growth of energy = e (EV) = Ve

Dt dt

But at any instant rate of growth of energy 1n space= rate of supply of energy from the furface
— rate of absorption by all the surfaces.

When steady state 1s attained dE/dt =0 and 1f the steady state energy density 1s denoted by
En then its value 1s given by

from equation



dE p vA

= - E
Dt v 4v
vA 1 du
( Let -——-- = ot and hence ---- = -~ )
dv v vA
dE 4pu
= -uE
dt vA
or
dE 4p
---------- +uE =y
dt vA

dE 4p
(- + qE) e" = ae™ )
Dt vA
Or
d 4p
------ (Ee™) = - qe™
dt vA

where k 15 a constant of integration . Using the boundary conditions we can find the value of

K

1) Growth of the energy density:- Ift 1s measured from the instant the source start
emitting sound . then initial condition is that at =0 E=0, Applying this condition to
equation we get



substituting this value in equation we get

4p 4p 4p 4p
Ee" = e™- or E= o - ool e™
vA vA vA vA
4p
E = ——- (1-e™
vA
or
E =En(l-e™)

The equation shows the growth of energy with time t. The growth is along the exponential
curve shown in fig 5.3 which shows that E increases along the curve with time Att=0E= 0
and at

i1) Decay of energy density:- Let the source be cut off when E has reached the maximum
value E, . Now at =0, p=0, E= E;, from equation K=E,

substituting this value of K in equation
E " E,, (since p=0)

Equation show s the decay of the energy density with time after the source is cut off. This
decay is shown by the exponential curve .

4) Deduction of standard reverberation time (T) i.e. sabine’s formula : We know that the
persistence of audible sound in the room even after the source has stopped producing the
sound is called reverberation and the standard time of rev3ereration T is defined as the time

taken for the sound energy density inside a room to fall to one millionth of 1ts imitial
maximum value hence to calculate T we putE,,, /E =10° and t= T in equation

------- =" 10 (or) "' =10°

ol =6 log. 10=2.3026%6

substituting foru

4*2 3026*6 v
T= ( v=330m/s)
330 A
Or
0.165V 0.165V
T = —

A Eals



This equation 1s in good agreement with the experimental values obtained by sabine .this 1s
sabine’s formula for reverberation time .

1) Directly proportional to the volume of the auditorium

11) Inversely proportional to the areas of sound absorbing surfaces such as ceiling
wall floor and other materials present inside the hall and

111) Inversely proportional to the total absorption

It has been experimentally found that the reverberation time of 1.03 second 1s most suitable
for all room having approximately a volume less that 350 meters.
The first method 15 based on the determination of standard ttime of reverberation 1n the room
without and with the sample of the matenal inside the room , If T 1s the reverberation time
without the sample inside the room then applying sabine’s formula

1 A XaS
T, i 0.165V i 0.165V
Now with the sample mnside the room reveration time T, 1s measured.
1 TaS+a s,
T, - 0.165V

Where a, 1s the absorption coefficient of the area S,. From the above equation we have

) S| 1 1
= - )
0.165V T, T,




FACTORS AFFECCTING THE ARCHITECTURAL ACOUSTICS AND THEIR
REMEDIES

By an acoustically good hall we mean that every syllable or musical note reches an audible
level of loudness at every point of the hall and then quickly dies away to make

Room for for the next syllable or group of note. The deviation from this makes the hall
defective acoustically . Following factors affect the architectural acoustics.

1) In a hall when reverberation is large there 1s overlapping of successive sound which
results i loss of clarity in hearing.On the other hand 1f the reverberation 1s very small the
loudness 1s inadequate .Thus the time of reverberation for a hall should neither be too large
nor too small . It must have a definite value which may be satisfactory both to the speaker as
well as to the audience . The preferred value of the time or reverberation is called the
optimum reverberation time . A formula for standard time of reverberation was given by W.
C sabine which 1s

Where A is the total absorption of the hall V its volume in cubic metre and § is the surface
area In square metre.

Experimentally its 1s observed that the time of reverberation depends upon the size of the
hall loudness of sound and on the kind of the music fro which the hall 1s used . For a
frequency of 512 H, the best time of reverberation lies between | and 1.5 sec for small halls
and up to 2-3 seconds for larger ones.

REMEDY:- The reverberation can be controlled by the following factors

1) By providing windows and ventilators which can be opened and closed to
make the value of the4 time of reverberation optimum

2) Decorating the walls by pictures and maps

3) Using heavy curtains with folds

4) By lining the walls with absorbent matenals such as felt celotex fibre board
glass wool etc

5) Having full capacity of audience (please remember that empty hall
reverberarate each person 1s equivalent to about 0.50 sq metre area of an open
window)

6) By covenng the floor with carpets

7) By providing acoustic tiles.

LOUDNESS:- With large absorption the time of reverberation will be smaller. This wall
minimise the chances of confusion between the different syllables by the intensity of sound
may go ;below the level of intellimbility of hearing . Sufficient loudness at every point in the
hall 1s an important factor for satisfactory hearing .



REMEDY :- The loudness may be increased by
1) Using large sounding boards behind the speaker and facing the audience large
polished wooden reflecting surfaces immedialtely above the speaker are also helpful
2) Low ceiling are also of great help in reflecting the sound energy towards the audience.
3) By providing additional sound energy with the help of equipments like loud speakers.
To achieve uniform distribution of intensity through out the hall loudspeakers are to
be positioned carefully .

FOCUSSING:-If there are focusing surface such as concave spherical cylindrical or
parabolic ones on the walls or ceiling of the hall they produce concentration of sound in
particular regions while in come other parts no sound reaches at all. In this way there will be
regions of silence or poor audibility . If there are extensive reflecting surfaces in the hall the
reflected and direct sound waves may form stationary wave system thus making the sound
intensity distribution bad and uneven.

REMEDY:- For uniform distribution of sound energy in the hall

1) There should be no curved surfaces . If such surfaces are present they should be covered
with absorbent material
2) Ceiling should be low .

3) A paraboloidal reflected surface arranged with the speaker at the focus 1s also helpful in
sending a uniform reflected beam of sound in the hall.

ECHOES:- An echo 1s heard when direct sound waves coming from the source and 1ts

reflected wave reach the listener with a time interval of about 1/7 second/ The reflected
sound arriving earlier than this helps in raising the loudness whole those armiving later

produce echoes and cause confusion

REMEDY :- Echoes may be avoided by covering the long distant walls and high ceiling with
absorbent material

ECHELON EFFECT:- A set of railing s or any regular spacing of reflecting surfaces may
produce a musical note due to the regular succession of echoes of the original sound to the
listerner. This makes the original sound confusing or unintelligible .

REMEDY :- So this type of surface should be avoided or covered with proper sound

absorbing materials.

RESONANCE:- Sometimes the window panes sections of the wooden portions and walls
lacking 1in ngidity ate thrown into forced vibrations and create sound. For some note of audio
frequency the frequencies of forced vibrations any be the same thus resulting in the
resonance . Moreover if the frequency of the of the created sound is not equal to the original
sound at least certain tone s of the original music will be reinforced. Due to the interference
between original sound and created sound the original sound 1s distorted . Thus the intensity
of the note is entirely different from the original one enclosed air in the hall also causes
resonance.

REMEDY :- Such resonant vibrations should be suitably damped.

NOISE:- Generally there are three types of noises which are very troublesome they are
1) Air- borne noise
2) Structure borne noise and
3) Inside noise



The prevention of the transmission of noise inside or outside the hall 1s known as sound
insulation . This 1s also known as sound proofing . The method of sound nsulation depends
on the type of noise to be treated . Here we shall discuss the different types of noises and their
sound insulation.

AIR BORNE NOISE:- The noise which commonly reaches the hall from outside through

open window doors and ventilators 1s known as air born noise since this noise 1s transmitted
through the air it 1s called so.

REMEDY :- Sound mnsulation for the reduction of air borne noise can be achieved by the
following methods

1) By allotting proper places for doors and windows

2) By making arrangements for perfectly shutting doors and windows

3) Using heavy glass in doors windows and ventilators

4) Using double doors and window with separate frames and having insulating material
between them

5) By providing double wall construction floating floor construction suspended ceiling

construction box type construction etc.

6) By avoiding opening s for pipes and ventilators

STRUCTURE BORNE MNOISE:- The noise which are conveyed through the structures of
the building are known as structural noise. The noises may be caused due to structure . The
most common sources of this type of sound are foot steps street traffic operating machinery
moving of furniture etc

REMEDY :- Sound insulation for the reduction of structures borne noise 1s done n the
following ways

1) Breaking the continuity by interposing layers of some acoustical insulators

2) Using double walls with air space between them

3) Using ant1 vibration mounts

4) Soft floor finish (carpet rubber etc)

5) Mechanical equipments such as refrigerators lifts fans ete. Produce vibrations in the
structure. These vibrations can be checked by insulating the equipment properly

INSIDE NOISE:- The noise which are produced inside the hall or rooms in big offices are
called as inside noises . They are produced due to machinery like air conditioners type writers

in the hall.

CONCLUSION:- Acoustics of buildings 1s a very important fields. If proper care 1s not taken
to achieve required acoustical properties in a building the building becomes unusable . Hence
at the planning stage itself it 1s essential to take necessary to achieve optimum reverberation
time.
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Introduction

" The human ear can hear the sound waves having frequencies in between 20 Hz to 20 kHz. These
frequencies are known as audible frequencies.

" The sound waves having frequencies less than 20 Hz are known as infrasonic waves o

" The sound waves having frequencies greater than 20 kHz are known as ultrasonic waves.

" The wavelength of ultrasonic waves are very much less than the wavelengths of audible sound
waves.

" So they applications in non-destructive testing of materials, medical diagnostics, military and marine.
Ultrasonic method is widely used in industries to find the size, shape, and location of flaws such as
cracks, voids, laminations, and inclusions of foreign materials, walls thickness of produced pipes and
vessels.

" The wall thickness measurements are very important in corrosion studies.

Properties of ultrasonic waves
Ultrasonic waves are high frequency and high energetic sound waves.
Ultrasonic waves produce negligible diffraction effects because of their small wavelength.

Ultrasonic wave travels longer distances without any energy loss.

The speed of propagation of ultrasonic waves increases with the frequency of the waves.
At room temperature, ultrasonic welding is possible.

Ultrasonic waves produce cavitation effects in liquids.

Ultrasonic waves produce acoustic diffraction in liquids.

S 0 oo o

Ultrasonic waves cannot travel through the vacuum.
Ultrasonic waves travel with speed of sound in a given medium.

Ultrasonic waves require one material medium for its propagation,
Ultrasonic waves can produce vibrations in low viscosity liguids.

Ultrasonic wave’s produces heat effect passes through the medium.
. Ultrasonic waves obey reflection, refraction, and absorption properties similar to sound waves.
Ultrasonic waves produce stationary wave pattern in the liguid while passing through it.
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thin metals.

Piezoelectric effect

When the ultrasonic wave is absorbed by a medium, it generates heat. They are able to drill and cut

¥ The piezoelectric effect was discovered in 1880 by two French physicists, brothers Pierre and Paul-

lacques Curie, in crystals of quartz, tourmaline, and Rochelle salt (potassium sodium tartrate).

¥ This phenomenon is observable in many naturally available crystalline materials, including quartz,

Rochelle salt and even human bone.

v Engineered material, such as lithium niobate and lead zirconate titanate (PZT), exhibit a more

pronounced piezoelectric effect.

¥" When a crystals like (calcite or quartz) under goes mechanical deformation along the mechanical
axis then electric potential difference is produced along the electrical axis perpendicular to

mechanical axis. This phenomenon is known as piezoelectric effect.



¥ Piezoelectricity (also called the piezoelectric effect) is the appearance of an electrical patential (a
voltage, in other words) across the sides of a crystal when you subject it to mechanical stress (by
squeezing it).

Electrical axis

3

Compression + 4+ + 1

: s/ N, : Potential difference

- s Mec;flai;uca!
Crystal

. Production of ultrasonics
Jitrasonics waves are produced by the following methods.
¥ Piezo electric method
¥" Magneto-striction method
Piezo electric method
¥ The sound waves having frequencies greater than 20 kHz are known as ultrasonic waves.
¥ When a crystals like (calcite or quartz) under goes mechanical deformation along the mechanical
axis then electric potential difference is produced along the electrical axis perpendicular to
mechanical axis. This phenomenon is known as piezoelectric effect.
¥ The converse of the effect is also possible.
¥ When an alternative potential is applied along the electrical axis, the crystal will set into electric
vibrations along the mechanical axis.

Construction
v" The experimental setup for the production of ultrasonic waves using Piezo electric method is
shown in figure

X
=

The quartz crystal between the metal plates is connected to collector and base of transistor.
Collector is also connected to LC circuit and high tension source shunted a by pass capacitor C ..
Cis used to stop high frequency currents from passing through battery.

The capacity of variable capacitor is adjusted so that the frequency of the oscillating circuits is
equal to the natural frequency of the crystal. R; provided necessary biasing for base and emitter
circuit.

s K N



forking:-

¥ When the circuit is starts functioning slowly an alternative potential difference is built across the
guartz crystal which sets the crystal into vibrations.

v" By varying the capacitor of capacitor C, at a particular stage the frequency of the alternating
potential across the crystal coincides with the natural frequency of the quartz crystal it to produce
ultrasonic waves.

v" This stage is indicated by milli ammeter by showing maximum current.

¥" The natural frequency of quartz crystal of thickness t is given by

.on |y
J\J_ZJ' Fe

v Where y is young's modulus and p is the density of crystal

Detection of ultrasonics

The presence of ultrasonic waves can be detected by the following methods.
¥ Piezo electric method

Kundt's tube method

Sensitive flame method

RN

Thermal detection method
iezo electric method
v Piezo electric effect can also used for the detection of ultrasonics.
¥" When ever the ultrasonic waves are incident along the mechanical axis of the crystal a certain
potential difference is developed across the faces.
¥ This potential difference indicates the ultrasonic waves.
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Kundt’s tube method

v As shown in figure Kundt’s tube filled with lycopodium power in the bottom portion of the tube can
also be used for detecting ultrasonic waves whose length is of the order of a few millimeters.

v" When ultrasonic waves pass through tube then stationary waves are formed due to super position
of incident and reflected waves. The power will be collected as leaps at nodes and dispended at
anti nodes.

v’ By observing this, we can detect the ultrasonic waves in the tube.

Ultrasonic waves t Lycopodium powder



Sensitive flame method
¥ A narrow sensitive flame is moved along the medium.
At the positions of antinodes, the flame is steady.
At the positions of nodes, the flame flickers because there is a change in pressure.

In this way, positions of nodes and antinodes can be found out in the medium.
By observing this, we can detect the ultrasonic waves
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Thermal detection method
¥" When ultrasonic waves pass through a medium, then alternative compressions and rare factors are
formed. At compression, particles of medium are brought closer and collisions between them
increases. As a result of this the temperature of medium increases at compressions. On the other
hand, the temperature of medium decreases at rarefaction due to the fact that particles of medium

go move away from each other and frequency of collisions is decreased

¥" When platinum wire is moved in the medium consists of standing waves of ultrasonics due to
variations of temperature at nodes and antinodes, the resistance of the wire changes. By noticing
the changing of resistance of wire one can detect the presence of ultrasonic waves.
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Ultrasonic waves

Platinum .
wire Resistance changes

Application in Nondestructive testin

v’ Ultrasonic waves are extremely used for nondestructive testing of the material i.e., detecting the
defects (flaws) inside the material without disturbing material properties.

v Nondestructive testing systems consist of transducers for generation and transmission of ultrasonic
waves into the material and also to receive the reflected waves from the flaws or defects.

> Ultrasonic waves

CRO
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Transducer
) Transmitted
Material without defect signal

Reflected signal



To identify the defects cathode ray oscilloscope is used.

When the transducer generates and transmits the ultrasonic waves into the testing material it will
be reflected by the other end of the material and is received by the transducer.

Corresponding to the transmitted and reflected waves, we can observe two well-resolved signals
on the screen of CRO.

CRO

11100001}

Defect Transducer

Flaw signal
Material with defect

When the material having defect, then in the CRO screen in addition to regular transmitted and
reflected signal, we get a flaw signal.

This signal indicates the presence of defect inside the material.

By knowing the velocity and time taken by the ultrasonic waves the flaw location can be identified

Applications of Ultrasonic waves

» Depth of sea

» SONAR

» NDT-Non Destructive Testing
» US welding/cutting drilling

» US cleaning

» US soldering

US waves in the field of Industry:
Cutting, drilling, welding,coining,grinding...
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Applications of Ultrasonic waves-
SONAR & NDT
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As a sub category of acoustics, ultrasonics deals with the acoustics above the human hearing
range (the audio frequency limit) of 20 kHz. Unlike audible sound waves, the ultrasonic
waves are not sensed by human ear due to the limitations on the reception of vibrations of
high frequency and energies by the membrane. Ultrasonic wave exhibits all the
characteristic properties of sound. Ultrasonic vibrations travel in the form of wave, similar
to the way light travels. However, unlike light waves, which can travel in vacuum,
ultrasonic wave requires elastic medium such as a liquid or a solid. The wavelength of this
wave changes from one medium to another medium due to the elastic properties and
induced particle vibrations in the medium. This wave can be reflected off with very small
surfaces due to having much shorter wavelength. It is the property that makes ultrasound
useful for the non-destructive characterization/testing of materials. The knowledge of
generation/detection of ultrasonic wave and its characteristics is important for its precise
and suitable application.

US waves in the field of Medicine:

» Diagnostic sonography
» Ultrasound cardiograph
» Obstetric ultrasound

» Ultrasound therapeutic

» Ultrasonic guidance for blind



Material characterization techniques (NDT & DT)

The two major classification of material characterization technique are non-destructive
testing (NDT) and destructive testing (DT). Under destructive technique (such as: tensile
testing, creep testing, impact testing, torsion testing, hardness testing etc.) of
characterization the tested material or product can not be used again. The destruction of test
object usually makes this type of test more costly. Non-destructive testing technique is a
specific procedure whereby the service ability of materials or components is not impaired by
testing process. The various methods like visual testing, liquid penetrant testing, magnetic
particle testing, eddy current testing, radiographic testing, ultrasonic testing, leak testing,
thermography and neutron radiography are the NDT technique of material characterization.
Among the various non-destructive testing and evalution (NDT&E) plays a key role in
material characterization.Ultrasonic properties provide important diagnostic for
microstructural properties as well as deformation processes in a material, controlling
material behaviour based on the physical mechanism to predict future performance of the
materials.

Classification of ultrasonic application and testing

The ultrasonic testing involves both the low intensity and high intensity ultrasonic wawve for
the characterization, that belongs in non-destructive and destructive techniques of
characterization respectively. Uses of high intensity and low frequency ultrasonic wave
includes medical therapy and surgery, atomization of liquids, machining of materials,
cleaning and wielding of plastics and metals, disruption of biological cells, and
homogenization of materials. The low intensity and high frequency ultrasonic waves are
applied for medical diagnosis, acoustical holography, material characterization etc. The low

intensity ultrasoud measurements provides a good diagnosis of material property and
process control in industrial apllication (Alers, 1965; Green,1973; Lowrance, 1975; Renolds,
1978; Teagle, 1983; Smith, 1987; Varry, 1987; Thompson,1996; Jayakumar, 1998; Kumar, 2001;
Raj, 2003; Roth, 2003; Blodgett, 2005).

Ultrasonic NDT as a material characterization

There are four mode of propagation by which an ultrasonic wave can propagate in a
medium, as: longitudinal or compressnal wave, transverse or shear wave, surface or
Rayleigh wave and plate or lamb wave. The most common methods of ultrasonic
examination utilize the longitudinal waves or shear waves.

Ultrasonic  velocity or attenuation are the parameters that correlate to structural
inhomogenities or flaw size atomistic (interstitials), elastic parameters, precipitates,
dislocations, ordering of molecules in liquid crystals, phase transformations, porosity and
cracks, concentration of different components of alloys or mixed crystal system, vacancies in
lattice sites, size of the nanoparticles in nano-structured materials, electrical resistivity,
specific heat, thermal conductivity and other thermophysical properties of the materials
depending upon the different physical conditions like temperature, pressure,
crystallographic orientation, magnetization etc. Thus, ultrasonic study of a material
provides information about elastic constants, microstructure, discountinuty, and mechanical
properties under different condition.

___ Ultrasonic velocity

On the basis of mode of propagation there are four types of ultrasonic velocities, as
longitudinal, shear, surface and lamb wave velocity. Longitudinal and shear wave velocities
are more important for the material characterization because they are well related to elastic
constants and density. However, it is independent of frequency of wave and dimension of
the given material. The mechanical behaviour and anisotropic properties of the material can
be well defined on the knowledge of ultrasonic velocity. The mathematical formulations
and measurement techniques for ultrasonic velocity are detailed in following heads.



. Measurement techniques of ultrasonic velocity
The study of the propagation of ultrasonic waves in materials determines the elastic
constants, which provides better understanding of the behaviour of the engineering
materials. The elastic constants of material are related with the fundamental solid state
phenomenon such as specific heat, Debye temperature and Griineisen parameters. The
elastic constants in the materials can be determined by measuring the wvelocity of
longitudinal and shear waves. Elastic constants are related to interatomic forces, co-
ordination changes etc., and also with the impact shock, fracture, porosity, crystal growth
and microstructural factors (grain shape, grain boundaries, texture and precipitates etc.). So,
the study of ultrasonic velocity is useful not only for characterization of the structured
materials, engineering materials, porous materials, composites, glasses, glass ceramics but
also bipactive glasses, nanomaterials, nanofluids etc.
Interferometer or continuous wave method and pulse technique are the general electrical
method for the measurement of ultrasonic velocity. In CW method, the wavelength of wave
in the test material is measured, which in turn provides the ultrasonic velocity with
relation V =v A . While in the Pulse technique, transit time (t: the time needed for a signal to
travel between the front and back surface of the specimen or concermned medium) is
measured with the help of echo pattern. If x is thickness of the material then ultrasonic
velocity becomes equal to 2x/t.
For precise measurement, the Pulse technique has been improved in the form of following
techniques (Papadakis, 1976, Raj, 2004).
Sing around
Pulse superposition method
Pulse echo overlap method
Cross-correlation method an
Phase slop method
. Pulse transmission method
The pulse echo-overlap, pulse transmission and pulse superposition techniques are widely
used techniques due to their absolute accuracy and precision respectively. Now a day,
computer controlled devices of pulse echo overlap and pulse superposition techniques are
being used. Resonance ultrasound spectroscopy and Laser interferometry are the recent
techniques for the measurement of ultrasonic velocity in thin film, crystal, textured alloy etc.
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Ultrasonic attenuation

The intensity of ultrasonic wave decreases with the distance from source during the
propagation through the medium due to loss of energy. These losses are due to diffraction,
scattering and absorption mechanisms, which take place in the medium. The change in the
physical properties and microstructure of the medium is attributed to absorption while
shape and macroscopic structure is concerned to the diffraction and scattering. The
absorption of ultrasonic energy by the medium may be due to dislocation damping (loss
due to imperfection), electron-phonon interaction, phonon-phonon interaction, magnon-
phonon interaction, thermoelastic losses, and bardoni relaxation. Scattering loss of energy is
countable in case of polycrystalline solids which have grain boundaries, cracks, precipitates,
inclusions etc. The diffraction losses are concerned with the geometrical and coupling losses,
that are little or not concerned with the material properties. Thus in single crystalline
material, the phenomenon responsible to absorption of wave is mainly concerned with
attenuation. An addition of scattering loss to the absorption is required for knowledge of
attenuation in polycrystalline materials. So, the rate of ultrasonic energy decay by the
medium is called as ultrasonic attenuation.

The ultrasonic intensity/energy/amplitude decreases exponentially with the source. If Ix is
the intensity at particular distance x from source to the medium inside then:



On solving the equations (10) and (11), one can easily obtain the following expression of
ultrasonic attenuation.

i | " ’x,

(x2-x) °° Iy,

(12)

The ultrasonic attenuation or absorption coefficient (o) at a particular temperature and
frequency can be evaluated using equation (12). In pulse echo-technique the (X>-X)) is equal
to twice of thickness of medium because in this technique wave have to travel twice distance
caused by reflection, while is equal to medium thickness in case of pulse transmission
technique. Attenuation coefficient is defined as attenuation per unit length or time. i.e. The a
is measured in the unit of Np cm! or Np t-1. The expression of o in terms of decibel (dB) unit
are written in following form.

I
2010ngx¢; in unit of dB/cm (13a)
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a= 2010gm!i; in unit of dB/ us (13b)
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(x2-x7)

. Source of ultrasonic attenuation
The attenuation of ultrasonic wave in solids may be attributed to a number of different
causes, each of which is characteristic of the physical properties of the medium concerned.
Although the exact nature of the cause of the attenuation may not always be properly
understood. However, an attempt is made here to classify the various possible causes of
attenuation that are as.
a. Loss due to thermoelastic relaxation
b. Attenuation due to electron phonon interaction
c. Attenuation due to phonon phonon interaction



a. Loss due to thermoelastic relaxation

A polyerystalline solid may be isotropic because of the random orientation of the constituent
grains although the individual grains may themselves be anisotropic. Thus, when a given
stress is applied to this kind of solid there will be variation of strain from one grain to
another. A compression stress causes a rise in temperature in each crystallite. But because of
the inhomogeneity of the resultant strain, the temperature distribution is not uniform one.
Thus, during the compression half of an acoustic cycle, heat will flow from a grain that has
suffered the greater strain, which is consequently at high temperature, to one that has
suffered a lesser strain, which as a result is at lower temperature. A reversal in the direction
of heat flow takes place during the expansion half of a cycle. The process is clearly a
relaxation process. Therefore, when an ultrasonic wave propagates in a crystal, there is a
relaxing flow of thermal energy from compressed (hot region) towards the expanded (cool
region) regions associated with the wave. This thermal conduction between two regions of
the wave causes thermoelastic attenuation. The loss is prominent for which the thermal
expansion coefficient and the thermal conductivity is high and it is not so important in case
of insulating or semi-conducting crystals due to less free electrons. The thermoelastic loss
(o) for longitudinal wave can be evaluated by the Mason expression (Bhatia, 1967; Mason,
1950, 1965) .
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where © and V| are the angular frequency and longitudinal velocity of ultrasonic wave. d,
K and T are the density, thermal conductivity and temperature of the material. »/ is the
Griineisen number, which is the direct consequence of the higher order elastic constants
(Mason, 1965; Yadawa 2009). In the case of shear wave propagation, no thermoelastic loss
occurs because of no any compression & rarefaction and also for the shear wave, average of
the Griineisen number is zero.

b. Attenuation due to electron-phonon interaction

Debye theory of specific heat shows that energy exchanges occur in metals between free
electrons and the vibrating lattice and also predicts that the lattice vibrations are quantized in
the same way as electromagnetic vibrations, each quantum being termed as phonon. Ultrasonic
absorption due to electron-phonon interaction occurs at low temperatures because at low
temperatures mean free path of electron is as compared to wavelength of acoustic phonon.
Thus a high probability of interaction occurs between free electrons and acoustic phonons. The
fermi energy level is same along all directions for an electron gas in state of equilibrium, ie. the
fermi surface is spherical in shape. When the electron gas is compressed uniformly, the fermi
surface remains spherical. The passage of longitudinal ultrasonic wave through the electron
gas gives rise to a sudden compression (or rarefaction) in the direction of the wave and the
electron velocity components in that direction react immediately, as a result fermi surface
becomes ellipsoidal. To restore the spherical distribution, collision between electron and lattice
occur. This is a relaxational phenomenon because the continuous varying phase of ultrasonic
wave upsets this distribution.
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where 1, and y represent the electronic shear and compressional viscosities of electron gas.
c.  Attenuation due to phonon-phonon interaction

The energy quanta of mechanical wave is called as phonon. With the passage of ultrasound
waves (acoustic phonons), the equilibrium distribution of thermal phonons in solid is
disturbed. The re-establishment of the equilibrium of thermal phonons are maintained by
relaxation process. The process is entropy producing, which results absorption. The concept
of modulated thermal phonons provides following expression for the absorption coefficient
of ultrasonic wave due to phonon-phonon interaction in solids (a) s (Bhatia, 1967; Mason,
1950, 1958, 1964, 1965; Yadav & Singh 2001; Yadawa, 2009) .
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Where 1 is the thermal relaxation time (the time required for the re-establishment of the
thermal phonons) and V is longitudinal or shear wave velocity. AC is change in elastic
modulli caused by stress (by passage of ultrasonic wave) and is given as:

AC=3E,<(y/V> - <y/>*C,T (16b)



