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Unit -1

Theory of Divisibility and Congruences
Division Algorithm

Theorem:(Division Algorithm). Given integers a and b, with b > 0, there exist unique integer q and r
satisfying a = gb + 1,0 <r < b. The integers q and r are called, respectively, the quotient and remainder in
the division of a by b.

Proof. Consider the set
S ={a — xb |x an integer; a — xb > 0}
Claim 1: S is non-empty
That is to prove that there exists a value of x that makes a — xb nonnegative. It is given that the integer b >
1. Multiplying both sides by |a|, |a|b = |a]|, and so
a—(—la)=a+|alb=a+|a| =0
Hence for the choice x = —|a|, a —xb lies in S. By the application of the Well-Ordering Principle, it is guaranteed
that the set S contains a smallest integer, say ». From the definition of S, it follows that there exists an integer ¢
satisfyingr=a—gb 0 <r.
Claim2:r<b
Suppose the contradiction that »> b and
a—(q@+1=(@—qb)—b=r—>b=0
The implication is that the integer a — (¢ + 1)b has the proper form to belong to the set S. Buta — (g + 1)b=r —
b < r, leading to a contradiction of the choice of » as the smallest member of S. Hence, » < b.
Claim 3: Uniqueness
Next we turn to the task of showing the uniqueness of ¢ and r. Suppose that a has two representations of the
desired form, say,
a=qb+r=q'b+r,where 0<r<b,0<7r <bh.
Thenr' —r=(q — q').
Ir"—r|=blqg—q'|
Upon adding the two inequalities —b < —r < 0 and 0 < r’ < b, we obtain
—b < ¥ —r < b or, in equivalent terms, |r’ — 7| < b. Thus, b|q — q'| < b, which yields
0<lg-q|<1
Because |g — ¢/| is a nonnegative integer, the only possibility is that |g — ¢| = 0 , whence ¢

= ¢’; this, in turn, gives » = r, ending the proof.

Corollary If a and b are integers, with b # 0, then there exist unique integers q and r such that a = qgb +r,
0<r<|p|
Proof. It is enough to consider the case in which b is negative. Then |b| > 0, and from the division algorithm

there exits unique integers ¢ and  for which
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a=q|b|+1r 0<r<|b|

As b <0, |b| = —b, assuming q = —q' it follows that a = gb + r, with 0 < r < |b|.
The Greatest Common Divisor

Definition An integer b is said to be divisible by an integer a # 0, denoted by a|b, if there exists a integer ¢ such

that b = ac. Otherwise, we say that b is not divisible by a and is denoted by a t b.

Theorem For integers a,b and c, the following statements hold
(a) a|0,1|a, a|a.

(b) a|lifand only ifa = £1.

(c) If a|b and c|d, then ac|bd.

(d)  Ifa]b and bjc, then ajc.

(e) a|b and b|a if and only if a = +b.

) If a|b and b # 0, then |a| < |b|.

(g) If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y.
Proof:

(a) 0=(0),0€Z= a|0.

a=1(a),a€Z = 1|a.

a=(1),1€Z> ala.

1
all =1 =a(k),k =2 c Z. Hence a = +1.

(b) Case (i): Suppose
Case (i1): Supposea =+1.1=1(1) or 1 = —=1(—1). Hence a|1.

(c) Let it be true that a|b and c|d. It follows that b = a(k1), k1 € Z and d = c(k2), k2 € Z. Hence bd =
ac(kik2), k1k2 € Z. Hence by divisibility conditions, ac|bd.

(d) Let it be true that a|b and b|c. It follows that b = a(k1), k1 € Z and ¢ = b(k2), k2 € Z. Hence ¢ = a(kik2),
kik2 € Z. Hence by divisibility conditions, a|c.

(e) Let it be true that a|b and b|a. It follows that b = a(k1), k1 € Z and a = b(kz), k2 € Z. Hence ab =

1
ab(klkz), klkz € Z = 1 = klkz = kl = k_z € Z = kz = il Tt fOHOWS that a= +b

® If a| b, then there exists an integer ¢ such that b = ac; also b # 0 implies that ¢ # 0. Upon taking absolute
values, we get |b| = |ac| = |a||c|. Because, ¢ # 0 it follows that |c| = 1, whence |b| = |a]|c| = |a].
(2) Given that |b and a|c. This ensures that b = ar and ¢ = as for suitable integers » and s. For some integer

values of x and y, bx + cy = arx + asy = (rx + sy). As rx + sy is an integer, by divisibility conditions, a|(bx

+ cy).
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Definition: Let a and b be given integers, with at least one of them different from zero. The greatest common
divisor of a and b, denoted by gcd(a,b), is the positive integer d satistying the following:

(a) d|a and d|b.

(b)  Ifcla and c|b, then c < d.

Theorem: Given integers a and b, not both of which are zero, there exist integers x and y such that
gcd(a, b) = ax + by
Proof. Consider the set S of all positive linear combinations of a and b:

S={au+bv|au+ bv>0;u, vintegers} Claim 1 Sis
not empty.
Since, if a # 0, then the integer |a| = au + (0) lies in S, where we choose u = 1 or u = —1 according as a is
positive or negative. By virtue of the Well-ordering Principle, S must contain a smallest element d. Thus, from
the very definition of S, there exists integers x and y for which d = ax + by.
Claim 2 d is a common divisor of a and b.
By the Division Algorithm, there exists unique integers ¢ and » such that a = qd + r, where 0 <r <
d. Then r can be written in the form

r=a—qd=a— (ax+ by)=a(l—qx) + b(—qy)
If » were positive, then this representation would imply that r < d is an element of S, contradicting the fact that
d is the least integer in S. Therefore, » = 0, and so a = ¢d, or equivalently d|a. By similar reasoning, d|b, This
assures that d a common divisor of a and b.
Claim 3: d = gcd(a, b).
Let ¢ be an arbitrary positive common divisor of the integers a and b, then from the theorem it easily follows that
c|(ax + by) = c|d. Hence, c = |c| < |d| = d, so that d is greater than every positive common divisor of a and b.

Hence, d = gc(a, b).

Corollary: If a and b are given integers, not both zero, then the set T = {ax + by|x, y € Z} is

precisely the set of all multiples of d = gc(a, b).

Proof.

Given d = gcd(a, b). It follows that d|a and d|b. By the above theorem d|(ax + by) for all integers x, y. Thus,
every member of 7"is a multiple of d.

Conversely, d € T may be written as d = axo + byo for suitable xo, and yo, so that any multiple nd of d is of the
form nd = (ax0 + by0) = a(nx0) + b(ny0). Hence, nd is a linear combination of @ and b, and, by definition,

liesin 7.
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Definition: Two integers a and b, not both of which are zero, are said to be relatively prime whenever gcd(a,b)

=1.

Theorem: Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist
integers x and y such that 1 = ax + by.

Proof:

If a and b are relatively prime so that gcd(a,b) = 1, then there exists integers x and y satisfying 1 = ax + by.
Conversely, suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a,b). Because d|a an d|b, it
follows that d|(ax + by), or d|1. Hence, d|1 = d = +1. By assumption d is positive. Hence, d = gcd(a, b) =

1.1.e., a and b are relatively prime.

Corollary: If gc(a, b) = d, then ged (S'g) - 1.
Proof. Before starting with the proof proper, we should observe that although a/d and b/d have the appearance
of fractions, in fact, they are integers because d is a divisor both of @ and of . Now, knowing that gcd(a,b) = d,
it is possible to find integers x and y such that d = ax+by. Upon dividing each side of this equation by d, we obtain
the expression
1= o+ by
Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclusion is
that a/d and b/d are relatively prime. 2
Corollary If a|c and b|c, with gc(a, b) = 1, then ab|c.
Proof. If a|c and b|c, then there exists integers » and s such that ¢ = ar = bs. Given gc(a, b) = 1. It then follows
that there exists integers x and y such that 1 = ax + by. Multiplying, the last equation by c:
c =c 1= (ax + by) = acx + bcy Incorporating
appropriate substitutions on the right-hand side:
c=(bs)x + b(ar)y =ab(sx +ry) It
follows that, ab|c.
Theorem(Euclid’s Lemma). If a|bc, with gc(a, b) = 1, then a|c.
Proof. As gcd(a, b) =1, it is true that 1 = ax + by, where x and y are integers. Multiplication of this equation by
¢ leads to
c=1.c=(ax+ by)c=acx + bcy
Because a|ac and a|bc, it follows that a|(acx + bcy). From the above equation it follows that a|c.
Theorem Let a, b be integers, not both zero. For a positive integer d, d = gcd(a,b) if and only if:
(a) d|a and d|b.
(b) Whenever c|a and c|b, then c|d.
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Proof. Suppose that d = gc(a, b). By definition of greatest common divisor it follows that d|a and d|b, so that
(a) holds. From the theorem, d is expressible as d = ax + by for some integers x, y. We know that, if c|a and
c|b, then c|(ax + by) hence it follows that c|d. In short, condition (b) holds.
Conversely, let d be any positive integer satisfying the stated conditions. Given any common divisor ¢ of @ and
b, we have c|d from hypothesis (b). The implication is that d > ¢, and consequently d is the greatest common
divisor of a and b.
The Euclidean Algorithm
Let a and b be two integers whose greatest common divisors need to be computed. By the properties of GCD,
gc(lal, b)) = gcd(a, b). Assume that a > b > 0. The first step is to apply the Division Algorithm to @ and b to
get
a=qib+1r,0<r1<b
If it happens that 1 = 0, then b|a and gc(a, b) = b.
When r1 # 0, again from the division algorithm there exists integers g2 and r; satisfying
a=qri1+71r2,0<r2<r1

If = 0, then we stop; otherwise, proceed as before to obtain

ri=q3r2+713,0<r3<nr

This division process continues until some zero remainder appears, say, at the (n + 1)th stage where r,-1 is divided
by 7, (a zero remainder occurs sooner or later because the decreasing sequence b > r1 > > ---> 0
cannot contain more than b integers).

The result is the following system of equations:

a = qib+n 0<rm<b
b = quri+r12 0<r2<r1
r . qarz+rs 0<r3<sr:
rn-2 - gnrn-1+1n, 0 <rn<7rn-1
'n—1 - qnTn +0

We argue that r,, the last nonzero remainder that appears in this manner, is equal to gcd(a,b). Our proof is based
on the lemma below.

Lemma I[fa=qb +r, then gc(a, b) = gcd(b, 1)

Proof. If d = gc(a, b), then the relations d|a and d|b together imply that d|(a — gb), or d|r. Thus, d is a common

divisor of both b and r. On the other hand, if ¢ is an arbitrary common divisor of b and 7, then c|(qb +
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r), whence c|a. This makes ¢ a common divisor of @ and b, so that ¢ < d. It now follows from the definition of
gc(b,r) thatd = ged(b, 7).
Theorem If'k > 0, then gc(ka, kb) = k. gcd(a, b)

the equations appearing in the Euclidean Algorithm for @ and b is multiplied by &, we obtain ak = q1(bk) + rik 0 < rik
< bk bk q2(r1k) + rk 0 < rmk < rk

ok = Qn(rn*lk) + 1k 0 <rpk <rukrak = Qnﬂ(”nk) +0

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that their greatest common divisor

is the r,k; that is, gcd(ka,kb) = r.k = k.gcd(a,b).

Corollary For any integer k # 0, gc(ka, kb) = |k|gcd(a, b).
Proof. It suffices to consider the case in which £ < 0. Then —k = |k| > 0 and, by Theorem
gcd(ak, bk) = gcd(—ak, —bk)
= gcd(alk|, blk|)
= |klgcd(a, b)

Definition The least common multiple of two nonzero integers a and b, denote by lcm(a,b), is the positive integer
m satisfying the following:

alm and b|m.

If a|c and b|c, with ¢ > 0, then m < c.

Theorem 1.5.6. For positive integers a and b, gc(a, b)lcm(a, b) = ab

Proof. Let d = gc(a, b). It follows that a = dr, b = ds for integers » and s. If m = ab/d, then m = as = rb. (put

a = dr gives m =rb and put b = ds given m = as). This shows that m is a (positive) common multiple of a and

b.
Now let ¢ be any positive integer that is a common multiple of @ and b; say, for definiteness, ¢ = au = bv. As
c c _cd _
—=m ===
we know, there exist integers x and y satisfying d = ax + by. In consequence, "© @ 6P

c(ax+by)_£ c._
m —bx+ay—vx+uy.

This equation states that m|c, allowing us to conclude that m < c¢. Thus, in accordance with Definition of lcm, m

lem(a,b) = @
’ d  ged(ab), The theorem follows.

= Icm(a,b); that is,
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Corollary. For any choice of positive integers a and b, lc(a, b) = ab if and only if gcd(a, b) = 1. The
Diophantine Equation ax+by =c

Theorem. The linear Diophantine equation ax + by = ¢ has a solution if and only if d|c, where d = gcd(a,b). If
Xo,yo0 is any particular solution of this equation, then all other solutions are given by

T=x0+ 2t y=yo— %)t

where t is an arbitrary integer.

Proof. To establish the second assertion of the theorem, let us suppose that a solution xo,yo of the given equation
is known. If x,)’is any other solution, then

axo+ byo=c=ax + by

which is equivalent to a(x —

x0) = b(yo— )

By the corollary to Theorem 1.4.8, there exist relatively prime integers » and S such that a = dr, b = ds.
Substituting these values into the last-written equation and canceling the common factor d, we find that 7(x' — xo)
=s(0—)

The situation is now this: r|s(yo— ), with ged(r,s) = 1. Using Euclid’s lemma, it must be the case that 7|/(yo— );
or, in other words, yo — y' = r¢ for some integer ¢. Substituting, we obtain

X —xo= st

This leads us to the formulas

¥ =xo+st=wx0+ )t

y=yo—rt=yo— §)t

It is easy to see that these values satisfy the Diophantine equation,regardless of the choice of the integer ¢#; for
b a
r+by) = ,:;+—t+l[' ——f]
azr’ + by a [10 (d) } h 1Yo (d)

= (axo+ byo) + a_b - a_b t
d d

= c+0.t
= c

Thus, there are an infinite number of solutions of the given equation, one for each value of

t.

Corollary If gcd(a,b) = 1 and if xo,y0is a particular solution of the linear Diophantine equation ax + by = c,
then all solutions are given by

x=xo+ bt y=yo— at for

integral values of t.

The Fundamental Theorem of Arithmetic
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Definition. An integer p > 1 is called a prime number, or simply a prime, if its only positive divisors are 1 and

p. An integer greater than 1 that is not a prime is termed composite.

Theorem . If p is a prime and p|ab, then pla or plb.

Proof. If p|a, then we need go no further, so let us assume that p t a. Because the only positive divisors of p are
1 and p itself, this implies that gcd(p,a) = 1. ( In general, gcd(p,a) = p or gcd(p,a) = 1 according as pla or p t a.)
Hence, citing

Euclid’s lemma, we get p|b.

Corollary. If p is a prime and p|aiaz - an, then plai for some k, where 1 <k <n.

Proof. We proceed by induction on n, the number of factors. When n = 1, the stated conclusion obviously holds;
whereas when n = 2, the result is the content of Theorem. Suppose, as the induction hypothesis, that n» > 2 and
that whenever p divides a product of less than n factors, it divides at least one of the factors. Now p|aiaz -~ ax.
From Theorem, either p|a, or plaiaz - --an-1. If p|an, then we are through. As regards the case where plaias - an-1,
the induction hypothesis ensures that p|ax for some choice of k, with 1 <k <n — 1. In any event, p divides one of
the integers ai,az,...,an.

Corollary. If p,q1,92, - ,qnare all primes and p|q1q2 ***qn, then p = gy for some k, where 1 <k <n.

Proof. By virtue of Corollary above, we know that p|gx for some &, with 1 <k <n.

Being a prime, gx is not divisible by any positive integer other than 1 or g itself. Because p

> 1, we are forced to conclude that p = gx. 2

Theorem(Fundamental Theorem of Arithmetic). Every positive integer n > 1 can be expressed as a product of
primes; this representation is unique, apart from the order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing more to prove. If n is composite,
then there exists an integer d satisfying d|n and 1 < d < n. Among all such integers d, choose pi to be the smallest
(this is possible by the Well — Ordering Principle). Then p1 must be a prime number. Otherwise it too would have
a divisor g with 1 < g < py; but then ¢g|p1 and p1|n imply that g|n, which contradicts the choice of p as the smallest
positive divisor, not equal to 1, of .

We therefore may write n = pini,where pi is prime and 1 < n1 < n. If n1 happens to be a prime, then we have
our representation. In the contrary case, the argument is repeated to produce a second prime number p; such that
n1= pany; that is,

n=pipanz 1 <m<m
If 2 1s a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3, with p3 a prime:
n=pipap3n3 1 < n3 < ny The decreasing sequence n > n1 > ny > -+ > 1 cannot continue indefinitely, so that after
a finite number of steps nx-11s a prime, call it, px. This leads to the

prime factorization
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n=pp2pe
To establish the second part of the proof-the uniqueness of the prime factorizationlet us suppose that the integer

n can be represented as a product of primes in two ways; say,

n=p\p2-Pr=qi1q2 " *qs r < s where the p;and g; are all primes,

written in increasing magnitude so that p1 < p> <---p,and g1 < g2 <+ g5

Because pi|q192 - - -gs, Corollary it follows that p1 = gx for some k; but then p1 > ¢1. Similar reasoning gives g1

> p1, whence p1 = qi1. We may cancel this common factor and obtain p2p3

e = Q23 g

Now repeat the process to get p» = g2 and, in turn, p3ps

- Dr= q3q4 s

Continue in this fashion. If the inequality » < s were to hold, we would eventually arrive at
1 = gr+1qr+2 ---gs which is absurd, because each ¢; > 1. Hence, = s and

pi1=qip2=q2,- ,pr= ¢r making the two factorizations of n identical. The

proof is now complete.

ok ke kp .
Corollary. Any positive integer n > 1 can be written uniquely in a canonical form™ = P1'D2” = - - D3"where, for i

=1,2,---,r, each kiis a positive integer and each p;is a prime, withp1 < p>< -** < py.

Theorem (Pythagoras). The number N2 is irrational.

Proof. Suppose, to the contrary, that V2 is a rational number, say, V2 = a/b, where a and b are both integers with
gcd(a,b) = 1. Squaring, we get a*> = 2b* , so that b|a®. If b > 1, then the Fundamental Theorem of Arithmetic
guarantees the existence of a prime p such that p|b. It follows that p|a® and, by Theorem, that p|a; hence, gcd(a,b)
> p. We therefore arrive at a contradiction, unless b = 1. But if this happens, then a*= 2, which is impossible (we
assume that the reader is willing to grant that no integer can be multiplied by itself to give

2). Our supposition that \2 is a rational number is untenable, and so V2 must be irrational. 2

Theorem (Euclid). There is an infinite number of primes.

Proof. Euclid’s proof is by contradiction. Let p1=2,p>=3,p3=5,ps=7,--- be the primes in ascending order, and
suppose that there is a last prime, called p,. Now consider the positive integer

P=pipz2--pn+1

Because P > 1, we may put Theorem to work once again and conclude that P is divisible by some prime p. But
p1p2 - ,pnare the only prime numbers, so that p must be equal to one of p1,p2, - ,p,. Combining the divisibility
relation p|p1p2 - -pn. with p|P, we arrive at p|P — pip2 **pn or, equivalently, p|1. The only positive divisor of the
integer 1 is 1 itself and, because p > 1, a contradiction arises. Thus, no finite list of primes is complete, whence

the number of primes is infinite.
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Theorem. If p, is the nth prime number, then pn < 22n-1,
Proof. Let us proceed by induction on 7, the asserted inequality being clearly true when n = 1. As the hypothesis
of the induction, we assume that » > 1 and that the result holds for all integers up to n. Then
pn+t1<pip2--pnt+1
<22%2.-22n-141
= 21+2+422+2n-1 4 |

Recalling the identity 1 +2 + 22+ --- + 2" 1=2""1 we obtain

Pn+1 <2141

However, 1 <2 for all n; whence

Pn+1 < 22n-1+ 2201
=2.22n-1=22n

completing the induction step, and the argument.

Corollary. For n> 1, there are at least n + 1 primes less than 2*".

Proof. From the theorem, we know that p1,p2,- -+ ,ps+1 are all less than 22,

Basic properties of congruence

Definition Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, symbolized
by a = (mod n) if n divides the difference a — b; that is, provided that @ — b = kn for some integer £.

Theorem For arbitrary integers a and b, a = (mod n) if and only if a and b leave the same nonnegative
remainder when divided by n.

Proof. First take a = (mod n), so that a = b + kn for some integer k. Upon division by n, b leaves a certain
remainder r; that is, b = qn + r, where 0 < r < n. Therefore,a =b + kn = (qn +r) + kn = (q + k)+ r which
indicates that a has the same remainder as b.

On the other hand, suppose we can write a = qin + r and b = q2n + r, with the same remainder
(0<r<n).Thena—b=(qgin+7r) — (gzn +r) = (q1— q2) whence n|a — b. In the language of congruences,

we have a = (mod n).

Theorem Let n > 1 be fixed and a,b,c,d be arbitrary integers. Then the following properties hold:
(a) a = a(mod n).

(b) If a = b(mod n), then b = a(mod n).

(c) If a = b(mod n) and b = c(mod n), then a = c(mod n).
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(d) If a = b(mod n) and ¢ = d(mod n), then a + ¢ = b + d(mod n) and ac = bd(mod n).

(e) If a = b(mod n), then a + ¢ = b + c(mod n) and ac = be(mod n). (f) If a = b(mod n), then ak = bk(mod n)
for any positive integer k.

Proof. For any integer a, we have a —a =0 - n, so that a = a(mod n). Now if a = b(mod n), then a — b = kn for
some integer k. Hence, b — a = —(kn) = (—k)n and because — is an integer, this yields property (b ).

Property (c) is slightly less obvious: Suppose that a = b(mod n) and also b = c(mod n). Then there exist integers
h and k satisfying a — b = hn and b — ¢ = kn. It follows that a — ¢ = (a — b) + (b — ¢) = hn + kn = (h + k)n which
is a = c(mod n) in congruence notation.

In the same vein, if a = b(mod n) and ¢ = d(mod n), then we are assured that a — b = kin and ¢ — d = kyn for
some choice of k1 and k>. Adding these equations, we obtain

(a+co)—b+d)=(a—-b)+(c—d)=kin+ kan= (k1 + k2)

or, as a congruence statement, a + ¢ = b + d(mod n). As regards the second assertion of property (d), note that ac
= (b + kin)(d + kan) = bd + (bk2 + dk1 + kikon)n

Because bk, + dki + kikon is an integer, this says that ac — bd is divisible by n, whence ac = bd(mod n).

The proof of property (e) is covered by (d) and the fact that ¢ = c¢(mod n). Finally, we obtain property (f) by
making an induction argument. The statement certainly holds for £ = 1, and we will assume it is true for some
fixed k. From (d), we know that a = b(mod n) and a* = b'(mod n) together imply that aa* = bb*(mod n), or
equivalently "' = b*"!(mod n). This is the form the statement should take for k + 1, and so the induction step is

complete.

Theorem If ca = cb(mod n), then a = b(mod n/d), where d = gcd(c,n).
Proof. By hypothesis, we can write

cla—b)=ca—cb=kn
for some integer k. Knowing that ged(c,n) = d, there exist relatively prime integers r and s satisfying ¢ = dr, n =
ds. When these values are substituted in the displayed equation and the common factor d canceled, the net result
is r(a — b) = ks. Hence, s|r(a — b) and gcd(r,s) = 1. Euclid’s lemma yields s|a — b, which may be recast as a =
b(mod s); in other words, a = b(mod n/d).
Corollary. If ca = cb(mod n) and gcd(c,n) = 1, then a = b(modn).
Corollary. If ca = cb(mod p) and p t ¢, where p is a prime number, then a = b(mod p).
Proof. The conditions p t ¢ and p a prime imply that gcd(c,p) = 1.

Binary and Decimal Representations of Integers

m

Theorem Let P(z) =310 " pe ¢ polynomial function of x with integral coefficients cx. If a = b(mod n),
then P(a) = P(b)(mod n).
Proof. Because a = b(mod n), part(f) of Theorem 3.1.4 can be applied to give a* = b*(mod n) for k=0,1,--- ,m.

Therefore, cxa*= ckb*(mod n) for all such k. Adding these m + 1 congruences, we conclude that
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m m
E crat = E cxb®(mod n)

k=0 k=0
or, in different notation, P(a) = P(b)(mod n). 2

Corollary If a is a solution of P(x) = 0(mod n) and a = b(mod n), then b also is a solution.

Proof. From the last theorem, it is known that P(a) = P(b)(mod n). Hence, if a is a solution of P(x) = 0(mod n),
then P(b) = P(a) = 0(mod n), making b a solution. 2

Theorem Let N = an10™ + an-110™ '+ -+ + a110 + ao be the decimal expansion of the positive integer N, 0 < ax

<10, and let S=ao+ a1+ -+ + am. Then O|N if and only if 9|S.

Proof. Consider” (%) = >0 ("k*'”k, a polynomial with integral coefficients. The key observation is that 10 =
1(mod 9), whence by Theorem 3.2.2, P(10) = P(/)(mod 9). But P(10)=Nand P(1)=ao+ a1+ - + an=_S, so that
N = S(mod 9). It follows that N = 0(mod 9) if and only if S = 0(mod 9), which is what we wanted to prove.

Theorem Let N = an10™ + an-110™ '+ -+ + a110 + ao be the decimal expansion of the positive integer N, 0 < ax

<10, and let T=ao— a1+ ax— - + (=)"am. Then 11|N if and only if 11|T.

Proof. As in the proof of Theorem 3.2.4, put!’ () = 330 arr” Because

10 =—1(mod 11), we get P(10) = P(—1)(mod 11). But P(10) = N, whereas

P(-1)=ao—a1+a— + (-I)"am=T, so that N = T(mod 11). The implication is that either both N and T are
divisible by 11 or neither is divisible by 11.

Linear Congruence and The Chinese Remainder Theorem
Theorem. The linear congruence ax = b(mod n) has a solution if and only if d|b, where d = gcd(a,n). If d\b, then
it has d mutually incongruent solutions modulo n.
Proof. We already have observed that the given congruence is equivalent to the linear Diophantine equation ax
—ny = b. From Theorem 1.6.1, it is known that the latter equation can be solved if and only if d|b; moreover, if
it is solvable and xo,)0 is one specific solution, then any other solution has the form
r=xo+5t y=yo+ 5t
for some choice of 7.

Among the various integers satisfying the first of these formulas, consider those that occur when ¢ takes on the
successive values r=0,1,2,--- ,d — 1:

. " 2 - (d=1)n
fL().fL()‘F%.l()—i—#."' , o + q

We claim that these integers are incongruent modulo 7, and all other such integers x are congruent to some one
of them. If it happened that

To + Gt = o + Fta(mod n)

where 0 <t < ,<d — 1, then we would have il = Gta(mod n)

Now gcd(n/d,n) = n/d, and therefore by Theorem 2.1.7 the factor n/d could be canceled to arrive at the congruence

t1 = t(mod d) which is to say that d|t; — ¢1. But this is impossible in view of the inequality 0 < £, — #1 < d.
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It remains to argue that any other solution xo + (n/d)¢ is congruent modulo » to one of the d integers listed

above. The Division Algorithm permits us to write ¢ as t = gd + r, where 0 <r <d — 1. Hence

To + vnf = X0+ n (gd+1)
. /() (l £ - < /0 d .1
n
= To+ng+=r
d

n
= I+ —]r'(mod n)
d

with xo + (n/d)r being one of our d selected solutions. This ends the proof. 2

Corollary If gcd(a,n) = 1, then the linear congruence ax = b(mod n) has a unique solution modulo n.

Theorem (Chinese Remainder Theorem). Let ni,n2, -+ ,ny, be positive integers such that gcd(ni,n;) = 1 for i
=6 j. Then the system of linear congruences x =

ai(mod m) x = ax(mod n2)

x = a(mod ny) has a simultaneous solution, which is unique modulo the integer
niny -+ n. Proof. We start by forming the product n = niny ---n,. For each k =

1,2,--,r, let

5

T T
N = ae = M Mk Mkg1 - Ny

In words, N is the product of all the integers n; with the factor nr omitted. By hypothesis, the »; are relatively
prime in pairs, so that gcd(Ni,nr) = 1. According to the theory of a single linear congruence, it is therefore possible
to solve the congruence
Nix = 1(mod ny); call the unique solution x¢. Our aim is to prove that the integer x
= aiNwx1+ a2Nax2 + -+ + a,Nxx 1s a simultaneous solution of the given system.
First, observe that N;= 0(mod nx) for i =6 k, because ni|N;in this case. The result is x =
aiNix1 + -+ + a:Nixr = arNixi(mod nk)
But the integer xx was chosen to satisfy the congruence Nix = 1(mod nx), which forces x =
ax - 1 = a(mod ny)
This shows that a solution to the given system of congruences exists.
As for the uniqueness assertion, suppose that x is any other integer that satisfies these congruences. Then
x =ar=x(modny) k=12, randsomfx —x for each value of k. Because gcd(n;n;) = 1, Corollary 2 to
Theorem
1.4.8 supplies us with the crucial point that nin2 ---n,x —x; hence x = x(mod n).

With this, the Chinese Remainder Theorem is proven.
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Theorem The system of linear congruences ax + by = r(mod n); cx + dy = s(mod n) has a unique solution
modulo n whenever gcd(ad — be,n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second congruence by b, and subtract the
lower result from the upper. These calculations yield

(ad — bc)x = dr — bs(mod n) (3.1)

The assumption gcd(ad — bc,n) = 1 ensures that the congruence

(ad — bc)z = 1(mod n) possess a unique solution; denote the solution by . When congruence (3.1) is

multiplied by ¢, we obtain x = «(dr — bs)(mod n)

A value for y is found by a similar elimination process. That is, multiply the first congruence of the system by c,
the second one by a, and subtract to end up with

(ad — bc)y = as — cr(mod n) Multiplication of this

congruence by ¢ leads to y = t(as — cr)(mod n)

A solution of the system is now established.
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Using division algorithm, prove that the cube of nay integer has one of the forms 9k,
Ok+1or9%+8

Prove that 3a*> — 1 is never a perfect square.

Determine all the solutions in positive integers of the Diophantine equation 18x +
Sy=48.

Prove that /2 is irrational.

Find all the prime numbers that divide 50!

Prove that prime factorization of any positive integer » > 1 is unique.

State and prove any one property of congruent modulo 7.

State and prove the divisibility condition for 5.

Find all solution to the linear congruence 3x — 7y = 11(mod13).

Show that if gcd(a, n) = 1, then the linear congruence ax = 1(mod#») has a unique

solution modulo 7.

State and prove division algorithm.

Prove that if @ and b are integers, with 5>0, then there exists unique integers g an d r
satisfying a=qb+r,where 2b<r <3b

Show that for non-zero integers a and b, there exits unique integer x and y such that
gcd(a, b)=ax+by

State and prove Euclid’s lemma.

Show that the linear Diophantine equation ax + by = ¢ has a solution if and only if d |
¢, where d = gcd(a, b).

State and prove fundamental theorem of arithmetic.

State and prove Euclid’s theorem on number of primes.

Show that if P(x) = zz=o c,x" be a polynomial function of x with integral coefficients
¢k, and a = b(modn), then P(a)= P(b)(modn).

State and prove Chinese remainder theorem.
Show that the system of linear congruence, ax + by = r(modn); cx + dy = s(modn)

has a unique solution modulo n, whenever gcd(ad — bc, n) = 1.
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2.1 Fermat’s Little Theorem and Pseudo primes

Theorem: (Fermat’s theorem)
Let p be a prime and suppose that p + a. Then, a?~! = 1(mod p).

Proof. Consider the positive integers:
a,2a,3a,,(p — Da
The first p — 1 multiples of a.

The p — 1 multiples are mutually incongruent and not a multiple of p. Suppose that a randomly selected two
multiples are congruent modulo p to each other,

ra =sa(modp),1<r<s<p-1

then as p t a, dividing by a we get:
r = s(mod p)
which is impossible.

It then follows by Euclid’s lemma that the set of multiples should be congruent modulop to 1,2,3,--- ,p — 1, taken
in some order.

Multiplying all these congruencies together, we get:
a-2a-3a-(p—1Da=1-2-3-(p—1)(mod p)
Grouping the common factors together:
aP l(p — 1! = (p — 1)! (mod p)
Since, p + (p — 1), dividing both sides by (p — 1)! It follows that
aP~! = 1(mod p)
The theorem follows.

Corollary If p is a prime, then a? = a(mod p) for any integer a.
Proof. Suppose p|a, then, a? = 0 = a(mod p). Hence the statement is proved.
If p 1 a, then according to Fermat’s theorem, we have
aP~! = 1(mod p)
When this congruence is multiplied by a, the conclusion
a? = a(mod p)
The statement follows.

Lemma: If p and q are distinct primes with a? = a(mod q) and a? = a(mod p), then a’? = a(mod pq).

Proof. From the corollary prove above, letting a = a, we get
(a?)? = a9(mod p)
By our hypothesis
a? = a(mod p)
From these congruencies we obtain
aP? = a(mod p)
Hence the proof.

Definition

A composite integer n is called pseudoprime whenever, n|2"™ — 2. In general, a composite integer n for which
a™ = a (mod n) is called a pseudoprime to the base a.
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The composite numbers n which are pseudoprimes to every base a; that is, a™ = a(mod n) for all integers a are
called absolute pseudoprimes.

Theorem: If n is an odd pseudo prime, then M,, = 2™ — 1 is also an odd pseudo prime.

Proof. By the definition of pseudo prime, # is a composite number and hence there exists non trivial factors r
and s such thatn = rs, with 1 <r < s < n. Hence, 2" — 1|2™ — 1, or equivalently 2" — 1|M,,. It is clear that
M,, is acomposite number as it has a non-trivial factor 2" — 1.
Since n is a pseudo prime, 2" = 2(mod n). Hence 2™ — 2 = kn for some integer k. It follows that
Hence, 2Mn—1 — 22 n-1-1 _ 22n—2 — an.
It follows that:

2Mn=1 — 1 = 2kn — 1 = (2" — 1)(2"Kk=D 4 2n(k=2) 4 ... 4 27 1)

= 2Mn=t — 1 = M, (2D 4 2nk=2) 4y 27 4+ 1))

and hence 2M» — 1 = 0(mod M,)) = M, |(2Y — 2).
This proves that M,, is a pseudoprime.

Definition
An integer is said to be square-free if it is not divisible by the square of any integer greater than 1.

Theorem: Let n be a composite square-free integer, say, n = p,p, - p,-, where the p; are distinct primes. If p; —
1jn —1fori = 1,2,---,r, then n is an absolute pseudo prime.

Proof. Suppose that a is an integer satisfying, gcd(a,n) = 1, so that gcd(a,p;) = 1 for each i. Then by
Fermat’s theorem p;|aPi™! — 1.

Giventhat,p; —1ln—1=>n—-1=k(p; — 1).
Since gcd(a,p;) = 1, for some prime p;, gcd(a®, p;) = 1. We have p;|(a*)Pi™1 — 1 and therefore p;|a™ ! —
a=p;la®—aforallaandi = 1,2,-,7.

Hence p;p, ... p,|a™ — a = n|a™ — a. This proves that n is an absolute pseudoprime.
2.2 Wilson’s Theorem
Theorem (Wilson). If p is a prime, then (p — 1)! = —1(mod p).

Proof. The cases p = 2 and p = 3 as being evident, consider p > 3. Suppose that a is any one of the p — 1
positive integers

1,2,3,-,p—1
and consider the linear congruence ax = 1(mod p). It is cleat that gcd(a,p) = 1 and hence the congruence
admits a unique solution modulo p. Hence, there is a unique integer a’, with 1 < a’ < p — 1, satisfying aa’ =
1(mod p).

Because p is prime, a = a'if and only ifa = 1 or a = p — 1. Indeed, the congruence a? = 1(mod p) is
equivalentto (a — 1) - (a + 1) = 0(mod p). Therefore, either a — 1 = 0(mod p), in whichcasea = 1, ora +
1 = 0(mod p), in which case a = p — 1.

If we omit the numbers 1 and p — 1, the effect is to group the remaining integers
2,3,+,p — 2 into pairs a,a’, where a # a’, such that their product aa’ = 1(mod p). When these p7_3

congruencies are multiplied together and the factors rearranged, we get
2:3(p—2)=1(modp)
or rather
(p — 2)! = 1(mod p)
Now multiply by p — 1 to obtain the congruence
p—D!'=p—1=—-1(mod p)
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as was to be proved.

Example: A concrete example should help to clarify the proof of Wilson’s theorem. Specifically, let us take p
= 13. It is possible to divide the integers 2,3,--- ,11 into (p — 3)/2 = 5 pairs, each product of which is congruent
to 1 modulo

13. To write these congruences out explicitly:

27 = 1(mod13)
3:9 = 1(mod13)
4-10 = 1(modl3)
5-8 = 1(mod 13)
6-11 = 1(mod13)

Multiplying these congruences gives the result
1'=2-7)3-9)4 - 10)5-8)(6 - 11)=1(mod 13)
and so
12! =12 =—1(mod 13)
Thus, (p — 1)! =—1(mod p), with p = 13.

Theorem The quadratic congruence x2 + 1 = 0(mod p), where p is an odd prime, has a solution if and only if
p = 1(mod 4).

Proof. Let a be any solution of x? + 1 = 0(mod p), so that a®> = —1(mod p). It follows that p 4 a, the outcome
of applying Fermat’s theorem is
p—1 p—1

1=a?™t = (@®) 2 = (-1) 2 (modp)

The possibility that p = 4k + 3 for some & does not arise. If it did, we would have
p—1
(-7 = (~1)%* =1

hence, 1 = 1(mod p). The net result of this is that p|2, which is patently false.
Therefore, p must be of the form 4k + 1 or equivalently p = 1(mod 4).

Conversly,
p—-1!=1-2...28 . 22...(p—2)(p—1)
we have the congruences

p—1 = —1(mod p)
p—2 = —2(mod p)
1 -1

Z% = —pT(mod D)

Rearranging the factors produces
p—1 p—1
p-—1! = 1-(-1)-2-(=2)--- 5 -(— 5 >(m0dp)
—1\?

= (—1)FD2 (1.2...%) (mod p)

because there are (p — 1)/2 minus signs involved. It is at this point that Wilson’s theorem can be brought to bear;
for, (p — 1)! =1(mod p), whence
~1= (=172 [(251)1]* (mod p)
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If we assume that p is of the form 4k + 1, then (—1)? 2= 1, leaving us with the congruence
12
—1=[(5)!]” (mod p)
The conclusion is that the integer [(p — 1)/2]! satisfies the quadratic congruence
x>+ 1 =0(mod p).

23 The sum and number of divisors
Definition Given a positive integer n, let 7(n) denote the number of positive divisors of # and a a(n) denote the
sum of these divisors.
Theorem. Ifn = pf 1p§ 2 pf’"is the prime factorization of n > 1, then the positive divisors of n are precisely
those integers d of the form

d=p;'py* v
where 0 < a; < k;(i = 1,2,---,71).

Proof. Note that the divisor d = 1 is obtained when a; = a, = -+ = a,, = 0, and n itself occurs when a; =
ki,a, = ky, -+, a, = k,. Suppose that d divides n non trivially; say, n = dd’, where d > 1,d’ > 1. Express both
d and d' as products of ( not necessarily distinct) primes:

d=q:1qz  qs;d" = tyt; - by
with q;, t; prime. Then

Py D =@ gt
are two prime factorizations of the positive integer n. By the uniqueness of the prime factorization, each prime ¢;
must be one of the p;. Collecting the equal primes into a single integral power, we get

d=qg- g = PI'P* -+ - Py
where the possibility that a;= 0 is allowed.

Conversely, every number d = p;'p,? - p," turns out to be a divisor
of n. For we can write
_ ki ko kr
n=p, pP" " Pr
T feq— ko~ kr—ay
=(@'py” o) (e P )
=dd’

Withd' = pfl_alpgz_az pf’"_a’" and k; — a; = 0 for each i. Thend’ > 0 and d|n.

Theorem (f y, = p’fl pIch ... pkr is the prime factorization of n > 1, then
(@) t(n) = (ki + D)(ka+ 1) (k- + 1), and
kq+1 ko+1

°1 — °2 —1i ‘kr+1¥1
(b) o(n) = "= == B

Proof: The positive divisors of n are precisely those integers
d = p“pl2...per
=D1 Do y2n
where 0 < a;< k;. There are k1 + 1 choices for the exponent ai; k> + 1 choices for a»,--- ; and k- + 1 choices for a;.
Hence, there are

(a+ Dk + 1) (k+ 1)
possible divisors of 7.
To evaluate a(n), consider the product
(L+pi+pi 4 +pt) L+ p P+ +p57) - (L pr P+ 4 pir)
Each positive divisor of n appears once and only once as a term in the expansion of this product, so that
on)=1+p+pt+---+pf") - Q+p+p2+ - +pF)
Applying the formula for the sum of a finite geometric series to the ith factor on the right-hand side, we get

9 ks plf:i+l_1
L+pit+pi+- 40 =5
It follows that
ki+1_ 4 ko+1_ k1
_p Ip 1 pr 1
U(TL) - 12?1—1 2;02—1 T

Example. The number 180 =22 - 32 5 has
7(180)= (2 + )2+ 1)(1 + 1) =18
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positive divisors. These are integers of the form
2¢1 .34z . §as
where a; = 0,1,2; a, = 0,1,2; and az = 0,1. Specifically, we obtain
1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180
The sum of these integers is -
0(180) = Z=L8=LE-L _ 136U _7.13.6 = 546

2-1 3-1 5-1

Definition. A number-theoretic function fis said to be multiplicative if

Simn) = fim)f(n)

whenever ged(m,n) = 1.
Theorem The functions t and o are both multiplicative functions.

Proof. Let m and n be relatively prime integers. Because the result is trivially true if either m or n is equal to 1,
we may assume thatm > 1 and n > 1. If
m=py'ps?---pfrand n=gl'gp - g
are the prime factorizations of m and n, then because gcd(m,n) = 1, no p; can occur among the g;. It follows that
the prime factorization of the product mn is given by ‘
Appealing to Theorem 5.1.3, we obtain
(mn) = [((ki+ 1) (k+ D]G1+ 1) - (st 1)]
= o(m)z(n)
In a similar fashion, Theorem 5.1.3 gives
o1 pt - 1} 47 -1 g1
p—1 pr—1 ¢ —1 gs — 1
= 7(m)o(n)
Thus, 7 and ¢ are multiplicative functions.

o(mn) =

Lemma. If gcd(m,n) = 1, then the set of positive divisors of mn consists of all products did>, where di|m, do|n and
gcd(dv,d>) = 1, furthermore, these products are all distinct.

Proof. It is harmless to assume that m > 1 andn > 1,m = pflpgz pfrand n= q{lqu q;'s be their
respective prime factorizations. In as much as the primes pi,--* ,prq1,-* ,qs are all distinct, the prime

factorization of mn is
k j j
mn=py'-pray g
Hence, any positive divisor d of mn will be uniquely representable in the form
d=pi*--pirg ¢ 0<a; <k;,0<b; < i

This allows us to write d as d = did>, whereq; = p§* . .. per divides m and

d by ,. divides n. Because no p;is equal to any g;. we surely must have
2=0q ¢
ged(dv,d>) = 1.

Theorem . If fis a multiplicative function and F is defined by
F) =) f(d)

din
then F'is also multiplicative.

Proof. Let m and n be relatively prime positive integers. Then

Fomm) = ) f(d)

dlmn
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= D fldid)

di|lm;dz|n
n as a product of a divisor di of m and a divisor d> of n, where gcd(d1,d>) = 1. By the definition of a multiplicative
function,

fdidz) = fld)f(d>)

It follows that
fldf(dy)

d1|m;d2|n

= > f@d) ) f(d)

d1|m d2|n

Corollary. The functions t and o are multiplicative functions.

Proof. We have mentioned that the constant function f(n) = 1 is multiplicative, as is the identity function f(n) =
n. Because 7 and ¢ may be represented in the form 7(n) = XY 4pn 1 and o(n) = Xgpnd, which are constant
functions and hence are multiplicative.

24 The Greatest Integer Function

Definition . For an arbitrary real number x, we denote by [x] the largest integer less than or equal to x; that is, [x]
is the unique integer satisfying x — 1 < [x] <x.

Theorem. If n is a positive integer and p a prime, then the exponent of the highest power of p that divides n! is
d
> |
k=1 [p
where the series is finite, because [n/p*] = 0 for p* > n.

Proof. Among the first n positive integers, those divisible by p are p,2p,--- ,tp, where t is the largest integer such
that #p < n; in other words, ¢ is the largest integer less than or equal to n/p (which is to say ¢ = [n/p]). Thus, there
are exactly [n/p] multiples of p occurring in the product that defines n!, namely,

n
p'2p7”' ) |:_:|p
b

The exponent of p in the prime factorization of #n! is obtained by adding to the number of integers in Equation
(5.3), the number of integers among 1,2,--- ,n divisible by p?, and then the number divisible by p*, and so on.
Reasoning as in the first paragraph, the integers between 1 and 7 that are divisible by p? are

n
p27 2p27 Ty |:_2:| p2
p
which are [n/p?] in number. Of these, [n/p’] are again divisible by p:
o nl .
p3,2p37 Tt Z? pd

After a finite number of repetitions of this process, we are led to conclude that the total number of times p divides

n!is

>[5

=1 LP g

2

Example. We would like to find the number of zeros with which the decimal representation of 50! terminates. In
determining the number of times 10 enters into the product 50!, it is enough to find the exponents of 2 and 5 in
the prime factorization of 50!, and then to select the smaller figure.
By direct calculation we see that
[50/2] + [50/2%] + [50/2°] + [50/2%] + [50/2°]
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6+3+1=47
Theorem 6.9 tells us that 247 divides 50!, but 2*® does not. Similarly,
[50/5] +[50/52]=10+2=12
and so the highest power of 5 dividing 50! is 12. This means that 50! ends with 12 zeros.

Theorem [f'n and r are positive integers with 1 <r < n, then the binomial coefficient
n n!

r ri(n —r)!
is also an integer.

Proof. The argument rests on the observation that if @ and b are arbitrary real numbers, then [a + b] < [a] + [b].
In particular, for each prime factor p of rl(n — r)!,

AREAC

Adding these inequalities, we obtain
n r (n—r)
> =2 A 2[5

k>1 k>1 k>1
The left-hand side of Equation gives the exponent of the highest power of the prime p that divides n!, whereas
the right-hand side equals the highest power of this prime contained in »!(n — r)!. Hence, p appears in the
numerator of n!/r!(n — r)! at least as many times as it occurs in the denominator. Because this holds true for every
prime divisor of the denominator, »!(n — r)! must divide n!, making n!/r!(n — r)! an integer.

Corollary. For a positive integer r, the product of any r consecutive positive integers is divisible by r!.

Proof. The product of » consecutive positive integers, the largest of which is #, is
nn—-—1n-2)-n—-1r+1)
Now we have
n!
rl(n—r)! r
Because n!/r!(n — r)! is an integer by the theorem, it follows that ! must divide the product n(n — 1)--(n — r +
1), as asserted.

nn—-1)n—-2)m—-r+1)=

Theorem . Let f and F be number-theoretic functions such that

F) = ) f@)
din

Then, for any positive integer N,
N N

> Fm) =0 |7 ]

n=1 k=1

Proof. We begin by noting that

N N
D Fmy=) > fd

n=1 d|n
The strategy is to collect terms with equal values of f{d) in this double sum. For a fixed positive integer k < N,
the term f{k) appears in Pd|, f(d) if and only if & is a divisor of n. (Because each integer has itself as a divisor, the
right-hand side of
Equation (5.7) includes f(k), at least once.) Now, to calculate the number of sums d|n  f(d) in which f{k) occurs
ag, a term, it is sufficient to find the number of integers among 1,2,--- ,N, which are divisible by k. There are
exactly [N/k] of them:

it [
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Thus, for each & such that 1 <k < N, f(k) is a term of the sum Pd), f(d) for [N/k] different positive integers less
than or equal to N. Knowing this, we may rewrite the double sum in Equation (5.7) as

N N N
W WICIN
n=1 dln k=1

and our task is complete.

Corollary If N is a positive integer, then

S ) — z N

n=1
Proof. Noting that 7(n) = Pd), 1, we may writer for /" and take f to be the constant function f{(n) =1 for all .

Corollary. If N is a positive integer, then

éam) z X

Example Consider the case N = 6. The definition of t tells us that
6

D r(n)=14

B%/ above Corollary, n=1
Z[g] = [6] + [3] +[2] + [3/2] + [6/5] + [1]

= 6+3+2+1+1+1
= 14

as it should. In the present case, we also have
6

Z o(n) =33

n=1
and a simple calculation leads to

> n m = 1[6] + 2[3] + 3[2] + 4[3/2] + 5[6/5] + 6[1]
= 16 +23+ 32441+ 51 +61

Definition
Forn > 1, ¢p(n) denotes the number of positive integers not exceeding » and relatively prime to n. The function

¢ (n)is usually called the Euler phi-function (indicator or totient).

Note:

If n is a prime number, then every integer less than # is relatively prime to it; whence, ¢p(n) = n — 1.

Theorem

If p is a prime and k> 0, then ¢(p*) = pk — p*~1 = pk ( 1-— %)
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Proof.
Since p is prime, gcd(n,p¥) = 1if and only if p + n. There are p*~! integers between 1 and p* that are
divisible by p, namely, p, 2p, 3p, ... (p*~1)p. Thus, the set {1, 2,...,p*} contains exactly p* — p¥~lintegers that

are relatively prime to p*, and so by the definition of the phi-function, ¢(p*) = p* — p*~1.

Lemma.

Given integers a, b, ¢, gcd(a, bc) = 1ifand only if gcd(a,b) = 1 and ged(a,c) = 1.

Proof.

Case (i)

Suppose that gcd(a,bc) = 1and letd = gcd(a,b). Then d|a and d|b hence it follows that d|a and d|bc.
This implies that gcd(a, bc) = d, which forces d = 1. Similarly it can be proved that gcd(a,c) = 1.

Case (ii)

Assume that gcd(a,b) = 1 = gcd(a,c) and gcd(a,bc) = dy > 1. Then d; must have a prime divisor p.
Because d; |bc, it follows that p|bc, in consequence, p|b or p|c. If p|b, then (by virtue of the fact that pl a) we
have gcd(a, b) = p, a contradiction. In the same way, the condition p|c leads to the equally false conclusion that

gcd(a,c) = p. Thus, d; = 1 and the lemma is proven.

Theorem.

The Euler phi function is a multiplicative function. i.e., if m and n are two positive integers such that

gcd(m,n) = 1, then p(mn) = p(m)p(n).

Proof.
We know that ¢(1) = 1, hence the result obviously holds if either m or n equals 1. Let us suppose that m > 1

and n > 1. Arranging the integers from 1 to mn in m columns of # integers each, as follows:

1 o) ey m
m+1 (m+1) e(matr)-- 2m
(2m+ 2) (2m + 2) - 2m+r)-- 3m
n—1m+1 n—1m+2 mn=—1m+r-- mn

From the above array of mn elements we have identify numbers that are relatively prime to mn. From the
previous lemma it is the same as the number of integers that are relatively prime to both m and n. We know that,

gcd(gm + r,m) = gcd(r,m), the numbers in the 7" column are relatively prime to m if and only if r itself
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is relatively prime to m. Therefore, only ¢(m) columns contain integers relatively prime to m, and every entry
in the column will be relatively prime to m. Now the entries in the 7 column (where it is assumed that ged(r,
m)=1)arer,m + r,2m+ r,...,(n — 1)m + r. The listed n integers are incongruent to modulo n. For if
any two integers are congruent modulo n ie. km+r=sm+r(modn),0<k<s<n=km=
sm(mod n) = k = s(mod n). Thus, the numbers in the 7z4 column are congruent modulo nto 0, 1, 2, ..., n-
1, in some order. Butif s =t (mod n), then gcd(s,n) = 1ifandonlyif gcd(t,n) = 1. The implication is
that the rth column contains as many integers that are relatively prime to » as does the set {0,1,2,...,n — 1},
namely, ¢(n) integers. Therefore, the total number of entries in the array that are relatively prime to both m and

n is ¢(m )¢(n ). This completes the proof of the theorem.

Theorem.

If the integer n > 1 has the prime factorization = p, pg Zp;c 3. -pf’" ,thenp(n) =n (1 - —) (1 - —) . (1 -

P2
1
>
Proof.

Let us prove this theorem by the method of induction, using induction on r, the number of distinct prime factors

of n. When r = 1, the statement follows from the previous theorem. Since, it is true for r = 1, let us assume it

is true forr = i. i.e., gb('pl pz P3 e p; ) 'Pl Pz Ps ...plf‘i<(1_i)(l—i)---(l—iD

k k ki k; k k ki ki
Forr =i+ 1, ¢(ppyps" p; sy ) = d(pr*pa?ps” 0 )b (pity

1 1 1 1
k; k;
=Py 'Py7Ps" P (1——)<1——)“'<1——_) iy | 1-
P1 P2 pi 1209

Hence, whenever the statement is true for n = i, it is true for n = i + 1 by principle of mathematical induction

the statement is true for all n > 1. This proves the theorem.

Theorem.
Forn>2, ¢(n) is an even integer.
Proof.

Ifn > 2, is prime then ¢p(n) = n — 1 is even. As every prime number greater than 2 is odd. If n is an even

composite number with the prime factorisation n = pf 1p§ Z'p;‘ . 'prrthen p(n) =n (1 - —) (1 — p—) - (1 —
2

pl ) which is even as n is even. If n is odd, then the prime factorization of n involves only the odd prime factors.
-,

Let = 'pf ‘m . Since, Euler’s phi function is multiplicative ¢(n) = gl)(pzc Nep(m) = 'pf “p; — D)p(m). Asp; —

1 is even ¢p(n) is even. This proves the theorem
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Lemma. Letn > 1 and ged(a,n) = 1. If ay, aa, ..., agy) are the positive integers
less than n and relatively prime to n, then

aai,aay, ..., adsm)
are congruent modulo n to ay, aa, . . ., ag») in some order.
Proof. Observe that no two of the integers aay, aaa, . . ., aasy) are congruent modulo

n. For if aa; = aa; (mod n), with 1 <i < j < ¢(n), then the cancellation law yields
a; = aj (modn), and thus a; = a;, a contradiction. Furthermore, because gcd(q; , n) =
1 for all i and gcd(a , n) = 1, the lemma preceding Theorem 7.2 guarantees that each
of the aa; is relatively prime to n.

Fixing on a particular aa;, there exists a unique integer b, where 0 < b < n, for
which aa; = b (mod n). Because

ged(b, n) = ged(aa; ,n) =1

b must be one of the integers ay, az, ..., agm)- All told, this proves that the numbers
aay, aay, ..., aagy) and the numbers ay, a, .. ., ag) are identical (modulo #) in a
certain order.

Theorem ' Euler. If n > 1 and gcd(a , n) = 1, then a®™ = 1 (mod n).

Proof. There is no harm in taking n > 1. Let ay, as, . . ., asm) be the positive integers
less than » that are relatively prime to n. Because gcd(a, n) = 1, it follows from the
lemma that aay, aas, . .., aasm) are congruent, not necessarily in order of appearance,
toay, az, ..., asm). Then

aa) = a}] (mod n)

aa; = a; (mod n)
adgmn) = a(’p(n) (mod n)

where a}, a;, .. ., ay,, are the integers ay, ay, . . ., Ag(ny in some order. On taking the
product of these ¢(n) congruences, we get

(aar)aaz) - - - (aagm)) = ajay - - -at’p(") (mod n)
= ajay - - - agmn) (mod n)
and so
a®™(a;a; - - “Apn)) = A1 - - - Ag(ny (Mod n)

Because gcd(a; , n) = 1 for each i, the lemma preceding Theorem 7.2 implies that
ged(ayaz - - - agmy , n) = 1. Therefore, we may divide both sides of the foregoing
congruence by the common factor a1a; - - - asm), leaving us with

Hence the proof.

1,2,4,5,7,8



Part-A
1 Using Fermat’s theorem, find the prime factorization of 12499.
Show that if n = p{" p¥ ... p* is the prime factorization of n > 1, then the positive

2 divisors of n are precisely the integers d of the form d = p/" p;*--- pi~ where
0<a, <k,.

3 Prove that 7 and o are both multiplicative functions.

4 Prove that for any positive integer » and r, the binomial coefficient "C, is an integer.

Show that, if fand F are number-theoretic functions such that F(n) = Z f(d) then for

dn

N N
any positive integer N, ZF(n) = Zf(k)[%} .
k=1

n=1

Show that, for the integer n > 1 having the prime factorization n = p{' pi* --- p*

T

Part-B

1 State and prove Fermat’s theorem
2 Show that if # is an odd pseudo prime, then M, = 2" — 1 is a larger one.
3 State and prove Wilson’s theorem.
4 If n = p{' pi> --- p is the prime factorization of > 1, then find 7(n), o(n).
5 Prove that the function ¢ is an multiplicative function.

Prove that if » is a positive integer and p a prime, then the exponent of the highest
6 power of p that divides n! is Z{ik} .

k=1

7 State and prove Euler’s theorem.

Prove that for n > 1, the sum of the positive integers less than » and relatively prime to
8

nis %n¢(n)
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Sub-Matrix

A matrix, which is obtained by deleting some rows or
some columns or both of a matrix A, is called a sub-matrix of

A. For example, if

1
A=|5
9
i
5 6
9 10

2 3 4]
6 7 8|, then
10 0 11]
3172 3]
[23
71,16 7|,
6 7
0] [10 O]

matrices of the matrix A.
Particular Case. The matrix A is a sub-matrix of itself.

Minor of a Matrix

If any r rows and any r columns from an m x n matrix A
are retained and the remaining (m - r) rows and (n - r)
columns deleted, then the determinant of the remaining r x 7
sub-matrix of A is called a minor of A of order r. For example,

Let A =

A1 42 N3

7 8
! , etc. are all sub-
0 11

, then

Jd5x4
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(i) The elements a,,, a,,, a,,, a3,, 444, etc. are minors of
A of order 1.

ayy ap| |9 d13| [933 43
] |

(1) The determinants :
dyy Gx| (@21 G23] |43 Qg

d13 A4 )

» etc. are minors of A of order 2.
dsy dsgy
A1 2 43| 191 G2 d3| |92 d3 a4

(i) |ay; a3 ay3),|@41 G4y ag3|s|@3 @33 ayl, etc.

d3) d3p dsz3| |45y dg) Aag3| A5y A5y dsy
are minors of A of order 3.

(1v) > y etc. are

d41 Q4p Q43 Q44| |A5y a5y A5y Asy
minors of A of order 4.

Rank of a Matrix

A natural number r is called the rank of the matrix A if
(i) There exists at least one non-zero minor of order r.

(ii) Every minor of order (r + 1), if any, vanishes.

The rank of the matrix A is denoted by p(A) or rank
(A).

Theorem 1. The rank of a matrix is equal to the rank of
the transposed matrix.

Theorem 2. p(A") = p(A)

Theorem 3. If A is a non-zero column matrix and B is a
non-zero row matrix, then show that p(AB) = 1.
Example 1.
Find the rank of the matrix A, where
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A wi

O T S
_— Ly

.
6
2-

lAl= 6 % 0
p(A) = 3

Example 2.
Find the rank of the matrix A, where
(8 0 0 1]
10 81
0018
0 8 1 8

Solution:

|Al =

_— e 0O

o O = 08
o O O O
O OO0 == -

0 8 1 1 0 8
=810 1 §-1{0 0 1

8 1 8 0 8 1
= 8[8(64 - 1)] - [1(0 - 8)]
= 4032 + 8
= 4040 = 0
p(A) =4

Normal Form

By a finite number of elementary transformations, every
non-zero matrix A of order m x n and rank r (> 0) can be
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reduced to one of the following forms:
1101

r
SRR R R

515G ton]
I

where I, denotes identity matrix of order 7. Each one of these
four forms is called Normal Form or Canonical Form or
Orthogonal Form.

Procedure for Reduction to Normal Form

Let A = [a;] be any matrix of order m x n. Then, we can
get the normal form of the matrix A by subjecting it to a finite
number of elementary transformations in the following manner:

(1) We first interchange a pair of rows (or columns), if
necessary, to obtain a non-zero element (preferably 1) in the
first row and first column of the matrix A.

(2) Divide the first row by this non-zero element, if it is
not 1.

(3) We subtract appropriate multiples of the elements of
the first row from other rows so as to obtain zeroes in the
remainder of the first column.

(4) We subtract appropriate multiples of the elements of
the first column from other columns so as to obtain zeroes in
the remainder of the first row.

(5) We repeat the above four steps starting with the
element in the second row and the second column.

(6) Continue this process down the leading diagonal until
the end of the diagonal is reached or until all the remaining
elements in the matrix are zero.
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Theorem

If A is any m x n matrix of rank r, then there exist non-
singular matrices R and C such that

[, i O
RAC= O jl O
Proof. If A is a matrix of rank r, then it can be transformed

IO
into the form |:—'—4-- by means of elementary transformations.

Since elementary row (or column) operations are equivalent to

pre (or post) multiplication of the corresponding elementary
matrices, therefore, we have the following result:

I, 10
Rp ..... Rz Rl A Cl Cz P th = 6?6
I
where R, R, ... R, C G, .. C_ are elementary matrices

corresponding to the row (or column) elementary
transformations.

Since the elementary matrices are non-singular, therefore,
R g— R, =R
and C, C, ... C. =C
will be non-singular matrices.
I, 1O
RAC=|~—=%==
O i O
L. 0
The matrix |[=-1-2| is of order m x n. This matrix is
O :O

called normal matrix and is denoted by N,. Thus,

N = RAC
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which is of the form

A = PBQ
= B = P1AQ"!
Rank of a Matrix Product

Theorem 1. The rank of the product of two matrices
cannot exceed the rank of either matrix, i.e.

p(AB) < p(A) and p(AB) < p(B)

Proof. Let r,, r,, r be the ranks of the matrices A, B, AB
respectively. We have to show that

r<rpandr<r,

Lemma. If A be an m x n matrix of rank r, then there
exists a non-zero matrix P such that

[

where G is an r x 7 matrix of rank r and O is a zero matrix
of order (m - r) x n.

Now, there exists a non-singular matrix P and a matrix G
of rank r, and r, such that

o

The matrix P, being a product of elementary matrices, is
non-singular.

We have
r = p(AB) = p(PAB)
Also,

G
PAB=[ ]B
O
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has at the most , non-zero rows which arise on multiplying
the r; non-zero rows of G with columns of B so that

p(PAB) < r,
= rsr
= p(AB) < p(A)
Again,
P(AB) = p(AB)’
= p(B'A") < p(B’) = p(B) | as proved above
P(AB) < p(B)
= rsrn
Theorem 2. The rank of a matrix does not alter by pre-

multiplication or post-multiplication with any non-singular
matrix.

Proof. Let A be a matrix of order m x n. Let P be a
singular matrix of order n x n. Then, the product AP exists
and is a m x n matrix. We have to prove that

Rank (AP) = Rank (A)
Let B = AP
Then,
BP! = APP' = Al = A
P! exists since P is non-singular.
Now, B = AP
= Rank (B) = Rank (AP) £ Rank (A)
= Rank (B) € Rank (A)
Also,
A = BP!
= Rank (A) = Rank (BP') € Rank B
| By Theorem 1 above
= Rank (A) < Rank (B)
Rank (A) = Rank (B)
= Rank (A) = Rank (AP)
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Theorem 3. Prove that Rank (AA’) = Rank (A)
Proof. Let B = AA’. Then,
Rank (B) = Rank (AA’)
= Rank (B) < Rank (A)
= A = P'NQ*?
= AB = P'INQOB
- O = PINQO'B | -+ AB = O (given)
= PO = PP‘INQ"IB
= O = NO''B

A is of order m x p, Q is of order p x p and Q°'B is of
order p x n.

NQ™'B = O implies that the first r rows of Q!B must be
zeroes while the remaining (p — r) rows may be arbitrary.
Thus, the rank of Q!B and hence the rank of B cannot exceed

p-r

Hence, the theorem.
Theorem

If A is of order » and rank (n — 1), then prove that adj A
is of rank 1.

Proof. "~ A is of rank (7 - 1).
~. These exists at least one non-zero cofactor and |1A| = 0.

Now,
A(adlA)=|A|I=O | « 1Al = O
Rank of adj A =n = (n - 1) LBy Ib. 5,11

= 1 I'.'p(A)=ﬂ-'-1
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Theorem

Show that the equivalence of matrices is an equivalence
relation.

Proof. Let A and B be any two matices of order m x n
each. If there exist non-singular matrices P and Q such that
A = PBQ, then we say that A is equivalent to B and denote

it by A ~ B.
We see that

1. Reflexivity, For any matrix A of order m x n, there exist
two identity matrices I and I such that

A=1 Al
= A = PAQ
where P=1_,0 =1

So every matrix is equivalent to itself. Hence, the relation
of equivalence is reflexive.

2. Symmetry. For any two m x n matrices A and B, A ~ B
= A = PBQ for some non-singular matricces P and Q.

- P'IAQ'I = B
= B~ A
Hence, the relation of equivalence is commurative.

3. Transitivity. For any three matrices of the same order
m x n,

A~B, B~C= A=PBQ and
B = P,CQ,
where P, Q, P, and Q, are non-singular.
= A = P(P,CQ,)Q
= A = (PP,) C(Q,Q)
= A~ C| - PP, and Q,Q are non-singular

Hence, the relation of equivalence is transitive. Since the
relation of equivalence is reflexive, symmetric and transitive,
therefore, it is an equivalence relation.

Hence, the theorem.
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Example 1. Find the rank of the following matrix using
elementary transformations:

1 2 3
A=|1 4 2

iz & 3!

Solution: We have

(1 2 3]
A=|1 4 2

(2 6 5]
Operating R,,(-1), R,,(-2)

1 2 3]
A~|10 2 -1

0 2 -1]
Operating R4,(-1)

(1 2 3]
A~|0 2 -1

0 0 0|

The single minor of order 3 is zero.

A minor of order 2 is
1 2
=20
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Example 2. Reduce the matrix

'8 1 3 6]
A=|0 3 2 2
-8 -1 -3 4

to normal form and find its rank.
Solution: We have

'8 1 3 6]
A=0 3 2 2

-8 -1 -3 4
Opcr-ating R4,(1) -

(8 1 3 6]
A-|0 3 2 2

0 0 0 10

= A~ [I; O,,]
which is the normal form.
Hence, p(A) = 3

Example 3.
(3 -3 4]

If A=[{2 -3 4|, determine two non-singular
0 -1 1

matrices P and Q such that PAQ = I. Hence, find A~
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Solution: Let us write
A = LAI,

3
=y |2
0

-3 4]
-3 4 |=

-1 -1

o = O
-0 O

C O ==

Operating R,,(-1)

(1 0 0]
2 -3 4

1 -1 0
0 1 0

0 =1 =]

-

0 0 1

Operating R 21(—2)

1 0 0]

0 -1 1

0 -3 4=

(1 -1 0
-2 3 0

0 0

Operating R23{—4]

1
0

0 0] [1

-1 0

1

0

=|-2 3 —4

0 -1 1]

0 0

Operating Cn(l )

[1 0 0
010
0 0 1]

= I=PAQ

P=|-2

(1 -1 0

-2 3 4|A

0 0 1

-

-4| andQ =

-0 O

- O O
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PAQ = I
Pre-multiplying by P-1,
P-1PAQ = P-1I
= JAQ=P |- PP=1]
= AQ = p-l
Post-multiplying by P,
AQP = P-1p
= AQP =1
Pre-multiplying by A-1,
A-TAQP = A
= IQP = A"l
= QP = A’
(1 0 0][1 -1 0
A'=l0 1 0||-2 3 -4
01 1jlo 0 1

Operating R;,(-1)

) - o o 17
1 5
=0 - -=|A
3 3
: S L
[ £ 6 0

= e -

-1 0
3 -4
3 -3
9 9 ]
119 217
11
7 7
1oy

17
0 L
31
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p(A) = 2

and O =

N = N e

=

9 9
119 217
=
7 7
UL IR

17
0 =
31
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Part-A
1 Show that equivalent system of linear equations has exactly the same solutions.
Show that the inverse of an elementary row operation exists and is an elementary row

2 operation of the same type.

3 -1 2
3 If A={2 1 1 |find all the solutions of 4X = 0 by row-reducing 4.

1 -3 0
4 If A is a square matrix of order n, then A is row-equivalent to 7, if and only if the

system of equations 4X = 0 has only the trivial solution.
1 —i

5 Find a row-reduced echelon matrix which is row-equivalentto4 =2 2

i 1+i
Show that the following statements are true for any square matrix 4 and B over F:
6 i) If 4 is invertible then so is 4 and (477)! = 4.
i1) If both 4 and B are invertible, so is 4B and (4B)"' = B4

7 Prove that an elementary matrix is invertible.
8 A square matrix with left and right inverse is invertible.
Part-B

1 Prove that every m x n matrix over the field F is row-equivalent to a row-reduced

matrix.
) Show that every m x n matrix over the field F is row-equivalent to a row-reduced

echelon matrix.
3 Prove that for any 4 and B, n x n matrices over the field F. the B is row-equivalent to

A if and only if B = PA, where P is a product of m x m elementary matrices.

Show that if A is a m x n matrix and m < n, then the homogenous system of linear
4 . .. )

equations AX = 0 has a non-trivial solution.

Prove that if A and B are n x n matrices over the field F, then the following statements
5 are true:

i) A is invertible, so is A and (A7) =A

i1) If A and B are invertible then so is AB and (AB)'=B'A"!.

Prove that the following statements are equivalent for any square matrix:
6 i) A is invertible

ii) A is row-equivalent to the n x n identity matrix.

iii) A 1s a product of elementary matrices.

Show that for an n x n matrix A4, the following are equivalent:
7 i) A is invertible

ii) The homogeneous system AX = 0 has only the trivial solution X = 0.

iii) The system of equations AX = Y has a solution X for each n x 1 matrix Y.

1 2 10
g Let A=|—-1 0 3 5|. Find a row-reduced echelon matrix R which is row-
1 -2 11

equivalent to 4 and an invertible 3 x 3 matrix P such that R = PA.
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Linear Equation

An equation of first degree in # unknowns x,, x,, X3, ..oy
x, is called a linear equation.

Thus,
Ay Xy + @1pXy + A13X3 + e + X, = bl

is a linear equation in » unknowns x,, x,, x;, ..... , x_ with
coefficients a,,, @,,, 4,3, -y 4, and b, as constants.

If b, = 0, then Eq. (6.1) takes the form

A4 Xy + dypXy + Ay3X3 + oo + 4 X = 0

and is called a homogeneous linear equation in # unknowns
x‘, xz, xij sssaey x"-

System of Linear Equations

Consider a system of m linear equations in # unknowns (m
>n, m=mnor m< n) given below:

a11X1 + @3Xy +ay3X3 + e+ a3y, %, = by
Ay Xy + Ax3%; +A33X3 + .t a3,%, = b,
LA R R L L R R e e e R R R R R R R R P lll(}&}

iiiiii AR RS R R LR AR T R AR A R R AR R R R R R R R R R AR L R

mn xl’l

In matrix notation, these equations can be put in the form

where
all alz a13 ..... al”
a3y W33 gy  cesees A2n
TR peess  huans:  weadd,  athbi  ARess
[ Fm1 Gm2 B3 e Apn
X1 b,
X2 b,
X =|x, and B=| :
..x”_ nxl —bﬂjmxl
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The matrix A is called the coefficient matrix. The matrix
X is called the column matrix of » unknowns x,, x,, x;, ...,
i The matrix B is called the column matrix of m constants

b b B

The matrix C = [A : B] obtained by placing the constant
column matrix B to the right of the matrix A is called
augmented matrix. Thus, the matrix

-

a] I a]z a‘la saeEw a]” bl

A1 9 B3 e G b,

C=[A:B]=|..... G s T
_aml A Q3 eeee dy, bm |

is called the augmented matrix.

Any set of values of x,, x,, x5, x, which simultaneously
satisfy the system of equation (A) is called the solution of the
system (A). If the system has one or more solutions, it is called
consistent. If it has no solution, it is called inconsistent. A

consistent system has either one solution or infinitely many
solurions.

Non-singular or Regular System of Linear Equations

If we take m = n in the system of equations (A), then we
have

dyy dpp dpy e Ay

dyy dyy 4dzy . dry
A = [EE R - - - EE R RN - L] - -

aul a nl au 3 esess amr |
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an a2 43 A1
dyy dyy Ay e a,
JA o s e e s e
Ay Gy Gy3 e Ay

IAl is called the determinant of coefficients.

If 1Al # 0, then the system of equations (when m = n) is
called regular. This system has a unique solution given by

e e s e where |A | represents the

A A A Al 1Al ‘

determinant obtained by replacing the i column of |A! by the

column of b’.

This is known as Cramer’s Rule for solving a system of n
linear equation in # unknowns.

Note. If |Al = 0, then Cramer’s Rule fails.

When 1Al # 0, then A-! exists. Hence, pre-multiplying the
matrix equation

AX = B
by A-1, we obtain,
A1 (AX) = A'B
= (A1A)X = A''B
= IX = A'1B
= X =A"B
This gives the solution of the system of n equations in »
unknowns when the system is non-singular (or regular).

Singular System of Linear Equations

If IAl = 0, the system of n equations in # unknowns is
called singular. This case will be dealt with later on.

System of Linear Equations, in General

Consider the system of linear equations (A) as given in
Section 6.2.
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It is simple to see that the rank of the augmented matrix
C cannot be less than the rank of the coefficient matrix A
because every sub-matrix of A is also a sub-matrix of C.

Let p(A) = r. Then, by a suitable sequence of elementary
row operations, the matrix A can be reduced to an equivalent
matrix in which each of the first r elements of the leading
diagonal is 1 and every element below this diagonal and/or
below the 7" row is zero. The matrix, so reduced, is said to
be in Echelon Form.

If the same sequence of elementary operations is performed
on the system of equations (A), then these will be transformed
in the following form:

Y1 +02Y2 +0y3Y3 +eee 0, Y, =By
Y2 +u23y3 o + 0, Y, = ﬂl
Y, tewet Y, =B,
o ...(B)
= Br +1
0=8,,
in which y,, ¥,, ....., ¥, is some permutation of x,, x,, ....., X,.

Also, the coefficient matrix and the augmented matrix of
the system of equations (B) will be equivalent to A and C
respectively.

Now the following cases arise:
Case I. When r = 1, then the system of equations (B) becomes,

Vi Oy +03Y3 e + o,y =B
0= Bl
0=p
()
0=8,,
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In this case, p(C) = 2 or 1, since C has one column more

than A.

When p(C) = 2, B,, B;, ....., B,, cannot all be zero. Hence,
the equations are inconsistent and there will be no solution.

When p(C) = 2, B,, B;, .-..., B, will be all zero and the

system of equations (B) will be equivalent to a single equation

from which y, will be expressible in terms of y,, ¥, ey ¥,

which can have arbitrary values.

Case II. When » = 2, then the system of equations (B)
becomes

Y1+ 0pp¥s + 0g3Y3 + e + 0y, = By |
Y2 + 033 + e + 0, Y, =By
0=p;
0=0,¢ ...(D)
0=,
In this case, p(C) = 3 or 2.
When p(C) = 3, B, B,, -...., B, cannot all be zero. Hence,

the equations are inconsistent and there will be no solution.

But when p(C) = 2, B,, B,, ....., B,, will be all zero and the
equations will be equivalent to two independent equations
from which y, and y, will be expressible in terms of y,, y,,
..... » ¥, which can have arbitrary values.

Similarly, when r = 3, then p(C) must also be 3 in order
that the equations may be consistent and in that case y,, ¥,,
y; will be expressible in terms of y,, vy, ..., ¥, which are
arbitrary.

In general, the necessary and sufficient conditions that the
equations (B) may be consistent is that p(C) = p(A), i.e. if the
coefficient matrix A and the augmented matrix C have the
same rank and if each rank = r, the equations will be
equivalent to r equations from which r unknowns can be
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A system of homogeneous linear equation
AX=0

l

Always has solution, consistent

lFind p(A)
p(A) ={n (number p(A) < nl(number
of unknowns) of unknowns)
Unique Infinite number of
or trivial solution only non-trivial solutions
(Each unknown equation 0)

Check the consistency of the following system of homogeneous equations
X, =2% +x3-x,+1=0

3x1—2x3+3x4+4=0
3, —4x, + x, +3 =0

1 -2 1 -1
Coefficient matrix A= |3 0 -2 3
5 4 0 1
T2 1 -1 -1
Augmented matrix [A:B) = |[° ¢ =% 3 : -4
5 -4 0 1 -3
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Operating R, (-3), R;,(-5)
1 -2 1 -1 : -1]
~10 6 -5 6 : -1
0 6 -5 6 : 2
Operating R;,(-1)
(1 -2 1 -1 : -1]
~[0 6 -5 6 : -1
0 0 0 0 : 3
which is Echelon Form.
Clearly, p(A) = 2

p(B) = 3

p(A) # p(B)

Hence, the given system of equations is inconsistent.

-

Solve the following equations using matrix method:
X, + 3%, + 2%, =0
2%, - x, + 3%, =0
3x;, = 5x, + 4x; = 0
X+ 17x, + 4x;, = 0

Solution: i
1 3 21
2 -1 3
Coefficient matrix A =
3 -5 4
1 17 4

Operating R,(=2), R;,(=3), RM{-I-}
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—

1 3 2]

0 -7 -1

0 -14 -2

0 14 2

Operating R;,(=2), R,,(2)
T 3 2
0 -7 -1

“lo 0 o
0 0 0

which is Echelon Form.
s p(A) = 2 < no. of unknowns

Hence, the given system has infinite number of non-trivial

solutions given by

Xy + 3%, + 2x; =0 . (6.5)
~7x, = x;, =0 ... (6.6)
Let x, = k. Then from Eq. (6.6),

-7k —x, =0
= X3 = -7k

From Eq. (6.5),
x, + 3k -14k = 0
= xl = 1]k

Hence, the required solutions are

X, = 11%
X, = k

solutions thus making the number of solutions infinite.
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Matrix Polynomial

An expression of the form F(A) = A, + AjA + A,A% + ... +
f:m _ M-+ A A" is called a matrix polynomial of degree m
1

(i) Ay A, Ay s A, _ 4, A, all are square matrices of

the same order n (say) and

(i) A, #O.

Such a matrix polynomial is called n-rowed and the
symbol A is called intermediate. A is called the leading
coefficient.

Note: Every square matrix can be expressed as a polynomial
of degree zero because if A is a square matrix, then we can
write

A = A0A
Characteristic Roots and Vectors

1. Characteristic Matrix

The matrix A = Al is known as the characteristic matrix of
A.
2. Characteristic Polynomial

The determinant of the matrix A = Al i.e. |A = All is known
as the characteristic polynomial of A and is denoted by @(A).

3. Characteristic Equation
The equation @(A) = 0, i.e. |A = All = 0 is known as the

characteristic equation (or secular equation) of A.

4. Characteristic Roots

The roots of the characteristic equation of A are called
characteristic roots of A. These are also called as latent roots
or invariant roots or proper roots or eigen values. The set of
characteristic roots of A is called the spectrum of A.
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5. Characteristic Vectors
Let A = A, be any characteristic root of A. Then, we have
(A-ADX = O |

The non-zero vector X which sarisfies the above equation
is called characteristic vector of A corresponding to the
characteristic root A = A,.

6. Characteristic Space
The collection of all X such that AX = AX is called the

characteristic space associated with A.

If A is a square matrix of order », then the adjoint of the
characteristic matrix A — Al can be expressed as a matrix
Lemma polynomial in A of degree n - 1.

Cayley-Hamilton Theorem

Statement. Every square matrix satisfies its own
characteristic equation.

OR

IfIA-All = (-1)" [A" + a A"~ ' + a,)" =% + ... + a,] be the
characteristic polynomial of an # x n matrix A = [a,], then the
matrix equation

X" + JIX""] +..+al=0
is satisfied by X = A, i.e.
A"+ a A"~ 1+ .+al=0

Mo N W
Y B |

|
Verify Cayley-Hamilton theorem for the matrix 4 = |4
1

The characteristic equation of 4 is
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ie.
l.e.

Cayley-Hamilton theorem states that
A®—44*— 204 — 35 1=0

which is to be verified.

1 3 7|t 3 7
Now, A2=|4 2 3||4 2 3|=
2 11 2 1
1 3 7][20 23 23]
A=4-42=|4 2 3|15 22 37
1 2 1[I0 9 14]
Substituting these values in (1), we get,
135 152 232] [80 92 92] [20
L.S.=[140 163 208|—[60 88 148/—|80
60 76 111] |40 36 56| |20
0 0 0
=0 0 0
0 0 0
=R.S.

(1-2)(R-3A—4)-3@4-4L-3)+78-2+1)=0
A =402 —20h—35=0

Thus Cayley-Hamilton theorem is verified. Premultiplying (1) by 4™,
A*—44-201-354""'=0

= 3%(/12 — 44 —201)

20
15
10

23 231 (4 12 28] (20 0O O
22 37|—-|16 8 12(—({0 20 O
9 14| |14 8 4 0 0 20
11 =5
—6 25

1 —10

20 23 23
15 22 37
10 9 14

135 152 232
=140 163 208

60 76 111

60 140 [35 0 0
40 60— 0 35 0
40 20 [0 O 35
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Part-A

If 4 is m x n matrix with entries in the filed F, then show that row —rank(4) = column-
rank(4).

A linear transformation T:P(t)— P(¢) is defined as
T(ao +at+a,t’ ) = (— 1+2¢-2¢ )ao +(-2+3t—2t")a, find the eigenvalues and
eigenvectors of 7.

If A is a characteristic root of 4, then show that A" is a characteristic root of 4.

Let T be a finite-dimensional vector space V and let o be a scalar, the following
statements are equivalent: (i) a is a characteristic value of T (ii) the operator (T — a I)
is invertible (iii) det(T — al)=0

If V' and W are vector spaces over the filed ' and 7 is a linear transformation form V’
into W, show that rank(7) + nullity(7) = dim V.

State and prove Sylvester’s law of nullity.

Show that two similar matrices have the same characteristic polynomial and hence the
same characteristic roots.

Show that the eigenvectors associated with distinct eigenvalues of an n-square matrix
A are linearly independent.

Show that an n™ order matrix 4 with distinct eigenvalues A, 4,,...4, is similar to a

diagonal matrix D with these eigenvalues as diagonal elements.
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Characteristic Roots and Characteristic Vectors
of a Square Matrix

The important notions of the characteristic roots and the characteristic vectors of a Square
matrix over the field of complex numbers will now be introduced.
Def. Any non-zero vector, X is said to be a characteristic vector of a matrix A, if there exists
a number X such thar
AX=)X
Also then ) is said to be a characteristic root of the matrix A corresponding to the
characteristic vector X and vice-versa.
Characteristic roots (vectors) are also often called Proper, Latent or Eigen values (vectors),
Ex. If A, B are two matrices such that
AB =3B
show that cach of non-zero column of B is a characteristic vector of A corresponding to the
characteristic root A.
Note. [t will be found useful to remember that
(i) to a characteristic vector of a matrix cannot correspond two different characteristic roots,

but
(i) to a characteristic root of a matrix can, and will correspond different characteristic vectors,
Thus, if AX = X AX = A, X hy = Ay
then, MX=0,LX = (L,-2)X=0
But X#0Oand (A -A;) #0
and therefore (A =A)X = 0

Thus we have a contradiction and as such we see the truth of the statement (/).
But if AX = AX
then also A(kX) = L(kX)

so that kX is also a characteristic vector of A corresponding to the same characteristic root X.

Thus we have the truth of the statement (if),
Determination of Characteristic Roots and Vectors

If, A, be a characteristic root and, X, a corresponding characteristic vector of a matrix A, then
we have
AX = AX = AIX
= (A-AD)X=0
Since X # O, we deduce that the matrix (A — Al) is singular so that its determinant

|A—=2AIl =0

Every characteristic root A of a matrix A is a root of its characteristic equation
|A —xI| = 0.

Thus, every root of characteristic equation is a characteristic root of the matrix.

Characteristic Subspace of a Matrix
Let A be a characteristic root of an n-rowed square matrix A. Consider the matrix equation
(A-AD)X=0 (1)
cvery non-zero solution of which is a characteristic vector of the matrix A corresponding to the
characteristic root A,

If 7, be the rank of the matrix (A — AI), then the equation (1) possesses a linearly independent
system of (n — r) solutions. Every non-zero linear combination of these solutions, being also a
solution of (1), is a characteristic vector corresponding to A.

The set of all these linear combinations including the zero vector is a subspace of V, (C)
called the characteristic space of the matrix A corresponding to the characteristic root A. Thus
the characteristic space of a matrix A corresponding to a characteristic root ). is just the null
space af the matrix (A — M),
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SOME FUNDAMENTAL THEOREMS
Theorem 1. Corresponding to a characteristic vector X of a square matrix A, there exists
one and only one characteristic root whereas corresponding to a characteristic root there
exists more than one characteristic vectors.
Proof. Let us assume that there exist two distinct characteristic roots A, and A, corresponding
to a given characteristic vector X of a square matrix A. Then, we have
AX =1 X, AX = A, X
On subtracting, we get
(A —A) X =0
Ay~ Ay =0, hence X = 0
This is a contradiction that X is a non-zero vector. Hence corresponding to a characteristic
vector X there is only one characteristic root of the square matrix A. o
Again, if 2. be the characteristic root of A, then corresponding characteristic vector X will

as

be given by —

[.et ¥ be any non-zero scalar, then

k (AX) = k (AX)

A (kX) = A (kX).
Thus. kX is also a characteristic vector of A corresponding to the same charactenistic root A
Theorem 2. The product of the characteristic roots of a square matrix of order n is equal
(Jiwaji, 1999; Bilaspur, 2000; Garhwal, 2000)
, A, be the characteristic roots

L&

to the determinant of the matrix,
Proof. Let A = [a,] be a given square matrix. Let A}, A, .....
of A. If ¢ (1) is the charactenstic function, then

=ED"V+p AT g i+ p,]

=ED"TA A =hy) (-2
On putting A = 0, we have

b =] A=A ARy, =(=1"p,

Theorem 3. For a Square matrix A, A is a characteristic root, if and only if there exists q
non-zero vector X such that AX = )X,
or
The equation AX = )X has a non-trivial solution X if \ is a latent root of A.
_ or
The scalar ) is a characteristic root of the matrix A if and only if the matrix (4 — L) is
singular.
Proof. Let A be a characteristic root of the square matrix A. Then by definition A must satisfy
the characteristic equation of A,
Le., [A—AL|=0
This implies that the matrix A — Al must be singular. Hence, if (A — Al) is singular, then A is
a characteristic root of a matrix. Conversely, if | A — Al | = 0 then for some non-zero vector X,
we have
(A-ADX =0
or AX = AX
which shows that A is a characteristic root of the square matrix A.

Find the Characteristic roots and vectors for each of the following matrices

$ -6 2 6 -2 2 3 10 5

(0 |-6 7 -d (@) | -2 3 -1 () |-2 -3 -4

2 -4 3 2 -1 3 K | 7
2 1 0
vy |0 2 1
0 0 2
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Sol. (1) The cheracteristic equation is
B-x -6 2
0=|A-xl|=|-6 7-x -4 |=-x>+18x*-45x
2 -4 3-x
so that 0. 2, 15 are the three characteristic roots of the matrix.

If 1, v. = be the components of a characteristic vector corresponding to the characteristic root,
0. we have

8 -6 2| x
O=(A-0)X=|-6 7 -4y
2 -4 3|z

— 8r -6y +2:2=0,—6x+Ty—4z=0,2x—-4y+32=0
These equations determine a single linearly independent solution which we may take as
[t 2 27

so that every non-zero multiple of this column vector is a characteristic vector corresponding to
the characteristic root 0.

It may similarly be shown by considering the gquations

(A-3)X=0,(A-15)X=0

that the characteristic vectors corresponding to the characteristic roots 3 and 15 are arbitrary

non-zero multiples of the vectors

2] |2
11,12
-2 1

The subspaces of V4 spanned by these three vectors separately are the three characteristic
spaces,
(iiy The characteristic equation 18
6O~ x 2 2
b= lA=sd]=| =2 3-2 =1 |=-abs12* 365432
2 | 3=z

o that 2, 2, & are the characteristic roots, only two roots being distinet.
Considering (A - 8I) X = O, we may show that we obtain only one linearly independent
solution
2
-1
1

so that ev W : . g gt
. every non-zero multiple of the same is a characteristic vector for the characteristic root

For the characteristic root 2, we have

4 -2 2||=x
O=(A-2DX=[-2 1 -1y
2 -1 1] z

= dx-2+2z=0, - 2x + =
_ . 4 Yy=z=0,2x-y+z=90
which are equivalent to a single equation.
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=I| 11
Thus we obtain two linearly independent solutions which we may take as 01,12
0

2
The subspace of Vy spanned by these two vectors is the characteristic space for the root 2.
(117) The characteristic equation of the matrix is
~+ T - 16+ 12=0
so that the characteristic roots are 252 3

Corresponding to the characteristic root, 3, we find only one linearly independent characteristic

1
vector which may be taken as :
-2
For the repeated root, 2, we have
O0=(A-2IhK

which gives
x+10y+52=0,-2x-5y-4z=0,3x+ 5y + 52=0

These equations determine a single linearly independent solution which we take as

(iv) The characteristic equation is
2-x'=0
so that, 2, is the only distinct characteristic root.
It may be seen that (A - 2I) X = O determines only one linearly independent solution which
1

we may take as

0
a ¢ b
2. l[fa+b+c=0,find the characteristic roots of the matrix A = | ¢ b al
r"J a ¢

(Garbwal, 1996, 200])
Sol. We have the characteristic equation of A
[A=-Al|=0
a=A c b a+b+e-\ (o b
o & b- A a =la+b+e=-A b-2 a

b a - A a+b+c-A a c=-x
On replacing C, by C +C, +C,,
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=l -k b-=-A a [Va+b+ec =0]
- A a c—h
- A ¢ b

=1 0 b-Lk-c c—b

| 0 a-c c—A-b
On operating R, ~R, and R; -R,

= A[(a® +5% +¢? —ab—be—ca) - A\?]

But a+b+c={],£,e.,(a+b+c)2=0
or a2+bz+c2+2ab+2bc+2ca=0
or —(ab +be +ca) = é—(a2+b2+cz)

Characteristic equation becomes

2%[:32+bz+a:2+-;-(az2-4=1E;"'“-4-c"!]—:k2 =0
3.2 .,2, 2. .2
or g A E{a +b" +c*)=-2% =0

112
which gives A=0or A = i[% (a* +b? +cz}:r

3. Find the latent roots and latent vectors of the matrix A =

L T e TR = |
SEC

g

0l

¢

(Avadh, 2003; Kanpur, 2000

Sol. The characteristic equation of the matrix A is given by
|A=-Al|=0

or 0 h-A 0 =0
0 0 c—A

or (a—A)(b-A)(c-%) =10

i.e. A =a, b, e

?

Hence the latent root of the matrix corresponding to A = a will be given by

64|Page



This gives

0 0 c—al|x,

by, + gx, =0
(b-a)x, =0
(c—a)xy =0

On solving these equations, we get
=0,x=0ux= ky (say), ky # 0.
Hence the latent vector corresponding to A, = a will be

x| ky
X = Il = 0’ §
| X3 0

Similarly, latent vector corresponding to A, = b is given by

=

a-b A z X 0

This gives

and

0
0 0 c-b Xy 0

4

(a-b)x; +hx, +gx, =0

On solving these equations, we get

Hence, the latent vector corresponding to the root A = b is given by

(c=b)x, =0
Xy =0and 2L =22
h  (b-a)

Xy }!kz

= k; (say)

X=Ix|=|b-a)k

){3 0

Now, if we take L = ¢, then latent vector is given by

a—c h g X 0

This implies that

0
0

b-¢c O x, | =10
0 c¢-c¢ Xy 0

(a—c)x, +hx, +gxy =0

(b—c)x,

= 0

On solving these equations, we get

43

X
X3 = 0 aﬂd isa = — = kl (Say)

Hence latent vector corresponding to the latent root A; = ¢ is given by

g

(c-a)

gk 3

=l o

(C_ﬂ)k3
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4. Show that a characteristic vector, X, corresponding to the characteristic root, h, of a
matrix A v also a characteristic vector of every matrix [ (A); f(x) being any scalar polynomial,
and the corresponding root for f(A4) is f(N). I general, show that if

) =1L LA =0
then g (X) is a characreristic root of
g =/ () thy

Sol. If AX = AX
then AX = A (AX) = A (AX) = L (AX) = AAX = A%X

Repeating this process & times, we obtain

Arx = ahy

U

FAX

(a,l +:1]A+a2A2 Foovaas +a, A")X = apgX+a A X +..... +a,\"X

=(@+ar+...+a, N")X = f(h)X

so that X is a characteristic vector of the matrix S(A) and f(}) is the corresponding characteristic
root.

Since | f5 (A) | # 0, the matrix f, (A) is non-singular and as such no characteristic root of f; (A)
1s zero. In particular,

LA =#0
for /5 (%) 1s a characteristic root of f; (A). Now
Si(A)X = f(M)X (8)
fLA)X = f, (WX (i)

From (). {f, (M)}7'X = {f(A)}'X

g(A)X = fi(A)[{f, (A} 'X] .. (i) |

LAV, X = (0 A (A X
LN [MX = gMX

Thus X is also a characteristic vector of g (A) with corresponding root g (1).

5. Show that the two matrices A, F~ VAP have the same characteristic roots.
(M.D.U. Rohtak, 2000)

I

Sol. We write

P 'aAP =B

Boxl = P'AP—al = PT'AP-P 'xIP = P~ (A-ADP
— |B—x1|=pp“HA—xl|tP|=|A—x1||p-1Hp|

=|A-x [ PT'P|=|A-al||1]=]A=xl]

Thus the two matrices A and B have the same characteristic determinants and hence the same

characteristic equations and the same characteristic roots.
The same thing may also be seen in another way.

AX = AX

= P-lAX = AP 'X

=N (P 'AP) (P 'X) = A (P 'X) B
'AP and P 'X is a corresponding characteristic vector.
matrices AB and BA have the same

Now

so that % is also a characteristic root of P
6. If A and B are two square matrices, then the
characteristic rools. )
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|
AB=B ' (BA)Bor AB = A (BA) A

so that by the preceding result AB, BA have the same characteristic roots.
We now give a proof which holds in the general case.
If, r, be the rank of A, then there exist two non-singular matrices P and Q such that,

PAQ = Diag. [1,, O]
We have PABP™' = (PAQ)(Q~'BP™ )
Let Q 'mp-! = [Cn C”J
_C2I CIZ
where Ci isrxr.
pagp-! - [+ O][Cu Gy _[€u Cn
0 Of|Cy Cpf [O O
Again Q" 'BAQ = (@ 'BP™') (PAQ)
_PCu Cp([L, © *_Cll g
"€y €p)lo o] T|c, O

Thus the characteristic roots of AB and BA are the same as those of C,, along with (n - r)
roots each equal to 0.

7. Show that the characteristic roots of A® are the conjugates of the characteristic roots

of A.

Sol. We have | A® —2I |- [(A-AD® |= | A-Al|
|A® -l |=0iff |[A-AT|=0
= |A® —AT|=0iff |[A-A|=0

or i is an eigen value of A® if, and only if, X is an eigen value of A.

8. Show that the characteristic roots of a triangular matrix are Just the diagonal elements
of the matrix. (Jabalpur, 2001)
Sol. Let

a4y .. aln

0 A3y oo Ay,

b = e @ =Y g -2 ey, D)

fn

0 0 e Wy =R

Hence the characteristic roots of A are ), ay, ....., a,, which are just the diagonal elements

of A.
9. If A is non-singular, prove that the eigen values of A~ are the reciprocals of the eigen
values of A. (Jabalpur, 1998; Sagar, 1999; Vikram, 1998, 2000;
Indore, 1999; Rewa, 2000)
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Sol. Let A be an eigen value of A and X be a corresponding eigen vector. Then

AX =X = X =4a"10X = AA'A)
U .
= I}L = AKX [ A is non-singular = A # 0]
= AN = _lx
A

| .
- 3 1§ an eigen value of A™' and X is a corresponding eigen vector.

Conversely, suppose that & is an eigen value of A~ ', Since A is non-singular = A~
non-singular and (A 7)" " = A, thﬁnﬂmc it follows from the first part that 1/k is an eigen value
of A. Thus each eigen value of A" ' is equal to the reciprocal of some eigen value of A.

Al

10. It @ is a characteristic root of a non-singular matrix A, then prove that 141 is a
a

characteristic root of adj. A. (Jiwayi, 2000; Rewa, 1999; Vikram, 1999, 2007)
Sol. ISu;cc o is a characteristic root of a non-singular matrix, therefore o # 0. Also « is a
characteristic root of A implies that there exists a non-zero vector X such that
AX =aX

= (adj. A) (AX) = (adj. A) (aX)

= [(adj. A)A]X = a(ad]. A)X

= | A |IX = a(adj. A)X [ (adj. A)A = | A |I]
=% | A|X = a(ad. A)X

=5 i—'ﬂ}( = (adj. A) X

= (adj. A) X = I—:—JX

A 3 1 :
|4 | is a characteristic root of the matrix adj. A.

Since X is a non-zero vector, therefore

s Aoy are n eigen values of a square matrix A of order n then the
2

11. Show that Efllﬁ ?"Z’
(Jabalpur, 1999, Rewa, 1994)

eigen values of the matrix A? be }t, T
Sol. We know that if A be the eigen value of a square matrix A, then there exists a non-zero

vector X such that

AX = AX
= A (AX) = A (AX)
= AZX = M(AX) = L(AX) = A*X

Alx = A2X

e

= Eigen value of A? is A
Similarly if A, Ag, v ., A, are eigen values of A then J’\., ; lz v Py % are eigen values of AL

12. Show that the dmrm.renmc roots of an idempotent matrix are either zero or unity.

Sol. Since A is an idempotent matrix, hence

Al = A
Let X be a latent vector of the matrix A corresponding to the latent root A so that,
AX = AX )
or (A-AD)X =

such that X # 0
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On pre-multiplying (i) by A, we get -
A (AX) = A (AX) = A (AX)

ie. (AA)X = A (AX)
or AX = A*X

o AX = A%X

ot A -)X=0

or AV -r=0

or A(A=1) =0

or A=0A=1

NATURE OF THE CHARACTERISTIC ROOTS OF SOME SPECIAL TYPES OF MATRICES

Theorem 1. The characteristic roots of a Hermitian matrices are all real.

Let, A, be a characteristic root of a Hermitian matrix A so that there exists a vector X # O,

such that
AX = AX
Pre-multiplying with X®, we obtain
XPAX = XOX = AX® = AXO1X

Being the values of Hermitian forms, X®AX and X®IX are both real. (§ 9.1, p. ?777). Also X?X

0, for X 2 0. Thus
A= XOAX/XOrX

is real.
. Cnr._ l The characteristic roots of a real symmetric matrix are all real, for every such matrix
is Hermitian. (Ravishankar, 1997)

An independent proof can, of course, be given exactly along the lines of the proof above.

Cor. 11. A characteristic root of a skew-Hermitian matrix is either zero or a pure imaginary
number. (M.D.U. Rohtak, 1998, 2000)

If A be a skew-Hermitian matrix and
AX =X
then (A)X=(\) X
But 7A is Hermitian and, as such, 7}, a characteristic root of iA, is real. Thus either & = 0
or is a pure imaginary number.
Cor. III. 4 characteristic root of real skew matrix is either zero or a pure imaginary number,
‘or every such matrix is skew-Hermitian,

Also the imaginary characteristic roots occur in conjugate pairs, for the coefficients of the
‘haracteristic equation of a real matrix are all real,

Theorem 2. The modulus of such characteristic root of a unitary matrix is unity.
(Bilaspur, 1998; Jabalpur, 1996, 98; Vikram, 1999,
Sagar, 2001; M.D.U. Rohtak, 1996, 98, 2000)
[f A is a unitary matrix and
AX =X
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hen on taking conjugate transpose of each side, we have

X@A° = A x°
These give X9A9AX = AAXOX
As A is unitary,
e, APA =1
ve obtain
xOA = M XX
= (1-XA) X°X =0
Now X220 = XX =0
Hence -A =0 = AL =1

So that the modulus of A is unity.
Cor. The modulus of each characteristic root of an orthogonal matrix is unity, for every such matrix
is unitary.
11.3.1. Algebraic and Geometric Multiplicity of a Characteristic Root
If, 3, be a r-ple root of the characteristic equation
|A=xI|=0
then, 1, is called the Algebraic multiplicity of & and the dimension, s, of the characteristic space
of A corresponding to A, i.e., the number of linearly independent solutions of
(A-A)X=0
is called the Geometric multiplicity of A.
Ex. 1. The characteristic roots of a diagonal matrix are the same as its diagonal elements.
Ex. 2. Zero and unity are the characteristic roots of algebraic multiplicity # of O, and

respectively.
Ex. 3. Point out the algebraic and geometric multiplicities of each characteristic roots of each

of the matrices in Q. 1, and observe that for every characteristic root :
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7 Eigenvalues and Eigenvectors

7.1 Introduction

The simplest of matrices are the diagonal ones. Thus a linear map will be also easy to
handle if its associated matrix is a diagonal matrix. Then again we have seen that the
matrix associated depends upon the choice of the bases to some extent. This naturally leads
us to the problem of investigating the existence and construction of a suitable basis with
respect to which the matrix associated to a given linear transformation is diagonal.

Definition 7.1 A n x n matriz A is called diagonalizable if there exists an invertible n x n
matric M such that M—*AM is a diagonal matriz. A linear map [ : V. — V is called

diagonalizable if the matriz associated to [ with respect to some basis is diagonal.

Remark 7.1

(i) Clearly, [ is diagonalizable iff the matriz associated to f with respect to some basis (any
basis) is diagonalizable.

(i) Let {vy,...,v,} be a basis. The matriz My of a linear transformation f w.r.t. this basis
is diagonal iff f(vi) = Nivy, 1 < i < n for some scalars A;. Naturally a subquestion here is:

does there exist such a basis for a given linear transformation?

Definition 7.2 Given a linear map f :V — V we say v € V s an eigenvector for f if
v # 0 and f(v) = Av for some A € K. In that case A is called as eigenvalue of f. For a
square matriz A we say A is an eigenvalue if there exists a non zero column vector v such
that Av = Av. Of course v is then called the eigenvector of A corresponding to A.

Remark 7.2

(i) It is easy to see that eigenvalues and eigenvectors of a linear transformation are same as
those of the associated matrix.

(i) Even if a linear map is not diagonalizable, the existence of eigenvectors and eigenvalues
itself throws some light on the nature of the linear map. Thus the study of eigenvalues becomes
extremely important. They arise naturally in the study of differential equations. Here we shall
use them to address the problem of diagonalization and then see some geometric applications

of diagonalization itself.

7.2 Characteristic Polynomial

Proposition 7.1
(1) Eigenvalues of a square matriz A are solutions of the equation

xa(A) =det (A —AI)=0.
(2)The null space of A — A is equal to the eigenspace
EsA):={v : Av=2Av}=N(A-X).

Proof: (1) If v is an eigenvector of A then v # 0 and Av = Av for some scalar A. Hence
(A— A)v = 0. Thus the nullity of A — A is positive. Hence rank(A — AI) is less than n.
Hence det (A — AI) = 0.

(2) EaN) ={veV : Av=xv}={veV : (A= A)v=0} =N(A-AI). &
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Definition 7.3 For any square malriz A, the polynomial y 42(A) = det (A - AD) in A is called
ihe characteristic polynomial of A.

Example 7.1
2
{1} A= [ :1} ; :| . To find the eigenvalues of A, we solve the equation

det (A — M) = det [1;"‘ 1:]={1-;&L)(3—A}=:}.

Henee the eigenvalues of A are 1 and 3. Lef ws caleulate the cigenspaces E(1) and E{3). By
definition
El)={v|{A=-DNv=0} and E(3) ={v|[(A-3)v =0}

v ¥ . 3
A=-1T= [E: j:| Henee () € E(1) Iﬁ[i: §:| [:,r] = [;i] = [::] Henee

E(1) = L{{1.0)}.

o [1=8 2 . [-2 2 —2 27 [=]_[u
"1_‘”‘[ 0 :-:—:5]‘[ 0 u]'S”’i’P‘“"[ 0 [:] [y]‘[n]'

~2r + 2y 0 ey T .
Then q =1al This is possible iff x = y. Thus E(3) = L{{(1,1}}).
|' 300 'I
(8 Let A=} =2 4 2 ). Thendet (A= AJ)= (3= A)*(6- ).
[ -2 1 5
Henee eigenvalues of A are 3 and 6. The eigenvalue N = 3 iz o double root of the charac-

tevistic polynomial of A, We say that A = 3 has algebraic multiplicity 2. Lef ws find ihe
eigenispoces (3] and EiG).
0 00
A=3:A=-3=3 -2 1 2 ;. Henece ronk(A—=3I) =1. Thus nullity (A-31)=2. By
=2 1 2
solving the system (A — 3w =0, we find that

N(A=31 = Ea(3) = L{{{1,0,1}, {1, 2,0} }).

The dimension of Ea(A) is called the geometric multiplicity of A. Hence geometric maul-
tiplicity of A= 3 is 2.

-3 [ L
A=G: A—-6f=| -2 =2 2. Hencerank{A —6]) = 2. Thus dim E4(6) = 1. {1t
|-2 1 -1

can be shown that {{0.1,1)} iés a basis of Ey(G).) Thus both the algebroic and geometric
multiplicities of the eigenvalue G are equal fo 1.

(4 A=

[IJ i ] . Then det (A — M) = (1 = A, Thus A = 1 has algebraic multiplicity
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i [ E: [1] e R L = e Bl = Tl B e e v

gecmetric multiplicity is less than the algebraic multiplicity of the eigenvalue 1.

Remark 7.3

(i) Observe that y4(A) = yar-rvanelA). Thus the charaeteristic polynomial is an invariant
af similarity. Thus the characteristic polynomial of any linear map f -V — V is also
defived fwhere V' is finite dimensional) Iy choosing some basis for V, and then faking the
characteristic polynemial of the associated matric M f) of f. This definition does not depend
upen the choice of the basis.

i) If we expand det (A — AI) we see that there is a term

TR | (TR S R LY

This is the only term which contributes to X* and A""'. It follows that the degree of the
characteristic polynomial s exactly equal to n, the size of the matriz; moreover, the coefficient
af the top degree term is equal to (—1)". Thus in general, it hos n compler roots, some of
which may be repeated, some of them veal, and so on. All these patierns are going to influence
the geometry of the linear map.

(igi} If A is @ real matriz then of course x4(A) is a real polynomial. That however, does
not allow ws to conclude that it has real roots. So while discussing eigenvalues we should
consider even a real matric as a complex matriz and keep in mind the associafed linear
map C" — C". The problem of existence of real eigenvalues and real eigenvectors will be
discussed soon.

fiv] Next, the above observation alse shows that the coefficient of A7 is equal to

['_1}-“'1[-&“ e AL rI,u_u] = [-_1:'“.“]1!' .."1..

Lemma 7.1 Suppose A is a real matrix with a real cigenvalue A, Then there exists a real
column vector v # ) such that Av = Av.

Proof: Start with Aw = Aw where w is a non zero column vector with complex entries.
Write w = v + o' where both v, v* are real vectors. We then have

Av + edv' = Mv + w')

Compare the real and imaginary parts. Since w # 0, at least one of the two v, v' must be a
non gero vector and we are done. [

Proposition 7.2 Let A be an n = n matriz with eigenvalues Ay, Ag, oo A, Then
{ijtr(A)=A+Xda+...+ M-
(i) det A = Mg ... Ay

Proof: The characteristic polynomial of A iz

ajp— A ap o ay,

LT figg — A - (g,

det (A— AT} = det ‘
(] (o3 e gy — A
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7.4 Eigenvalues of Special Matrices

In this section we discuss eigenvalues of special matrices. We will work in the r-dimensional
complex vector space T If u = (wy, v, ..., u,)" and v = (v, va,...,1,)" € C", we have
defined their inner product in C" by

{n, v) = u'v = Wy + gty + -+ ey

The length of u is given by ||ju|| = -,r.'";u.F + e 2]

Definition 7.6 Let A be o square molrie writh r_'r?:.upn!er}: eidries. A s called
{i) Hermitian if 4 = A"
{ii) Skew Hermitian if A = —A*.

Lemma 7.2 A is Hermition éﬂ' fr}r‘ all column vectors v, w we have
(Av)'w =v'Aw; ie, ({Av, w) = (v, Aw)) (52)

Proof: If A is Hermitian then (Av)*w = v A*w = v Aw. To see the converse, take v, w to
b standard basic column veetors. s

Remark 7.5

(i} If A is real then A = A* means A = A" Henee real symmetric matrices arve Hermitian.
Likewise a real skew Hermifion matriz is shew symmetric.

{ii) A is Hermitian iff 1A is skew Hermitian.

Proposition 7.7 Let A be an n x n Hermitian matrie. Then :
I. For any u € T u* Au s a real nmber
20 All sigenvalues of A are real.

3. Eigenvectors of a Hermitian matric corresponding to distinet eigenvalees are mutually
orthegonal.

Proof: (1) Since u*Au is a complex mumber, to prove it is real, we prove that (u*Au)* =
u*Au. But (u*Au)* = u*A*(u*)* = u* Au. Hence u” Au is real for all u € C°.
(2} Suppose A is an eigenvalue of A and u is an eigenvector for A, Then

u“Au = u*{Au) = Alu*u) :}1.|§u|;2.

Since u*Au is real and ||uf| is a nonzero real mumber, it follows that A is real
(3) Let A and g be two distinet eigenvalues of A and v and v be corresponding eigenvee-
tors. Then Au = Au and Av = pv. Henee

Autv = (Aa)'v = (Au)*'v = u*{Av) = u'uv = p(u'v).

Henee (A — pu*v = 0. Since A # u, u*v =1L "

74|Page



Corollary 7.1 Lef A be an n = 0 shew Hermitian matrie. Then :
1. For anyu € T u*Au is either zero or o purely imaginary number,
2. Each eigenvalue of A is either zero or a purely imaginary nember,

3. Bigenvectors of A corresponding to distinet eigenvalues are mubually orthogonal.

Proof: All this follow straight way from the corresponding statement about Hermitian
matrix, onee we note that A is skew Hermitian implies 04 is Hermitian and the fact that a
complex mumber ¢ is real iff i i3 either zero or purely imaginary.

Definition 7.7 Let A be a squoare matriz over ©. A is called
(i) unitary f A*A =1,
fii) orthogonal if A is real end unitary.

Thus a real matrix A is orthogonal iff AT = A-'. Also observe that A is unitary iff AT is
unitary iff A is unitary.

Example 7.2 The mairices

sin
cos i

;| cosd
s [ — sin#

are orfhogoinal and unitary respectively.

] and V=

Proposition 7.8 Let A e a square matriz. Then fhe following conditions ave equivalent.
(i) 17 s wnitary.

(i) The rows af U form an orthorormal set of vectors.

(i) The columns of U7 form an orthonermal sel of vectors.

(i) U preserves the inner product, {6, for all veclors X,y € T, we kave {Ux, Uy} = {x, ¥}

Proof: Write the matrix {7 column-wise :

uj
ut
o [Ll 11 1 ] T [ 2
4 = LY E- R, | ) 20 that B — .
I'.I.ll J
Henee
T
u’ ]
u*
2
Im"ir = : ['|_|_J Uy ... ultl
-
L ul\l
ujug U i, 'I
(VAT FI TR VT i,
- - -
L Ugily W,y L, Ly,
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Thus U*U =T iff upn; =0 for i # j and wfu; =1 fori =1,2,.. ., niff the column vectors
of U7 form an orthonormal set. This proves (i) <= (i), Since U0 = T implies U0 = 1,
the proof of (§] == (it) follows.

To prove (i) <= (iv] let I be unitary. Then ™07 = Id and henee (Ux, Uy) = (x, U50y) =
{2, ¥}). Conversely, iff I/ preserves inner product take x = e; and y = e; to get

(U U)e, = eje; = &

where & are Kronecker symbols (d; = 1if i = j; = 0 otherwise.) This means the (i, j)*
entry of LU is d;;. Hence U = 1, i

Remark 7.6 Chserve that the above theorem is valid for an orthogonal matvic also by merely
applying it for a real matriz.

Corollary 7.2 Let U be o unitery matriz. Then :
(1) For allx, y € C", (Ux, Uy) = {x, y}. Henee ||Ux|| = ||x||.
{2) If A is an eigenvalue of U then |A| = 1.
(7)) Eigenvectors corresponding to different eigenvalues ave orthogonal.

Proof: (1) We have, |Ux|* = {I'x, Ux) = {x, x) = ||x||*.

(2) If A is an eigenvalue of [7 with eigenvector x then ['x = Ax. Henee ||x|| =
Henee |A] = 1.

(3) Let Ux = Ax and Uy = py where x, y are cigenvectors with distinet eigenvalues A and

Ux| = |l |l

o respectively. Then
{x, ¥} = {Ux, Uy} = {dxt, py) = Rplx, ¥

Henece R = 1 or {x, y} = 0. Since XA = 1, we cannot have Xu = 1. Hence {x, y} = 0, i.c., x
and y are orthogonal. [ ]
cosl —sind

E le 7.3 17 =
xamp [ sinf? cosd

mial af U7 is :

] is an orthogonal matriz.  The characteristic polyno-

rosfl — A —sinf

DA} = det (L7 = M) = det, [ sind cosf — A

] =A = 2Acosf + 1.
Roots of D{A) =0 are :

s 2eosfl £ ».,-*4:::;555 -4
i z

= cosf +asind = 7,

Henee || = 1. Check that eigenvectors are -

fﬂ:"h:f:"gzj‘z [ _11] mz:ifm‘l:r:""":yz [ : ]

1 ;

Thus x*y = [1 1] [ } =14 = 0. Henee x L y. Normalize the eigenvectors X and y.
i

Therefore if we take,

then C-UC = D(e?, e™).
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Part-A
Show that the eigenvalues of a Hermitian matrix are real and of skew-Hermitian matrix

! are purely imaginary.

) Show that if a is a eigenvalue of a unitary matrix U, then (i) o' is an eigenvalue of U
and (ii) Every eigenvalue of U has unit modulus.

3 Show that eigenvectors associated with distinct eigenvectors of a Hermitian matrix are
orthogonal.

4 Show that a normal matric is unitarily similar to a diagonal matrix.

Part-B

1 Show that every Hermitian matrix H is unitarily similar to a diagonal matrix whose
diagonal elements are the eigenvalues of H.

) Show that if a is an eigenvalue of multiplicity m of a Hermitian matrix H, then the
number of linearly independent eigenvectors associated with o is m.

3 Show that if a is an eigenvalue of Hermitian matrix H of multiplicity m, then there
exists m orthogonal vectors associated with a.

4 Show that a Hermitian matrix H of order n possesses an orthogonal set of n
eigenvectors.
Prove that if A and B are two Hermitian matrices of the same order » with A having

5 positive eigenvalues, then there exists an z x n non-singular matrix P such that P*AP
= I, P"BP=diag(ci, c2,... cn) Where c;’s are real.

6 State and prove Cayley-Hamilton theorem.
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