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l. Fuzzy Logic
Introduction

The word fuzzy refers to things which are not clear or are vague. Any event, process, or
function that is changing continuously cannot always be defined as either true or false, which
means that we need to define such activities in a Fuzzy manner.

What is Fuzzy Logic?

Fuzzy Logic resembles the human decision-making methodology. It deals with vague and
imprecise information. This is gross oversimplification of the real-world problems and based on
degrees of truth rather than usual true/false or 1/0 like Boolean logic.

Take a look at the following diagram. It shows that in fuzzy systems, the values are indicated by
a number in the range from O to 1. Here 1.0 represents absolute truthand 0.0
represents absolute falseness. The number which indicates the value in fuzzy systems is called
the truth value.

—  True/Yes/1

Is Ram Honest? Boolean Logic

L, False/No/0

I Extremely Honest ™

——p  Very Honest (0.85)
Is Ram Honest? | Fuzzy Logic

|, Sometimes Honest (0.35)

——» Extremely Dishonest {U.C_I"L

In other words, we can say that fuzzy logic is not logic that is fuzzy, but logic that is used to
describe fuzziness. There can be numerous other examples like this with the help of which we
can understand the concept of fuzzy logic.

Fuzzy Logic was introduced in 1965 by Lofti A. Zadeh in his research paper “Fuzzy Sets”. He
is considered as the father of Fuzzy Logic.



Fuzzy Logic — Set Theory

Fuzzy sets can be considered as an extension and gross oversimplification of classical sets. It
can be best understood in the context of set membership. Basically it allows partial membership
which means that it contain elements that have varying degrees of membership in the set. From
this, we can understand the difference between classical set and fuzzy set. Classical set contains
elements that satisfy precise properties of membership while fuzzy set contains elements that
satisfy imprecise properties of membership.
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Mathematical Concept

it

Afuzzy set A inthe universe of information U can be defined as a set of ordered pairs

and it can be represented mathematically as -

A={(y,n; () lyeU}

Here p (y) = degree of membership of ¥ in \widetilde{A}, assumes values in the
range from O to 1,ie., pz(y) €[0,1] .

Representation of fuzzy set

Let us now consider two cases of universe of information and understand how a fuzzy set can
be represented.



Case 1
When universe of information U is discrete and finite —

e Haly Myl T \Us
i A(1)+ A(y)+,uﬁiy}+ ;
N Y2 Ya

n Hi(w),
:{Z:‘=1 Ayl j

Case 2:

When universe of information U is continuous and infinite —

Y

In the above representation, the summation symbol represents the collection of each element.

Operations on Fuzzy Sets
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Having two fuzzy sets A and B . the universe of information U/ and an element y of

the universe, the following relations express the union, intersection and complement
operation on fuzzy sets.

Union/Fuzzy ‘OR’

Let us consider the following representation to understand how the Union/Fuzzy ‘OR’
relation works —

rip(y) =rgVeg YyelU

Here v represents the ‘'max’ operation.

n oA [TH ¥ T 1
A B A B
1 1 1
— A —— - J——\_—’
0 Y 0 ¥ 1] Y
Fuzzy set 4 Fuzzy set B Union of two Fuzzy sets

Intersection/Fuzzy ‘AND’

Let us consider the following representation to understand how the Intersection/Fuzzy
‘AND’ relation works —



ringW) =pirpg YyelU

Here A represents the ‘'min’ operation.

p -1
=
p=—¥
=

o ¥ 1] ¥ o ¥

Fuzzy set 4 Fuzzy set B Intersection of two Fuzzy sets

Complement/Fuzzy ‘NOT’

Let us consider the following representation to understand how the Complement/Fuzzy
‘NOT” relation works —

py=1l-pz(y) yeU

-

Y

0 ¥

Complement of a fuzzy set



Properties of Fuzzy Sets

Commutative Property:

Having two fuzzy sets ﬁ and B . this property states -

AUB=BuA
AnB=BnA

Distributive Property

ot ) i~

Having three fuzzysets 4 |, B and (' , this property states —

Idempotency Property

-

For any fuzzy set A | this property states -
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Identity Property

-t

For fuzzy set A and universal set U | this property states —

S oo

AUp=A
AnU=A
Anp=9¢
AUU=U

Fuzzy Sets: Basic Types

o Fuzzy sets

— Sets with vague boundaries

— Membership of x in A is a matter of degree to which x is in A

o Utilization of fuzzy sets

(1) Representation of uncertainty
(2) Representation of conceptual entities
e.g., expensive, close, greater, sunny, tall

o Fuzzy Sets <= Crisp Sets

membership <= characteristic

function function
Uy X —>[01] < m,:X—->{01}

e.g.,



1
i) “close to 0”: IUA(X) o 1+1OX2

1 2
ii) “very close to 0 : Ha (X) - (1_'_10)(2 j

1
1+10(x —a)?

iii) “close to a” : Ha (X) -

T,
1

-2 -1 0 1 2

o Difference between crisp, random, and fuzzy variables:
Crisp variable: a uniform probability distribution
Random variable: a probability distribution
Fuzzy variable: a membership function

is associated with its domain.
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o Generalization

i) Ordinary fuzzy sets: Hp X = [0’1]
Abbreviated as A X — [0’1] .

i.e., Each element of X is assigned a

particular real number (i.e., precise

membership grades).
i) L-fuzzy sets: A: X —>L , Where L is a partial order set.

iii) Interval-valued fuzzy sets: A X — 5([011]) :

where 8([01 1]) is the family of all closed interval in [0,1].

10



infervalvatued fuzzy set (ualed = o, BI

Figure 1.3.  An cxample of an

iv) Fuzzy sets of type-K
-- Interval-valued fuzzy sets possess

fuzzy Intervals
(a) Type-22 AL X = E([0,1]) | where

E([O, 1]) : fuzzy power set of [0,1], the set of all ordinary fuzzy sets defined

on [0,1].
B
B
B
&
A
In[v:l::
Flgure 1.6 [luswretion of the concept of a fuzzy set of type 2.
(b) Type-3
Type-2
Type-3
<=_
1
I
|
|
|

Type-4 ﬂ\

V) Level-K fuzzy sets

-- Elements in a universal set are themselves fuzzy sets.

11



(a) Level-2: A: E(X) —> [0,1]
e.g., fuzzy set “x is close to r”

X : a fuzzy variable

r : a particular number , e.g., 5.

(b) Level 3:
N

vi) Combinations of interval-valued, L,
type-K, level-K fuzzy sets.
14 Fuzzy Sets: Basic Concept
o Example: 3 fuzzy sets defined on age.

A1: “young”, Az :”middle-aged”, Ag: ”old”

Membership functions:

12
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1

A (X)=1(35-x)/15
i 0
0

| (x=20)/15

A0=1 60_x)/15
1
0

A;(x) =1 (x—45)/15
1

Yoy & Muggle age: &y Old: 4,

iR | l

i

Plpure 17 Mertborship Broctions taprescilg the

Cuoveyid of o yoiag, middle-iged, and ol

temar, Shven discre pgromineaion 2k, of Ag 15 deflned toumerically o Tble 1.2,

x<20
20<x<35
X >35

x<20o0r x=>60
20<x<35
45 < x< 60
35<x<45

X <45
45 < x <60
X>60

TABLE1.2 DRSCRETE APFROXIMATION
OF MEMBERSHIP FLICTION A; (MG 1.7)
BY FUNCTION D OF THE FORM:

Dy {0.24,.... 80—+ |0.])

x Dyl
LN Bociclel S 0,00
+ g |22, 38) 0.13
x € {24, 56) (.27
x¢ (2854 D.40
x £ |18 52} 0.53
x € (30, 5 0.67
X € {32, 48] it &
x € [, 48} Q.53

X € {36, 38, ..., 44} 1.00

o X -cut aA; aA:{Xl A(X) 20(}




If o, <a, = “A> A

stong & -cut © A “TA={X]| A(X) > a}
eg.

“A =[0,35-15¢]

“A, =[15a + 20,60 -15«] Ve € (0,1]

“A, =[15« +45,80]

J

“A = (0,35—15¢)
“ A = (15¢ +20,60-15a) bV & €[0,1)
“"A, = (15 +45,80)

J

o Level set /\(A) :

A(A)={a|3Ixe X,st AX) =a}
or ={0[| A ¢}

e.g.,

14



Continuous case ---

ANA) =A(A) =A(A)=10,1]

Discrete case ---

A(D)={0,0.13,0.27,04,05,067,08,093, 1}

O Support -
S(A) =[x e X | A(X) > 0]

S(A)=""A eg.S(D,) ={22,24,----,58}

u(x) A\
A
al.. H )
. S(A4) 7 5

o Core . 1A (i1e1 1- CUt)

U(x)




o Hight h(A) - the largest membership grade

h(A) =sup A(X)

xeX

U(x)

(4

o Normal - h(A) =1
Subnormal © h(A) <1

o Convex fuzzy set :

Va e(0,1] , a-cutis convex

T “l
Afzp {

Alr)

16



o Theorem 1.1: A convex fuzzy seton R

iff ‘v’Xl,Xz eR , VlE[O,l] ,
AlAX, + (1= 2)%,) 2 min [A(x,), A(X;)]
I, (=) Given A:convex,
V¥, Xp, Let a =min[A(x), A(X,)]
= X1, Xp € A
-+ Az convex = A convex
Proof : ~VAe[01], x=Ax +(1-A)x, € A
(definition of convex set)
= A(X) > a=min[A(X), A(X,)]
i, (<)
VX, X0, Given A(Ax +(1—1)Xs)
>min[A(x), A(X2)]

(Show that Vo € (0,1], “A : convex )
\V/X]_,XZ . da , S,t.

A(Xl)ZCZ, A(Xz)ZCX (i,e., X1,X0 € aA) )

17



VA e [0,1]
A(AX + (L= 1)Xo) = min[A(x1), A(X5)]
>min(a, o) = «,

i.e., Axg +(1-A)xy € A —(2)

M),(2) = “A:convex = A:convex

©Fuzzy Set Operations
Standard complement : A(X) =1— A(X)
Equilibrium points : A(X) = K(X)
AX)=AX)=1-A(X) = 2AX)=1 .~ A(X)=A(X)=05
‘Standard intersection : (AU B)(X) = min[A(x), B(x)]
standard union: (A B)(X) =max[A(x), B(X)]

A

WA
FAAN

() max('.)
Difference A—B = ANB= min(A(x),1- B(x))

18



Fuzzy case

Symmetric difference AIB = (A_ B) % (B - A)

o Example:

A(x)

A NA4,=B

>

"112 -"/H\ ‘43: C

19



BwC

D
>

i

o Example: E M g ?

A.(x)

Middle
age

20



™,
1
Y
INT
™,

Ai a A3 - not young and not old

AZ . middle age
o Any fuzzy power set P(X) with C form a lattice, referred to as a De Morgan lattice

(De Morgan algebra)

In such a lattice ,

VA BeP(X) 3

join : AUB (LUB, supremum)

21



meet : AU B (GLB, infimum)

This lattice possesses all the properties (Table 1.1) of the Boolean lattice (or Boolean

algebra) except the laws of contradiction ( AN A= (D) and exclusive middle

(AU A= X)
Verify AN A= (law of contradiction) is violated for fuzzy sets,
ie., show 3X MIN{A(x),1— A(x)}=0
eg.,
A(x)=03 = 1-A(x)=0.7
min{0.3, 0.7}=0.3=0

\Verify Auv (Aﬁ B) =A (law of absorption)

i.e., Show

vx max{A(x), min{A(x), B(x)}} = A(X)

22



VX
I, iIf A(X)<B(x),
= min[A(x) , B(x)] = A(x) and
max[A(x), B(x)] = A(X)
i, if A(X) >B(x),
= min[A(x) , B(x)] =B(x) and
max[A(x) , B(xX)] = A(x)

© Fuzzy set inclusion (subset) -

B

\

A

Ac B iff vx, A(X)<B(X)
< AnB=A AUB=B

o Description of fuzzy sets with finite supports

I, Finite universersal set X (discrete case)

N S A

X% X,

or A= G a=Ax)

xesupp(X) X

23



b4
7

X
I, X is an interval of real numbers (continuous
case)
A(X
A J (x)
° X
©Scalar cardinality (or sigma count) | A |

|Al= D AX)

xeX

A0}

© Fuzzy cardinality
.Fuzzy number: convex, normalized fuzzy set

1

o



.Fuzzy cardinality | A|

--- a fuzzy number define on N whose

membership function is

Vaen, |Al(“A)=a

a
orlAl_ ZlaAl

AEN

(04
| oA | . the degree to which fuzzy set A contain the number of members ,

|aA|,isa

A AN

e

o Example

X < crisp universal set

x={5,10,20,30,40,50,60, 70, 80}
Fuzzy sets labeled as

2 (13

“infant” , “adult” , “young” , “old”

25



. ' T
! / \Young (ch old ()

-] T / !

5 I - . ! . . -
H, {AZE) /Aadu (¥}
N L
. // -
.1

%

Infant{X3 .
s s e 5t
5 19 20 3Q 40 50 it 70 j4a]
- Age—:--

Figure 1.4. Examples of fuzzy sets defined in Table 1.2 (4 < {infanr, veung,
adult, afdh). .

Elements {ages) nfamt Aduh Young fid

5
1
il
10
4
50
&
0
%0

—_ e — e - @ 3
—_— o m £ B R et e

]
|
§
§
Y
I
0
0
0

N S .

= T

Consider Fuzzy set labeled “old”

26



— Scalar cardinaliity:
lold=0+0+0.1+0.2+0.4

+0.6+0.8+1+1=4.1

= Fuzzy cardinality:

... A

when

a =0.1,

a =0.2,

a =0.4,

a = 0.6,

a = 0.8,

- ={0,0.1,0.2,0.4,0.6,0.8,1}

*lold ={20,30, 40,50, 60, 70,80}
- [*told| =7

°20ld ={30, 40,50, 60, 70,80}
- |20ld| =6

%40ld ={40,50,60, 70,80}
~|*old| =5

°$old ={,50, 60, 70,80}
- *%old| = 4

°%old = {60, 70,80}
- |*%0ld| =3

a =1, ‘old ={70,80}

- [old| =2

0.1 02 04 06 08 1
f—t—t—F—+=

lold |=
-

6 5 4 3 2

27



|l old |

|

|

..}

© Degree of subsethood , S(A,B) ,of Ain B

A

|ANB|
| Al

S(A,B) =

S(A, B)——(IAI 2 max{0, A(x) - B(x)})

| | xeX

m (IB] _ZX: max{0, B(x) — A(X)})
- I— (D min{A(x), B(x)})

xeX

Fuzzy case

7 N7 x
}: max[0, A(x)- B(x) S max[0, B(x)—A(x)
xeX xeX

28



©Distances between fuzzy sets

X = universal set containing n elements

A, B ! fuzzy sets defined on X

From B = PB:(bl’b’ ''''' ’bn)

In an n-D space ,

0D unit cube [0.1]"

\
\
Bl
A

d(A B)=> | A(x)~B(x)|

-.d(AB) _ d(B, A)

The n-cube represents the fuzzy power set 3 (X)

The vertices represents the crisp power set P(X)

29



% Scalar cardinality |A| = d(A,®):

Probability distributions are represented by sets whose cardinality is 1 (- Z P =1) te

set of all probability distributions is represented by a (n-1)-D simplex of the n-cube

(-3 R=1)

Representations of fuzzy sets

©Representations of fuzzy sets by crisp sets (decomposition)

0.2 04 06 08 1.0
+ + + +
Xl X2 X3 X4 X5

This can be represented by itso-cut

A —
e.g.

a-cuts
A =X, X,, Xg, X, , X ¥
CEA =X, X5, X, , X5}
COA =Xz, X, , X5 F
CEA =X, X}
1O A = Lxo}

Define a fuzzy set , A for eacha-cut as

a
A= Z o fu
zzyo-Cut

xe®A X

30



02 02 0.2 0.2 0.2
= “+ + + +

A —
©-2 X, X, X X, Xe
0.4 0.4 0.4 0.4
oa A= —+ —+ —+
X, X X, Xs
A= 0.6 N 0.6 N 0.6
X X, Xs
Co A— 0.8 N 0.8
X, Xg
1.0
10 A=
X5
-A—|J_ A_02,04 06 08 10
a= A\ Xl X2 X3 X4 X5

© Decomposition theorems of fuzzy sets
@ Theorem 2.5 (First decomposition Theorem)

A= |J ,A where A= Zg

ae[0,1] xe®A X

proof: ¥xe X, Let A(x)=a
= (U A= sup A

ael0.1] ae[0,1]

= max[ sup , A(x), sup , A(x)]

ae0,a] aefal]
Vae(al),A(x)=a<2,..x¢ A= _A(X)
Vae(0,a], A(x)=a22,-.xe “A=> _A(x)

= max[ sup «,0]=max[a,0]-a
aef0,a]

2 A=A

ae[0,1]

0

a

31



Example :

A: a fuzzy set with membership function

A
A

(x-1 xe[1,2]
A(X) =<3—X X e[2,3]
0 otherwise

= Va e(0,1],
Xela+1,3—a]

2
a—cut A= _
{O otherwise

according to theorem 2.5

A= ] A

a€[0,1]

32



.

o Theorem 2.6 (Second decomposition Theorem)

A=) A A=Y Z
ae[04] xe*tA X

proof: Vx e X, Let A(x) =a
=>(J A =sup ,,A®X)

a€<[0,1] a€[0,1]
= max[ sup ., A(X), sup ,, A(J]
a€[0,a] a€la,l]
sup o =a=A(x)
ael0,a]

o Theorem 2.7 (Third decomposition Theorem)

A=J .A A(A) :level set

ac A

Extension Principle for Fuzzy Sets
--- a principle for fuzzifying crisp functions
concerning sets to power sets
(Crisp case:
a crisp function-
f: X-->Y, XY :crisp sets defined on univesal sets U,V

an extension

f P> PeY)

P(X),P(Y): Crisp power set of X,Y

£-1: P(Y) > P(X)

33



f
X f @Y P(X)‘ 'P(Y)

Let Ae P(X)=>B=f(A)={y| y=f(x),xe A}

LetBe P(Y)=>A=f *(B)={x f(x)eB}

Example:

X={a,b,c} , Y={1,2}

34



Extension f: p(X) — p(Y)

Where

p(X) ={®.{a}.{b}.{c}{a,b}{a c}.{b,c}{a,b,c}}
p(y) ={@{}{2}{1.2}}

{c}

U ~

{a} >

{b} ~—

{a,b}

{ac)

/
7

Y/

|/

F(A)={y | y=f(x), X € A}
e.g
A={a,c}

= f(A)="f({a,c})={1,2}

A={a,b}

=>F(A)=1({a,b})={1}

/)N

F1(B) ={x|f(x) e B}

e.g
B={1}

= f1(A)=f"({1})={a,b}

B={1,2}

- f1(B) =f1({1,2})={a,b,c}

35




Fuzzy case:
Given a fuzzy function f: X =>Y
X,Y: fuzzy sets defined on crisp universal
sets U,V

An extension

f:f(X)=>F(Y)
f 1 F(Y)->F(X)
F(X),F(Y): Fuzzy power sets of X,Y
VaeF(X), Let B=f(A)e f(Y)

The membership function of fuzzy set B

B(Y)=[T(AI(y)= sup A(X)

x| f (x)=y
The membership function of fuzzy set A
A(X) =[f(B)](x) = B(f(x))

Example : Function Extension

(a) Continuous case

fy f(x

1< Byly) 0 o {
x |
Ajlx) A/A1 AZ/
1

36



(b) Discrete case

+
4 |
o.b o.u PR o e
R s w— Ul
A

¢ s
ook B 0
o.2
0.
! | i N
Ailx
/

B,(Y)=[f(A)l(y)= sup A(x)=max[0.2,0.4,0,0]=0.4

xly=f(x)

B,(Y) =[f(A,](y)= sup A,(x)=max[0,0,0.4,0.6]=0.6

xly=f(x)

37



foXxX,x...xX — —=>Y  where
X, X,, X, :crisp set

Letfuzzy set A, A,......... A, definedon
X, Xy X, respectively

if  fx,x,.)=y k=1.m

Ly Sup min{A, (x;),A2(xY),...., A (x)}

® Example: Fuzzy Mapping (Multivariants)

X, :{a’ b, C}’ X, :{X’ Y}, Y = {p’ g, I‘},
f X xX, =>Y

Where

Xy
a |0 O
f: b|g r
r QO

C
Let Al, A2 ; - Fuzzy sets defined on Xl, X2

_03,09 05, 0510 ..

A
*a b ¢ Xy

Let B=f(A,A,) e F(Y)

(@) @y) (cy)
P N Y N\

38



B(p) = max{min{0.3,0.5},min{0.3,0.5},min{0.3,0.5}}
=max{0.3,0.3,0.5} = 0.5
B(q) = max{min{0.9,0.5} = 0.5
B(r) = max{min{0.9,1}, min{0.5,0.5}}
=max{0.9,0.5} = 0.9

05 05 09
+—+
q r

B=f(A,A,) =

FUZZY COMPLEMENTS

Let A be a fuzzy set on X. Then, by definition, A(x) is interpreted as the degree to which
x belongs to A. Let cA denote a furzy complement of A of type c¢. Then, cA(x) may be
interpreted not only as the degree to which x belongs to cA, but also as the degree to which x
does not belong to A. Similarly, A(x) may also be interpreted as the degree to which x does
not belong to cA.

As a notational convention, let a complement cA be defined by a function
¢:[0,1] = [0, 1],

which assigns a value c{A(x)) to each membership grade A(x) of any given fuzzy set A. The
value c(A(x)) is interpreted as the value of cA(x). That is,

c(A(x)) = cA(x)

for all x € X by definition, Given a fuzzy set 4, we obtain cA by applying function ¢ to
values A(x) forall x € X.

To produce m;aningfui fuzzy complements, function ¢ must satisfy at least the following
two axiomatic requirements:

Axiom c¢l. ¢(0) = 1 and (1) = 0 (boundary conditions).

Axiom c2. Foralla,b € [0, 1], if a < b, then c(a) = c(b) (monotoniciry).

Axiom 3. ¢ is a continuous function.

Axiom cd. ¢ is involutive, which means that c(c(a)) = a for each a € [0, 1].

39



Theorem 3.1. Let a function ¢ : [0, 1] = [0, 1] satisfy Axioms ¢2 and c4. Then, ¢
also satisfies Axioms c1 and c3, Moreover, ¢ must be a bijective function.

Proaf:
(i) Since the range of ¢ is [0, 1], ¢(0) < 1 and ¢(1) = 0. By Axiom ¢2, c(c(0)) = e(1);

and, by Axiom c4, 0 = ¢(e(0)) = ¢(1). Hence, c(1) = 0. Now, again by Axiom c4, we
have e(0) = ¢(c(1)) = 1. That is, function ¢ satisfies Axiom cl.

(i) To prove that ¢ is a bijective function, we observe that for all a € [0, 1] there exists
b = ¢(a) € [0, 1] such that e(b) = c(e(a)) = a. Hence, ¢ is an onto function. Assume
now that c(a,) = c(az); then, by Axiom c4,

@y = clcla))) = cle(ar)) = az,

That is, ¢ is also a one-to-one function; conseguently, it is a bijective function,

(iii) Since ¢ is bijective and satisfies Axiom c2, it cannot have any discontinuous points. To
show this, assume that ¢ has a discontinuity at ap, as illustrated in Fig. 3.1. Then, we
have

by = lim ¢(a) > clap)
a—ay-
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and, clearly, there must exist &y € [0, 1] such that by > b; > c(ay) for which no
ay € [0, 1) exists such that c(ay) = by. This contradicts the fact that ¢ is a bijective
function. W

Theorem 3.2.  Every fuzzy complement has at most one equilibrium.

" Proaf: Let ¢ be an arbitrary fuzzy complement. An equilibrium of ¢ is a solution of the
equation

cla)=-a=0,

where a & [0,1). We can demonstrate that any equation ¢(a) ~a = b, where b is a real
constant, must have at most on¢ solution, thus proving the theorem. In order to do so, we

assume that a; and a; are two different solutions of the equation ¢(a) = a = b such that |

a; < a3. Then, since c(g;) = @y = b and clay) = a3 = b, we get
clay) — ay = c(az) — as.

However, because ¢ is monotonic nonincreasing (by Axiom ¢2), ¢(4,) = c(az) and, since
d; = a3,

ela) = ap = claz) = aa.
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This inequality contradicts (@) — &1 =c(az) — a2
thus demonstrating that the equation must have at most one

Theorem 3.3. Assume that a given fuzzy complement ¢ has an equilibrium e., which
by Theorem 3.2 is unique. Then

a=cla)iffa <e,
and
az=cla) iffa=e,.

Proof: Let us assume that @ < ¢,,a = e, and @ > e, in um. Then, since ¢ is
monotonic nonincreasing by Axiom ¢2, ela) = cle.) for a < ., ¢c(a) = e(e.) for a = e,
and c(a) < cle.) for @ > e.. Because c(e.) = e., we can rewrite these expressions as
c(a) = e, c(a) = e, and c(a) < &, respectively. In fact, due to our initia] assumption we

can further rewrite these as c(a) > a, c(a) = a, and c(a) < a, respectively. Thus, a < e,
implies c(a) > a and a > e, implies c(a) < a. The inverse implications can be shown in a
similar manner. W -

Theorem 3.4. If cis a continuous fuzzy complement, then ¢ hds a unique equilibrium.

Proof: The equilibrium e. of a fuzzy complement c is the solution of the equation
c(a) —a = 0. This is a special case of the more general equation c(a) — a = b, where
b € [-1,1] is a constant. By Axiom cl, ¢(0) —0 =1 and ¢(1) — 1 = —1. Since c is
a continuous complement, it follows from the intermediate value theorem for continuous
functions that for each b € [—1, 1], there exists at least one a such that c(a) —a = b. This
demonstrates the necessary existence of an equilibrium value for a continuous function, and
Theorem 3.2 guarantees its uniqueness. M

42



If we are given a fuzzy complement ¢ and a membership grade whose value is
represeated by a real number @ € {0, 1], then any membership grade represented by the real
number ¢a & [0, 1] such that

c(*a) —%a = a — c(a) ' (3.8)

is called a dual point of a with respect to c.

It follows directly from the proof of Theorem 3.2 that (3.8) has at most one solution
for “a given ¢ and a. There is, therefore, at most one dual point for each particular fuzzy
complement ¢ and membership grade of value a. Moreover, it follows from the proof of
Theorem 3.4 that a dual point exists for each a € [0, 1] when ¢ is a continuous complement.

Theorem 3.5. If a complement ¢ has an equilibrium e, then

de. = e..

Proof: If a = e, then by our definition of equilibrium, ¢(a) = a and thus a —c(a) = 0.
Additionally, if “a = e, then ¢(?a) = % and c(a) — % = 0. Therefore,
c(a) —% = a — c(a).

This satisfies (3.8) when a = % = ¢,. Hence, the equilibrium of any complement is its own
dual point. A

| Theorem 3.6. For each a & [0,1],% = c(a) iff c(c(@)) = a, that is, when the
complement is involutive.

Proof: Let “a = c(a). Then, substitution of c(a) for “a in (3.8) produces
clc(a)) —cl(a) =a —c(a).

Therefore, c(c(a)) = a. For the reverse implication, let c¢(c(a)) = a. Then substitution of
c(c(a)) for a in (3.8) yields the functional equation

c(‘a) — a = c(c(a)) - c(a).

for 4a whose solution is Ya = c(a). W

Theorem 3.7 (First Characterization Theorem of Fuzzy Complements). Let ¢ be
a function from [0, 1] to [0, 1]. Then, ¢ is a fuzzy complement (involutive) iff there exists a

continuous function g from [0, 1] to R such that g(0) = 0, g is strictly increasing, and
c(a) = g7 (g(1) — g(a)) (3.9)
foralla € [0, 1].
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(i) First, we prove the inverse implication 4=. Let g be a continuous function from [0, 1]
to R such that g(0) = 0 and g is strictly increasing. Then the pseudoinverse of g, denoted by
gD, is a function from R to [0,1] defined by

0 fora € (—c0,0)
g™a)=1{ga) foracel0,g(l)]
| for a € (g(1), c0),

where g~! is the ordinary inverse of g.

Let ¢ be a function on [0, 1] defined by (3.9). We now prove that ¢ is a fuzzy complement.
First, we show that ¢ satisfies Axiom c2. For any a,b € [0,1], if a < b, then g(a) < g(b),
since g is strictly increasing. Hence, g(1) — g(a) > g(1) — g(b) and, consequently,
c(a) = g7 [g(1) — g(a)] > g '[g(1) — g(b)] > c(b). Therefore, c satisfies Axiom c2.
Second, we show that ¢ is involutive. For any a € [0, 1], c(c(a)) = g~'[g(1) — g(c(a))] =
g7 g(M) — g(g7 (g(1) — g(@)))] = g7'[8(1) — g(1) + g(a)] = g7 (g(a)) = a. Thus, c is
involutive (i.e., ¢ satisfies Axiom c4).

It follows from Theorem 3.1 that ¢ also satisfies Axiom c2 and c3. Therefore, ¢ is a
fuzzy complement,

(i1) Now, we prove the direct implication =>. Let ¢ be a fuzzy complement satisfying
Axioms cl-c4. We need to find a continuous, strictly increasing function g that satisfies (3.9)
and g(0) = 0.

It follows from Theorem 3.4 that ¢ must have a unique equilibrium, let us say e.; that is,
c(e.) = e, where e. € (0,1). Let h : [0,e.] — [0, b] be any continuous, strictly increasing
bijection such that #(0) = 0 and h(e.) = b, where b is any fixed positive real number. For
example, function h(a) = ba/e. is one instance of this kind of function. Now we define a
function g : [0, 1] = R by

_[h@ a € [0,e]
gla) = {gb ~h(c(@)) ae(e,1].

Obviously, g(0) = h(0) = 0 and g is continuous as well as strictly increasing since 4 is
continuous and strictly increasing. It is easy to show that the pseudoinverse of g is given by

0 fora € (~o0,0)
) B h=(a) for a € [0, b]
§7@ =1 '(2b—a)) forae b, 25]
{ for a € (25, c0].

Now, we show that g satisfies (3.9). Forany a € [0, 1], ifa € [0, e], then g~'[g(1) - g(a)] =
g7 [g(1) — h(@)] = g7'[2b ~ h(a)] = c(h™'[2b ~ (2b — h(a))]) = c(a); if a € (e, 1],
then g~'[g(1) — g(a)] = g~'[2b — (2b ~ h(c(a)))] = g~ [h(c(a))] = A~ [h(c(@))] = c(a).
Therefore, for any a € [0, 1], c(a) = g~ [g(1) — g(a)] (i.e., (3.9) holds). H
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Theorem 3.8 (Second Characterization Theorem of Fuzzy Complements). Let ¢
be a function from [0, 1] to [0, 1]. Then c is a fuzzy complement iff there exists a continuous
function f from [0, 1] to R such that f(1) =0, f is strictly decreasing, and

c(@) = f7(f(0) ~ f(a)) (3.15)
forall a € [0, 1].

Proaf: According to Theorem 3.7, function ¢ is a fuzzy complement iff there exists an
increasing generator g such that c(a) = g7'(g(1) — g(a)). Now, let f(a) = g(1) — g(a).
Then, f(1) = 0 and, since g is strictly increasing, f is strictly decreasing. Moreover,

@) =g ') —a)
=g }(f(0) —a)

since f(0) = g(1)—g(0) = g(1), f(f (@) = g(1)—g(f~(a)) = g(1)—g(g " (g(1)—a)) =
a,and f~!(f(a)) =g '(g(1) — f(a)) =g '(g(1) — (g(1) — g(a))) = g~'(g(a)) = a. Now,

c(a) = g7 (g(1) - gla)
= f7'(g(@)
= (&) - (8(D) — g@)))
= f7{(f - f(@).
If a decreasing generator f is given, we can define an increasing generator g as
. g(a) = f(0) — f(a).
Then, (3.15) can be rewritten as
cl@) = f7(f0) = f(a)
= g7 (g(1) — g(a)).
Hence, ¢ defined by (3.15) is a fuzzy complement. W

45



(ED)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

“www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

FUZZY ANALYSIS

UNIT - Il - FUZZY ARITHMETIC — SMTA5303




FUZZY NUMBERS

To qualify as a fuzzy number, a fuzzy set A on R must possess at least the following
three properties:

(i) A must be a normal fuzzy set;
(ii) “A must be a closed interval for every o € (0, 1];
(iii) the support of A, %*A, must be bounded.

Special cases of fuzzy numbers include ordinary real numbers aod intervals of real
numbers, as illustrated in Fig. 4.1: (a) an ordinary real number 1.3; (b) an ordinary (crisp)
closed interval [1.25, 1.35]; (c) a fuzzy number expressing the proposition “close to 1.3;” and
(d) a fuzzy number with a flat region (a fuzzy interval).
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Figare 4.1 A comparison of a real number and a crisp interval with a fuzzy number and a fuzzy
interval, respectively.

Although the triangular and trapezoidal shapes of membership functions shown in
Fig. 4.1 are used most often for representing fuzzy numbers, other shapes may be preferable
in some applications. Furthermore, membership functions of fuzzy numbers need not be
symmetric as are those in Fig. 4.1. Fairly typical are so-called “bell-shaped” membership
functions, as exemplified by the functions in Fig. 4.2a (symmetric) and 4.2b (asymmetric).
Observe that membership functions which only increase (Fig. 4.2c) or only decrease (Fig. 4.2d)
also qualify as fuzzy numbers. They capture our conception of a large number or a small
number in the context of each particular application.



Theorem 4.1, Let A € F(R). Then, A is a fuzzy number if and only if there exists a
closed interval [a, b] # @ such that

1 for x € [a, b]
A(x)={I(x) forx e (—o0,a) (4.1)
r(x) forx e (b,0c0),

where / is a function from (—oco,a) to [0, 1] that is monotonic increasing, continuous
from the right, and such that /(x) = 0 for x € (—o0, w;); r is a function from (b, co0) to

[0, 1] that is monotonic decreasing, continuous from the left, and such that r(x) = 0 for
X € (wn, 00). ' .

Proof: Necessity. Since A is a fuzzy number, %A is a closed interval for every
a € (0,1]). For @ =1, 'A is a nonempty closed interval because A is normal. Hence, there
exists a pair a, b € R such that 'A = [a, b], where @ < b. That is, A(x) = 1 for x € [a, b]
and A(x) < 1forx & [a, b]. Now, letl(x) = A(x) forany x € (—oc0,a). Then, 0 < I(x) <1
since 0 < A(x) < 1 forevery x € (—o9,a). Letx <y < a; then

A(y) =z min[A(x), A(a)] = A(x)

by Theorem 1.1 since A is convex and A(a} = 1. Hence, I(y) > l(x); that is, ! is monotonic
increasing. - _

Assume now that /(x) is not continuous from the right. This means that for some
xp € (—00, a) there exists a sequence of numbers {x,} such that x, > x, for any » and

lim x, = xg,

n=+C0

but
lim I(x,) = lim A(x,) = a > I(xp) = A(xp).
A=e00 A=+00

Now, x, € “A for any n since “A is a closed interval and hence, also x, € “A. Therefore,
I(xp) = A(xp) = a, which is a contradiction. That is, I(x) is continuous from the right.



The proof that function r in (4.1) is monotonic decreasing and continuous from the left
is similar.

Since A is a fuzzy number, °*A is bounded. Hence, there exists a pair w;, w; € R of
finite numbers such that A(x) = 0 for x € (—o0, @) U (w,, 00).

Sufficiency. Every fuzzy set A defined by (4.1) is clearly normal, and its support, %*4,
is bounded, since **A C [w;, @,]. It remains to prove that “A is a closed interval for any
a € (0,1)]. Let

X, = inf{x|l(x) > a,x < a},

Yo = sup{x|r(x) = a, x > b}

for each @ € (0, 1]. We need to prove that *A = [x,, y.] for all @ € (0, 1].

For any xy € %A, if xo < a, then I(xg) = A(xg) > a. That is, x5 € {x|I(x) > a,x < a}
and, consequently, xy > inf{x|/(x) > «, x < a} = x,. If xy > b, then r(xy) = A(xp) = «;
that is, xo € {x|r(x) = @,x > b} and, consequently, xp < sup{x|r(x) = a,x > b} = y,.
Obviously, x, < a and y, = b; that is, [a, b] € [xa, ¥«]- Therefore, xy € [x4, ¥.] and hence,
“A C [Xa, Ye]- It remains to prove that x,, ¥, € “A.

By the definition of x,, there must exist a sequence {x,} in {x|/(x) > o, x < a} such
that lim,—. . Xx = X,, Where x, > x, for any n. Since [ is continuous from the right, we have

Ix,) = I( lingoxn) = n&“go{(xn) > .

Hence, x, € “A. We can prove that y, € “A in a similar way. B

LINGUISTIC VARIABLES

The concept of a fuzzy number plays a fundamental role in formulating quantitative fuzzy
variables. These are variables whose states are fuzzy numbers. When, in addition, the
furzy numbers represent linguistic concepts, such as very small, small, medium, and so on,
as interpreted in a particular context, the resulting constructs are usually called linguistic
variables.

Each linguistic variable the states of which are expressed by linguistic terms interpreted
as specific fuzzy numbers is defined in terms of a base variable, the values of which are
real numbers within a specific range. A base variable is a variable in the classical sense,
exemplified by any physical variable (e.g., temperature, pressure, speed, voltage, humidity,
etc.) as well as any other numerical variable, (e.g., age, interest rate, performance, salary,
blood count, probability, reliability, etc.). In a linguistic variable, linguistic terms representing
approximate values of a base variable, germane to a particular application, are captured by
appropriate fuzzy numbers.

Each linguistic variable is fully characterized by a quintuple (v, T, X, g, m) in which v
is the name of the variable, T is the set of linguistic terms of v that refer to a base variable
whose values range over a universal set X, g is a synzactic rule (a grammar) for generating
linguistic terms, and m is a semantic rule that assigns to each linguistic term ¢ € T its
meaning, m(t), which is a fuzzy set on X (i.e., m : T = F(X)).



An example of a linguistic variable is shown in Fig. 4.4. Its name is performance.
This variable expresses the performance (which is the base variable in this example) of a
goal-oriented entity (a person, machine, organization, method, etc.) in a given context by
five basic linguistic terms—very small, small, medium, large, very large—as well as other
linguistic terms generated by a syntactic rule (not explicitly shown in Fig. 4.4), such as not
very small, large or very large, very very small, and so forth. Each of the basic linguistic
terms is assigned one of five fuzzy numbers by a semantic rule, as shown in the figure. The
fuzzy numbers, whose membership functions have the usual trapezoidal shapes, are defined
on the interval [0, 100], the range of the base variable. Each of them expresses a fuzzy
restriction on this range. '

ARITHMETIC OPERATIONS ON INTERVALS

Fuzzy arithmetic is based on two properties of fuzzy numbers: (1) each fuzzy set, and thus
also each fuzzy number, can fully and uniquely be represented by its a-cuts

(2) ce-cuts of each fuzzy number are closed intervals of real numbers for all ¢ € (0, 1].
These properties enable us to deﬁnc anthmetlc operations on fuzzy numbers in terms of

arithmetic uperatmns on their a-cuts (i.e., arithmetic operations on closed intervals).
Let * denote any of the four anthmanc operations on closed intervals: addition +,
subtraction —, multiplication - , and division /. Then,

[a,b]*[d,e] =(fxglaz f<bd=g=el (4.2)

is a genetal property of all arithmetic operations on closed intervals, except that [a, b]/[d, €]
is not defined when O € [d,e]. That is, the result of an arithmetic operation on closed
intervals is again a closed interval.

The four arithmetic operations on closed intervals are defined as follows:

[a,b] +[d.e] = [a+d.b+e], (4.3)
[a,b] —[d.e] = [a —e, b—d], (4.4)
[a,b]: [d, e] = [min(ad, ae, bd, be), max(ad, ae, bd, be}] (4.5)

and, provided that 0 ¢ [d, €],

[a,b]/[d, €] = [a.b]-[1/e, 1/d]
= [min(a/d, a/e, b/d, b/e), max(a/d, a/e, b/d, bje)]. (4.6)



The following are a few examples illustrating the interval-valued arithmetic operations
defined by (4.3)H4.6):

[2,5]+[1,3] = [3,8] [0,1] + [~6, 5] = [~6, 6],

[2.5]-[1,3] = [-1,4] [0,1] - [-6,5] = [-5,7],
[-1,1]- [<2, —=0.5] = [-2,2] [3,4]-[2,2] = [6.8],
[-1,1]/[-2,-0.5] = [-2,2] [4,10]/[1,2] = [2,10].

Arithmetic operations on closed intervals satisfy some useful properties. To overview them,
let A = [a),a;], B =[b1, 8], C =[c,¢c],0=[0,0],1 =[1,1]. Using these symbols, the
properties are formulated as follows:

1. A+B=B+A,
A - B = B - A (commutativity).
2. A+B)+C=A+(B+0C)
(A-B)- C=A-(B:-C) (assaczarma')
3. A 0+A=A+4+0
=1-A = A -1 (identity).

4. A-(B+C) S A- B + A - C (subdistributivity).
5. Ifb-c=0foreverybe Bandc e C,then A-(B+C) = A- B+ A - C (distributivity).
Furthermore, if A = [a,a),thena-(B+C)=a-B +a-C.

6.0esA—Aand1l e A/A.
7. f AC E and B C F, then:

A+B CE+F,
A—-—BCE-F,
A-BCE-F,
A/B C E/F (inclusion monotonicity).

Most of these properties follow directly from (4.3}+(4.6). As an example, we prove
only the less obvious properties of subdistributivity and distributivity. First, we have

A-(B+C)={a-(b+c)acAbeB,ceC)
={a-b+a-claeA,be B,ceC)
Cfla-b+a -cla,a €A, beB,ceC]}
=A-B+A C.

Hence, A-(B+C)C A-B+A-C.



Assume now, without any loss of generality, that b; > 0 and ¢, > 0. Then, we have to
consider the following three cases:
" 1. If a; > 0, then .
A-(B+C)=[a-(br+c1),az2- (b2 +c2)]
= [a1- b1, a2 - ba] +[a1-¢1 +az - c2]
=A-B+A-C.
2, Ifa; < 0and a; <0, then —a; > 0, (—A) = [—az2, —a,], and
(—=A)-(B+C)=(-A)-B+(-4)-C.

Hence, A-(B+C)=A-B+A.C.
3. If a; < 0 and a; > 0, then

A-(B+C) =[a1-(bz+c2)a-(ba+c)]
= [a1- b2, a2 - b] + [a) - €2, 82+ ¢]
=A-B+A-C.
To show that distributivity does not hold in general, let A = [0, 1], B =[1, 2], C = [-2, —1].
Then, A:- B =1[0,2],A-C =[-2,0],B+C =[-1,1], and
A-(B+C)=[-1,1]c[-22]=A-B+A-C.

ARITHMETIC OPERATIONS ON FUZZY NUMBERS



Let A and B denote fuzzy numbers and let * denote any of the four basic arithmetic
operations. Then, we define a fuzzy set on R, A * B, by defining its a-cut, %(A * B), as

“(A % B) = "A %°B “.7)

for any @ € (0, 1]. (When * = /, clearly, we have to require that 0 ¢ “B for all « € (0, 1].)
Due to Theorem 2.5, A * B can be expressed as
AxB= |J (A =*B). (4.8)
a€[0,1]

Since %(A * B) is a closed interval for each « € (0, 1] and A, B are fuzzy numbers, A * B is
also a fuzzy number. '

As an example of employing (4.7) and (4.8), consider two triangular-shape fuzzy
numbers A and B defined as follows:

(0 forx<—landx >3
Ax) ={ (x+1)/2 for —1<x=<1
| @—x)/2 forl<x =<3,

(0 forx<landx >S5
Bx)={(x—1)/2 forl<x=<3
| 5—x)/2 for3<x=<5.

Their a-cuts are:
A =[20 —1,3 - 20],
B =[2a0+1,5—2ax].
Using (4.3)—(4.7), we obtain
A+ B) = [40¢,8 -4a] fore e (0,1],
“A—B)= [4—6,2—-4a] forae(0,1],

wa.B) = | [407+12a =5, da? —'16e +15] fore € (0, .5]
~ | [4e% - 1, 40 — 16a + 15] for @ € (.5, 1],

[Qa —1)/Qa +1),(3 - 2a)/(22+1)] forex € (0,.5]

TA/B) = [2e — 1)/(5 - 20), B — 20) /2 +1)] fora € (5, 1].

The resulting fuzzy numbers are then:

0 forx <0 andx > 8
(A+B)(x) = 1 x/4 forO<x <4
B8—-x)/4 for4<x<8,



0 forx < —6 andx > 2

(A=B)x)={ (x+6)/4 for —6<x=<-2
2-x)/4 for -2 <x <2,

0 forx <—5 andx > 15
[3-@-x)"?]/2 for —5<x<0
(A-B)(x) = 1 1+ x)2/2 for0<x <3

[4-Q +x)¥2) /2 for3 <x <15,

0 forx < —1 andx >3
x+1)/2—-2x) for =1<x<0
5x+1)/(2x+2) for0<x<1/3
B3—-x)/(2x+2) for1/3 <x < 3.

(A/B)(x) = 4

Let * denote any of the four basic arithmetic operations and let A, B denote fuzzy
numbers. Then, we define a fuzzy set on R, A * B, by the equation

(4% B)() = sup min[A(x), B()] (4.9)
for all z € R. More specifically, we define for:l]l zeR:
(A+B)@z2) = Sup min[A(x), B(y)], (4.10)
(A-B)@z) = z:‘11_:)’un‘n[A(x). B(y)], (4.11)
(4-B)(z) = sup min[A(x), B, ' (4.12)
(4/B)(@) = sup min[A(x), B(»). (4.13)

Although A x B defined by (4.9) is a fuzzy set on R , we have to show that it is a fuzzy
number for each * € {+, —, -, /}. This is a subject of the following theorem.

Theorem 4.2, Let % € {+, —, -, /}, and let A, B denote continuous fuzzy numbers.
Then, the fuzzy set A x B defined by (4.9) is a continuous fuzzy number.

Proof: First, we prove (4.7) by showing that *(A * B) is a closed interval for every
a € (0, 1]. For any z € “A * °B, there exist some xo € “A and y; € °B such that z = xj * yp.
Thus,

(A% B)z) = sup min[A(x), B(Y)]

I=x%y
> min[A (xo), B(y0)]

Z Q.



Hence, z € (A * B) and, consequently,
“A x“B < “(A = B).
For any z € %(A * B), we have
(A * B)(z) = sup min[A(x), B(y)] = .

z:xiy

Moreover, for any n > [1/e] 4+ 1, where [1/«] denotes the largest integer that is less than or
equal to 1/, there exist x, and y, such that z = x, * y, and

min{A(x,), B(ya)] > & — %

That is, x, € *"1/"4, y, € /"B and we may consider two sequences, {x,} and {y,}. Since
1 1

¢——-<@-—
n n+1

¥

we have

a:—lf(n-{-l)A S a—ljnA' n'—l,f(n+1)B g d_”"B.
Hence, {x,} and (y,} fall into some “"/"4 and *~!/"B, respectively. Since the latter are
closed intervals, {x,} and {y,} are bounded sequences. Thus, there exists a convergent
subsequence {x,;} such that x,; — xo. To the corresponding subsequence {y,;}, there also
exists a convergent subsequence {y,;;} such that y.;; — yo. If we take the corresponding
subsequence, (x,; ;}, from {x,:}, then x,;; — xo. Thus, we have two sequences, {x, ;} and

{¥n.i.;}, such that x,; j = X0, Yni.j — Yo, a0d Xp; j * Ynij = 2.
Now, since * is continuous,

z="lim Xn;; * Ynij = (lim x,; ;) * (lim Yaij) = Xo * Yo.
j=o0 j=ro0 j—roo

_ . 1 1
Also, since A(x,,; ;) > a — — and B(y,,j) > — —,
nij Ny j

1
A(xg) = A(lim x,,; ;) = lim A(Xp;;) = lim(@ - —) =«
j—+oo J=+00 j=»00 nij

and

. . 1
B(yo) = B(lim Yni,j) = lim ‘B(Ys,;) = lim (¢ — —) = a.
Jj=>oo j—oo J—0

]
Therefore, there exist xo € %A, yo € B such that z = xg * yo. That is, z € “A * °B. Thus,
%A * B) C ®A *°B,
and, consequently,
“(A* B) =°A *°B.

10



Now we prove that A * B must be conﬁnuoﬁ;i. By Theorem 4.1, the membership function of
A * B must be of the general form depicted in Fig. 4.3.- Assume A * B is not continous at zo;
that is,

lim (A * B)(z) < (A = B)(zp) = sup min[A(x), B(y)].

=i Zo=zxwy
Then, there must exist xo and y, such that zp = xp * y, and
lim (A * B)(z) < min[A(xo), B(¥)]. (4.14)

Ty

Since the operation * € {+, —, -, /} is monotonic with respect to the first and the second
arguments, respectively, we can always find two sequences (x,} and (y,} such that x, — xo,
¥a —> Yo @8 n —> o<, and x, * y, < z for any n. Let z, = x, % y,; then z, — zp as n — cc.
Thus,

lim (A % B)(z) = J_'LEO(A * B)(z,) = uiin{:,l‘J sup min[A(x), B(y)]

I=+Ip= r,=xxy
> lim min[A(%,), B(»)] = min[A(lim x.), B(lim ya)] = min[Axo), BO].

This contradicts (4.14) and, therefore, A * B must be a continuous fuzzy number. This
completes the proof. MW

11



LATTICE OF FUZZY NUMBERS

As is well known, the set R of real pumbers is linearly ordered. For every pair of real
numbers, x and y, either x < y or y < x. The pair (R, <) is a lattice, which can also be
expressed in terms of two lattice operations,

. if x <
min(x, y) = [; 1f; p f: (4.15)
if x <
max(x, y) = [i’ Lf; Ei (4.16)

for every pair x,y € R. The linear ordering of real numbers does not extend to fuzzy
numbers, but we show in this section that fuzzy numbers can be ordered partially in a natural
way and that this partial ordering forms a distributive lattice.

To introduce a meaningful ordering of fuzzy numbers, we first extend the lattice
operations min and max on real numbers, as defined by (4.15) and (4.16), to corresponding
operations on fuzzy numbers, MIN and MAX. For any two fuzzy numbers A and B, we
define

MIN(A, B)(z) = _sup min[A(x). B, (417)
Z=min(x.y

MAX(A, B)(z) = sup min[A(x), B(y))] (4.18)
r=max(x.y)

forallz € R.

Observe that the symbols MIN and MAX, which denote the introduced operations on
fuzzy numbers, must be distinguished from the symbols min and max, which denote the
usual operations of minimum and maximum on real numbers, respectively. Since min and
max are continuous operations, it follows from (4.17), (4.18), and the proof-of Theorem 4.2
that MIN (A, B) and MAX (A, B) are fuzzy numbers.

12



It is important to realize that th

e operations MIN and MAX are totally different from

the standard fuzzy intersection and union, min and max. This difference is illustrated in

Fig. 4.6, where

0 forx < —2andx > 4
Ax)={ x+2)/3 for —2=<x=1
L(4—x),!3 forl<x <4,
Jn forx <1landx > 3
B(x)={x-1 forl<x<2
L3—x for2 <x <3,
(0 forx < —2andx >3
] x+2)/3 for —-2<x=<1
MIN(A.B)(x) =} (4 _ /3 for1<x=<25
| 3 —x for2.5 <x <3,
(0 forx <landx >4
MAX x—1 forl<x <2
4, B)(x) = 3—x for2 <x <25
| (4—-x)/3 for25<x <4

Let R denote the set of all fuzzy

numbers. Then, operations MIN and MAX are clearly

functions of the form R x R — R . The following theorem, which establishes basic properties
of these operations, ensures that the triple (R, MIN, MAX) is a distributive lattice, in which
MIN and MAX represent the meet and join, respectively.

Theorem 4.3. Let MIN and MAX be binary operations on R defined by (4.17) and
(4.18), respectively. Then, for any A, B, C € R, the following properties hold:

(a) MIN (A, B) = MIN (B, A),

MAX (A, B) = MAX (B, A) (commutativity).

(b) MIN [MIN (A, B), C] = MIN[A
MAX [MAX (4, B), C] = MAX
(c) MIN(A, A) = A,

,MIN (B, O)].
[A, MAX (B, C)] (associativity).

MAX (A, A) = A (idempotence).

(d) MIN[A, MAX (A, B)] = A,

MAX{[A, MIN (A, B)] = A (absorption).

() MIN[A, MAX (B, C)] = MAX[

MIN (A, B), MIN (A, C)],

MAX [A, MIN (B, C)] = MIN [MAX (A, B), MAX (4, C)] (distributivity).

Proof: We focus only on proving properties (b), (d), and (€); proving properties (a) and

(c) is rather trivial.
(b) For all z ¢ R,

13



MIN[A, MIN (B, C)](z) = sup min[A(x), MIN (B, C)(y)]

z=min(x,¥)
= sup min[A(x), sup min[B(u), C(v)]]
z=min{z,y) y=min{uz,v) -

= sup sup min[A(x), B(u), C(v)]

z=min(x,y) y=min{u,v)

= sup min[A(x), B(u), C(v)]

z=min(x,u,v)

= sup sup min[A(x), B(u), C(v)]

z=min{s,v) s=min{x, u)

= sup min[ sup min[A(x), B(u)], C(v)]

r=min(s,v) s=min(x,u)
= sup min[MIN (4, B)(s), C(v)]
z=min(s,v)

= MIN [MIN (A, B), C](z).

The proof of the associativity of MAX is analogous.
‘(d)Forallz e R,

MIN[A, MAX (4‘4, B)](z) = sup min[A(x), MAX (A, B)(y)]

r=mun(x,¥)

= sup min[A(x), sup min[A(u), B(v)]]

z=min(x,y) y=max(u,v)

= sup  min[A(x), A(w), B(v)].

z=min(x,max(u,v)}

Let M denote the right-hand side of the last equation. Since B is a fuzzy number, there exists
Yo € R such that B(vp) = 1. By z = min[z, max(z, vp)], we have

M > min[A(2), A(z), B(vo)] = A(2).
On the other hand, since z = min[:g , max(u, v)], we have
min(x, ) <z < x < max(x, u).
By the convexity of fuzzy numbers,

A(2) = min[A[min(x, u)], A[max(x, u)]]
= min[A(x), A(u)]
> min[A(x), A(u), B(v)].

Thus, M = A(z) and, consequently, MIN[A, MAX(B,C)] = A. The proof of the other
absorption property is similar.



(e) For any z € R, it is easy to see that

MIN[A, MAX (B, C)](z) = sup min[A(x), B(u), C(v)], (4.19)

r=min[x.max(u,v))
MAX[MIN (A, B), MIN (A4, C)](2) =,
sup - min[A(m), B(n), A(s), C(8)]. (4.20)

z=max[min(m,n},min(s,r)]
To prove that (4.19) and (4.20) are equal, we first show that E € F, where
E = (min[A(x), B(), C(v)]| min[x, max(x, v)] = z},
F = {min[A(m), B(n), A(s), C(+)]] max[min(m, n), min(s, t)] = z}.

For every a = min[A(x), B(u), C(v)] such that min[x, max(u, v)] = z (i.e., a € E), there
exists m = s = x, n = u, and ¢t = v such that

max{min(m, n), min(s, t)] = max[min(x, ), min(x, v)]
= min[x, max(u, v)] = z;

hence, @ = min[A(x), B(u), A(x), C(v)] = min[A(m), B(n), A(s),C(t)]. Thatis, a € F
and, consequently, E € F. This means that (4.20) is greater than or equal to (4.19). Next,
we show that these two functions are equal by showing that for any number b in F, there
exists a number 4 in E such that b < a.
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. For any b € F, there exist m, n, s, and ¢ such that
max[min(m, n), min(s, t)] = z,
b = min[A(m), B(n), A(s), C(1)].
Hence, we have
z= min[max(s, m), max(s, n), max(¢, m), max(¢, n)].

Let x = min[max(s, m), max(s, n), max(t,m)],u = n, and v = ¢t. Then, we have z =
min[x, max(x, v)]. On the other hand, it is easy to see that

min(s, m) < x < max(s, m).
By convexity of A,
A(x) = min[A(min(s, m)), A(max(s, m))]
= min[A(s), A(m)].
Hence, there exists a = min[A(x), B(u), C(v)] with min{x, max(u, v)] = z (i.e., @ € F), and
a = min[A(x), B(4), C(v)] = min[A(s), A(m), B(n), C(t)] = b.
That is, for any b € F, there exists a € F such that b < a. This implies that
supF <supkE.

This inequality, together with the previous result, ensure that (4.19) and (4.20) are equal.
This concludes the proof of the first distributive law. The proof of the second distributive law
is analogous. W

FUZZY EQUATIONS

One area of fuz:z;,r set theory in which fuzzy numbers and anthmenc operanons on fuzzy
numbers play a fundamental role are ﬁ:.zzy equamms'

A+ X =Band A-X = B, where A and B are fuzzy

numbers, and X is an unknown fuzzy number for which either of the equations is to be
satisfied.
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EquationA +X =18

The difficulty of solving this fuzzy equation is caused by the fact that X = B — A is not the
solution. To see this, let us consider two closed intervals, A = [a;, ;] and B = [by, b,],
which may be viewed as special fuzzy numbers. Then, B — A = [b; — a3, b, — a;] and
A+ (B~-A) = [ay,a:] + [ —ay,b; — a]
= [a1+ by — a2, a2 + by — ay]
?E [bls bz] = B.
whenever a; # a;. Therefore, X = B — A is not a solution of the equation.

Let X = [x;,x2]. Then, [a; + x1, az + x2] = [b1, b2] follows immediately from the

equation. This results in two ordinary equations of real numbers,

a+x = bl,

a; +xz = by,
whose solution is x; = b; — a; and x; = b; — a;. Since X must be an interval, it is required
that x; < x;. That is, the equation has a solution iff b; — a; < b, — a;. If this inequality is
satisfied, the solution is X =_[b1 —ay, by — ag].

This example illustrates how to solve the equation when the given fuzzy numbers A
and B are closed intervals. Since any fuzzy number is uniquely represented by its a-cuts
(Theorem 2.5), which are closed intervals, the described procedure can be applied to a-cuts of
arbitrary fuzzy numbers. The solution of our fuzzy equation can thus be obtained by solving
a set of associated interval equations, one for each nonzero « in the level set A, U Ap.

For any a € (0,1], let “A = [, “22], “°B = [*b;,°b;], and *X = [%, %3] denote,
respectively, the a-cuts of A, B, and X in our equation. Then, the equation has a solution iff;

(i) °b, — “ay < °b; — “a, for every « € (0, 1], and
(ii) a < B implies ®by — %a; < #by — %4y < Py — Pay < °b; — “as.

Property (i) ensures that the interval equation
ﬂ'A + I'.'IX — ﬂB
has a solution, which is “X = [*b; — %, °b; — “a;]- Property (ii) ensures that the solutions of
the interval equations for a and B are nested; that is, if @ < B, then £Y C 2Y. If a solution
“X exists for every a € (0, 1] and property (ii) is satisfied, then by Theorem 2.5, the solution
X of the fuzzy equation is given by

X= J X.
x€(0,1]

To illustrate the solution procedure, let A and B in our equation be the following fuzzy
numbers:
A = 2/[0,1) +.6/[1,2) + .8/[2,3) + .9/[3,4) + 1/4 + .5/(4, 5] + .1/(5, 6],
B = .1/[0, 1) + .2/[1, 2) +.6/]2, 3) + .7/[3, 4) + .8/[4, 5) + .9/[5, 6)
+1/6 +.5/(6,7]+ .4/(7,8] + .2/(8,9] + .1/(9, 10].

17



TABLE 4.1 «-CUTS ASSQCIATED
WITH THE DISCUSSED FUZZY
EQUATIONOF TYPEA +X = B

o “A “B X

1.0 | [(44] (66] [22)
09 | B4 [56] [22)
0.8 [2.4] [4.6] (2.2]
07 | 24 [3.6] (L2
06 | [14] [26] [12]
0.5 [1,5] [2,7] [1,2]
04 | [1L5] (28] [13]
03 | [L5] (28]  (L3]
02 | [05 [  [14]
0.1 | [06 [010] [04]

All relevant cr-cuts of A, B, and X are given in Table 4.1. The solution of the equation is the
fuzzy number

X = U ak =.1/{0, )+ .7/[1,2) + 1/2 + 4/(2, 3] + .2/(3, 4].
ae(0,1]

EquationA - X =B

Let us assume, for the sake of simplicity, that A, B are fuzzy numbers on R*. It is easy to
show that X = B/A is not a solution of the equation. For each @ € (0, 1], we obtain the
interval equation

“A -°X =“B.

Our fuzzy equation can be solved by solving these interval equations for all @ € (0, 1]. Let
‘A = [%ay, “az], °B = [*by, °b;), and X = [*x;, %3] Then, the solution of the fuzzy equation
exists iff:

(i) %, /%1 < °b,/%, for each o € (0, 1}, and
(i) @ < B implies ®b;/%a; < #by/%ay < Pba2/%a; < Do/ as.

If the solution exists, it has the form

X= U X

ae(0,1]
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As an example, let A and B in our equation be the following triangular-shape fuzzy
numbers:

[0 forx<3andx > 5
Ax) ={x—-3 for3<x =<4
L5—:: ford <x <5

(0 forx <12 and x > 32
B(x) ={ (x—12)/8 for12<x <20

| (32 -x)/12  for20 < x < 32.

Then, “A = [« + 3,5 ~ @] and “B = [8« + 12,32 — 12¢]. It is easy to verify that
8a +12 _32-12a

«a+3 T S—a

consequently,

o [&x+12 32—12{!]
X = .
o+3 5—a

for each @ € (0, 1]. It is also easy to check that @ < B implies X < “X for each pair «,
B € (0, 1]. Therefore, the solution of our fuzzy equation is

0 forx <4and x > 32/5
ek ford <x <5
¥= QFX= x5 B
ae(0,1
32-=5
ad for 5 < x < 32/5.
12 —x
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FUZZY PROPOSITIONS

The fundamental difference between classical propositions and fuzzy propositions is in the
range of their truth values. While each classical proposition is required to be either true or
false, the truth or falsity of fuzzy propositions is a matter of degree. Assuming that truth
and falsity are expressed by values 1 and 0, respectively, the degree of truth of each fuzzy
proposition is expressed by a number in the unit interval [0, 1].

we classify into the

r - & £

following four typcs;

1. unconditional and unqualified propositions;
2. unconditional and qualified propositions;
3. conditional and unqualified propositions;
4. conditional and qualified propositions.



Unconditional and Unqualified Fuzzy Propositions

The canonical form of fuzzy propositions of this type, p, is expressed by the sentence
p:VisF, , (8.4)

where V is a variable that takes values v from some universal set V, and F is a fuzzy set on
V that represents a fuzzy predicate, such as tall, expensive, low, normal, and so on. Given a
particular value of V (say, v), this value belongs to F with membership grade F(v). This
membership grade is then interpreted as the degree of truth, T(p), of proposition p. That is,

T(p) = F(v) (8.5)

for each given particular value v of variable V in proposition p. This means that T is in
effect a fuzzy set on [0, 1], which assigns the membership grade F (v} to each value v of
variable V.

To illustrate the introduced concepts, let variable V be the air temperature at some
particular place on the Earth (measured in °F) and let the membership function shown in
Fig. 8.1a represent, in a given context, the predicate high. Then, assuming that all relevant
measurement specifications regarding the temperature are given, the corresponding fuzzy
proposition, p, is expressed by the sentence

p : temperature (V) is high (F).

E(v) A T(p) A
1= 1
075 | ——————————————— 0.75
|
|
|
|
|
|
0 | | | | | | [ | | | |
0 10 20 30 40 S50 60 70 80 A9 100 110 120 0 —_— Jr 1
—_— F(v)
v 85 0.75

(a) (b

Figure 8.1 Components of the fuzzy proposition p: Temperature (V) is high (F).



The degree of truth, T'(p), depends on the actual value of the temperature and on the given
definition (meaning) of the predicate high; it is defined by the membership function T in
Fig. 8.1b, which represents (8.5). For example, if v = 85, then F(85) = 0.75and T (p) = 0.75.
_ We can see that the role of function T is to provide us with a bridge between fuzzy sets
and fuzzy propositions. Although the connection between grades of membership in F and
degrees of truth of the associated fuzzy proposition p, as expressed by (8.5), is numerically
trivial for unqualified propositions, it has a conceptual significance.
In some fuzzy propositions, values of variable V in (8.4) are assigned to individuals in
a given set /. That is, variable V becomes a function V : I —» V, where V(i) is the value of
V for individual i in V. The canonical form (8.4) must then be modified to the form

p:V(@)is F, (8.6)

where i € I.
Consider, for example, that I is a set of persons, each person is characterized by his
or her Age, and a fuzzy set expressing the predicate Young is given. Denoting our variable
by Age and our fuzzy set by Young, we can exemplify the general form (8.6) by the specific

fuzzy proposition
p : Age(i) is Young.

The degree of truth of this proposition, I (p), is then determined for each person i in I via
the equation

T (p) = Young (Age(i)).

As explained in Sec. 7.4, any proposition of the form (8.4) can be interpreted as a
possibility distribution function rr on V that is defined by the equation

re(v) = F(v)

for each value v € V. Clearly, this interpretation applies to propositions of the modified form
(8.6) as well.



Unconditional and Qualified Propositions

Propositions p of this type are characterized by either the canonical form
p:VisFis S, (8.7)
or the canonical form
p:Pro(Vis F}is P, (8.8)

where V and F have the same meaning as in (8.4), Pro(Vis F} is the probability of
fuzzy event “Vis F,” § is a fuzzy truth qualifier, and P is a fuzzy probability qualifier.
If desired, V may be replaced with V(i), which has the same meaning as in (8.6). We
say that the proposition (8.7) is truth-qualified, while the proposition (8.8) is probability-
qualified. Both § and P are represented by fuzzy sets on [0,1].

An example of a truth-qualified proposition is the proposition “Tina is young is very
true,” where the predicate young and the truth qualifier very true are represented by the
respective fuzzy sets shown in Fig. 8.2. Assuming that the age of Tina is 26, she belongs
to the set representing the predicate young with the membership grade 0.87. Hence, our
proposition belongs to the set of propositions that are very true with membership grade 0.76,
as illustrated in Fig. 8.2b. This means, in turn, that the degree of truth of our truth-qualified
‘proposition is also 0.76. If the proposition were modified by changing the predicate (e.g., to
very young) or the truth qualifier (e.g., to fairly true, very false, etc.), we would obtain the .
respective degrees of truth of these propositions by the same method.

In general, the degree of truth, T(p), of any truth-qualified proposition p is given for
each v € V by the equation

T(p) = S(F (). (8.9)
Ay t(a) }
! 1
0.87 —=
A =Young
075 ° U.',?G
A=Very & - E
05 Young %" _,_::
0.36 = g E
<
025 - <
| 1
0 20 4 40 60  Age 0 T 1 a
Tina 0.87

(a) (b)

Figure 8.2 Truth values of a fuzzy proposition.



Viewing the membership function G(v) = S(F(v)), where v € V, as a simple predicate, we
can interpret any truth-qualified proposition of the form (8.7) as the unqualified proposition
“Vis G”

Observe that unqualified propositions are, in fact, special truth-qualified propositions,
in which the truth qualifier § is assumed to be true. As shown in Figs. 8.1b and
8.2b, the membership function representing this qualifier is the identity function. That is,
S(F(v)) = F(v) for unqualified propositions; hence, S may be ignored for the sake of
simplicity.

Let us discuss now probability-qualified propositions of the form (8.8). Each proposition
of this type describes an elastic restriction on possible probability distributions on V. For any
given probability distribution f on V', we have

Pro{Vis F} =)  f(v)- F(v); (8.10)

veV

and, then, the degree T (p) to which proposition p of the form (8.8) is true is given by the
formula

T(p)=P()_ f(v)- F(v)). . (8.11)

veV

- -

As an example, let variable V be the average daily temperature ¢ in °F at some place on
the Earth during a certain month. Then, the probability-qualified proposition

p : Pro [temperature ¢ (at given place and time) is around 75°F) is likely

may provide us with a meaningful characterization of one aspect of climate at the given place
and time and may be combined with similar propositions regarding other aspects, such as
humidity, rainfall, wind speed, and so on. Let in our example the predicate “around 75°F”
be represented by thie fuzzy set A on R specified in Fig. 8.3a and the qualifier “likely” be
expressed by the fuzzy set.on [0, 1] defined in Fig. 8.3b.

Assume now that the following probability distribution (obtamed e.g., from relevant
statistical data over many years) is given:

Uniikely Likely

{1 rescsssa 1

Aft) 95} ="V A

Vary —f i
Unlikely | g Vory
i Likaly

7| SN W TN S

0 1 L1 1 | } ; 1

70 72 74 76 T8 80 82 0 .25 5 t 1
1{°F)
‘ (a) (b)

Figure 83 Example of a probability-qualified proposition.



t | 6869 | 70 |71]72]73|74[75]76|77|78]|79|80| 81 | 82 | 83 |
f@)|.002].005[.005].01].04].11].15].21].16].14].11].04] .01 .005 | 002 .001]

Then, using (8.10), we obtain
Pro (¢ is close to 75°F) = .01 x .25+ .04 x 54+ .11 x .75+ .15x 14+ .21 x 1
+ .16 x 1+ .14 x .75+ .11 x .5+ .04 x .25 = .8,

and, applying this result to the fuzzy probability likely in Fig. 8.3b (according to (8.11)), we
find that T (p) = .95 for our proposition. That is, given the definitions of around 75 and likely
in Fig. 8.3, it is true with the degree of .95 that it is likely that the temperature (at a given
place, time, etc.) is around 75°F. Due to this high degree of truth, we may conclude that
our proposition is a good characterization of the actual situation. However, if we replaced
the qualification likely in our proposition with very likely (as also defined in Fig. 8.3b), the
degree of truth of the new proposition would be only .32. This low degree of truth would not
make the new proposition a good description of the actual situation.

Observe that the degree of truth depends on the predicate F, the qualifier P, and the
given probability distribution. Replacing, for example, our fuzzy predicate around 75 with a
crisp predicate in the 70s, we obtain

T
.Pro (¢ is in the 70s} = ) _ f() = .98,
t=70

and T (p) becomes practically equal to 1 even if we apply the stronger qualifier very likely.



Conditional and Unqualified Propositions

Propositions p of this type are expressed by the canonical form
p: fXis A, thenY is B, (8.12)

where X, Y are variables whose values are in sets X, Y, respectively, and A, B are fuzzy sets
on X, Y, respectively. These propositions may also be viewed as propositions of the form

(X, Yy is R, (8.13)

where R is a fuzzy set on X x Y that is determined for each x € X and each y € ¥ by the
formula

R(x, y) = 3[A(x), B(y)],

where g denotes a binary operation on [0, 1] representing a suitable fizzy implication.

Fuzzy implications are discussed in detail in the context of approximate reasoning in
Secs. 11.2 and 11.3. Here, let us only illustrate the connection between (8.13) and (8.12) for
one particular fuzzy implication, the Lukasiewicz implication

J(a,b) =min(l,1 —a + b). (8.14)
Let A = 1/x; + .8/x, + 1/x3 and B = .5/y; + 1/y>. Then
R=1/x;,y1 +1/x), y2+ .7/x5 y1 + /X3, ¥2 + 5/x3, 1 + 1/x3, ya.

This means, for example, that T(p) = 1 when X = x; and Y = y;; T(p) = .7 when X = x,
and Y = y;; and so on.

Conditional and Qualified Propositions

Propositions of this type can be characterized by either the canonical form
p: IfXis A, thenYis Bis S (8.15)
or the canonical form
p:Pro{Xis AlY is B} is P, (8.16)
where Pro (X is A|Y is B} is a conditional probability.

LINGUISTIC HEDGES



Linguistic hedges (or simply hedges) are special linguistic terms by which other linguistic terms
are modified. Linguistic terms such as very, more or less, fairly, or extremely are examples
of hedges. They can be used for modifying fuzzy predicates, fuzzy truth values, and fuzzy
probabilities. For example, the proposition “x is young,” which is assumed to mean “x is young
is true,” may be modified by the hedge very in any of the following three ways:

“x is very young is true,”
“x is young is very true,”
“x is very young is very true.”

Similazly, the proposition “x is young is likely” may be modified to “x is young is very
tikely,” and so forth.
In general, given a fuzzy proposition

pixis F
and a linguistic hedge, H, we can construct a modified proposition,
Hp:xis AF,

where HF denotes the fuzzy predicate obtained by applying the hedge H to the given
predicate F. Additional modifications can be obtained by applying the hedge to the fuzzy
truth value or fuzzy probability employed in the given proposition.

1t is important to realize that linguistic hedges are nol applicable to Crisp predicaies,
truth values, or probabilities. For example, the linguistic terms very horizontal, very pregnant,
very teenage, of very rectangular are not meaningful. Hence, hedges do not exist in classical
logic. :
Any linguistic hedge, /¥, may be interpreted as a unary operation, 4, on the unit interval
[0, 1]. For example, the hedge very is often interpreted as the unary operation A(a) = a°,
while the hedge fairly is interpreted as k(@) = /a (a € [0, 1]). Let unary operations that
represent linguistic hedges be called modifiers.
; Given a fuzzy predicate F on X and a modifier / that represents a linguistic hedge F,

the modified fuzzy predicate H F is determined for cach x € X by the equation

HF(x) = h{(F(x)).



This means that properties of Hnguistic hedges can be studied by studying properties of the
associated modifiers.

Any modifier 4 is an increasing bijection. If h{a) < a for all a & {0, 1], the modifier
is called strong; if #(a) > a for all 2 € [0, 1], the modifier is called weak. The special
(vacuous) modifier for which #{a) = a is called an idenzity modifier. .

A strong modifier strengthens a fuzzy predicate to which it is applied and, consequently,
it reduces the truth value of the associated propositivn. A weak modifier, on the contrary,
weakens the predicate and, hence, the truth value of the proposition increases, For example,
consider three fuzzy propositions:

i : John is young,
P2 : Jobn is very young,
P> : John is fairly young,

arnd let the linguistic hedges very and fairly be represented by the strong modifier a* and the
weak modifier ./a. Assume now that John is 26 and, according to the fuzzy set YOUNG
representing the fuzzy predicate young, YOUNG (26) = 0.8. Then, VERY YOUNG
(26) = 0.82 = 0.64 and FAIRLY YOUNG (26) = 0.8 = 0.8%. Hence, T{p;) = 0.8,
T(p:) = 0.64, and T{pi) = 0.89. These values agree with our intvition: the stronger
assertion is less true and vice versa.

8.6 INFERENCE FROM CONDITIONAL FUZZY PROPOSITIONS

As explained in Sec. 8.1, inference niles in classical logic are based on the various tantologies.
These inference rules can be generalized within the framework of fuzzy logic to facilitate
approximate reasoning. In this section, we describe generalizations of three classical inference
rules, modus ponens, modus tollens, and hypothetical syllogism. These generalizations are
based on the so-called compositional mle of inference.

Consider variables X and Y that take values from sets X and Y, respectively, and
assume that for all x € X and all y € Y the variables are related by a function y = f(x).
Then, given X == x, we can infer that Y = F(x). as shown in Fig. 8.6a. Similarly, knowing
that the value of X is in & given set A, we can infer that the value of Y is in the set
B == {y e Y|y = f(x),x € A}, as shown in Fig. 8.6b,

Assume now that the variables are related by an arbitrary relation on X x Y, not
necessarily a function. Then, given X = u and a relation R, we can infer that Y € B, where
B = {y € Y|{x,y) € R}, as illustrated in Fig. 8.7a. Similarly, knowing that X € A, we
can infer that ¥ € B, where B = [y € Y|{x.») € R, x € A}, as illustrated in Fig. 8.7b.
Observe that this inference may be expressed equally well in terms of characteristic functions
X 40 X g1 Xz Of sets A, B, R respectively, by the equaticn

Xz = s:‘g mia[x , (x), X g(x, ] (8.38)
-
Torailye?Y.
Let us proceed now one step further and assume that R is a fuzzy relation on X x ¥,

and A’, B’ axe fuzzy sets on X and ¥, respectively. ' Then, if R and A’ are given, we can
obtain B’ by the equation

10
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for all y € Y, which is a generalization of (8.38) obtained by replacing the characteristic
functions in (8.38) with the corresponding membership functions. This equation, which can
also be wrirten in the matrix form as

B =AR,

is called the compositional rule of inference. This mule is illustrated in Fig. 8.8,

The fuzzy relation employed in (8.39) is usually not given directly, but in some other
form. In this section, we consider the case in which the relation is embedded in a single
conditional fuzzy proposition. A more general case, in which the relation emerges from
several conditional fuzzy propositions, is discussed in Chapter 11.

As explained in Sec. 8.3, relation R that is embedded in a conditional fuzzy proposition
p of the form

p:HEXisA thenYis B
is determined for all x € X and all y € ¥ by the formula
R(x,y) = 3[A(x), B, (8.40)

where 4 denotes a fuzzy implication

12
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Figure 88 Compositional mle of
inference expressed by (8.39).
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Using relation R obtained from given proposition p by (8.40), and given another
proposition g of the form

g:Xis A,
we may conclode that ¥ is B’ by the compositional rule of inference (8.39). This procedure
is called a generalized modus ponens.

Viewing proposition p as a rule and proposition ¢ as a fact, the generalized m.odus
ponens is expressed by the following schema:

Rule : IfXis A, thenYis B
Fact : Xis A (8.41}

Conclusion : Y is B’

In this schema, B’ is calculated by (8.39), and R in this equation is determined by (8.40).
Observe that (8.41) becomes the classical modus ponens when the sets are crisp and
A=A B =81,

Example 8.1

Let seis of values of variables X and Y be X = [x,x;,x;} and ¥ = {y,,y;_}l, respectivaly,
Assume that a proposition “if X is A, then Y is B” is given, where A = 5/x + 1/x, + .6/x;3
and B = 1/y + 4/y,. Then, piven a fact expressed by the proposition “x is A’)" where

A" = 6/x; + 9/xy + . 7/x3, we want t0 use the generalized modus poaens (§.41) to derive
conclusion in the form “Y is B'” '
Using, for example, the Lukasiewicz implication (8.14), we obtain

K= 1/’-1‘1. n+ .9{'1’1. Y2+ 1/xs, ¥ .4/},’3. Yy 1/xs, Yis -+-,8/x3_ ¥a
by {8.40}. Then, by the compesitional rule of inference (8.39), we obtain
B'(y:) = sup min[A'(x), R(x, y1)]

¥eX
- max[miH(.ﬁ. 1}! l]l]'.ﬂ.{‘g,, 1)! min(.';', 1)3
.5

B'(y) = s:.g min[A'{x), R(x, y2)]

= max[min{_g, .9), min{.9, .4), min(.7, .8)]
= .7
Thus, we may conclude that Y is B, where 8’ = .9/y; +.7/ 7.

a

Axgother inference rule in fuzzy logic, which is a gereralized modus tollens, is expressed

by the following schema:

Rule : I Xis A, then Y is B
Fact : Y is B

Conclusion : X is A’
In this case, the compositional rule of inference has the form

14



A'{x) = supmin[B’'(y), R{x, )], (8.42)

re¥

and R in this _equation is again det¢rmined by (8.40). When the sets are crisp and
A’ = A, B’ = B, we obtain the classical modus tollens.

Example 8.2

Let X.Y,3,A, and B are the same as in Example 8.1. Then. R is also the same as in
Example 8.1. Assume now that a fact expressed by the proposition “Y is 8" is given, where
B == 9fy +.7/y;. Then, by (8.42),

A'(xy) = supmin[B'(»), R(x;, ¥)]

=¥
= max{min(.9, 1), min(.7, .9)] = .9,
A'(x)) = supmin{B'(y), R(xz, ¥)]

yef

= max[min(.9, 13, min(.7, .4)] = .9,
supmin[B’(y), R(x3, ¥)] |

ye¥

= max[min(.9, 13, min(.7, .8)] = .9.
Hence, we conclude that X is A" where A" = .9/xy + .9/x; + .9/x;.

A'(xy)

Finally, et us discuss a generalization of hypothetical syllogism, which is based on two
conditional fuzzy propositions. The generalized hypothetical syllogism is expressed by the
following schema: '

Rule 1: IfXisA, then Yis B
Rule 2: IfYis 8, thenZ2is C (8.43)

Conclusion : X is A, then Zis C

In this case, X, Y, Z are variables taking values in sets X, Y, Z, respectively, and A, B, C are

fuzzy sets on seis X, Y, Z, respectively.
For each conditional fuzzy proposition in (8.43), there is a fuzzy relation determined by
(8.40). These relations are determined for cachx € X,y €Y, and 2z € Z by the equations

Ry(x, y) = 3[AG), BY)],
Ry(y,2) = 3[B(). C(@),
Rs(x, 2) = J[Ax), C@D).

Given R,, Ry, R;, obtained by these equations, we say that the generalized hypothetical
syliogism holds if '

R3(x, z) = sup lII.III[Rl(x ¥)s Raly, Z)], (8'44)
re¥ :
which again expresses the compositional rule of inference. This equanon may also be written
in the matrix form j
R; = R; = Ra. (8.45)

15



Example 8.3

Let X,Y be the same as in Example 8.1, and let Z = {z;, z3}. Moregver, let 4 =
Six 1%+ .6/x3, B =1/y  + 4y, C = 2/z + 1 /72, and

1 ifg<h
Ya by = {b ifa>b.

1 4 2 1 201
R=|1 4|, R1¢['2 1:1. R3=|:.?. 1]
1 4 ’ 2 1

The generalized hypothetical syllogism kolds in this case since R;° R; = R;.

Then, clearly,

8.7 INFERENCE FROM CONDITIONAL
AND QUALIFIED PROPOSITIONS

The inference rule of our concern in this section involves conditional fuzzy propositions with
fuzzy truth qualifiers, Given a conditional and qualified fuzzy proposition p of the form
p: fXisA, thenYis Bis S, (8.46)

where § is a fuzzy truth qualifier, and a fact is in the form “X is A’ we want to make an
inference in the form “Y is B’

One method developed for this purpose, called a method of truth-value restrictions, is
based on a manipulation of linguistic truth values. The method involves the following four
steps.

Step 1. Calculate the relative fuzzy truth value of A” with respect to A, denoted by
RT(A'/A), which is a fuzzy set on the unit interval defined by

RT(A'JA)(a) = sup A'(x), (8.47)

TTA(TY=a

for all a € [0, 1]. The relative fuzzy truth value R7 (A’/ A} expresses the degree to which the
fuzzy propositicn (8.46) is true given the available fact “X is A".”

Step 2. Select a suitable fuzzy impiication J by which the fuzzy proposition (8.46) is
interpreted. This is similar to the selection of fuzzy implication in Sec. 8.6, whose purpose is
to express a conditional but unqualified fuzzy proposition as a fuzzy relation.

Step 3, Calculate the relative fuzzy truth value RT(B’/B) by the formula
RT(B'/B)(b) = sup. min[RT (A’/A)(a), S(3(e, b)) (8.48)
agilv,

for all b € {0, 1], where S is the fuzzy qualifier in (8.46). Clearly, the role of the qualifier
S is to modify the truth value of 3(a, b). Note that when S stands for true (Le., S{a) = a)

for all a € [0, 1], then S(J(a, b)) = J(a. b),

16



The relative fuzzy truth value RT(B'/B) expresses the degree to which the conclusion of the
fuzzy proposition {5.46) is true.

Step 4. Calculate the set B involved in the inference “Y is B’ by the equation
B'(y) = RT(B'/BYB(»)). (8.49)
forally e ¥.

Example 8.4
Suppuse we have a fuzzy conditional and qualificd propesition,
p: X is A then Y is B is very true,

where A = 1/x, + .3/x3 + .7/x3, B = 6/y1+ 1/y:, and S stands for very frue; let S(@) = g?
for all @ € [0, 1). Given a fact “X is A",” where A" = .9/x; + .6/x; + .7/x3, we conclude that
“Y is B',” where 8’ is calculated by the following steps.

Step 1. We calculate RT{A'/A) by (8.47):

RT(A'/A)(1) = A'(x) = .9,

RT(A’/A)(.S) = A'(xy) = .6,

RT(A'fA)T) = Al(xy) = .7,

RT(A' fAWa} = O forall @ €0, 1] —{.5,.7, 1.
Step 2. We sclect the Lukasiewicz fuzzy implication g defined by (8.14),
Step 3. We calculate RT(B’/B) by (8.48):

RT(B'/B)(b) = max{min{.9, S(3(.9, b)), min{.6, S(3{.6, EN],
min[.7, $(3(.7, &EN}]}

[ (4+5)  for b2 [0, 375)
6 for b € [.375, .475)
_ ] (3+b)?*  forb e [475,.537)
e for b & [.537..737)
(.14+85)? forbe [.737, .849)

9 for b € [.849,1]

A graph of this function RT(B’,’Bi is shown in Fig. 8.9,
Step 4. We calculate B2’ by (8.49):
B'(y1} = RT(B'/BYB()) = RT(B'/B)(.6) = .7,
B'(y2) = RT(B'/BY(B{y:)) = RT(B'/B)(1) = 9.

Hence, we make the inference “Y is B'.” where B = .7/y: + .9/m.

When S in (8.46) stands for true (ie., S is the identity fupction), the methed of
trath-value restrictions is equivalent to the generalized modus ponens under a particular
condition, as stated in the following theorem.
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Figure 8.9 Function RT{B/B’) in Example 8.3.

Thevorem 8.1. Let a fuzzy proposition of the form {8.46) be given, where § is the
identity fanction (i.e., S stands for true), and let a fact be given in the form “X is A",” where

sup A'(x) = A'(xp) (8.50)

xtA(x)=a

foralla € [0, 1] and some X, such that A{xq) = a. Then, the inference “Y is B’" obtained by
the method of truth-value restrictions is equal to the one cobtained by the generalized modus
ponens (i.e., (8.41) and (8.49) define the same membership function B), provided that we
use the same fuzzy implication in both inference methods. '

Proof: When S(u) = a for all ¢ € [0, 1], B, defined by (8.49), becomes
B'(y)= sup]min[R T(A'/A)(a), 3(a, B{y))] (8.51)

agi0,1
forall y € Y. Using the same fuzzy implication J, B, defined by (8.41), becomes
B'(y)= sup min[A'(x), I(A(x), B())] (8.52)
x
for all y € ¥. To prove the theorem, we have fo show fhat (8.51) and (8.52) define the same

membership function B’. To facilitate the proof, let B{, B; denote the functions defined by
(8.51) and (8.52), respcctively. Since

A(x)=  sup A)=RTATA)AK))

A=A

for all x € X, we have

minfA’(x), J(Ax), B(y))] < min[RT(A'/A)(A(x)), H(A(x), B(y))]

18



for all y £ Y. Hence,
Bi(y) = sup min[A’(x), J(A(x), B(y))]
x
< sup min[RT (A"/A)(A(x)), F(A(x), B(y))]
< sup minRT(A/A)(@). 3(a, BG)]
agfl.l
= Bi(»)
for all y € Y. On the other hand, by cordition (8.50}, we have

min[RT (A’'/A)(a), 4(a, B(y))} = min[ j(u])) A'(x), 3(a, B

= minf[A’(xg), (A (x), BY)]
= sup minfA'(x), I(Ax), B(y)]

= B3 (y)
for all y € Y. Thus,

Bi(y) = S‘{;P;jmiﬂ[RT(A'/A)(a)?H(ﬂ, B(y))] = B3(»)

for all ¥ € Y and, copsequently, B = 5;,. W
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INDIVIDUAL DECISION MAKING

In

the first paper on fuzzy decision making, Bellman and Zadeh [1970] suggest a fuzzy model of
decision making in which relevant goals and constraints are expressed in terms of fuzzy sets,
and a decision is determined by an appropriate aggregation of these fuzzy sets. A decision
situation in this model is characterized by the following componéfits:

e a set A of possible actions,

e a set of goals G;(i € N,), each of which is expressed in terms of a fuzzy set defined
on Aj _

o a set of constraints C;(j € N,,), each of which is also expressed by a fuzzy set defined
on A,



It is common that the fuzzy sets expressing goals and constraints in this formulation are
not defined directly on the set of actions, but indirsctly, through other sets that characierize
relevant states of nature. Let G and C’, be fuzzy sets defined on sets X; and ¥}, respectively,
where § € N, and j € N,. Assume that these fuzzy sets represent goals and constraints
expressed by the decision maker. Then, for each i € N, and each j € N,,, we describe the
meanings of actions in set A in terms of sets X; and ¥; by functions

gi: A~ X,
C_f:A-lv-Y},

and express goals G; and comstraints C; by the compositions of g with G and the
compositions of ¢; and C}; that is,

Gi(a) = Gi{(g:(a)), (15.1)
Ci(a) = Cjlc;(a) (15.2)

for each-a € A.

Given a decision sitmation characterized by fuzzy sets A, G: (i € N,), and C;(j € N,),
& fuzzy decision, D, 13 conceived as a fuzzy set on A that simultaneousty satisfies the given
goals ; and constraints C;. That is,

D(a) = mis{inf G,(a), inf C;(@)} (15.3)

for all a & A, provided that the standard operator of fuzzy intersection is employed.

Once a fuzzy decision has been arrived at, it may be necessary to choose the “best”
single crisp alternative from this fuzzy set. This may be accomplished in a straightforward
manner by choosing an alternative @ € A that attains the maximum membership grade in D.
Since this method ignores information comieming any of the other alternatives, it may not be

desirable in all situations.

Example 15.1

Suppose that an individual needs to decide which of four possible jobs, a,, a,, 43, 4,, to chaose,
His or her goal is to choose a job that offers a high Salary under the constraints that the job is
interesting and within close driving distance. In this case, A = (a,, a3, @3, a4}, and the fuzzy sets
imvolved represent the concepts of kigh salary, interesting job, and close driving distance. These
concepts are highly subjective and context-dependent, and must be defined by the individeal in
a given context. The goal is expressed in monetary terms, independent of the jobs available.
Hence, according to our notation, we denote the fuzzy set expressing the goal by G°. A possible
definition of G’ is given in Fig. 15.1a, where we assume, for convenience, that the undetlying
universal set is B*. To express the goal in terms of set A, we need 2 function g 4 — RY,
which assigns to each job the respective salary. Assume the following assignments:

glay) = $40,000,
g(,az} = MS:DW’
glas} = 350,000,

glay) = $60,000.
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Composing now functions g and &', accosding to

et - — -5 - = —— - L3 T e TR TR A eesamy war

(15.1), we obtain the fuzzy set
G = .11/ay + 3/ar + A8/ay + 8/a.,

which expresses the poal in terms of the available jobs in set A.

The first constraint, requiring that the job be interesting, is expressad directly in terms of
set A (i.e., ¢y, in (15.2) is the identity function and €y = C}). Assume that the individual assigns
to the four jobs in A the following membership grades in the fuzzy set of interesting jobs:

Ci = 4/a; + 6/a; + .2/as + .2/ a,.

The second constraint, requiring that the dnving distance be close, is expressed in terms
of the driving distance from home to work. Following our notation, we denote the fuzzy set
expressing this constraint by €. A possible definition of 7} is given in Fig. 15.1h, whera
distances of the four jobs are also shown. Specifically,

¢:(a;} = 27 miles,
czldta) = 7.5 miles,
cz(t;) = 12 miles,
ca(as} = 2.5 miles.
By composing functions ¢; and C3, according to (15.2), we obtain the fuzzy set
Oy = .1/ay + Ofaz + Tfas + 1/a,.

which expresses the constraint in terms of the set A.
Applying now formula (15.3), we obtain the fuzzy set

D= -1}'rﬂl +;3f‘ﬂz +.2fﬂ] <+ .2!04,

which represents a fuzzy characterization of the concept of desirable job. The job to be chosen
is & == a;; thir is the most desirable job among the four available jobs under the given goal
G apd constraints Cy, C;, provided that we aggregate the goal and constraints as expressed by
(15.3).

FUZZY RANKING METHODS



" The first method is based upon acﬁniné the Hamming distance on the set R of all fuzzy
numbers. For any given fuzzy numbers A and B, the Hamming distance, d(A, B), is defined
by the formula

d(A, B) = j; IAG) — B(x)\dx. (15.16)

For any given fuzzy numbers A and B, which we want to compate, we first determine their
feast upper bound, MAX (4, B), in the lattice. Then, we calculate the Hamming distances
d(MAX (A, B), A) and d(MAX (A, B), B), and define

A < BiidMAX{A, B), A) = dMAX (A, B), B).

If A < B (i.c., fuzzy numbers are directly comparabie), then MAX (A, B) = B and, hence,
A < B. That is, the ordering defined by the Hamming distance is compatible with the
ordering of comparable fuzzy numbers in R. Observe that we can also define a similar
ordering of fuzzy numbers A and B via the greatest lower bound MIN (4, B).

The second method is based on a-ur:utsT

Given fuzzy numbers A and B to be compared, we seizct a particular value of o € [0, 1] and
determine the a-cuts “4 = [a,, @2] and B = [b,, b2]. Then, we define

A< Bifa; <by.
This definition is, of course, dependent on the chosen vaiue of o, It is usnally required

that o« > (.5.

The third method is based on the extension principle. This method can be employed for
ordering several fuzzy numbers, say Ay, A3, ..., A,. The basic idea is to constract a fuzzy
set P on {A,, A2, ..., A,), called a priority set, such as P(A;) is the degree to which A; is
ranked as the greatest fuzzy number. Using the extension principle, P is defined for each
i € N, by the formula

P(A;) =sup E-‘;?Ak(rk); 15.17)
where the supremum is taken over all vectors {ry,72,...,rs} € R” such that r; > r; for all

j € N

Example 15.6



. In this sxample, we illustrate and compare the three fuzzy ranking methods. Iet A and B
be fuzzy anmbers whose triangular-type membership functions are given in Fig. 15.5a. Then,
MAX (A, B) is the fuzzy number whose membership finction is indicated in the figure in
bold. We can see that the Hamming distances d(MAX (A, B), 4) and d(MAX (A, B), B) are
expressed by the areas in the figure that are hatched horizontally and vertically, respectively.
Using (15.16), wc obtain

- 2 % 225 x
dMAX (A, B), A) = f x —1— —]dx+f [-x+3 - =)«
15 3 3 3

3 4
+ ] +x——3]dx+f {4 — x]dx
2.953 3
1 1 3 1
= — 4+ — 4+ -+ =-=1
z Tz e 2

o 15 15
A(MAX (A, B), B) =f de-—f I — 1ldx
D 1

00 ]

= (L.23.

=P

Simce d(MAX {4, B), A) > J(MAX (4, B}, H), we may conclude that, according to the first
ranking method, A < B. When applying the second method to the same example, we can
easily find, from Fig. 15.5a, that A < B for any o € [0, 1]. According to the third method, we
construct the priority fuzzy set P on {4, B} as follows:

P{A) = sup min[A(r), B(r2)] =0.73,
ri=ra
P{B) = sup min[A(r,}), B{r2)] = 1.




(b)

Figure 155 Ranking of fuzzy members (Example 15.6).

Heuoce, againr, we conclude that A < B.

Consider now the fuzzy pumbers A and B whose membership functions are given in
Fig. 15.5b. The horizoatally and vertically hatched areas have the same meaning as before. We
can easily find that

dMAX (A, B), A) = 1, d(MAX (A, B), B) = 0.25.

Hence, A < B according to the first method, The second method gives the same result only for
a > 0.5. This shows that the method is inconsistent. According to the third method, we again
obtain P(A) == 0.75 and P(B) = 1; hence, A < B.

FUZZY LINEAR PROGRAMMING

The most general type of fuzzy linear ﬁrogramming is formulated as follows:

max iC;XJ‘

=1

ZA,IX <B (ieN,) (15.19)
i=1
X;20 (jeNy,

where Aj;, B;, C; are fuzzy numbers, and X ; are variables whose states are fnzzy numbers
( € Np, j € N,); the operations of addition and muleipiication are operations of fuzzy

arithmetic, and < denotes the ordering of fuzzy numbers.

Case 1. Fuzzy linear programmmg problems in which only the right-hand-side mumbers
B, are fuzzy numbers:



n
max ZC}'IJ‘

=1

"
s.1. Za;;x; < B; (ielN,)

j=1

;20 (jeN,).

In general, fuzzy linear programming problems are first converted into equivalent crisp
linear or nonlinear problems, which are then solved by standard methods. The final results of
a fuzzy linear programming problem are thus real numbers, which represest a compromise in
terms of the fuzzy numbers involved.

WS MR ALLTmASLIL ST aneeeeg seeswnes vt & == RS DT ATmTReNOyY R SRR Wy
fuzzy numbers B;{i < N_,) typically have the form
1 when x < &;
_B;(x) e bitp—x when b; < x < b; + p;

I

0 when & + gy < %,

where x € R (Fig. 15.7a). For each vector = {x1, X2, . - ., Xa}, We first calculate the degree,
D;(x), to which x satisfies the fth constraint ( € N,} by the formula

n
= Di(x) = Bi(Q_ayx)).
i=1
These degrees are fuzzy sets on R”, and their intersection, (] Dy, is a fuzzy feasible set.
£=1

i=1
Next, we determine the fuzzy set of optimal values, This is done by calculating the
lower and upper bounds of the optimal values first. The lower bound of the optimal values,
77, is obtained by solving the standard linear programming problem:

max z =X
s.t. Eﬂ”xj <b (i eN,
=l ‘

x>0 (JedN)



the upper bound of the optimal values, z,, is obtained by a similar linear programming
probiem in which each &; is replaced with b; + p;:

max Zz = gx
s.t. ZGU.I; = b,' + (.i € Nm}
f=1

. x; =20 (JeNy).
Then, the fuzzy set of optimal values, &, which is a fuzzy subset of R", is defined by

1 when 2, <c¢x
G(x) = - when z; < ¢cx < z,
Zy — 2
0 when cx < z;.
Now, the problem (15.20) becomes the following classical optimization problem:
max A

St A(Zy —2) —€X < —2

"
Ap +Z“ijxj <b;4+p: (ie€N,

;\-.xj' > 0 {j =4 Nar)-

The above problem is actually a problem of finding x € R" such that
[(MD2:) NG(x)
i=1

reaches the maximum value; that is, a problem of finding a point which satisfies the
constraints and goal with the maximum degree.

Example 158

Assume that a company makes two products. Product P, has a $0.40 per unit profit and product
P; has a $0.30 per unit profit. Each unit of product P, requires twice as many labor kours
as each product P, ‘The total available labor hours are at least 500 hours per day, and may
possibly be extended to 600 hours per day, due to special arrangements for overtime work. The
supply of material is at least sufficient for 400 units of both products, P, and P,, per day, but
may possibly be extended to 500 units per day according to previous experience. The problem
is, how many uaits of products Py and P, should be made per day to maximize the total profit?

Let x, x» denote the number of units of products Py, P, made in one day, respectively.
Then the probiem can be formulated as the following fuzzy linear programming problem:

max zs=.dx; + .3'3.‘; {le}ﬁt}
st om+x 2B (material)
2xy +x2 = By (labor bours)
xy, %3 > 0,

10



where B; is defined by

(1 when x < 400
By(x) = 1 50;)0;.1: when 400 < x < 500
| D when 500 < ¥, '
and B; is defined by
(1 when x = 500
By(x) = | i‘%;—x when 500 < x < 600
| 0 when 600 < x.

First we need to caleulate the lower and upper bounds of the objective function. By solving the
following two classical linear programming problems, we obtain z; = 130 and z, = 160.

(Pﬂ max 7 =.4x +.3x;
st. x4+ x < 400
2y +x < 500
x>0
(P) max z=x 4x, + 3x;
st. X+ x <500
2xy = x3 < 6K .
X, x> 0.

Then, the furry linear programming probiem becomes:

max A
st 30% — (dx, + 3x) <130
100X 4+ %y + x5 = 500
100X + 2xy 4+ x; < 600
Xi, &2, A = O,

Solving this classical optimization problemn, we find that the maximum, A = 0.5, is obtained for
%) = 100, £; = 350. The maximum profit, Z, is then calculated by

7 = 4%, + 3%, = 145.

Case 2. Fuzzy linear programming problems in which the right-hand-side numbers B,
and the coefficients A;; of the constraint matrix are fuzzy numbers:

o
max E CiXj

rf:ti

n

st. Y Ayx; <B; (€N (15.21)

Sl
x>0 (jeN,).

11



In this case, we assume that all fuzzy numbers are triangular. Any triangular fuzzy
number A can be represented by three real numbers, s, 1, r,
Using this rﬁpt_c.seuiat_iou, we write A = (s, {,r). Problem (_15.:21_) can then be

rewTitten as

mB.X iqxi

=

5.k E:(ng, Ig‘g,rj)x;j = {tr, a;, vi) (G eNp)
J=1

X 30 (jeNn),

where A;; = (s, Ly, ry) and B; = (t, u;, v;} are fuzzy numbers. Summation and multipli-

cation are operations on fuzzy numbers, and the partial order < is defined by 4 < B iff
MAX (A, B) = B. It is easy to prove that for any two triangular fuzzy numbers A = {5y, I;, r{}

and B = (55,5, r2),A = B iff 5y <s3,51 — I} < 553 —13 and 51 +r1 < 572 + r2. Mareover,

(81, 0y, 11} 4 {52, bs, 73} = {s1 453, Ly + 1o, ri4-r2) and {5, Iy, ry)x = {51x, l;x, ryx} for any non-

negative real number x. Then, the prabiem can be rewritten as

Inax iﬂjﬂ;

i=1

A
J=l

"

E(Sff ~lp)x; St~y

J=1
'3

E(-'fij +r)x; <64+y (feN,)
=]

x; >0 (jeN,).
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However, since all numbers involved are real numbers, this is a classical linear programming
problem.

Example 15,9
Consider the foliowing fuzzy Hnear programming probiem:
max z=35x; +4x;
s.t. {4, 2,13x, + (5,3, 1)x, < (24,5,8)
{4, 1,2}z, + (1, .5, 1)x2 < (12,6, 3)
Xy, 7 > 0 '
‘We can rewTite it as
max ¥ =35x; +4x;
sl dxy 4+ 8x, <24
dxy + 2y <12
26, +2x, =19
3x; +05x;, =6
S5xy 4 6x; < 32
bxy +2x; < 15
X, 02 =0,
Solving this prablem, we obtain £, = 1.5, £; = 3, z = 19.5.

Notice that if we defuzzified the fuzzy numbers in the constraints of the original problem
by the maximum method, we would obtain another classical linear programming problem:

max z = 5x; -+ 4x
st 4x;+5x; <24
dx; +x; < 12
X, % =0,

We can see that this is a classical linear programming problem with a smaller number of
constraints than the ope converted from a fuzzy linear programming problem.

13
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Relations

A classical relation can be considered as a set of tuples, where a tuple is an ordered

pair. A binary tuple is denoted by (X,y), an example of a ternary tuple is (x,y,z) and an
example of n-ary tuple is (Xa,...,Xn).

Example: Let U be the domain of man {John, Charles, James} and V the domain of
women {Diana, Rita, Eva}, then the relation "married to” on U xV is, for example

{(Charles, Diana), (John, Eva), (James, Rita) }

Definition: (classical n-ary relation) Let Xj,...,Xn be classical(crisp) sets. The subsets of the
Cartesian product X; x---x X, are called n-ary relations. If X; = -~ = Xy,and R cU" then
R is called an n-ary relation (operation) in U.

Let R be a binary relation in R. Then the characteristic function of R is defined as

Zr (%, y)={

L(x,y)eR
0,(x,y)¢R

Example: Consider the following relation
(X, y)e R Xe<a,b>/\ ye<C,d>

2e(iy)= {1, (x,y) e(a,b)x(c,d) }

0,(x,y) & (a,byx(c,d)

Let R be a binary relation in a classical set X. Then

Fig.12: Graph relation R

Definition. (reflexivity) R is reflexive if (x,x) € R for all xeU.

Definition. (anti-reflexivity) R is anti-reflexive if f (x,x) ¢ R for all xeU.



Definition. (symmetricity) R is symmetric if from (X,y) € R = (y,X)e R for all x,yeU.

Definition. (anti-symmetricity) R is anti-symmetric if (x,y) € R and (y,X) € R then x=y for all
x,yeU.

Definition. (transitivity) R is transitive if (X, y)e R and (y,z)R R then (x, z) € R, for all x,y,zeU.

Example. Consider the classical inequality relations on the real line R. It is clear that < is
reflexive, anti-symmetric and transitive, < is anti-reflexive, antisymmetric and transitive.

Other binary relations are

Definition. (equivalence) R is an equivalence relation if R is reflexive, symmetric and
transitive

Example.
The relation = on natural numbers is equivalence relation.
Definition. (partial order) R is a partial order relation if it is reflexive, antsymmetric and

transitive.

Definition. (total order) R is a total order relation if it is partial order and for all x,y U
x,y)eR or (y,x)eR.

Example. Let us consider the binary relation "subset of”. It is clear that we have a partial order
relation.

The relation < on natural numbers is a total order relation.

Fuzzy relation

Definition of fuzzy relation. Let U and V be nonempty sets. A fuzzy relation Ris a
fuzzy subsetof U x V.



In other words, R (U x V), 1z :U xV —(0,1)

It is often used equivalence notation (X, Y) =R(X,Y).
If U =V then we say that R is a binary fuzzy relation in U.

Let R be a binary fuzzy relation on R. Then R(x,y) is interpreted as the degree of
membership of the ordered pair (x,y) in R.

Example. A simple example of a binary fuzzy relation on
Uu={1,2, 3},

called "approximately equal” can be defined as

R(1, 1) =R(2, 2) = R(3, 3)=1,R(1, 2) = R(2, 1) = R(2, 3) = R(3, 2)=0.8 ,

R(1, 3) = R(3, 1)=0.3

1 08 03
In matrix notation it can be representedas |0.8 1 0.8
03 08 1

Operations on fuzzy relations

The intersection

Fuzzy relations are very important because they can describe nteractions between
variables. Let R and S be two binary fuzzy relations on X x Y .

Definition: The intersection of R and S is defined by

(R A S)(x,y) = min{R(x,y),S(x.y)}-



Note that R: UXxV — <0, 1>, i.e. R the domain of R is the whole Cartesian product U x V .

Definition: The union of R and S is defined by

(R v S)(x,v) = max{R(x, 2),S(x, z)}

Example: Let us define two binary relations

X

R ="x is considerable larger than y’= !
2

X3

Y:
X, 0.4,

S = "xis very close to y’= X, 09
X, 0.3

y2 y3 y4
0.1 0107
08 0 O
1 0708
y3 y4
0.9 0.6
0.5 0.7
0.8 0.5

The intersection of R and S means that “x is considerable larger than y” and

#iS very close to y’.

(R A S)(x,y) =min{R(x,y),S(x,y)}=

Yo Y2 Ys Vs
X, 04 0 0106

x, 0 04 0 0
X, 03 0 0705

The union of R and S means that “x is considerable larger than y” or “x is very close to y”.

Y1

Ys Ya

x, 08 0 0907
x, 09 08 0507

X, 0.9

0.8 0.8



(R vS)(x y)=

Projections of fuzzy relation

Consider a classical relation R on R.

Fig. 13. Projections on axis.

0,(x,y)

R(x,¥)= {1’ v

tis clear that the projection (or shadow) of R
on the X-axis is the closed interval <a, b> and
its projection on the Y -axis is <c,d>.

Definition: If R is a classical relationin U xV then

Mx ={x eU|Fy €V (X, y) € R}

My ={yeV |HK eU :(x,y) € R}

where lNx denotes projection on U and My denotes projection on V..

Definition: Let R be a fuzzy binary fuzzy relation on U x V . The projection of Ron U is
defined as



Mx(x) = sup{R(x, y) |ye V'}

and the projection of Ron Y is defined as

My (y) = sup{R(x, y) | x €U}

Example: Consider the relation

Vi Y2 Vs Ve
x, 08 01 0107

X, 0 08 0 0
X, 09 1 0708

R = "x is considerable larger than y’=

then the projection on X means that

*x; is assigned the highest membership degree from the tuples (x1,y1), (X1,¥2), (X1,¥3),
(X1,Ya), i.e. Tx(x1)=1, which is the maximum of the first row.

*X, is assigned the highest membership degree from the tuples (X2,y1), (X2,¥2), (X2,¥3),
(X2,Ya), i.e. Tx(x2)=0.8, which is the maximum of the second row.

*X3 is assigned the highest membership degree from the tuples (Xs,y1), (X3,y2), (X3,Y¥3),
(Xs,Ya), i.e. Tx(xs)=1, which is the maximum of the third row.

Cartesian product of fuzzy sets

Itis clear that Cartesian product of two fuzzy sets is a fuzzy relation.

If A and B are normal then Iy (A x B)= B and lNx(A x B)= A.

Really,



Mx(x) = sup{(A x B)(x, y) | y}

= sup{A(x) 2 B(y) | y} = min{A(x),sup{B(y)}| y}
= minfA(X), 1} = A(X).

Definition: The sup-min composition of a fuzzy set C e (U) and a fuzzy relation R eZF{U xV
) is defined as

(C°R)(y) =sup {min{C(x).R(x, y)}}

xeU

forallyeV .

The composition of a fuzzy setC and a fuzzy relation R can be considered as the

shadow of the relation R on the fuzzy setC.

C(x) /\

e

R(x.y’)

(CoR){y’)

R(x.y)

Example: Let A and B fuzzy sets and let



X—a X—€

F—2xe(ab) oxelef)
/UA(X): %,xdb,c) ,UB(X): 3::’X€<f’g>

O, X¢<a,C> O, X¢<e1g>

LetR= A xB Is fuzzy relation.

Observe the following property of composition A°R=A° (,3\ x B )= A,

B°R=B°(AxB)=B.

Example: Let C bea fuzzy set in the universe of discourse {1, 2, 3} and let R be a binary
fuzzy relation in {1, 2, 3}. Assume that

1 08 03
C ={(1,0.2),(2,1)3,0.3)} and R={0.8 1 08
03 08 1

Using the definition of sup-min composition we get

1 08 03
6"R=(O.2,1,0.3)" 0.8 1 0.8|=(max{min{0.2,1},min{1,0.8},min{0.3,0.3}},
03 08 1

max{min{0.2,0.8},min{1,1},min{0.3,0.8}},max{min{0.2,0.3},min{1,0.8},min{0.3,1}}=

=(0.8,1,0.8).

Example: Let C bea fuzzy set in the universe of discourse <0, 1> and let R be a binary fuzzy
relation in <0, 1>. Assume that C(x)= x and R(X, y)=1-|x-y|.



Using the definition of sup-min composition we get
o - 1+
(CoRY)= sup min e —[x— )=

for all ye<0,1>

Sup-min composition of fuzzy relations

Definition: (sup-min composition of fuzzy relations) Let R €eZ{U x V) and S €Z(V x T).
The sup-min composition of R and S, denoted by R°S is defined as

(R°S)(x,2) = sup min {R(x,y),S(y,z)}
yeVv

It is clear that R°S is a binary fuzzy relation in UxT.

Example: Consider two fuzzy relations yi Y2 VY3 Vs

R ="x is considerable larger than y"= x 08 01 0107
X, 0 08 0 O

X3 09 1 0708

1 Iy I3
y; 04 09 03
yo 0 04 0

S ="y is very close to z” = ys 0.9 05 08

y, 06 07 05

Then their composition is

10



1 I I3
Y2 3 YAty 04 09 03
x, 08 01 0107

Yo 0 04 O =
X, 0 08 0 0
y3 09 05 08
x3 09 1 0708
ys 06 07 05
max {0.4,0,0.1,0.6} max{0.8,0.1,0.1,0.7} max{0.3,0,0.1,0.5}
=| max{0,0,00}  max{0,0.4,0,0} max {0,0,0,0}
max{0.4,0,0.7,0.6} max{0.9,0.4,0.5,0.7} max{0.3,0,0.7,0.5}

R°S=

06 08 05
=0 04 O
0.7 09 0.7

i.e., the composition of R and S is nothing else, but the classical product of the matrices R and

S with the difference that instead of addition we use maximum and instead of multiplication we
use minimum operator.

Sup-product composition of fuzzy relations

Definition: (sup-product composition of fuzzy relations) Let R €Z{U x V) and S e &V x
T). The sup-product composition of R and S, denoted by R°S is defined as

(R°S)(x.2) = sup {R(x, y)S(y,z)}
yeV

It is clear that R°S is a binary fuzzy relation in UXT.

11



Example: Consider two fuzzy relations

R ="x is considerable larger than y"=

7 2y I3
y 04 09 03
y 0 04 0
y3 09 05 038
S ="yis very close to z” = ys 0.6 0.7 05

Then their sup-product composition is

o 12 I3
Yi Y2 Y3 Vs y 04 09 03
xq 08 01 0107

0 04 0 |=
x, 0 08 0 0|2

y; 0.9 05 0.8
X3 09 1 0708 v 06 07 05

max {0.32,0,0.09,0.42} max{0.72,0.04,0.5,0.49} max {0.24,0,0.08,0.35}

R°S=

=| max {0,0,0,0} max {0,0.72,0,0} max {0,0,0,0} =
max {0.36,0,0.63,0.48 105 3 P42 MR 720289 510.49) mex (0.24,0,0.08,0.35)
=| max{0,0,0,0} max {0,0.72,0,0} max {0,0,0,0}
max {0.36,0,0.63,0.48} max{0.81,0.4,0.35,0.56} max{0.27,0,0.56,0.4}
042 072 0.35
0 072 O
063 081 0.56

12



If possible to define composition fuzzy of relations in another manner. For instance,
operator max we can replace any t-conorm and min any t-norm.

Fuzzy relation is
Reflexive if R(x,x)=1 for all xeU.

Symmetric if R(x,y)=R(y,x) for all (x,y)eR

R(X, y) > sup {R(x,2).R(z, y)}
Transitive if zeU

Total if for all xeU R(x,y) >0 or R(y,x)>0.

Anti symmetric if R(x,y) >0 and R(y,x)>0 implies x=z.

”")(! z V,I‘LX,Z)f\LLZ,
Strongly fuzzy transitive if 06y) 20 ( 2,y

forall (x,y)eR

It is clear there exist a fuzzy transitive relations R” that R" is strongly transitive and

R'(x,y)2R(x,y)(for example R(x,y)=1).



The fuzzy transitive closer of R

Let R'is strongly transitive relations and R*(x,y)2R(x,y) and for any strongly transitive
transitive relation S,S(x,y)2R(x,y) S(x,y)2R"(x,y), then R"is.

If U is reflexive, transitive and has n elements, then R" =RoRs..0R is fuzzy
(n—l)x

transitive closer of R transitive closer of R.

Proof: Is evident. We leave it to reader.

Example: Let

1 02 05 7
03 1 05 07
02 05 1 0.7
06 02 04 1

1 02 05 7 1 02 05 7
2 |03 1 05 07|03 1 05 07
“lo2 05 1 07]02 05 1 07
06 02 04 1 06 02 04 1

14



max{l,.2,.2,.6; max{2,2,5,2} max{5,2,.5.4} max{7,2,.5,.7}
max{3,3,2,.6} max{21.5.2} max{3,5,5.4} max{3,.7,5,7}
max{2,.3,.2,6} max{2,5.5.4} max{2,514} max{2,5.7,7}
max{6,2,2,.6} max{2.2.4,2} max{5.2.4,.4} max{6,2,.4,1}

06 1 05 07
06 05 1 0.7
06 04 05 1

1 05 05 07)(1 02 05 .7
"3 _p2.p_|06 1 0507|103 1 05 07|
06 05 1 07][02 05 1 07

06 04 05 1 06 02 04 1

max{L,.3,2,.6} max{2,5,5,.2} max{5,5,5.4} max{7,5,5,7}
{ } max{21.5.2} max{5,5,5.4} max{6,7,5,7}
max{6,.3,2,.6} max{2,.5,5,2} max{5.51.4} max{6,5,7,.7}
{ ! max{2.4,5.2} max{5.4,.5.4} max{6, 4,51} 15



1 05 05 07
06 1 05 07
06 05 1 0.7

06 05 05 1
Let R"is reflexive, symmetric relation then R” is

fuzzy similarity relation.

1 05 07
Example: Therelation R={05 1 0 | isreflexive(R(x,x)=1 for all x) and
07 0 1

symmetric(R(1,2)=R(2,1)=0.5, R(1,3)=R(3,1)=0.7, R(2,3)=R(3,2)=0) and so is is fuzzy similarity

reletion.

The converse fuzzy relation is usually denoted as R° is defined as

R (X,Y)=R(y,X)

For all x,yeU

Identity relation
I(x,x)=1 for all xeU

I(X,y)=0 for all x-yeU

16



Zero relation

o(x,y)=0 for all x,yeU
Universe relation

u(x,y)=1 for all x,yeU

Example: The following are examples of these relations

1 05 07 1 02 01
R=(02 1 0 |=R°=|05 1
01 0 1 07 0 1
1 05 07 000 111
R=/05 1 0| O=l0 0 0|U=[111
07 0 1 000 111

The Fuzzy equivalence relation.

Let R"is reflexive, symmetric and is strongly fuzzy transitive relation then R" is fuzzy

similarity relation often called fuzzy equivalence relation.

Theorem: R is fuzzy equivalence relation if and only if its a-cut R, is relation

equivalence for all ae(0,1).

17



Proof: Let R is fuzzy relation equivalence. Then R is fuzzy reflexive (R(x,y)=1) and so
Ra(X,y)=1 and R is reflexive. R is symmetric(R(x,y)=R(y,X)). It implies Ru(X,y)=Ra(y,x) and R, is

symmetric. R is transitive and so R, is transitive too and Ra is relation equivalence.

Let R, is relation equivalence for all ae(0,1). Then R is fuzzy reflexive, symmetric and transitive.

It implies R is fuzzy relation equivalence.

Example: Let fuzzy relation is defined by its a*-cuts

1111 1101 1100
R04_1111 R05=1101 RO8=1100
1111 ~ 10010 ~ 10010
1111 1101 0 001
1 000
R09—0100
~ 10 01 O0
0 0 01

All a-cuts are relations equivalence and so R is fuzzy relation equivalence.

The basic properties of fuzzy relations

We wil now try to give some basic properties of compositions of fuzzy relations which

plays a major role in areas such as fuzzy control, fuzzy diagnosis and fuzzy expert systems.
1. Rel =1oR=R

2. RoO=00R=0
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.Ingeneral RoS#S<R

CR™_R".,R=R

N

5. Rm o Rﬂ — Rn+m

(Rm)n _R™M

o

\I

. (ROS)OT:RO(SOT)

(o]

.Ro(SuT)=(RoS)U(RoT)
9. Ro(SNT)=(RoS)N(R-T)
10. ScT :(RoS)g(RoT)

Fort inverse relarions
11. (RUS)¢ =R¢ US®
(RNS)* =R®NSE
(ReS)* =R®0s°
12. R°F =R

13. Rc S = R¢ = §°

Minimum fuzzy equivalence closer of R.

Let R"Ifuzzy equivalence relation and R*(x,y)2R(x,y) and for any fuzzy equivalence
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relation S, S(x,y)2R’(x,y), then R"is minimum fuzzy equivalence closer of R.

Example: Let 09 02 05 7

. 03 1 05 0.7
102 05 04 07

06 02 04 08

What is minimum fuzzy equivalence closer of R?

The minimum fuzzy equivalence closer of R is fuzzy reflexive relation. The fuzzy relation
is reflexive if for all xeU R(x,x)=1. The minimum reflexive relation R">R is relation R*(x,x)=1 and

R'(x,y) =R(x,y) for all x=ty. Hence

1 02 05 .7
~ |03 1 05 07
02 05 1 07
0.6 02 04 1

The fuzzy relation is symmetric if for all x,yeU R(X,y)=R(y,x). The minimum symmetric

relation R"oR is relation R*(x,y)=max {R(x,y),R(z,x)} for all x=y. Hence

1 max{0.2,0.3} max{0.2,0.5} max{0.6,0.7}
« | max{0.2,0.3} 1 max{0.2,0.5f max{0.20.7}|
max {0.2,0.5} max{0.5,0.5} 1 max {0.4,0.7}
max{0.6,0.7} max{0.2,0.7} max{0.4,0.7} 1
1 03 05 07
03 1 05 07
105 05 1 07

0.7 0.7 0.7
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Hence

The minimum fuzzy transitive relation fuzzy closer of R and if U is finite then R'=R™,

1 03 05 07 1 03 05 0.7
» |03 1 05 07103 1 05 07|

05 05 1 07} |05 05 1 0.7
0.7 07 07 1 0.7 07 07 1

max {,.3,.5,.7} max{3,3,5,.7} max{5,3,5,.7} max{7,.3,5,7}
max{3,3,5,.7} max{31.5.7} max{3,5.5.7} max{3,7,5,7}
max{5,.3.5,7) max{3.5,5.7} max{5.517} max{5.5.7.7}|
max{7,3,5,.7} max{3.7,5.7} max{5.5.7,.7} max{7,7,71}

21



1 07 0.7 0.7
|07 1 07 0.7

0.7 07 1 07
0.7 07 07 1

1 07 07 07)(1 03 05 07
s o 07 1 07 07|03 1 05 07
R =R%?.R= o _

07 07 1 07|05 05 1 0.7

0.7 07 07 1 0.7 07 07 1

max{1,.3,5,.7} max{3,3,5.7} max{5.3,.5.7} max{7,7.7.7}
max{31,.5.7} max{5,5.7,.7} max{7,7,.7,.7}

{ j
| max{5,.3,5.7) max{5.5.7,7} max{5.51.7} max{7,7.7.7}|
j

max{7,7,7,.7} max{7,.7,7,.7} max{7,7,71}

1 07 0.7 0.7
0.7 1 0.7 07
0.7 07 1 07
0.7 07 07 1

22



If fuzzy relations is not symmetric then for symmetric closer of R pay

R'(x,y)2R(x,y) and R’(x,y)2R(y,x). At first we take R'(x,y)=max{ R(y,x), R(x,y) }. It can be
interesting to take R(x,y)=min{ R(y,x), R(x,y) }.

Example: Let 1 02 05 7
03 1 05 07

02 05 1 07
06 02 04 1

Then the first estimation of R" is

1 02 02 06
02 1 05 02
02 05 1 04
06 02 04 1

The minimum fuzzy transitive relation fuzzy closer of R, f U is finite, is R'=R"!. Hence

1 02 02 06) (1 02 02 06

R2_|02 1 0502|102 1 05 02|
02 05 1 04]|02 05 1 04
06 02 04 1 )06 02 04 1

max{L,.2,.2,.6) max{2,2,.2,2} max{2,2,2,4} max{6,.2,2,.6}
max{2,2,2,2} max{21.5.2} max{2,.5,5.2} max{2,2,.4,4}
max{2,.2,2,.4} max{2,5.5,.2} max{2,51.4} max{2,2.4,4}
max{6,2,2,.6} max{2,.2,.4,4} max{2,.2.4,.4} max{6,2,.4,1}
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02 1 05 04
04 05 1 04
06 04 04 1

1 02 04 06 1 02 02 06

3 (02 1 05 04)|]02 1 05 02
“104 05 1 04]]02 05 1 04
06 04 04 1 06 02 04 1

02 1 05 04
04 05 1 04
06 04 04 1

As it is well known, within a classical context, an equivalence relation in a set defines a
partition or a classification in it, and viceversa.
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Fuzzy partial ordered relations

The fuzzy relation is fuzzy partial ordered relation if it satisfy following conditions

a) is reflexive(R(x,x)=1 for all xeU)
b) is symmetric(If R(x,y))0 =R(y,x)=0 for all x=£y)
c) is transitive(R(x,z)=sup{min{R(x,y),R(y,z)} for all x,zeU}

1 05 06 08
_ 0 1 07 09]. _ ,
Example: Fuzzy relation R = 0 0 1 is fuzzy partial ordered relation
0O 0 0 1

Note: Fuzzy relation R is fuzzy partial ordered relation if ad only if its a-cut is patial ordered

relation for all a.€(0,1).
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