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I. Fuzzy Logic 

Introduction 

 

The word fuzzy refers to things which are not clear or are vague. Any event, process, or 

function that is changing continuously cannot always be defined as either true or false, which 

means that we need to define such activities in a Fuzzy manner. 

What is Fuzzy Logic? 

Fuzzy Logic resembles the human decision-making methodology. It deals with vague and 

imprecise information. This is gross oversimplification of the real-world problems and based on 

degrees of truth rather than usual true/false or 1/0 like Boolean logic. 

Take a look at the following diagram. It shows that in fuzzy systems, the values are indicated by 

a number in the range from 0 to 1. Here 1.0 represents absolute truth and 0.0 

represents absolute falseness. The number which indicates the value in fuzzy systems is called 

the truth value. 

 

In other words, we can say that fuzzy logic is not logic that is fuzzy, but logic that is used to 

describe fuzziness. There can be numerous other examples like this with the help of which we 

can understand the concept of fuzzy logic. 

Fuzzy Logic was introduced in 1965 by Lofti A. Zadeh in his research paper “Fuzzy Sets”. He 

is considered as the father of Fuzzy Logic. 
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Fuzzy Logic – Set Theory 

Fuzzy sets can be considered as an extension and gross oversimplification of classical sets. It 

can be best understood in the context of set membership. Basically it allows partial membership 

which means that it contain elements that have varying degrees of membership in the set. From 

this, we can understand the difference between classical set and fuzzy set. Classical set contains 

elements that satisfy precise properties of membership while fuzzy set contains elements that 

satisfy imprecise properties of membership. 

 

Mathematical Concept 

 

Representation of fuzzy set 

Let us now consider two cases of universe of information and understand how a fuzzy set can 

be represented. 
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Case 1 

When universe of information U is discrete and finite – 

 

 

Case 2: 

 

When universe of information U is continuous and infinite − 

 

In the above representation, the summation symbol represents the collection of each element. 

Operations on Fuzzy Sets 
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Intersection/Fuzzy ‘AND’ 

Let us consider the following representation to understand how the Intersection/Fuzzy 

‘AND’ relation works − 
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 Complement/Fuzzy ‘NOT’ 

Let us consider the following representation to understand how the Complement/Fuzzy 

‘NOT’ relation works – 
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Properties of Fuzzy Sets 

Commutative Property: 

 

Distributive Property 

 

 

Idempotency Property 
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Identity Property 

 

 

Fuzzy Sets: Basic Types 

○ Fuzzy sets 

－Sets with vague boundaries 

－Membership of x in A is a matter of degree to which x is in A 

○ Utilization of fuzzy sets 

(1)  Representation of uncertainty 

(2)  Representation of conceptual entities 

e.g., expensive, close, greater, sunny, tall 

○  Fuzzy Sets          Crisp Sets 

membership        characteristic  

function             function 

: [0,1]A X          : {0,1}Am X   

e.g.,  
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i) “close to 0” : 2

1
( )

1 10
A x

x
 

  

ii) “very close to 0” : 

2

2

1
( )

1 10
A x

x


 
  

 
 

iii) “close to a” : 2

1
( )

1 10( )
A x

x a
 

   

 

○ Difference between crisp, random, and fuzzy variables: 

        Crisp variable: a uniform probability distribution  

        Random variable: a probability distribution 

        Fuzzy variable: a membership function 

is associated with its domain. 
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○ Generalization  

i) Ordinary fuzzy sets: : [0,1]A X   

Abbreviated as : [0,1]A X  . 

      i.e., Each element of X is assigned a 

        particular real number (i.e., precise 

membership grades). 

    ii) L-fuzzy sets: :A X L , where L is a partial order set. 

iii) Interval–valued fuzzy sets: : ([0,1])A X  , 

   where ([0,1])  is the family of all closed interval in [0,1]. 
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iv) Fuzzy sets of type-K 

-- Interval–valued fuzzy sets possess  

fuzzy Intervals 

(a) Type-2: : ([0,1])A X  , where 

([0,1]) : fuzzy power set of [0,1], the set of all ordinary fuzzy sets defined 

on [0,1]. 

 

(b) Type-3 

      

v) Level-K fuzzy sets 

-- Elements in a universal set are themselves fuzzy sets. 
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(a) Level-2: : ( ) [0,1]A X   

     e.g., fuzzy set “x is close to r” 

       x : a fuzzy variable 

       r : a particular number , e.g., 5. 

 

(b) Level 3: 

 

   vi) Combinations of interval-valued, L, 

type-K, level-K fuzzy sets. 

1.4 Fuzzy Sets: Basic Concept 

○ Example: 3 fuzzy sets defined on age. 

1A : “young”, 2A :”middle-aged”, 3A : ”old” 

Membership functions: 
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1

1 20

( ) (35 ) /15 20 35

0 35

x

A x x x

x




   
 

 

2

0 20 60

( 20) /15 20 35
( )

(60 ) /15 45 60

1 35 45

x or x

x x
A x

x x

x

 


  
 

  
  

 

3

0 45

( ) ( 45) /15 45 60

1 60

x

A x x x

x




   
 

 

  

○  -cut A
: { | ( ) }A x A x    



14 
 

 

 
1 2

1 2If   A A      

Strong -cut A
: { | ( ) }A x A x     

e.g., 

   

1

2

3

[0,35 15 ]

[15 20,60 15 ] (0,1]

[15 45,80]

A

A

A









  



 


    
  

 

1

2

3

(0,35 15 )

(15 20,60 15 ) [0,1)

(15 45,80)

A

A

A









  









 


    
  

 

○ Level set ( )A ︰ 

( ) { | , .A x X s t     ( ) }A x   

or { | }A    

e.g.,  
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  Continuous case --- 

1 2 3( ) ( ) ( ) [0,1]A A A       

       Discrete case --- 

        1( ) {0 , 0.13 , 0.27 , 0.4 , 0.5 , 0.67 , 0.8 , 0.93 , 1}D    

○ Support︰ 

       ( ) = [ | ( ) 0]S A x X A x   

0( )S A A , e.g., 2( ) {22,24, ,58}S D    

 

○ Core︰
1  (i,e,   1 - cut)A  
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○ Hight h(A)︰the largest membership grade 

          
( ) sup ( )

x X

h A A x



 

 

○ Normal︰h(A) = 1 

    Subnormal︰h(A) < 1 

○ Convex fuzzy set︰ 

(0,1]   , -cut is convex    
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○ Theorem 1.1: A convex fuzzy set on R 

   iff 1 2,   , [0,1]x x R     , 

1 2 1 2( (1 ) ) min  [ ( ), ( )]A x x A x A x     

Proof︰       

1 2 1 2

1 2

1 2

,  ( )  Given   : convex , 

     , ,  Let   = min[ ( ), ( )]

     ,

     : convex  convex

    [0,1],  (1 )   

                            (definition of convex set)

     

a

a

a

i A

x x a A x A x

x x A

A A

x x x A  





 



     

 1 2( ) min[ ( ), ( )]A x a A x A x 

   

1 2 1 2

1 2

1 2

1 2 1 2

,  (  )    

     , , Given  ( (1 ) )

                              min[ ( ), ( )]

     (Show that   (0,1] ,  : convex )

      ,   ,   , s,t.

      ( ) ,   ( )  (i,e.,  ,

ii

x x A x x

A x A x

A

x x

A x A x x x





 





 



  



 

 

   ) (1)A 
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1 2 1 2

1 2

      [0,1]

   ( (1 ) ) min[ ( ), ( )]

                                min( , ) ,  

   i.e., (1 )              (2)

   (1), (2)  : convex   : convex 

 

  

 

   

 

A x x A x A x

x x A

A A







 

  

   

◎ Fuzzy Set Operations 

․Standard complement︰ ( ) 1 ( )A x A x   

․Equilibrium points︰ ( ) ( )A x A x  

( ) ( ) 1 ( )    2 ( ) 1   ( ) ( ) 0.5A x A x A x A x A x A x         

․Standard intersection︰ ( )( ) min[ ( ), ( )]A B x A x B x   

․Standard union: ( )( ) max[ ( ), ( )]A B x A x B x   

  

  

․Difference  min( ( ),1 ( ))A B A B A x B x      
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Symmetric difference   ( ) ( )A B A B B A     

○ Example: 
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○ Example: 1 3 ?A A  
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1 3A A ︰not young and not old 

2A ︰middle age 

○ Any fuzzy power set P(X) with   form a lattice, referred to as a De Morgan lattice  

(De Morgan algebra)  

In such a lattice ,  

, ( )A B P X  ,   

join︰ A B  (LUB,  supremum) 
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meet︰ A B  (GLB,  infimum) 

This lattice possesses all the properties (Table 1.1) of the Boolean lattice (or Boolean 

algebra) except the laws of contradiction ( A A   ) and exclusive middle 

( A A X  )  

․Verify A A    (law of contradiction) is violated for fuzzy sets,  

i.e., Show x  min{ ( ),1 ( )} 0A x A x   

e.g.,  

( ) 0.3    1 ( ) 0.7

min{0.3,  0.7} 0.3 0

A x A x   

   

 

 

․Verify ( )A A B A    (law of absorption) 

i.e., Show  

x  max{ ( ),min{ ( ), ( )}} ( )A x A x B x A x  
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i,   if  ( ) ( ) , 

      min[ ( ) , ( )] = ( )   and

            max[ ( ), ( )] = ( )

ii,  if  ( ) > ( ) , 

      min[ ( ) , ( )] = ( )   and

            max[ ( ) , ( )] = ( )

x

A x B x

A x B x A x

A x B x A x

A x B x

A x B x B x

A x B x A x








 

◎ Fuzzy set inclusion (subset)   

 

  iff   ,  ( ) ( )A B x A x B x    

  ,  A B A A B B      

○ Description of fuzzy sets with finite supports 

1 2

1 2

( )

i,  Finite universersal set  (discrete case)

            ....

      or     ,  ( )
i

n

n

i
i i

x Supp X i

X

aa a
A

x x x

a
A a A x

x

   

 
 



24 
 

 

ii,  is an interval of real numbers (continuous 

    case)

( )
          

X

X

A x
A

x
 

 

◎ Scalar cardinality (or sigma count) | |A  

| | ( )
x X

A A x


  

 

◎ Fuzzy cardinality 

․Fuzzy number: convex, normalized fuzzy set 
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․Fuzzy cardinality | |A  

---  a fuzzy number define on N whose  

membership function is 

A     | | (| |)A A   

or 
| |

| |
A

A
A







   

| |A


︰ the degree to which fuzzy set A  contain the number of members , 

| |A
, is   

   

○ Example 

X︰crisp universal set 

X = {5 , 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80} 

Fuzzy sets labeled as  

“infant” , “adult” , “young” , “old” 
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Consider Fuzzy set labeled “old” 
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old

 Scalar cardinaliity:

      |old| 0 0 0.1 0.2 0.4

                   0.6 0.8 1 1 4.1

 Fuzzy cardinality:

      {0,0.1,0.2,0.4,0.6,0.8,1}



    

    



 

 

when 

0.1

0.1

0.2

0.2

0.4

0.4

 = 0.1,   {20,30, 40,50,60,70,80}

                   | old| 7

 = 0.2,   {30, 40,50,60,70,80}

                   | old| 6

 = 0.4,   {40,50,60,70,80}

                   | old|

old

old

old









 



 



 

0.6

0.6

0.8

0.8

1

1

5

 = 0.6,   {,50,60,70,80}

                   | old| 4

 = 0.8,   {60,70,80}

                   | old| 3

 = 1,   {70,80}

                   | old| 2

old

old

old









 



 



 

 

0.1 0.2 0.4 0.6 0.8 1
| |

7 6 5 4 3 2
old      
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◎ Degree of subsethood , S(A,B) , of A in B 

| |
( , )

| |

A B
S A B

A




    

 

1
( , ) (| | max{0, ( ) ( )})

| |

1
             = (| | max{0, ( ) ( )})

| |

1
             = ( min{ ( ), ( )})

| |

x X

x X

x X

S A B A A x B x
A

B B x A x
A

A x B x
A







  

 






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◎ Distances between fuzzy sets 

X︰universal set containing n elements 

A, B︰fuzzy sets defined on X 

1 1

1 2

1 2

1 2

        0 , 1

n

n

n

n

i i

aa a
A

x x x

bb b
B

x x x

a b

     

     

 
 

From 1 2    ( , , , )A nA P a a a    

From 1 2    ( , , , )B nB P b b b    

  In an n-D space ,  

      

( , ) | ( ) ( ) |

( , ) ( , )

x X

d A B A x B x

d A B d B A



 

 


 

The n-cube represents the fuzzy power set(X) 

The vertices represents the crisp power set P(X) 
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※ Scalar cardinality |A| = d(A,Φ):  

Probability distributions are represented by sets whose cardinality is 1 ( 1)iP   the 

set of all probability distributions is represented by a (n-1)-D simplex of the n-cube 

( 1)iP   

Representations of fuzzy sets 

◎ Representations of fuzzy sets by crisp sets (decomposition) 

e.g. 
1 2 3 4 5

0.2 0.4 0.6 0.8 1.0
A

x x x x x
    

 

This can be represented by itsα-cut 

α-cuts 

0.2

1 2 3 4 5

0.4

2 3 4 5

0.6

3 4 5

0.8

4 5

1.0

5

{ , , , , }

{ , , , }

{ , , }

{ , }

{ }

A x x x x x

A x x x x

A x x x

A x x

A x











 

Define a fuzzy set A  for eachα-cut as 

x A

A
x







     fuzzyα-cut 
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0.2

1 2 3 4 5

0.4

2 3 4 5

0.6

3 4 5

0.8

4 5

1.0

5

1 2 3 4 5

0.2 0.2 0.2 0.2 0.2

0.4 0.4 0.4 0.4

0.6 0.6 0.6

0.8 0.8

1.0

0.2 0.4 0.6 0.8 1.0

A
x x x x x

A
x x x x

A
x x x

A
x x

A
x

A A
x x x x x




    

   

  

 



     

 

◎ Decomposition theorems of fuzzy sets 

● Theorem 2.5 (First decomposition Theorem) 

 
[0,1]

,   
x A

A A where A
x

 





 

    

[0,1][0,1]

[0, ] [ ,1]

proof: ,  Let ( )

           ( )( ) sup ( )

           max[ sup ( ), sup ( )]

( ,1], ( ) 2, ( ) 0
           

(0, ], ( ) 2, ( )

       

a a

x X A x a

A x A x

A x A x

a A x a x A A x

a A x a x A A x

 


 
 











 



 

  

 



        
 
        

[0, ]

[0,1]

    max[ sup ,0]=max[a,0]=a

             

a

A A














 
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Example :  

 A: a fuzzy set with membership function 

x

1

α

β

γ

0

A

A

γ A

1
3

 

 

 

[0,1]

1       [1, 2]

( ) 3        [2,3]

0       otherwise

(0,1],

2             [ 1,3 ]
    

0                       otherwise

   according to theorem 2.5

       

x x

A x x x

x
cut A

A A









 




 


  



 

  
  




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。Theorem 2.6 (Second decomposition Theorem) 

         
+

+ +

[0,1]

,  
x A

A A A
x

 





 

    

+ +
[0,1][0,1]

+ +
[0, ] [ ,1]

[0, ]

proof: ,  Let ( )

           ( )( ) sup ( )

           max[ sup ( ), sup ( )]

          sup ( )

a a

a

x X A x a

A x A x

A x A x

a A x

 


 
 







 



  

 



 

 

 

 

 

。Theorem 2.7 (Third decomposition Theorem) 

      ,   ( ) : level setA A A


   

 

Extension Principle for Fuzzy Sets 

  --- a principle for fuzzifying crisp functions  

concerning sets to power sets 

⊙ Crisp case: 

   a crisp function- 

     f: X --> Y ,   X,Y : crisp sets defined on univesal sets U,V  

an extension 

 

 

 :f  P(X)  P(Y) 

      P(X),P(Y): Crisp power set of X,Y 

:1f  P(Y)  P(X) 
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}),({)()( AxxfyyAfBXPALet   

})({)()(B 1 BxfxBfAYPLet  

 

 

Example: 

    X={a,b,c}  ,  Y={1,2} 

 

 

 

 

a 
X Y

b 

c 

1 

2 

f

X Y 
X Y 

)(XP )(YP
f

f
X Y
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Extension f: p(X)              p(Y) 

Where 

}},,{},,{},,{},,{},{},{},{,{)( cbacbcabacbaXp   

}}2,1{},2{},1{,{)( yp  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ψ 

{a} 

{b} 

{c} 

{a,b} 

{a,c} 

{b,c} 

{a,b,c} 

 

ψ 

{1} 

{2} 

{1,2} 

 

 ψ 

{a} 

{b} 

{c} 

{a,b} 

{a,c} 

{b,c} 

{a,b,c} 

  

 

ψ 

{1} 

{2} 

{1,2} 

 

F(A)={y | y=f(x), Ax } 

e.g 

   A={a,c} 

 {1,2}c})f({a,f(A)   

A={a,b} 

=> {1}b})f({a,F(A)   

} Bf(x) |{x =(B)F-1   

e.g 

   B={1} 

 b}{a,({1})f(A)f -1-1   

B={1,2} 

=> c}b,{a,({1,2})f(B)f -1-1   
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Fuzzy case: 

   Given a fuzzy function f: X => Y 

    X,Y: fuzzy sets defined on crisp universal 

 sets U,V 

An extension 

     
)()(:

)()(:

1 XFYFf

YFXff






 

F(X),F(Y): Fuzzy power sets of X,Y 

f(Y)   f(A)B    ),(Fa  LetX  

 

           The membership function of fuzzy set B 

      

 

 

          The membership function of fuzzy set A 

  

 

Example : Function Extension 

(a) Continuous case 

 

 

 

 

 

A(X) ))](([)( sup
)(| yxfx

yAfYB




(f(x))))](([)( 1 BxBfxA  

X Y 

f 

U V 
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(b) Discrete case 

    

 

  

 

 

 

 

 

4.0]0,0,4.0,2.0max[)()](([)( 1
)(|

)11 sup 


xAyAfyB
xfyx

 

6.0]6.0,4.0,0,0max[)()](([)( 2
)(|

)22 sup 


xAyAfyB
xfyx
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y

xA

yxf

XXX

AAA

XXX

YXXXf

k

nn
k

k

n

n

n

n

)}(),...,A2(x), (x  min{A   sup

y

1...mk      ,...),(x      if

lyrespective           ,...,     

on defined    .........,set fuzzy Let 

set crisp : ,,     

re       whe        ...  :

k)

2

k

11

2

k

1

21

21

21

21









 

 Example: Fuzzy Mapping (Multivariants) 

   , , ,1 cba   , ,2 yx   , , , rqp  

   21:f  

  Where  

        

 

  Let 21 A  ,A  ; Fuzzy sets defined on 1 , 2  

  

cba

5.09.03.0
A1   

yx

0.15.0
A2     )(F  

  

 

 Let  )()A,(AB 21  Ff  

                  (a,x)             (a,y)                 (c,y) 

















pr

rq

pp

c

b

a

f

yx

     

     

    

        :
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  B(p) = max{min{0.3,0.5},min{0.3,0.5},min{0.3,0.5}} 

       = max{0.3,0.3,0.5} = 0.5 

  B(q) = max{min{0.9,0.5} = 0.5 

  B(r) = max{min{0.9,1}, min{0.5,0.5}} 

      = max{0.9,0.5} = 0.9   

  

rqp

9.05.00.5
)A,f(AB 21            
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Relations 

 

 

A  classical  relation  can  be  considered  as  a  set  of tuples,  where a tuple is an ordered 

pair.   A binary tuple is denoted by  (x,y), an example of a ternary tuple is  (x,y,z)  and an 

example of  n-ary tuple  is (x1,...,xn). 

Example:  Let  U  be  the  domain  of  man  {John, Charles, James} and V  the domain of 

women {Diana, Rita, Eva}, then the relation ”married to” on U ×V is, for example 

{(Charles, Diana), (John, Eva), (James, Rita) } 

Definition: (classical n-ary relation) Let X1,...,Xn be classical(crisp) sets. The subsets of the 

Cartesian product  X1  ×···× Xn  are  called  n-ary  relations.   If X1  =  ···  =  Xn and  R  Un  then  

R  is called an n-ary relation (operation) in U. 

Let  R  be a binary relation in  R.  Then the characteristic function of R is defined as 

 









Ryx

Ryx
yxR

),(,0

),(,1
,  

Example:  Consider the following relation 

  dcybaxRyx ,,,   

 









dcbayx

dcbayx
yxR

,,),(,0

,,),(,1
,  

 

 

 

                                                                                

Let R be a binary relation in a classical set X. Then  

                                                                                     Fig.12: Graph relation R 

 

Definition. (reflexivity) R is reflexive if (x,x)  R for all xU. 

Definition. (anti-reflexivity)  R  is anti-reflexive if f (x,x)  R for all xU. 
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Definition. (symmetricity) R is symmetric if from (x,y)  R  (y,x) R for all x,yU. 

 Definition. (anti-symmetricity) R is anti-symmetric if (x,y)  R and (y,x)  R then x=y  for all 

x,yU. 

 Definition. (transitivity) R is transitive if (x, y) R and (y,z)R R then (x, z)  R,  for all x,y,zU. 

Example. Consider the classical inequality relations on the real line R. It is clear that ≤ is 

reflexive, anti-symmetric  and  transitive,  <  is  anti-reflexive, antisymmetric and transitive. 

 

Other  binary relations are  

Definition. (equivalence)  R  is an equivalence relation if R is reflexive, symmetric and 

transitive  

Example.  

The relation = on natural numbers is equivalence relation. 

Definition. (partial order) R is a partial order relation if it is reflexive, antsymmetric and 

transitive. 

Definition. (total  order)  R  is  a  total  order  relation if it is partial order and  for all x,yU 

(x,y)R or (y,x)R. 

 

Example. Let us consider the binary relation ”subset of”. It is clear that we have a partial order 

relation. 

The relation ≤ on natural numbers is a total order relation. 

 

 

Fuzzy relation 

 

 

Definition of  fuzzy relation.  Let  U  and  V   be  nonempty  sets.    A  fuzzy relation R is a 

fuzzy subset of U  × V . 
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In other words, R F (U  × V ), 1,0: VUR  

It is often used equivalence notation  ),(),( yxRyxR  . 

If U  =V   then we say that R is a binary fuzzy relation in U. 

Let R be a binary fuzzy relation on R. Then R(x,y) is  interpreted  as  the  degree  of  

membership  of  the ordered pair (x,y) in R. 

Example. A simple example of a binary fuzzy relation on 

U = {1, 2, 3},  

called ”approximately equal” can be defined as 

 

R(1, 1) = R(2, 2) = R(3, 3)=1,R(1, 2) = R(2, 1) = R(2, 3) = R(3, 2)=0.8 , 

R(1, 3) = R(3, 1)=0.3 

 

In matrix notation it can be represented as 

















18.03.0

8.018.0

3.08.01

 

 

 

Operations on fuzzy relations 

 

 

The intersection 

 

Fuzzy relations are very important because they can describe nteractions between 

variables.  Let R  and S be two binary fuzzy relations on X × Y .  

Definition:  The intersection of R and S is defined by 

 

(R  S)(x,y) = min{R(x,y),S(x,y)}. 
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



















5.0

7.0

6.0
  

8.003.0

5.04.09.0

9.00,4.0

4

3

2

1

321 y

x

x

x

yyy





















5.0

0

6.0
  

7.003.0

04.00

1.004.0

4

3

2

1

321 y

x

x

x

yyy

 

Note that R :  U ×V   →  <0, 1>, i.e.  R the domain of R is the whole Cartesian product U × V . 

Definition: The union of R and S  is defined by  

                    (R  S)(x,v) = max{R(x, z),S(x, z)} 

 

Example: Let us define two binary relations  

 

R = ”x is considerable larger than y”= 





















8.0

0

7.0
  

7.019.0

08.00

1.01.08.0

4

3

2

1

321 y

x

x

x

yyy

 

 

 

S = ”x is very close to y”=  

 

 

The intersection of  R  and  S  means that  ”x is considerable larger than y” and   

„is very close to y”. 

 

 

(R  S)(x,y) =min{R(x,y),S(x,y)}= 

 

 

The union of R and S means that  ”x is  considerable larger than y” or ”x is very close to y”. 

 

 





















8.0

7.0

7.0
  

8.019.0

5.08.09.0

9.008.0

4

3

2

1

321 y

x

x

x

yyy
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 (R  S)(x, y)=  

 

 

 Projections of fuzzy relation 

 

Consider a classical relation R on R. 

 

 

Fig. 13. Projections on axis. 

 









dcbayx

dcbayx
yxR

,,),(,0

,,),(,1
,

 

 

I

t is clear that the  projection  (or  shadow) of  R  

on the  X-axis is the closed interval  <a, b>  and 

its projection on the Y -axis is <c,d>. 

 

Definition: If R is a classical relation in U  × V  then 

 

ΠX  = {x U| y V  :(x, y)  R} 

 

ΠY  = {yV  |x U  :(x, y)  R} 

where ΠX  denotes projection on U  and ΠY  denotes projection on V . 

 

Definition:  Let R be a fuzzy binary fuzzy relation on U  × V . The projection of R on U  is 

defined as 
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ΠX(x) = sup{R(x, y) | y V } 

and the projection of R on Y  is defined as 

 

 

ΠY (y) = sup{R(x, y) | x U}  

 

Example: Consider the relation 

 

R = ”x is considerable larger than y”= 





















8.0

0

7.0
  

7.019.0

08.00

1.01.08.0

4

3

2

1

321 y

x

x

x

yyy

 

 

then the projection on X  means that 

 

•x1  is  assigned  the  highest  membership  degree from the tuples (x1,y1), (x1,y2), (x1,y3), 

(x1,y4), i.e.   ΠX(x1)=1, which is the maximum of the first row. 

•x2  is  assigned  the  highest  membership  degree from the tuples (x2,y1), (x2,y2), (x2,y3), 

(x2,y4), i.e.  ΠX(x2)=0.8, which is the maximum of the second row. 

•x3  is  assigned  the  highest  membership  degree from the tuples (x3,y1), (x3,y2), (x3,y3), 

(x3,y4), i.e.   ΠX(x3)=1, which is the maximum of the third row. 

Cartesian product of fuzzy sets 

 

 

It is clear  that    Cartesian  product  of  two  fuzzy sets is a fuzzy relation.  

If  A  and  B  are normal then  ΠY (A × B)=  B  and ΠX(A × B)= A. 

Really, 
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ΠX(x) = sup{(A × B)(x, y) | y} 

 

= sup{A(x) ∧  B(y) | y} = min{A(x),sup{B(y)}| y} 

= min{A(x), 1} = A(x).  

 

Definition: The sup-min composition of a fuzzy set  C
~
F   (U) and a fuzzy relation R F (U  × V 

) is defined as 

 

(C
~
 R)(y) =

Ux

sup  {min{C(x),R(x, y)}} 

for all yV . 

 

The composition of a fuzzy setC
~

  and a fuzzy relation R can be considered as the 

shadow of the relation R on the fuzzy setC
~

. 

 

 

Example: Let A
~

 and B
~

 fuzzy sets and let 
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 




























cax

cbx
bc

xc

bax
ab

ax

xA

,        ,0

,,

,,

       





























gex

gfx
fg

xg

fex
ef

ex

xB

,        ,0

,,

,,

  

 

Let R = A
~

 × B
~

  Is  fuzzy relation. 

 

Observe the following property of composition  A
~
  R = A

~
  ( A

~
× B

~
 )= A

~
, 

B
~
 R = B

~
 ( A

~
× B

~
)= B

~
.  

Example: Let C
~

  be a fuzzy set in the universe of discourse {1, 2, 3} and let R be a binary 

fuzzy relation in {1, 2, 3}. Assume that 

C
~

 ={(1,0.2),(2,1)(3,0.3)}  and  R=

















18,03,0

8.018.0

3.08.01

   

 

Using the definition of sup-min composition we get 

 

   C
~
 R=(0.2,1,0.3) 

















18,03,0

8.018.0

3.08.01

=(max{min{0.2,1},min{1,0.8},min{0.3,0.3}}, 

max{min{0.2,0.8},min{1,1},min{0.3,0.8}},max{min{0.2,0.3},min{1,0.8},min{0.3,1}}= 

 

=(0.8,1,0.8). 

 

Example: Let C
~

 be a fuzzy set in the universe of discourse <0, 1> and let R be a binary fuzzy 

relation in <0, 1>. Assume that C(x)= x and R(x, y)=1-|x-y|. 
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Using the definition of sup-min composition we get 

. (C
~
R)(y)=  

2

1
1,minsup

1,0

y
yxx

x






 

for all y<0,1> 

 

Sup-min composition of fuzzy relations 

 

Definition: (sup-min composition of fuzzy relations) Let R F (U × V ) and S F (V × T). 

The sup-min composition of R and S, denoted by RS is defined as 

 

(R S)(x,z) =     zySyxR
Vy

,,,minsup


 

 

 

It  is  clear  that  R S  is  a  binary  fuzzy  relation  in U×T. 

 

Example: Consider two fuzzy relations  

                          R = ”x is considerable larger than y”= 

 

 

 

 

                                       S = ”y is very close to z” = 

 

 

 

 

 

 

Then their composition is 





















8.0

0

7.0
  

7.019.0

08.00

1.01.08.0

4

3

2

1

321 y

x

x

x

yyy























0.50.76.0

0.80.59.0

00.4   0

0.30.94.0

     

4

3

2

1

321

y

y

y

y

zzz
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RS= 

  

 

 

 

 

=

















7.09.07.0

04.00

5.08.06.0

 

 

i.e., the composition of R and S  is nothing else, but the classical product of the matrices  R  and  

S  with the difference that instead of addition we use maximum and instead of multiplication we 

use minimum operator. 

 

 

Sup-product composition of fuzzy relations 

 

 

Definition:  (sup-product composition of fuzzy relations) Let R F (U × V ) and S F (V × 

T). The sup-product  composition of R and S, denoted by RS is defined as 

 

(R S)(x,z) =     zySyxR
Vy

,.,sup


 

 

 

It  is  clear  that  R S  is  a  binary  fuzzy  relation  in U×T. 















































0.50.76.0

0.80.59.0

00.4   0

0.30.94.0

     

8.0

0

7.0
  

7.019.0

08.00

1.01.08.0

4

3

2

1

321
4

3

2

1

321

y

y

y

y

zzz
y

x

x

x

yyy

     
     
     




















5.0,7.0,0,3.0max7.0,5.0,4.0,9.0max6.0,7.0,0,4.0max

0,0,0,0max        0,0,4.0,0max   0,0,0,0max

5.0,1.0,0,3.0max7.0,1.0,1.0,8.0max6.0,1.0,0,4.0max
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Example: Consider two fuzzy relations  

                          R = ”x is considerable larger than y”= 

 

 

 

 

                                       S = ”y is very close to z” = 

 

 

 

 

 

 

Then their sup-product composition is 

 

RS= 

 

 

 

 

 

 

 

 

 

 























0.50.76.0

0.80.59.0

00.4   0

0.30.94.0

     

4

3

2

1

321

y

y

y

y

zzz















































0.50.76.0

0.80.59.0

00.4   0

0.30.94.0

     

8.0

0

7.0
  

7.019.0

08.00

1.01.08.0

4

3

2

1

321
4

3

2

1

321

y

y

y

y

zzz
y

x

x

x

yyy

     
     
     




















4.0,56.0,0,27.0max56.0,35.0,4.0,81.0max48.0,63.0,0,36.0max

0,0,0,0max              0,0,72.0,0max               0,0,0,0max

35.0,08.0,0,24.0max49.0,5.0,04.0,72.0max42.0,09.0,0,32.0max

     
     
     




















4.0,56.0,0,27.0max56.0,35.0,4.0,81.0max48.0,63.0,0,36.0max

0,0,0,0max              0,0,72.0,0max               0,0,0,0max

35.0,08.0,0,24.0max49.0,5.0,04.0,72.0max42.0,09.0,0,32.0max

















56.081.063.0

072.00

35.072.042.0
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If possible to define composition fuzzy  of relations in another manner. For instance, 
operator max we can replace any t-conorm and min any t-norm. 

 

 

Fuzzy relation is 

 

Reflexive if R(x,x)=1 for all xU. 

 

Symmetric   if R(x,y)=R(y,x) for all (x,y)R 

 

 

Transitive if 

 

Total  if for all xU  R(x,y) >0 or R(y,x)>0. 

 

 

Anti symmetric if  R(x,y) >0 and  R(y,x)>0 implies x=z. 

 

Strongly fuzzy  transitive  if 

                     for all (x,y)R 

 

 It is clear there exist a fuzzy transitive relations R* that R* is strongly transitive and 

R*(x,y)≥R(x,y)(for example R*(x,y)=1). 

   

 ),().,(supy)R(x, yzRzxR
Uz


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The fuzzy transitive closer of R 

 

 Let  R* is strongly transitive relations and R*(x,y)≥R(x,y) and for any strongly transitive 

transitive relation S,S(x,y)≥R(x,y) S(x,y)≥R*(x,y), then R* is. 

 If U is reflexive, transitive and has n elements,  then 

 

 
1

1 ...
n

RRRR
n   is fuzzy 

transitive closer of R transitive closer of R. 

 

Proof: Is evident.  We leave it to reader. 

 

 

Example:  Let  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 























14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

R













































14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

2 R
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       
       
       
       

























1,4,.2,.6.max4,.4,.2,.5.max2,.4,.2.2.max6,.2,.2,.6.max

7,.7,.5,.2.max4.1,5,.2.max4,.5,.5,.2.max6,.2,.3,.2.max

7,.5,.7,.3.max4,.5,.5,.3.max2,.5,.1,2.max6,.2,.3,.3.max

7,.5,.2,.7.max4,.5,.2,.5.max2,.5,.2,.2.max6,.2,.2,.1max













































14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

15.04.06.0

7.015.06.0

7.05.016.0

7.05.05.01

23  RRR























15.04.06.0

7.015.06.0

7.05.016.0

7.05.05.01

       
       
       
       

























1,5,.4,.6.max4,.5,.4,.5.max2,.5,.4.2.max6,.2,.3,.6.max

7,.7,.5,.6.max4.1,5,.5.max2,.5,.5,.2.max6,.2,.3,.6.max

7,.5,.7,.6.max4,.5,.5,.5.max2,.5,.1,2.max6,.2,.3,.6.max

7,.5,.5,.7.max4,.5,.5,.5.max2,.5,.5,.2.max6,.2,.3,.1max
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Let  R* is reflexive, symmetric relation then R* is 

fuzzy similarity relation. 

 

Example: The relation 



















107.0

015.0

7.05.01

R  is reflexive(R(x,x)=1 for all x) and 

symmetric(R(1,2)=R(2,1)=0.5, R(1,3)=R(3,1)=0.7, R(2,3)=R(3,2)=0) and so is is fuzzy similarity 

reletion. 

 

The converse fuzzy relation  is usually denoted as Rc  is defined as 

Rc  (x,y)=R(y,x) 

For all x,yU 

 

Identity relation 

I(x,x)=1 for all xU 

I(x,y)=0 for all xyU 























15.05.06.0

7.015.06.0

7.05.016.0

7.05.05.01
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Zero relation 

o(x,y)=0 for all x,yU 

Universe relation 

u(x,y)=1 for all x,yU 

Example:  The following are examples of these relations 

 




































107.0

015.0

1.02.01

101.0

012.0

7.05.01
c

RR  



















107.0

015.0

7.05.01

R     



















000

000

000

O  



















111

111

111

U   

 

 

 

 

The Fuzzy equivalence relation. 

 

 

Let  R* is reflexive, symmetric and is strongly fuzzy  transitive relation then R* is  fuzzy 

similarity relation often called   fuzzy equivalence relation. 

 

Theorem: R is fuzzy equivalence relation if and only if its -cut  R  is relation 

equivalence for all 0,1. 
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Proof: Let R is fuzzy relation equivalence. Then R is fuzzy reflexive (R(x,y)=1)  and so 

R(x,y)=1 and R is reflexive. R is symmetric(R(x,y)=R(y,x)). It implies R(x,y)=R(y,x) and R is 

symmetric. R is transitive and so R is transitive too and R is relation equivalence.  

Let R is relation equivalence for all 0,1. Then R is fuzzy reflexive, symmetric and transitive. 

It implies R is fuzzy relation equivalence. 

 

Example: Let fuzzy relation is defined by its *-cuts  























1111

1111

1111

1111

4.0R     























1011

0100

1011

1011

5.0R   























1000

0100

0011

0011

8.0R    























1000

0100

0010

0001

9.0R  

All -cuts are relations equivalence and so R is fuzzy relation equivalence. 

 

 

The basic properties of fuzzy relations 

 

We wil now try to give some basic properties of compositions of fuzzy relations which 

plays a major role in areas such as fuzzy control, fuzzy diagnosis and fuzzy expert systems. 

1. RRIIR    

2. OROOR    
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3. In general RSSR    

4. RRRR mm  1
 

5. 
mnnm RRR   

6.   mnnm RR   

7. )()( TSRTSR    

8.    TRSRTSR   )(  

9.    TRSRTSR   )(  

10.    TRSRTS    

Fort inverse relarions 

11.   ccc
SRSR   

         ccc
SRSR   

          ccc
SRSR    

12.   RR
cc   

13. 
cc SRSR   

 

 

Minimum fuzzy equivalence closer of R. 

 

Let  R* I fuzzy equivalence relation and R*(x,y)≥R(x,y) and for any fuzzy equivalence 
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relation S, S(x,y)≥R*(x,y), then R* is minimum fuzzy equivalence closer of R. 

Example: Let  

 

 

 

 

 

What is minimum fuzzy equivalence closer of R? 

The minimum fuzzy equivalence closer of R is fuzzy reflexive relation. The fuzzy relation 

is reflexive if for all xU R(x,x)=1. The minimum reflexive relation R*R is relation R*(x,x)=1 and 

R*(x,y) =R(x,y) for all xy. Hence 

 

 

 

 

 

 

 

 

The fuzzy relation is symmetric if for all x,yU R(x,y)=R(y,x). The minimum symmetric 

relation R*R is relation R*(x,y)=max {R(x,y),R(z,x)} for all xy. Hence 

 

 

 

 

 























8.04.02.06.0

7.04.05.02.0

7.05.013.0

7.5.02.09.0

R























14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

*R

     
     
     
     















































7.07.07.0

7.015.05.0

7.05.013.0

7.05.03.01

                                                

17.0,4.0max7.0,2.0max7.0,6.0max

7.0,4.0max15.0,5.0max5.0,2.0max

7.0,2.0max5.0,2.0max13.0,2.0max

7.0,6.0max5.0,2.0max3.0,2.0max1

*R
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The minimum fuzzy transitive relation fuzzy closer of R and if U is finite then R*=Rn-1. 

Hence  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 













































17.07.07.0

7.015.05.0

7.05.013.0

7.05.03.01

17.07.07.0

7.015.05.0

7.05.013.0

7.05.03.01

2 R

       
       
       
       

























1,7,.7,.7.max7,.7,.5,.5.max7,.5,.7,.3.max7,.5,.3,.7.max

7,.7,.5,.5.max7.1,5,.5.max7,.5,.5,.3.max7,.5,.3,.5.max

7,.5,.7,.3.max7,.5,.5,.3.max7,.5,.1,3.max7,.5,.3,.3.max

7,.5,.3,.7.max7,.5,.3,.5.max7,.5,.3,.3.max7,.5,.3,.1max
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











































17.07.07.0

7.015.05.0

7.05.013.0

7.05.03.01

17.07.07.0

7.017.07.0

7.07.017.0

7.07.07.01

23  RRR























17.07.07.0

7.017.07.0

7.07.017.0

7.07.07.01

       
       
       
       

























1,7,.7,.7.max7,.7,.7,.7.max7,.7,.7,.7.max7,.7,.7,.7.max

7,.7,.7,.7.max7.1,5,.5.max7,.7,.5,.5.max7,.5,.3,.5.max

7,.7,.7,.7.max7,.7,.5,.5.max7,.5,.1,3.max7,.5,.3,.3.max

7,.7,.7,.7.max7,.5,.3,.5.max7,.5,.3,.3.max7,.5,.3,.1max























17.07.07.0

7.017.07.0

7.07.017.0

7.07.07.01
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 If fuzzy relations is not symmetric then for symmetric closer of R pay  

R*(x,y)≥R(x,y) and R*(x,y)≥R(y,x). At first we take R*(x,y)=max{ R(y,x), R(x,y) }. It can be 

interesting to take R*(x,y)=min{ R(y,x), R(x,y) }. 

 

Example: Let   

 

 

 

Then the first estimation of R* is  

 

 

 

 

 

 

The minimum fuzzy transitive relation fuzzy closer of R´, f U is finite, is R*=Rn-1. Hence  

 

 

 

 

 

 

 























14.02.06.0

7.015.02.0

7.05.013.0

7.5.02.01

R























14.02.06.0

4.015.02.0

2.05.012.0

6.02.02.01

´R













































14.02.06.0

4.015.02.0

2.05.012.0

6.02.02.01

14.02.06.0

4.015.02.0

2.05.012.0

6.02.02.01

2 R

       
       
       
       

























1,4,.2,.6.max4,.4,.2,.2.max4,.4,.2,.2.max6,.2,.2,.6.max

4,.4,.2,.2.max4.1,5,.2.max2,.5,.5,.2.max4,.2,.2,.2.max

4,.4,.2,.2.max2,.5,.5,.2.max2,.5,.1,2.max2,.2,.2,.2.max

6,.2,.2,.6.max4,.2,.2,.2.max2,.2,.2,.2.max6,.2,.2,.1max
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As it is well known, within a classical context, an equivalence relation in a set defines a 

partition or a classification in it, and viceversa. 

 

 























14.04.06.0

4.015.04.0

4.05.012.0

6.04.02.01













































14.02.06.0

4.015.02.0

2.05.012.0

6.02.02.01

14.04.06.0

4.015.04.0

4.05.012.0

6.04.02.01

3 R























14.04.06.0

4.015.04.0

4.05.012.0

6.04.02.01
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Fuzzy partial ordered relations 

 

            The fuzzy relation is fuzzy partial ordered relation if it satisfy following conditions 

a) is reflexive(R(x,x)=1 for all xU) 

b) is symmetric(If R(x,y)0 R(y,x)=0 for all xy) 

c) is transitive(R(x,z)supminR(x,y),R(y,z) for all x,zU 

 

Example: Fuzzy relation 























1000

1100

9.07.010

8.06.05,01

R  is fuzzy partial ordered relation 

Note: Fuzzy relation R is fuzzy partial ordered relation if ad only if its -cut is patial ordered 

relation for all 0,1. 
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