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1  Introduction 

The application of Newton's law of gravity has enabled the acquisition of much of the detailed 

information we have about the planets in the Solar System, the mass of the Sun, and details of 

quasars; even the existence of dark matter is inferred using Newton's law of gravity.  

Although we have not traveled to all the planets nor to the Sun, we know their masses. These 

masses are obtained by applying the laws of gravity to the measured characteristics of the orbit. 

 In space an object maintains its orbit because of the force of gravity acting upon it. Planets orbit 

stars, stars orbit galactic centers, galaxies orbit a center of mass in clusters, and clusters orbit in 

superclusters.  

 

1.1  Gravitational potential energy 

Gravitational potential energy is energy in an object that is held in a vertical position, due to the 

force of gravity working to pull it down. The amount of gravitational potential energy an object 

has depends on its height and mass. The heavier the object and the higher it is above the ground, 

the more gravitational potential energy it hold. Gravitational potential energy increases as weight 

and height increases. Gravitational potential energy is energy in an object that is held in a 

vertical position. Potential energy is energy that is stored in an object or substance. Elastic 

potential energy is energy stored in objects that can be stretched or compressed.  

 

2. Newton's law of universal gravitation 

 Newton's law of universal gravitation is usually stated as that every particle attracts every other 

particle in the universe with a force that is directly proportional to the product of their masses 

and inversely proportional to the square of the distance between their centers 

What is the Gravitational Constant? 

The gravitational constant is the proportionality constant used in Newton’s Law of Universal 

Gravitation, and is commonly denoted by G. This is different from g, which denotes the 

acceleration due to gravity. In most texts, we see it expressed as: 

G = 6.673×10-11 N m2 kg-2  

What is the Gravitational Constant? 
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The gravitational constant is the proportionality constant used in Newton’s Law of Universal 

Gravitation, and is commonly denoted by G. This is different from g, which denotes the 

acceleration due to gravity. In most texts, we see it expressed as: 

G = 6.673×10-11 N m2 kg-2 

It is typically used in the equation: 

F = (G x m1 x m2) / r
2 , wherein 

F = force of gravity 

G = gravitational constant 

What is the Gravitational Constant? 

The gravitational constant is the proportionality constant used in Newton’s Law of Universal 

Gravitation, and is commonly denoted by G. This is different from g, which denotes the 

acceleration due to gravity. In most texts, we see it expressed as: 

G = 6.673×10-11 N m2 kg-2 

It is typically used in the equation: 

F = (G x m1 x m2) / r2 , wherein 

F = force of gravity 

G = gravitational constant 

m1 = mass of the first object (lets assume it’s of the massive one) 

m2 = mass of the second object (lets assume it’s of the smaller one) 

r = the separation between the two masses 

 As with all constants in Physics, the gravitational constant is an empirical value. That is 

to say, it is proven through a series of experiments and subsequent observations. Although the 

gravitational constant was first introduced by Isaac Newton as part of his popular publication in 

1687, the Philosophiae Naturalis Principia Mathematica, it was not until 1798 that the constant 

was observed in an actual experiment. Don’t be surprised. It’s mostly like this in physics. The 

mathematical predictions normally precede the experimental proofs. 

Anyway, the first person who successfully measured it was the English physicist, Henry 

Cavendish, who measured the very tiny force between two lead masses by using a very sensitive 

torsion balance. It should be noted that, after Cavendish, although there have been more accurate 
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measurements, the improvements on the values (i.e., being able to obtain values closer to 

Newton’s G) have not been really substantial.  

 

 

3. The gravitational field intensity 

The gravitational field intensity depends only upon the source mass and the distance of unit test 

mass from the source mass. The unit of gravitational field intensity is N/kg. The dimensional 

formula is given by [M0L1T-2]. The formula is: weight/mass = gravitational field strength. On 

Earth the gravitational field strength is 10 N/kg. Other planets have different gravitational field 

strengths. The Moon has a gravitational field strength of 1.6 N/kg. The space around a body 

where the gravitational force exerted by it can be experienced by any other particle is known as 

the gravitational field of the body. The strength of this gravitational field is referred to as 

intensity, and it varies from point to point. A uniform gravitational field is one where the field 

lines are always the same distance apart - this is almost exactly true close to the Earth's surface 

(Figure 1(a)). 

However if we move back and look at the planet from a distance the field lines clearly radiate 

outwards (Figure 1(b)), getting further apart as the distance from the Earth increases. 

When viewed from an even greater distance the complete field can be seen (as shown in Figure 

1(c)). 

Such a field is called a radial field - the field intensity (g) decreasing with distance. 

The separation of the field lines gives an indication of the strength of the field – if they are close 

together the field intensity is high and of they are far apart it is low. 

Diagram 1(d) shows the distortion of the gravitational field lines by high- density rock. This was 

most important for the Apollo Moon landings where NASA discovered concentrations of 

massive rock below the lunar surface. The resulting variation in the gravitational acceleration at 

that point would have affected the approach of the lunar lander. 
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4  Keplers Laws 

In the early 1600s, Johannes Kepler proposed three laws of planetary motion. Kepler was able to 

summarize the carefully collected data of his mentor - Tycho Brahe - with three statements that 

described the motion of planets in a sun-centered solar system. Kepler's efforts to explain the 

underlying reasons for such motions are no longer accepted; nonetheless, the actual laws 

themselves are still considered an accurate description of the motion of any planet and any 

satellite. 

Kepler's three laws of planetary motion can be described as follows: 

 The path of the planets about the sun is elliptical in shape, with the center of the sun 

being located at one focus. (The Law of Ellipses) 

 An imaginary line drawn from the center of the sun to the center of the planet will sweep 

out equal areas in equal intervals of time. (The Law of Equal Areas) 

 The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes 

of their average distances from the sun. (The Law of Harmonies) 

The Law of Ellipses 

Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting 

the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two 

tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard 

using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take 

your pencil and pull the string until the pencil and two tacks make a triangle (Fig 1). Then begin 

to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The 

resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances 

from every point on the curve to two other points is a constant. The two other points (represented 

here by the tack locations) are known as the foci of the ellipse. The closer together  these points 

are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special 

case of an ellipse in which the two foci are at the same location. Kepler's first law is rather 

simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at 

one of the foci of that ellipse.  

 

Fig 1 Keplers first law 
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The Law of Equal Areas 

Kepler's second law - sometimes referred to as the law of equal areas - describes the speed at which any 

given planet will move while orbiting the sun. The speed at which any planet moves through space is 

constantly changing. A planet moves fastest when it is closest to the sun and slowest when it is furthest 

from the sun. Yet, if an imaginary line were drawn from the center of the planet to the center of the sun, 

that line would sweep out the same area in equal periods of time. For instance, if an imaginary line were 

drawn from the earth to the sun, then the area swept out by the line in every 31-day month would be the 

same. This is depicted in the diagram below. As can be observed in the diagram, the areas formed when 

the earth is closest to the sun can be approximated as a wide but short triangle; whereas the areas formed 

when the earth is farthest from the sun can be approximated as a narrow but long triangle. These areas are 

the same size. Since the base of these triangles are shortest when the earth is farthest from the sun, the 

earth would have to be moving more slowly in order for this imaginary area to be the same size as when 

the earth is closest to the sun. 

 

 

 

The Law of Harmonies 

Kepler's third law - sometimes referred to as the law of harmonies - compares the orbital period and 

radius of orbit of a planet to those of other planets. Unlike Kepler's first and second laws that describe the 

motion characteristics of a single planet, the third law makes a comparison between the motion 

characteristics of different planets. The comparison being made is that the ratio of the squares of the 

periods to the cubes of their average distances from the sun is the same for every one of the planets.  
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5  Boys Method for the Determination of G 

This method to determine the value of the universal gravitational constantuses two gold spheres each of 

massat either end of a bar suspended in the middle by a torsion wire. The bar is suspended between lead 

masses A and B each of massas shown in the diagram.The forces acting on the spheres are shown in Fig 2  

 

 

Fig 2 The forces acting on the spheres 

 

The forces of gravitational attraction between the gold masses and the lead masses causes the bar to twist 

through an angle 

The torque on the beam is given by                 and equating this to the restoring torque  

where c is the restoring force per radian of turn exerted by the torsion bar The forces of gravitational 

attraction between the gold masses and the lead masses causes the bar to twist through an angle 

 

Then  
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6. Gravitational Potential 

The amount of work done in moving a unit test mass from infinity into the gravitational 

influence of source mass is known as gravitational potential. 

Simply, it is the gravitational potential energy possessed by a unit test mass 

⇒ V = U/m 

⇒ V = -GM/r 

⇒ Important Points: 

    The gravitational potential at a point is always negative, V is maximum at infinity. 

    The SI unit of gravitational potential is J/Kg.  
 

7  Gravitational Potential of a Spherical Shell 

Consider a thin uniform spherical shell of the radius (R) and mass (M) situated in space. Now, 

Case 1: If point ‘P’ lies Inside the spherical shell (r<R):  

As E = 0, V is a constant. 

The value of gravitational potential is given by, V = -GM/R. 

Case 2: If point ‘P’ lies on the surface of the spherical shell (r=R):  

On the surface of the earth, E = -GM/R2. 

over a limit of (0 to R) we get, 

Gravitational Potential (V) = -GM/R. 

Case 3: If point ‘P’ lies outside the spherical shell (r>R):  

Outside the spherical shell, E = -GM/r2. 

Using the relation V=−∫E⃗.dr over a limit of (0 to r) we get, 

V = -GM/r. 
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8. Gravitational Potential of a Uniform Solid Sphere 

Consider a thin uniform solid sphere of the radius (R) and mass (M) situated in space. Now, 

Case 1: If point ‘P’ lies Inside the uniform solid sphere (r < R):  

Inside the uniform solid sphere, E = -GMr/R3. 

Using the relation V=−∫E⃗.dr→V=-\mathop{\int }\vec{E}.\overrightarrow{dr}V=−∫E.dr 

over a limit of (0 to r). 

The value of gravitational potential is given by, 

V = -GM [(3R2 – r2)/2R2] 

Case 2: If point ‘P’ lies On the surface of the uniform solid sphere ( r = R ): 

On the surface of a uniform solid sphere, E = -GM/R2.  over a limit of (0 to R) we get, 

V = -GM/R. 

Case 3: If point ‘P’ lies Outside the uniform solid sphere ( r> R):  

Using the relation over a limit of (0 to r) we get, V = -GM/R. 

Case 4: Gravitational potential at the centre of the solid sphere is given by V = -3/2 × (GM/R). 

 

Solved Problems 

Example 1. Calculate the gravitational potential energy of a body of mass 10Kg and is 25m 

above the ground. 

Solution: 

Given, Mass m = 10 Kg and Height h = 25 m 

G.P.E is given as, 

U = m × g × h = 10 Kg 9.8 m/s2 × 25 m = 2450 J. 

https://byjus.com/maths/limits-and-continuity/
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Example 2. If the mass of the earth is 5.98 ×1024 Kg and the mass of the sun is 1.99 × 1030 

Kg and earth is 160 million Kms away from the sun. Calculate the GPE of the earth. 

Solution: 

Given, the mass of the Earth (m) = 5.98 × 1024 Kg and mass of the Sun (M) = 1.99 × 1030 Kg 

The gravitational potential energy is given by: 

U = -GMm/r 

U = 6.673 ∗ 10-11 ∗ 5.98 ∗ 1024 ∗1.99∗1030/(160∗109) = 8.29 × 108 J 

Example 3. A basketball weighing 2.2 kg falls off a building to the ground 50 m below. 

Calculate the gravitational potential energy of the ball when it arrives below. 

Solution: 

GPE = (2.2 kg)(9.8 m/s2)(50 m) = 1078 J. 

Example 4: A 2 kg body free falls from rest from a height of 12 m. Determine the work done by 

the force of gravity and the change in gravitational potential energy. Consider the acceleration 

due to gravity to be 10 m/s2. 

Solution: 

Since, W = mgh 

Substituting the values in the above equation, we get 

W = 2 × 12 × 10 = 240 N 

The change in gravitational potential energy is equal to the work done by gravity. 

Therefore, ΔEP = 100 Joule. 
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1 Introduction 

A body can be deformed (i.e., changed in shape or size) by the suitable application of external 

forces on it. A body is said to be perfectly elastic, if it regains its original shape or size, when 

the applied forces are removed. This property of a body to regain its original state or condition 

on removal of the applied forces is called elasticity. The opposite of elasticity is plasticity; 

when something is stretched, and it stays stretched, the material is said to be plastic. When 

energy goes into changing the shape of some material and it stays changed, that is said to be 

plastic deformation. 

A body which does not tend to regain its original shape or size, even when the applied forces 

are removed, is called a perfectly plastic body. No body, in nature, is either perfectly elastic or 

perfectly plastic. Quartz fibre is the nearest approach to a perfectly elastic body. Hooke’s law 

states that the strain of the material is proportional to the applied stress within the elastic limit 

of that material. 

When the elastic materials are stretched, the atoms and molecules deform until stress is been 

applied and when the stress is removed they return to their initial state as in Fig.1 

Mathematically, Hooke’s law is commonly expressed as: 

    F = –k.x 

In the equation, 

F is the force 

x is the extension length 

k is the constant of proportionality known as spring constant in N/m  

  

Fig.1 Stress strain diagram 
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The material exhibits elastic behaviour up to the yield strength point, after which the material 

loses elasticity and exhibits plasticity.From the origin till the proportional limit nearing yield 

strength, the straight line implies that the material follows Hooke’s law. Beyond the elastic 

limit between proportional limit and yield strength, the material loses its elastic nature and 

starts exhibiting plasticity. 

The area under the curve from origin to the proportional limit falls under the elastic range. 

The area under the curve from a proportional limit to the rupture/fracture point falls under the 

plastic range. The ultimate strength of a material is defined based on the maximum ordinate 

value given by the stress-strain curve (from origin to rupture). The rupture strength is given by 

the value at a point of rupture . 

The applications of Hooke’s Law is as follows: 

 Hooke’s Law is used all branches of science and engineering 

 It is used as a fundamental principle behind manometer, spring scale, balance wheel of 

the clock. 

 Foundation for seismology, acoustics and molecular mechanics. 

 

 

2. Stress and Strain 

Stress : When an external force is applied on a body, there will be relative displacement of the 

particles and due to the property of elasticity, the particles tend to regain their original 

positions. 

Stress is defined as the restoring force per unit area.  

Strain: When a deforming force is applied, there is a change 

in length, shape or volume of the body. The ratio of the change in any 

dimension to its original value is called strain. 

 It is of three types- 

(1)Longitudinal strain: The ratio of change in length () to original length (L) is called 

longitudinal strain (/L) 

(2) Volume strain (Bulk strain): The ratio of change in volume (v) to original volume (V) is 

called volume strain (v/ V). 

(3) Let ABCD be a body with the side CD fixed .Suppose 

a tangential force F is applied on the upper face AB. The shape of the body is changed to A'B 

CD. The body is sheared by an angle o. This angle o measured in radians is called the 

shearing strain. 
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3  Modulii of Elasticity 

 

Modulus of Elasticity 

In general, the elastic modulus is the measure of an object’s or substance’s resistance to being 

deformed elastically when stress is applied. 

The modulus of elasticity is a specific material constant; it does not theoretically depend on 

the sample’s geometry. 

The elastic modulus of an object is defined as the slope of its stress-strain curve in the elastic 

deformation region. A stiffer material will be characterized by a higher elastic modulus. 

 Definition of the Elastic Modulus 

The elastic modulus is defined as  

where is stress the force causing the deformation divided by the area to which the force is 

applied and strain is the ratio of the change in some parameter caused by the deformation to 

the original value of the parameter. If is measured in Pa (pascal), then ‒ since is a 

dimensionless measure ‒ the units of λ will also be in Pa. 

Relations between Elastic constants E,G,K and n 

The total number of elastic constants are four. i.e E, G, K and v. It may be seen that not all of 

these constants are independent of the others. Infact given any two of them, the other two can 

be determined. Further, it may be noted that the value of the elastic constants E, G and K are 

always be positive values. 

1.The relation between modulus of elasticity (E) and modulus of rigidity(G)  is given by  

                                       E = 2G (1 + n ) or 

G = E/[2(1 +n)]  

2.The relation between modulus of elasticity (E) and Bulk modulus (K) is given by 

E = 3K (1 - 2 n ) 

Using the above two relations we may derive antheor relation without poisson's ratio. 

3.The relation between modulus of elasticity (E), modulus of rigidity(G) and Bulk modulus 

(K) is given by 

E = 9KG/ (3K+G)  or 

1/E =1/3G  + 1/9K 
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4.The relation between modulus of rigidity(G) and Bulk modulus (K) is given by 

K= 2G (1 + n )/ 3(1 - 2 n )  

 

4. Torsional pendulum 

A torsional pendulum, or torsional oscillator, consists of an extended mass suspended from a 

thin rod or wire. When the mass is twisted about the axis of the wire, the wire exerts a torque 

on the mass, tending to rotate it back to its original position. If twisted and released, the mass 

will oscillate back and forth, executing simple harmonic motion. 

 

    A torsional pendulum consists of a disk (or some other object) suspended from a wire, 

which is then twisted and released, resulting in an oscillatory motion.  The oscillatory motion 

is caused by a restoring torque which is proportional to the angular displacement, 

 

 

I is the rotational inertia of the disk about the twisting axis, k (kappa) is the torsional constant 

(equivalent to the spring constant).  This equation is exactly the same as SHM we have 

already discussed.  By direct comparison the period of the torsional pendulum is given by, 

 

 

    and we can write 

 

 

    Similar to the simple pendulum, so long as the angular displacement is small (which means 

the motion is SHM) the period is independent of the displacement.  Torsional pendulums are 

also used as a time keeping devices , as in for example, the mechanical wristwatch . 

 

Procedure: (for performing in lab) 
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  Determination of moment of inertia using torsion pendulum with identical masses 

  The radius of the suspension wire is measured using a screw gauge. 

       The length of the suspension wire is adjusted to suitable values like    

0.3m,0.4m,0.5m,.....0.9m,1m etc. The disc is set in oscillation.Find the time for 20 oscillations 

twice and determine the mean period of oscillation ' T0 '. The two identical masses are placed 

symmetrically on either side of the suspension wire as close as possible to the centre of the disc, 

and measure d1 which is the distance between the centres of the disc and one of the identical 

masses. 

    Find the time for 20 oscillations twice and determine the mean period of oscillation ' T1 '. The 

two identical masses are placed symmetrically on either side of the suspension wire as far as 

possible to the centre of the disc, and measure d2 which is the distance between the centres of 

the disc and one of the identical masses. 

    Find the time for 20 oscillations twice and determine the mean period of oscillation ' T2 '. Find 

the moment of inertia of the disc using the given formulae. 

Observations: 

Length of the suspension wire=................m 

Radius of the suspension wire=..............m 

Mass of each identical masses=.............kg 

     d1=...........m 

     Calculations:                                               

                           T0   = ........s                                         

                           T1   = .........s                                                

                           T2   = .........s   

                    Moment of inertia of the given disc, 

 



6 
 

d2=...........m 

 

 

5  Rigidity Modulus -Static Torsion 

Aim: 

To determine the rigidity modulus of the material of a given cylindrical rod through telescope 

and scale method. 

Apparatus: 

Searle's static torsion apparatus: rod with attached pulley, weight hanger, slotted weights, 

telescope, mirror and scale. 

Theory: 

Shear modulus, or rigidity modulus n is defined as the ratio of stress F/A to strain Δx/l when a 

shearing force F is applied to a rigid block of height l and area A. Δx is the deformation of the 

block, and 
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This is similar to what happens when a torque τ is applied to a rigid rod of length l and radius 

r. Looking at the cross-section of the rod, consider a ring of width dr' at radius r' , which will 

have area 2πr'dr', with force applied tangentially. The weighted average force over the cross-

sectional area A of the rod is then 

 

If the torque deforms the rod by twisting it through a small angle θ, the deformation distance 

(corresponding to Δx) at the outside edge of the rod is approximately  θr. The definition of the 

rigidity modulus n becomes      

 

In our apparatus the torque τ is supplied by hanging a weight of mass M from a string wound 

round a pulley of radius R, so τ =MgR and our definition of rigidity modulus n becomes 

 

Now suppose we mount a small mirror on the rod at distance l from its fixed end, and look at 

a centimeter scale in the mirror through an adjacent telescope, both at distance D from the 

mirror. When the rod deforms and the mirror rotates through a small angle θ  , we look at a 

point on the scale a distance approximately S=2Dθ from the original point, which was aligned 

with the telescope. We can measure D and S and substitute θ =S/2D in our definition of 

rigidity modulus n, to get 
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1. Introduction 

In solid mechanics, a bending moment is the reaction induced in a structural element when an external 

force or moment is applied to the element, causing the element to bend. The most common or simplest 

structural element subjected to bending moments is the beam.  

Shear Force and Bending Moment Diagrams for a Simply-Supported Beam Under A Uniform Load 

After the support reactions are calculated, the shear force and bending moment diagrams can be drawn  

in F ig. 1 

Shear force is the force in the beam acting perpendicular to its longitudinal (x) axis. For design purposes, 

the beam's ability to resist shear force is more important than its ability to resist an axial force. Axial 

force is the force in the beam acting parallel to the longitudinal axis. 

 

 

 

Fig. 1 Drawing of a simply-supported beam of length L under a uniform load 

 

 

 2  Shear Force and Bending Moment 
 

Shear Force and Bending Moment Diagrams for a Simply-Supported Beam 
Under A Uniform Load 

After the support reactions are calculated, the shear force and bending moment 
diagrams can be drawn. 

Shear force is the force in the beam acting perpendicular to its longitudinal (x) axis. 
For design purposes, the beam's ability to resist shear force is more important than its 

ability to resist an axial force. Axial force is the force in the beam acting parallel to the 
longitudinal axis. 

The following is a drawing of a simply-supported beam of length L under a uniform load, 
q: 
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This beam has the following support reactions: 

 

where Rl and Rr are the reactions at the left and right ends of the beam, respectively. 

The shear forces at the ends of the beam are equal to the vertical forces of the support 
reactions. The shear force F(x) at any other point x on the beam can be found by using 
the following equation. 

  

 

3. BENDING OF BEAMS 

 Beams: A beam is defined as a rod or bar. Circular or rectangular of uniform cross section 

whose length is very much greater than its other dimensions, such as breadth and 

thickness. It is commonly used in the construction of bridges to support roofs of the 

buildings etc. Since the length of the beam is much greater than its other dimensions the 

shearing stresses are very small. 

 

Assumptions: 

While studying about the bending of beams, the following assumptions have to be made. 

1.           The length of the beam should be large compared to other dimensions. 

2.           The load(forces) applied should be large compared to the weight of the beam 

3.           The cross section of the beam remains constant and hence the geometrical moment 

of inertia ig also remains constant 

4.           The shearing stresses are negligible 

5.           The curvature of the beam is very small 
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4  Bending of a Beam and neutral axis 

                Let us consider a beam of uniform rectangular cross section in the figure. A beam may 

be assumed to consist of a number  of parallel longitudinal metallic fibers placed one over the 

other and are called as filaments as shown in the figure 2. 

Let the beam be subjected to deforming forces as its end as shown in the figure. Due to the 

deforming force the beam bends. We know the beam consist of many filaments. Let us consider 

a filament AB at the beam. It is found that the filaments (layers) lying above AB gets elongated, 

while the filaments lying below AB gets compressed. Therefore the filaments i.e layer AB which 

remains unaltered is taken ass the reference axis called neutral axis and the plane is called neutral 

plane. Further, the deformation of any filaments can be measured with reference to the neutral 

axis. 

 

 

Fig 2. Bending of a Beam and neutral axis  

 

4. EXPRESSION FOR BENDING MOMENT 

Let us consider a beam under the action of deforming forces. The beam bends into a circular 

arc as shown in the figure. Let AB be the neutral axis of the beam. Here the filaments above 

AB are elongated and the filaments below AB are compressed. The filament AB remains 

unchanged as in Fig.3. Let PQ be the chosen from the neutral axis. If R is the radius of 

curvature of the neutral axis and ᶿ is the angle subtended by it at its center of curvature’C’ 

Then we can write original length 

PQ=Rᶿ  ………………………………………………………. 1 

Let us consider a filament P’Q’ at a distance ‘X’ from the neutral axis. 

We can write extended length 

P’Q’=(R+x)ᶿ  ………………………………………………2 
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From equations 1 and 2 we have, 

Increase in length=P’Q’-PQ 

On increase in its length=(R=x)θ-Rθ 

Increase in length=xθ  …………………………………….3 

We know linear strain=increase in length\original length 

Linear strain=xθ\Rθ=x\R  ………………………………4 

We know, the youngs modulus of the material 

Y=stress\linear strain  

 

 

Fig.3 EXPRESSION FOR BENDING MOMENT 

Or                

 stress=y*linear strain …………………….5 

Substituting 4 in 5, we have 

Stress=Yx\R 

If δA is the area of cross section of the filament P’Q’, then, 

The tensile force on the area δA=stress*Area 

Ie. Tensile force=(Yx\R ).δa 

We know the memont of force= force*Perpendicular distance 

Moment of the tensile force about the neutral axis AB  
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or  

 The moment of force acting on both the upper and lower halves of the neutral 

axis can be got by summing all the moments of tensile and compressive forces about the 

neutral axis 
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1   INTRODUCTION 

Surface tension is defined as, The ratio of the surface force F to the length L along which the 

force acts. ... F is the force per unit length. L is the length in which force act. T is the surface 

tension of the liquid. Surface tension has the dimension of force per unit length, or of energy per 

unit area. The two are equivalent, but when referring to energy per unit of area, it is common to 

use the term surface energy, which is a more general term in the sense that it applies also to 

solids. The cause of surface tension is often explained roughly as follows. Molecules within a 

liquid are subject to intermolecular forces whose exact nature and origin need not concern us 

other than to say that they are principally van der Waals forces and they hold the liquid together 

and prevent it from evaporating. A molecule deep within the liquid is surrounded in all directions 

by other molecules, and so the net force on it averages zero. But a molecule on the surface 

experiences forces from beneath the surface, and consequently it tends to get dragged beneath 

the surface. This results in as few molecules as possible remaining on the surface; i.e. it results in 

the surface contracting to as small an area as possible consistent with whatever other geometrical 

constraints may exist. That is, the surface appears to be in a state of tension causing it to contract 

to the least possible area. 

his tension can be described qualitatively thus. In Figure XX.1, the dashed line is an imaginary 

line drawn in the surface of a liquid. The liquid to the left of the line is being pulled to the right 

as indicated by the red arrows; the liquid to the right of the line is being pulled equally to the left 

as indicated by the green arrows. The force per unit length perpendicular to a line drawn in the 

surface of the liquid is the surface tension. Its SI unit is newtons per metre, and its CGS unit is 

dynes per centimetre. The dimensions are MT−2. 

 

2  Excess Pressure Inside Drops and Bubbles 

The pressure inside a spherical drop is greater than the pressure outside. The way in which the 

excess pressure P depends on the radius a of the drop, and the surface tension γ and density ρ of 

the liquid is amenable to dimensional analysis. One can suppose that P∝aαγβρδ, after which I 

leave it to the reader to show that α=−1,β=1,δ=0, and therefore P∝γ/a 

 

However, it is also quite easy to calculate the excess pressure (other than as a mere 

proportionality) in terms of the surface tension and the radius of the drop. In Figure I have 

divided a spherical drop of radius a into two hemispheres, and we are going to consider the 

equilibrium of the upper hemisphere. 

The upper hemisphere is being pulled down by surface tension all round the base of the 

hemisphere, and this downward force is equal to the circumference of the base times the surface 

tension, or 2πγa. If the excess pressure inside the drop is P, the upward component of the force 

due to this pressure is equal to P times the area of the base, πa2. In case this is not obvious, 

consider an elemental area dA as shown, at a spherical angle θ from the top of the drop. The 
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force on this element is equal to PdA. The upward component of this force is PcosθdA, and this 

is equal to P times the horizontal projection of dA. Now you are welcome to do a nice double 

integration over the hemisphere, but since this (i.e " this is equal to P times the horizontal 

projection of dA ") is true for every elemental area over the surface of the hemisphere, the total 

upward force must be equal to P times the area of the base. Thus 2πγa=πa2P, and so the excess 

pressure inside the drop is 

 

 

The smaller the drop, the greater will be the excess pressure. You may regard this as an 

explanation as to why droplets cannot form from a vapour unless there is a dust nucleus of finite 

size for them to condense upon. Of course, two molecules colliding with each other cannot in 

any case coalesce unless there is something to remove or absorb the kinetic energy. 

What about the pressure inside a spherical bubble of air (or other gas) under water (or other 

liquid)? If we are hasty, we might suggest that, since this is the opposite situation to a liquid drop 

in air, maybe the pressure is less inside an underwater bubble. This would be a very hasty 

conclusion, and quite wrong. If you go through exactly the same argument as we did for a drop, 

considering the equilibrium of one hemisphere, you will see immediately that there is (as for the 

drop) an excess pressure inside the bubble. And exactly the same would apply to a spherical drop 

of one liquid under the surface of a second liquid, if the two liquid are immiscible. But, rather 

than just repeat the identical derivation, let's try a different approach. 

Let us imagine that we have a bubble of radius a in a liquid of surface tension γ, and suppose that 

we are able, by means of a fine syringe, to inject some more air inside so as to increase the radius 

of the bubble by da at constant pressure and temperature. The surface area of a sphere of radius 

‘a’ is A=4πa2, so, if we increase the radius by da we increase the surface area by 8πada, and we 

increase the volume by 4πa2da. The work done against the surface tension is 8πγada, and this 

must also be equal to 4πPa2da, where P is the excess pressure inside the bubble. What about a 

hollow spherical soap bubble in air? Here the soap has two surfaces – inside and out. If you 

repeat either of the above derivations to this case, you will see that the excess pressure inside a 

hollow spherical soap bubble is 

P=4γ/a 
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3 Variation of Surface Tension with Temperature 

As a fluid is heated it becomes less viscous, and it seems logical that the surface tension will 

decrease. This is in fact the case in general: it becomes zero at the critical temperature. The 

apparatus figure1 below can be used to investigate the variation of surface tension with 

temperature. 

 

 

 

Fig. 1 Jaegers experiment 

Water drips into a large flask (right hand side), forcing bubbles of air out of the capillary tube on 

the left (shown magnified) with lower end submerged to a depth h.  

The bubble will free itself from the bottom of the capillary tube when the angle it's radius equals 

the internal radius of the tube (the angle of contact is then 0 degrees). Hence the surface 

temperature can be found, and repeating the experiment for a range of temperatures enables us to 

plot a graph of the surface tension of water against temperature. The graph below is obtained.  
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4 Physics of Low Pressure 

Applications 

Vacuum pumps have numerous industrial and scientific applications. 

 They are used for composite moulding, flight instruments, production of vacuum tubes and 

electric lamps, CRT’s, semiconductor processing, electron microscopy, photolithography, 

uranium enrichment, print presses, glass and stone cutting factories, cabinetry fabrication, and 

medical applications that require suction. Medical applications include: radiopharmacy, 

radiosurgery and radiotherapy; mass spectrometers, instruments that analyse solid, gas, liquid, 

surface and bio materials. 

Vacuum pumps are also used for decorative vacuum coatings on metal, glass and plastics, energy 

saving and durability of glass, ophthalmic coating, hard coatings for Formula One engine 

components, dairy equipment such as milking machines, vacuum impregnation of electric motor 

windings or wood, trash compactors, air conditioning service, sewage systems, vacuum 

engineering, fusion research and freeze drying. 

5. Molecular Pump Working and Theory 

Gaede and then Langmair developed the idea of a molecular pump. 

Theory of Molecular Pump 

Whenever a surface moves very near to a static surface, then the gaseous molecules in between 

the space of these two surfaces get a motion along with the motion of the moving surface.  

This phenomenon happens due to the viscous property of the gaseous molecules. For this 

phenomenon to happen the distance between the static and moving surfaces must be less than 

0.03 mm. Practically the force acting on the gaseous molecules to move them is the viscous 

force. As a result, the gaseous molecules achieve the velocity of the moving surface. 

 

Fig. 3 Molecular pump 
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Basic Construction of a Molecular Pump 

The inner wall of a hollow metallic cylinder serves as the static surface of the molecular pump. 

We call it the stator of the pump. There is a solid cylinder fitted inside the hollow cylinder. The 

diameter of the solid cylinder is so chosen that the gap between the inner wall of the stator and 

the periphery of the solid cylinder becomes very narrow. During the operation of the molecular 

pump, the solid cylinder rotates. This is the reason we call it the rotor of the pump. Working 

Principle of Molecular Pump 

The direction of the rotation of the rotor is such that its outer surface always moves from inlet to 

outlet on the wider space section of the molecular pump. For that reason, in our model of the 

molecular pump, the rotation must be clockwise.Now we connect a manometer in between the 

inlet and outlet of the pump.  

 During rotation of the rotor at required high speed, we can clearly observe and measure the 

pressure difference between the inlet and outlet of the diffusion pump with the help of that 

manometer. The difference between the Mercury levels in the manometer indicates the pressure 

difference between the inlet and outlet of the pump. 

 

6. Diffusion Pump Working 

Principle and Theory 

The working principle of a diffusion pump depends on the inter diffusion phenomenon between 

two different gasses. Gaede had developed this type of pump in the year 1815. After that 

Langmuir had developed the practical and commercial version of this diffusion pump.Whatever 

may be the type of a diffusion pump but the basic principle is the inter diffusion between two 

gasses. During the diffusion process, the gas of high concentration diffuses to the gas of low 

concentration. That means a gas always tries to flow from the space of higher partial pressure to 

the space of lower partial pressure. 

Basic Construction of a Diffusion Pump 

The figure below shows a simple diffusion pump. Warren had developed this model of the pump. 

Sometimes we also call a diffusion pump as a diffusion condensation pump. From the name 

diffusion condensation pump it is obvious that there must be an arrangement of liquid in the 

pumping system. For better understanding the working principle of a diffusion pump, let us mark 

the different sections of the pump with different numerical numbers. 1 is a glass or metal conical 

pot. There is one bend tube marked with 2, fitted on the top of the cone. After bending, the cross-

section of this tube suddenly increases. Let us mark this bigger cross-sectional portion of the bent 

tube with numeric 3. 

The cross-section of the lower portion of the tube has become again reduced and ultimately 

connected to the conical pot. 
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Fig. 4 Diffusion pump  

In general, asbestos fibers cover the portion of the tube marked with numeric 2.  

The asbestos fibers act as the heat insulator of this tube. There is one inlet at the upper portion of 

section 3. Also, there is one outlet from the lower portion of the same section 3. The circulating 

water surrounds the tube of section 3 serves as the water-cooling system. 

 Working Principle of Diffusion Pump 

Now we connect the inlet to the vessel in which we have to create a vacuum by this diffusion 

pump. Although, we generally do not connect the inlet directly to the vessel, we use a liquid air 

trap in between the inlet of the pump and the vessel. Now we heat up the mercury inside the 

conical jar with the help of an external heater. As a result, heat vaporizes the mercury. This 

mercury vapor then goes up through the tube, marked as 2. Then it ultimately reaches the wider 

cross-sectional portion of the tube of the section marked as 3. Here, the vapor gets suddenly a 

wider space to expand. The expanded vapor traps the air molecules coming through the inlet. 

The trapping of air molecules is due to the diffusion process. The sudden expansion of the 

mercury vapor reduces the pressure of the system. After that, due to the water cooling system, 

the temperature of the mercury vapor reduces in section 3. The mercury vapor comes down to 

the lower portion of the tube of section 3 and also during its journey it gets cooled down because 

of the water cooling. At the lower portion of the tube of section 3, the mercury vapor gets 

condensed to liquid mercury. 

Therefore, it is collected in the form of liquid mercury to the conical jar through the pipe of 

section 4. Since the mercury vapor becomes liquid in the lower portion of section 3 the air 

molecules which have been trapped due to diffusion with the mercury vapor gets separated and 
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come out through the outlet of the pump. We generally use an auxiliary pump in addition to that 

system to collect the exhausted air from the diffusion pump.  

 

7. McLeod Gauge 

McLeod gauge amplifies the low pressure and was developed to extend the range of vacuum 

measurement significantly. The McLeod Gauge measures the vacuum pressure in the range 

between 10-1 and 10-5 torr. This can be used as a primary standard device for calibrating other 

low-pressure gauges. 

 Working Principle 

McLeod gauge is essentially a mercury manometer in which a volume of gas is compressed 

before measurement. It operates by compressing a low-pressure gas of known volume into a 

smaller volume so that its pressure is sufficiently higher enough to be read. The resultant final 

volume and pressure provide the indication of applied low pressure. 

 

 

Fig. 4 McLeod gauge 

The McLeod gauge consists of a reservoir containing mercury. A plunger is attached on the top 

of the reservoir which is used to raise or lower the level of mercury into the reference column 

and bulb. Above the reservoir, there is a bulb and reference column. 

The point of connection of bulb and reference column is the opening or cut-off point. The other 

end of the reference column is open to vacuum pressure and it has a reference capillary. The 
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reference capillary has a zero reference point up to which the mercury is raised. The mercury 

rises in the capillary as much as it rises in the column but only the volume differs. The reference 

column is attached to a measuring capillary which is a sealed chamber and from which the final 

volume of gas is read. The unknown vacuum pressure source is connected to the reference 

column and the pressure is applied. The level of mercury is adjusted so that it at the opening or 

cut-off point. Now, the unknown pressure, p, fills the bulb and capillary. The volume of 

unknown pressure is the volume of bulb and capillary which is given by V. 

The mercury is forced into the bulb and capillary by operating the plunger. Once the level of 

mercury crosses the cut-off point or opening, it stops the entry of applied pressure into the bulb 

and measuring capillary. The level of mercury is raised until it reaches the zero reference point. 

The pressure and volume of gas trapped in measuring capillary are read and unknown vacuum 

pressure is calculated. 

 

Advantages 

1. McLeod gauge is an inexpensive standard that measures vacuum pressure without any 

electronics or sophisticated equipment. 

2. It is used for calibrating other low pressure measuring gauges. 

3. It is not influenced by gas composition. 

4. The readings obtained from McLeod gauge do not require any correction 
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 If at any point, the velocity of every passing fluid particle remains the same, the 

flow is called the streamline flow or the steady flow. Any flow which is not 

streamline is known as the turbulent flow. The path taken by a fluid particle in 

steady flow is known as a streamline. 
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1. Introduction  

If at any point, the velocity of every passing fluid particle remains the same, the flow is called 

the streamline flow or the steady flow. Any flow which is not streamline is known as the 

turbulent flow. The path taken by a fluid particle in steady flow is known as a streamline. If at 

any point, the velocity of every passing fluid particle remains the same, the flow is called the 

streamline flow or the steady flow. Any flow which is not streamline is known as the turbulent 

flow. The path taken by a fluid particle in steady flow is known as a streamline. 

The coefficient of viscosity is defined as the force of friction that is required to maintain a 

difference of velocity of 1cm/s between parallel layers of fluid. The unit is usually expressed in 

poise or centipoise. 

The SI unit for dynamic viscosity η is the Pascal-second (Pa-s), which corresponds to the force 

(N) per unit area (m2) divided by the rate of shear (s-1). Just as in the definition of viscosity. 

Viscosity is caused by friction within a fluid. It is the result of intermolecular forces between 

particles within a fluid. 

2 Determination of coefficient of viscosity of water by Poiseuille's flow method 
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Determination of coefficient of viscosity of water by Poiseuille's flow method is as follows:  

A capillary tube of very fine bore is connected by means of a rubber tube to a burette kept 

vertically. The capillary tube is kept horizontal as shown in figure. The burette is filled with 

water and the pinch - stopper is removed. The time taken for water level to fall from A to B is 

noted. If V is the volume between the two levels A and B, then volume of liquid flowing per 

second is tV. If l and r are the length and radius of the capillary tube respectively, then 

V/t =8ηπPr4--------(1) If ρ is the density of the liquid then the initial pressure difference between 

the ends of the tube is P1=h1ρg and the final pressure difference P2=h2ρg. Therefore the average 

pressure difference during the flow of water is P where 

 

P=2(P1+P2) 

=[2(h1+h2)]ρg 

Substituting in equation (1), we get 

V/t =πhρgr4/8lη 

or 

η=πhρgr4t/8lV 

 

 

3. STOKES METHOD 

AIM 

To determine the co-efficient of viscosity of the given liquid by stoke’s method 

 APPARATUS REQUIRED 

A long cylindrical glass jar, highly viscous liquid, metre scale, spherical ball, stop clock, 

thread. 

 FORMULA 

Where 

 η - Coefficient of viscosity of liquid (N s m–2) 

r → radius of spherical ball ( m ) 

δ→ density of the steel sphere ( kg m–3 ) 

σ→ density of the liquid ( kg m–3 ) 

g → acceleration due to gravity (9.8 m s–2 ) 
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V → mean terminal velocity ( m s–1 

PROCEDURE 

·         A long cylindrical glass jar with markings is taken. 

·         Fill the glass jar with the given experimental liquid. 

·         Two points A and B are marked on the jar. The mark A is made well below the 

surface of the liquid so that when the ball reaches A it would have acquired terminal 

velocity V. 

·         The radius of the metal spherical ball is determined using screw gauge. 

·         The spherical ball is dropped gently into the liquid. 

·         Start the stop clock when the ball crosses the point A. Stop the clock when the ball 

reaches B. 

·         Note the distance between A and B and use it to calculate terminal velocity. 

·         Now repeat the experiment for different distances between A and B. Make sure that 

the point A is below the terminal stage. 

 CALCULATION 

Density of the spherical ball δ = ________ kg m−3 

Density of the given liquid σ = ________ kg m−3 

Coefficient of viscosity of the liquid η = 2r2g(δ −σ) / 9V  =  = ________ N s m–2 

 

RESULT 

The coefficient of viscosity of the given liquid by stoke’s method η = ________ Nsm–2 
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4. Variation of viscosity of liquid with temperature 

With an increase in temperature, there is typically an increase in the molecular interchange as 

molecules move faster in higher temperatures. The gas viscosity will increase with temperature. . 

With high temperatures, viscosity increases in gases and decreases in liquids, the drag force will 

do the same. The viscosity of liquids decreases rapidly with an increase in temperature, and the 

viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow 

more easily, whereas gases flow more sluggishly. Increasing temperature results in a decrease in 

viscosity because a larger temperature means particles have greater thermal energy and are more 

easily able to overcome the attractive forces binding them together. 

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it 

corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity 

than water. 

Viscosity can be conceptualized as quantifying the internal frictional force that arises between 

adjacent layers of fluid that are in relative motion. For instance, when a fluid is forced through a 

tube, it flows more quickly near the tube's axis than near its walls. In such a case, experiments 

show that some stress (such as a pressure difference between the two ends of the tube) is needed 

to sustain the flow through the tube. This is because a force is required to overcome the friction 

between the layers of the fluid which are in relative motion: the strength of this force is 

proportional to the viscosity. 

A fluid that has no resistance to shear stress is known as an ideal or inviscid fluid. Zero viscosity 

is observed only at very low temperatures in superfluids. Otherwise, the second law of 

thermodynamics requires all fluids to have positive viscosity. 

 

5 What is Streamline Flow? 

 

Streamline flow in fluids is defined as the flow in which the fluids flow in parallel layers such 

that there is no disruption or intermixing of the layers and at a given point, the velocity of each 

fluid particle passing by remains constant with time. Here, at low fluid velocities, there are no 

turbulent velocity fluctuations and the fluid tends to flow without lateral mixing. Here, the 

motion of particles of the fluid follows a particular order with respect to the particles moving in a 

straight line parallel to the wall of the pipe such that the adjacent layers slide past each other like 

playing cards. 

To understand the liquid flow pattern better, click on the links provided below: 

    Reynolds Number 

    Poiseuilles Law Formula 
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What are Streamlines? 

Streamlines are defined as the path taken by particles of fluid under steady flow conditions. If we 

represent the flow lines as curves, then the tangent at any point on the curve gives the direction 

of the fluid velocity at that point. 

As can be seen in the image above, the curves describe how the fluid particles move with respect 

to time. The curve provides a map for the flow of this given fluid, and for a steady flow. This 

map is stationary with time i.e., every particle passing a point behaves exactly like the previous 

particle that has just passed that point. 

The streamlines in a laminar flow follow the equation of continuity, i.e., Av = constant, where, A 

is the cross-sectional area of the fluid flow, and v is the velocity of the fluid at that point. Av is 

defined as the volume flux or the flow rate of the fluid, which remains constant for steady flow. 

When the area of the cross-section is greater, the velocity of the liquid is lesser and vice versa. 


