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INTRODUCTION: 

A graph G consists of a pair (V, E), where V is the set of vertices and E the set of 

edges. We write V(G) for the vertices of G and E(G) for the edges of G 

When necessary to avoid ambiguity, as when more than one graph is under 

discussion.  

If no two edges have the same endpoints we say there are no multiple edges, and if 

no edge has a single vertex as both endpoints we say there are no loops. A graph with 
no loops and no multiple edges is a simple graph. A graph with no loops, but 

possibly with multiple edges is a multigraph. The condensation of a multigraph is 

the simple graph formed by eliminating multiple edges that is, removing all but one 
of the edges with the same endpoints. To form the condensation of a graph, all loops 

are also removed. We sometimes refer to a graph as a general graph to emphasize 

that the graph may have loops or multiple edges.  

DEGREE SEQUENCE: The degree sequence of a graph is a list of its degrees; the 

order does not matter, but usually we list the degrees in increasing or decreasing 

order. The degree sequence of the graph is  

 



A general graph: it is not connected and has loops and multiple 

listed clockwise starting at the upper left, is 0,4,2,3,2,8,2,4,3,2,2. We typically denote 

the degrees of the vertices of a graph by di, i=1, 2,…,n, where n is the number of 

vertices. Depending on context, the subscript i may match the subscript on a vertex, 
so that di is the degree of vi, or the subscript may indicate the position of di in an 

increasing or decreasing list of the degrees; for example, we may state that the degree 

sequence is d1≤d2≤⋯≤dn. 

DIGRAPHS: 

A directed graph, also called a digraph, is a graph in which the edges have a 

direction. This is usually indicated with an arrow on the edge; more formally, if v and 
w are vertices, an edge is an unordered pair {v,w}, while a directed edge, called an 

arc, is an ordered pair (v,w) or (w,v). The arc (v,w) is drawn as an arrow from v to w. 

If a graph contains both arcs (v, w) and (w,v), this is not a "multiple edge'', as the arcs 

are distinct. It is possible to have multiple arcs, namely, an arc (v,w) 

may be included multiple times in the multiset of arcs. As before, a digraph is called 

simple if there are no loops or multiple arcs.  

We denote by E−v 

The set of all arcs of the form (w,v), and by E+v the set of arcs of the form (v,w). The 

indegree of v, denoted d−(v), is the number of arcs in E−v, and the outdegree, d+(v), 

is the number of arcs in E+v. If the vertices are v1,v2,…,vn, the degrees are usually 
denoted d−1,d−2,…,d−n and d+1,d+2,…,d+n. Note that both ∑ni=0d−i and 

∑ni=0d+i count the number of arcs exactly once, and of course ∑ni=0d−i=∑ni=0d+i. 

A walk in a digraph is a sequence v1,e1,v2,e2,…,vk−1,ek−1,vk such that 
ek=(vi,vi+1); if v1=vk, it is a closed walk or a circuit. A path in a digraph is a walk in 

which all vertices are distinct. It is not hard to show that, as for graphs, if there is a 

walk from v to w then there is a path from v to w. 

Definition 1. A network is a digraph with a designated source s and target t≠s. In 

addition, each arc e has a positive capacity, c(e).  

Networks can be used to model transport through a physical network, of a physical 

quantity like oil or electricity, or of something more abstract, like information.  

Definition .2 A flow in a network is a function f from the arcs of the digraph to R, 

with 0≤f(e)≤c(e) for all e, and such that  



For all v other than s and t.  
 

Definition 3. A cut in a network is a set C of arcs with the property that every path 

from s to t uses an arc in C, that is, if the arcs in C are removed from the network 

there is no path from s to t. The capacity of a cut, denoted c(C), is 

 

A minimum cut is one with minimum capacity. A cut C is minimal if no cut is 

properly contained in C. 

Definition 4. If a graph G is connected, any set of vertices whose removal 

disconnects the graph is called a cutset. G has connectivity k if there is a cutset of 

size k but no smaller cutset. If there is no cutset and G has at least two vertices, we 

say G has connectivity n−1; if G has one vertex, its connectivity is undefined. If G is 

not connected, we say it has connectivity 0. G is k-connected if the connectivity of G 

is at least k. The connectivity of G is denoted κ(G). 

Definition 5. If a graph G is connected, any set of edges whose removal disconnects 

the graph is called a cut. G has edge connectivity k if there is a cut of size k but no 

smaller cut; the edge connectivity of a one-vertex graph is undefined. G is k-edge-

connected if the edge connectivity of G is at least k. The edge connectivity is denoted 

λ(G). 

Any connected graph with at least two vertices can be disconnected by removing 

edges: by removing all edges incident with a single vertex the graph is disconnected. 

Thus, λ(G)≤δ(G), where δ(G) is the minimum degree of any vertex in G. Note that 
δ(G)≤n−1, so λ(G)≤n−1 

Removing a vertex also removes all of the edges incident with it, which suggests that 

κ (G) ≤λ (G). This turns out to be true, though not as easy as you might hope. We 
write G−v to mean G with vertex v removed, and G−{v1,v2,…,vk} to mean G with all 

of {v1,v2,…,vk} removed, and similarly for edges. 

Theorem 3. κ (G) ≤λ(G) 

Proof. We use induction on λ=λ(G) 

If λ=0, G is disconnected, so κ=0. If λ=1, removal of edge e with endpoints v and w 

disconnects G. If v and w are the only vertices of G, G is K2 and has connectivity 1. 



Otherwise, removal of one of v and w disconnects G, so κ=1As a special case we note 
that if λ=n−1 

then δ=n−1, so G is Kn and κ=n−1Now suppose n−1>λ=k>1, and removal of edges 

e1,e2,…,ek disconnects G. Remove edge ek with endpoints v and w to form G1 with 

λ(G1)=k−1. By the induction hypothesis, there are at most k−1 vertices v1, v2,…,vj 
such that G2=G1−{v1,v2,…,vj} is disconnected. Since k<n−1, k−1≤n−3, and so G2 

has at least 3vertices.  

If both v and w are vertices of G2, and if adding ek to G2 produces a connected graph 
G3, then removal of one of v and w will disconnect G3 forming G4, and 

G4=G−{v1,v2,…,vj,v} or G4=G−{v1,v2,…,vj,w}, that is, removing at most k vertices 

disconnects G. If v and w are vertices of G2 but adding ek does not produce a 

connected graph, then removing v1,v2,…,vj disconnects G. Finally, if at least one of 
v and w is not in G2, then G2=G−{v1,v2,…,vj} and the connectivity of G is less than 

k. So in all cases, κ≤k. 

Theorem 4 If G has at least three vertices, the following are equivalent:  

1. G is 2-connected  

2. G is connected and has no cutpoint  

3. For all distinct vertices u, v, w in G there is a path from u to v that does not contain 

w 

Proof. 1⇒3 Since G is 2-connected; G with w removed is a connected graph G′. 

Thus, in G′ there is a path from u to v, which in G is a path from u to v avoiding w 

3⇒2 If G has property 3 it is clearly connected. Suppose that w is a cutpoint, so that 
G′=G−w is disconnected. Let u and v be vertices in two different components of G′, 

so that no path connects them in G′. Then every path joining u to v in G must use w, a 

contradiction.  

2⇒1Since G has at least 3 vertices and has no cutpoint, its connectivity is at least 2, 

so it is 2-connected by definition. 

 

 

 

UNIT-II 

 

Trees 



Definition: A connected graph G is a tree if it is acyclic, that is, it has no cycles. 
More generally, an acyclic graph is called a forest.  

Note that the definition implies that no tree has a loop or multiple edges.  

Theorem 1: Every tree T is bipartite.  

Proof. Since Thas no cycles, it is true that every cycle of T has even length.  

Definition: A vertex of degree one is called a pendant vertex, and the edge incident 

to it is a pendant edge. □ 

Theorem 2: Every tree on two or more vertices has at least one pendant vertex.  

Proof. We prove the contra positive. Suppose graph G has no pendant vertices. 

Starting at any vertex v, follow a sequence of distinct edges until a vertex repeats; 
this is possible because the degree of every vertex is at least two, so upon arriving at 

a vertex for the first time it is always possible to leave the vertex on another edge. 

When a vertex repeats for the first time, we have discovered a cycle. This theorem 
often provides the key step in an induction proof, since removing a pendant vertex 

(and its pendant edge) leaves a smaller tree.  

Theorem 3 : A tree on n vertices has exactly n−1edges.  

Proof. A tree on 1 vertex has 0 edges; this is the base case. If T is a tree on n≥2 

vertices, it has a pendant vertex. Remove this vertex and its pendant edge to get a tree 

T′ on n−1 vertices. By the induction hypothesis, T′ has n−2 edges; thus T has n−1 

edges. Theorem: A tree with a vertex of degree k≥1has at least k 

 Pendant vertices. In particular, every tree on at least two vertices has at least two 

pendant vertices.  

Proof. The case k=1is obvious. Let T be a tree with n vertices, degree sequence 

{di}ni=1, and a vertex of degree k≥2, and let l be the number of pendant vertices. 

Without loss of generality, 1=d1=d2=⋯=dl and dl+1=k. Then 

2(n−1)=∑i=1ndi=l+k+∑i=l+2ndi≥l+k+2(n−l−1). 

This reduces to l≥k, as desired. If T is a tree on two vertices, each of the vertices has 

degree 1. If T has at least three vertices it must have a vertex of degree k≥2, since 

otherwise 2(n−1) =∑ni=1di=n, which implies n=2. Hence it has at least k≥2 pendant 
vertices. Trees are quite useful in their own right, but also for the study of general 

graphs.  



Definition: If Gis a connected graph on n vertices, a spanning tree for G is a 

subgraph of G that is a tree on n vertices.  

Theorem 4: Every connected graph has a spanning tree.  

Proof. By induction on the number of edges. If Gis connected and has zero edges, it 

is a single vertex, so G 

is already a tree. Now suppose G has m≥1 edges. If G is a tree, it is its own spanning 

tree. Otherwise, G contains a cycle; remove one edge of this cycle. The resulting 
graph G′ is still connected and has fewer edges, so it has a spanning tree; this is also a 

spanning tree for G. In general, spanning trees are not unique, that is, a graph may 

have many spanning trees. It is possible for some edges to be in every spanning tree 

even if there are multiple spanning trees. For example, any pendant edge must be in 
every spanning tree, as must any edge whose removal disconnects the graph (such an 

edge is called a bridge.)  

Corollary: If G is connected, it has at least n−1 edges; moreover, it has exactly 

n−1edges if and only if it is a tree.  

Proof. If G is connected, it has a spanning tree, which has n−1 edges, all of which are 

edges of G. If G has n−1 edges, which must be the edges of its spanning tree, then G 

is a tree.  

Theorem 5:  G is a tree if and only if there is a unique path between any two vertices.  

 Proof.  Since every two vertices are connected by a path, G is connected. For a 
contradiction, suppose there is a cycle in G; then any two vertices on the cycle are 

connected by at least two distinct paths, a contradiction. Only if: If G is a tree it is 

connected, so between any two vertices there is at least one path. For a contradiction, 
suppose there are two different paths from v to w: v=v1, v2,…,vk=wand 

v=w1,w2,…,wl=w. Let i be the smallest integer such that vi≠wi. Then let j be the 

smallest integer greater than or equal to i such that wj=vm for some m, which must be 

at least i. (Since wl =vk, such an m must exist.) Then 
vi−1,vi,…,vm=wj,wj−1,…,wi−1=vi−1 is a cycle in G, a contradiction. Definition: A 

cutpoint in a connected graph G is a vertex whose removal disconnects the graph.  

Theorem: Every connected graph has a vertex that is not a cutpoint.  

Proof. Remove a pendant vertex in a spanning tree for the graph.  

Theorem 6. (Menger's Theorem) If G has at least k+1 vertex, then G is k-connected 

if and only if between every two vertices u and v there are k pairwise internally 

disjoint paths. 



Proof of Menger's Theorem. 
Suppose first that between every two vertices v and w in G there are k internally 

disjoint paths. If G is not k-connected, the connectivity of G is at most k−1, and 

because G has at least k+1 vertices, there is a cutset S of G with size at most k−1. Let 

v and w be vertices in two different components of G−S; in G these vertices are 
joined by k internally disjoint paths. Since there is no path from v to w in G−S, each 

of these k paths contains a vertex of S, but this is impossible since S has size less than 

k, and the paths share no vertices other than v and w. This contradiction shows that G 
is  k connected. Now suppose G is k connected.  

If v and w are not adjacent, κ G(v,w)≥k and by the previous theorem there are p 

G(v,w)=κ G(v,w) internally disjoint paths between v and w. If v and w are connected 

by edge e, consider G−e. If there is a cutset of G−e of size less than k−1, call it S, 

then either S∪{v} or S∪{w} is a cutset of G of size less than k, a contradiction. (Since 

G has at least k+1 vertices, G−S has at least three vertices.) Thus, κG−e(v,w)≥k−1 and 

by the previous theorem there are at least k−1 internally disjoint paths between v and 
w in G−e. Together with the path v, w using edge e, these form k internally disjoint 

paths between v and w in G 

Definition A block in a graph G is a maximal induced subgraph on at least two 

vertices without a cutpoint. 

Theorem 6:  If G is connected but not 2-connected, then every vertex that is in two 

blocks is a cutpoint of G 

Proof. Suppose w is in B1 and B2, but G−w is connected. Then there is a path 

v1,v2,…,vk in G−w, with v1∈B1 and vk∈B2. But then 

G[V(B1)∪V(B2)∪{v1,v2,…,vk}] is 2-connected and contains both B1 and B2, a 

contradiction. 

UNIT-III 

 

 

Euler and Hamiltonian Graphs 

Definition: A walk in a graph is a sequence of vertices and edges, 
v1,e1,v2,e2,…,vk,ek,vk+1 such that the endpoints of edge ei are vi and vi+1. In 

general, the edges and vertices may appear in the sequence more than once. If 

v1=vk+1, the walk is a closed walk or a circuit. A successful walk in Königsberg 
corresponds to a closed walk in the graph in which every edge is used exactly once. 

What can we say about this walk in the graph, or indeed a closed walk in any graph 

that uses every edge exactly once? Such a walk is called an Euler circuit. If there are 

no vertices of degree 0, the graph must be connected, as this one is. Beyond that, 
imagine tracing out the vertices and edges of the walk on the graph. At every vertex 



other than the common starting and ending point, we come into the vertex along one 
edge and go out along another; this can happen more than once, but since we cannot 

use edges more than once, the number of edges incident at such a vertex must be 

even. Already we see that we're in trouble in this particular graph, but let's continue 

the analysis. The common starting and ending point may be visited more than once; 
except for the very first time we leave the starting vertex, and the last time we arrive 

at the vertex, each such visit uses exactly two edges. Together with the edges used 

first and last, this means that the starting vertex must also have even degree. Thus, 
since the Königsberg Bridges graph has odd degrees, the desired walk does not exist. 

The question that should immediately spring to mind is this: if a graph is connected 

and the degree of every vertex is even, is there an Euler circuit? The answer is yes.  

Theorem If G is a connected graph, then G contains an Euler circuit if and only if 

every vertex has even degree.  

Proof. We have already shown that if there is an Euler circuit, all degrees are even. 

We prove the other direction by induction on the number of edges. If G has no edges 
the problem is trivial, so we assume that G has edges. We start by finding some 

closed walk that does not use any edge more than once: Start at any vertex v0 follow 

any edge from this vertex, and continue to do this at each new vertex, that is, upon 
reaching a vertex, choose some unused edge leading to another vertex. Since every 

vertex has even degree, it is always possible to leave a vertex at which we arrive, 

until we return to the starting vertex, and every edge incident with the starting vertex 

has been used. The sequence of vertices and edges formed in this way is a closed 
walk; if it uses every edge, we are done. Otherwise, form graph G′ by removing all 

the edges of the walk. G′ is not connected, since vertex v0 is not incident with any 

remaining edge. The rest of the graph, that is, G′ without v0, may or may not be 
connected. It consists of one or more connected subgraphs, each with fewer edges 

than G; call these graphs G1, G2,…,Gk. Note that when we remove the edges of the 

initial walk, we reduce the degree of every vertex by an even number, so all the 

vertices of each graph Gi have even degree. By the induction hypothesis, each Gi has 
an Euler circuit. These closed walks together with the original closed walk use every 

edge of Gexactly once. Suppose the original closed walk is v0,v1,…,vm=v0, 

abbreviated to leave out the edges. Because G is connected, at least one vertex in 
each Gi appears in this sequence, say vertices w1,1∈G1, w2,1∈G2,…,wk,Gk, listed in 

the order they appear in v0,v1,…,vm. The Euler circuits of the graphs Gi are 

w1,1,w1,2,…,w1,m1=w1,1w2,1,w2,2,…,w2,m2=w2,wk,1,wk,2,…,wk,mk=wk,1.By 

pasting together the original closed walk with these, we form a closed walk in G that 
uses every edge exactly once: 

v0,v1,…,vi1=w1,1,w1,2,…,w1,m1=vi1,vi1+1,…,vi2=w2,1,…,w2,m2=vi2,vi2+1,…,vik

=wk,1,…,wk,mk=vik,vik+1,…,vm=v0.Now let's turn to the second interpretation of 

the problem: is it possible to walk over all the bridges exactly once, if the starting and 
ending points need not be the same? In a graph G, a walk that uses all of the edges 



but is not an Euler circuit is called an Euler walk. It is not too difficult to do an 
analysis much like the one for Euler circuits, but it is even easier to use the Euler 

circuit result itself to characterize Euler walks.  

Theorem 1 A connected graph G has an Euler walk if and only if exactly two vertices 

have odd degree.  

Proof. Suppose first that G has an Euler walk starting at vertex v and ending at vertex 

w. Add a new edge to the graph with endpoints v and w, forming G′. G′ has an Euler 

circuit, and so by the previous theorem every vertex has even degree. The degrees of 
v and w in G are therefore odd, while all others are even. Now suppose that the 

degrees of v 

and w in G are odd, while all other vertices have even degree. Add a new edge e to 
the graph with endpoints v and w, forming G′. Every vertex in G′ has even degree, so 

by the previous theorem there is an Euler circuit which we can write as 

v,e1,v2,e2,…,w,e,v,so that v,e1,v2,e2,…,w is an Euler walk.  

Theorem 2.  

A graph is eulerian if and only if it is connected and every vertex has even degree 

clearly, an eulerian graph must be connected. Also, if  is an eulerian circuit in , then 
for each , we can view the edge as exiting and entering . The degree of every vertex 

must be even, since for each vertex, the number of edges exiting equals the number 

of edges entering . Furthermore, each edge incident with either exits from or 

enters .We now describe a deterministic process that will either (a) find an eulerian 
circuit, (b) show that the graph is disconnected, or (c) find a vertex of odd degree. 

The description is simplified by assuming that the vertices in have been labelled with 

the positive integers, where is the number of vertices in . Furthermore, we take .We 
launch our algorithm with a trivial circuit consisting of the vertex. Thereafter suppose 

that we have a partial circuit defined by with. The edges of the form have been 

traversed; while the remaining edges in (if any) have not. If the third condition for an 

Euler circuit is satisfied, we are done, so we assume it does not hold.We then choose 
the least integer for which there is an edge incident with that has not already been 

traversed. If there is no such integer, since there are edges that have not yet been 

traversed, then we have discovered that the graph is disconnected. So we may assume 
that the integer exists. Set. We define a sequence recursively. If, set is an edge in  and 

has not yet been traversed. If , we take as the least positive integer in . If , then and 

we take and halt this subroutine. When the subroutine halts, we consider two cases. 

If, then and are vertices of odd degree in . So we are left to consider the case where . 
In this case, we simply expand our original sequence by replacing the integer by the 

sequence. 



Theorem 3. A connected multigraph has an Euler path but not an Euler circuit if and 

only if it has exactly two vertices of odd degree. 

Proof: (ONLY IF) Assume the graph has an Euler path but not a circuit. Notice that 

every time the path passes through a vertex, it contributes 2 to the degree of the 

vertex (1 when it enters, 1 when it leaves). Obviously the first and the last vertices 

will have odd degree and all the other vertices - even degree. (IF) Assume exactly 

two vertices, u and v, have odd degree. If we connect these two vertices, then every 

vertex will have even degree. By Theorem 1, there is an Euler circuit in such a graph. 

If we remove the added edge {u,v} from this circuit, we will get an Euler path for the 

original graph. Hence the proof. 

Results: Suppose a connected graph has degree sequence d1, d2,…, dn. How many 

edges must be added to G? 

so that the resulting graph has an Euler circuit? Explain.  

Travelling salesman problem Suppose the distances between each pair of the cities 

A, B, C and D are given, and suppose a salesman must travel to each city exactly 

once, starting and ending at city A. Which route from city to city will minimize the 

total travelling distance? If we use vertices to denote cities, and put the distance 
between any two cities on the edge joining them, then we can represent the given 

knowledge by the following weighted graph  

 

Before considering the above two problems in detail, we first introduce below a few 

related basic terminology.  

Eulerian and Hamiltonian Paths and Circuits 

 
A circuit is a walk that starts and ends at a same vertex, and contains no 

repeated edges.  

 
An Eulerian circuit in a graph G is a circuit that includes all vertices and 

edges of G. A graph which has an Eulerian circuit is an Eulerian graph.  

 
A Hamiltonian circuit in a graph G is a circuit that includes every vertex 

(except first/last vertex) of G exactly once.  



 
An Eulerian path in a graph G is a walk from one vertex to another, that 

passes through all vertices of G and traverses exactly once every edge of G. An 

Eulerian path is therefore not a circuit.  

 
A Hamiltonian path in a graph G is a walk that includes every vertex of G 

exactly once. A Hamiltonian path is therefore not a circuit.  

Examples  

1. In the following graph  

 

(a) 

Walk v1e1v2e3v3e4v1, loop v2e2v2 and vertex v3 are all circuits, but vertex v3 is a 

trivial circuit.  
(b) 

v1e1v2e2v2e3v3e4v1 is an Eulerian circuit but not a Hamiltonian circuit.  

(c) 
v1e1v2e3v3e4v1 is a Hamiltonian circuit, but not an Eulerian circuit.  

2. K3 is an Eulerian graph, K4 is not Eulerian.  

3. Graph  

 

has an Eulerian path but is not Eulerian.  

Euler's Theorem Let G be a connected graph.  

(i) 

G is Eulerian, i.e. has an Eulerian circuit, if and only if every vertex of G has 

even degree.  
(ii) 

G has an Eulerian path, but not an Eulerian circuit, if and only if G has exactly 

two vertices of odd degree. The Eulerian path in this case must start at any of 

the two odd-degree vertices and finish at the other vertex.  



Proof We only consider the case (i).  

(a) 

We first show G is Eulerian implies all vertices have even degree.  

Let C be an Eulerian (circuit) path of G and v an arbitrary vertex. Then each 
edge in C that enters v must be followed by an edge in C that leaves v. Thus 

the total number of edges incident at v must be even.  

 

(b) 
We then show by induction that G is Eulerian if all of its vertices are of even 

degree.  

Let Sn be the statement that connected graph of n vertices must be Eulerian if 

its every vertex has even degree.  

For n=1, G is either a single vertex or a single vertex with loops. Hence S1 is 

true because an Eulerian circuit can be obtained by traversing all loops (if any) 

one by one.  

For inductions we now assume Sk is true, and G has k+1 vertices. Select a 

vertex v of G. We form a subgraph G' with one vertex less as follows: remove 

all loops of v and break all remaining edges incident at v; remove v and 
connect in pairs the broken edges in such a way G remains connected. Since 

the degrees of the vertices remain even when G is reduced to G', the induction 

assumption implies the existence of an Eulerian circuit of G'. The Eulerian 
circuit of G can thus be constructed by traversing all loops (if any) at v and 

then the Eulerian circuit of G' starting and finishing at v. Hence G is Eulerian 

and Sk+1 is true, implying Sn is true for all n 1. For clarity and intuitiveness, 

the induction step is exemplified by the following graphs  



 

Examples  

4. Due to the above Euler's theorem, the seven bridge problem described earlier 

has no solution, i.e. the graph in the problem does not have an Eulerian circuit 

because all vertices there (A, B, C, D) have odd degrees.  
5. As for the travelling salesman problem, we need to find all the Hamiltonian 

circuits for the graph, calculate the respective total distance and then choose 

the shortest route.  

route  

 

total distance  

 

A B C D A  

 

30 + 30 + 25 + 40 = 125 

A B D C A  140 

A C B D A  155 

A C D B A  140 

A D B C A  155 

A D C B A  125  

6. Hence the best route is either ABCDA or ADCBA.  

Fleury's Algorithm for Finding Eulerian Path or Circuit 



(i) 
If there are odd degree vertices (there then must be exactly two if an Eulerian 

path is to exist), choose one. Travel over any edge whose removal will not 

result in breaking the graph into disconnected components.  

(ii) 
Rub out the edge (or colour the edge if you like) you have just traversed, and 

then travel over any remaining edge whose removal will not result in breaking 

the remaining subgraph into disconnected components.  
(iii) 

Repeat (ii) until other edges are rubbed out or coloured.  

You may consult for further details, if you wish the book by John E Munro, Discrete 

Mathematics for Computing, Thomas Nelson, 1992.  

Example  

Find an Eulerian path for the graph G below  

 

We start at v5 because (v5) = 5 is odd. We can't choose edge e5 to travel next 

because the removal of e5 breaks G into 2 connected parts. However we can 

choose e6 or e7 or e9. We choose e6. One Eulerian path is thus . 

 

 

 

UNIT-IV 

Planarity and Connectivity 

Whether is it possible to draw a graph so that none of the edges cross? If this is 
possible, we say the graph is planar (since you can draw it on the plane).Notice that 

the definition of planar includes the phrase “it is possible to.” This means that even if 

a graph does not look like it is planar, it still might be. Perhaps you can redraw it in a 

way in which no edges cross. For example, this is a planar graph: 



 

The graphs are the same, so if one is planar, the other must be too. However, the 

original drawing of the graph was not a planar representation of the graph. 

When a planar graph is drawn without edges crossing, the edges and vertices of the 

graph divide the plane into regions. We will call each region a face. The graph above 
has 3 faces (yes, we do include the “outside” region as a face). The number of faces 

does not change no matter how you draw the graph (as long as you do so without the 

edges crossing), so it makes sense to ascribe the number of faces as a property of the 

planar graph. 
WARNING: you can only count faces when the graph is drawn in a planar way. For 

example, consider these two representations of the same graph: 

Euler's Formula for Planar Graphs. For any connected planar graph with v vertices, e 

edges and faces, we have 

v−e+f=2.Not all graphs are planar. If there are too many edges and too few vertices, 

then some of the edges will need to intersect. The smallest graph where this happens 

is K5. 

Proof. The proof is by contradiction. So assume that K5is planar. Then the graph 

must satisfy Euler's formula for planar graphs. K5 has 5 vertices and 10 edges, so we 

get5−10+f=2, Which says that if the graph is drawn without any edges crossing, there 

would be f=7faces. Now consider how many edges surround each face. Each face 

must be surrounded by at least 3 edges. Let B be the total number of boundaries 

around all the faces in the graph. Thus we have that 3f≤B. But also B=2e, since each 

edge is used as a boundary exactly twice. Putting this together we get3f≤2e.But this 

is impossible, since we have already determined that f=7 and e=10, and 21≰20. This 

is a contradiction so in fact K5 is not planar. 

Graphs formed from maps in this way have an important property: they are planar.  

Definition - A graph G is planar if it can be represented by a drawing in the plane so 

that no edges cross. The number of colors needed to properly color any map is now 

the number of colors needed to color any planar graph. This problem was first posed 

in the nineteenth century, and it was quickly conjectured that in all cases four colors 
suffice. This was finally proved in 1976 with the aid of a computer. In 1879, Alfred 

Kempe gave a proof that was widely known, but was incorrect, though it was not 

until 1890 that this was noticed by Percy Heawood, who modified the proof to show 



that five colors suffice to color any planar graph. We will prove this Five Color 
Theorem, but first we need some other results. We assume all graphs are simple. 

Theorem (Euler’s Formula) supposes G is a connected planar graph, drawn so that no 

edges cross, with n vertices and m edges, and that the graph divides the plane into r 

regions. Then r=m−n+2. 

Proof. The proof is by induction on the number of edges. The base case is m=n−1, 

the minimum number of edges in a connected graph on n vertices. In this case G is a 

tree, and contains no cycles, so the number of regions is 1, and indeed 1= 
(n−1)−n+2Now suppose G has more than n−1 edges, so it has a cycle. Remove one 

edge from a cycle forming G′, which is connected and has r−1 regions, n vertices, 

and m−1 edges. By the induction hypothesis r−1= (m−1)−n+2, which becomes 

r=m−n+2 when we add 1 to each side.  

Lemma: Suppose G is a simple connected planar graph, drawn so that no edges cross, 

with n≥3 vertices and m edges, and that the graph divides the plane into r regions. 

Then m≤3n−6 

Proof. Let fi be the number of edges that adjoin region number i; if the same region 

is on both sides of an edge, that edge is counted twice. We call the edges adjoining a 

region the boundary edges of the region. Since G is simple and n≥3, every region is 
bounded by at least 3 edges. Then ∑ri=1fi=2m, since each edge is counted twice, 

once for the region on each side of the edge. From r=m−n+2 we get 3r=3m−3n+6, 

and because fi≥3, 3r≤∑ri=1fi=2m, so 3m−3n+6≤2m, or m≤3n−6 as desired.  

Theorem 5. K5 is not planar.  

 Proof. K5 has 5 vertices and 10 edges, and 10≰3⋅5−6, so by the lemma, K5 is not 

planar.  

Lemma: If G is planar then G has a vertex of degree at most 5.  

Proof. We may assume that G is connected (if not, work with a connected 
component of G). Suppose that d(vi)>5 for all vi. Then 2m=∑ni=1 d(vi)≥6n. By 

lemma 3n−6≥m so 6n−12≥2m. Thus 6n≤ 2m ≤6n−12, a contradiction.  

Theorem :( Five Color Theorem) Every planar graph can be colored with 5 colors.  

Proof. The proof is by induction on the number of vertices n; when n≤5this is trivial. 

Now suppose G is planar on more than 5 vertices; by lemma some vertex v has 

degree at most 5. By the induction hypothesis, G−v can be colored with 5 colors. 

Color the vertices of G, other than v, as they are colored in a 5-coloring of G−v. If 
d(v)≤4, then v can be colored with one of the 5 colors to give a proper coloring of G 

with 5 colors. So we now suppose d(v)=5. If the five neighbours of v are colored with 



four or fewer of the colors, then again v can be colored to give a proper coloring of G 
with 5 colors. Now we suppose that all five neighbours of v have a different color 

five neighbours of v colored with 5 colors: v1 is red, v2 is purple, v3 is green, v4 is 

blue, v5is orange. Suppose that in G there is a path from v1 to v3, and that the vertices 

along this path are alternately colored red and green; call such a path a red-green 
alternating path. Then together with v, this path makes a cycle with v2 on the inside 

and v4 on the outside, or vice versa. This means there cannot be a purple-blue 

alternating path from v2 to v4. Supposing that v2 is inside the cycle, we change the 
colors of all vertices inside the cycle colored purple to blue, and all blue vertices are 

recolored purple. This is still a proper coloring of all vertices of G except v, and now 

no neighbor of v is purple, so by coloring v purple we obtain a proper coloring of GIf 

there is no red-green alternating path from v1to v3, then we recolor vertices as 
follows: Change the color of v1 to green. Change all green neighbors of v1 to red. 

Continue to change the colors of vertices from red to green or green to red until there 

are no conflicts, that is, until a new proper coloring is obtained. Because there is no 
red-green alternating path from v1 to v3, the color of v3 will not change. Now no 

neighbor of v is colored red, so by coloring v red we obtain a proper coloring of G. 

Example: If G is Kn, PG(k)=k(k−1)(k−2) (k−n+1), namely, the number of 

permutations of k things taken n at a time. Vertex 1 may be colored any of the k 

colors, vertex 2 any of the remaining k−1 colors, and so on. Note that when k<n, PG 

(k)=0 

Example: If G has n vertices and no edges, PG (k) =kn.  

Given PG it is not hard to compute χ(G); for example, we could simply plug in the 

numbers 1,2,3,… for k until PG(k) is non-zero. This suggests it will be difficult (that 

is, time consuming) to compute PG. We can provide an easy mechanical procedure 

for the computation, quite similar to the algorithm we presented for computing 
χ(G).Suppose G has edge e={v,w}, and consider PG−e(k), the number of ways to 

color G−e with k colors. Some of the colorings of G−e are also colorings of G, but 

some are not, namely, those in which v and w have the same color. How many of 
these are there? From our discussion of the algorithm for χ(G) we know this is the 

number of colorings of G/e. Thus, PG(k)=PG−e(k)−PG/e(k).Since G−e and G/e both 

have fewer edges than G, we can compute PG by applying this formula recursively. 

Ultimately, we need only compute PG f or graphs with no edges, which is easy. 
Since PG (k) = kn when G has no edges, it is then easy to see, and to prove by 

induction, that PG is a polynomial.  

Theorem: For all G on n vertices, PG is a polynomial of degree n, and PG is called 

the chromatic polynomial of G 



Proof. The proof is by induction on the number of edges in G When G has no edges, 

otherwise, by the induction hypothesis, PG−e 

is a polynomial of degree n and PG/e is a polynomial of degree n−1, so 

PG=PG−e−PG/e is a polynomial of degree n.  

The chromatic polynomial of a graph has a number of interesting and useful 

properties. 

 

 

UNIT-V              Matching and Covering 
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