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I. Dynamics 

 

 

Rigid body: 
 

In physics, a rigid body (also known as a rigid object) is a solid body in which deformation is zero 

or so small it can be neglected. The distance between any two given points on a rigid body remains 

constant in time regardless of external forces exerted on it. A rigid body is usually considered as a 

continuous distribution of mass. 

When force is applied on a rigid body, there will be no change in the shape or size of the rigid 

body. In case of a non-rigid body the force will distort shape and/or size of the body. 

 

Moment of inertia: 
 

What is Inertia? It is the property of a body by virtue of which it resists change in its state of rest or 

motion.  

What causes inertia in a body?  

Inertia in a body is due to it mass. More the mass of a body more is the inertia. For instance, it is easier 

to throw a small stone farther than a heavier one. Because the heavier one has more mass, it resists 

change more, that is, it has more inertia. 

Moment of Inertia Definition 

So we have studied that inertia is basically mass. In rotational motion, a body rotates about a fixed 

axis. Each particle in the body moves in a circle with linear velocity, that is, each particle moves with 

an angular acceleration. Moment of inertia is the property of the body due to which it resists angular 

acceleration, which is the sum of the products of the mass of each particle in the body with the square 

of its distance from the axis of rotation. 

 

Formula for Moment of Inertia can be expressed as: 

∴ Moment of inertia I = Σ miri
2   

 

The moment of inertia depends on: 

a) mass of the body  

b) shape and size of the body 

c) distribution of mass about the axis of rotation        

All the factors together determine the moment of inertia of a body. 

 

  

 

 

 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Physical_body
https://en.wikipedia.org/wiki/Deformation_(engineering)
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Force
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we derived expressions of moments of inertia (MI) for different object forms as : 

1. For a particle: I = m r 2 

2. For a system of particles: I = ∑ m i r i 
2 

3. For a rigid body: I = ∫ r 2 đ m 

 

Radius of Gyration 

 

As a measure of the way in which the mass of a rotating rigid body is distributed with respect to the 

axis of rotation, we define a new parameter known as the radius of gyration. It is related to the moment 

of inertia and the total mass of the body.  

we can write                                                I = Mk2  

where k has the dimension of length. 

Therefore, the radius of gyration is the distance from the axis of a mass point whose mass is equal to 

the mass of the whole body and whose moment of inertia is equal to the moment of inertia of the body 

about the axis. Therefore, the moment of inertia depends not only on the mass, shape, and size of the 

body but also the distribution of mass in the body about the axis of rotation. 

 

In this module, we shall evaluate MI of different regularly shaped rigid 

bodies: 

1. Moment of inertia of a solid cylinder  

Moment of inertia of a solid cylinder about its centre can be found using the following equation 

or formula; 

I = 1/2MR2  

Here, M = total mass and R = radius of the cylinder. 

 

Derivation of Moment Of Inertia Of Solid Cylinder 

 

We will take a solid cylinder with mass M, radius R and length L. We will calculate its moment 

of inertia about the central axis. 

 

 

https://byjus.com/jee/moment-of-inertia/
https://byjus.com/jee/moment-of-inertia/
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      Fig .1.1 

Here we have to consider a few things: 

• The solid cylinder has to be cut or split into infinitesimally thin rings. 

• Each ring consists of the thickness of dr with length L. 

• We have to sum up the moments of infinitesimally these thin cylindrical shells. 

We will follow the given steps. 

1. We will use the general equation of moment of inertia: 

dI = r2 dm 

Now we move on to finding the dm. It is normally given as; 

dm = ρ dV 

In this case, the mass element can be expressed in terms of an infinitesimal radial thickness dr 

by; 

dm = 2r L dr 

In order to obtain dm we have to calculate dv first. It is given as; 

dV = dA L 

Meanwhile, dA is the area of the big ring (radius: r + dr) minus the smaller ring (radius: r). 

Hence; 

 

dA = π (r + dr)2 – π r2       dA = π (r + 2rdr + (dr)2)–πr2 

Notably, here the (dr)2 = 0. 

dA = 2πrdr 

 

2. Substitution of dA into dV we get; 

dV = 2πLdr 

Now, we substitute dV into dm and we will have; 
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dm = 2πLdr 

The dm expression is further substituted into the dI equation and we get; 

dl = 2πr3Ldr 

 

3. Alternatively, we have to find the expression for density as well. We use the equation; 

p = M/V 

Now, 

p=M/(πR2L) 

 

4. The final step involves using integration to find the moment of inertia of the solid 

cylinder. The integration basically takes the form of a polynomial integral form. 

I = 2PπrL ∫ 𝑟3𝑅1

𝑅2
dr      I = 2PπL

𝑟4

4
      I = 2π[M/(πR2L)]L

𝑅4

4
 

 

Therefore, I = ½ MR2 

 

2. Calculation of moment of inertia of an uniform solid sphere 

 

Derivation of moment of inertia of an uniform solid sphere 

An uniform solid sphere has a radius R and mass M. calculate its moment of inertia about any axis 

through its centre. 

 

 

      Fig. 1.2 

First, we set up the problem. 

1. Slice up the solid sphere into infinitesimally thin solid cylinders 

2. Sum from the left to the right 

 

https://www.miniphysics.com/wp-content/uploads/2011/12/moment-of-inertia-of-sphere.jpg
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the moment of inertia for a solid cylinder: 

 

I=
1

2
𝑀𝑅2 

Hence, for this problem, 

dI=
1

2
𝑟2𝑑𝑚 

Now, we have to find dm, 

dm = ρ dV  

Finding dV, 

dV = πr2dx 

Substitute dV into dm, 

dm = ρπr2dx 

Substitute dm into dI, 

dI = (1/2)ρπr4dx 

Now, we have to force x into the equation. Notice that x, r and R makes a triangle above. Hence, 

using Pythagoras’ theorem, 

r2=R2–x2 

Substituting, 

dI=(1/2)ρπ(R2–x2)2dx 

Hence, 

I=(1/2)ρπ ∫  (𝑅2 −  𝑥2)2𝑅

−𝑅
dx 

After expanding out and integrating, you’ll get 

I=(1/2)ρπ(16/15)R5   

Now, we have to find what is the density of the sphere: 

ρ = M/V 

ρ=   
𝑀

4

3
 𝜋𝑟3

      

Substituting, we will have: 

I = (2/5) MR2 

 

3.Calculation of moment of inertia of a thin spherical shell 

 

https://www.miniphysics.com/uy1-calculation-of-moment-of-inertia-of-cylinder.html
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Derivation of moment of inertia of a thin spherical shell 

A thin uniform spherical shell has a radius of R and mass M. Calculate its moment of inertia about 

any axis through its centre. 

 
 

      Fig. 1.3 

 

Notice that the thin spherical shell is made up of nothing more than lots of thin circular hoops. 

Recall that from Calculation of moment of inertia of cylinder: 

 

Moment of inertia for a thin circular hoop:I=Mr2 

Hence, 

dI=r2dm                                      (1)  

In order to continue, we will need to find an expression for dm in Equation 1. 

dm=(M/A) dA           (2) 

where A is the total surface area of the shell – 4πR2 

Finding dA 

 

If A is the total surface area of the shell, dA is the area of one of the many thin circular hoops. 

With reference to the picture, each thin circular hoops can be thought to be a thin rectangular strip. 

The area for each hoop, dA, is the product of the “length” (circumference of the hoop) and the 

“breadth” (dx in the picture or known as the arc length). [ The equation for normal arc length 

is Rθ.] 

dA can be expressed with: 

dA =length × breadth 

      =circumference × arc length 

      =2πr×Rdθ            (3) 

 

Now, in Equation 3, notice that you will have different r for different hoops. Hence, we have to 

find a way to relate r with θ. 

Relating r with θ 

 

https://www.miniphysics.com/uy1-calculation-of-moment-of-inertia-of-cylinder.html
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Consider the above picture, notice that there is a right-angle triangle with angle θ at the centre of 

the circle. Hence, 

sinθ=r/R  

r=Rsinθ           (4) 

 

Substitutions 

Hence, using Equation 4 in Equation 3, dA can be expressed by: 

dA=2πR2sinθdθ          (5) 

Substituting the Equation 5 into the Equation 2, we have: 

dm = ((Msinθ)/2) dθ          (6) 

Substituting Equation 6 and the Equation 4 into Equation 1, we have: 

dI=(MR2/2) sin3θdθ 

 

Integrating with the proper limits, (from one end to the other) 

I= (MR2/2) ∫ 𝑠𝑖𝑛3𝜃
𝜋

0
dθ 

Now, we split the sin3θ into two, 

 

I= (MR2/2) ∫ 𝑠𝑖𝑛2𝜃 sin 𝜃
𝜋

0
dθ 

I= (MR2/2) ∫ (1 − 𝑐𝑜𝑠2𝜃) sin 𝜃
𝜋

0
dθ 

 

Now, at this point, we will use the substitution: u= cosθ. Hence, 

 

I= (MR2/2) ∫ 𝑢2 − 1 
−1

1
du          (7) 

 

I= (2/3) MR2           (8) 

 

 

Compound Pendulum: Measurement of acceleration due to gravity (g) by a 

compound pendulum 

 

OBJECTIVE: 

 

Use the compound pendulum to find: 

 

1) The acceleration due to gravity g. 

2) The moment of inertia of the rod. 

THEORY: 

Any object mounted on a horizontal axis so as to oscillate under the force of gravity is a compound 

pendulum. The one used in this experiment is a uniform rod suspended at different locations along 
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its length. The period T of a compound pendulum is given by 

 

 

 

 

 

 

 

     

     

      Fig. 1.4 

T= 2ʋ √
𝐼

𝑀𝑔ℎ
             (1) 

Where: 

I is the rotational inertia of the pendulum about the axis of suspension 

M is the pendulum mass 

And h is the distance between the suspension point and the  center of  

mass. 

Using the parallel axis theorem 

 

I=IG +Mh2      (2) 

IG is the rotational inertia of the body about its center of mass  and it 

is given by 

IG =MK2       (3) 

Substituting equation 3 in equation 2 

 

I= M (h2 + K2)       (4) 

Where K is the radius of gyration. substituting equation 4 in equation 1 

 

  T= 2ʋ √
ℎ2+ 𝐾2

𝑔ℎ
                     (5) 

The period of the simple pendulum is given by 

 

T= 2ʋ √
𝐿

𝑔
            (6) 

 

The period of a compound pendulum equals the period of a simple pendulum of a length 
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 L = 
𝒉𝟐+ 𝑲𝟐

𝒉
            (7) 

 

This equation can be solved to find L and K: 

 

L=h1+h2      (8) 

 

   K=√ℎ1ℎ2               (9) 

 

Description: 

 

The bar pendulum consists of a metallic bar of about one meter long. A series of circular holes 

each of approximately 5 mm in diameter are made along the length of the bar. The bar is 

suspended from a horizontal knife-edge passing through any of the holes (Fig. 2). The knife- 

edge, in turn, is fixed in a platform provided with the screws. By adjusting the rear screw the 

platform can be made horizontal.    

      Fig. 1.5 

Procedure: 

(i) Suspend the bar using the knife edge of the hook through a hole nearest to one end of the 

bar. With the bar at rest, focus a telescope so that the vertical cross-wire of the telescope is 

coincident with the vertical mark on the bar. 

(ii) Allow the bar to oscillate in a vertical plane with small amplitude (within 4o of arc). 

(iii) Note the time for 20 oscillations by a precision stop-watch by observing the transits of the 

vertical line on the bar through the telescope. Make this observation three times and find the 
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mean time t for 20 oscillations. Determine the time period T. 

(iv) Measure the distance d of the axis of the suspension, i.e. the hole from one of the edges 

of the bar by a meter scale. 

(v) Repeat operation (i) to (iv) for the other holes till C.G of the bar is approached where the 

time period becomes very large. 

(vi) Invert the bar and repeat operations (i) to (v) for each hole starting from the extreme top. 

(vii) Draw a graph with the distance d of the holes as abscissa and the time period T as 

ordinate. The nature of graph will be as shown in Fig. 3. 

Draw the horizontal line ABCDE parallel to the X-axis. Here A, B, D and E represent the point 

of intersections of the line with the curves. Note that the curves are symmetrical about a 

vertical line which meets the X-axis at the point G, which gives the position of the C.G of the 

bar. This vertical line intersects with the line ABCDE at C. Determine the length AD and BE 

and find the 

length L of the equivalent simple pendulum from   

 

𝐿  =   AD + DE / 2. 

 

Find also the time period T corresponding to the line ABCDE and then compute the value of g. 

Draw several horizontal lines parallel to X-axis and adopting the above procedure find the value 

of g for each horizontal line. Calculate the mean value of g. Alternatively, for each horizontal line 

obtain the values of L and T and draw a graph with T2 as abscissa and L as ordinate. The graph 

would be a straight line. By taking a convenient point on the graph, g may be calculated. 

Similarly, to calculate the value of K, determine the length AC, BC or CD, CE of the 

line ABCDE and compute √𝐴𝐶ΧB𝐶 or √𝐶𝐷Χ𝐶𝐸. Repeat the procedure for each horizontal 

line. Find the mean of all K. 
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 Observations: Table 1-Data for the T versus d graph 

 

Serial no of 

holes from one 

end 

Distance d of 

the hole from 

one end (cm) 

Time for 20 

oscillations 

(sec) 

Mean time t for 

20 oscillations 

(sec) 

Time period 

T = t/20 (sec) 

One 

side of 

C.G 

1 ….. …. 

…. 
…. 

….. ….. 

2 ….. ….. 

…… 
…. 

…. …… 

3 

… 
… 

…… …. 

.…. 
…… 

….. …….. 

Other 

side of 

C.G 

1 ….. …. 

…. 
…. 

….. ….. 

2 ….. ….. 

…… 
…… 

…. …… 

 

… 
… 

…… …… 

……. 
…… 

….. …….. 
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   TABLE 2- The value of 𝒈 and K from T vs. d graph 

 

No. of obs. 𝐿 

(cm) 

T 

(sec) 
𝑔 = 4𝜋2 

𝐿
 

𝑇2 

(cm/sec2) 

Mean‘𝑔’ 

(cm/sec2

) 

K 

(cm) 
Mean ‘K’ 

(cm) 

1. ABCDE (AD+BE)/2 .. ..    
√𝐴𝐶ΧB𝐶 

 

    or 

2. 

3. 

.. 

.. 

.. 

.. 

.. 

.. 

  
√𝐶𝐷Χ𝐶𝐸 

.. 

.. 

 

 

 

 

Reversible (Kater's) Pendulum 

A physical pendulum with two adjustable knife edges for an accurate determination of "g". 

What It Shows: 

 

An important application of the pendulum is the determination of the value of the acceleration 

due to gravity. By adding a second knife-edge pivot and two adjustable masses to the physical 

pendulum described in the Physical Pendulum demo, the value of g can be determined to 0.2% 

precision. 

 

How It Works: 

 

An improvement in the precision of the measurement of g was developed in 1817 by Kater. He 

realised that by using a compound pendulum and suspending it from each end in turn the 

requirement to measure the distance from the centre of mass to the pivot could be removed. He 

made a very accurate measurement of g in London, a value that was used to define the metre 

for many years. The version of Kater's reversible pendulum used in this experiment has a knife-

edge for suspension at either end: thus there are two distances, l1 and l2, and two periods T1 

and T2.: 

 

 

 

 

 

Theory 

https://sciencedemonstrations.fas.harvard.edu/science-demonstrations/presentations/physical-pendulum
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Kater’s pendulum, shown in Fig. 1, is a physical pendulum composed of a metal 

rod 1.20 m in length, upon which are mounted a sliding metal weight W1, a 

sliding wooden weight W2, a small sliding metal cylinder w, and two sliding 

knife edges K1 and K2 that face each other. Each of the sliding objects can be 

clamped in place on the rod. The pendulum can suspended and set swinging by 

resting either knife edge on a flat, level surface. The wooden weight W2 is the 

same size and shape as the metal weight W1. Its function is to provide as near 

equal air resistance to swinging as possible in either suspension, which happens 

if W1 and W2, and separately K1 and K2, are constrained to be equidistant from 

the ends of the metal rod. The centre of mass G can be located by balancing the 

pendulum on an external knife edge. Due to the difference in mass between the 

metal and wooden weights W1 and W2, G is not at the centre of the rod, and the 

distances h1 and h2 from G to the suspension points O1 and O2 at the knife edges 

K1 and K2 are not equal. Fine adjustments in the position of G, and thus in h1 and 

h2, can be made by moving the small metal cylinder w. 

  

In Fig. 1, we consider the force of gravity to be acting at G. If hi is the distance 

to G from the suspension point Oi at the knife edge Ki, the equation of motion of  

the pendulum is   

                                                            

where Ii is the moment of inertia of the pendulum about the suspension point Oi, and i can be 

1 or 2. Comparing to the equation of motion for a simple pendulum                

                                                        

  

we see that the two equations of motion are the same if we take 

                                                                                   (1) 

It is convenient to define the radius of gyration of a compound pendulum such that if all its 

mass M were at a distance from Oi, the moment of inertia about Oi would be Ii , which we do 

by writing 

                                                                

  

Inserting this definition into equation (1) shows that 

                                                                                              (2) 

 

If IG is the moment of inertia of the pendulum about its centre of mass G, we can also define 

the radius of gyration about the centre of mass by 

writing                                                                   

                                                           

The parallel axis theorem gives us 

                                                         

so that, using (2), we have 
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The period of the pendulum from either suspension point is then 

                                                                                           (3)        

Squaring (3), one can show that 

                                                  

and in turn,                                              

                                                                                                      

 
which allows us to calculate g, 

                                                                                 (4) 

Applications 

  

Pendulums are used to regulate pendulum clocks, and are used in scientific instruments such 

as accelerometers and seismometers. Historically they were used as gravimeters to measure the 

acceleration of gravity in geophysical surveys, and even as a standard of length. The problem 

with using pendulums proved to be in measuring their length. 

A fine wire suspending a metal sphere approximates a simple pendulum, but the wire changes 

length, due to the varying tension needed to support the swinging pendulum. In addition, small  

amounts of angular momentum tend to creep in, and the centre of mass of the sphere can be 

hard to locate unless the sphere has highly uniform density. With a compound pendulum, there 

is a point called the centre of oscillation, a distance l from the suspension point along a line 

through the centre of mass, where l is the length of a simple pendulum with the same period. 

When suspended from the centre of oscillation, the compound pendulum will have the same 

period as when suspended from the original suspension point. The centre of oscillation can be 

located by suspending from various points and measuring the periods, but it is difficult to get 

an exact match in the period, so again there is uncertainty in the value of l.   

 

With equation (4), derived by Friedrich Bessel in 1826, the situation is improved. h1 + h2, being 

the distance between the knife edges, can be measured accurately. h1 – h2 is more difficult to 

measure accurately, because accurate location of the centre of mass G is difficult. However, if 

T1 and T2 are very nearly equal, the second term in (4) is quite small compared to the first, and 

h1 – h2 does not have to be known as accurately as h1 + h2. 

Kater's pendulum was used as a gravimeter to measure the local acceleration of gravity with 

greater accuracy than an ordinary pendulum, because it avoids having to measure l. It was 

popular from its invention in 1817 until the 1950’s, when began to be possible to directly 

measure the acceleration of gravity during free fall using a Michelson interferometer. Such an 

absolute gravimeter is not particularly portable, but it can be used to accurately calibrate a 

relative gravimeter consisting of a mass hanging from a spring adjacent to an accurate length 

scale. The relative gravimeter can then be carried to any location where it is desired to measure 

the acceleration of gravity. 
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Procedure 

  

Real Lab 

  

• Shift the weight W1 to one end of katers pendulum and fix it. Fix the knife edge K1 just below 

it. 

• Keep the knife edge K2 at the other end and fix the wooden weight W2 symmetrical to other 

end. Keep the small weight 'w' near to centre. 

• Suspend the pendulum about the knife edge 1 and take the time for about 10 oscillations. Note 

down the time t1 using a stopwatch and calculate its time period using equation T1=t1/10. 

• Now suspend about knife edge K2 by inverting the pendulum and note the time t2 for 10 

oscillations. Calculate T2 also. 

• If T2 ≠ 𝑇1, adjust the position of knife edge K2 so that T2 ≈ 𝑇1. 

• Balance the pendulum on a sharp wedge and mark the position of its centre of gravity. Measure 

the distance of the knife-edge K1 as h1 and that of K2 as h2 from the centre of gravity.  

  

Observations and Calculations 

  

                          Table:3 TodetermineT1 andT2: 

  

 
            

            Distance of  K1 from C.G,h1  = ...............m. 

            Distance of  K2 from C.G,h2 =...............m. 

           

            Acceleration due to gravity, g =...............ms-2. 

 

 

 

 

 

 

 



17  

Question Bank: 

 

Part – A 

 

1. Define moment of inertia.  

2. What is the role of moment of inertia in rotational motion?  

3. What is meant by radius of gyration? What is its physical significance?  

4. State the theorem of principle axis and prove it.  

5. State the theorem of parallel axis and prove it.  

6. Write the analogous parameters in translational and rotational motion.  

7. Calculate moment of inertia for a plane laminar body.  

8. Evaluate the moment of inertia of a uniform circular disc about a diameter.  

9. Evaluate the moment of inertia of a solid sphere about a tangent.  

10. A solid cylinder of mss 2kg and radium 0.17m is rotating about its axis. Calculate 

moment of inertia of the cylinder. 

             Solution: I = MR2 /2 ; I = (2 x (0.17)2 )/2 = 0.0289 kg-m2 .  

11. Define ‘centre of suspension’ and ‘centre of oscillation’.  

12. What is a compound pendulum? Write an expression for its time period.  

13. Distinguish between a simple and compound pendulum.  

14. Give advantages of compound pendulum over simple pendulum in determining the    

value of g.  

15. What is Kater’s reversible pendulum? 

 

 

Part – B 

 

1. Define moment of inertia. What is its physical significance? Show that, in rotator 

motion, moment of inertia plays the same role as mass does in linear motion.  

2. Calculate the moment of inertia of a circular disc (i) about an axis through its centre 

and perpendicular to its plane (ii) about a diameter.  

3. Find the moment of inertia of a solid cylinder (i) about its own axis of cylindrical 

symmetry (ii) about the axis through its centre and perpendicular to its axis of 

cylindrical symmetry. 

4. Calculate the moment of inertia of a solid sphere (i) about a diameter (ii) about a 

tangent.  

5. Find the moment of inertia of a hollow sphere (i) about a diameter (ii) about a tangent. 

6. Derive an expression for the time period of a compound pendulum and establish the 

inter-changeability of the centre of oscillation and suspension.  

7. Describe Kater’s reversible pendulum and determining acceleration due to gravity. 
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II. Statics and Hydrostatics 
 

 

 
Statics:  
 

Statics is the study of internal and external forces in a structure. Statics is the branch of 

mechanics that deals with bodies at rest. The study of systems in which momentum does not 

change is called statics, whereas dynamics involves the study of changes in momentum.  

It is also defined as the branch of mechanics that is concerned with the analysis of loads 

(force and torque, or "moment") acting on physical systems that do not experience an 

acceleration (a=0), but rather, are in static equilibrium with their environment. The application 

of Newton's second law to a system gives: 

F = ma 

Where bold font indicates a vector that has magnitude and direction.  F is the total of the forces 

acting on the system, m is the mass of the system and a is the acceleration of the system.  

The summation of forces will give the direction and the magnitude of the acceleration and will 

be inversely proportional to the mass. The assumption of static equilibrium of a = 0 leads to: 

F= 0 

The summation of forces, one of which might be unknown, allows that unknown to be found. 

So when in static equilibrium, the acceleration of the system is zero and the system is either at 

rest, or its center of mass moves at constant velocity. Likewise the application of the 

assumption of zero acceleration to the summation of moments acting on the system leads to: 

M = I⍺ = 0 

Here, M is the summation of all moments acting on the system, I is the moment of inertia of 

the mass and ⍺ = 0 the angular acceleration of the system, which when assumed to be zero 

leads to: 

M = 0 

The summation of moments, one of which might be unknown, allows that unknown to be 

found. These two equations together, can be applied to solve for as many as two loads (forces 

and moments) acting on the system. 

From Newton's first law, this implies that the net force and net torque on every part of the 

system is zero. The net forces equaling zero is known as the first condition for equilibrium, and 

the net torque equaling zero is known as the second condition for equilibrium. 

 

Centre of gravity: 
 

Centre of gravity, in physics, an imaginary point in a body of matter where, for convenience 

in certain calculations, the total weight of the body may be thought to be concentrated. The 

concept is sometimes useful in designing static structures (e.g., buildings and bridges) or in 

predicting the behaviour of a moving body when it is acted on by gravity. 

 

The center of gravity (not to be confused with center of mass) of a body is a point where the 

weight of the body acts and total gravitational torque on the body is zero. 

To determine the center of gravity (CG) of an irregularly shaped body (say a cardboard), we 

take a narrow tipped object (say a sharp pencil). Now by trial and error, we can locate a 

point G on the cardboard, where it is balanced on the tip of the pencil. This point of balance is 

https://en.wikipedia.org/wiki/Mechanics
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Physical_system
https://en.wikipedia.org/wiki/Newton%27s_second_law
https://en.wikipedia.org/wiki/Center_of_mass
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://www.britannica.com/science/physics-science
https://www.britannica.com/science/weight
https://www.britannica.com/science/gravity-physics
http://www.sciencetopia.net/physics/center-mass
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the center of gravity of the cardboard. The tip of the pencil at G provides the normal 

reaction R to the total weight mg of the cardboard. The cardboard is in translational 

equilibrium, as R = mg. 
 

 
Fig. 2.1 

 

Also, the cardboard is in rotational equilibrium because if it were not so, the cardboard would 

tilt and fall due to an unbalanced torque. Force of gravity like m1g, m2g, m3g... etc. act on 

individual particles of the cardboard. They make up the torque on the cardboard. For its particle 

of mass mi, the force of gravity is mi g. If ri is the position vector of this particle from CG of 

the cardboard, the torque about the CG is 

 

CG of the cardboard is so located that the total torque on it to forces of gravity on all the 

particles is zero. Thus, total torque is: 

 

 

As g is a non-zero value and same for all particles of the body, so the above equation can be 

written as 

 

This is the condition, when center of mass of the body lies at the origin. As position vectors are 

taken with respect to the CG, the center of gravity of the body coincides with the center of mass 

of the body. 

 

However, if the body is so extended that g varies from part to part of the body, then the center of 

gravity will not coincide with center of mass of the body. For a body of small size, having 

uniform density throughout, the CG of the body coincides with the center of mass. In case of 

solid sphere, both CG and center of mass lie at center of the sphere. For a body of very large 

dimensions and having non-uniform density, the center of gravity does not coincide with the 

center of mass. 
 

 

 

 

 

 



20  

3 

Uniform solid tetrahedron, pyramid and cone 
 

Definition. A median of a tetrahedron is a line from a vertex to the centroid of the opposite 

face. 

Theorem I. The four medians of a tetrahedron are concurrent at a point ¾ of the way from a 

vertex to the centroid of the opposite face. 

Theorem II. The centre of mass of a uniform solid tetrahedron is at the meet of the medians. 

Theorem I can be derived by a similar vector geometric argument used for the plane triangle. 

It is slightly more challenging than for the plane triangle, and it is left as an exercise for the 

reader.  I draw two diagrams (figure 1). One shows the point C1 that is ¾ of the way from the 

vertex A to the centroid of the opposite face. The other shows the point C2 that is ¾ of the way 

from the vertex B to the centroid of its opposite face. You should be able to show that 

C1 = (A + B + D)/4. 

 

Fig. 2.2 

 

In fact this suffices to prove Theorem I, because, from the symmetry between A, B and D, 

one is bound to arrive at the same expression for the three-quarter way mark on any of the 

four medians. But for reassurance you should try to show, from the second figure, that 

 

C2  =   (A + B + D)/4 

The argument for Theorem II is easy, and is similar to the corresponding argument for plane 

triangles. 

 

Pyramid 
 

A right pyramid whose base is a regular polygon (for example, a square) can be considered to 

be made up of several tetrahedra stuck together.  Therefore, the centre of mass is 3/4 of the 

way from the vertex to the mid-point of the base. 

 

Cone 

 

A right circular cone is just a special case of a regular pyramid in which the base is a polygon 

with an infinite number of infinitesimal sides. Therefore, the centre of mass of a uniform right 

circular cone is 3/4 of the way from the vertex to the centre of the base.  We can also find the 

position of the centre of mass of a solid right circular cone by calculus. We can find its volume 

by calculus, too, but we'll suppose that we already know, from the theorem of Pappus, that 

the volume is 1  base  height. 
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Fig. 2.3 

 
Consider the cone in figure 2.3, generated by rotating the line y = ax/h (between x = 0 and x = 

h) through 360o about the x axis. The radius of the elemental slice of thickness x at x is ax/h. 

Its volume is a
2 
x

2
x / h

 
.  Since the volume of the entire cone is a2h/3, the mass of the slice 

is  

M x a
2 
x

2
x / h

2 

M ×
πa2x2δx

h2
 ÷ 

πa2h

3
=  

3Mx2δx

h3
 

 

where M is the total mass of the cone. The first moment of mass of the elemental slice with 

respect to the y axis is 3Mx3x/h3. 

 

The position of the centre of mass is therefore 

 

     𝑥̅ =
3

ℎ3 ∫ 𝑥3𝑑𝑥 =  
3

4
ℎ

ℎ

0
 

 

 

Hollow cone: 
 

The surface of a hollow cone can be considered to be made up of an infinite number of 

infinitesimally slender isosceles triangles, and therefore the centre of mass of a hollow cone 

(without base) is 2/3 of the way from the vertex to the midpoint of the base. 

 

Uniform solid hemisphere: 
 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2.4 
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Above Figure will serve. The argument is exactly the same as for the cone. The volume of the 
elemental slice is  y 

2
x  =  (a2  

− x
2 )x,   and the volume of the hemisphere is  a3/3, so the 

mass of the slice is 
 

M × π(a2 − x2)δx ÷ (
2πa

3
) =  

3M(a2− x2)δx

2a3
  

 

where M is the mass of the hemisphere. The first moment of mass of the elemental slice is x 

times this, so the position of the centre of mass is 

 

𝑥̅ =
3

2𝑎3
∫ 𝑥 (𝑎2 −  𝑥2)𝑑𝑥 =  

3𝑎

8

𝑎

0

 

 
We may note to begin with that we would expect the centre of mass to be further from the 

base than for a uniform solid hemisphere.  Again, figure I.4 will serve. The area of the 

elemental annulus is 2ax (NOT 2yx!) and the area of the hemisphere is 2a2. 

Therefore the mass of the elemental annulus is 
 

M  2ax  (2a
2 
) = Mx / a 

The first moment of mass of the annulus is x times this, so the position of the centre of mass 

is 

𝑥̅ = ∫
𝑥

𝑎
𝑑𝑥 =  

𝑎

2

𝑎

0

 

 
Triangular lamina: 2/3 of way from vertex to midpoint of opposite side 

Solid Tetrahedron, Pyramid, Cone: 3/4 of way from vertex to centroid of opposite face. 

Hollow cone: 2/3 of way from vertex to midpoint of base.  

Solid hemisphere: 3a/8 

Hollow hemisphere: a/2 

 

 

Centre of Pressure 

 
When the fluid is in static condition, there will not be any relative motion between adjacent 

fluid layers. The velocity gradient as well as shear stress will be zero. The forces acting on fluid 

particles will be due to pressure of fluid normal to the surface and due to gravity. 

Consider a plane surface of arbitrary shape immersed vertically in a static mass of fluid as 

shown in Fig. 3.1. 

Let, 

C = Centre of gravity 

P= Centre of pressure 

= depth of centre of gravity from free liquid surface 1-1 

ℎ̅ = depth of centre of pressure from free surface of liquid 1-1 
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Fig. 2.5  A plane surface of arbitrary shape immersed vertically in a static fluid 

The distance of centre of gravity from free surface is 𝑥̅ . Let P be the centre of pressure at which 

the resultant pressure on the rectangular plate acts. 

Consider an elementary strip of dx thickness and width b at the distance x from the free surface 

of liquid. Let pressure acting on the strip is p. If density of the liquid is ρ, then 

Then total pressure force (F) acting on the elementary strip = p b dx 

                                                                      =  ρ g 𝓍 b d𝓍 

Total pressure force acting on whole area                            = ρg  

Since = moment of surface area about the free liquid surface, we can take its value 

surface as 𝑥̅.A 

Then total pressure force, F = ρg𝑥̅ .A.        (where A is area of plate) 

At point C pressure = ρg𝑥̅ 

Total pressure force is equal to total area multiplied by the pressure at the centre of gravity of 

the plate surface immersed in the liquid. 

 

Location of Centre of Pressure 

The pressure on the immersed surface increases with depth. As shown in the following figure 

the pressure will be minimum at the top and maximum at the bottom of immersed plane. 

 

  

 

Fig. 2.6 Location of centre of pressure 

Suppose centre of pressure (P) is  from the free surface of the liquid; 

Thus the resultant pressure will act at a point P much below the centre of gravity. Point P is 

known as the centre of pressure at which the resultant pressure acts on the immersed surface. 
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Total pressure force acting on the elementary strip = p b d𝓍 

                                                                                  = ρ g 𝓍 b d𝓍 
 

Moment of pressure force about free liquid surface = ρg𝓍2 b d𝓍 
Total moment of pressure force for entire area = ρg∫ 𝑥2𝑏 𝑑𝑥 

Since = moment of inertia of entire surface about free surface 1-1 = Io  

Total moment of pressure force for entire area = ρgIo 

The sum of moment of pressure force = Fℎ̅  

Equating equation (i) & (ii): 

Fℎ̅ = ρgIo 

ρgA 𝑥̅ ℎ̅      = ρgIo 

                                       

From theorem of parallel axis for moment of inertia we have, 

 
Here, 

 Ic = moment of inertia of area about an axis passing through centre of gravity. 

 = distance of centre of gravity from free liquid surface 

Placing value of Io into (iii), 

 

Where, Ic is moment of inertia of the immersed figure; 

 For rectangular surface Ic = 
𝑏𝑑3

12
      (b= base of rectangle, d= height or depth). 

Laws of Floatation: 

A body floating freely in a fluid, must obey the following laws known as laws of floatation: 

1. A body floats only if its weight is equal to the weight of fluid displaced by its immersed 

part. 

2. For the body to float in upright position, the centre of gravity of the floating body and 

the centre of buoyancy of the fluid displaced by the immersed part of the body must lie 

on the same straight line. 

1st law stated above is necessary for the body to float whereas the 2nd law stated above 

is necessary for the body to float in upright position. 
  

What are laws of floatation? 

 

Floatation depends upon the density. If an object has density less than the density of water, it 

floats. Principle of floatation is stated by the Archimedes. This article deals with what is 

floatation, laws of floatation, its applications and examples. 
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Fig. 2.6 

 

Archimedes, the Ancient Greek scientist first stated the principle of floatation. According to 

him, all the objects placed in a liquid experience an upward force which allows the body to 

float if it displaces water with the weight equal to the weight of the body. This upward force is 

known as buoyant force and the law is known as the law of buoyancy. Mainly, floatation 

depends upon the density. If an object has a density less than the density of water, it floats. 

Like, leaf of a plant floats on the water because the density of leaf is less than the density of 

water. A stone thrown in water sinks because the density of stone is more than the density of 

water. 

 
Have you ever thought that a ship weighing several tons floats while a needle sinks? This can 

be explained as follows: A ship is made up of iron and steel, but it has a lot of space filled with 

air. This causes the ship to displace water with a weight equal to the weight of the ship. On the 

other hand, the needle displaces more water than its weight and hence it sinks. 

 

 

What is Archimedes Principle? 
 

 
Fig. 2.7 

 

When a body is immersed partly or wholly in a liquid, there is an apparent loss in the weight 

of the body which is equal to the weight of liquid displaced by the body. 
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Laws of Floatation 

 
A body floats in a liquid if: 

- Density of the material of the body is less than or equal to the density of the liquid. 

- If density of material of body is equal to density of liquid, the body floats fully submerged 

in liquid in neutral equilibrium. 

- When body floats in neutral equilibrium, the weight of the body is equal to the weight of 

displaced liquid. 

- The centre of gravity of the body and centre of gravity of the displaced liquid should be in 

one vertical line. 

 

Centre of Buoyancy: The centre of gravity of the liquid displaced by a body is known as centre 

of buoyancy. 

 

Meta centre: When a floating body is slightly tilted from equilibrium position, the centre of 

buoyancy shifts. The point at which the vertical line passing through the new position of centre 

of buoyancy meets with the initial line is called meta centre. 

 

What are the conditions for stable equilibrium for floating body? 

a. The meta centre must always be higher than the centre gravity of the body. 

b. The line joining the centre of gravity of the body and centre of floatation should be vertical. 

We know density is mass per unit volume. Its S.I unit is kg/m3 and relative density is density 

of material per density of water at four degree Celsius. Relative density is measured 

by Hydrometer. 

- The density of sea water is more than that of normal water. That is why it is easier to swim in 

seawater. 

- When ice floats in water, its 1/10th the part remain outside the water. 

- If ice floating in water in a vessel melts, the level of water in the vessel does not change. 

- Purity of milk is measured by lactometer. 

From the article we have learnt that what is floatation, how can we swim, why some objects 

floats instead of sinking, what are the laws of floatation etc. 
 

Definition of metacenter 

: the point of intersection of the vertical through the center of buoyancy of a floating body 

with the vertical through the new center of buoyancy when the body is displaced 

 

Illustration of metacenter 

 

 

 
Fig. 2.8 
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metacenter: 1 center of gravity, 2 center of buoyancy, 3 new center of buoyancy when 

floating body is displaced, 4 point of intersection 

 

The metacentric height (GM) is a measurement of the initial static stability of a floating body. 

It is calculated as the distance between the centre of gravity of a ship and its metacentre. A 

larger metacentric height implies greater initial stability against overturning. The metacentric 

height also influences the natural period of rolling of a hull, with very large metacentric heights 

being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a 

sufficiently, but not excessively, high metacentric height is considered ideal for passenger 

ships. 

 

Fig. 2.9 

 

Determination of metacentric height of a ship model: 

Apparatus used for determine metacentric height of a ship are Water bulb, Metacentric height 

apparatus and Scale or measuring tube. 

 

Concepts: 

Metacenter: 

 

When a floating body is given a small displacement it will rotate about a point, so the point at 

which the body rotates is called as the Metacenter. 

“OR” 

The intersection of the lines passing through the original center of buoyancy and center of 

gravity of the body and the vertical line through the new center of buoyancy. 

Metacentric height: 

The distance between center of gravity of a floating body and Metacenter is called as 

Metacentric height. 

Why to find Metacentric height? 

It is necessary for the stability of a floating body, If metacenter is above center of gravity 

body will be stable because the restoring couple produced will shift the body to its original 

position. 

https://en.wikipedia.org/wiki/Centre_of_gravity
https://en.wikipedia.org/wiki/Metacentric_height#Metacentre
https://en.wikipedia.org/wiki/Frequency
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Fig. 2.10 

 

Fig. 2.11 

Center of buoyancy: 

The point though which the force of buoyancy is supposed to pass is called as the center of 

buoyancy. 

“OR” 

The center of area of the immersed portion of a body is called its center of buoyancy. 

Procedure: 

1. First of all I adjust the movable weight along the vertical rod at a certain position and 

measured the distance of center of gravity by measuring tape. 

2. Then I brought the body in the water tube and changed the horizontal moving load 

distance first towards right. 

3. The piston tilted and suspended rod gave the angle of head, I noted the angle for 

respective displacements. 

4. I did the same procedure for movable mass by changing its position towards left. 

5. Then I took the body from water tube and find another center of gravity by changing 

the position of vertically moving load. 

6. I again brought the body in the water tube and find the angle of head by first keeping 

the movable load towards right and then towards left. 

7. I repeated the above procedure for another center of gravity. 

8. I calculated the metacentric height by the following formula: 

MH = w * d / W * tanØ 
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Where 

MH = Metacentric height 

w = Horizontally movable mass 

d = Distance of movable mass at right or left of center 

W = Mass of assemble position 

Ø = Respective angle of heel 

Table 2.1: observation 

S.No. W 

kg 

W1 

Kg 

W2 

kg 

X1 

cm 

X2 

cm 

W1X1 

kgcm 

W2X2 

kgcm 

W1X1- 

W2X2 

Kgcm 

𝜃 Tan  
𝜃 

W 

tan 
𝜃 

GM 

cm 

1.             

2.             

3.             

 

 
Question Bank: 

 
Part A 

 
1. Define centre of gravity and centroid.  

2. Write the centroid of solid tetrahedron, solid and hollow hemisphere.  

3. Define centre of pressure.  

4. State the Principle of Archimedes  

5. State the law of floatation.  

6. Define centre of buoyancy.  

7. What is metacentre and metacentric height?  

8. Find the condition for stability of equilibrium of a floating body.  

9. Define atmospheric pressure.  

10. What is barometer? 

 
Part B 

 
1. Find the position of centre of gravity of a solid tetrahedron.  

2. Find the position of centre of gravity of solid and hollow hemisphere.  

3. Find the location of the centroid of the volume of the cone.  

4. Determine the position of centre of pressure of a rectangular lamina immersed vertically 

(a) with one edge coinciding with the free surface (b) with one edge parallel to the free 

surface and at a depth c below the free surface.  

5. Derive an expression for the metacentric height of a ship and give the experimental 

method for its determination.  

6. Discuss how the atmospheric pressure changes with altitude above the surface of the 

earth.  

7. State the Principle of Archimedes and define clearly the terms (i) Centre of buoyancy 

(ii) Metacentre and (iii) Metacentric Height. Discuss in detail the conditions for the 

stable equilibrium of a floating body, with particular reference to a floating ship 
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III. Frame of Reference 

 

 

Laws of Mechanics: 
 

The following are the fundamental laws of mechanics: 

1.Newton’s first law 

2.Newton’s second law 

3.newton’s third law 

4.Newton’s law of gravitation 

5.Law of transmissibility of forces, and 

6.Parallelogram law of forces 

 

1.Newton’s first law 

 It states that everybody continues in its state of rest or of uniform motion in a straight 

line unless it is compelled by an external agency acting on it. 

This leads to the definition of force as the external agency which changes or tends to change 

the state of rest or uniform linear motion of the body. 

 

2.Newton’s second law 

 It states that the rate of change of momentum of a body is directly proportional to the 

impressed force and it takes place in the direction of the force acting on it. 

Thus according to this law, 

Force ∞ mass x acceleration 

                         F = ma 

 

3.Newton’s third law 

  It states that for every action ther is an equal and opposite reaction. 

Consider the two bodies in contact with each other. Let one body applies a force F on another. 

According to this law the second body develops a reactive force R which is equal in magnitude 

to force F and acts in the line same as F but in the opposite direction. 

 

4.Newton’s law of gravitation 

  Everybody attracts the other body. The force of attraction between any two bodies is 

dirctly proportional to their masses and inversely proportional to the square of the distance 

between them. According to this law the force of attraction between the bodies of mass m1 and 

mass m2 at a distance d as shown in fig. is 

F=Gm1m2/d
2 

 

5.Law of Transmissibility of force 

According to this law the state of rest or motion of the rigid body is unaltered if a force 

acting on the body is replaced by another force of the same magnitude and direction but acting 

anywhere on the body along the line of action of the replaced force. 

 

6.Parallelogram law of forces 

 The parallelogram law of forces enables us to determine the single force called resultant 

force. 

This law states that if two forces acting simultaneously on a body at a point are presented in 

magnitude and direction by the two adjacent sides of a parallelogram, their resultant is 
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represented in magnitude and direction by the diagonal of the parallelogram which passes 

through the point of intersection of the two sides representing the forces. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 

 

What is a frame of reference? 

We have learned about velocity, acceleration, and displacement. But all these quantities need 

a frame of reference from which they are measured. 

In physics, a frame of reference consists of an abstract coordinate system and the set of physical 

reference points that uniquely fix the coordinate system and standardize measurements within 

that frame. 

 

 
Fig. 3.2 

 

If we ask A what velocity of B is, he will say it is at rest. But if we ask the same question to C, 

he will say B is moving with a velocity V in the positive X direction. So we can see before 

specifying the velocity we have to specify in which frame we are or in simple terms, we need 

to define a frame of reference. 

 

Types of frame of reference 

Once we have chosen our reference, they can be of two types: 

• Inertial Frame of Reference 

• Non inertial Frame of Reference 

Inertial Frame of Reference 

An inertial frame of reference is a frame where Newton’s law holds true. That means if no 

external force is acting on a body it will stay at rest or remain in uniform motion. Suppose a 

body is kept on the surface of the earth, for a person on earth it is at rest while for a person on 

the moon it is in motion so which is my inertial frame here? 

Actually, the term inertial frame is relative i.e. first we assume a reference frame to be the 

inertial frame of reference. So a more general definition of an inertial frame would be: Inertial 

 
u 

v u+v 

https://byjus.com/physics/uniform-motion-and-non-uniform-motion/
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frame is at rest or moves with constant velocity with respect to my assumed inertial reference 

frame. 

Inertial frame of reference- the systems in which the Newton’s First law of motion holds 

good are called inertial frame of reference. 

 

Example: moving in a car on cruise control 

                 sitting at your desk 

 

Non-inertial Frame of Reference 

Now we can define non-inertial frame as a frame which is accelerated with respect to the 

assumed inertial frame of reference. Newton’s law will not hold true in these frames. So in the 

above example if I assume earth to be an inertial reference frame the moon becomes a non-

inertial reference frame as it is in accelerated motion with respect to earth. But if we want to 

make Newton’s law hold here we need to take some mysterious forces also known as pseudo 

forces. 

 

Frame of reference:  

 

 

 

 

 

 

  

 

  

 

 

Fig. 3.3 

 

 

 

A system of co-ordinate axes which defines the position of a particle in two- or three-

dimensional space is called a frame of reference. The simplest frame of reference is the familiar 

Cartesian system of co-ordinates, in which the position of the particle is specified by its three 

co-ordinates x,y,z, along the three perpendicular axes. In fg 1.2 we have indicated two 

observers O and O’ and a particle P. These observers use frames of reference XYZ and X’Y’Z’, 

respectively. If O and O’ are at rest, they will observe the same motion of P. But if O and O’ 

are in relative motion, their observation of the motion of P will be different. 

Unaccelerated reference frames in uniform motion of translation relative to one another are 

called Galilean frames or inertial frames. 

Accelerated frames are called non-inertial frames. 

 

Simulation for Frame of Reference 

(i)  Reference frame is at rest: - 

https://byjus.com/physics/laws-of-motion/
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The acceleration of the mass will be, say, . 

Therefore, the force on it will be . 

We will reason that 

 

 

 

 
Fig. 3.4 

 

 

(ii) Reference frame starts moving with constant velocity vector-v: - 

The acceleration of frame =  

Thus, acceleration of mass m relative to frame is given by 

 

Force on it will be inertial and we will reason that 

 
 

(iii) Reference frame moves with constant acceleration:- 

Let the acceleration of frame be  . 

Thus, acceleration of mass relative to frame will be . 

 

Let there be force  frame on mass we will reason, that 

 

       

We see that the force is not the same as that in the inertial frames. 

Therefore, we postulate that under observation from an accelerated reference frame we 

substitute the inertial forces on the body with those same initial forces plus an additional force 

which numerically equal to the mass of the body under observation times the acceleration of 

the frame taken in the opposite direction. This force we call as pseudo force. 
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Newtonian Relativity: 

 

The Newtonian principle of relativity may be stated as “Absolute motion, which is the 

translation of a body from one absolute place to another absolute place, can never be detected. 

Translatory motion can be perceived only in the form of motion relative to other material 

bodies”. This implies that if we are drifting along at a uniform speed in a closed spaceship, all 

the phenomena observed and all the experiments performed inside the ship will appear to be 

the same as if the ship were not in motion. This means that the fundamental physical laws and 

principles are identical in all inertial frames of reference. This is the concept of Newtonian 

relativity. 

 

 

Galilean transformation equations: 

 

    

 

 

 

 

 

 

 

 

 

Fig. 3.5 

 

Let S and S’ be two inertial frames fig3.5. 

 

Let S be at rest and S’ move with uniform velocity v along the positive X direction. We assume 

that v<<c. Let the origins of the two frames coincide at t-=0. Suppose some event occurs at the 

point P. The observer O in frame S determines the position of the event by the coordinates x, 

y, z. The observer O’ in frame S’ determines the position of the even by the coordinates x’, y’, 

z’. there is no relative motion between S and S’ along the axes of Y and Z. Hence, we have 

y=y’ and z=z’. let the time proceed at the same rate in both frames. 

The distance moved by S’ in the positive X-direction in time t=vt. So, the X coordinates of the 

two frames differ by vt. Hence x’=x-vt.  

 

 

Then the transformation equations from S to S’ are given by 

 

x’=x-vt           .......(1) 

  y’=y           ........(2)      

  z’=z           .........(3) 

  t’=t               ......(4) 

 

 

 

 

 

 

P 
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Conservation of momentum 
  

The law of conservation of momentum states that, in the absence of outside forces, the 

total momentum of objects that interact does not change. 

The amount of momentum is the same before and after they interact. 

The total momentum of any group of objects remains the same, or is conserved, unless outside 

forces act on the objects. 

Friction is an example of an outside force. 

The law of conservation of linear momentum states that if no external forces act on the 

system of two colliding objects, then the vector sum of the linear momentum of each body 

remains constant and is not affected by their mutual interaction. 

Alternatively, it states that if net external force acting on a system is zero, the total momentum 

of the system remains constant. 

Proof: 

Let us consider a particle of mass ‘m’ and acceleration ‘a’. Then, from 2nd law of motion, 

 
 If no external force acts on the body then, F=0, 

 
Therefore, ‘P’ is constant or conserved. 

 

Deduction of Law of Conservation of linear momentum for two colliding 

bodies: 

 

 

 
Fig. 3.6 

 

Let us consider two bodies of masses m1 and m2 moving in straight line in the same direction 

with initial velocities u1 and u2. They collide for a short time ∆t. After collision, they move 

with velocities v1 and v2. 

From 2nd law of motion, 

Force applied by A on B = Rate of change of momentum of B 
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                                FAB = (m2v2-m2u2)/∆t 

Similarly, 

Force applied by B on A = Rate of change of momentum of A 

        FBA = (m1v1-m1u1)/∆t 

From Newton’s 3rd law of motion, 

        FAB = -FBA 

Or, (m2v2-m2u2)/∆t = -(m1v1-m1u1)/∆t 

Or, m2v2-m2u2 = -m1v1+m1u1 

Or, m1u1 + m2u2 = m1v1 + m2v2 

This means the total momentum before collision is equal to total momentum after collision. 

This proves the principle of co conservation of linear momentum. 

 

 

Non-inertial frame of reference: 
  

The systems in which the Newton’s First law of motion does not holds good are called non-

inertial frame of reference. 

A frame of reference which is in accelerated motion with respect to an inertial frame is called 

non-inertial frame of reference. 

 

Fictitious force: 

 

A fictitious force (also called a pseudo force, d'Alembert force, or inertial force) is a force 

that appears to act on a mass whose motion is described using a non-inertial frame of reference, 

such as an accelerating or rotating reference frame. 

The fictitious force is an apparent force that acts on an object on a moving frame of reference. 

This frame of reference could be a car or a rotating frame of reference, like the moon orbiting 

the Earth. 

The reason why this fictitious force occurs in objects is because of inertia, the resistance of an 

object to acceleration. For example, when a person in a car stops at an intersection, then presses 

the accelerator, inertia wants the person to be still since the person stopped first before 

accelerating. This also applies to rotating objects because the moon experiences centripetal 

acceleration, acceleration that keeps an object rotating around a point. However, inertia wants 

the object to go in the direction tangent to the circular motion and results in an apparent outward 

force. If this property did not exist, then the moon would not even form. 

 

Centrifugal force: 

 

In Newtonian mechanics, the centrifugal force is an inertial force that appears to act on all 

objects when viewed in a rotating frame of reference. It is directed away from an axis passing 

through the coordinate system's origin and parallel to the axis of rotation. 

 

Coriolis force 

The Coriolis force is a pseudo force that operates in all rotating frames. One way to 

envision it is to imagine a rotating platform (such as a merry-go-round or a phonograph 

turntable) with a perfectly smooth surface and a smooth block sliding inertially across it. The 

block, having no (real) forces acting on it, moves in a straight line at constant speed in inertial 

space. However, the platform rotates under it, so that to an observer on the platform, the block 

appears to follow a curved trajectory, bending in the opposite direction to the motion of the 

https://www.britannica.com/science/inertial-force
https://www.merriam-webster.com/dictionary/envision
https://www.britannica.com/science/space-physics-and-metaphysics
https://www.britannica.com/science/motion-mechanics
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platform. Since the motion is curved, and hence accelerated, there appears, to the observer, to 

be a force operating. That pseudoforce is called the Coriolis force. 

 

 

Derivation of the centrifugal and Coriolis force 

 

Let us start with the principal equation defining angular velocity in three dimensions, 

r˙= ω × r. 

(This can be derived roughly by considering a centripetal force acting on a particle. Note that 

this equation applies symmetrically in inertial and rotating reference frames.) 

Notice that we can in fact generalise this statement in terms of r for an arbitrary vector aa that 

is known to be fixed in the rotating body. 

Transformation between inertial and rotating frames 

Now consider a vector aa, which we can write in Cartesian coordinates (fixed within the 

body) as 

a = ax 𝑖̂ + ay 𝑗̂+az 𝑘̂. 

In Newtonian mechanics, scalar quantities must be invariant for any given choice of frame, so 

we can say 

𝑑𝑎𝑥

𝑑𝑡
|I   = 

𝑑𝑎𝑥

𝑑𝑡
|R    

where I indicates the value is for the inertial frame, and RR that the value is for the rotating 

frame. Equivalent statements apply for ay and az, of course. Hence, any transformation 

of aa between frames must be due to changes in the unit vectors of the basis. 

Now by the product rule, 

𝑑𝑎𝑥

𝑑𝑡
|I   = 

𝑑

𝑑𝑡
(ax 𝑖̂  +  ay 𝑗̂ + az 𝑘̂) 

                                                               

                                                                = (
𝑑ax

𝑑𝑡
 𝑖̂ +  

𝑑ay

𝑑𝑡
 𝑗̂ +  

𝑑az

𝑑𝑡
 𝑘̂ ) + (ax 

𝑑𝑖̂

𝑑𝑡
+  ay 

𝑑𝑗̂

𝑑𝑡
+ az 

𝑑𝑘̂̂

𝑑𝑡
 )   

                                                                                                         

Using the previous equation for angular velocity, we then have 

                     
𝑑𝑎𝑥

𝑑𝑡
|I =  (

𝑑ax

𝑑𝑡
 𝑖̂ +  

𝑑ay

𝑑𝑡
 𝑗̂ +  

𝑑az

𝑑𝑡
 𝑘̂ ) + ( ax ω × 𝑖̂ + ay ω ×  𝑗 ̂+ az ω × 𝑘̂) 

                                                           =   
𝑑𝑎

𝑑𝑡
|R  + ω × R 
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Now consider a position vector on the surface of a rotating body. We can write 

                                                       V I = 
𝑑𝑟

𝑑𝑡
|I  =  

𝑑𝑟

𝑑𝑡
|R  + ω × R 

and similarly, for a=v I, 

                                                 
𝑑2𝑟

𝑑𝑡2
|I = ( 

𝑑

𝑑𝑡
| R  +  ω ×)2  r 

                                                            =  
𝑑2𝑟

𝑑𝑡2|R  + 2 ω  × 
𝑑𝑟

𝑑𝑡
|R  +  ω × (ω × r).            

Forces on body in rotating frame 

Now consider a force acting on an object at position r (for example, gravity). Newton's third 

law states 

                                                             F = m  
𝑑2𝑟

𝑑𝑡2|I 

And so substituting this into the previous equation for  
𝑑2𝑟

𝑑𝑡2|I and rearranging we get 

                                                          Fnet = m  
𝑑2𝑟

𝑑𝑡2|R 

                                                                = F−2mω × vR− mω × (ω×r) 

                                                                  = F−2mω × vR + mω2r.  

And here we have it. The second term on the right is the Coriolis force, and the third term is 

the centrifugal force (clearly pointing away from the centre of rotation). Any interpretation of 

the Coriolis and centrifugal forces then follow naturally from this single important equation. 

Coriolis effect and its causes: 

Coriolis effect is used to describe the Coriolis force experienced by the moving objects such 

that the force is acting perpendicular to the direction of motion and to the axis of rotation. 

The earth’s rotation is the main cause for Coriolis effect as the earth rotates faster at the equator 

and near the poles the rotation is sluggish. This is because the rate of change in the diameter of 

the earth’s latitude increases near the poles. 

The air currents in the Northern hemisphere bend to the right making the objects deflect to the 

right whereas in the Southern hemisphere the air currents bend to the left making the objects 

deflect to the left. The Coriolis effect is noticed only for the motions occurring at large-scale 

such as movement of air and water in the ocean. Example of Coriolis effect is change in weather 

patterns. 

 

 

 

https://byjus.com/physics/rotation-and-revolution/
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Question Bank: 

 

Part A 

 

1. What is a frame of reference? Name the types of frame of reference.  

2. Discuss the limitations of Newton’s laws f motion.  

3. Explain what is meant by an inertial frame of reference.  

4. What are the other names of inertial frame of reference?  

5. Show that all other frames of reference, with constant velocity relative to it, are also 

inertial frames.  

6. What are the characteristics properties and its importance?  

7. What do you understand by Galilean transformation and Galilean invariance?  

8. What is meant by non- inertial frame of reference?  

9. How do you differ non-inertial frame from inertial one?  

10. What is fictitious force? Why is this force so called? Write the other names of fictitious 

force.  

11. Can a non-inertial frame of reference serve as an inertial frame of reference? If so, under 

what condition?  

12. What is Coriolis force? Is the centrifugal force fictitious one?  

13. What are transformation equations?  

 

Part – B  

 

1. Enunciate Newton’s laws of motion and discuss their limitations.  

2. Explain in detail how the two laws of motion hold good in inertial frame of reference.  

3. Explain what do you understand by Galilean transformation and Galilean invariance? 

Show that length and acceleration are both invariant to Galilean transformation.  

4. Show that position and velocity are not invariant to Galilean transformation.  

5. Enunciate the laws of conservation of momentum and energy and show that they are both 

invariant to Galilean transformation.  

6. What is fictitious force? Why is this force so called? Under what conditions does it come 

into play?  

7. What is Coriolis force? Under what conditions does it come into play?  

8. Explain in detail if no force acing on a particle in an inertial frame, a force seems to be 

acting it, as observed in a non-inertial frame, either in linear or circular motion with respect 

to the inertial frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40  

IV. Special Theory of Relativity 
 

 

Michelson -Morley Experiment 
 

Sound waves need a medium through which to travel. In 1864 James Clerk Maxwell 

showed that light is an electromagnetic wave. Therefore, it was assumed that there is 

an ether which propagates light waves. This ether was assumed to be everywhere and 

unaffected by matter. This ether could be used to determine an absolute reference 

frame (with the help of observing how light propagates through the ether). 

 

The Michelson-Morley experiment (circa 1885) was performed to detect the Earth’s 

motion through the ether as follows: 

 

Fig. 4.1 

Light beam from the source 'S' is incident at a beam splitter, which is a semi silvered glass 

plate. The plate splits the beam into two coherent beams and out of them one is transmitted and 

other one is reflected. The transmitted rays strike the mirror M1 and from there it is reflected 

back to plate. The reflected beam strikes the mirror M2 and it is also reflected back to plate. 

The returned beams from mirror M1 and M2 reach the telescope T. The superposition of these 

two rays produces interference pattern, which are seen through the telescope T. 
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Fig. 4.2 

The separation between the P and M1 and P and M2 is same and that is equal to 'l' and this 

separation is called length of the arm. The light will be reflected back from mirrors M1 and 

M2 respectively and will interfere at P. This interference pattern is noticed by Telescope T. 

 

 
 

Time taken by the light to travel to mirror M1 and came back to plate P 

As the apparatus and the light both are moving in same direction that is when light is going 

towards M’2. Thus the relative velocity will be c – v. After reflection, the apparatus and the 

light both are moving in the opposite direction that is when light is going towards P. Thus the 

relative velocity will be c + v. 

 
 

 
 

 

 
 

 
 



42  

 
 

Apply Binomial theorem and neglect higher terms 

                   .........(1) 

time taken for light to travel to M2 and back to plate 

 

 
 

 

 

 

Apply Binomial theorem and neglect higher terms 

......(2) 

Therefore the time difference between the transmitted and reflected rays will be 

 

Using equations (1) and (2) 

 

........(3) 

After this the apparatus is rotated through  so that mirrors will exchange their positions.  
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Fig. 4.3 

 

In a rotated position the time difference the same two arms would be given by 

...(4) 

The time delay varies as the apparatus is rotated. The total delay in  rotation is given by 

......(5) 

this would cause fringe pattern to move during rotation, which can be observed experimentally. 

therefore, path difference in  rotation is given by 

 

and phase difference 

 

Fringe Shift 

The total amount of fringe shift N on rotation can be calculated from the time difference 

 

.......(6) 

Then N is calculated by putting l = 11m, v = 10-4 c and λ = 5500 angstroms 
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Thus N = 0.4 fringes.  The experiment was performed day and night and at different times of 

year. Even though the sensitivity of the set up is to detect a shift of 0.01 fringe, no such shift 

was observed. Similar experiments were repeated by several groups but the result was same. 

The above experiment shows that the speed of light is constant in space irrespective of the 

direction and speed of inertial frame. 

 

Explanation for negative results 

 

The following explanations were given for the negative result of Michelson–Morley 

experiment. 

 

(i) Ether drag theory: The moving bodies drag the surrounding ether with them. So, we can say 

that there is no relative motion between ether and earth 

 

(iii) Light velocity hypothesis: This hypothesis shows that the velocity of light from a moving 

source is the vector sum of velocity of light and velocity of source light. Based on some 

astronomical evidences, this hypothesis was also rejected. In 1905, Einstein proposed that the 

motion through ether is a meaningless concept. He does not completely rejected the idea of 

ether but expressed that it can never be detected. The motion of an object relative to a frame of 

reference has a physical concept. 

 

The postulates of special theory of relativity are as follows: 

 
i) The laws of physics are the same in all inertial frames of reference. 

ii) The velocity of light in free space is a constant in all the frames of reference. 

 

Special theory of relativity or special relativity is a physical theory which states the relationship 

between space and time. This is often termed as STR theory. This is theory is based on two 

postulates – 

1. Laws of Physics are invariant 

2. Irrespective of the light source, the speed of light in a vacuum is the same in any other 

space. 

Albert Einstein originally proposed this theory in one of his paper “On the Electrodynamics of 

Moving Bodies”. Special relativity implies consequences like mass-energy equivalence, 

relativity of simultaneity, length contraction and a universal speed limit. The conventional 

notion of absolute universal time is replaced by the notion of a time that is dependent on the 

reference frame and spatial position. 

In relative theory, Reference frames play a vital role. It is used to measure a time of events by 

using a clock. An event is nothing but an occurrence that refers to a location in space 

corresponding to reference frame. For instance, the explosion of a fire flower can be considered 

as an event. 

 

 

 

https://byjus.com/jee/wave-motion/
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Galilean Transformation: 

 

 

 
 

 

Lorentz Transformation 

 
 

The primed frame moves with velocity v in the x direction with respect 

to the fixed reference frame. The reference frames coincide at t=t'=0. The 

point x' is moving with the primed frame. 

  

 

 

The reverse 

transformation is: 

 



46  

 

Much of the literature of relativity uses the symbols β and γ as 

defined here to simplify the writing of relativistic relationships. 

 

Time Dilation 

 

A clock in a moving frame will be seen to be running slow, or "dilated" according to the Lorentz 

transformation. The time will always be shortest as measured in its rest frame. The time 

measured in the frame in which the clock is at rest is called the "proper time". 

 

 

 

 

 

 

 

 

 

 
 

Eor small velocities at which the relativity factor is very close to 1, then the time dilation can 

be expanded in a binomial expansion to get the approximate expression: 

 
 

 

 

 

 

                                                                                            

 

 

 

 

 

 

 

http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/relativ/ltrans.html#c2
http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/relativ/ltrans.html#c2
http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/alg3.html#bef
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Length Contraction 

 

  

The length of any object in a moving frame will appear foreshortened in the direction of 

motion, or contracted. The amount of contraction can be calculated from the Lorentz 

transformation. The length is maximum in the frame in which the object is at rest. 

 

Fig. 4.4  

 

Relativistic Doppler Shift 

The normal Doppler shift for waves such as sound which move with velocities v much less 

than c is given by the expression. 

Doppler effect for sound 

 

where the plus sign is taken for waves traveling away from the observer. For light and other 

electromagnetic waves, the relationship must be modified to be consistent with the Lorentz 

transformation and the expression becomes 

 

http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/relativ/ltrans.html#c2
http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/relativ/ltrans.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/ltrans.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/ltrans.html#c2
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Doppler effect for light 

 

 
Here v is the relative velocity of source and observer and v is considered positive when the 

source is approaching. 

 

 

Relativistic Velocity Transformation 

No two objects can have a relative velocity greater than c! But what if I observe a spacecraft 

traveling at 0.8c and it fires a projectile which it observes to be moving at 0.7c with respect to 

it!? Velocities must transform according to the Lorentz transformation, and that leads to a very 

non-intuitive result called Einstein velocity addition. 

 

Just taking the differentials of these quantities leads to the velocity transformation. Taking the 

differentials of the Lorentz transformation expressions for x' and t' above gives 

 

Putting this in the notation introduced in the illustration above: 

http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/ltrans.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/einvel.html#c1
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The reverse transformation is obtained by just solving for u in the above expression. Doing that 

gives 

 
Applying this transformation to the spacecraft traveling at 0.8c which fires a projectile which 

it observes to be moving at 0.7c with respect to it, we obtain a velocity of 1.5c/1.56 = 0.96c 

rather than the 1.5c which seems to be the common-sense answer. 

 

Question Bank: 

 

Part A 

 

1. What is theory of relativity?  

2. What are the two parts of theory of relativity? Explain it.  

3. Explain the physical significance of the negative result.  

4. State the basic postulates of Einstein’s special theory of relativity.  

5. How Lorentz transformation follows directly from the postulates of the special theory 

of relativity?  

6. What are the two important kinematical effects which derive from the special theory of 

relativity?  

7. What is meant by ‘length contraction’ due to relativistic effect?  

8. What do you understand by ‘time dilation’?  

9. Write the Lorentz velocity transformation equations.  

10. Write the Doppler’s relativistic formula for light waves in vacuum.  

11. A rod has length 100 cm. When the rod is in a satellite moving with a velocity that is 

one half of the velocity of light relative to laboratory, what is the length of the rod as 

determined by an observer  

(a) in the satellite, and  

(b) in the laboratory.  

Solution:  

(a) The observer in the satellite is at rest relative the rod hence the length of the rod as 

measured by him is 100 cm. 

(b) The length ‘l’ of the rod in the laboratory is given by 

      l = l’ (1 – v 2 /c2 ) 1/2 = 100 (1- (0.5c/c)2 ) 1/2 = 86.6cm 

12. Calculate the momentum of a photon whose energy is 1.00 x 10-29 joules.  

p = E/c  

p = 1.00 x 10-19 / 3 x 108 = 3.33 x 10-28 kg.m/sec. 

13. Calculate the fringe shift in Michelson-Morley experiment. Given effective length of 

each path is 10m, velocity of earth 3 x 104 m/s and wavelength of light used is 6000Ao.  

2∆ = 2lv2 /c2λ = 0.33 fringe. 
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14. In Michelson-Morley experiment the length of the paths of the two beans is 11 meters 

each.  The wavelength of the light used is 6000 Ao. If the expected fringe shift is 0.4 

fringe, calculate the velocity of earth relative to ether. 2∆ = 2lv2 /c2λ from this we have 

v 2 = 2∆ c2 λ/ 2l v = 3.1 x 105 m/s.  

15. What will be the apparent length of meter stick measured by an observer at rest,  

when the stick is moving along its velocity equal to (√3/2)c. 

 l = lo √1 − 𝑣 2/ 𝑐 2  

lo = 1m ; v = (√3/2)c 

 l = 0.5 m.  

16. How, fast would a rocket have to go relative to an observer for its length to be contracted  

to 99% of its length at rest. 

l =lo √1 − 𝑣 2 /𝑐 2  

l = (99/100)lo ; l/lo = 99/100 

 v = 0.1416 c.  

17. A young lady decides on her twenty fifth birth day that it is time to slenderize. She  

weights 100kg. She has heard that if she moves fast enough, she will appear thinner to 

her stationary friends.  

(i) How fast must she move to appear slenderized by a factor of 50%. 

(ii) If she maintains her speed until the day she calls her twenty ninth birthday, how 

old will her stationary friends claim shows according to their measurements?  

Solution: 

 (i) l =lo √1 − 𝑣 2/ 𝑐 2 

      l/lo = 99/100 ; v = 0.866c. 

(iii) ∆t’ = ∆𝑡 √1− 𝑣 2 𝑐 2 ; ∆𝑡 = 4𝑦𝑒𝑎𝑟𝑠 ; √1 − 𝑣 2/ 𝑐 2 = 1 2  

∆t’ = 4 /(1/2) = 8 years 

                        The lady will appear to be (25+ 8) = 33 years old. 

18. An electron is moving with a speed of 0.85c in a direction opposite to that of a moving  

photon. Calculate the relative velocity of the electron with respect to photon. 

 

 Solution: 

 The speed of the photon = c  

The speed of the electron = 0.85c  

v = 0.85c , u’ = c;  

u = (𝑢 ′+ 𝑣) / (1+ 𝑣𝑢/𝑐 2 )= (c + 0.85c)/ (1+ 0.85) = c 

19. A space-ship moving away from earth with velocity of 0.4c fires a rocket whose 

velocity relative to space-ship is 0.6c, away from the earth. What will be the velocity 

of the rocket as observed from the earth.  

Solution:  

Velocity of rocket relative to earth = u 

Velocity of space-ship relative to earth = v  

Velocity of rocket relative to space-ship = u’x  

v = 0.4c , u’x = 0.6c;  

ux = (𝑢𝑥 ′ + 𝑣) /(1+ 𝑣𝑢𝑥 ′ /𝑐 2) = c / (1+ 0.24) = 0.8 c. 

 

 

 

 

 

 

 



51  

Part – B 
  

1. Describe the Michelson – Morley experiment and show how the negative results obtained 

are interpreted. 

 2. State the fundamental postulates of special theory of relativity and deduce the Lorentz 

transformations.  

3. What is length contraction in special theory of relativity? Explain it by Lorentz 

transformations.  

4. What is time dilation in special theory of relativity? Explain it by Lorentz transformations. 

5. State and deduce the law of addition of relativistic velocities and show that in no case can 

the resultant velocity of a material particle be greater than c.  

6. Deduce the Doppler’s relativistic formula for light from Lorentz transformation equation.  

7. Derive Lorentz transformation for moment and energy. 
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V. Simple Hormonic Oscillations 

 

Introduction: We see different kinds of motion every day. The motion of the hands of a clock, 

motion of the wheels of a car, etc. Did you ever notice that these types of motion keep repeating 

themselves? Such motions are periodic in nature. One such type of periodic motion is simple 

harmonic motion (S.H.M.). But what is S.H.M.? Let’s find out. 

Periodic Motion and Oscillations 

A motion that repeats itself in equal intervals of time is periodic. We need to know what periodic 

motion is to understand simple harmonic motion.  Periodic motion is the motion in which an object 

repeats its path in equal intervals of time. We see many examples of periodic motion in our day-

to-day life. The motion of the hands of a clock is periodic motion. The rocking of a cradle, 

swinging on a swing, leaves of a tree moving to and fro due to wind breeze, these all are examples 

of periodic motion.  The particle performs the same set of movement again and again in a periodic 

motion. One such set of movement is called an Oscillation. A great example of oscillatory 

motion is Simple Harmonic Motion. 

Simple Harmonic Motion (S.H.M.) 

When an object moves to and fro along a line, the motion is called simple harmonic motion. Have 

you seen a pendulum? When we swing it, it moves to and fro along the same line. These are 

called oscillations. Oscillations of a pendulum are an example of simple harmonic motion. 

Now, consider there is a spring that is fixed at one end. When there is no force applied to it, it is 

at its equilibrium position. Now, 

• If we pull it outwards, there is a force exerted by the string that is directed towards the 

equilibrium position. 

• If we push the spring inwards, there is a force exerted by the string towards the equilibrium 

position. 

 

 

Fig. 5.1 

https://www.toppr.com/guides/physics/oscillations/
https://www.toppr.com/guides/physics/force-and-pressure/force-and-its-effects/
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In each case, we can see that the force exerted by the spring is towards the equilibrium position. 

This force is called the restoring force. Let the force be F and the displacement of the string from 

the equilibrium position be x.  Therefore, the restoring force is given by, F= – kx (the negative 

sign indicates that the force is in opposite direction). Here, k is the constant called the force 

constant. Its unit is N/m in S.I. system and dynes/cm in C.G.S. system. 

Linear simple harmonic motion  

Linear simple harmonic motion is defined as the linear periodic motion of a body in which the 

restoring force is always directed towards the equilibrium position or mean position and its 

magnitude is directly proportional to the displacement from the equilibrium position. All simple 

harmonic motions are periodic in nature but all periodic motions are not simple harmonic motions. 

Now, take the previous example of the string. Let its mass be m. The acceleration of the body is 

given by,     

a = F/m = – kx/m = – ω2x 

Here, k/m = ω2 (ω is the angular frequency of the body) 

Concepts of Simple Harmonic Motion (S.H.M) 

• Amplitude: The maximum displacement of a particle from its equilibrium position or mean 

position is its amplitude. Its S.I. unit is the metre. The dimensions are [L1M0 T0]. Its 

direction is always away from the mean or equilibrium position. 

• Period: The time taken by a particle to complete one oscillation is its period. Therefore, 

period if S.H.M. is the least time after which the motion will repeat itself. Thus, the motion 

will repeat itself after nT. where n is an integer. 

• Frequency: Frequency of S.H.M. is the number of oscillations that a particle performs per 

unit time. S.I. unit of frequency is hertz or r.p.s(rotations per second). Its dimensions are 

[L0M0T-1]. 

• Phase: Phase of S.H.M. is its state of oscillation. Magnitude and direction of displacement 

of particle represent the phase. The phase at the beginning of the motion is known as 

Epoch(α) 
 

Periodic and Oscillatory Motion: 

We come across various kinds of motions in our daily life. You have already studied some of them 

like linear and projectile motion. However, these motions are non-repetitive. Here, we are going to 

learn about periodic and oscillatory motion.  

Energy in simple harmonic motion 

Each and every object possesses energy, either while moving or at rest. In the simple harmonic 

motion, the object moves to and fro along the same path. Do you think an object possesses energy 

while travelling the same path again and again? Yes, it is energy in simple harmonic motion. Let’s 

learn how to calculate this energy and understand its properties. 
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The total energy that a particle possesses while performing simple harmonic motion is energy in 

simple harmonic motion. Take a pendulum for example. When it is at its mean position, it is at rest. 

When it moves towards its extreme position, it is in motion and as soon as it reaches its extreme 

position, it comes to rest again. Therefore, in order to calculate the energy in simple harmonic 

motion, we need to calculate the kinetic and potential energy that the particle possesses. 

Kinetic Energy (K.E.) in S.H.M 

Kinetic energy is the energy possessed by an object when it is in motion. Let’s learn how to 

calculate the kinetic energy of an object. Consider a particle with mass m performing simple 

harmonic motion along a path AB. Let O be its mean position. Therefore, OA = OB = a. 

The instantaneous velocity of the particle performing S.H.M.  at a distance x from the mean 

position is given by 

 

v =  ± ω √a2 – x2 

 
∴  v2 = ω2 ( a2  – x2) 

 
∴ Kinetic energy= 1/2 mv2  = 1/2 m ω2 ( a2  – x2) 

 

As, k/m = ω2         (1) 

 
∴ k = m ω2     (2) 

 

Kinetic energy= 1/2 k ( a2  – x2) . The equations 1 and 2 can both be used for calculating the kinetic 

energy of the particle. 

Learn how to calculate Velocity and Acceleration in Simple Harmonic Motion. 

Potential Energy(P.E.) of Particle Performing S.H.M. 

Potential energy is the energy possessed by the particle when it is at rest. Let’s learn how to 

calculate the potential energy of a particle performing S.H.M. Consider a particle of 

mass m performing simple harmonic motion at a distance x from its mean position. You know the 

restoring force acting on the particle is F= -kx where k is the force constant. 

Now, the particle is given further infinitesimal displacement dx against the restoring force F. Let 

the work done to displace the particle be dw. Therefore, The work done dw during the 

displacement is 

dw = – fdx = – (- kx) dx = kxdx   (3) 

Therefore, the total work done to displace the particle now from 0 to x is 

∫dw= 
 ∫kxdx = k ∫x dx     (4) 

https://www.toppr.com/guides/physics/oscillations/velocity-and-acceleration-in-simple-harmonic-motion/
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Hence Total work done = 1/2 K x2 = 1/2 m ω2x2 

The total work done here is stored in the form of potential energy. 

Therefore Potential energy = 1/2 kx2 = 1/2 m ω2x2 

Equations 3 and 4 are equations of potential energy of the particle. Thus, potential energy is 

directly proportional to the square of the displacement, that is P.E. α x2. 

Learn the Difference between Periodic and Oscillatory Motion. 

Total Energy in Simple Harmonic Motion (T.E.) 

The total energy in simple harmonic motion is the sum of its potential energy and kinetic energy. 

Thus, T.E. = K.E. + P.E.  = 1/2  k ( a2  – x2) + 1/2 K x2 = 1/2 k a2 

Hence, T.E.= E = 1/2 m ω2a2 

Equation III is the equation of total energy in a simple harmonic motion of a particle performing 

the simple harmonic motion. As ω2 , a2 are constants, the total energy in the simple harmonic 

motion of a particle performing simple harmonic motion remains constant. Therefore, it is 

independent of displacement x. 

As ω= 2πf , E= 1/2 m ( 2πf )2a2  

∴ E=  2mπ2f 2a2 

As 2 and π2 constants, we have T.E. ∼ m, T.E. ∼ f 2, and T.E. ∼ a2 

Thus, the total energy in the simple harmonic motion of a particle is: 

• Directly proportional to its mass 

• Directly proportional to the square of the frequency of oscillations and 

• Directly proportional to the square of the amplitude of oscillation. 

 

The law of conservation of energy states that energy can neither be created nor destroyed. 

Therefore, the total energy in simple harmonic motion will always be constant. However, kinetic 

energy and potential energy are interchangeable. Given below is the graph of kinetic and potential 

energy vs instantaneous displacement. 

https://www.toppr.com/guides/physics/oscillations/periodic-and-oscillatory-motion/
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Fig. 5.2 

In the graph, we can see that, 

• At the mean position, the total energy in simple harmonic motion is purely kinetic and at 

the extreme position, the total energy in simple harmonic motion is purely potential energy. 

• At other positions, kinetic and potential energies are interconvertible and their sum is equal 

to  1/2 k a2. 

• The nature of the graph is parabolic. 

 

 

Periodic Motion 

 

What is common in the motion of the hands of a clock, wheels of a car and planets around the 

sun? They all are repetitive in nature, that is, they repeat their motion after equal intervals of time. 

A motion which repeats itself in equal intervals of time is periodic. 

 

 

  

Fig. 5.3 
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A body starts from its equilibrium position(at rest) and completes a set of movements after which 

it will return to its equilibrium position. This set of movements repeats itself in equal intervals of 

time to perform the periodic motion. 

Circular motion is an example of periodic motion. Very often the equilibrium position of the object 

is in the path itself. When the object is at this point, no external force is acting on it. Therefore, if 

it is left at rest, it remains at rest. 

Period and Frequency of Periodic Motion 

We know that motion which repeats itself after equal intervals of time is periodic motion. The 

time period(T) of periodic motion is the time interval after which the motion repeats itself. Its 

S.I.unit is second. 

The reciprocal of T gives the number of repetitions per unit time. This quantity is the frequency 

of periodic motion. The symbol υ represents frequency. Therefore, the relation between υ and T 

is 

υ = 1/T 

Thus, the unit of υ is s-1 or hertz(after the scientist Heinrich Rudolf Hertz). Its abbreviation is Hz. 

Thus, 1 hertz = 1 Hz = 1 oscillation per second = 1 s-1 The frequency of periodic motion may not 

be an integer. But it can be a fraction. 

Oscillatory Motion 

 

Fig. 5.4 

Oscillatory motion is the repeated to and fro movement of a system from its equilibrium 

position. Every system at rest is in its equilibrium position. At this point, no external force is acting 

on it. Therefore, the net force acting on the system is zero. Now, if this system is displaced a little 

from its fixed point, a force acts on the system which tries to bring back the system to its fixed 

point. This force is the restoring force and it gives rise to oscillations or vibrations. 
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For example, consider a ball that is placed in a bowl. It will be in its equilibrium position. If 

displaced a little from this point, it will oscillate in the bowl. Therefore, every oscillatory motion 

is periodic but all periodic motions are not oscillatory. For instance, the circular motion is a 

periodic motion but not oscillatory.  Moreover, there is no significant difference between 

oscillations and vibrations. In general, when the frequency is low, we call it oscillatory motion 

and when the frequency is high, we call it vibrations. Furthermore, simple harmonic motion is the 

simplest type of oscillatory motion. This motion takes place when the restoring force acting on 

the system is directly proportional to its displacement from its equilibrium position.  In practice, 

oscillatory motion eventually comes to rest due to damping or frictional forces. However, we can 

force them by means of some external forces. Also, a number of oscillatory motions together form 

waves like electromagnetic waves. 

Displacement in Oscillatory Motion 

Displacement of a particle is a change in its position vector. In an oscillatory motion, 

displacement simply means a change in any physical property with time. 

 

Consider a block attached to a spring, which in turn is fixed to a rigid wall. We measure the 

displacement of the block from its equilibrium position. In an oscillatory motion, we can represent 

the displacement by a mathematical function of time. One of the simplest periodic functions is 

given by, 

f(t) = A cos ωt 

If the argument, ωt, is increased by an integral multiple of 2π radians, the value of the function 

remains the same. Therefore, it is periodic in nature and its period T is given by, 

T = 2π/ω 

Thus, the function f(t) is periodic with period T. ∴ f(t) = f(t + T). Now, if we consider a sine 

function, the result will be the same. Further, taking a linear combination of sine and cosine 

functions is also a periodic function with period T. 

f(t) = A sin ωt + B cos ωt 

Taking A = Dcos∅ and B = Dsin∅ equation V becomes, f(t) = D sin (ωt + ∅). In this equation D 

and ∅ are constant and they are given by, 

D = √A2 + B2 and ∅ = tan-2(B/A) 

Therefore, we can express any periodic function as a superposition of sine and cosine functions 

of different time periods with suitable coefficients. The period of the function is 2π/ω. 

 

 Table 5.1: Difference between Periodic and Simple Harmonic Motion 

Periodic Motion Simple Harmonic Motion 

In the periodic motion, the displacement of 

the object may or may not be in the direction 

of the restoring force. 

In the simple harmonic motion, the 

displacement of the object is always in the 

opposite direction of the restoring force. 

The periodic motion may or may not be 

oscillatory. 

Simple harmonic motion is always 

oscillatory. 

Examples are the motion of the hands of a 

clock, the motion of the wheels of a car, etc. 

Examples are the motion of a pendulum, 

motion of a spring, etc. 

 
 

 

 

https://www.toppr.com/guides/physics/oscillations/simple-harmonic-motion/
https://www.toppr.com/guides/physics/electromagnetic-waves/introduction-electromagnetic-waves/
https://www.toppr.com/guides/physics/waves/principle-of-superposition-of-waves/
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Damped Harmonic Motion 
 

We know that when we swing a pendulum, it will eventually come to rest due to air pressure and 

friction at the support. This motion is damped simple harmonic motion. Let’s understand what it 

is and how it is different from linear simple harmonic motion. 

When the motion of an oscillator reduces due to an external force, the oscillator and its motion 

are damped. These periodic motions of gradually decreasing amplitude are damped simple 

harmonic motion. An example of a damped simple harmonic motion is a simple pendulum.  In 

the damped simple harmonic motion, the energy of the oscillator dissipates continuously. But for 

a small damping, the oscillations remain approximately periodic. The forces which dissipate the 

energy are generally frictional forces. 

 

 

Fig. 5.5 

Expression of damped simple harmonic motion 

Let’s take an example to understand what a damped simple harmonic motion is. Consider a block 

of mass m connected to an elastic string of spring constant k. In an ideal situation, if we push the 

block down a little and then release it, its angular frequency of oscillation is ω = √k/ m. 

 

However, in practice, an external force (air in this case) will exert a damping force on the motion 

of the block and the mechanical energy of the block-string system will decrease. This energy that 

is lost will appear as the heat of the surrounding medium. 

 

The damping force depends on the nature of the surrounding medium. When we immerse the 

block in a liquid, the magnitude of damping will be much greater and the dissipation energy is 

much faster. Thus, the damping force is proportional to the velocity of the bob and acts opposite 

to the direction of the velocity. If the damping force is Fd, we have, 

 

Fd = -bυ                              (I) 

 

where the constant b depends on the properties of the medium(viscosity, for example) and size 

and shape of the block. Let’s say O is the equilibrium position where the block settles after 

releasing it. Now, if we pull down or push the block a little, the restoring force on the block due 

to spring is Fs = -kx, where x is the displacement of the mass from its equilibrium position.  

 

Therefore, the total force acting on the mass at any time t is, F = -kx -bυ. 
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Now, if a(t) is the acceleration of mass m at time t, then by Newton’s Law of Motion along the 

direction of motion, we have 

ma(t) = -kx(t) – bυ(t)                        (II) 

 

Here, we are not considering vector notation because we are only considering the one-dimensional 

motion. Therefore, using first and second derivatives of s(t), v(t) and a(t), we have, 

 

m(d2x/dt2) + b(dx/dt) + kx =0                      (III) 

 

This equation describes the motion of the block under the influence of a damping force which is 

proportional to velocity. Therefore, this is the expression of damped simple harmonic motion. The 

solution of this expression is of the form 

 

    x(t) = Ae-bt/2m cos(ω′t + ø)                        (IV) 

 

where A is the amplitude and ω′ is the angular frequency of damped simple harmonic motion 

given by, 

 

ω′ = √(k/m – b2/4m2 )                        (V) 

 

The function x(t) is not strictly periodic because of the factor e-bt/2m which decreases continuously 

with time. However, if the decrease is small in one-time period T, the motion is then approximately 

periodic. In a damped oscillator, the amplitude is not constant but depends on time. But for small 

damping, we may use the same expression but take amplitude as Ae-bt/2m 

 
 ∴ E(t) =1/2 kAe-bt/2m                                    (VI) 

This expression shows that the damping decreases exponentially with time. For a small damping, 

the dimensionless ratio (b/√km) is much less than 1. Obviously, if we put b = 0, all equations of 

damped simple harmonic motion will turn into the corresponding equations of undamped motion. 

 

Forced Simple Harmonic Motion 

When we displace a pendulum from its equilibrium position, it oscillates to and fro about its mean 

position. Eventually, its motion dies out due to the opposing forces in the medium. But can we 

force the pendulum to oscillate continuously? Yes. This type of motion is known as forced simple 

harmonic motion. Let’s find out what forced simple harmonic motion is. 

Definition of Forced Simple Harmonic Motion 

When we displace a system, say a simple pendulum, from its equilibrium position and then release 

it, it oscillates with a natural frequency ω and these oscillations are free oscillations. But all free 

oscillations eventually die out due to the ever-present damping forces in the surrounding. 

However, an external agency can maintain these oscillations. These oscillations are known 

as forced or driven oscillations.  The motion that the system performs under this external agency 

is known as Forced Simple Harmonic Motion. The external force is itself periodic with a 

frequency ωd which is known as the drive frequency. 
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A very important point to note is that the system oscillates with the driven frequency and not its 

natural frequency in Forced Simple Harmonic Motion. If it oscillates with its natural frequency, 

the motion will die out. A good example of forced oscillations is when a child uses his feet to 

move the swing or when someone else pushes the swing to maintain the oscillations. 

Expression of Forced Simple Harmonic Motion 

Consider an external force F(t) of amplitude F0 that varies periodically with time. This force is 

applied to a damped oscillator. Therefore, we can represent it as, 

F(t) = F0 cos ωdt                                    (I) 

Thus, at this time, the forces acting on the oscillator are its restoring force, the external force and 

a time-dependent driving force. Therefore, 

ma(t) = -kx(t) – bυ(t) + F0 cos ωdt                         (II) 

We know that acceleration = d2x/dt2. Substituting this value of acceleration in equation II , we get, 

m(d2x/dt2) + b(dx/dt) + kx = F0 cos ωdt                   (III) 

Equation III is the equation of an oscillator of mass m on which a periodic force of frequency ωd is 

applied. Obviously, the oscillator first oscillates with its natural frequency. When we apply the 

external periodic force, the oscillations with natural frequency die out and the body then oscillates 

with the driven frequency. Therefore, its displacement after the natural oscillations die out is given 

by: 

x(t) = Acos(ωd + ø )                                                 (IV) 

where t is the time from the moment, we apply external periodic force. 

Resonance 

The phenomenon of increase in amplitude when the driving force is close to the natural frequency 

of the oscillator is known as resonance. To understand the phenomenon of resonance, let us 

consider two pendulums of nearly equal (but not equal) lengths (therefore, different amplitudes) 

suspended from the same rigid support. 

When we swing the first pendulum which is greater in length, it oscillates with its natural 

frequency. The energy of this pendulum transfers through the rigid support to the second 

pendulum which is slightly smaller in length. Therefore, the second pendulum starts oscillating 

with its natural frequency first. 
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At one point, the frequency with the second pendulum vibrates becomes nearly equal to the first 

one. Therefore, the second pendulum now starts with the frequency of the first one, which is the 

driven frequency. When this happens, the amplitude of the oscillations is maximum. Thus, 

resonance takes place. 

 

Fig. 5.6 

Resonance: 

The sharpness of resonance can be understood better by understanding resonance. Resonance 

is defined as the tendency of a system to vibrate with an increase in amplitude at the excitation 

of frequencies. Resonance frequency or resonant frequency is the maximum frequency at which 

the amplitude is relatively maximum. The Q factor is used to define the sharpness of the 

resonance. 

 

Sharpness of resonance: 

The sharpness of resonance is defined using the Q factor which explains how fast energy decay 

in an oscillating system. The sharpness of resonance depends upon: 

• Damping: Effect due to which there is a reduction in amplitude of vibrations 

• Amplitude: Maximum displacement of a point on a vibrating body which is measured 

from its equilibrium position. 

The sharpness of resonance increases or decreases with an increase or decrease in damping and 

as the amplitude increases, the sharpness of resonance decreases. 

https://byjus.com/physics/resonance/
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Fig. 5.7 

Q Factor: 

 

Q factor or quality factor is a dimensionless parameter that is used to describe the underdamped 

resonator and characterizes the bandwidth and center frequency of the resonator. 

 

The mathematical representation is: 

Q = Estored/Elost per cycle 

 

Power dissipation: 

 

The decrement of rate of change of average energy with respect to time is known as power 

dissipation. 

 

 

Question Bank: 

 

Part A 

 

1. Define simple harmonic motion.  

2. What are the conditions needed for linear simple harmonic motion?  

3. What are the importances of S.H.M?  

4. Define damping coefficient.  

5. Define damped harmonic oscillator. 6. State the condition of resonance.  

6. Define forced vibration. Distinguish between free and forced vibrations.  

7. Write power dissipation equation in damped harmonic oscillator.  

8. Define quality factor in damped harmonic oscillator.  

9. What is meant by sharpness of resonance? 
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Part – B 

 

1. Derive the equation of SHM and its solution.  

2. Show that the total energy of particle executing simple harmonic motion is 

proportional to (a) square of its amplitude (b) the square of its frequency.  

3. Derive expressions for the period and amplitude of damped harmonic motion.  

4. Explain in detail power dissipation in damped harmonic oscillator.  

5. Explain in detail Quality factor in damped harmonic oscillator.  

6. Derive an expression for forced harmonic oscillator with steady state solution.  

7. What is resonance? Give some important examples of resonance. Explain sharpness 

of the resonance. 
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