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SCHOOL OF SCIENCE AND HUMANITIES 

DEPARTMENT OF MATHEMATICS 

SMTA5403- ADVANCED OPERATIONS RESEARCH 

 

Objective of the Course: The ability to identify, reflect upon, evaluate 

and apply different types of information and knowledge to form 

independent judgments. Analytical, logical thinking and conclusions 

based on quantitative information will be the main objective of 

learning this subject. 

 

UNIT 1: Sensitivity Analysis: Introduction – Sensitivity Analysis – 

Change in Objective Function Coefficient – Change in the Availability 

of Resources – Changes in the Input Output Coefficients – Addition of 

New Variable – Addition of New Constraint 

 

 UNIT 2: Integer Linear Programming: Introduction – Types of Integer 

Programming Problems – Enumeration and Cutting Plane Solution 

Concept – Gomory’s All Integer Cutting Plane Method - Gomory’s 

Mixed Integer Cutting Plane Method. 

 

 UNIT 3: Goal Programming : Introduction – Difference between LP 

and GP approach – Concept of Goal Programming - Goal 

Programming model formulation – Single Goal with Multiple sub 

Goals – Equally ranked Multiple Goals – Ranking and Weighting of 

Unequal Multiple Goals - General GP Model – Graphical Solution 

method of GP – Modified Simplex Method of GP. 

 

 UNIT 4: Decision and Game Theory: Decision Theory – Introduction 

– Steps of Decision making process – Types of Decision Making 

Environments – Decision Making Under Uncertainty - Decision 

Making Under Risk - Expected Monetary Value. Theory of Game – 

Introduction – Two Person Zero Sum Games – Games with Saddle 
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Point – Rules to determine Saddle point - Games without Saddle Point 

- related problems – Principles of Dominance – Solution method for 

Games without Saddle point- Graphical Method.  

 

UNIT 5: Dynamic Programming: Introduction – Dynamic 

Programming Terminology– Developing Optimal Decision Policy – 

The General Algorithm - Dynamic Programming Under Certainty – 

Model-I Shortest Route Problem – Model-II, Multiple Separable 

Return Function and Single Additive Constraint Dynamic 

Programming Approach for Solving Linear Programming Problems.  

 

Course Outcomes: At the end of the course, the student will be able 

to: 

1. Define sensitivity analysis, Integer linear programming, Goal 

programming, Two person zero sum games, Dynamic 

programming. 

 

2. Explain change in objective function, input output coefficients, 

addition of new constraints, principal of dominance, algorithm 

of dynamic programming under certainty. 

 

3. Choose an appropriate method and solve the problems in 

sensitivity analysis and prepare an integer programming table 

and goal programming to solve the problem. 

 

4. Distinguish between ILP and GP and analyze the methods and 

also estimate problems of game theory using graphical method. 

 

5. Evaluate problems on Sensitivity analysis, Integer 

programming problem, Goal programming and Dynamic 

Programming. 

 

6. Design solutions using iteration method and graphical method 

and also Developing ILP, GP and DP model. 
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UNIT – I – Sensitivity Analysis 
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I. Introduction  

                  In an LP model, the coefficients (also known as parameters) 

such as: 

 1. profit (cost) contribution (cj) per unit of a decision variable, xj . 

 2. availability of a resources (bj), and  

 3. consumption of resource per unit of decision variables (aij ), are 

assumed to be known constant.  

However, in real-world situations, these input parameters value may 

change due to dynamic nature of the business environment. Such 

changes in any of these parameters may raise doubt on the validity of 

the optimal solution of the given LP model. Thus, a decision-maker, in 

such situations, would like to know how changes in these parameters 

may affect the optimal solution and the range within which the optimal 

solution will remain unchanged. 

 

II . Sensitivity Analysis 

Sensitivity analysis helps in evaluating the effect on optimal solution 

of any LP problem due to changes in its parameters, one at a time. 

 Aim of sensitivity analysis is to determine the range (or limit) within 

which the LP model parameters can change without affecting the 

current optimal solution. For this, instead of solving an LP problem 

again with new values of parameters, the current optimal solution is 

considered as an initial solution to determine the ranges, both lower 

and upper, within which a parameter may assume a value. 

 

The sensitivity analysis is also referred to as post-optimality analysis 

because it does not begin until the optimal solution to the given LP 

model has been obtained. 

 Different parametric changes in an LP problem discussed in this 

chapter are: 

1. Profit (or cost) per unit (cj) associated with both basic and non-basic 

decision variables (i.e., coefficients in the objective function). 

 2. Availability of resources (i.e., right-hand side constants, bi in 

constraints). 

 3. Consumption of resources per unit of decision variables xi (i.e., 

coefficients of decision variables in the constraints, (aij).  
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4. Addition of a new variable to the existing list of variables in LP 

problem. item Addition of a new constraint to the existing list of 

constraints in the LP problem. 

 

III  Change in Objective Function Coefficient (cj)  

The coefficient, cj  in the objective function of an LP model represents 

either the profit or the cost per unit of an activity (variable) xj . The 

question that may now arise is: What happens to the optimal solution 

and the objective function value when this coefficient is changed? 

Given an optimal basic feasible solution, suppose that the coefficient 

ck of a variable xk in the objective function is changed from ck to ck+ 

∆ck , where ∆ck represents the positive (or negative) amount of change 

in the value of ck . In optimal simplex table, the feasibility of the 

solution remains unaffected due to changes in the coefficients, cj of 

basic variables in the objective function. However, any change in these 

coefficients (cj 
‘ s) only affect the optimality of the solution. Thus, such 

a change requires recomputing zj values in zj – cj row of the optimal 

simplex table. The cost coefficients (cj ) associated with basic variables 

x1 , x2 , and s2 in the objective function are cB = (c1, c2, c3) = (3, 5, 0). 

The changes in cj can be classified as under: 

Case I: Change in the coefficient of a non-basic variable .          

Case II: Change in the coefficient of a basic variable 

Case III: Change in the coefficient of non-basic variables 

                     Example 1 : 

                                Use simplex method to solve  the following LPP : 

                         Max Z = 3x1+5x2 

                                     Subject to the constraints 

(i) 3x1+2x2≤18 

(ii) x1≤4 

(iii) x2≤6  and  

x1, x2 ≥0 

                         Discuss the change in cj on the optimality of the 

optimal basic   feasible solution. 

Solution :  

The standard form of the given LP problem is stated as follows: 

                              Maximize Z = 3x1 + 5x2 + 0s1 + 0s2 + 0s3 

subject to the constraints 
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(i) 3x1 + 2x2 + s1 = 18, (ii) x1 + s2 = 4 (iii) x2+ s3 = 6 

and x1, x2, s1, s2, s3 ≥ 0, 

 

 

The optimal solution: x1 = 2, x2 = 6 and Max Z = 36 . 

 The cost coefficients (cj) associated with basic variables x1, x2, and s2 

in the objective function are 

CB = (c1, c2, c4) = (3, 5, 0). The changes in cj can be classified as under: 

Changes in the coefficients cj (i.e. c3 and c5) of non-basic variables s1 

and s3: 

             Thus, the new values of c3 – z3 and c5 – z5 will become Δc3 

– 1 and Δc5 – 3, respectively. In order to maintain optimality, we must 

have Δc3 – 1 ≤ 0 and Δc5 – 3 ≤ 0 or Δc3 ≤ 1 and Δc5 ≤ 3 
 

Change in the coefficients cj (i.e. c1, c2 and c4) of basic variables x1, 

x2 and s2: 

 

                         

For k = 1 (i.e. basic variable x1 in row 1), we have 

 

                      

 

The current optimal solution will not change as long as                     
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Hence, the current optimal solution will not change as long as: 0 ≤ c1 

≤ 15/2. 

For k = 3 (i.e. basic variable x2 in row 3), we have 

           

 

Hence, the current optimal solution will not change as long as:  

                                (5 + ∞) ≥ c2 ≥ (5 – 3) or ∞ ≥ c2 ≥ 2. 

 

 IV Change in the Availability of Resources (bi) 
 

Case I : When slack variable is not a basic variable 

          The procedure for finding the range for ‘resource values’ within 

which the current optimal solution remains unchanged is summarized 

below.  

 

(a) Treat the slack variable corresponding to resource value as an entering 

variable in the solution. For this, calculate exchange ratio (minimum 

ratio) for every row. 

 

                              

 
(b) Find both the lower and upper sensitivity limits. 

 

                          

 
Case II: When a slack variable is a basic variable. 

              The range of variation for the corresponding resource value 

(RHS in a constraint) 

is as follows: 

                             

 

Case III: Changes in right-hand side when constraints are of the 

mixed type 

 

• When surplus variable is not in the basis (Basic variable column, B) 
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Lower limits = Original value – Smallest absolute value of negative 

minimum ratios or –∞ 

Upper limit = Original value + Smallest positive minimum ratio or ∞ 

 

• When surplus variable is in the basis (Basic variable column, B) 

 

Lower limit = Minus infinity (– ∞) 

Upper limit = Original value + Solution value of surplus variable. 

 

Example 2 

Solve the following LP problem :  Maximize Z = 4x1 + 6x2 + 2x3 

subject to the constraints 

(i) x1 + x2 + x3 ≤ 3, (ii) x1 + 4x2 + 7x3 ≤ 9 and x1, x2, x3 ≥ 0. 

Discuss the effect of discrete change in the availability of resources 

from [3, 9]T to [9, 6]T. 

        
 

 

If new values of the right-hand side constants in the constraints are [ 9, 

6 ]T, then the new values of 

the basic variables (xB = B–1 b), then  

   



9 
 

Since the value of x2 is negative, the optimal solution is not feasible.  

Apply dual simplex to remove this infeasibility.

 

The solution: x1 = 6, x2 = 0, x3 = 0 and Max Z = 24. 

V Changes in the Input-Out Coefficients (aij’s) 

 

Suppose that the elements of coefficient matrix A are changed. Then 

two cases arise 

 

(i) Change in a coefficient, when variable is a basic variable, and 

(ii) Change in a coefficient, when variable is a non-basic variable. 

The range for the discrete change Δaij in the coefficients of non-basic 

variable, xj in 

constraint, i can be determined by solving following linear inequalities: 

 

 

Suppose a basic variable column ak ∈ B is changed to ak ∗ . Then 

conditions to maintain both feasibility and optimality of the current 

optimal solution are: 

 

 

Example 3.  Solve the following LP problem 
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Maximize Z = – x1 + 3x2 – 2x3 

subject to the constraints 

(i) 3x1 – x2 + 2x3 ≤ 7, (ii) – 2x1 + 4x2 ≤ 12, (iii) – 4x1 + 3x2 + 8x3 ≤ 10 

and x1, x2, x3 ≥ 0. 

Discuss the effect of the following changes in the optimal solution. 

a. Determine the range for discrete changes in the coefficients a13 

and a23 consistent with the optimal  solution of the given LP 

problem. 

b. ‘x3’-column in the LP problem is changed from [ 2, 0, 8 ]T to [ 3, 

1, 6 ]T. 

Solution : 

Write the given LPP in standard form and apply Simplex (Big M ) 

method. The optimal basic feasible solution shown in the following 

table  is:  

                               x1 = 4, x2 = 5, x3 = 0 and Max Z = 11. 
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        (b) Suppose column vector a3 (x3-column in Table 6.18) of 

original LP model is changed from [2, 0, 8]T to [3, 1, 6]T. 

                             

 

       

Hence the optimum Solution is obtained. 

 

 

VI  Addition of a New Variable (Column): 

Example 4: 

Discuss the effect on optimality by adding a new variable to the 

following LP problem with 

column coefficients (3, 3, 3)T and coefficient 5 in the objective function 

Minimize Z = 3x1 + 8x2  subject to the constraints 

(i) x1 + x2 = 200, (ii) x1 ≤ 80, (iii) x2 ≥ 60 and x1, x2 ≥ 0.  
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Given that c7 = 5 and the column, a7 = (3, 3, 3)T, the changes in the 

optimal solution can be evaluated as follows: 
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Since all cj – zj ≥ 0 in the above table , the solution is optimal, with x1 

= 20, x2 = 120, x7 = 20 and Min Z = 1,120. 

VII  Addition of a New Constraint (Row): 

Example 5. Solve the following LP problem  

 Maximize Z = 3x1 + 4x2 + x3 + 7x4 

subject to the constraints 

(i) 8x1 + 3x2 + 4x3 + x4 ≤ 7, (ii) 2x1 + 6x2 + x3 + 5x4 ≤ 3, (iii) x1 + 4x2 + 

5x3 + 2x4 ≤ 8 and x1, x2, x3, x4 ≥ 0. 

Discuss the effect on the optimal solution of the LP problem of adding 

an additional constraint: 2x1 + 3x2 + x3 + 5x4 ≤ 4. 

 

Solution : The optimal solution of the LP problem is

 

                                                   Addition of New Constraint  
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The basis matrix B has been disturbed due to Row 4. Thus the 

coefficients in Row 4 under column x1 and x4 should become zero. This 

can be done by applying following row operations. 

                             R4(new) = R4 (old) – 2R1 – 5R2 

 

The solution shown  is not feasible because s4 = – 1. Thus the dual 

simplex method is applied to the obtained optimal basic feasible 

solution. The new solution is shown in the following table  
 

 

Since all cj – zj ≤ 0  and all xBi ≥ 0, therefore the current solution is 

optimal. The new 

solution value are: 

 x1 = 33/38, x2 = 0, x3 = 0 , x4 = 1/19 and Max Z = 113/38. 
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UNIT – II –  Integer Programming Problem  
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I Indroduction   

    In linear programming, each decision variable, slack and/or surplus 

variable is allowed to take any discrete or fractional value. However, 

there are certain real-life problems in which the fractional value of the 

decision variables has no significance. For example, it does not make 

sense to say that 1.5 men will be working on a project or 1.6 machines 

will be used in a workshop. The integer solution to a problem can, 

however, be obtained by rounding off the optimum value of the 

variables to the nearest integer value. This approach can be easy in 

terms of economy of effort, time, and the cost that might be required 

to derive an integer solution. This solution, however, may not satisfy 

all the given constraints. Secondly, the value of the objective function 

so obtained may not be the optimal value. All such difficulties can be 

avoided if the given problem, where an integer solution is required, is 

solved by integer programming techniques. 

 

II  TYPES OF INTEGER PROGRAMMING PROBLEMS 

 

Linear integer programming problems can be classified into three 

categories: 

(i) Pure (all) integer programming problems in which all decision 

variables are restricted to integer 

values. 

(ii) Mixed integer programming problems in which some, but not all, 

of the decision variables are 

restricted to integer values. 

(iii) Zero-one integer programming problems in which all decision 

variables are restricted to integer values 

of either 0 or 1. 

 

The pure integer linear programming problem in its standard form can 

be stated as follows: 

Maximize Z = c1 x1 + c2 x2 + . . . + cn xn 

subject to the constraints 

a11 x1 + a12 x2 + . . . + a1n xn = b1 

a21 x1 + a22 x2 + . . . + a2n xn = b2 

. 

. 

. 

am1 x1 + am2 x2 + . . . + amn xn = bm 

and x1, x2, . . ., xn ≥ 0 and are integers. 

 

 III ENUMERATION AND CUTTING PLANE SOLUTION 

CONCEPT 

This method is based on creating a sequence of linear inequalities 

called cuts. Such a cut reduces a part of the feasible region of the given 
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LP problem, leaving out a feasible region of the integer LP problem. 

The hyperplane boundary of a cut is called the cutting plane. 
 

 

Example 1: 

 

Consider the following linear integer programming (LIP) problem 

Maximize Z = 14x1 + 16x2 

subject to the constraints 

(i) 4x1 + 3x2 ≤ 12, (ii) 6x1 + 8x2 ≤ 24 

and x1, x2≥ 0 and are integers. 

 

Relaxing the integer requirement, the problem is solved graphically. 

The optimal solution to this LP problem is: 

 x1 = 1.71, x2 = 1.71 and Max Z = 51.42. 

 This solution does not satisfy the integer requirement of variables x1 

and x2. Rounding off this solution to x1 = 2, x2 = 2 does not satisfy both 

the constraints and therefore, the solution is infeasible. The dots in Fig. 

also referred to as lattice points, represent all of the integer solutions 

that lie within the feasible solution space of the LP problem. However, 

it is difficult to evaluate every such point in order to determine the 

value of the objective function. 
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The optimal integer solution is: x1 = 0, x2 = 3 and Max Z = 48. The 

lattice point, C is not even adjacent to the most desirable LP problem 

solution corner, B. 
 

 

IV GOMORY’S ALL INTEGER CUTTING PLANE METHOD 

 

Gomory’s algorithm has the following properties.  

(i) Additional linear constraints never cutoff that portion of the original feasible 

solution space that contains a feasible integer solution to the original problem. 

(ii) Each new additional constraint (or hyperplane) cuts off the current non-integer 

optimal solution to  the linear programming problem/ 

 

                       Steps of Gomory’s All Integer Programming Algorithm 

1.  Step 1: Initialization Formulate the standard integer LP 

problem. 

2. Step 2: Test the optimality. 

3. Step 3: Generate cutting plane 

4. Step 4: Obtain the new solution 
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Example 2  :  Solve the following Integer LP problem using Gomory’s 

cutting plane method. 

Maximize Z = x1 + x2 

subject to the constraints 

(i) 3x1 + 2x2 ≤ 5, (ii) x2 ≤ 2 

                       and x1, x2 ≥ 0 and are integers. 

Solution : Obtain the optimal solution to the LP problem ignoring the 

integer value restriction by the simplex method. 

 
                             The optimal solution of LP problem is: x1 = 1/3, x2 = 2 and 

                                 Max Z = 7/2. 
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                          To obtain an optimal solution satisfying integer value requirement 

  Gomory cut as follows: 

 

 

 

The new solution is obtained by applying the following row operations. 

R3(new) → R3(old) × –3; R1(new) → R1(old) – (1/3) R3(new) 
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The solution: x1 = 0, x2 = 2, sg1 = 1 and Max Z = 2, is an optimal 

 basic feasible solution of the given ILP problem. 

 
                       V  GOMORY’S MIXED-INTEGER CUTTING PLANE METHOD 

    Solve the following mixed-integer programming problem 

Maximize Z = x1 + x2 

subject to the constraints 

(i) 3x1 + 2x2 ≤ 5, (ii) x2 ≤ 2 

and x1, x2 ≥ 0, x1 non-negative integer. 

                       Solution Converting given LP problem into its standard form as follows: 

Maximize Z = x1 + x2 + 0s1 + 0s2 

subject to the constraints 

(i) 3x1 + 2x2 + s1 = 5, (ii) x2 + s2 = 2 

and x1, x2 ≥ 0; x1 is non-negative integer 

Apply simplex method to obtain an optimal solution ignoring the 

integer restriction on x1. The optimal noninteger  solution is: x1 = 1/3, 

x2 = 2 and Max Z = 7/2. 
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Since in the current optimal solution the variable x1, that is restricted 

to take integer value, is not an integer, therefore generating Gomory 

cut considering x1-row as follows: 
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Applying the dual simplex method, we obtain the revised solution 

Therefore the required mixed integer optimal solution: x1 = 0, 

x2 = 2, s1 = 1 and Max Z = 2. 
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UNIT – III –  Goal Programming  
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                        I Introduction 

 Goal programming (GP) technique (or approach) is used for solving 

a multi-objective optimization problem that balances trade-off in 

conflicting objectives, i.e., GP technique helps in attaining the 

‘satisfactory’ level of all objectives. The method of formulating a 

mathematical model of GP is same as that of LP problem. However, 

while formulating multiple, and often conflicting, incommensurable 

(dimension of goals and unit of measurement may not be same) goals, 

in a particular priority order (hierarchy) are taken into consideration. 

A particular priority level (or order) is decided in accordance with the 

importance of each goal and sub-goals given in a problem. The 

priority structure helps to deal with all goals that cannot be 

completely and/or simultaneously achieved, in such a manner that 

more important goals are achieved first, at the expense of the less 

important ones. 

 

                       Linear programming has two major limitations from its 

application point of view:  

(i) single objective function, and  

(ii)  same unit of measurement of various resources 

 

                           II Goal Programming  

In GP, instead of trying to minimize or maximize the objective function 

directly, as in the case of an LP, the deviations from established goals 

within the given set of constraints are minimized. In the simplex 

algorithm of linear programming such deviational variables are called 

slack variables and they are used only as dummy variables. In GP, 

these slack variables take on a new significance. The deviational 

variables are represented in two dimensions – both positive and 

negative deviations from each goal and subgoal. These deviational 

variables represent the extent to which the target goals are not 

achieved. The objective function then becomes the minimization of a 

sum of these deviations, based on the relative importance within the 

pre-emptive priority structure assigned to each deviation.  

The deviational variables in goal programming model are equivalent 

to slack and surplus variables (the amount by which the objective is 

below or above the target) in linear programming model. 

 

Model Formulation : 

 

Example 1: A manufacturing firm produces two types of products: A and B. The unit 

profit from product A is Rs 100 and that of product B is Rs 50. The goal of the firm is 

to earn a total profit of exactly Rs 700 in the next week. 

Formulation : 



26 
 

  To interpret the profit goal in terms of subgoals, which are sales 

volume of products, let 

x1 and x2 = number of units of products A and B to be produced, 

respectively.The single goal of profit maximization is stated as: 

Maximize (profit) Z = 100x1 + 50x2 

Since the goal of the firm is to earn a target profit of Rs 700 per week, 

the profit goal can be restated to allow for underachievement or 

overachievement as: 

 100x1 + 50x2 + d1 
– d1 

+ = 700 

Now the goal programming model can be formulated as follows: 

 Minimize Z = d1 
– + d1 

+ 

subject to the constraints 

 100x1 + 50x2 + d1 
– – d1 

+ = 700 

and x1, x2, d1 
– ,  d1 

+  ≥ 0 

where d1 
- = underachievement of the profit goal of Rs 700 

d1 
+ = overachievement of the profit goal of Rs 700 

If the profit goal is not completely achieved, then the slack in the 

profit goal will be expressed by a negative deviational 

(underachievement) variable, d1 
- , from the goal. But if the solution 

shows a profit in 

excess of Rs 700, the surplus in the profit will be expressed by positive 

deviational (overachievement) variable d1 
+  from the goal. If the profit 

goal of exactly Rs 700 is achieved, both d1 
+  and  d1 

- will be zero. 

In the given example, there are an infinite number of combinations of 

x1 and x2 that will achieve the profit goal. The required solution will be 

any linear combination of x1 and x2 between the two points: 

  x1 = 7, x2 = 0 and x1 = 0, x2 = 14. 

 This straight line is exactly the iso-profit function line when the total 

profit is Rs 700.  

 

III Steps to Formulate GP Model 

The procedure (algorithm) to formulate a GP model is summarized 

below: 

1. Identify the goals and constraints based on the availability of 

resources (or constraints) that may restrict 

achievement of the goals (targets). 

2. Determine the priority to be associated with each goal in such a 

way that goals with priority level P1 are 

most important, those with priority level P2 are next most important, 

and so on. 

3. Define the decision variables. 

4. Formulate the constraints in the same manner as in LP model. 

5. For each constraint, develop a equation by adding deviational 

variables di 
+ and di 

-. These variables indicate the possible deviations 

below or above the target value (right-hand side of each constraint). 

6. Write the objective function in terms of minimizing a prioritized 

function of the deviational variables. 
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IV GRAPHICAL SOLUTION METHOD FOR GOAL 

PROGRAMMING  

 

The graphical solution method for goal programming model is similar 

to the graphical solution method for linear programming model. In this 

case the feasible solution space (region) is indicated by goal priorities 

in such a way that the deviation from the goal with the highest priority 

is minimized to the fullest extent possible, before the deviation from 

the next priority goal is minimized. If goal constraints are stated only 

in terms of deviational variables, then such constraints must be restated 

in terms of the real variables, before proceeding with the graphical 

solution. 

Example  2 

A firm produces two products A and B. Each product must be 

processed through two departments namely 1 and 2. Department 1 has 

30 hours of production capacity per day, and department 2 has 60 

hours. Each unit of product A requires 2 hours in department 1 and 6 

hours in department 2. Each unit of product B requires 3 hours in 

department 1 and 4 hours in department 2. Management has rank 

ordered the following goals it would like to achieve in determining the 

daily product mix: 

 

P1 : Minimize the underachievement of joint total production of 10 

units. 

P2 : Minimize the underachievement of producing 7 units of product 

B. 

P3 : Minimize the underachievement of producing 8 units of product 

A. 

 

Formulate this problem as a GP model and then solve it by using the 

graphical method. 
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V MODIFIED SIMPLEX METHOD OF GOAL     

PROGRAMMING 

The simplex method for solving a GP problem is similar to that of an 

LP problem. The features of the simplex method for the GP problem 

are: 

1. The zj and cj – zj values are computed separately for each of the 

ranked goals, P1, P2, . . . . This is because different goals are measured 

in different units. These are shown from bottom to top, i.e. first priority 

goal (P1) is shown at the bottom and least priority goal at the top. The 

optimality criterion zj or cj – zj becomes a matrix of k × n size, where k 

represents the number of pre-emptive priority levels and n is the 

number of variables including both decision and deviational variables. 

2. First examine cj – zj values in the P1-row. If all cj – zj ≤ 0 at the 

highest priority levels in the same column, then the optimal solution 

been obtained. 

If cj – zj > 0, at a certain priority level, and there is no negative entry at 

higher unachieved priority levels, in the same column, the current 

solution is not optimal. 

3. If the target value of each goal in xB-column is zero, the solution is 

optimal. 

4. To determine the variable to be entered into the new solution mix, 

start examining (cj – zj) row of highest priority (P1) and select the 

largest negative value. Otherwise, move to the next higher priority (P2) 

and select the largest negative value. 
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5. Apply the usual procedure for calculating the ‘minimum ratio’ to 

choose a variable that needs to leave the current solution mix (basis). 

6. Any negative value in the (cj – zj) row that has positive (cj – zj) value 

under any lower priority rows are ignored. This is because that 

deviations from the highest priority goal would be increased with the 

entry of this variable in the solution mix. 

Example  3 

Use modified simplex method to solve the following GP problem. 

Minimize Z = P1 d1 
− + P2(2 d2 

− + d 3
−) + P3 d 1

+ 

subject to the constraints 

(i) x1 + x2 + d1
− − d1

+ = 400, (ii) x1 + d 2
 – = 240,  

(iii) x1 + d 3
– = 300 

and x1 , x2 , d1
− , d1

+ , d2
− , d3

− ≥ 0 

Solution : The initial simplex table for this problem is presented .The 

basic assumption in formulating the initial table of the GP problem is 

the same as that of the LP problem. In goal programming, the pre-

emptive priority factors and differential weights correspond to the cj 

values in linear programming. 
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The largest negative value in P2-row is selected in order to determine 

the key column. All cj – zj values in the P2-row are either positive or 

zero. Thus, the second goal (P2) is fully achieved. 

 

It may be noted in Table that there are two negative values in the P3-

row. However, we could not choose d2 
− or d3 

− as the key column 

because there is already a positive value at a higher priority level 

(P2). Hence, the optimal Solution  

                                 x1 = 240,  x2  = 300, d1
− = d2

− = d3
− = 0, d1

+ = 140 . 
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UNIT – IV –  Decision and Game Theory 
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                                 DecisionTheory 

 

I INTRODUCTION  : 

                  The success or failure that an individual or organization 

experiences, depends to a large extent, on the ability of making 

acceptable decisions on time. To arrive at such a decision, a decision-

maker needs to enumerate feasible and viable courses of action 

(alternatives or strategies), the projection of consequences associated 

with each course of action, and a measure of effectiveness (or an 

objective) to identify the best course of action. Decision theory is both 

descriptive and prescriptive business modelling approach to classify 

the degree of knowledge and compare expected outcomes due to 

several courses of action. The degree of knowledge is divided into four 

categories: complete knowledge (i.e. certainty), ignorance, risk and 

uncertainty 

                                  

                        
 II STEPS OF DECISION-MAKING PROCESS 

The decision-making process involves the following steps: 

 

 

1. Identify and define the problem. 

 

2. List all possible future events (not under the control of decision-

maker) that are likely to occur.  

3. Identify all the courses of action available to the decision-maker. 

4. Express the payoffs ( pij ) resulting from each combination of course 

of action and state of nature. 

5. Apply an appropriate decision theory model to select the best 

course of action from the given list on the basis of a criterion 

(measure of effectiveness) to get optimal (desired) payoff.            

 

 

Example : 

A firm manufactures three types of products. The fixed and variable 

costs are given below: 
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If the sale price of each type of product is Rs 25, then prepare the payoff 

matrix. 

Solution : 

Let D1, D2 and D3 be the poor, moderate and high demand, 

respectively. The payoff is determined as: 

Payoff = Sales revenue – Cost 

The calculations for payoff (in ’000 Rs) for each pair of alternative 

demand (course of action) and the 

types of product (state of nature) are shown below: 

 D1 A = 3 × 25 – 25 – 3 × 12 = 14 

 D2 A = 7 × 25 – 25 – 7 × 12 = 66 

D1 B = 3 × 25 – 35 – 3 × 19 = 13  

D2 B = 7 × 25 – 35 – 7 × 19 = 77 

D1 C = 3 × 25 – 53 – 3 × 17 = 1  

D2 C = 7 × 25 – 53 – 7 × 17 = 73 

D3 A = 11 × 25 – 25 – 11 × 12 = 118 

D3 B = 11 × 25 – 35 – 11 × 19 = 141 

D3 C = 11 × 25 – 53 – 11 × 17 = 145 

The payoff values are 

  
III TYPES OF DECISION-MAKING ENVIRONMENTS            

1 Decision-Making under Certainty 

2 Decision-Making under Risk 

3 Decision-Making under Uncertainty 
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The following criteria of decision-making under uncertainty have been 

discussed in this section. 

(i) Optimism (Maximax or Minimin) criterion 

(ii) Pessimism (Maximin or Minimax) criterion 

(iii) Equal probabilities (Laplace) criterion 

(iv) Coefficient of optimism (Hurwiez) criterion 

(v) Regret (salvage) criterion 

 

Example A food products’ company is contemplating the introduction 

of a revolutionary new product with new packaging or replacing the 

existing product at much higher price (S1). It may even make a 

moderate change in the composition of the existing product, with a new 

packaging at a small increase in price (S2), or may mall a small change 

in the composition of the existing product, backing it with the word 

‘New’ and a negligible increase in price (S3). The three possible states 

of nature or events are: (i) high increase in sales (N1), (ii) no change in 

sales (N2) and (iii) decrease in sales (N3). The marketing department of 

the company worked out the payoffs in terms of yearly net profits for 

each of the strategies of three events (expected sales). This is 

represented in the following table: 

 

 
 

Which strategy should the concerned executive choose on the basis of 

(a) Maximin criterion  (b) Maximax criterion 

(c) Minimax regret criterion  (d) Laplace criterion? 

 

Solution The payoff matrix is rewritten as follows: 

Maxmin Criterion 
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The maximum of column minima is 3,00,000. Hence, the company 

should adopt strategy S3. 

Maxmax Criterion  

 

The maximum of column maxima is 7,00,000. Hence, the company 

should adopt strategy S1. 

Minimax Regret Criterion Opportunity loss table is shown below: 

 

Hence the company should adopt minimum opportunity loss                               

strategy, S1. 

Laplace Criterion Assuming that each state of nature has a probability 

1/3 of occurrence. Thus,
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  Since the largest expected return is from strategy S1, the executive 

must select strategy S1. 

The widely used criterion for evaluating decision alternatives (courses 

of action) under risk is the Expected Monetary Value (EMV) or 

Expected Utility. 

 

 
Expected Monetary Value (EMV) 
 The expected monetary value (EMV) for a given course of action is 

obtained by adding payoff values multiplied by the probabilities 

associated with each state of nature. Mathematically, EMV is stated as 

follows:  

                

                   
 

where m = number of possible states of nature 

          pi = probability of occurrence of state of nature, Ni 

         pij = payoff associated with state of nature Ni and course of                        

  action, Sj 

 

                       The Procedure 

1. Construct a payoff matrix listing all possible courses of action and 

states of nature. Enter the conditional payoff values associated with 

each possible combination of course of action and state of nature 

along with the probabilities of the occurrence of each state of 

nature. 

 

2. Calculate the EMV for each course of action by multiplying the 

conditional payoffs by the associated probabilities and adding these 

weighted values for each course of action. 

 

 

3. Select the course of action that yields the optimal EMV. 

 

Example 11.5 Mr X flies quite often from town A to town B. He can 

use the airport bus which costs Rs 25 but if he takes it, there is a 0.08 

chance that he will miss the flight. The stay in a hotel costs Rs 270 with 

a 0.96 chance of being on time for the flight. For Rs 350 he can use a 

taxi which will make 99 per cent chance of being on time for the flight. 

If Mr X catches the plane on time, he will conclude a business 

transaction that will produce a profit of Rs 10,000, otherwise he will 

lose it. Which mode of transport should Mr X use? Answer on the basis 

of the EMV criterion. 

 

Solution Computation of EMV associated with various courses of 

action is shown in Table 
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   Since EMV associated with course of action ‘Taxi’ is largest (= Rs 

9,550), it is the logical alternative. 

 

                            Game Theory 

Introduction:  

Game theory came into existence in 20th Century. However, in 1944 

John Von Neumann and Oscar Morgenstern published a book named 

Theory of Games and Economic Behavior, in which they discussed 

how businesses of all types may use this technique to determine the 

best strategies given a competitive business environment. The author’s 

approach was based on the principle of ‘best out of the worst’. The 

models in the theory of games can be classified based on the following 

factors: 

 

Number of players If a game involves only two players (competitors), 

then it is called a two-person game. However, if the number of players 

are more, the game is referred to as n-person game. 

 

Sum of gains and losses If, in a game, the sum of the gains to one 

player is exactly equal to the sum of losses to another player, so that, 

the sum of the gains and losses equals zero, then the game is said to be 

a zero-sum game. Otherwise it is said to be non-zero sum game. 

 

Strategy The strategy for a player is the list of all possible actions 

(moves, decision alternatives or courses of action) that are likely to be 

adopted by him for every payoff (outcome). It is assumed that the 

players are aware of the rules of the game governing their decision 

alternatives (or strategies). The outcome resulting from a particular 

strategy is also known to the players in advance and is expressed in 

terms of numerical values (e.g. money, per cent of market share or 

utility). The particular strategy that optimizes a player’s gains or losses, 

without knowing the competitor’s strategies, is called optimal strategy.  



39 
 

The expected outcome, when players use their optimal strategy, is 

called value of the game. 

 

Generally, the following two types of strategies are followed by players 

in a game: 

(a) Pure Strategy A particular strategy that a player chooses to play 

again and again regardless of other player’s strategy, is referred as pure 

strategy. The objective of the players is to maximize their gains or 

minimize their losses. 

(b) Mixed Strategy A set of strategies that a player chooses on a 

particular move of the game with some fixed probability are called 

mixed strategies. Thus, there is a probabilistic situation andobjective 

of the each player is to maximize expected gain or to minimize 

expected loss by making the choice among pure strategies with fixed 

probabilities. 
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TWO-PERSON ZERO-SUM GAMES 

A game with only two players, say A and B, is called a two-person 

zero-sum game, only if one player’s gain is equal to the loss of other 

player, so that total sum is zero. 

 

Payoff matrix The payoffs (a quantitative measure of satisfaction that 

a player gets at the end of the play) in terms of gains or losses, when 

players select their particular strategies (courses of action), can be 

represented in the form of a matrix, called the payoff matrix. 

           

  PURE STRATEGIES (MINIMAX AND MAXIMIN PRINCIPLES): 

GAMES WITH SADDLE POINT 

Maximin principle For player A the minimum value in each row 

represents the least gain (payoff) to him, if he chooses his particular 

strategy. These are written in the matrix by row minima. He will then 

select the strategy that gives the largest gain among the row minimum 

values. This choice of player A is called the maximin principle, and the 

corresponding gain is called the maximin value of the game. 

 

Minimax principle For player B, who is assumed to be the looser, the 

maximum value in each column  represents the maximum loss to him, 

if he chooses his particular strategy. These are written in the payoff 

matrix by column maxima. He will then select the strategy that gives 

the minimum loss among the column maximum values. This choice of 

player B is called the minimax principle, and the corresponding loss is 

the minimax value of the game. 

 

Optimal strategy A course of action that puts any player in the most 

preferred position, irrespective of the course of action his competitor(s) 

adopt, is called as optimal strategy. In other words, if the maximin 

value equals the minimax value, then the game is said to have a saddle 

(equilibrium) point and the corresponding strategies are called optimal 

strategies. 

 

Value of the game This is the expected payoff at the end of the game, 

when each player uses his optimal strategy, i.e. the amount of payoff, 

V, at an equilibrium point. A game may have more than one saddle 

points. A game with no saddle point is solved by choosing strategies 

with fixed probabilities. 
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Example 12.2 A company management and the labour union are 

negotiating a new three year settlement. Each of these has 4 

strategies: 

I : Hard and aggressive bargaining  

II : Reasoning and logical approach 

III : Legalistic strategy 

 IV : Conciliatory approach 

The costs to the company are given for every pair of strategy choice. 

 

What strategy will the two sides adopt? Also determine the value of 

the game. 

Solution Applying the rule of finding out the saddle point, we obtain 

the saddle point that is enclosed both in a circle and a rectangle, as 

shown below 

 

 
                         since Maximin = Minimax = Value of game = 12, 

therefore the company will always adopt strategy III – Legalistic 

strategy and union will always adopt strategy I – Hard and aggressive 

bargaining. 

 
MIXED STRATEGIES: GAME WITHOUT SADDLE POINT 
 

In certain cases, no saddle point exists, i.e. maximin value ≠ minimax 

value. In all such cases, players must choose the mixture of strategies 

to find the value of game and an optimal strategy. The value of game 

obtained by the use of mixed strategies represents the least payoff, 

which player A can expect to win and the least which player B can 

expect to lose. The expected payoff to a player in a game with payoff 

matrix [aij] of order m × n is defined as: 
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where P = ( p1, p2, . . ., pm) and Q = (q1, q2, . . ., qn) denote probabilities 

(or relative frequency with which a strategy is chosen from the list of 

strategies) associated with m strategies of player A and n strategies of 

player, B respectively, where p1 + p2 + . . . + pm = 1 and q1 + q2 + . . . + 

qn = 1. 

 
 
THE RULES (PRINCIPLES) OF DOMINANCE 

The rules of dominance are used to reduce the size of the payoff matrix. 

These rules help in deleting certain rows and/or columns of the payoff 

matrix that are inferior (less attractive) to at least one of the remaining 

rows and/or columns (strategies), in terms of payoffs to both the 

players. Rows and/or columns once deleted can never be used for 

determining the optimum strategy for both the players. The rules of 

dominance are especially used for the evaluation of two-person zero-

sum games without a saddle (equilibrium) point. Certain dominance 

principles are stated as follows: 

1. For player B, who is assumed to be the loser, if each element in a 

column, say Cr is greater than or equal to the corresponding element 

in another column, say Cs in the payoff matrix, then the column Cr is 

said to be dominated by column Cs and therefore, column Cr can be 

deleted from the payoff matrix. In other words, player B will never use 

the strategy that corresponds to column Cr because he will loose more 

by choosing such strategy. 

2. For player A, who is assumed to be the gainer, if each element in a 

row, say Rr, is less than or equal to the corresponding element in 

another row, say Rs, in the payoff matrix, then the row Rr is said to 

be dominated by row Rs and therefore, row Rr can be deleted from the 

payoff matrix. In other words, player A will never use the strategy 

corresponding to row Rr, because he will gain less by choosing 

such a strategy. 
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3. A strategy say, k can also be dominated if it is inferior (less 

attractive) to an average of two or more other pure strategies. In 

this case, if the domination is strict, then strategy k can be deleted. 

If strategy k dominates the convex linear combination of some 

other pure strategies, then one of the pure strategies involved in the 

combination may be deleted. The domination would be decided as 

per rules 1 and 2 above. 

Example  Players A and B play a game in which each has three coins, 

a 5p, 10p and a 20p. Each selects a coin without the knowledge of the 

other’s choice. If the sum of the coins is an odd amount, then A wins 

B’s coin. But, if the sum is even, then B wins A’s coin. Find the best 

strategy for each player and the values of the game. 
 

Solution The payoff matrix for player A is  

 

It is clear that this game has no saddle point. Therefore, further we 

must try to reduce the size of the given payoff matrix as further as 

possible. Note that every element of column B3 (strategy B3 for 

player B) is more than or equal to every corresponding element of 

row B2 (strategy B2 for player B). Evidently, the choice of strategy 

B3, by the player B, will always result in more losses as compared to 

that of selecting the strategy B2. Thus, strategy B3 is inferior to B2. 

Hence, delete the B3 strategy from the payoff matrix. The 

reduced payoff matrix is shown below: 

  

After column B3 is deleted, it may be noted that strategy A2 of player 

A is dominated by his A3 strategy, since the profit due to strategy A2 is 

greater than or equal to the profit due to strategy A3, regardless of 

which strategy player B selects. Hence, strategy A3 (row 3) can be 

deleted from further consideration. Thus, the reduced payoff matrix 

becomes: 
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As shown in the reduced 2 × 2 matrix, the maximin value is not equal 

to the minimax value. Hence, there is no saddle point and one cannot 

determine the point of equilibrium. For this type of game situation, 

it is possible to obtain a solution by applying the concept of mixed 

strategies. 

SOLUTION METHODS FOR GAMES WITHOUT SADDLE 

POINT 

Algebraic Method 

This method is used to determine the probability of using different 

strategies by players A and B. This method becomes quite lengthy 

when a number of strategies for both the players are more than two. 

 

Example A company is currently involved in negotiations with its 

union on the upcoming wage contract. Positive signs in table represent 

wage increase while negative sign represents wage reduction. What 

are the optimal strategies for the company as well as the union? What 

is the game value? 

   

Solution Suppose, Company is the gainer player and Union is the 

looser player. Transposing payoff matrix because company’s interest 

is to minimize the wage increase while union’s interest is to get the 

maximum wage increase. 
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In this payoff matrix strategy U4 is dominated by strategy U1 as well 

as U3. After deleting this strategy, we get 

 

             
 

 Company’s point of view, strategy C1 is dominated by C2 as well as 

C3, while C4 is dominated C3. Deleting strategies C1 and C4 we get 

              

Again strategy U2 is dominated by U1 and is, therefore, deleted to give 

 

        
Optimal strategy for the company : (0, 0.076, 0.923, 0) 

Optimal strategy for the union : (0.538, 0, 0.461, 0) 

Value of the game, V : 0.538 × 0.20 + 0.461 × 0.08 = Rs. 14360 
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Arithmetic Method 

The arithmetic method (also known as short-cut method) provides an 

easy method for finding optimal strategies for each player in a payoff 

matrix of size 2 × 2, without saddle point. 
 

Example Two competitors are competing for the market share of the 

similar product. The payoff  matrix in terms of their advertising plan is 

shown below: 

 

 
Suggest optimal strategies for the two firms and the net outcome 

thereof. 

 

Solution : Applying rules of dominance to delete first column 

(dominated by second column) and then first row (dominated by 

second as well as third rows) from the payoff matrix, we obtain the 

following reduced payoff matrix: 
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Expected Gain to Firm A 

(i) 12 × (4/7) + 14 × (3/7) = 90/7, Firm B adopt B2 

(ii) 15 × (4/7) + 10 × (3/7) = 90/7, Firm B adopt B3 

Expected Loss to Firm B 

(i) 12 × (5/7) + 15 × (2/7) = 90/7, Firm A adopt A2 

(ii) 14 × (5/7) + 10 × (2/7) = 90/7, Firm A adopt A3 

  Matrix Method 

      If the game matrix is in the form of a square matrix, then the 

optimal strategy mix as well as value of the game may be obtained by 

the matrix method. The solution of a two-person zero-sum game with 

mixed strategies with a square payoff matrix may be obtained by using 

the following formulae:  

 
Value of the game = (Player A’s optimal strategies) × (Payoff matrix 

pij) × (Player B’s optimal strategies) where Padj = adjoint matrix, Pcof = 

cofactor matrix. Player A’s optimal strategies are in the form of a row 

vector and B’s optimal strategies are in the form of a column vector. 

This method can be used to find a solution of a game with size of more 

than 2 × 2. However, in rare cases, the solution violates the non-

negative condition of probabilities, i.e. pi ≥ 0, qj ≥ 0, although the 

requirement p1 + p2 + . . . + pm = 1 or q1 + q2 + . . . + qn = 1 is met. 

 

Example Solve the following game after reducing it to a 2 × 2 game 

 
In the given game matrix, the third row is dominated by the second row 

and in the reduced matrix third column is dominated by the first 

column. So, after elimination of the third row and the third column the 

game matrix becomes: 

 

For this reduced matrix, let us calculate Padj and Pcof as given below: 
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This solution can be broken down into the optimal strategy mix for 

player A as p1 = 4/10 = 2/5 and p2 = 6/10 = 3/5, where p1 and p2 

represent the probabilities of player A’s using his strategies A1 and A2, 

respectively. Similarly, the optimal strategy mixture for player B is 

obtained as: 

 

 
                                This solution can also be broken down into the 

optimal strategy mixture for player B as q1 = 5/10 = 1/2 and q2 = 5/10 

= 1/2, where q1 and q2 represent the probabilities of player B’s using 

his strategies B1 and B2, respectively. Hence: 

     
Graphical Method 

The graphical method is useful for the game where the payoff matrix 

is of the size 2 × n or m × 2, i.e. the game with mixed strategies that 

has only two undominated pure strategies for one of the players in the 

two-person zero-sum game. Optimal strategies for both the players 

assign non-zero probabilities to the same number of pure strategies. 

Therefore, if one player has only two strategies, the other will also use 

the same number of strategies. Hence, this method is useful in finding 

out which of the two strategies can be used. 

 

Example 12.15 Two firms A and B make colour and black & white 

television sets. Firm A can make either 150 colour sets in a week or an 

equal number of black & white sets, and make a profit of Rs 400 per 

colour set, or 150 colour and 150 black & white sets, or 300 black & 
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white sets per week. It also has the same profit margin on the two sets 

as A. Each week there is a market of 150 colour sets and 300 black & 

white sets and the manufacturers would share market in the proportion 

in which they manufacture a particular type of set. Write the pay-off 

matrix of A per week. Obtain graphically A’s and B’s optimum 

strategies and value of the game.  

 

Solution For firm A, the strategies are: 

A1 : make 150 colour sets, A2 : make 150 black & white sets. 

For firm B, the strategies are: 

B1 : make 300 colour sets, B2 : make 150 colour and 150 black & white 

sets. 

B3 : make 300 black and white sets. 

For the combination A1B1, the profit to firm A would be: {150/(150 + 

300)} × 150 × 400 = Rs 20,000 wherein 

150/(150 + 300) represents share of market for A, 150 is the total 

market for colour television sets and 400 is the profit per set. In a 

similar manner, other profit figures may be obtained as shown in the 

following pay-off matrix: 

 
This pay-off table has no saddle point. Thus to determine optimum 

mixed strategy, the data are plotted on graph 
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The optimal mixed strategies of player A are: A1 = 3/11, A2 = 8/11. 

Similarly, the optimal mixed strategies for B are: B1 = 6/11, B2 = 0, B3 

= 5/11. The value of the game is V = 38,182. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – V –  DYNAMIC PROGRAMMING 
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I INTRODUCTION : 

The mathematical technique of optimizing a sequence of interrelated 

decisions over a period of time is called dynamic programming. The 

dynamic programming approach uses the idea of recursion to solve a 

complex problem, broken into a series of interrelated (sequential) 

decision stages (also called subproblems) where the outcome of a 

decision at one stage affects the decision at each of the following 

stages. The word dynamic has been used because time is explicitly 

taken into consideration. 

 

Dynamic programming (DP) differs from linear programming in two 

ways: 

(i) In DP, there is no set procedure (algorithm) as in LP to solve any 

decision-problem. The DP technique allows to break the given problem 

into a sequence of smaller subproblems, which are then solved in a 

sequential order (stage). 

(ii) LP approach provides one-time period (single stage) solution to a 

problem whereas DP approach is useful for decision-making over time 

and solves each subproblem optimally. 

 

DYNAMIC PROGRAMMING TERMINOLOGY 

 

1. Stage 

2. State 

3. Return Function 
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III DEVELOPING OPTIMAL DECISION POLICY 

The General Procedure 

The procedure for solving a problem by using the dynamic 

programming approach can be summarized in the following steps: 

Step 1: Identify the problem decision variables and specify the 

objective function to be optimized under certain limitations, if any. 

Step 2: Decompose (or divide) the given problem into a number of 

smaller sub-problems (or stages). Identify the state variables at each 

stage and write down the transformation function as a function of the 

state variable and decision variable at the next stage. 

Step 3: Write down a general recursive relationship for computing the 

optimal policy. Decide whether to follow the forward or the backward 

method for solving the problem. 

Step 4: Construct appropriate tables to show the required values of the 

return function at each stage as shown 

Step 5: Determine the overall optimal policy or decisions and its value 

at each stage. There may be more than one such optimal policy. 

 



54 
 

 
DYNAMIC PROGRAMMING UNDER CERTAINTY 

The decision problems where conditions (constraints) at each stage, 

(i.e. state variables) are known with certainty, can by solved by 

dynamic programming. 

 

Model I : Shortest Route Problem 

Example  A salesman located in a city A decided to travel to city B. 

He knew the distances of alternative routes from city A to city B. He 

then drew a highway network map as shown .The city of origin A, is 

city 1. The destination city B, is city 10. Other cities through which the 

salesman will have to pass through are numbered 2 to 9. The arrow 

representing routes between cities and distances in kilometers are 

indicated on each route. The salesman’s problem is to find the shortest 

route that covers all the selected cities from A to B. 

 

 
 

Solution To solve the problem, we need to define problem stages, 

decision variables, state variables, return function and transition 

function. For this particular problem, the following definitions will be 

used to denote various the state and decision variables. 

 dn = decision variables that define the immediate destinations when 

there are n(n = 1, 2, 3, 4,) stages to go.  

sn = state variables describe a specific city at any stage. 

Dsn, dn = distance associated with the state variable, sn, and the decision 

variable, dn for the current nth stage. 
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fn (sn , dn) = minimum total distance for the last n stages, given that 

salesman is in state sn and selects dn as immediate destination. 

fn*(sn) = optimal path (minimum distance) when the salesman is in state 

sn with n more stages to go for reaching the final stage (destination). 

We start calculating distances between a pair of cities from destination 

city 10 (= x1) and work backwards x5 → x4 → x3 → x2 → x1 to find the 

optimal path. The recursion relationship for this problem can be stated 

as follows: 
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The above optimal results at various stages can be summarized as 

below: 

 

From the above, it is clear that there are two alternative shortest routes 

for this problem, both having a minimum distance of 20 kilometres. 

 

Model II Multiplicative Separable Return Function and Single 

Additive Constraint 

Example : Consider the problem of designing electronic devices to 

carry five power cells, each of which must be located within three 

electronic systems. If one system’s power fails, then it will be powered 

on an auxiliary basis by the cells of the remaining systems. The 

probability that any particular system will experience a power failure 

depends on the number of cells originally assigned to it. The estimated 

power failure probabilities for a particular system are given below: 
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Determine how many power cells should be assigned to each system 

in order to maximize the overall system reliability. 

 

Solution Let us adopt the following notations: 

xn = number of power cells assigned to stage 

pn(xn) = probability of power failure for the system n, when it is 

assigned xn power cells 

fn(s) = probability that nth and all higher systems will fail, while 

entering state s 

Here the stages correspond to systems and state s is the number of 

power cells available for allocation at different stages. We shall start 

from state (power cell) 1. The recursive equation for this problem may 

be given by: 

                
 subject to the constraint 

x1 + x2 + . . . + xn = 5 

The dynamic programming calculations are as follows: 
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At stage 1, value of f1(s) = 0.0096 is minimum when x1 = 3 corresponds 

to system 1. Then for x1 = 3, x2 + x3 = 2. But at stages 2 and 1, optimal 

values of x2 and x3 are 1 and 1, respectively. Thus, the optimal solution 

is: x1 = 3, x2 = 1, x3 = 1, with the smallest probability of total power 

failure, f1(5) = 0.0096. 

 

DYNAMIC PROGRAMMING APPROACH FOR SOLVING 

LINEAR PROGRAMMING PROBLEM 

 

Example Use dynamic programming to solve the following linear 

programming problem. 

Maximize Z = 3x1 + 5x2 

subject to the constraints 

(i) x1 ≤ 4, (ii) x2 ≤ 6, (iii) 3x1 + 2x2 ≤ 18 

and x1, x2 ≥ 0 

 

Solution This linear programming problem can be considered as a two-

stage, three-state problem because there are two decision variables and 

three constraints with available resources. The optimal value of f1(b1 , 

b2 , b3 ) at the first stage is given by: 

  

 
The feasible value of x1 is a non-negative value that satisfies all the 

given constraints x1 ≤ b1 ( = 4), 3x1 ≤ b3 (= 18). Thus, the maximum 

value of b that x1 can assume is, b = Min (4, 18/3) = 4. Therefore 

 

    
The recursive relation for optimization of this two-stage problem is: 

       
where the maximization of x2, satisfying the conditions of x2 ≤b2 (= 6) 

and 2x2 ≤ b3 (= 18) , is the minimum of b = min(6, 9) = 6. Therefore, 

the recurrence relationship can be expressed as: 
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Now the maximum value of 5x2 + 12 = 27 at x2 = 3 and maximum value of 18 + 3x2 = 

36 at x2 = 6. Therefore, the optimal value of f2* = (4, 6, 18) = 36, is obtained at x2 = 6. 

Since, 

        
The optimum solution to the given LP problem is: x1 = 2, x2 = 6 and Max Z = 36. 
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