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Objective of the Course:  The ability to identify, reflect upon, evaluate and apply different types of information and knowledge 

to form independent judgments. Analytical, logical thinking and conclusions based on quantitative information will be the main 

objective of learning this subject. 

UNIT 1:            KINEMATICS   10 Hrs 
 

Kinematics of fluids in motion: Real fluids and ideal fluids, velocity of a fluid at a point, streamlines and path lines, 
Steady and unsteady flows. The velocity potential, the vorticity vector, Local and particle rates of change, the equation 
of continuity, worked examples, acceleration of a point of a fluid. 
 
UNIT 2:            MOTION OF A FLUID    10 Hrs 
 

Equations of motion of a fluid: pressure at a point in a fluid at rest, Pressure at a point in a moving fluid, Conditions at a boundary 

of two inviscid Immiscible fluids, Euler’s equations of motion, Bernoulli’s equation, worked examples, some flows involving axial 

symmetry, Some special two-dimensional flows, Impulsive motion.  

UNIT 3:           TWO DIMENSIONAL FLOWS-I    10 Hrs 
 

Some two-dimensional flows: Meaning of two- dimensional flow, use of cylindrical polar coordinates, The stream function. 
The complex potential for two-dimensional irrotational, incompressible flow, complex velocity potential for standard two-
dimensional flows, uniform stream, line sources and line sinks, line doublets, line vortices, worked examples.  
 
UNIT 4:           TWO DIMENSIONAL FLOWS-II    10 Hrs 
 

Some two- dimensional flows (Continued): Two- dimensional image systems, The Milne Thomson circle theorem, some 
application of the circle theorem, extension of the circle theorem, the theorem of blasius, the use of conformal 
transformation – some hydro dynamical aspects of conformal transformation worked example, vortex rows – single infinite 
rows of line vortices, The karman vortex street. 
 
UNIT 5:           THREE DIMENSIONAL FLOWS    10 Hrs 
 

Some three- dimensional flows: Introduction, sources, sinks and doublets, Images in a rigid infinite plane, Axi-symmetric 
flows, stokes stream function, some special form of the stream function for axi-symmetric irrotational motions. 
 

Max Hours: 50 Hrs 
REFERENCE BOOKS: 

1. F.Chorlton, Textbook of Fluid Dynamics, CBS Publication and Distribution, 2004. 

2. M.D. Raisinghania, Fluid Dynamics, S. Chand,2008. 

3. G.K.Batchelor, An Introduction to Fluid Mechanics, Foundation Books,1984. 
 

            Course Outcomes: At the end of the course, learners would acquire competency in the following skills.   

 
 
 

SMTA5401 FLUID DYNAMICS 
L T P CREDIT 
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CO1 
Define Real Fluids, Ideal Fluids, Streamlines, Path lines, Vortex Lines, Source, Sinks, Doublets, Potential Flow, Irrotational 

Flow, 2D Flow, 3D Flow, Impulsive Motion 

CO2 
Derive Equation of Continuity, Euler’s equation of motion, Bernoulli’s equation, Milne Thomson Circle Theorem, Theorem 

of Blasius. Explain Axisymmetric flows, Karman Vortex Street. 

CO3 
Prepare Conditions at boundary of two inviscid Immiscible Fluid, Two-Dimensional Image system.  Application of Circle 

Theorem. 

CO4 
Analyze fluid motion in General. Discuss Steady & Unsteady Flow, Compressible & Incompressible Fluid, Viscous & 

Inviscid Fluid, Sources, sinks & doublets. 

CO5 
Evaluate the velocity potential, streamlines, path lines, equi-potential surface, steam function, complex potential for two 

dimensional, irrotational, incompressible flow. 

CO6 
Determine the relation between local and particle rate of change, Develop Stokes stream function, Determine the flow 

characteristics, hydrodynamical aspects of Conformal transformation, pressure at a point in a fluid. 
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UNIT – I - KINEMATICS – SMTA5401 



      
 

     UNIT-1 

Kinematics of Fluid motion 

 

Fluid dynamics is the study of fluid in motion. 

Fluid means the substance that flow we have two kinds of fluid. 

1) Liquid-incompressible fluid   

i.e., their volumes do not change as the pressure 

changes. 

2) Gas-compressible fluid, 

i.e., change in volume whenever the pressure 

changes. 

Stresses: 

 Two types of force acts on a fluid element one of them is body 

force and the other is surface force.  

 The body force is proportional to the mass of the body on which it 

acts while the surface area and acts on the boundary of the force. 

 The normal force per unit area is called normal stress. 

 Tangential force per unit area is called shearing stress. 

Viscosity: 

 It is the internal friction between the particles of the fluid, that 

resists to the deformation of the fluid. 

 Fluid with viscosity is known as viscous or real fluid. 

 Fluid without viscosity is known as inviscous or ideal fluid. 

Velocity of fluid at a point: 



      
 

 

 Let at time t the particle be at the point P. OP r and at the time t. t t

the particle P’ such that rOP' r  .In the interval t ,moment of the particle is 

rPP'   Then, the particle 
r 0 r

t dr
q

dt
lim
 

 
  

 
,q is dependent on both r and t 

 

 

Streamlines: 

 It is the curve drawn in the fluid such that direction of the tangent to it at 

any point coincides with the direction of fluid velocity at that point. 

Derivation of streamlines: 

 At any point P, let q [u, v, w]  be the velocity at the point P(x,y,z)  of 

the fluid. The direction ratios of the tangent to the curve at P(x,y,z) are 

dr [dx,dy,dz]  

Since, the tangent and the velocity at P have the same direction, we have  

   q dr 0   

i.e., (vdw wdy)i (udz wdx) j (udy vdx)k 0       

 

vdw wdy 0

dz dy

w v

 


  

udz wdx 0

dz dx

w u

 


          

udy vdx 0

dy dx

v u

 


 

  i.e., 
dx dy dz

u v w
   

These are the differential equation for the streamlines. i.e., their solution gives 

the streamlines 



      
 

 

1 2 3q ,q ,q ,.....  denote the velocities at neighbouring points 1 2P ,P ,.....  then, the 

small straight line segments 1 2 2 3 3 4PP ,P P ,P P .....  collectively give the approximate 

form of streamline. 

Pathlines: 

 When the fluid motion is steady, so that pattern of flow does not very 

with time. The paths of the fluid particle coincide with the streamlines, though 

the streamline through any point P does touch the pathline through P. 

 In case of unsteady motion, the flow pattern varies with time and the 

paths of the particle do not coincide with the streamline. 

In case of unsteady motion, the flow pattern varies with time and the paths of 

the particle do not coincide with the streamline. 

Pathlines are the curve described by the fluid particles during their motion. 

 i.e., these are the paths of the particle the differential equation of 

pathlines are, 

dr
q

dt
  

dx
u

dt
 ,      

dy
v

dt
 ,    

dz
w

dt
  

where x,y,z are the Cartesian co-ordinates  of the fluid and not a fixed point of 

space. 

Notes: 

Streamlines give motion of a particle at a given instant, whereas the pathlines 

gives the motion of a given particle at each instant. 

Streamtube: 

If we draw the streamline through every point of a closed curve in the fluid we 

obtain streamtube. 



      
 

Velocity potential: 

Let the fluid velocity at time t is q=[u,v,w] in Cartesian form. 

The equation of streamlines at one instant is 
dx dy dz

u v w
   

The curve cut the surface udx vdy wdz 0    

Suppose, the expression udx vdy wdz 0    is an exact differential say(-dφ) 

i.e., dx dy dz dt udx vdy wdz
x y t t

   
     

   
 

where φ is φ(x,y,z,t) is some scalar function, uniform throughout the entire 

field. 

 Therefore, u , v , w , 0
x y t t

   
   
   

 

   
(x, y, z)

q ui v j wk

  

  
 

       
i j k

x y z

  
  
  

 

 

Note: 

 q   , the negative sign is a convention and it ensures a flow takes 

place from higher or lower potential. 

 The level surface φ(x,y,xz,t)=constant are called equi-potentials or equi-

potential surfaces. 

 When curl q=0, the flow is said to be irrotational of potential kind. For 

such flow, the field of q is conservated and q is lamellar vector. 

Vorticity: 

 q=[u v w] be the velocity vector of a fluid particle then the vector 

q   is called vortex vector or vorticity. 

 The components are  1 2 3, ,    



      
 

   

1

2

3

w v
i.e.,

y z

u w

z x

v u

x y

 
  

 

 
  

 

 
  

 

 

Note: 

 The fluid motion is said to be rotational if q 0     

 If q 0    then the fluid motion is irrotational or of potential kind. 

Vortex line: 

It is the curve in the fluid there exist the tangent at any point on the curve has 

the direction of vorticity vector. 

Vortex tube: 

It is the surface formed by drawing vortex lines through each point of the 

closed curve in the fluid. 

A vortex tube with small cross-section called a vortex filament. 

Problem: 

                    At the point in an incompressible fluid having spherical 

polar co-ordinates(r,φ,ψ), the velocity component are 

3 32 r cos , r sin ,0       where M is a constant. Show that velocity is of 

potential kind. Find the velocity potential and the equations of streamlines. 

Solution: 

  Taking ˆˆ ˆds drr rd r sind     

   3 3 ˆˆq 2 r cos r r sin 0       

We obtain curl q ⇨ q  



      
 

  
2

3 3

ˆˆ ˆr r r sin
1

rr sin

2 r cos r sin 0 

 

  
  

   

 

  q =0. 

Thus, the flow is of potential kind. Let  r, ,    be the approximate velocity 

potential. 

Then, 3 32 r cos , r sin , 0
r r r sin

   
      

  
 

d dr d d
r

  
    

  
 

    3 2(2Mr cos )dr (Mr sin )d 0d         

32Mr cos    

The streamlines are given by 
3 2

dr r d r sin d

2Mr cos M r sin 0 

  
 

 
 

     

    

d 0

1
2cot d dr

r

 

 
    

 

 

    Int, cost   

          2r Asin   

 

Equation of continuity: 

 When a region of a fluid contains neither source nor sinks i.e.,when 

there is no inlets and outlets through which the fluid can enter or have the 



      
 

region the mass contained inside a given volume of fluid remains constant 

throughout the motion. 

Let ∆ be a closed surface drawn in the fluid and taken fixed in space. 

Let it contains a volume ∆v of the fluid and let ρ=ρ(x,y,z,t) be the fluid density 

at any point (x,y,z) of the fluid in ∆v at any time t. 

 

Let n be unit outward drawn normal at any surface element δs of∆s. δs ≤∆s. 

Then if q is the fluid velocity at the element δs , the normal component of q 

measured outward from ∆v is n.q . 

We consider the mass of fluid which leaves ∆v by flowing across an element δs 

of∆s in time δt. 

This quantity is exactly that which is contained in a small cylinder of cross 

section δs of length ˆ(q.n) t  

  Mass of the fluid=density*volume 

        = ˆ(q.n) t. s    

 

Hence, the rate of at which fluid leaves ∇v by flowing across the element δs is 

ˆ(q.n) s   



      
 

Summing over all such elements δs, we obtain the rate of flow of fluid coming 

out of ∇v across the entire surface ∆s. 

The rate at which mass flows out of the region ∆v is  

   
s

ˆs (q.n)ds     

        s

v

ˆq.n s

. qdv (1)

  

  




 

The mass M of the fluid possessed by the volume ∇v of the fluid is  

    
v

M dv   

where, ρ=ρ(x,y,z,t) with (x,y,z) Cartesian co-ordinate of a general point of ∇v. 

Since, the space co-ordinated are independent of time t. 

 Therefore, the rate of increase of mass within ∇v is, 

   
v v

dM d
dv dv (2)

dt dt t


   

    

But ∇v does not change with respect to time. 

But, the considered region is free from source or sink. 

[i.e., mass is neither created nor destroyed] 

Therefore, the total rate of change of mass is zero. 

v v

v

dv .( q)dv 0
t

.( q) dv 0
t


   



 
    

 



   

Since,∇v is arbitrary  



      
 

.( q) 0 (3)
t

 
     

 

This is known as equation of continuity which must always hold at any points 

of a fluid free from sources and sinks. 

Other form of equation of continuity 

1) q q. 0 (4)
t


    


 

2) q 0
t


 


 

We consider the differential following fluid motion 

From equation(4) 

The equation of continuity 

 

( .q) (q. ) 0
t

q. (q. ) 0
t

D
(q. ) 0...............(5)

Dt


     



 
       


   

 

3) Equation (5) can be written as 

1 D
. .q 0

Dt

D
(log ) .q 0

Dt


 




  

 

4) When the motion of fluid steady 

0
t




      

From (5) the equation of continuity 

               
. q 0   

Here ρ is a function of time 

i.e. ρ=ρ(x,y,z) 



      
 

5) When the fluid is incompressible then ρ=constant and thus 
D

0
Dt


  

From (5) equation of continuity  

. q 0   

  q 0   

The same is  for homogenous and incompressible fluid. 

6)  If the fluid is homogenous, incompressible and the flow is of potential 

kind. 

i.e., q    

then, the equation of continuity becomes 

q 0   

2

( ) 0

0

  

    

This is Laplace equation. 

Example: 

 Text whether the motion specified by 
2

j i

2 2

K (x y )
q

x y





, k is constant 

 is a possible motion for incompressible fluid. If so determine the equation of 

the streamlines. Also test whether the motion is of the potential kind and if so 

determine the velocity potential. 

Solution: 

To prove the given velocity is possible motion of Incompressible fluid  

i.e to prove ∇.q=0 

 



      
 

2 2 2

2 2 2 2 2 2

i j k
x y z

K (x j yi) K yi K x j
q or

x y x y x y

  
   

  

 
 

  

 

2

2 2

K (x j yi)
.q i j k

x y z x y

     
      

     
 

2 2

2 2 2 2

K y K x

x x y y x y

     
    
      

 

 

 

   

2 2

2 2
2 2 2 2

K y 2x ( 2x)K y

x y x y

0

.q 0


 

 



 

 

Therefore the given velocity is possibly the motion of incompressible 

fluid. 

Streamlines 

The equation of streamlines are given by 

 
2 2

2 2 2 2

dx dy dz

x y z

dx dy dz

K y K x 0

x y x y

 

 


 

 

 
dx dy dz

y x 0
 


 

 xdx ydy    …………1 

 dz 0   …………………..2   

Integrating we get  

From 1 

2 2x y c   …………….3  

From2  

Z = constant 



      
 

 Z = c………………….4 

 3 and 4 are required equation of streamline. 

Potential kind  

Suppose that  ‘q’ is the velocity at any time at a point in a fluid. 

 

 

 

To prove the motion is of potential kind. 

q 0   

 

2 2

2 2 2 2

i j k

q 0
x y z

K y K x
0

x y x y

  
  

  



 

 

 Now, to find velocity potential (x, y, z)  

 
2

2 2

K y

x x y

 


  ,

2

2 2

K x

y x y

 


  …………………………..5 

       Integrating w.r.t x
   

 

2

2 2

2 1 1

2 2

2 1

K y
dx

x y

1 x dx 1 x
yK tan f (y) tan

y y x a a a

x
K tan f (y)...........6

y

 



 


    
      

    

 
  

 




 

Consider
   



      
 

 
 

 

 

2 1

2
22

2
2

22 2

2

2 2

xK tan f (y)
yy y

1 xK f '(y)
y

x1
y

y xK f '(y)
yx y

K x
f '(y)..........................7

x y

   
 

    

   
 



   
  


 

  

   From 7 and 5

f '(y) 0

f (y) cons tan t





 

2 1 x
K tan c

y

  
   

 
 

 The equipotential is thus given by the plane x=cy through z. 

 

 

Example 

For an incompressible fluid q=[-wy,wx,0],w=constant. Discuss the nature 

of flow. 

   

The flow is said to be of potential kind if q 0   

q wyi wx j ok

i j k

q
x y z

wy wx 0

   

  
 

  



 

           
wx i wy j wx wy k

z z x y

k(w w) 2wk 0

       
        

        

   

 

which it is rotational. 

The flow is not of potential kind. It is a rigid body rotating about the z-axis 

with constant vector angular velocity wk . 



      
 

i.e., for the velocity at (x,y,z) in the body is wyi wx j    

Equation of streamlines are 

    
dx dy dz

wy wx 0
 


 

Therefore, the streamlines are the circle 

   x2+y2=c    and z=c 

 

Example 

For a fluid moving in a fine tube of variable section prove from 1st 

principle that the equation of continuity is  A A v 0
t s

 
  

 
where v is the 

speed at the point P of the fluid and s is the length of the tube upto P. 

What does this become for the steady incompressible fluid. 

 

Solution: 

 

Let OPP’ be the central streamline of the tube. 

 Let S and S+δS be the arc length of OP and OP’. 

Let v be the velocity of the fluid at P. 

Let A be the area of the section at P. We assume the conditions are constant 

over the section A. 

So that rate of mass flux over A in the sense of S increasing is ρvA. 

At the neighbouring section, A’ through P’ the mass flux per unit time in the 

direction of S increasing is  vA s. vA
s


   


 



      
 

At the same instant of time t . Thus, the net rate of flow of mass into the 

element between the section A and A+δA. 

   

vA* s ( vA) vA
s

s ( vA)
s


    




  



 

But at time t, the mass between the sections is A s   

Rate of increases, ( A s)
t


 

  

       A s
t





 

In the absence of sources and sinks  

    

s ( vA) A s
s t

i.e.,A vA 0
t s

 
   

 

 
 

 

  

For steady incompressible flow, the ρ is constant 

   

A ( vA) 0
t s

c

(vA) 0
s

d
i.e., (vA) 0

ds

 
  

 

 








   

   vA=constant 

  i.e., volume of fluid crossing every section per unit time is 

constant. 

 



      
 

Liquid flows through a pipe whose surface is the surface of revolution of 

the curve 
2Kxy a

a
  about x-axis (-a≤x≤a). If the liquid enters at the end 

x=-a of the pipe with velocity v. Show that the time taken by liquid particle 

to traverse the entire length of the pipe from x=-a to x=a is 

 2

2

2a 2 11 k k
3 5v(1 k)

 


 

Solution: 

 

Let v0 be the velocity at the section at the section x=0 

The area of the section x=-a  
22a 1 k   

The area of the section x=0 2a  

 The area of the section distant x from 0 

2
2kx

a
a

 
  
 

 

By equation of continuity  

2
2

22 2 0

0

kx
a 1 k a v a .x

a

   
        

   
 

Since, x0 is the velocity across the plane distant x from o 

   

2
2

2

2a 2

2

0

kx dx
dt a .

a (1 k) v

2 kx
t a dx

v(1 k) a

 
  

 

 
  

  


 

    Which gives the stated result. 

 

Local and particle rate of change. 

   



      
 

Suppose a particle of fluid moves form p(x,y,z) at time t to 

P '(x x, y y,z z)     at time t+δt.Let f(x,y,z,t) be a scalar function associated 

with some properties of fluid.Then, the motion of the particle from p to p’ the 

total change of is  

f f f f
f x y z t

x y z t

   
        

   
 

Thus, the total rate of change of f at a point P at a time t. 

In the motion of the particle, 

t 0

df f
lim

dt x

f dx f dy f dz f

x dt y dt z dt t

f f f f
u v w

x y z t

 

 
  

 

   
   
   

   
   

   

  

If q=[u,v,w] is the velocity of the fluid particle at P 

df f
q. f (1)

dt t


   


 

  Similiarlly, for a velocity function F(x,y,z,t)  associtated with 

some property of a fluid. 

   
dF F

q. F (2)
dt t


   


 

  Hence, both the scalar and vector function of position and time, 

By operation equality 
d

q. (3)
dt t


  


,provided that those functions are 

associated with the properties of the moving fluid. 

  In the obtaining equation (1) and (2), we considered total change. 

When the fluid particle moves from p(x,y,z) to P '(x x, y y,z z)      in time 

δt. 



      
 

 Thus, 
df dF

,
dt dt

are a total differentiation following the fluid particles are 

called particle rates of change. 

 On the other hand, partical time derivative 
f F

,
t t

 

 
are only the time rates 

of change at the point p(x,y,z) 

 Consider fixed in space at a point p(x,y,z) they are the local rates of 

change. It follows that q. f  or q. F  

 We presents the rate of change due to the motion of particle along it 

path. 

 Then, nothing the arc length of the a path by S and PP’ by δS. 

Simillarly, for a function F  Here we use, ŝ.
s

  


 

Conditions at a rigid boundary 

    

P is the point on the boundary where the fluid velocity is q, boundary has the 

velocity U. 

If n specifies a unit normal direction at P then q.n=U.n .Since, there is no 

relative normal velocity at P between boundary and fluid. 

Note: 

 for invicous fluid the above condition exist. 

 For viscous fluid, there is no slip, tangential components must be equal. 

 If the boundary is at rest, q.n=0. Every point of boundary. 
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UNIT – II – MOTION OF A FLUID – SMTA5401 



      
 

Let P be a point in a fluid moving with velocity q . We insert an elementary 

rigid plane area A into this fluid at point P. This Plane area also moves with 

the velocity  q  of the local fluid at P 

If  F  denotes the force exited on one side of  A  by the fluid particles on the 

other side, then this is will act normal to A  

 

 

  We assume that 
0

lt

A 

F

A




 exists uniquely. 

Then, this limit is called the (hydrodynamic) fluid pressure at point P and is 

denoted by P.  

1. Pressure P at a point P in a moving fluid is some in all direction.  

                                                                  Or 

Pressure p at P in a moving fluid is independent of the orientation of A  

Let q  be the velocity of the fluid. We consider an elementary tetrahedron. 

PQRS of the fluid at a point P of the moving fluid.  

Let the edges of the tetrahedron be PQ= x , PR= y , PS= z  at time t, where 

, ,x y z   are taken along the co-ordinate axes ox,oy,oz resp. This tetrahedron 

is also moving with the velocity q  of the local fluid at P. 



      
 

 

Let p be the pressure on the face QRS where are is s . Suppose (l,m,n) are the 

directional cosines of the normal to s  drawn outwards from the tetrahedron. 

      l s = projection of the arc s on yz plane  

             =are of the face PRS 

             = 1
2

x z  

lly,   m s = 1
2

x z                                       n s = 1
2

x y  

   The total force exerted by the fluid outside the tetrahedron, on the force 

QRS is  

              =-p s (l i +m j +n k ) 

              =-p(l s i +m s j +n s k ) 

             =-p/2( y z i + z x j + x y k ) 

Let px,py,pz be the pressure on the faces PRS,PQS,PRQ. The exerted on these 

faces by the exterial fluid are  1
2

px y z i , 1
2

py z x j , 1
2

pz x y k  

resp.  

Thus, the total surface on the tetrahedron. 

    =-p/2 1 1 1( y )
2 2 2

zi z x j x yk px x yi py z x j pz x yk                ) 

   =
     

1
2 px p y zi py p z x j pz p x yk          
 

 



      
 

In addition to surface force (fluid), the fluid may be subjected to body force 

which are due to external causes such as gravity. Let F  be the mean body is 

per unit mass within the tetrahedron. 

Volume of the tetrahedron PQRS is 1/2 h s  ie, 1/6 x y z   where h is the 

perpendicular r from p on the face QRS.  Thus, the total is acting on the 

tetrahedron PQRS=1/6 F x y z                      ………….  (2) 

   - mean density of the fluid. 

The net force acting on the tetrahedron is  

     1 1
2 6

px p y zi py p z x j pz p x yk F x y z               
 

 

Let Q be the velocity of P then 
dQ

dt
is the acceleration of P. 

If the mass  1
6

x y z    stays constant the equation of motion is 

     1 1
2 6

px p y zi py p z x j pz p x yk F x y z              
 

= 1
6

dQ
F x y z

dt
    

1 1( ) ( ) ( )
6 6

dQ
px p l si py p m s j pz p n sk Fh s F s

dt
            

÷ s  and letting the tetrahedron to zero about P in which h0 

[ This equation contains quantities of the second d third orders of small 

quantities when we make the edge of the tetrahedron vanishingly small we 

have 2nd order  

1 {( ) ( ) ( ) } 0
2

px p y zi py p z xi pz p x yk              

Equating co-eff of the unit vectors 

Px=py=pz=p 

Since the choice of axes is quite arbitrary this establishes that at any point p of 

the moving fluid the pressure p is the same in all direction. 

 Condition at a boundary of two in viscid Immiscible fluids. 



      
 

Two fluids rerated by a plane boundary, their velocity at p on the boundary 

being q1,q2 respectively. 

Consider a small cylindrical hat-box shaped element of normal section s

containing P, and projection into both fluids. Its generators being normal to the 

surface. Since there is no fluid transfer across the boundary. 

                                                              P1 s =P2 s  

                                                                 P1=P2   

Ie, In case of liquid in contact with the atmosphere, the pressure at the free 

surface is the same as that of the atmosphere. 

 Equation of motion Fp+Fg=mxa 

To obtain Euler’s dynamical equation, we use newton’s second law 

of motion.  

Consider a region   of  fluid bounded by a closed surface S which consists of 

the same fluid particles at all time. 

Let Q be the velocity and be the density of the fluid. Then, d  is an element 

of man within S and it remain constant. 

The linear momentum of volume  is M= q d


  

Rate of change of momentum 

dM d dq
q d dt

dt dt dt
 

     

The fluid within   is acted upon by two types of forces. 

The first types of forces are the surface forces which are due to the fluid 

exterior to  .  Since the fluid is ideal, the surface  is simply the pressure p 

directed along the inward normal at all point of s. 

The total surafe force on S is 

( )
s s

p n ds pnds pdt


                                                              …………….(1) 

                                                                       By gauss div theorem, 

The second type of force are the body force which are due to some external 

agent.  



      
 

Let F  be the body force per unit mass acting on the fluid. Then F  d  is the 

body force on the element of  mass  d  

The total body force on the mass within  is F d


                                                            

…………….(2) 

By Newton’s second law of motion, we have Rate of change of momentum = 

total force 

 1 p    

dq
d F d pd

dt
  

           

0
dq

F p d
dt



  
 

   
 
  

Since d  is arbitrary, we get  

0
dq

F p
dt

     0
dq

F p
dt

      

1dq
F p

dt 
                                                                                                                             

……………(*) 

Which holds at every point of the fluid and is known as Euler’s dynamical 

equation for an ideal fluid. 

 Other forms of Euler’s Equation of motion 

                                                    .
d D

q
dt Dt t


   


 

                                               
1d

q F p
dt 

   
1d

q F p
dt 

      

                                          
1

.q q F p
t 

 
      

  

                                        
q

t





(

1

2
q2)-q˄(˄q)=

1
F p


   



      
 

                                        .q  (
1

2
q2)-(X q )X q  

 Bernoulli’s Equation  

The Euler’s dynamical equation is 
1dq

F p
dt 

                                                        

……………….(1) 

Where q is velocity, F  is the body force, p and  are pressure and density 

F  be conservative so that it can be expressed in terms of a body force potential 

function   as            F                                                                                                                                      

………………..(2) 

When the flow is steady then 0
q

t





                                                                                  

………………..(3) 

  In case of steady motion with a conservative body force equation (1) on 

using (2) and (3) gives 

 (
1

2
q2) q X(X q )= 1 p


   

 .
dq q

q q
dt t


  


 

d q q

dt t


 


(
1

2
q 2) q XX q  

0
q

t




  

  

 (
1

2
q 2  )

1
p


  q XX q                                                                                     

………………….(4) 

The density is a function of pressure p only. 

 
1


  



      
 

1


p

dp


  

Using in (4), we get  

 [ 1
2

q 2
dp

q


  X(X q )                                                                                  

……………………..(5) 

Multiplying (5) scalarly by q  

q .( q X curl q )=( q X q ).curl q =0 

q . [
1

2
q 2 dp


  =0                                                                                                      

…..………………(6) 

If  s  is a unit vector along the streamline through general point of the fluid and 

S measure distance along this streamline, then since S is parallel to q  

eqn (6) gives  
s




[

1

2
q 2 dp


  ]=0                                      s q  

                                                                                                                q ks  

                                                                                                               s
s


 


 

Hence along any particular streamline, we  have 

           
1

2
q 2 dp

c


                                                                                                        

………………..(7) 

Where c is constant which takes different values for different streamlines. (7) is 

called Bernoulli’s equation 

 Some potential theorem. 

An irrotational motion is called acyclic if the velocity potential   is a 

single valued function. 

ie, when at every field point, a unique velocity potential exists, otherwise the 

irrotational motion is said to be cyclic. 



      
 

For a possible fluid motion, ever if   is multivalued at a particular point, the 

velocity at that point must be single valued. 

We prove number of theorems for steady irrotational  incompressible flows for 

which the velocity potential   satisfies  2 0  . 

Mean value of velocity potential over spherical surface. 

THEOREM:  

The mean value of a   over any spherical surface S drawn in the fluid 

throughout whose interior  

 2 0  , is equal to the value of   at the center of the sphere. 

If S is the boundary of a spherical surface lying wholly within the fluid, then 

the mean value of the velocity potential is equal to its value at the center of the 

sphere. 

Let  p  be the value of   at the center P of a spherical surface S of radius r, 

wholly lying in the liquid. Let   denotes the mean value of   over S. 

Let us draw another concentric sphere   of unit radius.. Then, a cone with 

vertex P which intercepts are ds form the sphere S intercepts an area d  from 

the sphere  . 

2

21

ds r

dw
                                                      ds=r2 d  

Now by definition      

 
2

1

4

s

s

s

ds

ds
rds



 


 





  

          
2

1

4
c

ds
r r r

 



 


 
 

Since the normal n


to the surface is along the radius r 

on s, we have .n
r n

 


 
  

 
   



      
 

2

1
.

4
s

n ds
r r







  
   

2

1
.

4
s

nd
r

 




                       (Gauss theorem) 

2

2

1
0

4
d

r


 


                        0  0    

Where  is the volume enclosed by surface S Thus 0
r





                        

  constant 

Hence,   is independent of r, so that the mean value of  is the same over all 

sphere having the same center and therefore is equal to its value at the center. 

THEOREM: 

If  is the solid boundary of a large spherical surface of radius R, containing 

fluid in motion and also enclosing one or more closed surface, then the mean 

value of  on  is of the form 

=  M C
R

  

Where M and C are constant , provided that the fluid extends to infinitely and 

is at rest there  

                                                                          (or) 

If the liquid of infinite extent is in irrotational motion and is bounded internally 

by of one or more closed surfaces s, the mean value of  over a large sphere  , 

of radius R, which enclose S is of the form 
M

C
R

    where M and C are 

constants provided that the liquid is at rest at infinity. 

PROOF: 

Suppose that the volume of fluid acrossing each of internal surface contained 

within  , per unit time is a finite quantity say 4 m [ 4 m  represent the flux 

of fluid across  or s] 

Since the fluid velocity at any point of  is 
R




 radially outwards, the equation 

f continuity gives 



      
 

                                                        

4d M
R







  


 

                                                                
2d R dw   

     

                                           

21

4
R dw m

R







  


  

                                                   
2

1

4

m
dw

R R






 



 

                                                  
2

1

4

m
dw

R R


 


    

Integrating with resp. to R we get, 

1

4

M
dw C

R





   

Where c is independent of R , 
2

1

4

d M
C

R R





 
  

 
  

                                                                 
24

d
M

C
R R









 


 

                                                                            
M

C
R

                                                           

………………(2) 

To show that c is an absolutes constant, we have to prove that it is independent 

of co-ordinates of center of sphere . 

Let the centre of the sphere   be displaced by distance x  in an arbitrary 

direction while keeping R constant. 

c

x x

 


 
                                                                                                                                            

………………….(3)   

R is constant  

Also,  



      
 

                                    

1 1

4 4
dw dw

x x x

 


 
 

   
  

    
                       

                                                                             0  

From, (3) we get, 

                                   
0

c
c

x


 


    is an absolute constant. 

Hence, 

                                   
M

C
R

    where M and C are constant. 

*THEOREM: 

With the radiation of theorem 3, if the fluid is at rest at infinity and if each 

surface m  is rigid, then the kinetic energy of the moving fluid is  

 2

1

1 1 .
2 2

k

mv m

T q dv ds
n




  




 


   

                                                                                    (or) 

If   is the solid boundary of a large spherical surface of Radius R, containing 

fluid in motion and also enclosing one or more closed surface, is 
p

  denotes 

the potential at any point P of the fluid, if the fluid is  at rest  and if each 

surface ,m mX S  is rigid then the kinetic energy of the moving fluid is  

                                                 2

1

1 1 .
2 2

k

mv m

T q dv ds
n




  




 


   

PROOF: 

 Kinetic energy, from of energy that an object or a particle has by reason  

T=1/2 of its motion is 

  K.E 21

2
mv  

  Kinetic energy of a fluid particle of mass v is 21

2
svq  

                                                          
21

2
dv                q q       



      
 

Hence for entire fluid,    
21

2
v

T dv    

                                   
2 2.           

                                               .     

                                . . .           

                                        
1

.
2

v

T dv       

                                          
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Denotes the sum of the outer boundary surface S0, and the inner boundaries S1, 

S2, S3,……..Sm, The equation of continuity for the entire region V is   
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From (1)&(2). 
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                                                                                 Hence Proved 

UNIQUENESS THEOREM:1 

 If   is the solid boundary of large spherical surface of Radius R, cont. fluid in 

motion and enclosing one or more closed surface then 
M

c
R

   provided the 

fluid extends to infinity and is at rest, if each surface Sm is rigid and K.E of the 

moving fluid. 
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Then, if either    or 
n




 is prescribed on each surface Sm, then,   is determine 

uniquely through an arbitrary constant.  

PROOF: 

From previous theorem,  
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Suppose 1 2,      are the two solutions of (2) subject to (1). 

Write, 1 2     then. 2 2 2

1 2 0       in V 

Thus,   is a harmonic function satisfying similar condition to 1 2,   

Hence,  
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On each Sm, either 
1 2   or 1 2

n n
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cases 0
n








 

On each Sm, so that the RHS of (3) is zero.    
2

0
v

dv                                                        

…….…………(4) 

Since,  
2

0  , the condition (4) holds only if,  0   in V                                                      

………………(5) 

(5) gives     is constant 1 2   constant 

* UNIQUENESS THEOREM:2 

 If the fluid of theorem V is in uniform motion at infinity and if 
v




 is 

prescribed on each surface Sm then   is uniquely determined throughout V. 

Let V be the velocity of the fluid at infinity suppose a velocity –v on the entire 

system so as to reduce the velocity of the fluid at infinity to rest. Then the 

condition of then V prevails in which the velocity at all points of each Sm are 

known in a fluid which is at rest at infinity. This leads to a unique value of    

at each point of v 

If the region occupied b the fluid is infinite and fluid is at rest at infinity, prove 

that only one irrotational motion is possible when internal boundaries have 

prescribed velocities.  

Let there be two irrotational motions gives by two different velocity potential 

1 2,   

The condition are boundaries are 1 2

n n

  


 
                                                                             

…………………(1) 

                                                             1 2 0q q          at infinity                                                     

……………….(2)                                   

                                                             1 2                                                                                   

…………………(3) 

                                                            2 2 2

1 2 0 0 0               



      
 

Motion given by   is also irrotational  

Further  from (3) we get 

1 2 0
n n n

   
  

  
  

. 0q n            q n  on the surface  . 

Also, 

1 2q         

1 2 0q q     at    using ( 2) 

  0q      everyone on the surface and also at infinity . 

Hence we get  constant 

                        1 2   constant                                                                                                    

…………………(4) 

We can take the constant on RHS (4) to be zero (it gives no motion) and thus 

we get, 1 2   

Some flows involving axial symmetry  

If the region occupied by the fluid is infinite then only one irrotational motion 

of the fluid exists when the boundaries have prescribed velocities . 

                                                                                       (or) 

Show that there cannot be 2 different forms of a cyclic irrotational motion of a 

given liquid whose boundaries have prescribed  velocities . Let 1  and 2 be 

two different velocity potentials representing two motions then 

  2 2

1 20     

Since , the kinetic conditions at the boundaries are satisfied by both flows 

therefore at each point of s 1 2
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 
 

Let   1 2     



      
 

2 2 2

1 2 0        at each point of fluid 2 2 2

1 2 0        at each point of 

S. 

Kinetic energy is given by  
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Which shows that the motion are the same. Moreover   is unique apart from an 

additive constant which gives vise be no velocity and thus can be taken as zero. 

 Some flows involving axial symmetry. 

Let  , ,r   be the velocity potential at any point having spherical polar co-

ordinates  , ,r    in a fluid of steady irrotational  incompressible flow laplace 

equation 2 =0 

Since,   

            

2
2

2

1
sin sin 0

sin
r

r r

 
 

   

         
       

          
 

 when there is symmetric about the line 0   then  ,r    and the becomes 

2sin sin 0r
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cos , cosr
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Thus the move general solution,  

                                           2, cosr Ar Br     

 Stationary sphere in a uniform stream sphere at rest in a uniform 

stream. 

Consider an impermeable solid of radius a at rest with its center and at the pole 

of system of spherical polar co-ordinates  , ,r    



      
 

The sphere is immersed in an infinite homogenous liquid with constant density 

 in the absence of the sphere, would be flowing as a uniform stream with 

speed U along the direction 0   

The presence of the sphere will produce a local perturbation of the uniform 

streaming motion such that the disturbance diminishes with increasing distance 

r from the centre of sphere. 

We say that the perturbation of the uniform stream tends to zero as r  In 

this problem Z-axis is the and symmetry. 

Undisturbed velocity of incompressible fluid Uk  ie, q U k  

The velocity potential 0  due to such a uniform flow would be 

0 cosUz Ur      when the sphere is inserted, the undisturbed potential -

Urcos  of uniform stream has to be modified by perturbation potential due to 

the presence of the sphere. 

This must have the using properties. 

i) It must satisfy laplace equation for the case of axial symmetry. 

ii) It must tend to zero at large distance from the sphere. 

So, we write  ,r  =-  1cos ,Ur r                                    r>=a 

Where 1 satisfies the laplace equation together with boundary condition.  
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We assume that  
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Constant B is to be determined from the fact that there is no flow normal to the 

surface 

r=a   ie, 0
r ar
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from (1)  
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Now, the uniqueness theorem  in for that the velocity potential in (2) is 

unique. 

The velocity components at   , ,p r r a    are         
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 Different terms related to motion stagnation points 

Stagnation points are those points in the flow where the velocities vanishes ie, 

0q   



      
 

Thus, these points are obtained by solving the equations       
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………………….(4) 

Which are satisfied only by r=a, 0,  . Thus the stagnation points are 

   , 0 ,r a and r a       on the sphere There are referred to respectively 

as the near and forward stagnation points. 

 Stream lines 

The equation of streamlines 
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Integrating we get, 

 2 3 1log 2logsin logr a r c      
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For each value of C1, above equation given a streamline in the plane 

=constant. 

The choice of C=0 corresponds to the sphere and axis of symmetric. 

 Pressure at any point (stagnation pressure) 

We find stagnation pressure at any point by applying Bernoulli’s equation 

along the streamline. 

The pressure at any point of the fluid is obtained by applying Bernoulli’s 

equation along the streamline through the point, taking the pressure at   to be 

of constant value p   Thus in the absence of body force, the Bernoulli’s 

equation for homogeneous steady flow is   
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At infinity P p and U k   we get    21
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From  (a) and  (b) 
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…..……..(5) 

Which gives the pressure at any point of the fluid of particular interest is the 

distribution of pressure on the boundary of the sphere. It is obtained by putting 

r=a in (5) 
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The maximum pressure occurs at the stagnation point where 0   or   

                                           2
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2
p p U  maxp   

maxp  is also called stagnation pressure. 



      
 

The minimum pressure occurs along the equation circle of sphere where 
2


      
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A fluid is pressured to be incapable of sustaining a negative pressure then 

min
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


   . At this stage the fluid will tend to break away from the 

surface of the sphere and cavitation is said to occur. 

Ie, vaccum is formed. 

 Thrust on the hemisphere 

We find thrust (force) on the hemisphere on which the liquid impinges r=a,    

0
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
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Let s  be a small element at    0 , ,p a    of the hemisphere bounded by circles 

at r=a and at angular distance   and    from the axis of symmetry (z-axis) 

 

 

The component of the thrust on s  is cos sp  . Hence total thrust on the 

hemisphere is along Z’o and is given by 
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 

  

The thrust on the entire sphere, obtained by integrating the same function form 

0   to   is easily found to be zero. This result can be generalized. The total 

thrust on a rigid body of any sphere in a uniform stream is zero. This is called 

Alembert’s paradox. 

 Sphere in motion in fluid at rest of infinity 

Let a solid sphere of radius ‘a’ centered at O be moving with uniform velocity 

U k  in incompressible fluid of infinity extent, which is at rest at infinity, z-

axis is the axis of symmetry and k  is unit vector in this direction. As the sphere 

is moving with velocity Uk  the relative velocity of fluid if the sphere be 

considered to be at rest is Uk . 

The boundary value problem for  is now to solve, 2 0                                                     

……………(1) 



      
 

Such that cosU
r


 


            (r=a)                                                                                           

……………(2) 

And   0                                   r                                                                                    

…………….(3) 

The present case is also a problem with axial symmetry about the axis 0,   

so,  ,r    

Also, Since, 1(cos ) cosp    

Legendre function and the boundary condition (2) implies that the dependence 

of  an   must be like cos , 

                  has the form 
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To satisfy (3), it is necessary that A=0 and then from (2) we get  31
2
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Thus, the solution for   is 
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From here, the velocity component are obtained to be  
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                                                                       0q  0q    

Where ( , , )r    are spherical polar co-ordinates the various terms of particular 

importance related to this motion. 

 Streamline 



      
 

The differential equations for streamlines are 
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r

dr rd r d
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 0d                            =constant         

2cot
dr

d
r

  ,     log 2logsin logr C   

2sinr c   

Streamline, line are 2sinr c  , =constant. 

 Kinetic energy of the liquid. 

Let S be the surface of sphere and be the density of liquid, then kinetic energy 

is given by 

                                                               1
2

s
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n

 




        

Where  n  is the outward unit normal.   But for the sphere n is along radius 

vector  
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 
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                      =
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                     = 2 21
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                   = 
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                  =  
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v
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                   = 1 21

4
m v                                                                                                                            

……………….(6) 

Where 1 34

3
m a  is the mass of the liquid displaced by the sphere. 

Also, F.E of the sphere moving with speed v is given by, 2

2

1

2
T mv                                    

…………………(7) 
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3
M a  is the mass of the sphere  being the density of the material of the 

sphere. 

From (6) and (7), Total Kinetic Energy T is 1 2T T T   
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m
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  1 21 1
[ m ]U

2 2
T m t   

1
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[ ]U
2 2

m
T m   he quantity  

1

2

m
m   is called the virtual 

mass of the sphere. 

 Accelerating sphere moving in a fluid at rest at infinity 

The solution derived above for   is applicable when the sphere translates 

unsteadily along a stream  line 

( )U U   and the velocity potential has  
  3

2
, , cos

2

U t a
r t

r
   


                           

…………….(1) 

The instantaneous values of velocity comp and F.E at time t are given by 

  3

3
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U t a
q

r
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
   ,  

  3

3
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2

U t a
q

r
 


   ,  0q    (similar to steady case) 



      
 

                                                        1 21 1
[ m ]U

2 2
T m t                                                            

……………..(2) 

The pressure at any point of the fluid is obtained by using Bernoulli’s equation 

for unsteady flow of a homogenous liquid, in the absence of body force an, 

                                                          
21

2

p
U f t

t






  


                                                    

………………….(3)
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Where f(t) is a function of time t only let to be the presence at infinity where 

the fluid is at rest 

From (3)   we get, 
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    ……………..(4) 

To find 
t




 

 U Uk U t k     is the velocity of sphere the velocity potential given in (1) 

can be expressed in the from  
 3

3

.1

2

a u r

r
              ……………….(5) 

Since r  is the position vector of a fixed point P of the fluid relative to the 

moving centre O of the sphere, it is the                                   U r
t


 


                                                         

………………(6) 

2 . .
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r r r r r r u
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 
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Diff (5) with respect to  ‘t’ 
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Also, 
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The pressure at any point of the fluid can be obtained from equation (4)
u

U
t





 

In particular at a point on the sphere r=a 
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And the corresponding pressure is given by  
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The forces (thrust) acting on the sphere is given by 
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3
m a   is mass of the liquid displaced. 

This shows that the force acts in the direction appointing the sphere’s motion. 

 Sphere moving with constant velocity which is otherwise at rest. 

 

We consider a solid sphere with centre O moving with uniform velocity iU  in 

incompressible fluid of infinite extent which is at rest at infinity OX is the axis 

of symmetry and the direction of unit vector i. We take   to be finite at infinity 

then, the velocity potential at  , ,P r    where r>=a will be in the form  

                                                        2( , ) Ar cosr                                                            

……………….(1) 

This satisfies the axiom symmetric form of laplace equation in spherical polar 

co-ordinates are 
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From (1), 
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Now, the velocity at P0 is Ui and hence  
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…………………(B) 

From (A) and (B), 
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To find kinetic energy of a fluid  

We consider, 
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 Accelerating sphere moving in fluid at ret at infinity 

                                                      (or) 

A sphere of centre I and radius a moves through an infinite liquid of 

constant density  at rest at infinity O describes a straight lines with 

velocity V(t) if there are no body force show that the pressure P at points 

on the surface of sphere in a plane perpendicular to the straight lines at a 

distance x from O measure positively in a direction of v given by. 
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op  is pressure at infinity reduce that the thrust on sphere is 11

2

dv
M

dt
 where 

M1 is the man of liquid having the volume of sphere. 

Sol: 

Let  , ,p r    be a point such that,   at P is given by               

  2, , ( ) cosr A t r     which satisfies the spherical polar form of laplace 

equation. 
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But, by boundary condition,  
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The Bernoulli’s equation, 
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UNIT – III – TWO DIMENSIONAL FLOWS-I – SMTA5401 



      
 

UNIT-III 

 

Some two dimensional flow use of cyclindrical polar co-ordinates. 

  For an incompressible irrotational flow of uniform density, the 

equation of continuity 2 0   for the velocity potential  r, , z  in cylindrical 

polar co-ordinates  r, , z  is  
2 2

2 2 2

1 1
r 0 1

r r r r z
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  If the flow is two dimensional and the co-ordinate axes are to so 

chosen that all physical quantities associated with the fluid are independent of z 

then  r,     

  ∴ (1) becomes, 
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  Let  r, f (r)g( )      be the solution of equ (2) for separation of 

variables. 

  Thus, we get 
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 Thus, L.H.S of (4) is a function of r only and RHS is a function of θ 

only.   

  As r,θ are independent variables. So, each side of equ(4) is a 

constant say λ. 
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 i.e. ,  2r f ''(r) rf'(r) f (r) 0 5     

    g''( ) g( ) 0 6      



      
 

  Equation (6) has periodic solution when λ>0 normally the 

physical problem requires that g( 2 ) g( )    and this is satisfied 

when λ=n2 for n=1,2,3,⋯ 

  The basic solution of equ (6) are  

    1 2g( ) C cosn C sin n 7     

  Equ (5) is of Euler homogeneous type and it is reduced to a linear 

different equation of constant co-efficient by putting  

     

tr e ,

t log r,

dt 1

dr r







 

   

df df dt 1 df
f '(r) .

dr dt dr r dt
  

 

 

   

2

2 2

d f 1 d df 1 df
f ''(r)

dr r dr dt r dt

   
     

     

     

2

2

2 2 2

1 d df dt 1 df

r dt dt dr r dt

1 d f 1 df

r dt r dt

  
   

  

 

 

      
2

2

2

d f df
r f '' r

dt dt
 

 

   Equation (5) reduces to 

    

2
2

2

2
2

2

d f df df
n f 0

dt dt dt

d f
n f 0

dt

   

   

   Solution is  
n

nt t nf e e r


     

     n n

3 4c r c r 8    



      
 

 A special solution of equ(2) is obtained by equ(7) and (8) as 

   
   

    n n

3 4 1 2

(r, ) f r g

(r, ) c r c r c cosn c sinn 9

    

       
 

  The most general solution is  

       n n

n n n n

n 1

(r, ) A r B r C cosn D sinn 10






         

  Particular case, 

   For n=0 we have, 

    
1 2 1 2

3 4

f k k t k k log r

g k k

   

  
 

   So the another solution of equ(2) is  

      1 2 3 4(r, ) k k logr k k        

       For n=1 

    
1

r cos

r cos

   

   
       

1

r sin

r sin

   

   
 

Discuss the uniform flow part as infinitely long circular cylinder. 

   

  Let P be a point with cylindrical polar co-ordinates  r, , z in the 

flow region of an unbounded. 

  Incompressible fluid of uniform density moving irrotationally 

with uniform velocity Ui at infinity past the fixed solid cyclinder r≤a. 

  When the cyclinder r=a is introduced, it will produce a 

perturbation which is such as to satisfy laplace equation and to become 

vanishingly small for large r. 

  This suggests taking the velocity potential for r≤a,0≤θ≤2π in the 

form 

      1r, Urcos Ar cos 1      



      
 

        

   Where the velocity potential of the uniform stream is

Ux Urcos  

 and due to perturbation it is 1Ar cos which tends to zero as r→∞ and gives 

rise to a velocity pattern which is symmetrical about θ=0,π( the term 1r sin   is 

not there since it does not give symmetric flow)  

  As there is no flow across r=a1 so the boundary condition on the 

surface is  

   0
r




    
When r=a →(2) 

   1Ur cos Ar cos     

   2U cos Ar cos
r


  


 

   When r=a,
 

0
r





 ,0≤θ≤2π 

    

2

2

2

0 U Aa

0 Ua A

A Ua

 

 



 
 
 

 Thus, velocity potential for an uniform flow part a fixed infinite cylinder 

is  

    
2a

r, Ur cos U cos
r

      

    
2a

Ucos r (3), r a,0 2
r

 
         

 
 

 From here, the cylindrical components of velocity are  q  
 

    

2

r 2

2

a
q U cos 1

r r

1 1 a
q Usin r

r r r


 
     

  

   
    

  

 



      
 

      
2

2

a
Usin 1

r

 
   

 
 

     zq 0
z


 


 

 We note that as r→∞, rq Ucos ,q Usin    which are consistent with 

the velocity at infinity Ui  of the uniform stream. 

Stream function: 

 When motion is the same in all planes parallel to xy plane and there is 

no velocity parallel to the x-axis i.e., when u,v are function of x,y,t and w=0. 

The motion is regarded as two-dimensional. 

 Now to consider the flow across a curve in this plane, we mean the flow 

across unit length of a cylinder where trace on the xy plane is the curve in 

question, the generations of the cylinder being parallel to the z-axis. 

 For a two-dimensional motion in x-y plane, q is a function of x,y,t only 

and the differential equation of the streamline are 

    
dx dy

i.e., vdx udy 0 1
u v
      

and corresponding equation of continuity 

    
u v

0 2
x y

 
  

   

  Equation (2) is condition of exactness of (1) 

 It is that (1) must be exact differential vdx udy d dx dy
x y

 
    

   

   
u , v

y x

 
 

   

  This function ψ is called the stream function or the current 

function or lagranges stream function. Then streamlines are given by the 

solution of (1) is dψ=0, i.e, ψ=constant. 

  Thus, the stream function is constant along a streamlines. 

 



      
 

Note: 

 It is clear that the existence of stream function is merely a consequence 

of the continuity and incompressibility of fluid. 

 The stream function always exists is all types of two dimensional motion 

whether rotational or irroational. 

 

Physical interpretation of stream function. 

  Let P be a point on a curve C in x-y plane. Let an element ds of 

the curve makes an angle θ with x-axis. The direction cosines of the normal at 

P are  

    
  

 

cos 90 ,cos ,0

i.e., sin ,cos ,0

 

  
 

  The flow across the curve C from right to left is 

     
C

ˆq.nds  where 
n̂ sin i cos j

q ui v j

    

   

    

 
C

C

C

C

B A

C

u sin vcos ds

sin cos ds u , v
y x y x

dx dy dx dy
ds cos ,sin

y ds x ds ds ds

dx dy
y x

d

   

      
       

      

    
        

    

 
 

 

    











 

  Where A Band   are the values of ψ at the initial and final 

points of the curve. 

  Thus, the difference of the values of a stream function at any two 

points represents the flow across the curve, joining the two points. 

Corolloary: 

 Suppose that the curve C be the streamline, then no fluid crosses its 

boundary, then 
B A B A0    

 



      
 

  Ψ is constant along C. 

Relation between φ and ψ: 

  The velocity potential φ is given by  

    q ,
x y

  
    

  
 

    u
x





 v

y





  →(1) 

  The stream function Ψ is given by  

    u
y





 v

x





  →(2) 

 Form equ(1) and (2) 

   
x y

 


 
, 

y x

 


 
  →(3) 

  i.e., 2 20and 0       

   i.e., φ and ψ are harmonic functions 

   ∇ φ=grad φ= q  ui vj    

     

i j
y x

i j
y x

  
   

  

 
 
 

 

     

   j k i k
y x

i j k
x y

k

grad k

 
   
 

  
   

  

 

 

 

  i.e., grad φ grad k   

         k grad     



      
 

    k 4    

 Again from (3), we have 

   

.
x x y y

. . 0
x x y y

. 0

    
  

    

   
 

   

 

 

  Thus for irrotational incompressible two-dimensional flow 

(steady or unsteady).    x, y , x, y  are harmonic functions and family of 

curves  

     φ=constant(equipotential) 

     ψ=constant(streamlines) intersect 

orthogonally. 

Complex potential 

 We consider irrotational plane flows of incompressible fluid of uniform 

density for which the velocity potential  x, y and the stream function  x, y

exist. 

 (x.y) specify two dimensional Cartesian co-ordinates in a plane of flow  

         w x, y i x, y 1      

  All four first order partial derivatives of φ and ψ with respect to 

x,y exist and are continuous throughout the plane of flow. 

 Velocity q =(u,v) has components satisfying q    

  u
x y

 
 

 
 v

y x

 
 

 
  →(2) 

  Thus, φ and ψ satisfy the C-R equations and so w must be an 

analytic function of z=x+iy. 

   Therefore, we can write (1) as 

      w f(z) i 3     



      
 

 The function w=f(z) is called complex potential of the plane flow. 

Complex  velocity differential partially with respect to x 

    
w i

z x iy

  

 
  

    
w

i
x x x

  
 

  
   

                 
i

x y

u iv

 
 
 

 

  

z x iy

z
1

x

 






 

   but cos iqsin   

 therefore, 
dw

u iv
dz

   ,
dw

u iv
dz


   

         
i

q cos iqsin

q cos isin

qe 

  

  



 

   The combination u-iv is known as complex velocity. 

    Speed 2 2dw
q u v

dz


   and for stagnation points 

dw
0

dz
 . 

 

Discuss the flow for which complex potential is w=z2 

 

  We have w=z2 

         =(x+iy)2 

         =x2-y2+2ixy 

  
 

 

2 2x, y x y

x, y 2xy

  

   



      
 

 The equtipotentials φ=constant are the rectangular hyperbola  x2-

y2=constant having asymptotes y=±x. 

 The streamline ψ=constant are the rectangular hyperbola xy=constant 

having the axes x=0 and y=0 as asymptotes. 

  Consider
dw

2z
dz

  , therefore the only stagnation point is the 

origin.  

  The two tamilips of curves cut each other orthogonally. Both φ 

and ψ are harmonic and the flow is irroational. 

 

Complex velocity potential for standard two-dimensional flows. 

 

  We consider flow patterns due to a uniform stream, a line source 

and sink and a line labels. 

  Complex potential for a uniform tream we first consider the 

uniform stream having velocity Ui
 

  This gives rise to a velocity potential xU   

      w Uz U x iy    

  The stream function ψ=imaginary(w). So that the lines 

y=constant are the streamlines. 

 Secondly, Let the uniform stream advance with a velocity having 

magnitude U and being inclined at angle α, to the positive direction of x-axis. 

  u Ucos   v Usin   

   
dw

u iv
dz


 

 

             
i

U cos iUsin

Ue 

   


   

 The simplest form of w, ignoring the constant of integrating is 
iw Uze  

 



      
 

      i U x iy cos isin        

                  U xcos ysin Ui ycos xsin        

  Equating real and imaginary part, we get 

   
 

 

U x cos ysin

U ycos x sin

     

     
 

  Equations of equipotentials are  U xcos ysin   =constant 

→(1) 

 These equations represent a family of parallel streamlines. 

  The equation of streamlines are ycos x sin =constant →(2) 

  These equation represent another family of parallel streamlines 

inclined at angle α to the positive x-direction 

  The two family of streamlines intersect orthogonally.  

 

Line source and line sink: 

 Line source and line sink are the two dimensional analogues of the three 

dimensional simple source and simple sinks. 

 Let A be any point of the considered plane of flow and C be any closed 

curve surrounding A. 

 We construct a cylinder having its generators through the points of C 

and normal to the plane of flow. 

 Suppose that in each plane of flow, fluid is emitted radically and 

symmetrically from all points on the infinite line through a normal to the plane 

of flow and such that the rate of emission from all such points as A is the same. 

 Then the line through A is called a line source. 

 We take the closed curve C to be a circle having centre A and radius r. 

 Suppose the line source exits fluid at of the source per unit time, in all 

length of the source per unit time, in all directions in the plane of flow(x-y 

plane). We define the strength of the line source to be m. 



      
 

 A line source of strength –m is called a line sink. 

 

Complex potential for a line source: 

 

  Let there be a line source of strength m per unit length at z=0. 

Since the flow is radial, the velocity has the radial component qr only. Then the 

flow across a circle of radius r is (by law of conversation of mass) 

    r2 rq 2 m      

    r

2 m m
q

2 r r

 
 

 
 

  The complex potential is obtained from the relation 

    r r

dw
u iv q cos iq sin

dz


      

                 

 r

i

r

i

q cos isin

q e

m
e

r

 

 

  





 

       i

i

dw m m m
e

dz r re z

 



   
    

 Integrating 

   w m log z   ignoring constant of intergration 

    ii mlog(re )     

     

im[log r log e ]

m log r i

mlog r im

  

   

   

 

    
mlog r

m

  

   
 

  Then the equipotentials and streamlines have the respective form 



      
 

   
2 2

2 2

1

i.e., x y cons tan t

x y C

 

 
          1

1

y
i.e., tan cons tan t

x

y C x

 



 

   Thus, the equipotential are circles and streamlines are 

straight lines passing through origin. 

  If the line source is at z=z0 instead of z=0 then the complex 

potential is  

     0w mlog z z   

  If there are a number of line source at 1 2 nz z ,z , , z of respective 

strengths 1 2 nm ,m , ,m  per unit length then the complex potential is 

       1 1 2 2 n nz m log z z m log z z m log z z        

 

Complex potential for a line doublet: 

 

  The combination of a line source and a line sink of equal strength 

when placed close to each other gives a line doublet. 

  Let us take a line source of strength m per unit length at iz ae   

and a line sink of strength m per unit length at z=0. 

 ∴ The complex potential due to the combination is  

     iw mlog z ae mlog(z 0)      

     

i

i

1
i

i 2 2i

2

z ae
mlog

z

ae
mlog 1

z

ae
m log 1

z

ae a e
m

z z








 

 
   

 

 
   

 

  
   
   

 
   

 

  



      
 

   Suppose m become vary large and the distance between 

source and sink ‘a’ becomes small. 

  Then ma→μ 

 i.e., m→∞ and a→0, ma→μ 

   
ie

w
z


  

  If the line sink is situated at z=z0 then the complex potential is 
i

0

e
w

z z





 

Notes: 

 If α=0 then the line source is an x-axis and thus 
0

w
z z





 

 If there are number of line doublets of strength  1 2 n, , ,   per unit 

length with line sinks at points 1 2 nz ,z , , z  and their axis being inclined 

at angles 1 2 n, , ,    with the positive direction of x-axis then the 

complex potential is given by 

  
1 2 ni i i

1 2 n

1 2 n

e e e
w

z z z z z z

  

    
  

 

   

Example: 

Discuss the flow due to a uniform line doublet at origin of strength 𝛍 per 

unit length and its axis being along x-axis. 

Solution: 

  

 We know that the complex potential for a doublet is 
i

0

e
w

z z





. 

 when the doublet is at origin having its axis along z-axis then α=0,z=0 

   

   
2 2

(x iy)
w

z x iy x y

   
  

 
 



      
 

    
2 2 2 2

x i y

x y x y

 
 

 
 

   
2 2

x

x y


 

   
2 2

y

x y


 


 

  Thus, the equipotentials φ=constant are co-axial circle  

    2 2

1x y 2k x (1)    

   And the stream lines ψ=constant are co-axial circle 

    2 2

2x y 2k x (2)    

  Family (1) have centre (k1,0) and radii k1 and family (2) have 

centres (0,k2) and radii k2. 

   The two families are orthogonal. 

 

Line vortices: 

  

 Two dimensional flow q ui v j   where,
 

 

u u x, y

v v x, y




 then the vorticity 

vector and is given by 
v u

q k
x y

  
     

  
 

  This shows that the two dimensional flow the vorticity vector is 

perpendicular to the plane of flow. 

 

Discuss the two dimensional flows for which  ikw log z
2




,k is real 

constant. 

 

 Let iz re   

  iik
w log(re )

2




 



      
 

  
ik k

w log r
2 2

  
 

 

  
k

2


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
 

k
log r

2
 


 

  Thus the streamlines in the plane of flow are the concentric 

circles r=constant. 

 Equipotentials are the radii vectors θ=constant through the origin. 

  The two families are mutually orthogonal and φ,ψ are both 

harmonic function. 

  The radial and transverse velocity components are  

   rq 0
r


 


 r

1 k
q

r 2 r

 
 

 
 

  The circulation  round any closed curve and surrounding the 

origin and in the plane of flow is given by q.ds


    

    

k
q

2 r

ds dr.r rd .

 


  

 

    
k

q.ds d
2

 


 

         
k k

d 2 k
2 2



      
   

  If ε does not surround, then  is easily shown to be zero. 

 Hence, a two dimensional distribution having a complex velocity 

potential
ik

w logz
2




 gives a circulation round any closed curve ε in the plane 

and enclosing the origin O of amount K. 

 Also,round any other curve in the plane of flow which does not enclose 

O the circulation is zero.  

 The streamlines are the concentric circles r=constant and the 

equipotentials the lines θ=constant. 

Uniform line vortex. 



      
 

 The uniform disturbance along an infinite line such that the circulation 

round any curve ε in any plane perpendicular to that line is a constant K when ε 

enclosed the intersection of the vortex and plane and is zero, when ε does not 

contain the intersection. 

 The strength of such a uniform line vortex is defined to be k and its 

complex velocity potential is 
ik

logz
2

. when the origin is taken at the 

intersection of the plane with the line. 

Two-dimensional image system. 

  In a two dimensional fluid motion, if the flow across a curve C is 

zero then the system of line sources, sinks, doublets etc., on one side of the 

curve C is said to form image of line source, sinks, doublets etc., on the other 

side of C. 

Image of a line source in a plane: 

  Without loss of generality, we take the rigid impermeable plane 

to be x=0 and perpendicular to the plane of flow(xy plane).To determine the 

image of the line source of strength m per unit length at A(a,0) with respect to 

the streamline OY. Place a line source per unit length A’(-a,0)The complex 

potential of strength at a point P due to the system of line sources is given by 

   w mlog(z a) mlog(z a)      

       1 2

1 2

i i

1 2

i i

1 2

mlog[(z a)(z a)]

mlog[r e .r e ]

mlog[r r e .e ]

 

 

   

 

 

 

   
1 2 1 2
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i mlog r r im( )

m( )

       
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  If P lies on y-axis then  

    

'

' '

2 1

1 2

PA PA

PA A PAA

i.e.,



  

  

    

 

   Therefore, ψ=-mπ=constant 

    Which shows that y-axis is a streamline. 



      
 

  Hence, the image of a line source of strength m per unit length of 

a line at A(a,0) is a source of strength m per unit length at A’(-a,0). 

  In other words, image of line source with respect to a plane (a 

streamline) is a line source of equal strength situated on opposite side of the 

plane (streamline) at an equal distance. 

Image of a line doublets in a plane: 

   

  Consider the rigid plane x=0 and perpendicular to the plane of 

flow (xy-plane). 

 Thus, to determine the image of a line doublet with respect to the 

streamlines OY. 

  Let there be line sources at the points A and B, taken close 

together, of strength –m and m per unit length. 

  Their respective image in OY are –m at A’, m at B’ where A’ and 

B’ are the reflections of A,B in OY. 

 The line AB  makes angle α with OX . Thus A 'B'makes angle with OX.  

  In the limiting case, as m→∞,AB→0, we have equal line 

doublets at A and A’ with their axes inclined at α,(π-α) to OX  . 

 

Image of vortex in a plane: 

 

  Let us consider two line vortices of strength K and –K per unit 

length at 1A(z z ) and 2B(z z )  respectively. 

  The complex potential due to there line vortices. 

   1 2w ik log(z z ) ik log(z z )     

       1

2

z z
ik log

z z

 
  

 
 



      
 

   

1

2

1

2

1

2

z z
i.e., i ik log

z z

z z
k log

z z

r
k log

r

 
    

 

 
   

 

 

 

  If 1 2r r then ψ=k log(1) 

    =0 

   Thus, the plane boundary OP is a streamline so that there 

is no flow across OP. 

  Hence, the line vortex at B with strength –k per unit length is the 

image of the line per unit length is the image of the line vortex at A is strength 

K per unit length so that A and B are at equal distance from OP. 

Milne Thomson Cricle theorem: 

  Let f(z) be the complex potential for a flow having no rigid 

boundaries and such that there are no singularities within the circle z a . 

Then on introducing the solid circular cylinder z a ,with impermeable 

boundary into the flow, the new complex potential for the fluid outside the 

cylinder is given by 

    2aW f (z) f , z a
z

    

  The complex potential due to a line source, a line doublet and a 

line vertex each have the respective forms, 

      
i

1 1

1

e ik
mlog z z , , log z z

z z 2


  

 
 

 Each of these function has a singularity at 1z z elsewhere each is 

analytic. 

Proof: 

 Let C be the cross section of the cylinder with equation z 1 . 

  Therefore, on the circle C, z a  



      
 

   
2

2 azz a z
z

    

Where z  is the image of the point z with respect to the circle. 

 If z is outside the circle, then 
2az

z
 is inside the circle. 

 All singularities of f(z) lie outside C and singularities of  2af
z

. 

 Therefore,  2af
z

lies inside C 

    ∴  2af
z

 introduced no singularity outside the 

cylinder. 

Thus, the function f(z) and f(z)+  2af
z

 both have the same   

singularities outside C. 

The conditions satisfied by f(z) in the absence of the cylinder and 

satisfied by f(z)+  2af
z

 in the presence of the cylinder. 

  The complex potentials, after insertion of the cylinder, z a  is  

       2

w f z   af
z

   

        
   

   
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ae f ae

ae ae

f  

f  f

  
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   i.e.,    w f z f z     

    = a purely real quantity 

  But, we know that w=φ+iψ 

   It is that ψ=0 

    This shows that the circular boundary in streamline 

across which no fluid flows. Hence, z=a is a possible boundary for a new flow 

   2

w f z   af
z

  is a approximate complex velocity for a new flow. 

 



      
 

Uniform flow part a stationary cylinder 

 

 Uniform stream having velocity =Ui gives rise to a complex potential 

Uz 

    f(z)=Uz 

   then   f z Uz  

  and so 
2 2a Ua

f
z z

 
 

 
 

   Then, on introducing the cylinder of circular section z 0

into the stream, the complex potential for the region z a  becomes 

      2

w f z   af
z

   

       
2Ua

Uz
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Uniform stream at incidence 𝛂 toOX  

  Complex potential for a uniform stream of velocity O at 

incidence to 𝛂 to OX ,i.e., iUze   

  f(z)= iUze   

          
 
 if (z) Uze   

  
2

2 iaaf ( ) U e
z z

  



      
 

   Hence, when the cylinder of section z a is introduced 

the complex potential is z a  

   

2
i i

2
i i

a
w Uze U e

z

a
w U ze e

z

   
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Image of a line source in a circular cylinder show that image of line source 

in a right circular cylinder is an equal line source through the inverse 

point in the circular section in the inverse point in the circular section in 

the plane of flow together with an equal line sink through the centre of the 

section.
 

 

    
 

Solution: 

  

  Suppose there is a uniform line source of strength m per unit 

length through the point  z=d,d>a. 

 Then, the complex potential at a point 

   

 
2

2

f (z) mlog(z d)

f (z) mlog(z d)

aaf mlog d
z z
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  On introducing the circular cylinder of section z a , the 

complex velocity potential in the region z a  

   
2a

w mlog(z d) mlog d
z

 
     

 
 

Alternative form: 
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w mlog(z d) mlog d mlog z cons tan t
z
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   The term 
2a

mlog d
z

 
  

 
 is the complex velocity potential 

due to a uniform line source of strength m per unit length through the point 
2az

d
 . 

  This point 
2az

d
  is the inverse of the point z=d in the circle 

z a . 

  The term m logz is the complex potential due to a line sink of 

strength m per unit length through the centre. 

  The image of a line source in a right circular cylinder is an equal 

line source through the inverse point in the circular section in the plane of flow 

together with an equal line sink through the centre of the section. 

Line doublet parallel to the axis of a right circular cylinder. 

 Suppose there is a uniform line doublet of strength μ per unit length 

through the point z=d>a. Suppose further that the axis of the line doublet is set 

at angle 𝛂 to OX . 

  The complex velocity potential due to this distribution is  
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  Thus, the total complex velocity potential obtained when the 

circular cylinder, of section z a  is introduced by 

   
i i

2

e e
w

a(z d)
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Theorem of Blasius: 

  An incompressible fluid moves steadily and irroationaly under no 

external force to the z-plane, past a fixed cylinder whose section in that plane is 



      
 

bounded by a closed curve ε the complex potential for the flow is W then, the 

action of the fluid pressure on the cylinder is equivalent to’a’ force per unit 

length having component[x,y] and a couple per unit length of a momentum M, 

where  
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Proof: 

  Let ds be a element of arc at a point P(x,y) and tangent at P 

makes an angle θ with x-axis. 

 The pressure at P(x,y),P→pressure/unit length 

  p ds acts along the inward normal to the cylindrical surface and 

its component along its co-ordinate axes 

  
pdscos(90 ),pdscos

pdssin ,pdscos

  

  
 

 Therefore, the pressure at a element ds 

   dF=dx+idy 

     

psin ipcos ds
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           dF ip(dx idy) ipdz 1     

  The pressure equation in the absence of external force is 2p 1
q

2




=constant. 
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  The pressure of the cylinder is obtained by integrating (1) 

   (1)⇨ dF dx idy ipdz    

    F x iy ipdz
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        Using (3) and (4) 

 

 

 

  The moment M is given by  

   M r dF

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   Hence proved. 

 Circulation about a circular cylinder in a uniform stream. 

  Let a liquid be in motion with a velocity –U along the x-axis. The 

complex potential due to the stream is Uz. 

  If the circular cylinder of radius a is introduced inside the liquid, 

then the complex potential , by circle theorem becomes 

    
2Ua

Uz
z

  

  Let there be a circulation and about the cylinder. The complex 

potential due to circulation is ik(logz). 

   

 

 



      
 

 

 Thus, the complex potential of the whole system is  
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 At the stagnation point q 0  
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  Since a and U are constants. 

   Therefore, the flow potential term depends very much on 

the magnitude of K. 

 Case(i) 

  When K 2aU  

   i.e.,
2
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k
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 If the above inequality holds, there are two distinct stagnation points at 

1 2z z ,z z   on the surface of cylinder. 

 The diagram shows the pattern of streamlines formed in such a case 

A1,A2 be the stagnation points. 

 At A1,A2 the pressure is a maximum and so the effect produced on the 

direction OY . 

  Then, the force is   2 2 21
M Re 2 i k 2U a 0

2


       

   When k=0 the streamlines flow is symmetrical about the 

plane y=0 and there is no such tendency. 

  Circulation may be produced in practice by rotating the cylinder 

about its axis. 

 The viscosity of the real fluid would then produce such circulation. This 

lifting effect produced by the circulation is called the magnus effect. 

  We know that at the stagnation points (critical points) there are 

two branches of the streamline which are at right angles to each other. 

 Thus, the liquid inside the loop formed at the stagnation points will not 

be carried by the stream but will circulate round the cylinder. 

 The pressure (forces) on the circular cylinder. 
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 Therefore, by Blasius theorem, 
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function ] 

  Where x,y are components of the pressure of the liquid and ρ is 

the density of the liquid  
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   The only pole inside the cylinder z a is z=0 is a simple 

pole. The residue at z=0 is 2ikU 

   
x iy (2ikU)

x 0, y 2 k U

  
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  This represent an upward thrust on the cylinder due to 

circulation. The lifting tendency is called the magnus effect. 

 

 

Problems on theorem of Blasius: 

 

1.) Infinite circular cylinder in uniform stream with circulation. 

  

  Forms previous problem write the lines 
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   The moment about O, 

    

2
dw

M Re z dz
2 dz



  
  

 
  

    

2
2

2

ik Ua
Re z U dz

2 z z


 
   

 
  

 Co-efficient of (1/2) in integrand=co-efficient of (1\z2) in 
2

2

2

ik Ua
U

z z

 
  

 
 

    = 2 2 2k 2U a        

  
2 2 21

M Re[2 i( k 2U a )] 0
2

x 0, y 2 kU,M 0


     

   

 

  This shows that the cylinder experiences an uplifting forces. 

2. verify that 
z ia

w ik log
z ia

 
  

 
 k and a both real is the complex potential of 

a steady flow of liquid about a circular cylinder, the plane y=0 being a 

rigid boundary. Find the force exerted by the liquid on unit length of the 

cylinder. 

    

    W=φ+iψ 



      
 

   
z ia

i ik log
z ia

 
    

 
 

    1 1z ia y a y a
ik log i tan i tan

z ia x x

     
    

  
 

            
z ia

k log
z ia

 
   

 
 

 The streamlines ψ=constant are given by 
z ia

z ia




=constant=λ 

  For λ≠1, there are non-intersecting coaxial of circle having z=±ia 

as the limiting points i.e.,circles of zero radius. 

 In particular, for λ=1, we get a streamlines which is the perpendicular 

bisector of the line segment joining the points ±ia and it is the radical axis of 

the co-axial system. 

Coaxial circle: 

 A system of circles, every pair of which have the same radical axis. 

Radical axis: 

 The radical axis of two circles is the locus of points at which tangent 

drawn to both circles have the same length. 

 No fluid crosses a streamlines and so a rigid boundary may be 

introduced along any circle λ=constant of the coaxial system,including the 

perpendicular bisector λ=1. 

  We note that for λ=1  

      
2 22 2

z ia z ia

x y a x y a

y 0

  

    



 

  Hence, we can introduce rigid boundaries along 

i. A particular circle λ=constant 

ii. Along the plane y=0(λ=1) 

This establishes the result of the first part of the question. 
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UNIT – IV – TWO DIMENSIONAL FLOWS-II – SMTA5401 



      
 

 

  

Unit 4 

    Use of conformal transformation: 

Suppose z and t are two complex variables defined as z = x+iy, t 

= i   where x, y, ξ, η are real numbers. We can form diagram for the 

loci of z and t, x and ξ horizontally and y and η vertically. 

Let z describes a curve ξ in the (x-y) plane and suppose that t is 

related to z by means of the transformation t = g(z) 

If g(z) is a single values function of z, then to each point in the z - 

plane we can obtain a corresponding point in the t – plane. 

Therefore, the curve ξ in the z – plane is mapped into a curve  

in the t – plane. 

Suppose g(z) is analytic. Let P, P1, P2 be the neighboring points 

in the z – plane and t 

OP = z,   OP1 = z+δz1,    OP2 = z+δz2 

Under the given transformation 

t=f(z), suppose that P, P1, P2 map into the points Q, Q1, Q2 in the t 

– plane. 

OQ = t,   OQ1 = t+δt1,    OQ2 = t+δt2 

It is assumed that 1 2 1 2, , ,z z t t     are small. 

 

 
 

Since g(z) is analytic. 

dt

ds
is unique at P. 

The circular section C of the cylinder and the rigid plane y=0 are
shown.

Circle C is any member of the above mentioned, λ-system
of coaxial circles and it enclosed the point A(0,a) whereas the point
B(0,-a) is external to it.



      
 

Thus, to the first order of smallness 

 1 2

1 2

t t

x x

 

 
  

 1 1

2 2

t x

t x

 

 
  

1 1

2 2

                                                             (1)
t x

t x

 

 
  

arg δt1 – arg δt2 = arg δz1 – arg δz2                                      (2) 

from (1) 

1 1

2 2

                                           (3)
QQ PP

QQ PP
  

From (2) , on reversing the signs of each other  

2 1 2 1                                                                 (4)Q QQ P PP  

The equations (3) and (4) shows that the triangles  

Q2QQ1, P2 PP1 are similar. 

i.e., within the neighborhood of any point p in the z – plane and 

its corresponding mapping in the t – plane, angle remain unaltered. 

From (4) the ratios of corresponding linear dimension when the 

mapping takes place under a transformation of the form t = f(z), where 

f(z) is analytic at p and within its neighborhood. 

Such a transformation is said to be conformal. 

 

1)  Theorems concerning the conformal transformation of the line 

distribution under conformal transformation a uniform line source maps 

into another uniform line source of the same length. 

Let there be a uniform line source of strength m per unit length 

through the point   z = z0. Suppose the conformal t = g(z) is made from 

the z – plane to the t – plane so that the point z = z0 maps the point t = t0. 

Let ξ be a closed curve in the z – plane containing the point z = z0 

and suppose ξ maps   in the t – plane. 

Then t = t0 lies within    

The complex velocity potential ω is the same for both systems 

and has the forms. 

      for the z - planei     

      for the t - planei      



      
 

Thus , .       Since φ is the same at corresponding points of 

ξ,   . 

                                         1d d
 

 


   

Now in the z – plane ω = - m log(z-z0) 

                                 dω = -m 
0

dz

z z
 

                             
0

2
dz

d m m i
z z



    
   

Since the integrand has a residue of 1 at z = z0 

                                   d d id     

                            2                                                       (2)d m


    

The numerical value of this is the volume of fluid crossing unit 

thickness of ξ per unit t time. 

Equation (1) and (2) shows that the same volume crosses unit 

thickness of    per unit  time which implies an equal line source of 

strength m per unit length through t = t0. 

 

2) Under conformal transformation a uniform line vortex maps into another 

uniform line vortex of the same strength. 

Let there be a uniform line vortex of strength k per unit length 

through z = z0. Suppose the conformal transformation t = g(z) is made 

from the z – plane to t – plane so that the point z = z0 maps into t=t0. 

Let   be its map in the t – plane then    contain t = t0. 

The complex velocity potential ω is the same for both systems 

and has the forms. 

      for the z - planei     

      for the t - planei      



      
 

Thus , .       Since φ is the same at corresponding points of 

ξ,   . 

                                         1d d
 

 


   

In the z – plane the complex potential is  

0log( )
2

ik
z z


   

0

2
2 2

ik dz ik
d i k

z z
 

 
 

   
   

Equating real parts gives, 

                   ;         -           (2)d k d k
 

      

The integral on the LHS is the circulation round ξ. 

Equation (1) and (2) shows that the circulation round    is 

also k. 

Thus, the line source through z = z0 of strength k per unit 

length maps into an equal line source through t = t0. 

 

3) Under conformal transformation a uniform line doublet maps into 

another uniform line doublet of the different length. 

             Let there be a uniform line doublet of strength μ per unit 

length through P where z = z0. 

 Suppose that under the conformal transformation t = g(z), P maps 

into Q where  

 t = t0. 

Let the line doublet be replaced by equivalent line sources of 

strength -m, m per unit length through P, P  where ,PP z m z      

  PP  is in the direction of the axis of the line doublet. 

  Suppose P  maps into Q  

 Then the line source of strength -m, +m per unit length through  

PPmaps into ones of strength -m, +m per unit length through QQ . 



      
 

 If , ( )QQ t t g z z       

 So that,  

 ( )t g z z   

 arg  t = arg g (z)+ arg z   

 Hence the two line sources through  QQ  gives a line doublet at 

Q of strength  . 

  ( )m t g z      

 The inclination of the axis of the line doublet to the real axis is 

increased by      arg ( )g z . 

4) Single infinite row of vertices: 

    To find complex potential of an infinite row of parallel vertices 

of strength k and distance ‘a’ apart. 

Proof: 

      Let there be 2n+1 vertex with their centers on x – axis and the 

middle vortex having its center at the origin. 

 The vertices are placed at points z = Ina where n=0,1,2… 

symmetrical about y – axis. 

 The complex potential due to these vertices is  

 

log log( ) log( 2 ) ... log(z na) iklog(z a)

                                       log( 2 ) ... log( )

ik z ik z a ik z a ik

ik z a ik z na

          

    
 

     2 2 2 2 2 2 2 2log log( ) log( 2 ) ... log( )ik z ik z a ik z a ik z n a         

                     

 2 2 2 2 2 2 2 2log log( ) log( 2 ) ... log( )
a

ik z ik z a ik z a ik z n a
a




       

     

2 2 2
2 2 2 2 2

2 2 2 2 2
logz log( ) 1 log( 2 ) 1 ... log( ) 1

2

z z z
ik ik a ik a ik n a

a a n a

      
                

      

 
2 2 2

2 2 2 2 2

2 2 2 2 2
log 1 1 ... 1 log ( 1) ( )(2 )...( )

2

nz z z z a
ik ik a a n a

a a a n a





      
           

     

 

 Ignoring constant terms and having 
z

a


  



      
 

 
2 2 2

2 2 2 2 2
log 1 1 ... 1               

2
ik as n

n

  
 

  

    
        

    
 

 logsinik   

     logsin                                          (1)
z

ik
a


  

 The velocity of vertices at origin is given by 

 log
d z

q ik
dz a





 

   
 

 

      
0

logsin log
z

d z z
ik ik

dz a a

 



 
   
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0

cos
1

sin
z

z

aik
za z

a








 
 
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 
 

 

 Indeterminate form   as 0z   

 

 Hence, velocity at 0z  is zero. 

 Thus, the infinite row of vertices does not induce any velocity by 

itself. 

 The velocity at any point of the fluid other than the vertices is 

given by,  

  cot
d ik z

q u iv
dz a a

  
       

        cot ( )
ik

x iy
a a

  
  
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x iy
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
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 
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2cos ( )sin ( )

2sin ( )sin ( )

x iy x iy
ik a a

a
x iy x iy
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 


 

 


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x yi

a aik
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

 

 
 
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x y
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a aik
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

 

 
 

   
 
 

 



      
 

  

2
sinh

2 2
cosh cos

y
k

a au
y x

a a

 

 




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2
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2 2
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a av
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 We have, 

     logsin
z

i ik
a


      

  logsin
z

i ik
a


     

  ( ) ( ) logsin logsin
z z

i i ik ik
a a

 
   

 
      

 
 

  2 2 logsin sin
z z

i ik
a a

 
   

 Streamline φ= constant, are found to be  
2 2

cosh cos
y x

a a

 
  is 

constant. 

5) Karman vortex street: 

    This consist of two parallel infinite rows of line vortices arranged 

as follows 

 The first row consists of line vortices of strength k at the points 

having cartesian coordinates. 

 
1

( , )         0 1, 2,...
2

na b where n     

 The second row consists of line vortex of strength -k at the points 

 
1 1

(2 1) ,       0, 1, 2,...
2 2

n a b where n
 

     
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 Such arrangement is called as Karman vortex street. 

Proof: 

 This consist of two parallel infinite row AA  and BB  of vortices 

of equal spacing ‘a’ so arranged that each vertex of strength k of  AA is 

exactly above the midpoint of the join of two vertices of BB  each of 

strength -k. 

 Therefore, the complex potential 

 logsin ( ) logsin
2 2 2

ik ik a
z ib z ib

a a

 


 

 
      
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 By considering the point z1 = ib, z2 = - ib  

 The velocity of the vertex at z = ib is  
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
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tanh
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 1 1

2
tanh              0

2

k b
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a a

 



 
  
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 The same can be shown to each of vortices at the row AA  and  

BB  move with the same velocity. This means that the vertex 

configuration remains unaltered at all times. Since, both AA  and  BB  

have the same velocity   
2

tanh
2

k b

a a

 



 
 
 

  in x – direction. 

 Hence the street moves through the liquid with two velocity. 

 This shows that Karman vortex street is realized when a flat plate 

moves broadside through a liquid. 

6) Schwartz – Christoffel transformation: 

   

 

 



      
 

  Fig (i) shows n points 
1 2 3,A ,A ,...AnA    on the real axis t = ξ+iη, ξ 

and η are real. 

 The points 
rA  are specified by t = ar (r = 1,2,…n) 

 The ordering is such that, 

 1 2 3 1... n na a a a a      

 Now suppose that, t mapped onto the z – plane  

 

1 21 1 1

1 2( ) ( ) ...( )                                             (1)
n

n

dz
k t a t a t a

dt

 
  
  

     

 Which is conformal everywhere, save at t = ar (r = 1,2,…n) 

 The number 1 2, ,...              tann are real cons ts    

 

1 21 1 1

1 2( ) ( ) ...( )                                             (*)
n

n

z
let k t a t a t a

t
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  





  
     

 Where k be the complex constant  

  t  be the changes in t  

  z the corresponding change in z. 

 From (*), 

 
1 21 1 1

1 2( ) ( ) ...( )           
n

nz tk t a t a t a
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   
  

     

 Applying argument on both sides, 

 
1 21 1 1

1 2arg( ) arg[ ( ) ( ) ...( ) ]          
n

nz tk t a t a t a
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  

     

1 2
1 2arg( )[arg( ) ( 1)arg( ) ( 1)arg( ) ... ( 1)arg( )]          n

nt k t a t a t a
 


  

          

 

 First suppose we say, t travels from 1 to a ,  along =0  

 Then, arg( ) 0,t    1 2arg( ) arg( ) ... arg( )nt a t a t a         

 Hence,  

 

1 1 2(arg ) arg ( ) ( ) ... ( ) tan                       (2)nz k cons t              

 

 Equation (2), z describes the straight line segment.  

 UA1 as t travels from 1 to a ,  along =0  

 Next t travels from 1 2a  to a ,  along =0  

  

 Then, arg( ) 0,t 

 

1 2arg( ) 0 and arg( ) ... arg( ) tan           (3)nt a t a t a cons t         



      
 

 This shows that, z describes a line segment A1, A2, as t travels 

from 
1 2a  to a ,  along =0  

 From (2) and (3), 

 2 1 1(arg ) (arg z)z        

 The angle between the direction UA1, A1, A2 is 
1  . This 

means t travels along the axis =0  from  1 part A , similarly at  t 

moves from 2 3a  to a ,  along =0  

Then, arg( ) 0,t 

1 2 3arg( ) 0 , arg( ) 0  and arg(t-a )... arg( ) tan           (4)nt a t a t a cons t       

 

 Equation (4) shows that z describes a line segment A2, A3, as t 

travels from 2 3a  to a ,  along =0  

 From (3) and (4) 

 3 2 2(arg ) (arg z)z       

 This shows that direction z changes by 2A  in the positive sense 

as z passes through A2. 

 Continuing in this way, z describes the sides 

1 1 2 1,  ,  ,  . ,  ,  n n nA A A A A A  of a closed polygon on z – plane , as t 

moves along the real axis 1 to a , 1 2a  to a ,  2 3a  to a , …….. 

1a  to a ,   to +n n na   respectively. 

 Therefore, the angles turned through in the positive sense at A1, 

A2, …. An-1, An  are 1 2, ,..... n         

 So, the internal angles of the polygon at these points are 

1 2, ,... n    

 Suppose that, 1 2 ... ( 2)n n         

  Then , A1, A2, …. An-1, An is a closed polygon , the portion, 

1nA A beast line . 

  Further, since the half plane, img (t)>0 is along the positive 

direction of the axis η=0. The corresponding area in the z plane is the 

interior of polygon. 

  If 1 2 3 1... n na a a a a      are the n distinct points on the img (t) 

=0 in the t – plane.  

 If 1 2, ,... n   are n real constants  1 2 ... ( 2)n n        , where n is 

the positive integer. 



      
 

 Then the transformation,  

 
1 21 1 1

1 2( ) ( ) ...( )                                      
n

ndz k t a t a t a dt
 

  
   

     
 

On integrating both sides, we get

1 21 1 1

1 2( ) ( ) ...( )                                      
n

nz k t a t a t a dt
 

  
   

     
  

 Here, k are the constants that maps the entire line img (t) = 0 onto 

the boundary  

A1, A2, …. An-1, AnA1 of a closed polygon on n – sides. 

 Such a way, that points t = ak transform into Ak at which the 

internal angles are k = 1,2,3,..n and the half plane img (t)>0 transforms 

into the interior. 

 This transformation is called the Schwartz - Christoffel 

transformation.  

Note; 

 Suppose the real line t is infinity then, if na    

 
1 21 1 1

1 2( ) ( ) ...( )                                
n

n

dz
k t a t a t a

dt

 
  
  

     

 Put k = 
1

A( )
n

na





   

 Then , 

1

1

1( ) A 1                          

n

n

n

t
k t a

a










  
   

 
 

 

1

A 1         A, as  a

n

n

n

t

a






 
    

 
 

 The Schwartz – Christoffel transformation becomes 

 
1 21 1 1

1 2( ) ( ) ...( )                                
n

n

dz
A t a t a t a

dt

 
  
  

     

 This shows an   , the factor 
1

( )
n

nt a





  is suppressed. A similar result 

for an    
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UNIT – V – THREE DIMENSIONAL FLOWS – SMTA5401 



      
 

1) Stress components in a real fluid : 

             Let s  be a small rigid plane area inserted at a point P in a viscous 

fluid. 

            Cartesian coordinates (x, y, z) are referred to a set of fixed axes OX, 

OY, OZ. 

                   Suppose that 
nF is the forces exerted by the moving fluid on one 

side of s , the unit vector n̂  being taken to specify the normal at P to s  on 

this side. 

                   In case, of inviscid fluid, 
nF  is aligned with n̂  for a viscous fluid, 

the frictional forces are called into play between fluid and the surface so that 

nF  will have a component tangential to s . 

                   Suppose the cartesian components of 
nF  be  ( , , )nx ny nzF F F    so 

that  

 i, j, knx ny nzn F F FF     

                   Components of stress parallel to the axes are defined to be 

, ,nx ny nz   . 

 
0

nx nx
nx

s

F dF
lt

s ds





   

 
0

ny ny

ny
s

F dF
lt

s ds





   

 
0

nz nz
nz

s

F dF
lt

s ds





   

 



      
 

                   In the components , ,nx ny nz   , the first suffix n denote the direction 

of the normal to the elements of plane s , second suffix x or y or z denotes the 

direction in which components measured. 

                    n̂  in turn with the unit vector , ,i j k  in  , ,OX OY OZ
  

which is 

achieved by suitably re-orientating s . 

                     Three set of stress components, 

 

xx xy xz

yx yy yz

zx zy zz

  

  

  

 

                   The diagonal element , ,xx yy zz    of this array are called normal or 

direct stresses. 

                    The remaining six elements are called shearing stresses. 

                For an inviscid fluid, 

 xx yy zz p       

 0xy xz yx yz zx zy           

               We consider the normal stresses as positive when they are tensile and 

negative when they are compressive, so that p is the hydrostatic pressure. 

                 The matrix, 

  

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 
 
 
 

 

                  are called the stress matrix. 

                   The quantities  ij (i, j= x, y, z) are called the components of the 

stress tensor where matrix is of above form. 

2) Derive the relations between cartesian components of stress: 

        We consider the motion of a small rectangular parallelepiped of 

viscous fluid, its center being P(x, y, z) and its edges of lengths 

, ,x y z    parallel to fixed cartesian axes. The mass p x y z    of the 

fluid element remains constant and the element is presumed to move 



      
 

along with the fluid. In the diagram the points  
1 2, PP  have coordinates  

1 1
( , , ), ( , , )

2 2
x x y z x x y z    

  

      At P(x, y, z) the force components parallel to , ,OX OY OZ
  

 on the 

surface of area  y z  through P and having i as unit normal are 

, ,xx xy xzp y z p y z p y z       
    

                  At 2

1
( , , )

2
P x x y z , since i is the unit normal measured outwards 

from the fluid, the corresponding force components across the parallel plane of 

area y z   are 

 

1 1 1

2 2 2
, ,

xyxx xz
xx xy xzy

pp p
p x p x p x

x
z

x
z y z

x
y      

             
            

             

 

    For the parallel plane through 1

1
( , , )

2
P x x y z , since -i is the unit 

normal drawn outwards from the fluid element, the corresponding 

components are, 

1 1 1

2 2 2
, ,

xyxx xz
xx xy xz

pp p
p x p x p xy z y z y

x
z

x x
      

             
             

  
 

           

 

      The forces on the parallel planes through   1 2, PP  are equivalent to a 

single force at P with components, 

 , ,
xyxx xz

pp p
x y z

x x x

  
   

   
 

           Together with couples whose moments (to the third order) are 



      
 

 
         about oy;

         about oz

xz

xy

p x y z

p x y z

  

  





 

         Similarly, the pair of faces perpendicular to the y axis gives a force 

at P having components  

 , ,
yx yy yzp p p

x y z
y y y

  
   
 
   

 

            Together with couple couples of moments, 

 
         about oz;

         about ox

yx

yz

p x y z

p x y z

  

  





 

             The pair of faces perpendicular to the z axis give a face at P 

having components, 

 , ,
zyzx zz

pp p
x y z

z z z
  

  
 
   

 

             Together with couple couples of moments, 

 
         about ox;

         about oy

zy

zx

p x y z

p x y z

  

  





 

              Taking into account the surface forces on all six faces of the 

cuboid, we see that they reduce to a single force at P having 

components,  

 

, ,
yx xy yy zy yzxx zx xz zz

p p p p pp p p p
x y z

x y z x y z x y z
  

              
           

              

 

          Together with a vector couple having cartesian components, 

      , ,yz zy zx xz xy yxp p p p p p x y z     
 

 

           Now, suppose the external body forces acting at P are [X, Y, Z] 

per unit mass, so that the total body force on the element has 

components  , ,ZX Y x y z   . Take moments about the i direction 

through P, then  



      
 

          Total moment of forces =(moment of inertia about axis) *(angular 

acceleration) 

 i.e.,   4 50 0yz zyp p x y z      

          here 0 n  satisfies a quantity of  thn  order of smallness in  

, ,x y z   . Thus to the third order of smallness,  

   0yz zyp p x y z     

        So that as the element becomes vanishingly small, we obtain, 

  yz zyp p  

       Similarly,  

 ,zx xz xy yxp p p p   

          Thus the stress matrix is diagonally symmetric and contains only 

six unknowns. 

3) Relation between stress and rate of strain : 

       Using the analysis of a foregoing section, we now link together the 

stress and rates of strain in a viscous fluid in motion. 

         Suppose fig (a) represents a particle of fluid at time t in the shape 

of a rectangular parallelepiped of edges x y z   , parallel to fixed 

cartesian axes. 

            At the time t the velocity components in the x direction at the 

corner (x, y, z) of the bios is u and so that at the corner  ( , , )x x y z  is 

u
u x u a x

x
 

 
   

 
 

 



      
 

                   Thus at time (t+δt) , therefore the edge δx has grown to 

length x a x t   , since aδx is the relation velocity increases between 

its two ends. 

                    Similarly, the edges δy, δz have grown to lengths 

(1 ), (1 )y b t z c t     respectively. 

                       Thus, volumetric increment in the interval δt is  

(1 )(1 )(1 ) ( )x y z a t b t c t x y z a b c x y z t                   

                    Which gives a dilatation or volumetric strain in time δt 

Of (a+b+c) δt. 

                 Hence at time t, the rate of dilatation is Δ (or) volumetric 

stress where  

 
u u u

a b c
x y z

  
      

  
 

 = dig q 

          This quantity have been seen to be invariant at each point of the 

fluid its volume is also A+B+C in terms of principle rates of strain. 

           Further, w.k.t, the equation of continuity for an incompressible 

fluid is Δ=0, but for a compressible one Δ≠0, we discuss the two cases 

separately, 

           In the case of incompressible fluid, we suppose the principle 

stresses p1,p2,p3 differ from this mean value -p by quantities proportional 

to the rates of distortion A, B, C in the principal direction. 

          Thus we write,  

 

1

2

3

2

2                                                (1)

2

p p A

p p B

p p C







   


   
   

 

          Where μ is a constant. 

            In the case of compressible fluid we have the additional affect of 

the rate of dilatation Δ manifesting itself equally in the directions. 



      
 

       This effect we represent by adding to the R.H.S. of each of the 

equation (1)  the quantity λΔ, where λ is a constant. 

         So that in the case  

 
1

2

3

2

2                                                (2)

2

p p A

p p B

p p C

 

 

 

    


    
    

 

         Adding together equation (2) and using Δ=A+B+C, we find, since 

p1+p2+p3=-3p and         Δ≠0  and 
2

                                            (3)
3

    

           The equation (1), (2) link principal stresses with principal rate of 

strain. 

           We next evaluate non principal stress    ,... ,...xx yzp p  in terms of 

non principal rates of strain. 

          The equation of motion in stress analysis is  

 2 2 2

1 1 2 2 3 3xxp l p l p l p    

       Using the equation (2), we obtain,  

                       
2 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3( ) 2 ( C) A( )xxp p l l l l A l B l l l l           

            2p A       

 2
u

p
x

 
 

     
 

 

          Permuting the symbols gives the equation, 

 

1

2

3

2

2                                                (3)

2

u
p p

x

v
p p

y

w
p p

z

 

 

 

  
        

  
      

  
 
     

   

 



      
 

           Where Δ= div q, Δ=0 for incompressible flow and 
2

3
    for 

the compressible flow. From analysis stress in fluid motion, we get  

 1 1 1 2 2 2 3 3 3yzp m n p m n p m n p    

 

1 1 2 2 3 3 1 1 2 2 3 3( )( ) 2 ( C)p m n m n m n m n A m n B m n           

 2 f  

 
w v

y z

  

  
  

 

      Thus we obtain the three equation  

                                  (4)

yz zy

zx xz

xy yx

w v
p p

y z

u w
p p

z x

v u
p p

x y







  
    

  
   

    
  

  
   

    

 

        Which are true for compressible and incompressible fluid. 

4) The Navier- stokes equation of motion of a viscous fluid: 

           The translational equation of motion in the form,  

1 yxxx zx
pp pdu

X
dt x y z

  
    

   
 

            On substituting,  

          2xx

u
p p

x
 

 
     

 
 

yx

zx

v u
p

x y

u w
p

z x





  
  

  

  
  

  

 

             We obtain,  

            21du p v
X V u V

dt x x



 

   
        

    
 



      
 

            Since  
2

3
    for the compressible fluid and since Δ=0 for 

incompressible fluid this equation may be written unambiguously for the 

two cases in the form,  

           21 1

3

du p v
X V u V

dt x x

  
     

  
 

             Thus the equation of motion in the three directions may be 

written FDX  

           

2

2

2

1 1

3

1 1
                               (1)

3

1 1

3

du p
X V u V

dt x x

dv p
Y V u V

dt y y

dw p
Z V u V

dt z z







  
         

   
      

   
  
     

    

 

          The tensor form of these equation is  

  

     

 

     

 

                     [ , , Z],q [x, y, z]F X Y   the vectoral form of equation (1) is clearly 

 2 1
( . )               (2)

3

dq dp
F V q V q

dt 
        

 Now, 

2

2

1
( . ) ( ),

2

( ) ( . ) ,

dq q q
q q q q q

dt t t

q q q

      
            

      

    

 

 So that (2) may also written as 

 

21 4
( ) ( ( . ) ( ))            (3)

2 3

dq dp
q q q F V q V q

dt 

 
            

 


 

any of the forms (1), (2) and (3) are called the Navier- stokes 

equation of motion. 

, , ,

1 1
                (i) writing,

3

i
i i i jj i

du
X p Vu V

dt 
    



      
 

          For incompressible flow, the forms (2), (3) gives, 

          2(1 )
dq

F p V q
dt

       

          (1 ) ( )                    (4)F p V q        

         Where, as before 
dq

dt
 may be developed in the form on the L.H.S. 

of (3)  

      The equation (4) shows that for incompressible flow of the motion 

differs from Euler’s equation in inviscid flow by the terms ( )V q   

. This term, due to viscosity, increases the complexity by boundary 

condition is required. 

      This furnished by the condition that there must be no slip between a 

viscous fluid and its boundary. For this reason, we cannot obtain the 

solution to the corresponding flow problem by solving (4) and then 

letting V→0 

5) Some solvable problems in viscous flow: 

    There is no general solution to the Navier- stokes equation, 

nevertheless there are some special problems which can be solved. We 

consider a few here. The problem treated all relate to incompressible 

fluids. 

 Steady motion between parallel planes; 

 
 The region 0≤z≤h between the planes z=0, z=h is filled with 

incompressible viscous fluid as shown above in diagram. The plane z=0 

is held at rest and the plane z=h moves with constant velocity vj. it is 

required to determine the nature of the flow the conditions are steady, 

assuming there is no slip between the fluid and either boundary, 

neglecting body forces. 



      
 

  Let P(x, y, z) be any point within the fluid . then the velocity q 

at P will be of the form. 

  q=v(y, z)j                            (1) 

 the equation n of the continuity .q =0, gives  

 0           (2)
v

y





 

  and from (1), (2), we infer that, 

 q=v(z)j                          (3) 

  with no body forces, the Navier – stokes vector equation of 

the motion may be taken in the form  
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( . )                              (4)

q
q q p V q

t 


      


 

 the form (4) is the suitable here since we are dealing with axes 

fixed in space. Since the flow is steady, 
q

t




=0   also,  

 ( . )q (v ) ( ) 0q v z j
y


  


 

  and 

 2 *( )q v z j   

 hence (4) gives, 

  *0 ( )
p p p

i j k v z j
x y z


   

     
   

 

 Equating coefficients of the unit vector,  

 0                             (5)
p

x





 

 
2

2
                         (6)

p d v

y dz






 

 0                             (7)
p

z





 

 Equation (5), (7) shows that p=p(y). hence (6) becomes, 

 
2

2

( ) ( )
                         (8)

dp y d v z

dy dz
  

 The L.H.S. of equation (8) is a function of y only; the R.H.S. 

is a function of z only. Hence each is a constant. as the fluid is moving 

in the positive y direction the pressure p(y) should decrease as y 

increases. Hence 
( )

0
dp y

dy
  and so we take  

 
2

2

( ) ( )dp y d v z
P

dy dz
    



      
 

 

 Where P>0. Solving for v gives, 

      2                         9
2

p
v z A B z z



 
 
 

   

 When z=0, v=0 and when z=h, v=V. hence we find  

    2                         0
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 Equation (10) shows that the velocity profile between the 

plates is parabolic. 

 The total flow per unit breadth across a plane perpendicular to 

Oy is 

 
3

0

1 1
( )

2 12

h
Ph

v z dz Vh


   

 And the mean velocity across such  a section is   

 
2

0

1 1 1
( )

2 12

h
Ph

v z dz V
h 

   

 The tangential stress at any point P(x, y, z) is  

 
2

dv V Ph Pz

dz h


 
    

 Thus the drag per unit area in the lower plane is 
2

V Ph

h 
   and 

that on the upper plane is 
2

V Ph

h 
  

6) Steady flow through tube of uniform circular cross section (Poiseuille 

flow) 

 

 
   The figure illustrates the steady flow of an inviscid 

incompressible fluid through a circular tube of radius a . P is a point in 



      
 

the fluid having cylindrical polar coordinates    (R, θ, z) refereed to the 

origin O on the axis of the tube which is taken as the z- axis . we assume 

there are no body forces. Then continuity considerations applied to an 

annular shaped element of radii R, R+δR of the fluid indicate that the 

fluid velocity is of the form 

  q=w(R)k         (1) 

 let us take the Navier – stokes vector equation in the form  

 
1

( . ) ( )                          (2)
q

q q p V q
t 


       


 

 here this form  is adopted with the last term ( )V q    and 

not 2V q    as in the previous case, because the axes are not fixed in 

space. For the same reason the form give on the L.H.S. is more useful 

than  
dq

dt
 then we have,  

0   (  )
q

steady conditions
t





 

 ( . ) ( )[w(R) k] 0q q w
z


  


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in the above  ( . )q q  is easy to evaluate since the operand involves the 

constant unit vector k. also,  

 

ˆˆ

1 ˆ(R)

0 0 ( )

R R k

q w
R R z

w R






  
    

  
 

 hence, 

 

ˆˆ

1 1
( ) (Rw ) k

0 (R) 0

R R k

d
q

R R z R dR

Rw





  
     

  
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 thus the equation (2), becomes,  

 
1 ( )ˆ0

p p p v d Rw
R k k

R R z R dR 

   
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 equating coefficients of the unit vectors gives, 

 0                       (3)
p

R





 

 0                                         (4)
p







 



      
 

 
( )

                          (5)
p d Rw

z R dR

 



 

 equation (3) and (4) shows that p=p(z) so that (5) becomes 

 
( )

[ ( )]                          (6)
dp z d

Rw R
dz R dR


  

  the L.H.S. of (6) is a function of z only the R.H.S. is a 

function of R only. Hence each is constant. As flow is supposes to occur 

in the positive direction, we suppose 
p

z




 <0. Take each side of (6) to be 

-P where P is a positive constant. Then  

 ( )   
d PR

Rw
dR 

    

 or 

  
2

  
2

Rdw PR
A

dR 
   

  hence 

 
1

  
2

dw A PR

dR R 
   

 and so, 
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( ) log                       (7)
4

PR
w R B A R



 
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 
 

now w is finite on R=0. Thus we require A=0. Also on R=a, w=0 since 

there is no slip. 

 Then  , Hence 
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4

P
w R a R



 
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 Then for, (8) shows that the velocity [profile is parabolic. i.e., 

the plot of w against R from R=0 to a is parabolic shape. 

  The volume of fluid discharged over any section per unit time 

is  

 
4

0

( )2
8

a
Pa

Q w R RdR





   

  If p denotes the pressure difference at two points on the axis 

of the tube distant l apart, then 
p

P
l

  

7) Analysis stress in fluid motion: 

 



      
 

 
      With a notation of section a plane perpendicular to 

xP   cuts 

the principal axes    , ,n n nPx Py Pz  of the rate of strain quadric in A,B,C to 

form a small tetrahedron of fluid PABC in fig. If A  denotes this area 

of the face ABC, then  1 2 3, ,l A l A l A    are the areas of the faces PBC, 

PCA, PAB. Since these last three are principal planes, using the notation 

it follows that the only forces on them are the normal forces 

1 1 2 2 3 3,p ,pp l A l A l A   . The forces on the face ABC are 

, p ,pxx xy xzp A A A    

in the x-y-z direction.  

 The equation of motion in the x direction (assuming the element 

to be a particle 

 of fixed mass moving with the fluid) is

     1 1 1 2 2 2 3 3 3 30xxp A l p l A l p l A l p l A        

  Where 30  is a term of the third order. Thus in the limit as the 

volume of the element tends to zero, we obtain 
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 Adding the equations (1) together we find  

 1 2 3( 3 , )xx yy zzp p p p p p p say        

 Thus the sum of the normal stresses across any three 

perpendicular planes at a point is an invariant. We denote this sum by -

3p, so that p denotes the mean pressure at the point. 

  Resolving in the direction   and neglecting third order terms,  
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 The equation (1) and (2) express the six distinct components 

of stress matrix in terms of the principal stresses. 



      
 

8) Principal plane and principle stress: 

      The plane where the maximum normal stress exist and shear 

stress is zero is called principal plane and these maximum negative 

values of normal stress is called principal stress. 

9) The co-efficient of viscosity and laminar flow: 

 
 Two parallel planes z=0, z=h , a small distance h apart, the 

space between containing a thin film of viscous fluid. The plane z=0 is 

held fixed whilst the upper plane is given  a constant velocity right 

wards of amount vj. then provided V is not excessively large, the layers 

of liquid in contact with x=0 are at rest whilst those in contact with z=h 

are moving with the velocity vj. 

 i.e., there is no slip between fluid and either surface. A 

velocity gradient is set up in the fluid between the planes. At some point 

P(x, y, z) in between the planes the fluid velocity will be vj where0<v<V 

an v is independent of x, y. thus when z is fixed, v is fixed. 

  i.e., the fluid moves in layers parallel to the two planes. Such 

flow is termed laminar. Due to the viscosity of the fluid there is friction 

between these parallel layers. 

 Experimental works shows that the shearing stress on the 

moving plane is proportional to 
V

h
when h is sufficiently 

small. Thus we write this stress in the form  
V

h
 , where    

is a constant called the coefficient of viscosity. Now suppose 

h→0. Then the stress on the fixed plane is  
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h

V dv
P
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 



 
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 
 

 w.k.t, we put u=0, w=0, v=v(x) in the equation of shearing 

stress 

 we obtain,  ,     =0,      =0                   (2)zy xz yx

dv
p p p

dx
  

  from (1) and (2),                                 (3)    

 i.e., the constant  μ is the coefficient of viscosity from (1) we 

find the dimensions of μ. Thus, 
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 where  M, L, T   signifies  mass, length and time. 

 In aerodynamics a rather more important quantity is the 

kinematic coefficient of viscosity v defined by  

                     (5)v



  

 Thus, 2 1[ ]v L T   

 For most fluids μ depends on the pressure and temperature. 

For gases, according to kinetic theory, μ is independent of the pressure 

but decreases with the temperature. 

  

  

 

 


