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UNIT-I Topological Spaces and Continuous Functions

The concept oftopological space grew out of the study of the real line and Euclidean space and the study
of continuous functions on lese spaces. In this chapter, we de- fine what a topological space is, and we
study a number of ways of constructing a topology on a set X to make it into a topological space. We
also consider some of the elementary concept associated with topological spaces. Openand closed sets,
limit points, and continuous functions are introduced as natural generalizations of the corresponding ideas
for the real line and Euclidean space.

Topological Spaces

The definition of a topological space that is now standard was a long time in being formulated. Various
mathematicians—Frochet, Hausdorff, and others—proposed different definitions over a period of years
durng the first decades of the twentieth century, but it took quite a while before mathematicians settled
on the one that most suitable. They wanted, of course, a definition that was as broad as possible, so
that it would include as special cases all the various examples that were useful in mathematics—
Euclidean space, infinite-dimensional Euclidean space, and function spaces among the but they also
wanted the definition to be narrow enough that the standard theorems about these family of spaces would
hold for topological spaces in

general. This is always the problem when one is trying to fomulate a new mathe- matical concept, to
decide how general its definition should be. The detinitioi finally settled on may seem a bit abstract, but
as you work through the various ways of con- sFucting topological spaces, you will get a better feeling
for what the concept means.

Definition. A topology on a set X is a collection f of subsets of X having the
following properties:

() Xand©@ arein J .

(2) The union of the elements of any subcollection of Jisin J .

(3) The intersection of the elements of any finite subcollection of Jisin J .
A set X for which a topology J has been specified is called a topological space.

EXAMPLE 1 Let X be a three-clement set, X = {q, b, ¢c}. There are many possible topologies
on X, some of which are indicated schematically in Figure 12.1. The diagram in the upper right-
hand comer indicates the topology in which the open sets are X, B, {q, b}, {b}, and {b, ¢} The



topology in the upper left-hand comer contains only X and B, while the topology in the lower
right-hand comer contains every subset of X. Youcan get other topologies on X by permuting a,
b, andr

From this example, you can see that even a three-element set has many different topologies.
But not every collection of subsets of X is a topology on X Neither of the collections indicated
in Figure 12 2 is a topology, for instance.
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Figure 12.2

EXAMPLE 2. If X is any set, the collection of all subsets of X is a topology on X, it is
called the discrete topology The collection consisting of X and @ only is also a topology
on X; we shall call it the indiscrete topology, or the trivial topology

EXAMPLE 3. Let X bea set; let 7 be the collection of all subsets U of X such that X —U
either is finite or is all of X Then 77 is a topology on X, called the finite complement
topology. Both X and @ are in 77, since X — X is finite and X — @ isall of X If {Uy} is
an indexed family of nonempty elements of 7, to show that | J U, is in 7, we compute

X-|JUq =ﬂ(x —U,).

The latter set is finite because each set X — Uy is finite If Uy, , U, are nonempty
elements of 7, to show that (1 U, is in 7, we compute

X—ﬁU, =O(X - Up).
i=l =1

The latter set is a finite union of finite sets and, therefore, finite

EXAMPLE 4 Let X be a set; let 7, be the collection of all subsets U of X such that
X — U either is countable or is all of X. Then T is a topology on X, as you can check

Definition. Suppose that 7 and 7’ are two topologies on a givenset X. If 7/ O 7T,
we say that 7' is finer than T; if T’ properly contains 7, we say that 7' is strictly
finer than 7. We also say that T is coarser than 7', or strictly coarser, in these two
respective situations. We say 7 is comparable with T' if either 7' D T or 7 D 7.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12 1 preced-
ing, the topology 1n the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology 1s sometimes used for this concept. If 7' O 7, some math-
ematicians would say that 7' is larger than 7, and 7 is smaller than 7. This is
certainly acceptable terminology, if not as vivid as the words *finer” and “‘coarser.”
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Many mathematicians use the words “weaker” and “stronger” in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that 7' is stronger
than 7 if 7' O T, while others (particularly topologists) are apt to say that 7' is
weaker than 7 in the same situation! If you run across the terms *strong topology”
or “weak topology” in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection 7 of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that
(1) Foreach x € X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements By and B;, then there is a
basis element B3 containing x such that B3 C B; N B;.
If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open 1n X (that is, to be an element of 77) if for
each x € U, there is a basis element B € B such that x € B and B C U. Note that
each basis element is itself an element of 7.

We will check shortly that the collection 7 1s indeed a topology on X. But first let
us consider some examples.

EXAMPLE | Let B be the collection of all circular regions (intenors of circles) in the
plane. Then B satisfies both conditions for a basis The second condition is illustrated in
Figure 13 1. In the topology generated by B, a subset U of the plane is open if every x
in U lies in some circular region contained in U

xe

Figure 13.1 Figure 13.2
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EXAMPLE 2. Let B’ be the collection of all rectangular regions (internors of rectangles)
in the plane, where the rectangles have sides parallel to the coordinate axes Then B’
satisfies both conditions for a basis. The second condition is illustrated in Figure 13 2; in
this case, the condition is trivial, because the intersection of any two basis elements is itself
a basis element (or empty) As we shall see later, the basis B’ generates the same topology
on the plane as the basis 8 given in the preceding example

EXAMPLE 3 If X is any set, the collection of all one-point subsets of X is a basis for
the discrete topology on X

Let us check now that the collection 7 generated by the basis B 1s, in fact, a
topology on X. If U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in T, since for each x € X there 1s some basis element
B containing x and contained in X Now let us take an indexed family {Ug}qey, of
elements of 7 and show that

U=|JU.

belongs to 7. Given x € U, there is an index a such that x € U,. Since U, is open,
there 1s a basis element B suchthat x € B C Uy. Thenx € Band B C U, so that U
is open, by definition.

Now let us take two elements U; and U; of 7 and show that U NU; belongs to 7.
Given x € U,NU,, choose a basis element B; containing x such that By C U, ; choose
also a basis element B; containing x such that B, C U;. The second condition for a
basis enables us to choose a basis element B3 containing x such that B3 C B) N B,.
See Figure 13.3. Then x € B3 and B3 C U N Uy, so U N U, belongs to 7, by
definition.

Figure 13.3

Finally, we show by induction that any finite intersection U1 N- - -N U, of elements
of 7 is in 7. This fact is trivial for n = I; we suppose it true for n — 1 and prove it
for n. Now

N - NU)=WN---0U,))NU,
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By hypothesis, Uy N - -NU,_, belongs to T by the result just proved, the inter-
sectionof Uy N ---NUy—; and U, also belongs to

Thus we have checked that collection of open sets generated by a basis B 1is, in
fact, a topology.

Another way of describing the topology generated by a basis 1s given in the fol-
lowing lemma:

Lemma 13.1. Let X be a set; let B be a basis for a topology 7 on X. Then T equals
the collection of all unions of elements of B.

Proof. Given a collection of elements of B, they are also elements of 7. Because T
is a topology, their union is in 7. Conversely, given U € T, choose for each x € U
an element B, of B suchthatx € B, C U. Then U = Uer By, so U equals a union
of elements of B. u

This lemma states that every open set U in X can be expressed as a union of
basis elements. This expression for U is not, however, unique. Thus the use of the
term “basis” in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology
it generates. Sometimes we need to go in the reverse direction, from a topology to a
basis generating it. Here is one way of obtaining a basis for a given topology; we shall
use it frequently.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x € C C U. Then C is a basis for the topology of X.

Proof. We must show that C is a basis. The first condition for a basis is easy: Given
x € X, since X is itself an open set, there is by hypothesis an element C of C such
that x € C C X. To check the second condition, let x belong to Cy N C,, where C
and C; are elements of C. Since C; and C, are open, so is Cy N C,. Therefore, there
exists by hypothesis an element C3 in C such thatx € C3 C C| N Cs.

Let 7 be the collection of open sets of X; we must show that the topology 7’
generated by C equals the topology 7. First, note that if U belongs to 7 and if x € U,
then there is by hypothesis an element C of C such that x € C C U. It follows that U
belongs to the topology 7', by definition. Conversely, if W belongs to the topology 7
then W equals a union of elements of C, by the preceding lemma. Since each element
of C belongs to 7 and T is a topology, W also belongs to 7. ]

When topologies are given by bases, it is useful to have a criterion in terms of the
bases for determining whether one topology is finer than another. One such criterion
is the following.
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Lemma 13.3. Let B and B’ be bases for the topologies T and T', respectively, on
X. Then the following are equivalent:
(1) 7' is finer than T .
(2) For each x € X and each basis element B € B containing x, there is a basis
element B’ ¢ B’ such thatx € B’ C B.

Proof. (2) = (1). Given an element U of 7, we wish to show that U € 7'. Let
x € U. Since B generates 7, there is an element B € B suchthat x € B C U.
Condition (2) tells us there exists an element B’ € B’ such that x € B’ ¢ B. Then
x € BB CcU,soU € 7', by definition.

(1) = (2). We are given x € X and B € B, withx € B. Now B belongs to 7
by definition and 7 C 7’ by condition (1); therefore, B € 7' Since 7’ is generated
by B’, there is an element B’ € B’ such that x € B’ C B. u

Some students find this condition hard to remember. “Which way does the inclu-
sion go?” they ask. It may be easier to remember if you recall the analogy between
a topological space and a truckload full of gravel. Think of the pebbles as the basis
elements of the topology; after the pebbles are smashed to dust, the dust particles are
the basis elements of the new topology. The new topology is finer than the old one,
and each dust particle was contained inside a pebble, as the criterion states.

EXAMPLE 4.  One can now see that the collection B of all circular regions in the plane
generates the same topology as the collection B’ of all rectangular regions, Figure 13 4
illustrates the proof We shall treat this example more formally when we study metnc

spaces

Ok ;

Figure 13.4

We now define three topologies on the real line R, all of which are of interest.

Definition. If B is the collection of all open intervals in the real line,
(a,b)={x]a < x < b},

the topology generated by 3B is called the standard topology on the real line. Whenever
we consider R, we shall suppose it is given this topology unless we specifically state
otherwise. If B’ is the collection of all half-open intervals of the form

[a,b) =(x|a <x < b},
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where a < b, the topology generated by B’ is called the lower limit topology on R.
When R is given the lower limit topology, we denote it by R, . Finally let K denote the
set of all numbers of the form 1/n, forn € Z, and let B” be the collection of all open
intervals (a, b), along with all sets of the form (a, b) — K. The topology generated
by B” will be called the K-topology on R. When R is given this topology, we denote
it by Rg.

It is easy to see that all three of these collections are bases; in each case, the
intersection of two basis elements is either another basis element or 1s empty. The
relation between these topologies is the following:

Lemma 13.4. The topologies of Ry and Rx are strictly finer than the standard topol-
ogy on R, but are not comparable with one another.

Proof. Let 7,7’ and T” be the topologies of R, R, and Rg, respectively. Given
a basis element (a, b) for 7 and a point x of (a, b), the basis element [x, b) for T’
contains x and lies in (a, b). On the other hand, given the basis element [x, d) for 7',
there is no open interval (a, b) that contains x and lies in [x, d). Thus 7’ is strictly
finer than T
A similar argument applies to Rx. Given a basis element (a, b) for 7 and a
point x of (a, b), this same interval is a basis element for 7" that contains x. On the
other hand, given the basis element B = (—1, 1) -~ K for 7" and the point 0 of B,
there is no open interval that contains 0 and lies in B.
We leave it to you to show that the topologies of R, and Rx are not comparable.
B

A question may occur to you at this point. Since the topology generated by a
basis B may be described as the collection of arbitrary unions of elements of B, what
happens if you start with a given collection of sets and take finite intersections of
them as well as arbitrary unions? This question leads to the notion of a subbasis for a

topology

Definition. A subbasis § for a topology on X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is defined to be the collec-
tion 7 of all unions of finite intersections of elements of §.

We must of course check that 7 is a topology. For this purpose it will suffice to
show that the collection B of all finite intersections of elements of § is a basis, for
then the collection T of all unions of elements of B is a topology, by Lemma 13.1.
Given x € X, it belongs to an element of § and hence to an element of B; this is the
first condition for a basis. To check the second condition, let

Bp=8§nNn--nS§,, and Bz=S’lﬂ~--ﬂS’

n

be two elements of B. Their intersection

BINB,=(S1N---NSu) NS N---NS,)
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is also a finite intersection of elements of §, so it belongs to B.

Exercises

1.

2.

Let X be a topological space; let A be a subset of X. Suppose that foreachx € A
there is an open set U containing x such that U C A. Show that A is open in X

Consider the nine topologies on the set X = {a, b, ¢} indicated in Example 1
of §12. Compare them; that is, for each pair of topologies, determine whether
they are comparable, and if so, which is the finer.

Show that the collection 7, given in Example 4 of §12 is a topology on the set X .
Is the collection

Too = {U | X — U 1s infinite or empty or all of X}

a topology on X?

. (a) If (T4} is a family of topologies on X, show that (1) 7 is a topology on X.

Is | ) 74 a topology on X?

(b) Let {7y} be a family of topologies on X. Show that there is a unique small-
est topology on X containing all the collections 7y, and a unique largest
topology contained in all 7.

(c) If X ={a,b,c}, let

TT=1{9,X,(a),{a,b)} and T2 =1{2, X, {a),{b,c}}.

Find the smallest topology containing 77 and 77, and the largest topology
contained in 7 and 73.

. Show that if A is a basis for a topology on X, then the topology generated by A

equals the intersection of all topologies on X that contain A. Prove the same if
b 18 a subbasis.

Show that the topologies of R, and R are not comparable.
Consider the following topologies on R:

T1 = the standard topology,

T, = the topology of Rk,

T3 = the finite complement topology,

T4 = the upper limit topology, having all sets (a, b) as basis,

Ts = the topology having all sets (—00,a) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

B = {(a, b) | a < b, a and b rational)
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is a basis that generates the standard topology on R.
(b) Show that the collection

C = {[a, b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

§14 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order
relation. It is called the order topology; in this section, we consider it and study some
of its properties.

Suppose that X is a set having a simple order relation <. Given elements a and b
of X such that a < b, there are four subsets of X that are called the intervals deter-
mined by a and b. They are the following :

(@ b)y={x|a <x<b},
(a,bl={x|a < x < b},
[a,b) ={x|a <x < b},
[a,b) ={x|a <x < b}.

The notation used here is familiar to you already in the case where X is the real line,
but these are intervals in an arbitrary ordered set. A set of the first type is called an
open interval in X, a set of the last type is called a closed interval in X, and sets of the
second and third types are called half-open intervals. The use of the term “open” in
this connection suggests that open intervals in X should turn out to be open sets when
we put a topology on X. And so they will.

Definition. Let X be a set with a simple order relation; assume X has more than one
element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [ao, b), where ag is the smallest element (if any) of X.

(3) All intervals of the form (a, bg], where by is the largest element (if any) of X.
The collection B is a basis for a topology on X, which is called the order topology.

If X has no smallest element, there are no sets of type (2), and if X has no largest
element, there are no sets of type (3).

One has to check that B satisfies the requirements for a basis. First, note that every
element x of X lies in at least one element of B: The smallest element (if any) lies
in all sets of type (2), the largest element (if any) lies in all sets of type (3), and every
other element lies in a set of type (1). Second, note that the intersection of any two sets
of the preceding types is again a set of one of these types, or is empty. Several cases
need to be checked; we leave it to you.
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ExAaMPLE 1  The standard topology on R, as defined in the preceding section, is just the
order topology denved from the usual order on R.

EXAMPLE 2.  Consider the set R x R in the dictionary order; we shall denote the general
element of R x R by x x y, to avoid difficulty with notation The set R x R has neither a
largest nor a smallest element, so the order topology on R x R has as basis the collection
of all open intervals of the form (a x b,c x d) fora < ¢, and fora = c and b < d. These
two types of intervals are indicated in Figure 14.1. The subcollection consisting of only
intervals of the second type is also a basis for the order topology on R x R, as you can

check

axb m™axd

cxd b axb

Figure 14.1

ExAMPLE3  The positive integers Z, form an ordered set with a smallest elernent. The
order topology on Z is the discrete topology, for every one-point set is open If n > 1,
then the one-point set {n} = (n — 1, n + 1) is a basis element; and if n = 1, the one-point
set {1} =[1, 2) is a basis element.

EXAMPLE 4 The set X = {1, 2} x Z4 in the dictionary order is another example of
an ordered set with a smallest element Denoting 1 x n by a, and 2 x n by b,, we can
represent X by

aj,az,. ;b,b,. .

The order topology on X is not the discrete topology. Most one-point sets are open, but
there is an exception—the one-point set {b;}. Any open set containing b; must contain a
basis element about b, (by definition), and any basis element containing b; contains points
of the a; sequence.

Definition. If X is an ordered set, and a is an element of X, there are four subsets
of X that are called the rays determined by a They are the following:

(a.+00) = {x | x > a},

(—00,a) ={x|x <a},

[a, +00) = {x | x = a},

(—o0,a)l = {x | x < a).
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Sets of the first two types are called open rays, and sets of the last two types are called
closed rays.

The use of the term “open” suggests that open rays in X are open sets in the order
topology. And so they are. Consider, for example, the ray (a, +00). If X has a largest
element by, then (a, +00) equals the basis element (a, bg]. If X has no largest element,
then (a, +00) equals the union of all basis elements of the form (a, x), for x > a. In
either case, (a, +00) is open. A similar argument applies to the ray (—oo, a).

The open rays, in fact, form a subbasis for the order topology on X, as we now
show Because the open rays are open in the order topology, the topology they gen-
erate is contained in the order topology. On the other hand, every basis element for
the order topology equals a finite intersection of open rays; the interval (a, b) equals
the intersection of (—o0, b) and (a, +00), while [ag, b) and (a, bp), if they exist, are
themselves open rays. Hence the topology generated by the open rays contains the
order topology

§15 The Product Topology on X x Y

If X and Y are topological spaces, there is a standard way of defining a topology on
the cartesian product X x Y. We consider this topology now and study some of its
properties.

Definition. Let X and Y be topological spaces. The product topology on X x Y is
the topology having as basis the collection B of all sets of the form U x V, where U
is an open subset of X and V is an open subset of Y.

Let us check that B is a basis. The first condition is trivial, since X x Y is itself
a basis element. The second condition is almost as easy, since the intersection of any
two basis elements U; x V) and U3 x V> is another basis element. For

(U x V)NN(Uz x Vo) = (U1 NU2) x (ViNV),

and the latter set is a basis element because Uy N Uz and V) NV, are openin X and Y,
respectively. See Figure 15.1.

Note that the collection B is not a topology on X x Y. The union of the two
rectangles pictured in Figure 15.1, for instance, is not a product of two sets, so it
cannot belong to B; however, itisopenin X x Y.

Each tnme we introduce a new concept, we shall try to relate it to the concepts that
have been previously introduced. In the present case, we ask: What can one say if the
topologies on X and Y are given by bases? The answer is as follows:

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology
of Y, then the collection

D={(BxC|BeBandC € C)
is a basis for the topology of X x Y
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Figure 15.1

Proof. We apply Lemma 13.2. Given an open set W of X x Y and a point x x y
of W, by definition of the product topology there is a basis element U x V such that
xxy€eUxV CW. Because B and C are bases for X and Y, respectively, we can
choose an element B of B such that x € B C U, and an element C of C such that
yeCCV.Thenx x y € B x C C W. Thus the collection D meets the criterion of
Lemma 13.2, so D is a basis for X x Y. ]

EXAMPLE 1.  We have a standard topology on R: the order topology The product of
this topology with itself is called the standard topology on R x R = R2. It has as basis
the collection of all products of open sets of R, but the theorem just proved tells us that the
much smaller collection of all products (a, b) x (c, d) of open intervals in R will also serve
as a basis for the topology of R? Each such set can be pictured as the intenior of a rectangle
in R2. Thus the standard topology on R? is just the one we considered in Example 2 of §13

It is sometimes useful to express the product topology in terms of a subbasis. To
do this, we first define certain functions called projections.

Definition. Let 7| . X. x Y — X be defined by the equation
m(x,y)=x;

let 73 . X x Y — Y be defined by the equation
m(x,y)=y.

The maps 7 and m; are called the projections of X x Y onto its first and second
factors, respectively.

We use the word “onto” because m; and m; are surjective (unless one of the
spaces X or Y happens to be empty, in which case X x Y is empty and our whole
discussion is empty as well!).

If U is an open subset of X, then the set nl_l (U) is precisely the set U x Y, which
isopenin X x Y. Similarly, if V is open in Y, then

(V) =X x V,



88 Topological Spaces and Continuous Functions Ch. 2

which is also open in X x Y. The intersection of these two sets is the set U x V, as
indicated in Figure 15.2. This fact leads to the following theorem:

Theorem 15.2. The collection
§={n;'(U) | U openin X} U {m;' (V)| V openinY)

is a subbasis for the product topologyon X x Y.

r, " (U)

z; (V)

Figure 15.2

Proof. Let T denote the product topology on X x Y, let 7' be the topology gener-
ated by S. Because every element of S belongs to 7, so do arbitrary unions of finite
intersections of elements of §. Thus 7' C 7. On the other hand, every basis element
U x V for the topology 7 is a finite intersection of elements of §, since

UxV=r0)nn (V).

Therefore, U x V belongs to 7', so that 7 C 7' as well ]

§16 The Subspace Topology

Definition. Let X be a topological space with topology 7. If Y is a subset of X, the
collection

Ty ={YNU |U €T}

is a topology on Y, called the subspace topology. With this topology, Y is called a
subspace of X its open sets consist of all intersections of open sets of X with Y.
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It is easy to see that 7y is a topology. It contains & and Y because
@=YN@ ad Y=YNXKX,

where @ and X are elements of 7. The fact that it is closed under finite inlersections
and arbitrary unions follows from the equations

UinyY)n.---nW,NYy=W,N---NU,)INY,
JWenry=JUanvy.

a€el aelJ

Lemma 16.1. If B is a basis for the topology of X then the collection
By ={BNY| B e B}

is a basis for the subspace topology on Y .

Proof. Given U openin X and given y € U NY, we can choose an element B of B
suchthaty € BC U.Theny € BNY C UNY. It follows from Lemma 13.2 that By
is a basis for the subspace topology on Y. =

When dealing with a space X and a subspace Y, one needs to be careful when
one uses the term “open set”. Does one mean an element of the topology of Y or an
element of the topology of X? We make the following definition : If Y ts a subspace
of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the
topology of Y'; this implies in particular that it is a subset of Y. We say that U is open
in X if it belongs to the topology of X

There is a special situation in which every set open in Y is also open in X.

Lemma 16.2. LetY be asubspace of X. If U i1sopeninY andY is openin X, then
U isopenin X.

Proof. Since U isopeninY, U = Y NV for some set V open in X. Since Y and V
are both open in X,soisY NV [ ]

Now let us explore the relation between the subspace topology and the order and
product topologies For product topologies, the result is what one might expect; for
order topologies, it is not.

Theorem 16.3. If A is a subspace of X and B is a subspace of Y, then the product
topology on A x B is the same as the topology A x B inherits as a subspaceof X x Y.

Proof. The set U x V is the general basis element for X x Y, where U is open in X
and V is open in Y. Therefore, (U x V)N (A x B) is the general basis element for the
subspace topology on A x B. Now

(UxV)N(AxB)y=(UnNA)x(VNB).
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Since U N A and V N B are the general open sets for the subspace topologies on A
and B, respectively, the set (U N A) x (V N B) is the general basis element for the
product topology on A x B.

The conclusion we draw is that the bases for the subspace topology on A x B and
for the product topology on A x B are the same. Hence the topologies are the same. 8

Now let X be an ordered set in the order topology, and let Y be a subset of X. The
order relation on X, when restricted to Y, makes Y into an ordered set. However, the
resulting order topology on Y need not be the same as the topology that Y inherits as
a subspace of X. We give one example where the subspace and order topologies on Y
agree, and two examples where they do not.

EXAMPLE |  Consider the subset Y = [0, 1] of the real line R, in the subspace topology.

The subspace topology has as basis all sets of the form (a, b) N Y, where (a, b) is an open
interval in R Such a set is of one of the following types:

(a,b) ifaandbareiny,
[0,6) ifonlybisin?,

(a,1] ifonlyaisinY,

Yor@ ifneitheranorbisin?.

(abyny =

By definition, each of these sets is open in Y But sets of the second and third types are not
open in the larger space R.

Note that these sets form a basis for the order topology on Y Thus, we see that in the
case of the set Y = [0, 1], its subspace topology (as a subspace of R) and its order topology
are the same.

EXAMPLE 2 Let Y be the subset [0, 1) U {2} of R. In the subspace topology on Y the
one-point set {2} is open, because it is the intersection of the open set ( % 3) with Y Butin
the order topology on Y, the set {2} is not open. Any basis element for the order topology

on Y that contains 2 is of the form
{x|x€eYanda <x <2}

for some a € Y, such a set necessarily contains points of Y less than 2

EXAMPLE 3 Let / = [0, 1] The dictionary order on / x / is just the restnction to
I x I of the dictionary order on the plane R x R. However, the dictionary order topology
on / x [/ is not the same as the subspace topology on / x I obtained from the dictionary
order topology on R x R! For example, the set {1/2} x (1/2, 1] is open in I x I in the
subspace topology, but not in the order topology, as you can check. See Figure 16.1.

The set I x [/ in the dictionary order topology will be called the ordered square, and
denoted by /2.

The anomaly illustrated in Examples 2 and 3 does not occur for intervals or rays
in an ordered set X. This we now prove.

Given an ordered set X, let us say that a subset ¥ of X is convex in X if for each
pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that
intervals and rays in X are convex in X.
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Subspace Order

Figure 16.1

Theorem 16.4. Let X be an ordered set in the order topology; let Y be a subset
of X that is convex in X Then the order topology on Y is the same as the topology Y
inhenits as a subspace of X.

Proof. Consider the ray (a, +00) in X. What is its intersection with Y? If a € Y,
then

(a,+00)NY ={x|x €Y and x > a};

this is an open ray of the ordered set Y. If a ¢ Y, then a is either a lower bound on ¥
or an upper bound on Y, since Y is convex. In the former case, the set (a, +00) N Y
equals all of Y; in the latter case, it is empty.

A similar remark shows that the intersection of the ray (—oo, a) with Y 1is either
an open ray of Y, or Y itself, or empty. Since the sets (a, +o0) N Y and (—o00,a)NY
form a subbasis for the subspace topology on Y, and since each is open in the order
topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of Y equals the intersection of an open
ray of X with Y, so it is open in the subspace topology on Y. Since the open rays of Y
are a subbasis for the order topology on Y, this topology is contained in the subspace

topology. u

To avoid ambiguity, let us agree that whenever X is an ordered set in the order
topology and Y is a subset of X, we shall assume that Y is given the subspace topology
unless we specifically state otherwise. If Y is convex in X, this is the same as the order
topology on Y, otherwise, it may not be.

Exercises

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A
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10.

inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

If 7 and 7’ are topologies on X and 7' is stnctly finer than 7°, what can you
say about the corresponding subspace topologies on the subset Y of X?

Consider the set Y = [—1, 1] as a subspace of R. Which of the following sets
are open in Y'? Which are open in R?

A={x|3<Ixl<1),

B=(x|j3<Ix]<1,

C={x]j3<Ixl<l},

D={x|3<xl <1},

E={x|0<|x|]<landl/x ¢ Z,}.
Amap f : X — Y is said to be an open map if for every open set U of X, the
set f(U)isopeninY. Showthatm : X xY > Xandm : X x Y — Y are
open maps.
Let X and X’ denote a single set in the topologies 7 and 7', respectively; let Y
and Y’ denote a single set in the topologies U and U’, respectively. Assume
these sets are nonempty.
(a) Show thatif 7/ O 7 and U’ D U, then the product topology on X' x Y'is

finer than the product topology on X x Y.
(b) Does the converse of (a) hold? Justify your answer.

Show that the countable collection
{(@,b) x (c,d) |a <band c < d, and a, b, c, d are rational}

is a basis for R,

Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it
follow that Y is an interval or aray in X?

If L is a straight line in the plane, describe the topology L inherits as a subspace
of Ry x R and as a subspace of R, x Rg. In each case it is a familiar topology.
Show that the dictionary order topology on the set R x R is the same as the
product topology Ry x R, where R4 denotes R in the discrete topology. Compare
this topology with the standard topology on R2.

Let I = [0, 1]. Compare the product topology on I x I, the dictionary order
topology on I x I, and the topology I x I inhenits as a subspace of R x R in the
dictionary order topology.

§17 Closed Sets and Limit Points

Now that we have a few examples at hand, we can introduce some of the basic concepts
associated with topological spaces. In this section, we treat the notions of closed set,
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closure of a set, and limit point. These lead naturally to consideration of a certain
axiom for topological spaces called the Hausdorff axiom.

Closed Sets
A subset A of a topological space X is said to be closed if the set X — A is open.
ExAMPLE |. The subset [a, b} of R is closed because its complement
R - [a, b} = (—00, a) U (b, +0),
1s open. Similarly, [a, +-00) is closed, because its complement (—o0, a) is open. These

facts justify our use of the terms “closed interval” and “closed ray” The subset [a, b) of R
is neither open nor closed.

EXAMPLE 2. Inthe plane R?, the set
(xxy|x>0andy > 0}
is closed, because its complement is the union of the two sets
(—00,0) x R and R x (—o00,0),

each of which is a product of open sets of R and is, therefore, open in R?

EXAMPLE 3  In the finite complement topology on a set X, the closed sets consist of X
itself and all finite subsets of X

EXAMPLE 4 In the discrete topology on the set X, every set is open; it follows that
every set is closed as well.

EXAMPLE S  Consider the following subset of the real line:
Y =1[0,11U(2,3),

in the subspace topology. In this space, the set [0, 1] is open, since it is the intersection of
the open set (—%, %) of R with Y Similarly, (2, 3) is open as a subset of Y; it is even open
as a subset of R. Since [0, 1] and (2, 3) are complements in Y of each other, we conclude
that both [0, 1) and (2, 3) are closed as subsets of Y

These examples suggest that an answer to the mathematician’s riddle: “How 1s
a set different from a door?” should be: “A door must be either open or closed, and
cannot be both, while a set can be open, or closed, or both, or neither!”

The collection of closed subsets of a space X has properties similar to those satis-
fied by the collection of open subsets of X:
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Theorem 17.1. Let X be a topological space. Then the following conditions hold:
(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.
(3) Finite unions of closed sets are closed.

Proof. (1) @ and X are closed because they are the complements of the open sets X
and O, respectively.
(2) Given a collection of closed sets {Aq }aes, We apply DeMorgan’s law,

X—ﬂAa=U(X—Aa).

ael el

Since the sets X — A, are open by definition, the right side of this equation represents
an arbitrary union of open sets, and is thus open. Therefore, [} A4 is closed.
(3) Similarly, if A; is closed fori = 1, ..., n, consider the equation

X—OA,' = ﬁ(x — A)).
i=l1 =1

The set on the right side of this equation is a finite intersection of open sets and is
therefore open. Hence | J A; is closed. =

Instead of using open sets, one could just as well specify a topology on a space by
giving a collection of sets (to be called “closed sets™) satisfying the three properties of
this theorem. One could then define open sets as the complements of closed sets and
proceed just as before. This procedure has no particular advantage over the one we
have adopted, and most mathematicians prefer to use open sets to define topologies.

Now when dealing with subspaces, one needs to be careful in using the term
“closed set.” If Y is a subspace of X, we say that a set A is closed in Y if A is a
subset of Y and if A is closed in the subspace topology of Y (thatis, if Y — A is open
in Y). We have the following theorem:

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if
it equals the intersection of a closed set of X with Y.

Proof Assume that A = C NY, where C is closed in X. (See Figure 17.1.) Then
X —Cisopenin X, sothat (X — C)NY is open in Y, by definition of the subspace
topology. But (X -=C)NY =Y —A. Hence Y — Aisopenin Y, so that A is closed in
Y. Conversely, assume that A is closed in Y. (See Figure 17.2.) Then Y — A is open
in Y, so that by definition it equals the intersection of an open set U of X with Y The
set X — U isclosed in X,and A = Y N (X — U), so that A equals the intersection of
a closed set of X with Y, as desired. [ |

A set A that is closed in the subspace ¥ may or may not be closed in the larger
space X. As was the case with open sets, there is a critenon for A to be closed in X
we leave the proof to you:
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Theorem 17.3. LetY be a subspace of X. If AisclosedinY and Y is closed in X,
then A is closed in X.

Closure and Interior of a Set

Given a subset A of a topological space X, the interior of A is defined as the union of
all open sets contained in A, and the closure of A is defined as the intersection of all
closed sets containing A.

The interior of A is denoted by Int A and the closure of A is denoted by C1 A or
by A. Obviously Int A is an open set and A is a closed set; furthermore,

IntA C A C A.

If A is open, A = Int A; while if A is closed, A = A.

We shall not make much use of the intenor of a set, but the closure of a set will be
quite important.

When dealing with a topological space X and a subspace Y, one needs to exercise
care in taking closures of sets If A is a subset of Y, the closure of A in Y and the
closure of A in X will in general be different In such a situation, we reserve the
notation A to stand for the closure of A in X. The closure of A in ¥ can be expressed
in terms of A, as the following theorem shows:

Theorem 17.4. Let Y be a subspace of X, let A be a subset of Y, let A denote the
closure of A in X. Then the closure of AinY equals ANY.

Proof. Let B denote the closure of A inY. The set A is closed in X, so ANY is

closed in Y by Theorem 17.2. Since ANY contains A, and since by definition B equals
the intersection of all closed subsets of Y containing A, we must have B C (fi NnY).

On the other hand, we know that B is closed in Y. Hence by Theorem 17.2,

= CNY for some set C closed in X. Then C is a closed set of X containing A;

because A is the intersection of all such closed sets, we conclude that A ¢ C. Then

(ANY)c(CNY)=B. ]
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The definition of the closure of a set does not give us a convenient way for actually
finding the closures of specific sets, since the collection of all closed sets in X, like
the collection of all open sets, is usually much too big to work with. Another way of
describing the closure of a set, useful because it involves only a basis for the topology
of X, is given in the following theorem.

First let us introduce some convenient terminology. We shall say that a set A
intersects a set B if the intersection A N B is not empty.

Theorem 17.5. Let A be a subset of the topological space X.
(a) Then x € A if and only if every open set U containing x intersects A.

(b) Supposing the topology of X is given by a basis, then x € A if and only if every
basis element B containing x intersects A.

Proof. Consider the statement in (a). It is a statement of the form P & Q. Let
us transform each implication to its contrapositive, thereby obtaining the logically
equivalent statement (not P) < (not Q). Written out, it is the following:

x ¢ A <= there exists an open set U containing x that does not intersect A.

In this form, our theorem is easy to prove. If x isnotin A, theset U = X — A isan
open set containing x that does not intersect A, as desired Conversely, if there exists
an open set U containing x which does not intersect A, then X — U is a closed set
containing A By definition of the closure A, the set X — U must contain A, therefore,
x cannot be in A.

Statement (b) follows readily If every open set containing x intersects A, so does
every basis element B containing x, because B is an open set. Conversely, if every
basis element containing x intersects A, so does every open set U containing x, be-
cause U contains a basis element that contains x. =

Mathematicians often use some special terminology here. They shorten the state-
ment “U is an open set containing x” to the phrase

“U is a neighborhood of x.”
Using this terminology, one can write the first half of the preceding theorem as follows:

If A is a subset of the topological space X, then x € A if and only if every
neighborhood of x intersects A.

EXAMPLE 6 Let X be the real line R. If A = (0, 1), then A = [0, 1], for every
neighborhood of 0 intersects A, while every point outside [0, 1] has a neighborhood disjoint
from A Similar arguments apply to the following subsets of X )

IfB={l/n|neZ,),then B={[0)UB IfC =(0)U(l,2),then C = {0} U1, 2]
If Q is the set of rational numbers, then Q = R If Z, is the set of positive integers, then
Z, = Z,. If R, is the set of positive reals, then the closure of R, is the set R, U {0}.
(This is the reason we introduced the notation R for the set R, U {0}, back in §2)
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EXAMPLE 7  Consider the subspace Y = (0, 1] of the real line R. The set A = (0, %) is
a subset of Y, its closure in R 1s the set [0, %], and its closure in Y is the set [0, %] ny =

(0, 1]

Some mathematicians use the term *“neighborhood” differently. They say that A
is a neighborhood of x if A merely contains an open set containing x. We shall not
follow this practice.

Limit Points

There is yet another way of describing the closure of a set, a way that involves the
important concept of limit point, which we consider now.

If A is a subset of the topological space X and if x is a point of X, we say that x is a
limit point (or “cluster point,” or “point of accumulation™) of A if every neighborhood
of x intersects A in some point other than x itself. Said differently, x is a limit point
of A if it belongs to the closure of A — {x} The point x may lie in A or not; for this
definition it does not matter.

EXAMPLE 8 Consider the real line R. If A = (0, 1], then the point 0 is a limit point
of A and so is the point '5 In fact, every point of the interval [0, 1] is a limit point of A, but
no other point of R is a limit point of A

If B={l/n|n € Z,}, then0is the only limt point of B. Every other point x of R has
a neighborhood that either does not intersect B at all, or it intersects B only in the point x
itself. If C = {0} U (1, 2), then the limit points of C aie the points of the interval [1, 2]. If
Q is the set of rational numbers, every point of R is a limit point of Q. If Z, is the set of
positive integers, no point of R is a limit point of Z If R4 is the set of positive reals, then
every point of {0} U R is a limit point of R,

Comparison of Examples 6 and 8 suggests a relationship between the closure of a
set and the limut points of a set. That relationship is given in the following theorem:

Theorem 17.6. Let A be a subset of the topological space X, let A’ be the set of all
limit points of A. Then

A=AUA

Proof. Ifxisin A’, every neighborhood of x intersects A (in a point different from x).
Therefore, by Theorem 17.5, x belongs to A Hence A’ C A. Since by definition
A C A, it follows that AU A’ C A.

To demonstrate the reverse inclusion, we let x be a point of A and show that
x € AU A’. If x happens to lie in A, it is trivial that x € A U A’; suppose that x
does not lie in A. Since x € A, we know that every neighborhood U of x intersects A;
because x ¢ A, the set U must intersect A in a point different from x. Then x € A’,
sothat x € AU A’, as desired. |
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Corollary 17.7. A subset of a topological space is closed if and only if it contains all
its limit points.

Proof. The set A s closed if and only if A = A, and the latter holds if and only if
A’ C A, =

Hausdorff Spaces

One’s experience with open and closed sets and limit points in the real line and the
plane can be misleading when one considers more general topological spaces. For
example, in the spaces R and RZ, each one-point set {xo} is closed. This fact is easily
proved; every point different from xo has a neighborhood not intersecting {xo}, so
that {x¢) is its own closure. But this fact is not true for arbitrary topological spaces.
Consider the topology on the three-point set {a, b, c} indicated in Figure 17.3. In this
space, the one-point set {b} is not closed, for its complement is not open.

(@2

Figure 17.3

Similarly, one’s experience with the properties of convergent sequences in R and
R? can be misleading when one deals with more general topological spaces. In an
arbitrary topological space, one says that a sequence x, x2, ... of points of the space
X converges to the point x of X provided that, corresponding to each neighborhood U
of x, there is a positive integer N such that x, € U foralln > N. InR and R?, a
sequence cannot converge to more than one point, but in an arbitrary space, it can. In
the space indicated in Figure 17.3, for example, the sequence defined by setting x, = b
for all n converges not only to the point b, but also to the point a and to the point c!

Topologies in which one-point sets are not closed, or in which sequences can con-
verge to more than one point, are considered by many mathematicians to be somewhat
strange. They are not really very interesting, for they seldom occur in other branches
of mathematics And the theorems that one can prove about topological spaces are
rather limited if such examples are allowed. Therefore, one often imposes an addi-
tional condition that will rule out examples like this one, bringing the class of spaces
under consideration closer to those to which one’s geometric intuition applies. The
condition was suggested by the mathematician Felix Hausdorff, so mathematicians
have come to call it by his name.

Definition. A topological space X is called a Hausdorff space if for each pair x|, x3
of distinct points of X, there exist neighborhoods Uy, and U; of x; and x3, respectively,
that are disjoint.
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Theorem 17.8. Every finite point set in a Hausdorff space X is closed.

Proof. It suffices to show that every one-point set {xo} is closed. If x is a point of X
different from xo, then x and x¢ have disjoint neighborhoods U and V, respectively.
Since U does not intersect {xo}, the point x cannot belong to the closure of the set {xp).
As aresult, the closure of the set {xo} 1s {xo} itself, so that it is closed. [ |

The condition that finite point sets be closed is in fact weaker than the Hausdorff
condition For example, the real line R in the finite complement topology is not a
Hausdorff space, but it is a space in which finite point sets are closed The condition
that finite point sets be closed has been given a name of its own: it 1s called the T} ax-
iom. (We shall explain the reason for this strange terminology in Chapter 4.) The
T, axiom will appear in this book in a few exercises, and in just one theorem, which is
the following:

Theorem 17.9. Let X be a space satisfying the T\ axiom; let A be a subset of X.
Then the point x is a limit point of A if and only if every neighborhood of x contains
infinitely many points of A.

Proof If every neighborhood of x intersects A in infinitely many points, it certainly

intersects A in some point other than x itself, so that x is a limit point of A
Conversely, suppose that x is a limit point of A, and suppose some neighbor-

hood U of x intersects A in only finitely many points. Then U also intersects A — {x}

in finitely many points; let {x;,. ,xn} be the points of U N (A — {x}). The set
X = {x1,..., xm} 1s an open set of X, since the finite point set {xy, ..., xn,} is closed;
then

UNX—{xy, .., xm})

is a neighborhood of x that intersects the set A — {x} not at all. This contradicts the
assumption that x is a limit point of A. u

One reason for our lack of interest in the T; axiom is the fact that many of the
interesting theorems of topology require not just that axiom, but the full strength of
the Hausdorff axiom. Furthermore, most of the spaces that are important to mathe-
maticians are Hausdorff spaces. The following two theorems give some substance to
these remarks.

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X converges
to at most one point of X

Proof. Suppose that x, is a sequence of points of X that converges to x If y # x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U contains x,
for all but finitely many values of n, the set V cannot Therefore, x, cannot converge
to y. u
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If the sequence x, of points of the Hausdorff space X converges to the point x
of X, we often write x, — x, and we say that x is the limit of the sequence x,,.
The proof of the following result is left to the exercises.

Theorem 17.11. Every simply ordered set is a Hausdorff space in the order topology.
The product of two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff
space is a Hausdorff space.

The Hausdorff condition is generally considered to be a very mild extra condition
to impose on a topological space. Indeed, in a first course in topology some mathe-
maticians go so far as to impose this condition at the outset, refusing to consider spaces
that are not Hausdorff spaces. We shall not go this far, but we shall certainly assume
the Hausdorff condition whenever it 1s needed in a proof without having any qualms
about limiting seriously the range of applications of the results.

The Hausdorff condition is one of a number of extra conditions one can impose on
a topological space. Each time one imposes such a condition, one can prove stronger
theorems, but one limits the class of spaces to which the theorems apply. Much of the
research that has been done in topology since its beginnings has centered on the prob-
lem of finding conditions that will be strong enough to enable one to prove interesting
theorems about spaces satisfying those conditions, and yet not so strong that they limit
severely the range of applications of the results.

We shall study a number of such conditions 1n the next two chapters. The Haus-
dorff condition and the T axiom are but two of a collection of conditions similar to one
another that are called collectively the separation axioms. Other conditions include the
countability axioms, and various compactness and connectedness conditions. Some of
these are quite stringent requirements, as you will see.

Exercises

1. Let C be a collection of subsets of the set X. Suppose that & and X are in C,
and that finite unions and arbitrary intersections of elements of C are in C. Show
that the collection

T={X~-C|C €}

is a topology on X.
2. Show thatif A isclosedin Y and Y is closed in X, then A is closed in X.
3. Show thatif A isclosedin X and B isclosedin Y, then A x Bisclosedin X x Y.

4. Show that if U is openin X and A is closed in X, then U — A is open in X, and
A — U isclosed in X.

S. Let X be an ordered set in the order topology. Show that (a, b) C [a, b]. Under
what conditions does equality hold?
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Let A, B, and A, denote subsets of a space X. Prove the following:
(@) If A C B, thenA C B.

(b) AUB = AUB.

©) UAa D U Aq; give an example where equality fails.

Criticize the following “proof” that {JAq C |J Aa: if (A4} is a collection of
sets in X and if x € m then every neighborhood U of x intersects | J Aq.
Thus U must intersect some A, so that x must belong to the closure of some A,.
Therefore, x € |J Aq.

Let A, B, and A, denote subsets of a space X. Determine whether the following
equations hold; if an equality fails, determine whether one of the inclusions D
or C holds.

(a3 ANB=A
(b) (N Aa =[] Aq
(c) A - =A-—
Let A C X and B C Y. Show that in the space X x Y,

Ax B=A x B.

Show that every order topology is Hausdorff.
Show that the product of two Hausdorff spaces is Hausdorff.
Show that a subspace of a Hausdorff space is Hausdorff.

Show that X is Hausdorff if and only if the diagonal A = (x x x | x € X} is
closed in X x X.

In the finite complement topology on R, to what point or points does the se-
quence x, = 1/n converge?

Show the T} axiom is equivalent to the condition that for each pair of points of X,
each has a neighborhood not containing the other.

Consider the five topologies on R given in Exercise 7 of §13.

(a) Determine the closure of the set K = {1/n | n € Z,} under each of these
topologies.

(b) Which of these topologies satisfy the Hausdorff axiom? the T; axiom?

Consider the lower limit topology on R and the topology given by the basis C
of Exercise 8 of §13. Determine the closures of the intervals A = (0, ~/§) and
B = (+/2, 3) in these two topologies.
Determine the closures of the following subsets of the ordered square:

={(1/n) x O | n € Z),

—[(l—l/n)x |neZ,),

C={x xOlO<x< 1},

=[xx%|0<x<l},

E={%xle<y<l}.



102 Topological Spaces and Continuous Functions Ch.2

19. If A C X, we define the boundary of A by the equation
BdA = AN(X - A).

(a) Show that Int A and Bd A are disjoint, and A = Int A U Bd A.
(b) Show that Bd A = @ ¢ A is both open and closed.

(c) Show that U isopen & BdU =U — U.

(d) If U 1s open, is it true that U = Int(U)? Justify your answer.

20. Find the boundary and the interior of each of the following subsets of R?*
(@ A={xxy|y=0]
(b) B={xxy|x>0andy # 0}
(c) C=AUB
(d) D = {x x y | x 1s rational}
€ E={xxy|0<x?-y?<l}
H F={xxy|x#0andy < 1/x}

*21. (Kuratowski) Consider the collection of all subsets A of the topological space X.
The operations of closure A — A and complementation A — X — A are func-
tions from this collection to itself.

(a) Show that starting with a given set A, one can form no more than 14 distinct
sets by applying these two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is
obtained

§18 Continuous Functions

The concept of continuous function is basic to much of mathematics. Continuous
functions on the real line appear in the first pages of any calculus book, and continuous
functions in the plane and in space follow not far behind. More general kinds of
conunuous functions arise as one goes further in mathematics. In this section, we shall
formulate a definition of continuity that will include all these as special cases, and we
shall study various properties of continuous functions. Many of these properties are
direct generalizations of things you learned about continuous functions in calculus and
analysis.

Continuity of a Function

Let X and Y be topological spaces. A function f : X — Y is said to be continuous if
for each open subset V of Y, the set f~!(V) is an open subset of X.

Recall that f~1(V) is the set of all points x of X for which f(x) € V; itis empty
if V does not intersect the image set f(X) of f.

Continuity of a function depends not only upon the function f itself, but also on
the topologies specified for its domain and range. If we wish to emphasize this fact,
we can say that f is continuous relative to specific topologies on X and Y.
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Let us note that if the topology of the range space Y is given by a basis B, then to
prove continuity of f it suffices to show that the inverse image of every basis element
is open. The arbitrary open set V of Y can be wntten as a union of basis elements

V=UBa.

ae)

Then
= 7@,

aeJ

so that f~!(V) is open if each set f~!(Bg) is open.

If the topology on Y is given by a subbasis §, to prove continuity of f it will even
suffice to show that the inverse image of each subbasis element is open. The arbitrary
basis element B for Y can be written as a finite intersection S; N --- N S, of subbasis
elements; it follows from the equation

FYBY = FUSsp N0 NS

that the inverse image of every basis element is open.

EXAMPLE 1| Let us consider a function like those studied in analysis, a “real-valued
function of a real variable,”

f R— R.

In analysis, one defines continuity of f via the “e-8 definition,” a bugaboo over the years
for every student of mathematics. As one would expect, the €-§ definition and ours are
equivalent To prove that our definition implies the ¢-§ definition, for instance, we proceed
as follows:

Given xg in R, and given ¢ > 0, the interval V = ( f(xo) —¢€, f(xg) + €) isan open set
of the range space R Therefore, f~!(V) is an open set in the domain space R. Because
f~1(V) contains the point xo, it contains some basis element (a, b) about xo We choose &
to be the smaller of the two numbers xg —a and b — xy Then if |x — xg| < §, the point x
must be in (a, b), sothat f(x) € V,and | f(x) — f(x0)| < €, as desired.

Proving that the €-§ definition implies our definition is no harder; we leave it to you.
We shall return to this example when we study metnc spaces

ExXAMPLE 2.  In calculus one considers the property of continuity for many kinds of
functions. For example, one studies functions of the following types:

f.R — R?  (curves in the plane)

f.R — R®  (curvesin space)

f RR—R (functions f(x, y) of two real vanables)
f. R — R (functions f(x, y, 2) of three real vaniables)
f. R — R2 (vector fields v(x, y) in the plane).

Each of them has a notion of continuity defined for it. Our general definition of continuity
includes all these as special cases; this fact will be a consequence of general theorems we
shall prove concerning continuous functions on product spaces and on metric spaces.
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EXAMPLE 3 Let R denote the set of real numbers in its usual topology, and let R,
denote the same set in the lower limit topology. Let

f R— R,

be the identity function; f(x) = x for every real number x. Then f is not a continuous
function; the inverse image of the open set [a, b) of R, equals itself, which is not open
in R. On the other hand, the identity function

8’ R( — R
is continuous, because the inverse image of (a, b) is itself, which is open in R,.

In analysis, one studies several different but equivalent ways of formulating the
definition of continuity. Some of these generalize to arbitrary spaces, and they are
considered in the theorems that follow. The familiar “¢€-8" definition and the *“con-
vergent sequence definition” do not generalize to arbitrary spaces; they will be treated
when we study metric spaces.

Theorem 18.1. Let X and Y be topological spaces; let f : X — Y. Then the
following are equivalent:
(1) f is continuous.

(2) For every subset A of X, one has f(A) C f(A).
(3) Forevery closed set B of Y, the set f ~'(B) is closed in X

(4) For each x € X and each neighborhood V of f(x), there is a neighborhood U
of x suchthat f(U) C V.

If the condition in (4) holds for the point x of X, we say that f is continuous at
the point x .
Proof. We show that (1) = (2) = (3) = (1) and that (1) = 4) = (1).

(1) = (2). Assume that f is continuous. Let A be a subset of X. We show that if
x € A, then f(x) € f(A). Let V be aneighborhood of f(x). Then f~!(V) is an open
set of X containing x; it must intersect A in some point y. Then V intersects f(A) in
the point f(y), so that f(x) € m as desired.

(2) = (3). Let B beclosed in Y and let A = f~'(B). We wish to prove that A
is closed in X; we show that A = A. By elementary set theory, we have f(A) =
f(f~Y(B)) c B. Therefore, if x € A,

f(x) € f(A)C f(A)C B =B,

sothatx € f~'(B) = A. Thus A C A, sothat A = A, as desired.
(3) = (1). Let Vbeanopensetof Y. Set B =Y — V. Then

fFiBy= ' -fFwmy=x- W)

Now B is aclosed set of Y. Then f~!(B)isclosed in X by hypothes:s, so that f~1(V)
is open in X, as desired.



§18 Continuous Functions 105

(1) = (4). Let x € X and let V be a neighborhood of f(x). Then the set
U = f~1(V) is aneighborhood of x such that f(U) C V.

(4) = (1). Let V be an open setof Y; let x be apointof f~!(V) Then f(x) € V,
so that by hypothesis there is a neighborhood U, of x such that f(U,) C V. Then
U, C f~1(V). It follows that f~!(V) can be written as the union of the open sets U,,
so that it is open. ]

Homeomorphisms

Let X and Y be topological spaces; let f . X — Y be a bijection. If both the function f
and the inverse function

fflirysx

are continuous, then f is called a homeomorphism.

The condition that f~! be continuous says that for each open set U of X, the
inverse image of U under the map f “l. Y - Xisopenin Y But the inverse
image of U under the map f~! is the same as the image of U under the map f. See
Figure 18.1. So another way to define a homeomorphism is to say that it is a bijective
correspondence f : X — Y suchthat f(U) is open if and only if U is open.

Figure 18.1

This remark shows that a homeomorphism f : X — Y gives us a bijective cor-
respondence not only between X and Y but between the collections of open sets of X
and of Y. As a result, any property of X that is entirely expressed in terms of the topol-
ogy of X (that is, in terms of the open sets of X) yields, via the correspondence f, the
corresponding property for the space Y. Such a property of X is called a topological
property of X.

You may have studied in modern algebra the notion of an isomorphism between al-
gebraic objects such as groups or nngs. An isomorphism is a bijective correspondence
that preserves the algebraic structure involved. The analogous concept in topology is
that of homeomorphism; it is a bijective correspondence that preserves the topological
structure involved.

Now suppose that f : X — Y is an injective continuous map, where X and Y
are topological spaces. Let Z be the image set f(X), considered as a subspace of Y
then the function f’ : X — Z obtained by restricting the range of f is bijective. If f’
happens to be a homeomorphism of X with Z, we say thatthemap f : X — Y isa
topological imbedding, or simply an imbedding, of X in Y .
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ExXAMPLE 4. The function f . R — R given by f(x) = 3x + 1 is a homeomorphism
See Figure 18 2. If we define ¢ * R — R by the equation

1
=—(y - |
8(y) 3 (y=D
then one can check easily that f(g(y)) = y and g(f(x)) = x for all real numbers x and y

It follows that f is bijective and that g = !, the continuity of f and g is a familiar result
from calculus.

EXAMPLES. The function F . (=1, 1) — R defined by

Fo= 1 —x2

is a homeomorphism See Figure 18.3 We have already noted in Example 9 of §3 that F
is a bijective order-preserving correspondence; its inverse is the function G defined by

2y
I+ (14 4yHv/?

Gy)=

The fact that F is a homeomorphism can be proved in two ways One way is to note that
because F is order preserving and bijective, F carnes a basis element for the order topology
in (—1, 1) onto a basis element for the order topology in R and vice versa As aresult, F is
automatically a homeomorphism of (—1, 1) with R (both in the order topology) Since the
order topology on (—1, 1) and the usual (subspace) topology agree, F is a homeomorphism
of (=1, 1) withR

f(x) =3x+1 F(x) =

=

Figure 18.2 Figure 18.3

1-x2

- - e R - = - - - - -

A second way to show F a homeomorphism is to use the continuity of the algebraic
functions and the square-root function to show that both ' and G are continuous These
are familiar facts from calculus

EXAMPLE 6 A bijective function f . X — Y can be continuous without being a home-
omorphism One such function is the identity map g R, — R considered in Example 3
Another is the following Let S! denote the unit circle,

Sl=(xxy|x2+y2=l],
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considered as a subspace of the plane R?, and let
F-[0.1) — s

be the map defined by f(¢#) = (cos2m¢, sin2sr). The fact that f is bijective and continu-
ous follows from famuliar properties of the trigonometric functions. But the function f~!
is not continuous The image under f of the open set U = (0, 5) of the domain, for in-
stance, is not open in S', for the point p = £(0) lies in no open set V of R? such that
v NSl c fU). See Figure 18.4.

f(U)
e N r,
| o 7 p
01 1
4
Figure 18.4

EXAMPLE 7. Consider the function
g:0,1) — R?

obtained from the function f of the preceding example by expanding the range. The map g
is an example of a continuous injective map that is not an imbedding

Constructing Continuous Functions

How does one go about constructing continuous functions from one topological space
to another? There are a number of methods used in analysis, of which some generalize
to arbitrary topological spaces and others do not. We study first some constructions
that do hold for general topological spaces, deferning consideration of the others until
later.

Theorem 18.2 (Rules for constructing continuous functions). Let X, Y, and Z be
topological spaces.
(a) (Constant function) If f . X — Y maps all of X into the single point yo of Y,
then f is continuous.
(b) (Inclusion) If A is a subspace of X, the inclusion function j : A — X is contin-
uous.
(c) (Composites) If f : X — Y andg : Y — Z are continuous, then the map
go f: X — Z is continuous.
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(d) (Restricting the domain) If f : X — Y is continuous, and if A is a subspace
of X, then the restricted function f|A - A — Y is continuous.

(e) (Restricting or expanding the range) Let f - X — Y be continuous. If Z is a
subspace of Y containing the image set f(X), then the functiong : X — Z
obtained by restricting the range of f is continuous. If Z is a space having Y as
a subspace, then the function h : X — Z obtained by expanding the range of f
is continuous.

(f) (Local formulation of continuity) The map f : X — Y is continuous if X can be
written as the union of open sets Uy such that f|U, is continuous for each «.

Proof (a)Let f(x) = yo for every x in X. Let V be open in Y. The set f~!(V)
equals X or @, depending on whether V contains yg or not. In either case, it is open.
(b) If U is open in X, then j~!(U) = U N A, which is open in A by definition of
the subspace topology.
(c) If U is open in Z, then g~!(U) is openin Y and f~!(g~'(U)) is open in X.
But

U W) = (go f) (),

by elementary set theory.

(d) The function f|A equals the composite of the inclusion map j : A — X and
themap f : X — Y, both of which are continuous.

(e) Let f : X — Y be continuous. If f(X) C Z C Y, we show that the function
g . X —» Z obtained from f is continuous. Let B be openin Z. Then B = Z N U for
some open set U of Y. Because Z contains the entire image set f(X),

iy =g7'(B),

by elementary set theory. Since f~!(U) is open, so is g ' (B).

To show h : X — Z is continuous if Z has Y as a subspace, note that h is the
composite of the map f : X — Y and the inclusionmap j : Y — Z.

(f) By hypothesis, we can wnte X as a union of open sets Uy, such that f|U, is
continuous for each . Let V be an open set in Y. Then

') N UL = (fIU)™Y(WV),

because both expressions represent the set of those points x lying in U, for which
f(x) € V. Since f|Uyg is continuous, this set is open in Uy, and hence openin X But

iy =Ju ' wvynva,

so that f~!(V) is also open in X. ]

Theorem 18.3 (The pasting lemma). Let X = A U B, where A and B are closed
inX. Letf:A — Yandg : B — Y be continuous. If f(x) = g(x) for every
x € AN B, then f and g combine to give a continuous functionh : X — Y, defined
by setting h(x) = f(x) ifx € A, and h(x) = g(x) ifx € B.
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Proof. Let C be aclosed subset of Y. Now
(O = 1O ug O,

by elementary set theory. Since f is continuous, f~!(C) is closed in A and, therefore,
closed in X. Similarly, g~1(C) is closed in B and therefore closed in X. Their union
h~1(C) is thus closed in X. n

This theorem also holds if A and B are open sets in X; this is just a special case of
the “local formulation of continuity” rule given in preceding theorem.

EXAMPLE 8  Letus define a function A : R — R by setting

h(x) = [x forx <0,

x/2 forx>0
Each of the “‘pieces” of this definition is a continuous function, and they agree on the
overlapping part of their domains, which is the one-point set {0}. Since their domains are
closed in R, the function A is continuous. One needs the “pieces” of the function to agree
on the overlapping part of their domains in order to have a function at all. The equations

x—2 forx <0,
k(x) =
x+2 forx>0,

for instance, do not define a function On the other hand, one needs some limitations on
the sets A and B to guarantee continuity. The equations

x—2 forx <0,

! —
(x) x+2 forx >0,

for instance, do define a function / mapping R into R, and both of the pieces are continuous.
But [ is not continuous; the inverse image of the open set (1, 3), for instance, is the nonopen

set [0, 1) See Figure 18.5
h / K '

Figure 18.5

S
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Theorem 18.4 (Maps into products). Let f : A - X x Y be given by the equation
f(a) = (fila), f2(a)).

Then f 1s continuous if and only if the functions
fi.A—X and fr:A—Y

are continuous.

The maps f| and f, are called the coordinate functions of f.

Proof Letm .X xY — Xandm : X x Y — Y be projections onto the first and
second factors, respectively. These maps are continuous. For WU) = U x Y and
nz_'(V) = X x V, and these sets are open if U and V are open. Note that for each
ac€aA,

fita) =m(f(a)) and fa(a) = m(f(a)).

If the function f is continuous, then f; and f, are composites of continuous func-
tions and therefore continuous. Conversely, suppose that f) and f, are continuous. We
show that for each basis element U/ x V for the topology of X x Y, its inverse tmage
f~YU x V) isopen. Apointaisin f~'(U x V) if and only if f(a) € U x V, that
is, if and only if f1(a) € U and f2(a) € V. Therefore,

Tl xvy=ffann .
Since both of the sets fl—l(U) and fz—' (V) are open, so is their intersection. ]

There is no useful cntenon for the continuity of amap f : A x B - X whose
domain is a product space. One might conjecture that f is continuous if it is continuous
“in each vanable separately,” but this conjecture 1s not true. (See Exercise 12.)

EXAMPLE9 In calculus, a parametrized curve in the plane is defined to be a continuous
map f [a.b] — R? It is often expressed in the form f(r) = (x(¢), y(¢)); and one
frequently uses the fact that f is a continuous function of ¢ if both x and y are Similarly,
a vector field in the plane

v(ix,y) = P(x, )i+ Q(x,y)j
= (P(x,y), Q(x,y))

is said to be continuous if both P and Q are continuous functions, or equivalently, if v is
continuous as a map of R? into R2. Both of these statements are simply special cases of
the preceding theorem.

One way of formung continuous functions that is used a great deal in analysis is to
take sums, differences, products, or quotients of continuous real-valued functions. It
1s a standard theorem that if f,g . X — R are continuous, then f + g, f — g, and
f - g are continuous, and f/g is continuous if g(x) # O for all x. We shall consider
this theorem in §21.
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Yet another method for constructing continuous functions that 1s familiar from
analysis is to take the limit of an infinite sequence of functions. There is a theorem to
the effect that if a sequence of continuous real-valued functions of a real vanable con-
verges uniformly to a limit function, then the limit function is necessarily continuous.
This theorem is called the Uniform Limit Theorem. 1t is used, for instance, to demon-
strate the continuity of the tngonometnc functions, when one defines these functions
ngorously using the infinite senes definitions of the sine and cosine. This theorem
generalizes to a theorem about maps of an arbitrary topological space X into a metric
space Y. We shall prove it in §21.

Exercises

1. Prove that for functions f . R — R, the €-§ definition of continuity implies the
open set definition.

2. Suppose that f : X — Y is continuous. If x is a limit point of the subset A of X,
is it necessarily true that f(x) is a limit point of f(A)?

3. Let X and X’ denote a single set in the two topologies 7 and 7/, respectively.
Leti : X’ — X be the identity function.
(a) Show that i is continuous < 7' is finer than 7.
(b) Show that i is a homeomorphism & 7/ =7,

4. Givenxo € X and ygp € Y, show thatthemaps f : X - X xYandg:Y —
X x Y defined by

f(x)=xxy and g(y)=x0xy

are imbeddings.

5. Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace
[a, b] of R is homeomorphic with [0, 1]

6. Find a function f : R — R that is continuous at precisely one point.

7. (a) Supposethat f . R - Ris “continuous from the nght,” that is,

lim f(x) = f(a),

X—rd
for each a € R. Show that f is continuous when considered as a function
from R, to R.

(b) Can you conjecture what functions f - R — R are continuous when con-
sidered as maps from R to R,? As maps from R, to R,? We shall return to
this question in Chapter 3.

8. Let Y be an ordered set in the order topology. Let f, g : X — Y be continuous.
(a) Show that the set {x | f(x) < g(x)} is closed in X
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UNIT-1II THE METRIC TOPOLOGY
AND CONNECTED SPACES

One of the most important and frequently used ways of imposing a topology on a set is to define the
topology in terms of ametric on the set. Topologies given in Us way lie at the heart of modern analysis,
forexample. 1n this section, we shall define the metric topology and shall give a number of examples. In
next section, we shall consider some of the properties that metric topologies satisfy.

Definition. A metric on a set d is a function

d: X x X -R*

having the following properties:
(D d(x, y)>0 forall x, y in X and the equality holds if and only if x = y.
(2) d(x, y)=d(y, x) for all x, y in X.

(3) (Triangle inequality) d(x,y)+d(y, z)> d(x, z) for all x, y, zin X.
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§20 The Metric Topology

One of the most important and frequently used ways of imposing a topology on a set is
to define the topology in terms of a metric on the set. Topologies given in this way lie
at the heart of modemn analysis, for example. In this section, we shall define the metric
topology and shall give a number of examples. In the next section, we shall consider
some of the properties that metrnic topologies satisfy.

Definition. A metric on a set X is a function
d: XxX—R

having the following properties:
(1) d(x,y) > 0forall x, y € X; equality holds if and only if x = y.

(2) d(x,y)=d(y,x)forallx,y € X.
(3) (Triangle inequality) d(x, y) +d(y,2) > d(x,z),forallx, y, z € X.

Given a metnc d on X, the number d(x, y) is often called the distance between x
and y in the metric d Given € > 0, consider the set

Bi(x,€) ={y|d(x,y) < €}

of all points y whose distance from x is less than €. It is called the e¢-ball centered
at x. Sometimes we omit the metric d from the notation and wnte this ball simply as
B(x, €), when no confusion will anse.

Definition. If d is a metnc on the set X, then the collection of all €-balls B4 (x, €), for
x € X and € > 0, is a basis for a topology on X, called the metric topology induced
by d.

The first condition for a basis is tnvial, since x € B(x, €) for any ¢ > Q. Before
checking the second condition for a basis, we show that if y is a point of the basis
element B(x, €), then there 1s a basis element B(y, §) centered at y that is contained
in B(x, €). Define § to be the positive number € — d(x, y). Then B(y, §) C B(x,€),
forif z € B(y, d),thend(y, z) < € — d(x, y), from which we conclude that

d(x,z) <d(x,y)+d(y,z) <e.

See Figure 20.1.

Now to check the second condition for a basis, let B and B; be two basis elements
and let y € BN B;. We have just shown that we can choose positive numbers §; and §;
so that B(y, 8;) C B and B(y, 62) C B,. Letting § be the smaller of §; and 4;, we
conclude that B(y, §) C B N B,.

Using what we have just proved, we can rephrase the definition of the metric topol-
ogy as follows:
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Figure 20.1

A set U is open in the metric topology induced by d if and only if for each
y € U, thereisa § > 0 such that B4(y,8) C U.

Clearly this condition implies that U is open. Conversely, if U is open, it contains
a basis element B = B, (x, €) contaimng y, and B in turn contains a basis element
B4(y, 8) centered at y

EXAMPLE |  Given aset X, define

dx,y)=1 ifx#y,
dix,y)=0 ifx=y

It is trivial to check that d is a metnc. The topology it induces is the discrete topology; the
basis element B(x, 1), for example, consists of the point x alone.

EXAMPLE 2. The standard metnc on the real numbers R is defined by the equation
d(x,y)=|x -yl

It is easy to check that d is a metnc. The topology it induces is the same as the order
topology: Each basis element (a, b) for the order topology is a basis element for the metnc
topology, indeed,

(a.b) = B(x, €),

where x = (a + b)/2 and € = (b — a)/2. And conversely, each ¢-ball B(x, €) equals an
open interval the interval (x — €, x + €).

Definition. If X is a topological space, X is said to be metrizable if there exists a
metnc d on the set X that induces the topology of X. A metric space is a metnzable
space X together with a specific metnc d that gives the topology of X.

Many of the spaces important for mathematics are metnzable, but some are not.
Metrizability is always a highly desirable attribute for a space to possess, for the exis-
tence of a metnic gives one a valuable tool for proving theorems about the space.
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It is, therefore, a problem of fundamental importance in topology to find condi-
tions on a topological space that will guarantee it is metnzable. One of our goals in
Chapter 4 will be to find such conditions; they are expressed there in the famous the-
orem called Urysohn's metrization theorem. Further metrization theorems appear in
Chapter 6. In the present section we shall content ourselves with proving merely that
R" and R® are metnzable.

Although the metnzability problem is an important problem in topology, the study
of metnc spaces as such does not properly belong to topology as much as it does
to analysis Metnzability of a space depends only on the topology of the space in
question, but properties that involve a specific metnc for X in general do not. For
instance, one can make the following definition in a metnc space.

Definition. Let X be a metric space with metnic d. A subset A of X is said to be
bounded if there is some number M such that

da,a2) <M

for every pair ay, a; of points of A. If A is bounded and nonempty, the diameter of A
is defined to be the number

diam A = sup{d(a;, a2) | a1, a2 € A)}.

Boundedness of a set is not a topological property, for it depends on the particular
metnc d that is used for X. For instance, if X is a metrnic space with metric d, then
there exists a metric d that gives the topology of X, relative to which every subset of X
is bounded. It is defined as follows:

Theorem 20.1. Let X be a metric space with metric d. Defined : X x X — R by
the equation

d(x, y) = min{d(x, y), 1)
Then d is a metric that induces the same topology as d.

The metnc d is called the standard bounded metric corresponding to d.

Proof. Checking the first two conditions for a metnc is trivial. Let us check the
tnangle inequality:

d(x,z) <d(x.y) +d(y,2).

Now if either d(x,y) = 1 ord(y, z) > 1, then the nght side of this inequality is at
least 1, since the left side is (by definition) at most 1, the inequality holds. It remains
to consider the case in which d(x, y) < 1 and d(y, z) < 1. In this case, we have

d(x,z) <d(x,y) +d(y,z) =d(x,y) + d(y, 2).

Since d(x, z) < d(x, z) by definition, the tnangle inequality holds for d.
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Now we note that in any metnc space, the collection of €-balls with € < 1 forms

a basis for the metnc topology , for every basis element containing x contains such an
¢-ball centered at x. It follows that d and d induce the same topology on X, because
the collections of e-balls with ¢ < 1 under these two metrics are the same collection.
o

Now we consider some familiar spaces and show they are metnzable.

Definition. Given x = (x, x,) in R", we define the norm of x by the equation

Ixil = (f 4 -+ xHYE
and we define the euclidean metric d on R” by the equation
dix,y) = lIx —yll = [(x1 — y1)* + - + (xa — y)21/2.
We define the square metric p by the equation

p(x,y) = max{|x; — yil,..., |xa — ynl}.

The proof that d is a metnc requires some work; it is probably already familiar to
you. If not, a proof is outlined in the exercises. We shall seldom have occasion to use
this metnc on R”".

To show that p is a metric is easier. Only the tnangle inequality is nontnivial. From
the tnangle inequality for R it follows that for each positive integer i,

Ixi —zil < |xi — yil +lyi =zl
Then by definition of p,
I, = zil < p(X,y) + (Y, 2).
As aresult
p(x,z) = max{|lx; — zi|} < p(x,y) + (Y. 2),

as desired.

On the real line R = R!, these two metrics coincide with the standard metnc
for R. In the plane R?, the basis elements under d can be pictured as circular regions,
while the basis elements under p can be pictured as square regions.

We now show that each of these metnics induces the usual topology on R". We
need the following lemma:

Lemma 20.2. Letd and d’ be two metrics on the set X ; let T and T’ be the topologies
they induce, respectively. Then 7' is finer than T if and only if for each x in X and
each € > 0, there exists a§ > 0 such that

By (x,8) C By(x, €)
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Proof. Suppose that 7' is finer than 7 Given the basis element B4(x, €) for T, there
1s by Lemma 13.3 a basis element B’ for the topology 7’ suchthat x € B’ C By(x, €).
Within B’ we can find a ball By (x, §) centered at x.

Conversely, suppose the §-¢ condition holds Given a basis element B for 7 con-
taining x, we can find within B a ball B,(x, €) centered at x. By the given condition,
there is a § such that By (x, 8) C Bg(x, €). Then Lemma 13.3 applies to show 7' is
finer than 7. [

Theorem 20.3. The topologies on R" induced by the euclidean metric d and the
square metric p are the same as the product topology on R".

Proof Letx = (x|, ..,xp)andy = (y|,...,ya) be two points of R". It is simple
algebra to check that

p(x,y) <d(x,y) < Vnp(x,y)
The first inequality shows that
Ba(x, €) C By(x, €)

for all x and €, since if d(x,y) < ¢, then p(x,y) < € also. Similarly, the second
inequality shows that

B,(x, €/+/n) C Ba(x, €)

for all x and €. It follows from the preceding lemma that the two metnc topologies are

the same.
Now we show that the product topology is the same as that given by the metnc p.
First, let

B = (ai1,b1) x - x (an, bn)

be a basis element for the product topology, and let x = (xi, ..., x,) be an element
of B. For each i, there is an ¢; such that

(x, —€,x; +€)C (a;,b;),

choose € = min{e¢;, ..,€,}. Then B,(x,€) C B, as you can readily check. As a
result, the p-topology is finer than the product topology.

Conversely, let B, (X, €) be a basis element for the p-topology. Given the element
Y € B,(x, €), we need to find a basis element B for the product topology such that

Y € B C By(x,€).
But this is tnvial, for
By(X,€) =(x] — €, x| +€) x - X (Xxy —€,Xy + €)

is itself a basis element for the product topology. n
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Now we consider the infinite cartesian product R“. It is natural to try to generalize
the metnics d and p to this space. For instance, one can attempt to define a metric d
on R“ by the equation

o 12
d(x,y) = [Z(x.' — y.-)z] :
=1

But this equation does not always make sense, for the senes in question need not
converge. (This equation does define a metnic on a certain important subset of R,
however; see the exercises.)

Similarly, one can attempt to generalize the square metric p to R” by defining

p(X,y) = sup{ix, — ynl}.

Again, this formula does not always make sense. If however we replace the usual
metnc d(x, y) = |x — y| on R by its bounded counterpart d(x, y) = min{|x — y|, 1},
then this definition does make sense; it gives a metric on R? called the uniform metric.

The uniform metric can be defined more generally on the cartesian product R’ for
arbitrary J, as follows:

Definition. Given an index set J, and given points X = (xq)qes aNd Yy = (Ya)aes
of R/, let us define a metric 5 on R’ by the equation

A(X,y) = sup{d(xq, ya) | @ € J},

where d is the standard bounded metric on R. It is easy to check that 5 is indeed a
metric; it is called the uniform metric on R’ , and the topology it induces is called the
uniform topology.

The relation between this topology and the product and box topologies is the fol-
lowing:

Theorem 20.4. The uniform topology on R” is finer than the product topology and
coarser than the box topology; these three topologies are all different if J is infinite.

Proof. Suppose that we are given a point X = (xq)qes and a product topology basis
element [ U, about x. Let a1, ..., a, be the indices for which Uy # R. Then for
each i, choose €; > 0 so that the ¢;-ball centered at x,; in the d metnc is contained
in Uy,; this we can do because Uy, is open in R. Let € = min{e¢,, ..., €,}; then the
e-ball centered at X in the 5 metric is contained in [ | Uy. Forif z is a point of R/ such
that 5(X,z) < €, then d(xq, z4) < € forall a, so that z € []U,. It follows that the
uniform topology is finer than the product topology.

On the other hand, let B be the ¢-ball centered at x in the o metnc. Then the box
neighborhood

U= n(xa — 3€, Xq + 7€)
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of x is contained in B. Forif y € U, then d(xq, Ye) < %e for all a, so that o(x, y) <
€

N —

Showing these three topologies are different if J is infinite is a task we leave to
the exercises. |

In the case where J is infinite, we still have not determined whether R’ is metriz-
able in either the box or the product topology. It turns out that the only one of these
cases where R’ is metnzable is the case where J is countable and R’ has the product
topology. As we shall see.

Theorem 20.5. Letd(a, b) = min{|a — b|, 1} be the standard bounded metric on R.
Ifx and y are two points of R“, define

dxi. vi
D(x,y) = sup{ (x,i i) ] .
Then D is a metric that induces the product topology on R®.

Proof. The properties of a metric are satisfied tnivially except for the tnangle inequal-
ity, which is proved by noting that for all i,

4 i

d(xl..v Z) < d(xl.v Yi) + d()’l'. Zi) < D(x.y) + D(y, 2),
i

so that

sup[d(x"i’ 4) ] < D(x,y) + D(y, 7).

The fact that D gives the product topology requires a little more work. First, let U
be open in the metnic topology and let x € U; we'find an open set V in the product
topology such that x € V C U. Choose an ¢-ball Bp(x, €) lying in U. Then choose N
large enough that 1/ N < €. Finally, let V be the basis element for the product topology

V=x1—€e,x1+€)x - x(xy—€xn+€) x RxRx---.
We assert that V C Bp(x, €): Given any y in R¥,

d(x;, yi |
(x'ly)fﬁ fori > N.

Therefore,

d(x1, y1) d(xy, yn) 1
D(x,y)smax{—-l—,---, N ,N].

If y is in V, this expression is less than €, so that V C Bp(x, €), as desired.
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Conversely, consider a basis element

v=[]u

ieZy

for the product topology, where U; is open in R fori = ay, ..., a, and U; = R for all
other indices i. Given x € U, we find an open set V of the metric topology such that
X € V C U. Choose an interval (x, — €, x; + €;) in R centered about x, and lying
inU; fori =ay,...,a,;choose eache¢, < |. Then define

e =minl€; /i | i =ay,...,d,).
We assert that
X € Bp(x,e) C U.
Let y be a point of Bp(x, €). Then for all i,

J(x,-, Yi)

- < D(x,y) < €.
Now if i = ay, ..., a,, then € < €/, so that J(x,, yi) < € < l; it follows that
Ix, — yi| < €. Therefore, y € [] U,, as desired. ]

Exercises
1. (a) In R", define
d'(x,y) = x1 =yl + -+ |xn = yal.

Show that d’ is a metric that induces the usual topology of R". Sketch the
basis elements under d’ when n = 2.
(b) More generally, given p > 1, define

n l/p
d'(x,y) = [Z Ixi — y:l”]
i=l|

for x, y € R". Assume that d’ is a metric. Show that it induces the usual
topology on R".
2. Show that R x R in the dictionary order topology is metrizable.
3. Let X be a metric space with metric d.
(a) Show thatd : X x X — R is continuous.
(b) Let X’ denote a space having the same underlying set as X. Show that if
d : X' x X = R is continuous, then the topology of X’ is finer than the
topology of X.
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One can summarize the result of this exercise as follows: If X has a metric 4,
then the topology induced by d is the coarsest topology relative to which the
function d is continuous.

Consider the product, uniform, and box topologies on R®.
(a) In which topologies are the following functions from R to R® continuous?

f)=1(,2t,3t,...),
gty={(e,t,t,...),
h(r) = (¢, 32, 38,...).

(b) In which topologies do the following sequences converge?
wi=(,111,...), x=(1,1,1,1,...),
w2=1(0,222..) Xx=(043 7. %.-..),

w3=(0,033..). x3=(0011...),

W) —

y1 =(1,0,0,0,...), z =(1,1,0,0,...),
y2=(3,3.0,0,...), 2=(3300,...),
3=(G.4.70...), 2=(100..),

N —
9] —

I
)| o

. Let R* be the subset of R consisting of all sequences that are eventually zero.

What is the closure of R* in R® in the uniform topology? Justify your answer.

Let o be the uniform metric on R*. Given x = (x;, x2,...) € R“ and given
0<e<l,let

Ux,e) =(x1 —€,x)+€) X - X(Xnp—€,Xp +€)X:--.

(a) Show that U(x, €) is not equal to the e-ball B;(x, ¢€).
(b) Show that U (x, €) is not even open in the uniform topology.
(c¢) Show that

Bs(x,6) = | JUK, 8).

d<e

. Consider the map h : R — R® defined in Exercise 8 of §19; give R the uni-

form topology. Under what conditions on the numbers a; and b; is h continuous?
a homeomorphism?

Let X be the subset of R consisting of all sequences x such that ) x‘2 converges.
Then the formula

. 1/2
d(x,y) = [}:(x,- - y;)z}
i=l
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defines a metric on X. (See Exercise 10.) On X we have the three topologies it
inhents from the box, uniform, and product topologies on R“. We have also the
topology given by the metric d, which we call the £2-topology. (Read “little ell
two.”)

(a) Show that on X, we have the inclusions

box topology D ¢-topology D uniform topology.

(b) The set R of all sequences that are eventually zero is contained in X. Show
that the four topologies that R inherits as a subspace of X are all distinct.
(c) The set

H=[]10 1/n]

neZ,

is contained in X; it is called the Hilbert cube. Compare the four topologies
that H inherits as a subspace of X.

Show that the euclidean metric d on R" is a metric, as follows: If x, y € R"” and
c € R, define

x+y=(X|+)’|,---.xn+)’n).
cx = (¢cxy,...,CXp),

X-y=x1y1+:--+Xxnyn-

(a) Showthatx-(y+2z) =(x-y) + (x-2).

(b) Show that |x-y| < [Ix|l|lyll. [Hint: Ifx,y # 0,leta = 1/||x|| and b = 1/]ly|l,
and use the fact that ||ax + by| > 0.]

(c) Show that ||x + y|| < |Ix|| + lly|l. [Hint: Compute (X +y) - (x + y) and
apply (b).]

(d) Venfy that d is a metric.

Let X denote the subset of R consisting of all sequences (x, x2, . ..) such that

> x? converges. (You may assume the standard facts about infinite senes. In

case they are not familiar to you, we shall give them in Exercise 11 of the next

section.)

(a) Show thatif x,y € X, then _ |x, y,| converges. [Hint: Use (b) of Exercise 9
to show that the partial sums are bounded.}

(b) Letc € R. Show that if x,y € X, then so are x + y and cx.

(c) Show that

00 1/2
d(x,y) = [Z(x.- - y.-)z]
i=1

is a well-defined metric on X.
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*11. Show that if d is a metric for X, then

d'(x,y) =d(x,y)/(1 +d(x, y))

is a bounded metric that gives the topology of X. [Hint: If f(x) = x/(1+ x) for
x > 0, use the mean-value theorem to show that f(a + b) — f(b) < f(a).}

§21 The Metric Topology (continued)

In this section, we discuss the relation of the metric topology to the concepts we have
previously introduced.

Subspaces of metric spaces behave the way one would wish them to; if A is a
subspace of the topological space X and d is a metric for X, then the restriction of d
to A x A is a metric for the topology of A. This we leave to you to check.

About order topologies there is nothing to be said; some are metnizable (for in-
stance, Z.. and R), and others are not, as we shall see.

The Hausdorff axiom 1s satisfied by every metric topology. If x and y are distinct
points of the metric space (X, d), we let € = %d(x, y); then the trniangle inequality
implies that B4(x, €) and B4(y, €) are disjoint.

The product topology we have already considered in special cases; we have proved
that the products R" and R® are metrizable. It is true in general that countable products
of metrizable spaces are metrizable; the proof follows a pattern simular to the proof
for R“, so we leave it to the exercises.

About continuous functions there is a good deal to be said. Consideration of this
topic will occupy the remainder of the section.

When we study continuous functions on metric spaces, we are about as close to
the study of calculus and analysis as we shall come in this book. There are two things
we want to do at this point.

First, we want to show that the familiar “¢-8 definition” of continuity carries over
to general metric spaces, and so does the “convergent sequence definition” of continu-
ity.

Second, we want to consider two additional methods for constructing continuous
functions, besides those discussed in §18. One is the process of taking surns, differ-
ences, products, and quotients of continuous real-valued functions. The other is the
process of taking limuts of uniformly convergent sequences of continuous functions.

Theorem 21.1. Let f: X — Y; let X andY be metrizable with metricsdx anddy,
respectively. Then continuity of f is equivalent to the requirement that given x € X
and given € > 0, there exists § > 0 such that

dx(x,y) <8 = dy(f(x), f(y)) <e.

Proof. Suppose that f is continuous. Given x and €, consider the set

fUB(f(x), €)),
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which is open in X and contains the point x. It contains some §-ball B(x, §) centered
at x. If y is in this §-ball, then f(y) is in the e-ball centered at f(x), as desired.
Conversely, suppose that the €-§ condition is satisfied. Let V be open in Y; we
show that f~!(V) is open in X. Let x be a point of the set f~'(V). Since f(x) €
V, there 1s an e-ball B(f(x), €) centered at f(x) and contained in V. By the ¢-
4 condition, there is a §-ball B(x, §) centered at x such that f(B(x,d)) C B(f(x), €).
Then B(x, 8) is a neighborhood of x contained in f~!(V), so that f~1(V) is open, as
desired. =

Now we turn to the convergent sequence definition of continuity. We begin by
considering the relation between convergent sequences and closures of sets. It is cer-
tainly believable, from one's experience in analysis, that if x lies in the closure of a
subset A of the space X, then there should exist a sequence of points of A converging
to x. This is not true in general, but it is true for metrizable spaces.

Lemma 21.2 (The sequence lemma). Let X be a topological space; let A C X. If
there is a sequence of points of A converging to x, then x € A; the converse holds if X
Is metrizable.

Proof Suppose that x, — x, where x, € A. Then every neighborhood U of x
contains a point of A, so x € A by Theorem 17.5. Conversely, suppose that X is
metrizable and x € A. Let d be a metric for the topology of X. For each positive
integer n, take the neighborhood B;(x, 1/n) of radius 1/n of x, and choose x, to be
a point of its intersection with A. We assert that the sequence x, converges to x: Any
open set U containing x contains an €-ball B, (x, €) centered at x; if we choose N so
that 1/N < ¢, then U contains x; foralli > N. [ |

Theorem 21.3. Let f : X — Y. If the function f is continuous, then for every con-
vergent sequence x, — x in X, the sequence f (x,) converges to f(x). The converse
holds if X is metrizable.

Proof. Assume that f is continuous. Given x, — x, we wish to show that f(x,) —
f(x). Let V be a neighborhood of f(x). Then f"(V) is a neighborhood of x, and so
there is an N such that x, € f~1(V)forn > N. Then f(x,) € V forn > N.

To prove the converse, assume that the convergent sequence condition is satisfied.
Let A be a subset of X: we show that f(A) C f(A) If x € A then there is a
sequence x, of points of A converging to x (by the preceding lemma). By assumption,
the sequence f(x,) converges to f(x). Since f(x,) € f(A), the preceding lemma
lmplles that f(x) € f (A). (Note that metrizability of Y is not needed.) Hence f (A) C
f(A), as desired. [

Incidentally, in proving Lemma 21.2 and Theorem 21.3 we did not use the full strength
of the hypothesis that the space X is metrizable. All we really needed was the countable
collection B4(x, 1/n) of balls about x. This fact leads us to make a new definition.

A space X is said t0 have a countable basis at the point x if there is a countable
collection {Up}nez, Of neighborhoods of x such that any neighborhood U of x contains at
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least one of the sets U,. A space X that has a countable basis at each of its points is said to
sausfy the first countability axiom.

If X has a countable basis {U,]} at x, then the proof of Lemma 21.2 goes through; one
simply replaces the ball By4(x, 1/n) throughout by the set

Bn=U]nU2r1' -nU,,.

The proof of Theorem 21.3 goes through unchanged.

A metrizable space always satisfies the first countability axiom, but the conwverse is not
true, as we shall see. Like the Hausdorff axiom, the first countability axiom is a requirement
that we sometimes impose on a topological space in order to prove stronger theorems about
the space. We shall study it in more detail in Chapter 4.

Now we consider additional methods for constructing continuous functions. We
need the following lemma:

Lemma 21.4. The addition, subtraction, and multiplication operations are continu-
ous functions from R x R into R; and the quotient operation is a continuous function
fromR x (R — {0}) into R.

You have probably seen this lemma proved before; it is a standard “¢-§ argument.”
If not, a proof is outlined in Exercise 12 below; you should have no trouble filling in
the details.

Theorem 21.5. If X is a topological space, and if f,g : X — R are continuous
functions, then f + g, f — g, and f - g are continuous. If g(x) # O for all x, then f/g
is continuous.

Proof Themaph : X — R x Rdefined by
h(x) = f(x) x g(x)

is continuous, by Theorem 18.4. The function f + g equals the composite of h and
the addition operation

+:RxR—->R;
therefore f + g 1s continuous. Similar arguments applyto f — g, f-g,and f/g. B

Finally, we come to the notion of uniform convergence.

Definition. Let f, : X — Y be a sequence of functions from the set X to the metric
space Y. Let d be the metric for Y. We say that the sequence ( f,) converges uniformly
to the function f : X — Y if given € > 0, there exists an integer N such that

d(fa(x), f(x)) <€
foralln > N and all x in X.

Uniformity of convergence depends not only on the topology of Y but also on its
metric. We have the following theorem about uniformly convergent sequences:
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Theorem 21.6 (Uniform limit theorem). Let f, : X — Y be a sequence of contin-
uous functions from the topological space X to the metric space Y. If ( f,) converges
uniformly to f, then f is continuous.

Proof. Let V be open in Y; let xo be a point of f~!(V). We wish to find a neighbor-
hood U of xg such that f(U) C V.

Let yo = f(xo). First choose € so that the e-ball B(yp, €) is contained in V. Then,
using uniform convergence, choose N so that foralln > N and all x € X,

d(fa(x), f(x)) < €/3.

Finally, using continuity of fy, choose a neighborhood U of xg such that fy carries U

into the €/3 ball in Y centered at f (xo).
We claim that f carries U into B(yp, €) and hence into V, as desired. For this

purpose, note that if x € U, then

d(f(x), fn(x)) < €/3  (bychoice of N),
d(fn(x), fn(x0)) < €/3  (by choice of U),
d(fn(x0), f(x0)) < €/3  (by choice of N).

Adding and using the triangle inequality, we see that d(f(x), f(x0)) < €, as
desired. n

Let us remark that the notion of uniform convergence is related to the definition of
the uniform metric, which we gave in the preceding section. Consider, for example,
the space R¥ of all functions f : X — R, in the uniform metric 5. It is not difficult to
see that a sequence of functions f, : X — R converges uniformly to f if and only if
the sequence ( f,) converges to f when they are considered as elements of the metric
space (RX, 5). We leave the proof to the exercises.

We conclude the section with some examples of spaces that are not metrizable.

EXAMPLE |I. RR“ in the box topology is not metrizable.

We shall show that the sequence lemma does not hold for R®. Let A be the subset of
R“ consisting of those points all of whose coordinates are positive:

A=[(x1,x2,...) | x, >0foralli € Z,}.

Let 0 be the “origin” in R®, that is, the point (0, 0, ...) each of whose coordinates is zero.
In the box topology, 0 belongs to A; for if

B = (alle) X (aZ’bZ) X o
1s any basis element containing 0, then B intersects A. For instance, the point
(%bl ’ %bZ s )

belongsto B N A.
But we assert that there is no sequence of points of A converging to 0. For let (a,) be
a sequence of points of A, where

a" = (xln.XZn,---,Xm....).
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Every coordinate x,, is positive, SO we can construct a basis element B’ for the box topol-
ogy on R by setting

B = (—x11, X11) X (—x32,x22) X --- .

Then B’ contains the origin 0, but it contains no member of the sequence (a,); the
point a, cannot belong to B’ because its nth coordinate x,, does not belong to the interval
(—xnn, xan). Hence the sequence (a,) cannot converge to 0 in the box topology.

EXAMPLE 2.  An uncountable product of R with itself is not metrizable.

Let J be an uncountable index set; we show that R/ does not satisfy the sequence
lemma (in the product topology)

Let A be the subset of R’ consisting of all points (x4) such that x, = 1 for all but
finitely many values of a. Let 0 be the “origin” in R/, the point each of whose coordinates
is 0.

We assert that 0 belongs to the closure of A. Let [ U, be a basis element containing 0.
Then U, # R for only finitely many values of a, say fora = ay, ..., a,. Let (xo) be the
point of A defined by letting x, = 0 fora = aj, ..., a, and x, = | for all other values of
a; then (x4) € AN [] Uy, as desired.

But there is no sequence of points of A converging to 0. For let a, be a sequence of
points of A. Given n, let J, denote the subset of J consisting of those indices ar for which
the ath coordinate of a, is different from 1. The union of all the sets J, is a countable
union of finite sets and therefore countable. Because J itself is uncountable, there is an
index in J, say B, that does not lie in any of the sets J,. This means that for each of the
points a,, its Ath coordinate equals 1.

Now let Ug be the open interval (—1, 1) in R, and let U be the open set J'!B_l(Uﬁ)

inR’. The set U is a neighborhood of 0 that contains none of the points a,; therefore, the
séquence a, cannot converge to 0.

Exercises

1. Let A C X. If d is a metric for the topology of X, show that d|A x A is a metric
for the subspace topology on A.

2. Let X and Y be metric spaces with metrics dx and dy, respectively. Let f :
X — Y have the property that for every pair of points x|, x; of X,

dy (f(x1), f(x2)) =dx(x1, x2).

Show that f is an imbedding. It is called an isometric imbedding of X in Y.

3. Let X, be a metric space with metric d,,, forn € Z,..
(a) Show that

p(x,y) = max{d|(xy, y1),...,dn(Xn, ¥n)}

is a metric for the product space X| x - -- x X,,.
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(b) Letd; = min{d,, 1}. Show that
D(x, y) = sup{di(xi, yi)/ i}

is a metric for the product space [] X, .
Show that R, and the ordered square satisfy the first countability axiom. (This
result does not, of course, imply that they are metnizable.)
Theorem. Letx, — x and y, — y in the space R. Then

Xn+yn > x+Yy,
Xpn = Vn 2> X—Y,
XnyYn —> XY,

and provided that each y, # 0andy # 0,
Xn/Yn = X/y.

{Hint: Apply Lemma 21.4; recall from the exercises of §19 that if x, — x and
yn = y,thenx, X y, — x x y.]

Define f, : [0, 1] — R by the equation f,(x) = x". Show that the sequence
(fa(x)) converges for each x € [0, 1], but that the sequence ( f,) does not con-
verge umformly.

Let X be a set, and let f, : X — R be a sequence of functions. Let o be
the uniform metric on the space RX. Show that the sequence ( f,) converges
uniformly to the function f : X — R if and only if the sequence ( f,) converges
to f as elements of the metric space (R¥, p).

Let X be a topological space and let Y be a metric space. Let f, : X —» Y
be a sequence of continuous functions. Let x, be a sequence of points of X
converging to x. Show that if the sequence ( f,) converges uniformly to f, then
( fa(xn)) converges to f(x).

. Let f, : R — R be the function

1

nx —(1/m)PF +1

See Figure 21.1. Let f : R — R be the zero function.

(a) Show that f,(x) — f(x) foreach x € R.

(b) Show that f, does not converge uniformly to f. (This shows that the con-
verse of Theorem 21.6 does not hold; the limit function f may be continuous
even though the convergence is not uniform.)

Using the closed set formulation of continuity (Theorem 18.1), show that the

following are closed subsets of R?:

falx) =

A={xxylxy=1)},
Sl={xxy|x2+y2=1].
Bz={xxy|x2+y251}.
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Figure 21.1

The set B? is called the (closed) unit ball in R?.
11. Prove the following standard facts about infinite series:

(a)

(b)

()

(d)

Show that if (s,) is a bounded sequence of real numbers and s, < s, for
each n, then (s,) converges.
Let (an) be a sequence of real numbers; define

n

Sn= E a‘.

If s, — s, we say that the infinite series

o
2_a
i=1

converges to s also. Show that if )_ a; converges to s and )_ b; converges
to ¢, then Y _(ca; + b;) converges to cs + .

Prove the comparison test for infinite series: If |a;| < b; for each i, and if
the series ) _ b; converges, then the series Y a; converges. [Hint: Show that
the series Y _ |a;| and }_ ¢; converge, where ¢; = |a;| + a;.}

Given a sequence of functions f; : X — R, let

sa(x) = ) filx).
i=]

Prove the Weierstrass M-test for uniform convergence: If | f;(x)| < M; for
all x € X and all i, and if the series ) M; converges, then the sequence (s,)
converges uniformly to a function s. [Hint: Let r, = f’:n +1 Mi. Show
that if k > n, then |sg(x) — s,(x)| < ry; conclude that |s(x) — sp(x)| < rp.]

12. Prove continuity of the algebraic operations on R, as follows: Use the metric
d(a, b) = |a — b| on R and the metric on R? given by the equation

p((x, y), (xo0, y0)) = max{|x — xol, |y — yol}.



Chapter 3

Connectedness
and Compactness

In the study of calculus, there are three basic theorems about continuous functions,
and on these theorems the rest of calculus depends. They are the following:

Intermediate value theorem. If f : [a,b] — R is continuous and if r is a real
number between f(a) and f(b), then there exists an element ¢ € [a, b] such that
fle)=r.

Maximum value theorem. If f : [a, b] — R is continuous, then there exists an
element ¢ € [a, b] such that f(x) < f(c) for every x € [a, b).

Uniform continuity theorem. If f : [a, b] — R is continuous, then given ¢ > 0,
there exists § > O such that | f(x|) — f(x2)| < € for every pair of numbers x|, x;
of [a, b] for which |x; — x3]| < 6.

These theorems are used in a number of places. The intermediate value theorem is
used for instance in constructing inverse functions, such as /x and arcsin x; and the
maximum value theorem is used for proving the mean value theorem for derivatives,
upon which the two fundamental theorems of calculus depend. The uniform continuity
theorem is used, among other things, for proving that every continuous function is
integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed interval [a, b] of real
numbers. The theorems depend not only on the continuity of f but also on properties
of the topological space [a. b].

The property of the space [a, b] on which the intermediate value theorem depends

147
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is the property called connectedness, and the property on which the other two depend
is the property called compaciness. In this chapter, we shall define these properties for
arbitrary topological spaces, and shall prove the appropriate generalized versions of
these theorems.

As the three quoted theorems are fundamental for the theory of calculus, so are the
notions of connectedness and compactness fundamental in higher analysis, geometry,
and topology—indeed, in almost any subject for which the notion of topological space
itself is relevant.

§23 Connected Spaces

The definition of connectedness for a topological space is a quite natural one. One says
that a space can be “separated” if it can be broken up into two *“globs”—disjoint open
sets. Otherwise, one says that it is connected. From this simple idea much follows.

Definition. Let X be atopological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be connected
if there does not exist a separation of X.

Connectedness is obviously a topological property, since it is formulated entirely
in terms of the collection of open sets of X. Said differently, if X is connected, so is
any space homeomorphic to X.

Another way of formulating the definition of connectedness is the following:

A space X is connected if and only if the only subsets of X that are both
open and closed in X are the empty set and X itself.

For if A is a nonempty proper subset of X that is both open and closed in X, then the
sets U = Aand V = X — A constitute a separation of X, for they are open, disjoint,
and nonempty, and their union is X. Conversely, if U and V form a separation of X,
then U is nonempty and different from X, and it is both open and closed in X.

For a subspace Y of a topological space X, there is another useful way of formu-
lating the definition of connectedness:

Lemma 23.1. IfY is a subspace of X, a separation of Y is a pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other.
The space Y is connected if there exists no separation of Y.

Proof Suppose first that A and B form a separation of Y. Then A is both open and
closed in Y. The closure of A in Y is the set A N Y (where A as usual denotes the
closure of A in X). Since Aisclosedin Y, A = ANY,; or to say the same thing,
AN B = @. Since A is the union of A and its limit points, B contains no limit points
of A. A similar argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y,
neither of which contains a limit point of the other. Then ANB=@andANB = a;
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therefore, we conclude that ANY = A and BNY = B. Thus both A and B are closed
inY,andsince A=Y — Band B =Y — A, they are openin Y as well. .

EXAMPLE 1. Let X denote a two-point space in the indiscrete topology. Obviously there
is no separation of X, so X is connected.

EXAMPLE 2. Let Y denote the subspace [—1, 0) U (0, 1] of the real line R. Each of the
sets [—1, 0) and (0, 1] is nonempty and opén in Y (although notin R); therefore, they form
a separation of Y. Alternatively, note that neither of these sets contains a limit point of the
other. (They do have a limit point 0 in common, but that does not matter.)

EXAMPLE 3. Let X be the subspace [—1, 1] of the real line. The sets {—1, 0} and (0, 1]
are disjoint and nonempty, but they do not form a separation of X, because the first set is
not open in X. Alternatively, noie that the first set contains a limit point, 0, of the second.
Indeed, there exists no separation of the space [~ 1, 1]. We shall prove this fact shortly.

EXAMPLE 4.  The rationals Q are not connected. Indeed, the only connected subspaces
of Q are the one-point sets: If Y is a subspace of Q containing two points p and q, one can
choose an irrational number a lying between p and g, and write Y as the union of the open
sets

YN(-o0,a) and Y N, +0).
EXAMPLE 5.  Consider the following subset of the plane R2:
X={xxy|ly=0U{xxy|x>0andy = 1/x}.

Then X is not connected; indeed, the two indicated sets form a separation of X because
neither contains a limit point of the other. See Figure 23.1.

Figure 23.1

We have given several examples of spaces that are not connected. How can one
construct spaces that are connected? We shall now prove several theorems that tell
how to form new connected spaces from given ones. In the next section we shall apply
these theorems to show that some specific spaces, such as intervals in R, and balls and
cubes in R", are connected. First, a lemma:

Lemma 23.2. If the sets C and D form a separation of X, and if Y is a connected
subspace of X, then Y lies entirely within either C or D.

Proof. Since C and D are both open in X, the sets CNY and DNY are openin Y.
These two sets are disjoint and their union is Y; if they were both nonempty, they
would constitute a separation of Y. Therefore, one of them is empty. Hence Y must
lie entirely in C or in D. |
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Theorem 23.3. The union of a collection of connected subspaces of X that have a
point in common is connected.

Proof. Let {Aq) be acollection of connected subspaces of a space X; let p be a point
of (] Aq. We prove that the space Y = | ) A, is connected. Suppose that Y = CU D
is a separation of Y. The point p is in one of the sets C or D; suppose p € C.
Since A4 is connected, it must lie entirely in either C or D, and it cannot lie in D
because it contains the point p of C. Hence A, C C for every «, so that | JA, C C,
contradicting the fact that D is nonempty. n

Theorem 23.4. Let A be a connected subspace of X. IfFA C B C A, then B is also
connected.

Said differently: If B is formed by adjoining to the connected subspace A some or
all of its limit points, then B is connected.
Proof. Let A be connected and let A ¢ B C A. Suppose that B = CUD is a
separation of B. By Lemma 23.2, the set A must lie entirely in C or in D; suppose
that A C C. Then A C C; since C and D are disjoint, B cannot intersect D. This
contradicts the fact that D is a nonempty subset of B. =

Theorem 23.5S. The image of a connected space under a continuous map is con-
nected.

Proof Let f : X — Y be a continuous map; let X be connected. We wish to
prove the image space Z = f(X) is connected. Since the map obtained from f by
restricting its range to the space Z is also continuous, it suffices to consider the case
of a continuous surjective map

g: X Z.

Suppose that Z = A U B is a separation of Z into two disjoint nonempty sets open
in Z. Then g~!(A) and g~!(B) are disjoint sets whose union is X; they are open in X
because g is continuous, and nonempty because g is surjective. Therefore, they form
a separation of X, contradicting the assumption that X is connected. n

Theorem 23.6. A finite cartesian product of connected spaces is connected.

Proof. We prove the theorem first for the product of two connected spaces X and Y.
This proof is easy to visualize. Choose a “base point” a x b in the product X x Y.
Note that the “horizontal slice” X x b is connected, being homeomorphic with X, and
each *“vertical slice” x x Y is connected, being homeomorphic with Y. As a result,
each *“T-shaped” space

T, =(Xxb)U(x xY)

is connected, being the union of two connected spaces that have the point x x b in
common. See Figure 23.2. Now form the union |, .y T of all these T-shaped spaces.
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This union is connected because it is the union of a collection of connected s paces that
have the point a x b in common. Since this union equals X x Y, the space X x Y is

connected.
Y xXxY
axb
b e - Xxb
———o- X
X a
Figure 23.2

The proof for any finite product of connected spaces follows by induction, using

the fact (easily proved) that X x - - - x X, is homeomorphic with (X; x---x X,_1) x

Xn.

It is natural to ask whether this theorem extends to arbitrary products of connected

spaces. The answer depends on which topology is used for the product, as the follow-
ing examples show.

EXAMPLE 6. Consider the cartesian product R® in the box topology. We can write R¥
as the union of the set A consisting of all bounded sequences of real numbers, and the set B
of all unbounded sequences. These sets are disjoint, and each is open in the box topology.
For if a is a point of R, the open set

U=@~-l,aq1+]1)x@-1,a+1) x---

consists entirely of bounded sequences if a is bounded, and of unbounded sequences if a if
unbounded. Thus, even though R is connected (as we shall prove in the next section), R
is not connected in the box topology.

EXAMPLE 7. Now consider R“ in the product topology. Assuming that R is con-
nected, we show that R“ is connected. Let R” denote the subspace of R” consisting of
all sequences x = (x1,x2,...) such that x; = O fori > n. The space R" is clearly
homeomorphic to R”, so that it is connected, by the preceding theorem. It follows that the
space R that is the union of the spaces R" is connected, for these spaces have the point
0= (0,0,...)in common. We show that the closure of R* equals all of R, from which
it follows that R“ is connected as well.

Let a = (aj,az,...) be a point of R“. Let U = [] U; be a basis element for the
product topology that contains a. We show that U intersects R* . There is an integer N
such that U, = R for i > N. Then the point

X=(ay,...,a,,0,0,...)

of R*™ belongs to U, since a; € U; foralli,and 0 € U; fori > N.
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The argument just given generalizes to show that an arbitrary product of connected

spaces is connected in the product topology. Since we shall not need this result, we
leave the proof to the exercises.

Exercises

)

10.

11.

12.

Let 7 and 7’ be two topologies on X. If 7' D T, what does connectedness
of X in one topology imply about connectedness in the other?

Let {A,} be a sequence of connected subspaces of X, such that A, N A, # O
for all n. Show that | J A, is connected.

Let {Aq} be a collection of connected subspaces of X; let A be a connected
subspace of X. Show thatif ANAy # @ forall «, then AU(| J Ay) is connected.

Show that if X is an infinite set, it is connected in the finite complement topology.

. A space is totally disconnected if its only connected subspaces are one-point

sets. Show that if X has the discrete topology, then X is totally disconnected.
Does the converse hold?

Let A C X. Show that if C is a connected subspace of X that intersects both A
and X — A, then C intersects Bd A.

Is the space R, connected? Justify your answer.
Determine whether or not R® is connected in the uniform topology.

Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are
connected, show that

(X xY)—- (A x B)

is connected.
Let {Xq}qes be an indexed family of connected spaces; let X be the product

space
X = ]'[ Xq.

Let a = (ay) be a fixed point of X.

(a) Given any finite subset K of J, let X ¢ denote the subspace of X consisting
of all points X = (xq) such that x;, = a4 for @ ¢ K. Show that Xg is
connected.

(b) Show that the union Y of the spaces X x is connected.

(c) Show that X equals the closure of Y; conclude that X is connected.

Let p : X — Y be a quotient map. Show that if each set p~!({y}) is connected,
and if Y is connected, then X is connected.

Let Y C X; let X and Y be connected. Show that if A and B form a separation
of X —Y,thenY U A and Y U B are connected.
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It is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition. A collection A of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of A is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering 4 of X contains
a finite subcollection that also covers X.

EXAMPLE |. The real line R is not compact, for the covering of R by open intervals
A={((n,n+2)|nelZ)

contarns no finite subcollection that covers R.

EXAMPLE 2.  The following subspace of R is Compact:
X=(0}u(l/n|neZy).

Given an open covering A of X, there is an element U of A containing 0. The set U
contains all but finitely many of the points 1/n; choose, for each point of X notin U/, an
element of A containing it. The collection consisting of these elements of A, along with
the element U, is a finite subcollection of A that covers X.

EXAMPLE 3. Any space X containing only finitely many points is necessarily compact,
because in this case every open covering of X is finite.

EXAMPLE 4. The interval (0, 1] is not compact; the open covering
A=((1/n1]|neZy)

contains no finite subcollection covering (0, 1]. Nor is the interval (0, 1) compact; the
same argument applies. On the other hand, the interval [0, 1] is compact; you are probably
already familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or
not. First we shall prove some general theorems that show us how to construct new
compact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of R".

Let us first prove some facts about subspaces. If Y is a subspace of X, a collec-
tion A of subsets of X is said to cover Y if the union of its elements contains Y .

Lemma 26.1. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .
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Proof. Suppose that Y is compact and A = (Aq}qes is a covering of Y by sets open
in X. Then the collection

(A NY |a € J)
is a covering of Y by sets open in Y; hence a finite subcollection
{Ag, NY, ..., Aq, NY]

covers Y. Then {Aq,, ..., Aq,} is a subcollection of A that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y compact. Let
A’ = (AL} be a covering of Y by sets open in Y. For each a, choose a set A, open
in X such that

A, =AgNY.
The collection A = (A} is a covening of Y by sets open in X. By hypothesis, some
finite subcollection {Aq,, ..., Ag,} covers Y. Then {A] ..., A, ] is a subcollection
of A’ that covers Y. |

Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. LetY be a closed subspace of the compact space X. Given a covering A of Y
by sets open in X, let us form an open covering B of X by adjoining to A the single
open set X — Y, that is,

B=AU[X-Y)

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — Y ; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of A that covers Y. n

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof Let Y be a compact subspace of the Hausdorff space X. We shall prove that
X — Y is open, so that Y is closed.

Let xg be a point of X — Y. We show there is a neighborhood of xq that is disjoint
from Y. For each point y of Y, let us choose disjoint neighborhoods Uy and V), of the
points xo and y, respectively (using the Hausdorff condition). The collection {V, | y €
Y} is a covering of Y by sets open in X; therefore, finitely many of them V), ..., V),
cover Y. The open set

V = Vyl u---u Vyn
contains Y, and it is disjoint from the open set
U = Uyl n c n Uy"

formed by taking the intersection of the corresponding neighborhoods of xq. For if z
is a point of V, then z € V,, for some i, hence z ¢ U), andso z ¢ U. See Figure 26.1.
Then U is a neighborhood of xg disjoint from Y, as desired. ’ n
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Figure 26.1

1

The statement we proved in the course of the preceding proof will be useful to us
later, so we repeat it here for reference purposes:

Lemma 26.4. IfY is a compact subspace of the Hausdorff space X and xg isnotm Y,
then there exist disjoint open sets U and V of X containing xo and Y, respectively.

EXAMPLE 5. Once we prove that the interval [a, b] in R is compact, it follows from
Theorem 26 2 that any closed subspace of [a, b] is compact. On the other hand, it follows
from Theorem 26.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we
knew already) because they are not closed in the Hausdorff space R

EXAMPLE 6.  One needs the Hausdorff condition in the hypothesis of Theorem 26 3
Consider, for example, the finite complement 10pology on the real line The only proper
subsets of R that are closed in this topology are the finite sets. But every subset of R is
compact in this topology, as you can check.

Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous; let X be compact. Let A be a covering of the
set f(X) by sets open in Y. The collection

(f71(A) | A € A)

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

A, ..., (A,

cover X. Then the sets Ay, ..., A, cover f(X). [
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One important use of the preceding theorem is as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let f : X — Y be a bijective continuous function. If X is compact
and Y 1s HausdorfT, then f 1s a homeomorphism

Proof. We shall prove that images of closed sets of X under f are closed in Y; this
will prove continuity of the map f~!. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. n

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof. We shall prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and Y, with Y compact. Suppose that
xo is a point of X, and N is an open set of X x Y containing the “slice” x¢ x Y of
X x Y We prove the following

There is a neighborhood W of xo in X such that N contains the entire set
WxY

The set W x Y is often called a tube about x¢ x Y.

First let us cover xo x Y by basis elements U x V (for the topology of X x Y)
lying in N. The space xo x Y is compact, being homeomorphic to Y. Therefore, we
can cover xo x Y by finitely many such basis elements

Uy xVy,...,Uy, x V,

(We assume that each of the basis elements U; x V; actually intersects xo x< Y, since
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of xo x Y.) Define

W-_-U]n" nUn

The set W is open, and it contains xo because each set U; x V; intersects xg x Y.

We assert that the sets U, x V;, which were chosen to cover the slice xg x Y,
actually cover the tube W x Y. Let x x y be a point of W x Y. Consider the point
xo x y of the slice xo x Y having the same y-coordinate as this point. Now xg x y
belongs to U, x V; forsome i,sothat y € V;. Butx € U; for every j (because x € W).
Therefore, we have x x y € U; x V;, as desired.

Since all the sets U; x V; lie in N, and since they cover W x Y, the tube W x Y
lies in N also. See Figure 26.2.

Step 2. Now we prove the theorem. Let X and Y be compact spaces. Let A
be an open covering of X x Y. Given xo € X, the slice xo x Y is compact and
may therefore be covered by finitely many elements A, ..., A, of A. Their union
N = A|U---UA,, is an open set containing xo x Y; by Step 1, the open set N contains
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Figure 26.2

atube W x Y about xg x Y, where W is open in X. Then W x Y is covered by finitely
many elements Ay, ..., A, of A.

Thus, for each x in X, we can choose a neighborhood W, of x such that the tube
Wx x Y can be covered by finitely many elements of A. The collection of all the
neighborhoods W, is an open covering of X; therefore by compactness of X, there
exists a finite subcollection

(Wi, ..., Wi}
covering X. The union of the tubes
WixY, ... WyxY

is all of X x Y; since each may be covered by finitely many elements of A, so may
X x Y be covered. n

The statement proved in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x Y of X x Y then N
contains some tube W x Y about xo x Y, where W is a neighborhood of xg in X .

EXAMPLE7  The tube lemma is certainly not true if Y is not compact For example, let
Y be the y-axis in R, and le

N ={xxy, |x| < 1/(y* + D)

Then N is an open set containing the set 0 x R, but it contains no tube about 0 x R It is
illustrated in Figure 26 3
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Figure 26.3

There is an obvious question to ask at this point. Is the product of infinitely many
compact spaces compact? One would hope that the answer is “yes,” and in fact it is.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is no way to
go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of its difficulty, and also to avoid
losing the main thread of our discussion in this chapter, we have decided to postpone it
until later. However, you can study it now if you wish; the section in which it is proved
(§37) can be studied immediately after this section without causing any disruption in
continuity.

There is one final criterion for a space to be compact, a criterion that is formulated
in terms of closed sets rather than open sets It does not look very natural nor very
useful at first glance, but it in fact proves to be useful on a number of occasions. First
we make a definition.

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection
{Cr,....Ch}

of C, the intersection C) N -+ N C, is nonempty.
Theorem 26.9. Let X be a topological space. Then X is compact if and only if

for every collection C of closed sets in X having the finite intersection property, the
intersection ()@ C of all the elements of C is nonempty.
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Proof. Given a collection A of subsets of X, let
C={X—-—A|Ae€A)

be the collection of their complements. Then the following statements hold:
(1) +Ais acollection of open sets if and only if C is a collection of closed sets.

(2) The collection A covers X if and only if the intersection ()o@ C of all the
elements of C is empty

(3) The finite subcollection {A,, ..., A,} of A covers X if and only if the intersec-
tion of the corresponding elements C, = X — A; of C is empty.
The first statement is trivial, while the second and third follow from DeMorgan’s law:

X - (| 4e) = (X - 4a).

a€el ael

The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!

The statement that X is compact is equivalent to saying: “Given any collection 4
of open subsets of X, if A covers X, then some finite subcollection of A covers X.”
This statement is equivalent to its contrapositive, which is the following: “Given any
collection A of open sets, if no finite subcollection of A covers X, then A does not
cover X.” Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)-(3), we see that this statement is in turn equivalent to the following: “Given any
collection C of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of € is nonempty.” This is just the condition
of our theorem. [

A special case of this theorem occurs when we have a nested sequence C; O C; D
«++ D Cp D Cpy1 DO ... of closed sets in a compact space X. If each of the sets C,, is
nonempty, then the collection € = {Cp}aez, automatically has the finite intersection
property. Then the intersection
(G

IIGZ+
is nonempty.
We shall use the closed set criterion for compactness in the next section to prove

the uncountability of the set of real numbers, in Chapter 5 when we prove the Ty-
chonoff theorem, and again in Chapter 8 when we prove the Baire category theorem.

Exercises

1. (a) Let 7 and 7’ be two topologies on the set X; suppose that 7’ O 7. What
does compactness of X under one of these topologies imply about compact-
ness under the other?

(b) Show that if X is compact Hausdorff under both 7 and 7', then either T
and 7' are equal or they are not comparable.
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(b) Show that Ry is connected. [Hint (—o0, 0) and (0, 00) inherit their usual
topologies as subspaces of Rx.]
(c) Show that Ry is not path connected.
4. Show that a connected metric space having more than one point is uncountable.

S. Let X be a compact Hausdorff space, let {A,} be a countable collection of closed
sets of X. Show that if each set A, has empty intenor in X, then the union | J A,
has empty interior in X. [Hinz: Imutate the proof of Theorem 27.7.]

This is a special case of the Baire category theorem, which we shall study in
Chapter 8.

6. Let Ag be the closed interval [0, 1] in R. Let A be the set obtained from Ag by
deleting its “middle third” (%, %). Let A3 be the set obtained from A) by deleting

its “middle thirds” (15, %) and (%, g) In general, define A, by the equation

o 1+3k 243k
A"=A"_1—U( 3n ' 3n )
k=0

The intersection

C= ) An

neZ,

is called the Cantor set; it is a subspace of [0, 1]

(a) Show that C is totally disconnected.

(b) Show that C is compact.

(c) Show that each set A, is a union of finitely many disjoint closed intervals of
length 1/3"; and show that the end points of these intervals lie in C.

(d) Show that C has no isolated points.

(e) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides with compactness for
metrizable spaces.

Definition. A space X is said to be limit point compact if every infinite subset of X
has a limit point.

In some ways this property is more natural and intuitive than that of compactness.
In the early days of topology, it was given the name ‘“‘compactness,” while the open
covering formulation was called “bicompactness.” Later, the word “compact” was
shifted to apply to the open covering definition, leaving this one to search for a new
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name It still has not found a name on which everyone agrees On historical grounds,
some call it “Fréchet compactness”, others call it the “Bolzano-Weierstrass property ”
We have invented the term “limut point compactness ” It seems as good a term as any;
at least it describes what the property is about.

Theorem 28.1. Compactness implies limut point compactness, but not con versely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limt
point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a € A we can choose a neighborhood U, of a such that
U, intersects A in the point a alone The space X is covered by the open set X — A
and the open sets U,; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set U, contains only one point of A, the
set A must be finite. [

EXAMPLE 1 Let Y consist of two points, give Y the topology consisting of Y and
the empty set Then the space X = Z, x Y is limit point compact, for every nonempty
subset of X has a limit point. It is not compact, for the covenng of X by the open sets
U, = (n} x Y has no finite subcollection covering X

EXAMPLE 2 Here is a less trivial example Consider the minimal uncountable well-
ordered set Sq, in the order topology The space Sq is not compact, since it has no largest
element However, it is limit point compact: Let A be an infinite subset of Sg. Choose a
subset B of A that is countably infinite Being countable, the set B has an upper bound b
in Sq; then B is a subset of the interval [ag, b] of Sq, where ag is the smallest element
of Sq. Since Sq has the least upper bound property, the interval [ag, b] is compact By the
preceding theorem, B has a limut point x in [ap, b]. The point x is also a limit point of A
Thus Sgq is limit point compact

We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential
compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If (x,) is a sequence of points of X, and if
n<nn<-- <n<--

is an increasing sequence of positive integers, then the sequence (y;) defined by setting
Yi = X, is called a subsequence of the sequence (x,). The space X is said to be
sequentially compact if every sequence of points of X has a convergent subsequence.

*Theorem 28.2. Let X be a metnizable space. Then the following are equivalent:
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.
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Proof. We have already proved that (1) = (2). To show that (2) = (3), assume
that X is limit point compact. Given a sequence (x,) of points of X, consider the set
A = {x, | ne€Z,) Ifthe set A is finite, then there is a point x such that x = x, for
infinitely many values of n. In this case, the sequence (x,) has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of (x,) converging to x as follows: First
choose n| so that

xp, € B(x, 1).

Then suppose that the positive integer n;_) is given. Because the ball B(x, 1/i) inter-
sects A in infinitely many points, we can choose an index n; > n,_; such that

Xn; € B(x, 1/1).

Then the subsequence x,,, Xp,, ... converges to x.

Finally, we show that (3) = (1). This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma
holds for X. (This would follow from compactness, but compactness is what we are
trying to prove!) Let A be an open covering of X. We assume that there isnoé > 0
such that each set of diameter less than § has an element of A containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a
set of diameter less than 1/n that is not contained in any element of A; let C,, be such a
set. Choose a point x,, € C,, for each n. By hypothesis, some subsequence (x,;) of the
sequence (x,) converges, say to the point a. Now a belongs to some element A of the
collection A; because A is open, we may choose an € > 0 such that B(a.€) C A. If i
is large enough that 1 /n; < €/2, then the set Cy, lies in the € /2-neighborhood of x,,, ; if
i is also chosen large enough that d(x,,, a) < €/2, then C,,, lies in the €-neighborhood
of a. But this means that C,, C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists
a finite covering of X by open €-balls. Once again, we proceed by contradiction.
Assume that there exists an € > 0 such that X cannot be covered by finitely many
e-balls. Construct a sequence of points x, of X as follows: First, choose x; to be any
point of X. Noting that the ball B(x), €) is not all of X (otherwise X could be covered
by a single e-ball), choose x; to be a point of X not in B(xy, €). In general, given
X1, ..., Xn, choose x, to be a point not in the union

B(x1,€)U---U B(x,, €),

using the fact that these balls do not cover X. Note that by construction d (x,41, X;) >
€ fori =1, ..., n. Therefore, the sequence (x,) can have no convergent subsequence;
in fact, any ball of radius €/2 can contain x, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be
an open covering of X. Because X is sequentially compact, the open covering 4 has
a Lebesgue number 8. Let ¢ = §/3; use sequential compactness of X to find a finite
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covening of X by open e-balls. Each of these balls has diameter at most 26/3, so it
lies in an element of A. Choosing one such element of A for each of these € -balls, we
obtain a finite subcollection of 4 that covers X. [

EXAMPLE 3.  Recall that Sq denotes the minimal uncountable well-ordered set Sq with
the point Q adjoined. (In the order topology, 2 is a limit point of Sq, which is why we
introduced the notation Sq for Sq U {2}, back in §10 ) It is easy to see that the space S
is not metnzable, for it does not satisfy the sequence lemma: The point  is a limt point
of Sq, but it is not the limit of a sequence of points of Sq, for any sequence of points of Sq
has an upper bound in Sq The space Sq, on the other hand, does satisfy the sequence
lemma, as you can readily check Nevertheless, Sq is not metnzable, for it is limit point
compact but not compact.

Exercises

1.

Give [0, 1]* the uniform topology. Find an infinite subset of this space that has
no limit point
Show that {0, 1] is not limit point compact as a subspace of R,.

Let X be limit point compact.

(a) If f - X — Y is continuous, does it follow that f(X) is limit point compact?

(b) If A is a closed subset of X, does it follow that A is limit point compact?

(c) If X is a subspace of the Hausdorff space Z, does it follow that X is closed
in Z?

We comment that it is not in general true that the product of two limit point com-

pact spaces is limit point compact, even if the Hausdorff condition is assumed.

But the examples are fairly sophisticated. See [S-S], Example 112.

A space X is said to be countably compact if every countable open covering
of X contains a finite subcollection that covers X. Show that for a T} space X,
countable compactness is equivalent to limit point compactness. [Hint: If no
finite subcollection of U, covers X, choose x, ¢ Uy U --- U U,, for eachn.]

Show that X is countably compact if and only if every nested sequence C; D
C2 O - of closed nonempty sets of X has a nonempty intersection.

Let (X, d) be a metric space. If f : X — X satisfies the condition

d(f(x), f(y)) =d(x,y)

forall x, y € X, then f is called an isometry of X. Show that if f is an isometry
and X is compact, then f is bijective and hence a homeomorphism. [Hint: If
a ¢ f(X), choose € so that the €-neighborhood of a is disjoint from f(X) Set
x; = a,and x,4+) = f(x) in general. Show that d(x,, x,,) > € forn # m.]

Let (X, d) be a metric space. If f satisfies the condition

d(f(x), f(y)) <d(x,y)



Chapter 5

The Tychonoff Theorem

We now return to a problem we left unresolved in Chapter 3. We shall prove the
Tychonoff theorem, to the effect that arbitrary products of compact spaces are compact.
The proof makes use of Zomn’s Lemma (see §11). An alternate proof, which relies
instead on the well-ordenng theorem, is outlined in the exercises.

The Tychonoff theorem is of great usefulness to analysts (less so to geometers).
We apply it in §38 to construct the Stone-Cech compactification of a completely regu-
lar space, and in §47 in proving the general version of Ascoli’s theorem.

§37 The Tychonoff Theorem

Like the Urysohn lemma, the Tychonoff theorem is what we call a “deep” theorem. Its
proof involves not one but several original ideas; it is anything but straightforward. We
shall discuss the crucial ideas of the proof in some detail before turning to the proof
itself.

In Chapter 3, we proved the product X x Y of two compact spaces to be compact.
For that proof the open covering formulation of compactness was quite satisfactory.
Given an open covening of X x Y by basis elements, we covered each slice x x Y by
finitely many of them, and proceeded from that to construct a finite covering of X x Y.

It is quite tricky to make this approach work for an arbitrary product of com-
pact spaces; one must well-order the index set and use transfinite induction. (See

230



§37 The Tychonoff Theorem 231

Exercise 5.) An alternate approach is to abandon open coverings and to approach the
problem by applying the closed set formulation of compactness, using Zorn’s lemma.

To see how this idea mught work, let us constder first the simplest possible case:
the product of two compact spaces X| x X,. Suppose that A is a collection of closed
subsets of X| x X3 that has the finite intersection property. Consider the projection
map 11 : X| x X2 — X,. The collection

{m1(A) ] A € A}

of subsets of X also has the finite intersection property, and so does the collection of
their closures ) (A). Compactness of X guarantees that the intersection of all the sets
1) (A) is nonempty. Let us choose a point x| belonging to this intersection. Similarly,
let us choose a point x2 belonging to all the sets m2(A). The obvious conclusion we
would like to draw is that the point x| x x; lies in [ AcA A, for then our theorem would
be proved.

But that is unfortunately not true. Consider the following example, in which X| =
X2 = [0, 1] and the collection A consists of all closed elliptical regions bounded by
ellipses that have the points p = (1, 1) and ¢ = (4, 2) as their foci. See Figure 37.1.
Certainly A has the finite intersection property. Now let us pick a point x| in the
intersection of the sets {mr;(A) | A € A} Any point of the interval [%, %] will do;
suppose we choose x| = % Similarly, choose a point x> in the intersection of the sets
{m2(A) | A € A). Any point of the interval [%, %] will do; suppose we pick x» = %
This proves to be an unfortunate choice, for the point

x|xx2=%x%

does not lie in the intersection of the sets A.

win
’_.
{

X, X X,

[XTE

=

P
s
>r———
1 1
3 2
Figure 37.1

“Aha!” you say, “you made a bad choice. If after choosing x| = %_ you had chosen
X2 = % then you would have found a point in (4.4 A.” The difficulty with our
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tentative proof is that it gave us too much freedom in picking x; and x;; it allowed us
to make a “bad” choice instead of a “good” choice.

How can we alter the proof so as to avoid this difficulty?

This question leads to the second idea of the proof: Perhaps if we expand the
collection A (retaining the finite intersection property, of course), that expansion will
restrict the choices of x| and x; sufficiently that we will be forced to make the “nght”
choice. To illustrate, suppose that in the previous example we expand the collection A
to the collection D consisting of all closed elliptical regions bounded by ellipses that
have p = (%, %) as one focus and any point of the line segment pq as the other focus.
This collection is illustrated in Figure 37.2. The new collection D still has the finite
intersection property. But if you try to choose a point x) in

() =D,

Ded

the only possible choice for xj is % Similarly, the only possible choice for x; is %

And % X % does belong to every set D, and hence to every set A. In other words,
expanding the collection A to the collection D forces the proper choice on us.

XS]
——

2120

———o

1 1

3 2
Figure 37.2

Now of course in this example we chose D carefully so that the proof would work.
What hope can we have for choosing D correctly in general? Here is the third idea of
the proof: Why not simply choose D to be a collection that is “‘as large as possible”—
so that no larger collection has the finite intersection property—and see whether such
a D will work? It is not at all obvious that such a collection D exists; to prove it, we
must appeal to Zorn’s lemma. But after we prove that D exists, we shall in fact be
able to show that D is large enough to force the proper choices on us.

A final remark. The assumption that the elements of the collection A were closed
sets was urelevant in this discussion. For even if the set A € A is closed, the set | (A)
need not be closed, so we had to take its closure in order to apply the closed set formu-
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lation of compactness. Therefore, we may as well begin with an arbitrary collection
of subsets of X having the finite intersection property, and prove that the intersection
of their closures is nonempty. This approach actually proves to be more convenient.

Lemma 37.1. Let X be a set; let A be a collection of subsets of X having the
finite intersection property. Then there is a collection D of subsets of X such that D
contains A, and D has the finite intersection property, and no collection of subsets
of X that properly contains D has this property.

We often say that a collection D satisfying the conclusion of this theorem is max-
imal with respect to the finite intersection property

Proof. As you might expect, we construct D by using Zorn’s lemma. It states that,
given a set A that is strctly partially ordered, in which every simply ordered subset
has an upper bound, A itself has a maximal element.

The set A to which we shall apply Zorn’s lemma is not a subset of X, nor even a
collection of subsets of X, but a set whose elements are collections of subsets of X.
For purposes of this proof, we shall call a set whose elements are collections of subsets
of X a “superset” and shall denote it by an outline letter. To summanze the notation:

c is an element of X.
C is a subset of X
C is a collection of subsets of X

C is a superset whose elements are collections of subsets of X.

Now by hypothesis, we have a collection A of subsets of X that has the finite
intersection property. Let A denote the superset consisting of all collections B of
subsets of X such that B O A and B has the finite intersection property. We use
proper inclusion G as our strict partial order on A. To prove our lemma, we need to
show that A has a maximal element D.

In order to apply Zorn’s lemma, we must show that if B is a “subsuperset” of A
that is simply ordered by proper inclusion, then B has an upper bound in A. We shall
show in fact that the collection

e=|J s

BeB

which is the union of the collections belonging to B, is an element of A; then it is the
required upper bound on B.

To show that C is an element of A, we must show that ¢ D A and that C has
the finite intersection property. Certainly C contains A, since each element of B con-
tains A. To show that C has the finite intersection property, let Cy, . .., C, be elements,
of C. Because C is the union of the elements of B, there is, for each i, an element B;
of B such that C; € B;. The superset {By, ..., B,} is contained in B, so it is simply
ordered by the relation of proper inclusion. Being finite, it has a largest element; that
is, there is an index k such that B; C By fori = 1,...,n. Thenall the sets Cy, ..., C,
are elements of By. Since By has the finite intersection property, the intersection of
the sets Cy, ..., Cn is nonempty, as desired. n
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Lemma 37.2. Let X be a set; let D be a collection of subsets of X that is maximal
with respect to the finite intersection property. Then:
(a) Any finite intersection of elements of D is an element of D.

(b) If A is a subset of X that intersects every element of D, then A is an element
of D.

Proof. (a) Let B equal the intersection of finitely many elements of . Define a
collection & by adjoining B to D, sothat & = D U {B}. We show that & has the finite
intersection property; then maximality of 2D implies that & = D, so that B € D as
desired

Take finitely many elements of &. If none of them is the set B, then their intersec-
tion is nonempty because D has the finite intersection property. If one of them is the
set B, then their intersection is of the form

Dlﬂ' 'annB

Since B equals a finite intersection of elements of D, this set is nonempty.

(b) Given A, define & = D U{A} We show that & has the finite intersection prop-
erty, from which we conclude that A belongs to D. Take finitely many elements of §.
If none of them is the set A, their intersection 1s automatically nonempty. Otherwise,
it is of the form

Din---NnD,NA.

Now D N-.-N D, belongs to D, by (a); therefore, this intersection is nonempty, by
hypothesis. [

Theorem 37.3 (Tychonoff theorem). An arbitrary product of compact spaces is
compact in the product topology

Proof. Let

x=[] %
ae)
where each space X4 is compact. Let A be a collection of subsets of X having the
finite intersection property. We prove that the intersection

A
AcA
is nonempty. Compactness of X follows.

Applying Lemma 37.1, choose a collection D of subsets of X such that D O A
and D is maximal with respect to the finite intersection property It will suffice to
show that the intersection () pcp D is nonempty.

Givenax € J, let my : X — X, be the projection map, as usual Consider the
collection

{ma(D) | D € D}
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of subsets of X4. This collection has the finite intersection property because D does.
By compactness of X,, we can for each o choose a point x, of X, such that

Xg € ﬂ nqe (D).
DeD

Let x be the point (x4 )qes of X. We shall show that x € D for every D € D ; then our
proof will be finished.
First we show that if g I(Up) is any subbasis element (for the product topology

on X) containing X, then nEI(Uﬁ) intersects every element of D. The set Ug is a
neighborhood of xg in Xg. Since xg € mg(D) by definition, Ug intersects mg(D) in
some point g(y), wherey € D Then it follows thaty € nEl(Uﬁ) N D.

It follows from (b) of Lemma 37.2 that every subbasis element containing x be-
longs to D. And then it follows from (a) of the same lemma that every basis element
containing x belongs to D. Since 2D has the finite intersection property, this means
that every basis element containing x intersects every element of D; hence x € D for
every D € D as desired. ]

Exercises

1. Let X be a space. Let D be a collection of subsets of X that is maximal with
respect to the finite intersection property
(a) Show that x € D for every D € D if and only if every neighborhood of x
belongs to . Which implication uses maximality of D?
(b) Let D € D. Show thatif A D D, then A € D.
(c) Show that if X satisfies the T} axiom, there is at most one point belonging

to(\pen D-

2. A collection A of subsets of X has the countable intersection property if every
countable intersection of elements of A is nonempty. Show that X is a Lindelof
space if and only if for every collection A of subsets of X having the countable
intersection property,

(A

AcA

1S nonempty.

3. Consider the three statements:
(i) If X is a set and A is a collection of subsets of X having the count-
able intersection property, then there is a collection D of subsets of X
such that D O A and D is maximal with respect to the countable

intersection property
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Chapter 4

Countability and Separation
Axioms

The concepts we are going to introduce now, unlike compactness and connectedness,
do not arise naturally from the study of calculus and analysis. They arise instead from a
deeper study of topology itself. Such problems as imbedding a given space in a metric
space or in a compact Hausdorff space are basically problems of topology rather than
analysis. These particular problems have solutions that involve the countability and
separation axioms.

We have already introduced the first countability axiom,; it arose in connection with
our study of convergent sequences in §21. We have also studied one of the separation
axioms—the Hausdorff axiom, and mentioned another—the T} axiom. In this chapter
we shall introduce other, and stronger, axioms like these and explore some of their
consequences. Our basic goal is to prove the Urysohn metrization theorem. It says
that if a topological space X satisfies a certain countability axiom (the second) and a
certain separation axiom (the regularity axiom), then X can be imbedded in a metric
space and is thus metrizable.

Another imbedding theorem, important to geometers, appears in the last section
of the chapter. Given a space that is a compact manifold (the higher-dimensional
analogue of a surface), we show that it can be imbedded in some finite-dtmensional
euclidean space.

189
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§30 The Countability Axioms

Recall the definition we gave in §21.

Definition. A space X is said to have a countable basis at x if there is a countable
collection B of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is
said to satisfy the first countability axiom, or to be first-countable.

We have already noted that every metnzable space satisfies this axiom; see §21.

The most useful fact concerning spaces that satisfy this axiom is the fact that in
such a space, convergent sequences are adequate to detect limit points of sets and to
check continuity of functions. We have noted this before; now we state it formally as
a theorem:

Theorem 30.1. Let X be a topological space.
(a) Let A be a subset of X. If there is a sequence of points of A converging to x,
then x € A; the converse holds if X is first-countable.

(b) Let f : X — Y. If f is continuous, then for every convergent sequence x, — x
in X, the sequence f(x,) converges to f(x). The converse holds if X is first-

countable.

The proof is a direct generalization of the proof given in §21 under the hypothesis
of metnzability, so it will not be repeated here.
Of much greater importance than the first countability axiom is the following:

Definition. If a space X has a countable basis for its topology, then X is said to
satisfy the second countability axiom, or to be second-countable.

Obviously, the second axiom implies the first: if B i1s a countable basis for the
topology of X, then the subset of B consisting of those basis elements containing the
point x is a countable basis at x. The second axiom is, in fact, much stronger than the
first; it is so strong that not even every metnc space satisfies it.

Why then is this second axiom interesting? Well, for one thing, many familiar
spaces do satisfy it. For another, it is a crucial hypothesis used in proving such theo-
rems as the Urysohn metnzation theorem, as we shall see.

EXAMPLE | The real line R has a countable basis—the collection of all open inter-
vals (a, b) with rational end points. Likewise, R" has a countable basis—the collection of
all products of intervals having rational end points. Even R“ has a countable basis—the
collection of all products ﬂ” €Z, U,. where U, is an open interval with rational end points
for finitely many values of n, and U, = R for all other values of n.

EXAMPLE 2 In the uniform topology, R® satisfies the first countability axiom (being
metrizable). However, it does not satisfy the second. To verify this fact, we first show that
if X is a space having a countable basis B, then any discrete subspace A of X must be
countable Choose, for each a € A, a basis element B, that intersects A in the point a
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alone. If a and b are distinct points of A, the sets B, and B, are different, since the first
contains a and the second does not. It follows that the map a — B, is an injection of A
into B, so A must be countable.

Now we note that the subspace A of R“ consisting of all sequences of 0's and 1’s is
uncountable; and it has the discrete topology because p(a, b) = 1 for any two distinct
points a and b of A. Therefore, in the uniform topology R“ does not have a countable
basis.

Both countability axioms are well behaved with respect to the operations of taking
subspaces or countable products:

Theorem 30.2. A subspace of a first-countable space is first-countable, and a count-
able product of first-countable spaces is first-countable. A subspace of a second-
countable space is second-countable, and a countable product of second-countable
spaces is second-countable.

Proof. Consider the second countability axiom. If B is a countable basis for X, then
{BN A | B € B} is a countable basis for the subspace A of X If B; is a countable
basis for the space X;, then the collection of all products [{U,, where U; € B; for
finitely many values of i and U; = X; for all other values of i, is a countable basis for
I1x:.

The proof for the first countability axiom is similar. |

Two consequences of the second countability axiom that will be useful to us later
are given in the following theorem. First, a definition:

Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 30.3. Suppose that X has a countable basis. Then:
(a) Every open covering of X contains a countable subcollection covering X .

(b) There exists a countable subset of X that is dense in X.

Proof. Let {B,} be a countable basis for X.
¢ (a) Let A be an open covenng of X. For each positive integer n for which it is pos-
sible, choose an element A, of A containing the basis element B,. The collection A’
of the sets A, is countable, since it is indexed with a subset J of the positive integers.
Furthermore, it covers X: Given a point x € X, we can choose an element A of A
containing x. Since A is open, there is a basis element B, such that x € B, C A.
Because B, lies in an element of A, the index n belongs to the set J, so A, is defined;
since A, contains B,, it contains x. Thus A’ is a countable subcollection of A that
covers X.
(b) From each nonempty basis element B,, choose a point x,. Let D be the set
consisting of the points x,. Then D is dense in X: Given any point x of X, every basis
element containing x intersects D, so x belongs to D. ]
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The two properties listed in Theorem 30.3 are sometimes taken as alternative
countability axioms. A space for which every open covenng contains a countable
subcovering is called a Lindelof space A space having a countable dense subset is
often said to be separable (an unfortunate choice of terminology).! Weaker in general
than the second countability axiom, each of these properties is equivalent to the second
countability axiom when the space is metnzable (see Exercise 5). They are less impor-
tant than the second countability axiom, but you should be aware of their existence, for
they are sometimes useful. It is often easier, for instance, to show that a space X has a
countable dense subset than it is to show that X has a countable basis. If the space is
metnzable (as it usually is in analysis), it follows that X is second-countable as well.

We shall not use these properties to prove any theorems, but one of them—the
Lindelof condition—will be useful in dealing with some examples. They are not as
well behaved as one mught wish under the operations of taking subspaces and cartesian
products, as we shall see in the examples and exercises that follow.

EXAMPLE 3.  The space Ry satisfies all the countability axioms but the second.

Given x € Ry, the set of all basis elements of the form [x, x 4+ 1/n) is a countable
basis at x. And it is easy to see that the rational numbers are dense in Ry.

To see that R, has no countable basis, let B be a basis for R,. Choose for each x, an
element B, of B suchthatx € B, C [x,x + ). [f x # y, then By # B, since x = inf B,
and y = inf B,. Therefore, B must be uncountable.

To show that Ry is Lindelof requires more work. It will suffice to show that every open
covering of R, by basis elements contains a countable subcollection covering R,. (You can
check this ) So let

A = ([aa, ba)laes

be a covering of R by basis elements for the lower limit topology We wish to find a
countable subcollection that covers R.
Let C be the set

C= U(au’ ba),

a€/

which is a subset of R. We show the set R — C is countable.

Let x be a point of R — C. We know that x belongs t0 no open interval (aq, by),
therefore x = ag for some index 8. Choose such a 8 and then choose g, to be a rational
number belonging to the interval (ag, bg). Because (ag, bg) is contained in C, s0 is the
interval (ag, g.) = (x, ¢,). It follows that if x and y are two points of R ~ C with x < y,
then g, < g, (For otherwise, we would have x < y < g, < g, so that y would lie in the
interval (x, g¢) and hence in C.) Therefore the map x — g, of R — C into Q is injective,
so that R — C is countable.

Now we show that some countable subcollection of A covers R . To begin, choose for
each element of R — C an element of /A containing it; one obtains a countable subcollec-
tion A’ of A that covers R — C. Now take the set C and topologize it as a subspace of R;
in this topology, C satisfies the second countability axiom. Now C is covered by the sets
(Ga, ba), Which are open in R and hence open in C Then some countable subcollection

This is a good example of how a word can be overused. We have already defined what we mean
by a separation of a space; and we shall discuss the separation axioms shortly
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covers C. Suppose this subcollection consists of the elements (aq, by ) fora =y, a3y, ...
Then the collection

'A”= ([aavbd) ‘a._-alvaz- "}

is a countable subcollection of A that covers the set C, and A’ U A" is a countable subcol-
lection of A that covers R,

EXAMPLE 4 The product of two Lindelof spaces need not be Lindelof. Although the
space Ry is Lindelof, we shall show that the product space R, x R, = R% is not. The space

IR% is an extremely useful example in topology called the Sorgenfrey plane
The space Rg has as basis all sets of the form [a, b) x [c,d) To show it is not Lindelof,
consider the subspace

L={xx(—x)|xeR

It is easy to check that L is closed in RZ. Let us cover R2 by the open set R2 — L and by
all basis elements of the form

a,b) x [—a, d).

Each of these open sets interSects L in at most one point. Since L is uncountable, no
countable subcollection covers R% See Figure 30.1.

[a,b) X [—a,d)

Figure 30.1

EXAMPLES. A subspace of a Lindelof space need not be Lindelof. The ordered square /2
is compact; therefore it is Lindelof, trivially. However, the subspace A = I x (0, 1) is not
Lindelof. For A is the union of the disjoint sets U, = (x} x (0, 1), each of which is open
in A. This collection of sets is uncountable, and no proper subcollection covers A.
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Exercises
1. (a) A G; setin aspace X is a set A that equals a countable intersection of open

© @ N e

10.

11.

12.

13.

14.
15.

sets of X. Show that in a first-countable 7| space, every one-point set is a
G set.
(b) There is a familiar space in which every one-point set is a G5 set, which
nevertheless does not satisfy the first countability axiom. What is it?
The terminology here comes from the German. The “G” stands for “Gebiet,”
which means “open set,” and the “§” for “Durchschnitt,” which means “intersec-
tion.”

Show that if X has a countable basis (B,}, then every basis C for X contains
a countable basis for X. [Hint: For every pair of indices n, m for which it is
possible, choose Cp, ,, € C suchthat B, C C, » C Bn.]

Let X have a countable basis; let A be an uncountable subset of X. Show that
uncountably many points of A are limit points of A.

Show that every compact metnzable space X has a countable basis. [Hint:
Let A, be a finite covening of X by 1/n-balls.}

(a) Show that every metnzable space with a countable dense subset has a count-

able basis.
(b) Show that every metnzable Lindelof space has a countable basis.

Show that R, and /2 are not metnzable.
Which of our four countability axioms does Sq satisfy? What about Sq?
Which of our four countability axioms does R in the uniform topology satisfy?

Let A be a closed subspace of X. Show that if X is Lindelof, then A is Lindelof.
Show by example that if X has a countable dense subset, A need not have a
countable dense subset.

Show that if X is a countable product of spaces having countable dense subsets,
then X has a countable dense subset.

Let f : X — Y be continuous. Show that if X is Lindelof, or if X has a
countable dense subset, then f(X) satisfies the same condition.

Let f : X — Y be a continuous open map. Show that if X satisfies the first or
the second countability axiom, then f(X) satisfies the same axiom.

Show that if X has a countable dense subset, every collection of disjoint open
sets in X 1S countable.

Show that if X 1s Lindelof and Y is compact, then X x Y is Lindelof.

Give R’ the uniform metric, where I = [0, 1]. Let €(/, R) be the subspace con-
sisting of continuous functions. Show that C(/, R) has a countable dense subset,
and therefore a countable basis. [Hint: Consider those continuous functions
whose graphs consist of finitely many line segments with rational end points.}
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16. (a) Show that the product space R/, where I = [0, 1], has a countable dense
subset.
(b) Show that if J has cardinality greater than #(Z. ), then the product space R’
does not have a countable dense subset. {Hint: If D is dense in R’ define
f :J = P (D) by the equation f(a) = D N x;'((a, b)), where (a,b) is a
fixed interval in R.]
*17. Give R the box topology. Let Q® denote the subspace consisting of sequences
of rationals that end in an infinite stning of 0’s. Which of our four countability
axioms does this space satisfy?

*18. Let G be a first-countable topological group. Show that if G has a countable
dense subset, or is Lindelof, then G has a countable basis. {Hint: Let {B,} be a
countable basis at e. If D is a countable dense subset of G, show the sets d B,,,
ford € D, form abasis for G. If G is Lindelof, choose for each n a countable set
C, such that the sets ¢B,, for ¢ € C,, cover G. Show that as n ranges over Z
these sets form a basis for G.}

§31 The Separation Axioms

In this section, we introduce three separation axioms and explore some of their prop-
erties. One you have already seen—the Hausdorft axiom. The others are similar but
stronger. As always when we introduce new concepts, we shall examine the relation-
ship between these axioms and the concepts introduced earlier in the book.

Recall that a space X is said to be Hausdorff if for each pair x, y of distinct points
of X, there exist disjoint open sets containing x and y, respectively.

Definition. Suppose that one-point sets are closed in X. Then X is said to be reg-
ular if for each pair consisting of a point x and a closed set B disjoint frorn x, there
exist disjoint open sets containing x and B, respectively. The space X is said to be
normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets
containing A and B, respectively.

It is clear that a regular space is Hausdorff, and that a normal space is regular.
(We need to include the condition that one-point sets be closed as part of the definition
of regularity and normality in order for this to be the case. A two-point space in the
indiscrete topology satisfies the other part of the definitions of regularity and normality,
even though it is not Hausdorff.) For examples showing the regulanty axiorn stronger
than the Hausdorff axiom. and normality stronger than regularity, see Examples |
and 3.

These axioms are called separation axioms for the reason that they involve “sepa-
rating” certain kinds of sets from one another by disjoint open sets. We have used the
word “separation” before, of course, when we studied connected spaces. But in that
case, we were trying to find disjoint open sets whose union was the entire space.
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The present situation is quite different because the open sets need not satisfy this
condition.

b 2 g

Hausdorff Regular Normal

Figure 31.1

The three separation axioms are illustrated in Figure 31.1.
There are other ways to formulate the separation axioms. One formulation that is
sometimes useful is given in the following lemma:

Lemma 31.1. Let X be a topological space. Let one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x,
there is a neighborhood V of x such that V C U.

(b) X is normal if and only if given a closed set A and an open set U containing A,
there is an open set V containing A such that Vcu.

Proof. (a) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x are given. Let B = X — U; then B is a closed set. By hypothesis, there
exist disjoint open sets V and W containing x and B, respectively. The set V is disjoint
from B, since if y € B, the set W is a neighborhood of y disjoint from V. Therefore,
V C U, as desired.

To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X — B. By hypothesis, there is a neighborhood V of x such
that V C U. The open sets V and X — V are disjoint open sets containing x and B,
respectively. Thus X is regular.

(b) This proof uses exactly the same argument; one just replaces the point x by the
set A throughout. [

Now we relate the separation axioms with the concepts previously introduced.

Theorem 31.2. (a) A subspace of a Hausdorff space is Hausdorff; a product of Haus-
dorff spaces is Hausdorff.
(b) A subspace of a regular space is regular; a product of regular spaces is regular.
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Proof  (a) This result was an exercise in §17. We provide a proof here. Let X be
Hausdorff. Let x and y be two points of the subspace Y of X. If U and V are disjoint
neighborhoods in X of x and y, respectively, then U N'Y and V NY are disjoint
neighborhoods of x and y in Y.

Let { Xy} be a family of Hausdorff spaces. Let x = (xo) and y = (yy) be distinct
points of the product space [| X,. Because x # y, there is some index B such that
xg # yg. Choose disjoint open sets U and V in X g containing xg and yg, res pectively.
Then the sets ng L(U) and ng '(v) are disjoint open sets in [| X, containing x and y,
respectively.

(b) Let Y be a subspace of the regular space X. Then one-point sets are closed
in Y. Let x be a point of ¥ and let B be a closed subset of Y disjoint from x. Now
BNY = B, where B denotes the closure of B in X. Therefore, x ¢ B, so, using
regulanty of X, we can choose disjoint open sets U and V of X containing x and B,
respectively. Then U N'Y and V N'Y are disjoint open sets in Y containing x and B,
respectively.

Let {X,} be a family of regular spaces; let X = [] X,. By (a), X is Hausdorff, so
that one-point sets are closed in X. We use the preceding lemma to prove regularity
of X. Let x = (xo) be a point of X and let U be a neighborhood of x in X. Choose a
basis element [ | U, about x contained in UU. Choose, for each a, a neighborhood V,
of X, in X, such that V, C Uy; if it happens that U, = X4, choose V, = X,. Then
V =[] Va is a neighborhood of x in X. Since V= [1 Vo by Theorem 19.5, it follows
atonce that V C [ Uy C U, so that X is regular. n

There is no analogous theorem for normal spaces, as we shall see shortly, in this
section and the next.

EXAMPLE |  The space R is Hausdorff but not regular. Recall that Ry denotes the reals
in the topology having as basis all open intervals (a, b) and all sets of the form (a, b) — K
where K = (1/n | n € Z,}. This space is Hausdorff, because any two distinct points have
disjoint open intervals containing them.

But it is not regular. The set K is closed in Rg, and it does not contain the point 0.
Suppose that there exist disjoint open sets U and V containing 0 and K, respectively.
Choose a basis element containing 0 and lying in U. It must be a basis element of the form
(a, b) — K, since each basis element of the form (a, b) containing O intersects K . Choose n
large enough that 1/n € (a, b). Then choose a basis element about 1/n contained in V;
it must be a basis element of the form (c,d). Finally, choose z so that z < 1/n and
z > max(c, 1/(n + 1)}. Then z belongs to both U and V, so they are not disjoint. See
Figure 3].2

\yQ
L/

TN

c
/2
— o—o—
0 A}
L]

Figure 31.2
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EXAMPLE 2.  The space R, is normal It is immediate that one-point sets are closed
in Ry, since the topology of R, is finer than that of R. To check normality, suppose that A
and B are disjoint closed sets in R, For each potnt a of A choose a basis element [a, x,) not
intersecting B, and for each point b of B choose a basis element (b, xp) not intersecting A.
The open sets

U= U[a,xa) and V= U[b,x,,)

a€A beB

are disjoint open Sets about A and B, respectively.

EXAMPLE 3 The Sorgenfrey plane R% is not normal

The space Ry is regular (in fact, normal), so the product space IR% is also regular. Thus
this example serves two purposes. It shows that a regular space need not be normal, and it
shows that the product of two normal spaces need not be normal

We suppose R? is normal and denve a contradiction Let L be the subspace of R?
consisting of all points of the form x x (—x). Then L is closed in R2, and L has the
discrete topology. Hence every subset A of L, being closed in L, is closed in Rf. Because
L — A is also closed in R2, this nieans that for every nonempty proper subset A of L, one
can find disjoint open sets U 4 and V4 containing A and L — A, respectively

Let D denote the set of points of R? having rational coordinates; it is dense in R2. We
define a map @ that assigns, to each subset of the line L, a subset of the set D, by setting

0(A)=DNU4 f@GCAGL,
0(Q) =2,
6(L) =D.

We show that 8 - (L) — #(D) is injective.

Let A be a proper nonempty subset of L. Then 8(A) = DN Uy is neither empty (since
U, is open and D is dense in Rg) nor all of D (since D N V4 is nonempty). It remains to
show that if B is another proper nonempty subset of L, then 8(A) # 6(B).

One of the sets A, B contains a point not in the other; suppose thatx € A and x ¢ B.
Then x € L — B, so that x € U4 N Vg, since the latter set is open and nonempty, it must
contain points of D These points belong to U4 and not to Ug, therefore, DNU4 # DNUpg,
as desired. Thus 8 is injective

Now we show there exists an injective map ¢ : S>(D) — L. Because D is countably
infinite and L has the cardinality of R, it suffices to define an injective map ¥ of P(Z.)
into R. For that, we let y assign to the subset S of Z the infinite decimal .a)a; . .., where
a, =0ifi €e Sanda, = 1 ifi ¢ S. That is,

[.8]

V(S) =) a/I0f

i=|
Now the composite
6 v
PLy —> P(D)——L

is an injective map of (L) into L. But Theorem 7.8 tells us such a map does not exist!
Thus we have reached a contradiction
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This proof that IR% iS not normal is in some ways not very satisfying. We showed
only that there must exist some proper nonempty subset A of L such that the sets A and
B = L — A are not contained in disjoint open sets of R%. But we did not actually find such
aset A. In fact, the set A of points of L having rational coordinates is such a set, but the
proof is not easy. It 1s left to the exercises.

Exercises

1. Show that if X is regular, every pair of points of X have neighborhoods whose
closures are disjoint.

2. Show that if X is normal, every pair of disjoint closed sets have neighborhoods
whose closures are disjoint.

3. Show that every order topology is regular.

4. Let X and X’ denote a single set under two topologies 7 and 7', respectively;
assume that 7’ O 7. If one of the spaces is Hausdorff (or regular, or normal),
what does that imply about the other?

S. Let f,g : X — Y be continuous; assume that Y 1s Hausdorff. Show that {x |
f(x) = g(x)}is closed in X.

6. Let p : X — Y be aclosed continuous surjective map. Show that if X is normal,
then so is Y. [Hint: If U is an open set containing p~!({y}), show there is a
neighborhood W of y such that p~' (W) C U ]

7. Let p : X — Y be a closed continuous surjective map such that p~!({y}) is
compact for each y € Y. (Such a map is called a perfect map.)

(a) Show that if X is Hausdorff, thensois Y.

(b) Show that if X is regular, thensois Y.

(c) Show that if X is locally compact, then sois Y.

(d) Show thatif X is second-countable, thensois Y. [Hint: Let B be a countable
basis for X. For each finite subset J of B, let U, be the union of all sets of
the form p~!(W), for W open in Y, that are contained in the union of the
elements of J.]

8. Let X be a space; let G be a topological group. An action of G on X is a
continuous map « : G x X — X such that, denoting (g x x) by g - x, one has:
(t) e-x=xforallx € X.

(1) g1-(g2-x)=(g1-82) -xforallx € X and gy, g2 € G.
Define x ~ g - x for all x and g; the resulting quotient space is denoted X /G and
called the orbit space of the action a.
Theorem. Let G be a compact topological group; let X be a topological space;
let « be an action of G on X. If X is Hausdorff, or regular, or normal, or locally
compact, or second-countable, so is X/ G.
(Hint: See Exercise 13 of §26.]
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*9. Let A be the set of all points of R} of the form x x (—x), for x rational; let B be
the set of all points of this form for x irrational. If V is an open set of IR% con-
taining B, show there exists no open set U containing A that is disjoint from V,
as follows:

(a) Let K, consist of all irrational numbers x in [0, 1] such that [x, x + 1/n) x
[-x, —x + 1/n) is contained in V. Show [0, 1] is the union of the sets K,
and countably many one-point sets.

(b) Use Exercise 5 of §27 to show that some set K, contains an open interval
(a, b) of R.

(c) Show that V contains the open parallelogram consisting of all points of the
formx x (—x + ¢€) for whicha < x <band0 <€ < 1/n.

(d) Conclude that if g is a rational number with a < q < b, then the point
g x (—q) of R} is a limit point of V.

§32 Normal Spaces

Now we turn to a more thorough study of spaces satisfying the normality axiom. In
one sense, the term “normal” is something of a misnomer, for normal spaces are not as
well-behaved as one might wish. On the other hand, most of the spaces with which we
are familiar do satisfy this axiom, as we shall see. Its importance comes from the fact
that the results one can prove under the hypothesis of normality are central to much of
topology. The Urysohn metnzation theorem and the Tietze extension theorem are two
such results; we shall deal with them later in this chapter.

We begin by proving three theorems that give three important sets of hypotheses
under which normality of a space is assured.

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B be disjoint
closed subsets of X. Each point x of A has a neighborhood U not intersecting B. Using
regulanty, choose a neighborhood V of x whose closure lies in U finally, choose an
element of B containing x and contained in V. By choosing such a basis element for
each x in A, we construct a countable covering of A by open sets whose closures do
not intersect B. Since this covenng of A is countable, we can index it with the positive
integers; let us denote 1t by (U, ).

Similarly, choose a countable collection {V,} of open sets covering B, such that
each set V, is disjoint from A. The sets U = | JU, and V = | J V,, are open sets con-
taining A and B, respectively, but they need not be disjoint. We perform the following
simple trick to construct two open sets that are disjoint. Given n, define

n n
Up=U—|JVi and V,=V.-|]JU.
i=1 =l
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Note that each set U, is open, being the difference of an open set U, and a closed set
U, V;. Similarly, each set V; is open. The collection {U} covers A, because each
x in A belongs to U, for some n, and x belongs to none of the sets V,. Similarly, the
collection {V,} covers B. See Figure 32.1.

Figure 32.1

Finally, the open sets

v=Ju, ad v=1_]v,

nEZ+ ’IGZ+
are disjoint. For if x € U’ N V’, then x € U; N V; for some j and k. Suppose that
J = k. It follows from the definition of U] that x € U,; and since j < k it follows
from the definition of V, that x ¢ U;. A similar contradiction arises if j > k. |



202 Countability and Separation Axioms Ch. 4

Theorem 32.2. Every metrizable space is normal.

Proof. Let X be a metrizable space with metric d. Let A and B be disjoint closed
subsets of X. For each a € A, choose ¢, so that the ball B(a, €,) does not intersect B.
Similarly, for each b in B, choose ¢, so that the ball B(b, €,) does not intersect A.
Define

U=|JB@.c«2 ad V=|]B® e/

aceA beB

Then U and V are open sets containing A and B, respectively; we assert they are
disjoint. Forif z € U NV, then

Z € B(a,€ez/2) N B(b, €p/2)

for some a € A and some b € B The tnangle inequality applies to show that
da,b) < (eqg + €p)/2. If €4 < €p, then d(a,b) < é€p, so that the ball B(b, €p)
contains the point a. If €, < €4, then d(a, b) < €4, so that the ball B(a, €,) contains
the point b. Neither situation is possible. [

Theorem 32.3. Every compact Hausdorff space is normal.

Proof Let X be a compact Hausdortf space. We have already essentially proved
that X is regular. For if x is a point of X and B is a closed set in X not containing x,
then B is compact, so that Lemma 26.4 applies to show there exist disjoint open sets
about x and B, respectively.

Essentially the same argument as given in that lemma can be used to show that X
is normal: Given disjoint closed sets A and B in X, choose, for each point a of A,
disjoint open sets U, and V, containing a and B, respectively. (Here we use regularity
of X.) The collection {U,} covers A; because A is compact, A may be covered by
finitely many sets Uy, , ..., U,,,- Then

U=UII[U...UUUM and V=Valn"'nVam

are disjoint open sets containing A and B, respectively. [

Here is a further result about normality that we shall find useful in dealing with
some examples.

Theorem 32.4. Every well-ordered set X is normal in the order topology.

It is, in fact, true that every order topology is normal (see Example 39 of (S-S]);
but we shall not have occasion to use this stronger result.

Proof. Let X be a well-ordered set. We assert that every interval of the form (x, y]
is open in X. If X has a largest element and y is that element, (x, y] is just a basis
element about y. If y is not the largest element of X, then (x, y] equals the open set
(x, '), where y' is the immediate successor of y.
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Now let A and B be disjoint closed sets in X ; assume for the moment that neither A
nor B contains the smallest element ay of X. For each a € A, there exists a basis
element about a disjoint from B; it contains some interval of the form (x, a]. (Here
is where we use the fact that a is not the smallest element of X.) Choose, for each
a € A, such an interval (x,, a] disjoint from B. Similarly, for each b € B, choose an
interval (yp, b] disjoint from A. The sets

U= U(xa,a] and V = U()’b,b]

a€eA beB

are open sets containing A and B, respectively; we assert they are disjoint. For suppose
thatz € U NV. Then z € (x4,alN (yp, b] for some a € A and some b € B. Assume
that a < b. Then if a < yp, the two intervals are disjoint, while if a > yp, we have
a € (yp, b}, contrary to the fact that (yp, b] is disjoint from A. A similar contradiction
occurs if b < a.

Finally, assume that A and B are disjoint closed sets in X, and A contains the
smallest element ap of X. The set {ap} is both open and closed in X. By the result of
the preceding paragraph, there exist disjoint open sets U and V containing the closed
sets A—{ap} and B, respectively. Then UU{ap} and V are disjoint open sets containing
A and B, respectively |

EXAMPLE |.  If J is uncountable, the product space R’ is not normal. The proof is
fairly difficult; we leave it as a challenging exercise (see Exercise 9).

This example serves three purposes. It shows that a regular space R’ need not be
normal. It shows that a subspace of a normal space need not be normal, for R’ is home-
omorphic to the subspace (0, l)" of [0, l]J , which (assuming the Tychonoff theorem) is
compact Hausdorff and therefore normal And it shows that an uncountable product of
normal spaces need not be normal. It leaves unsettled the question as to whether a finite or
a countable product of normal spaces mught be normal.

EXAMPLE 2.  The product space Sq x Sq is not normal.!

Consider the well-ordered set S, in the order topology, and consider the subset Sq, in
the subspace topology (which is the same as the order topology). Both spaces are normal,
by Theorem 32.4. We shall show that the product space Sq x Sq is not normal.

This example serves three purposes. First, it shows that a regular space need not be
normal, for S x Sq is a product of regular spaces and therefore regular. Second, it shows
that a subspace of a normal space need not be normal, for Sq x S is a subspace of Sg x Sq,
which is a compact Hausdorff space and therefore normal Third, it shows that the product
of two normal spaces need not be normal.

First, we consider the space Sq x S‘Q, and its “diagonal” A = (x x x | x € S’Q}.
Because Sq is Hausdorff, A is closed in Sq x Sq. If U and V are disjoint neighborhoods
of x and y, respectively, then U x V is a neighborhood of x x y that does not intersect A.

Therefore, in the subspace Sq x Sq, the set

A=ANSqx Sq)=A—(Q x Q)

'fl(.elley [K] attributes this example to ). Dieudonné and A. P Morse independently
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Figure 32.2

is closed. Likewise, the set
B = Sq x (R}

is closed in Sq X Sq, being a “slice” of this product space. The sets A and B are disjoint.
We shall assume there exist disjoint open sets U and V of Sq x Sq containing A and B,
respectively, and denve a contradiction. See Figure 32.2.

Given x € Sq, consider the vertical slice x x Sq. We assert that there is some point 8
with x < B < Q such that x x B lies outside U For if U contained all points x x B for
x < B < R, then the top point x x 2 of the slice would be a limut point of U, which it is
not because V is an open set disjoint from U containing this top point

Choose B(x) to be such a point; just to be definite, let B(x) be the smallest element
of Sq suchthat x < B(x) < 2 and x x B(x) lies outside U. Define a sequence of points
of Sq as follows: Let x| be any point of Sq Letx2 = B(x)), and in general, x,4| = B(xn)
We have

X|] <Xx3<...,

because B(x) > x for all x. The set (x,} is countable and therefore has an upper bound
in Sq; let b € Sq be its least upper bound. Because the sequence is increasing, it must
converge to its least upper bound; thus x, = b But B(xs) = x,41, so that B8(x,) — b
also. Then

Xn X B(xp) — b x b

in the product space. See Figure 32.3. Now we have a contradiction, for the point b x b
lies in the set A, which is contained in the open set U; and U contains none of the points

Xn X B(xp).
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X X ("2 »~\\\\\\,.,- b
N
,,XB(,,,T_‘

Figure 32.3

Exercises

1. Show that a closed subspace of a normal space is normal.

2. Show that if [[ X is Hausdorff, or regular, or normal, then so is X,. (Assume
that each X, is nonempty.)

3. Show that every locally compact Hausdorff space is regular.
4. Show that every regular Lindelof space is normal.

5. Is R® normal in the product topology? In the uniform topology?

It is not known whether R“ is normal in the box topology. Mary-Ellen Rudin
has shown that the answer is affirmative if one assumes the continuum hypothe-
sis [RM]. In fact, she shows it satisfies a stronger condition called paracompact-
ness.

6. A space X is said to be completely normal if every subspace of X is normal.
Show that X is completely normal if and only if for every pair A, B of separated
sets in X (that is, sets such that ANB = @ and AN B = @), there exist
disjoint open sets containing them. [Hint: If X is completely normal, consider
X -(ANB)]

7. Which of the following spaces are completely normal? Justify your answers.

(a) A subspace of a completely normal space.

(b) The product of two completely normal spaces.
(c) A well-ordered set in the order topology.

(d) A metnizable space.
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(e) A compact Hausdorff space.
(f) A regular space with a countable basis.
(g) The space R,.

Prove the following:

Theorem. Every linear continuum X is normal.

(a) Let C be anonempty closed subset of X. If U is a component of X —C, show
that U is a set of the form (c, ¢’) or (¢, 00) or (—o0, ¢), wherec, ¢’ € C.

(b) Let A and B be closed disjoint subsets of X. For each component W of
X — A U B that is an open interval with one end point in A and the other
in B, choose a point c of W. Show that the set C of the points cy is closed.

(c) Show that if V is a component of X — C, then V does not intersect both A
and B.

Prove the following:

Theorem. If J is uncountable, then R’ is not normal.

Proof. (This proof is due to A. H. Stone, as adapted in [S-S].) Let X = (Z4)’; it

will suffice to show that X is not normal, since X is a closed subspace of R’. We

use functional notation for the elements of X, so that the typical element of X is

afunctionx: J —> Z,

(a) Ifx € X and if B is a finite subset of J, let U (x, B) denote the set consisting
of all those elements y of X such that y(a) = X(«) fora € B. Show the sets
U(x, B) are a basis for X.

(b) Define P, to be the subset of X consisting of those x such that on the set
J — x"Y(n), the map X is injective. Show that P; and P are closed and

disjoint.
(c) Suppose U and V are open sets containing P and P, respectively. Given a
sequence a), a2, ... of distinct elements of J, and a sequence

O=np<ni<ny <--
of integers, for each i > | let us set
B =la), -, an,)
and define x; € X by the equations

Xi(aj)=j forl <j<n;i,,
X;i(@) =1 for all other values of «.

Show that one can choose the sequences a; and n; so that for each i, one
has the inclusion

Ux;,Bj)CU.

[Hint: To begin, note that x)(a) = 1 for all a; now choose B; so that
U(x;,B)) CcUl]
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(d) Let A be the set {a), a2, .. ] constructed in (c) Definey - J — Z, by the
equations

Ya;)=j fora;€ A,
y(a) =2  forall other values of «.

Choose B so that U(y, B) C V. Then choose i so that B N A is contained
in the set B;. Show that

U(Xis1, Bis1)NU(y, B)

is not empty.
10. Is every topological group normal?

§33 The Urysohn Lemma

Now we come to the first deep theorem of the book, a theorem that is commonly
called the “Urysohn lemma.” It asserts the existence of certain real-valued continuous
functions on a normal space X. It is the crucial tool used in proving a number of
important theorems. We shall prove three of them—the Urysohn metrization theorem,
the Tietze extension theorem, and an imbedding theorem for manifolds—in succeeding
sections of this chapter.

Why do we call the Urysohn lemma a “deep” theorem? Because its proof involves
a really oniginal idea, which the previous proofs did not. Perhaps we can explain
what we mean this way: By and large, one would expect that if one went through this
book and deleted all the proofs we have given up to now and then handed the book
to a bright student who had not studied topology, that student ought to be able to go
through the book and work out the proofs independently. (It would take a good deal of
time and effort, of course; and one would not expect the student to handle the trickier
examples.) But the Urysohn lemma is on a different level. It would take considerably
more originality than most of us possess to prove this lemma unless we were given
copious hints!

Theorem 33.1 (Urysohn lemma). Let X be a normal space, let A and B be disjoint
closed subsets of X. Let [a, b] be a closed interval in the real line. Then there exists a
continuous map

f:X — [a,b]

such that f(x) = a forevery x in A, and f(x) = b for every x in B.

Proof. We need consider only the case where the interval in question is the interval
[0, 1]; the general case follows from that one. The first step of the proof is to con-
struct, using normality, a certain family U, of open sets of X, indexed by the rational
numbers. Then one uses these sets to define the continuous function f.
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Step 1. Let P be the set of all rational numbers in the interval [0, 1] t We shall
define, for each p in P, an open set U, of X, in such a way that whenever p < g, we
have

U, C U,

Thus, the sets U, will be simply ordered by inclusion in the same way their subscripts
are ordered by the usual ordering in the real line.

Because P is countable, we can use induction to define the sets U, (or rather, the
pnnciple of recursive definition). Arrange the elements of P in an infinite sequence in
some way; for convenience, let us suppose that the numbers 1 and 0 are the first two
elements of the sequence.

Now define the sets U p» as follows. First, define U, = X — B. Second, because A
is a closed set contained in the open set U1, we may by normality of X choose an open
set Ug such that

ACUy and Uyc U

In general, let P, denote the set consisting of the first n rational numbers in the
sequence. Suppose that U, is defined for all rational numbers p belonging to the
set Py, satisfying the condition

(%) p<q=ﬁ0pCUq.

Let r denote the next rational number in the sequence; we wish to define U,

Consider the set P, = P, U {r}. Itis a finite subset of the interval [0, 1], and, as
such, it has a simple ordening denved from the usual order relation < on the real line.
In a finite simply ordered set, every element (other than the smallest and the largest)
has an immediate predecessor and an immediate successor. (See Theorem 10.1 ) The
number 0 is the smallest element, and 1 is the largest element, of the simply ordered
set Py41, and r is neither O nor 1 So r has an immediate predecessor p in P, and an
immediate successor g in P, The sets U, and U, are already defined, and U p C U,
by the induction hypothesis. Using normality of X, we can find an open set U, of X
such that

f],, c U, and L7, c U,.

We assert that (x) now holds for every pair of elements of P, . If both elements lie
in Py, (%) holds by the induction hypothesis. If one of them is r and the other is a point
s of P, then either s < p, in which case

Us c U, CU,,
or s > q, in which case

U, C U, C Us.

! Actually, any countable dense subset of [0, 1] will do, providing it contains the points 0 and 1.
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Thus, for every pair of elements of P,41, relation (x) holds.
By induction, we have U, defined forall p € P.
To illustrate, let us suppose we started with the standard way of arranging the elements
of P in an infinite sequence

_ 1 1
P={1.0.3.5.5.3. 5555 |

After defining Ug and U, we would define U, /2 so that [/0 C Uj,2 and Ul/z C U, Then
we would fit in Uj,3 between Up and U2, and U3 between U) /2 and Uy. And so on. At
the eighth step of the proof we would have the situation pictured in Figure 33 1 And the
ninth step would consist of choosing an open set Uz /s to fit in between U3 and U,,; And
SO on

Figure 33.1

Step 2. Now we have defined U, for all rational numbers p in the interval [0, 1].
We extend this definition to all rational numbers p in R by defining

Up=0 1ifp<0,
Uy,=X ifp>1

It is still true (as you can check) that for any pair of rational numbers p and g,
P <qg = (:1,, cU,

Step 3. Given a point x of X, let us define Q(x) to be the set of those rational
numbers p such that the corresponding open sets U, contain x

Q) =(plxeUp).
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This set contains no number less than 0, since no x is in U, for p < 0. And it contains
every number greater than 1, since every x is in U, for p > 1. Therefore, Q(x) is
bounded below, and its greatest lower bound is a point of the interval [0, 1]. Define

f(x) =infQ(x) = inf{p | x € Up,}.

Step 4 We show that f is the desired function. If x € A, then x € U, for every
p = 0, so that Q(x) equals the set of all nonnegative rationals, and f(x) = infQ(x) =
0. Similarly, if x € B, then x € U, forno p < 1, so that Q(x) consists of all rational
numbers greater than 1, and f(x) = 1.
All this is easy. The only hard part is to show that f is continuous. For this
purpose, we first prove the following elementary facts:
M xelU = fx)<r
Q) x¢U = f(x)>r.
To prove (1), note that if x € U,, then x € U, for every s > r. Therefore, Q(x)
contains all rational numbers greater than r, so that by definition we have

SO =infQ(x) <7

To prove (2), note that if x ¢ U,, then x is not in U; for any s < r. Therefore, Q(x)
contains no rational numbers less than r, so that

flx)=infQ(x) = r.

Now we prove continuity of f. Given a point xp of X and an open interval (c, d)
in R containing the point f(x¢), we wish to find a neighborhood U of x¢ such that
f(U) C (c, d). Choose rational numbers p and g such that

c<p< f(x) <gq <d.
We assert that the open set
U=U,-0,
is the desired neighborhood of x¢. See Figure 33.2.

f
V.
P q
—f——3—>
c f(x,) d
Figure 33.2

First, we note that xo € U For the fact that f(x9) < g implies by condition (2)
that xo € Uy, while the fact that f(xo) > p implies by (1) that xo ¢ 0,,. )

Second, we show that f(U) C (¢,d). Letx € U. Then x € U, C U, so
that f(x) < ¢q, by (1). And x ¢ U,, sothatx ¢ U, and f(x) > p, by (2). Thus,
f(x) € [p,q] C(c,d),as desired. [ |



§33 The Urysohn Lemma 211

Definition. If A and B are two subsets of the topological space X, and if there is a
continuous function f . X — [0, 1] such that f(A) = {0} and f(B) = (1}, we say
that A and B can be separated by a continuous function.

The Urysohn lemma says that if every pair of disjoint closed sets in X can be
separated by disjoint open sets, then each such pair can be separated by a continuous
function. The converse is trivial, for if f : X — [0, 1] is the function, then £~1([0, 1))
and ! ((%, 1]) are disjoint open sets containing A and B, respectively

This fact leads to a question that may already have occurred to you: Why cannot
the proof of the Urysohn lemma be generalized to show that in a regular space, where
you can separate points from closed sets by disjoint open sets, you can also separate
points from closed sets by continuous functions?

At first glance, it seems that the proof of the Urysohn lemma should go through.
You take a point a and a closed set B not containing a, and you begin the proof
just as before by defining U; = X — B and choosing Up to be an open set about a
whose closure is contained in U; (using regularity of X). But at the very next step
of the proof, you run into difficulty. Suppose that p is the next rational number in
the sequence after 0 and 1. You want to find an open set U}, such that Up C U, and
U, C U,. For this, regularity is not enough.

Requinng that one be able to separate a point from a closed set by a continuous
function is, in fact, a stronger condition than requinng that one can separate them by
disjoint open sets. We make this requirement into a new separation axiom:

Definition. A space X is completely regular if one-point sets are closed in X and
if for each point x¢ and each closed set A not containing xg, there is a continuous
function f : X — [0, 1] such that f(xg) = 1 and f(A) = {0}.

A normal space is completely regular, by the Urysohn lemma, and a completely
regular space is regular, since given f, the sets £ (o, %)) and f"((%, 1]) are dis-
joint open sets about A and xg, respectively As a result, this new axiom fits in between
regularity and normality in the list of separation axioms. Note that in the definition one
could just as well require the function to map xg to 0, and A to {1}, forg(x) = 1 — f(x)
satisfies this condition. But our definition is at times a bit more convenient.

In the early years of topology, the separation axioms, listed in order of increasing
strength, were labelled T, 7> (Hausdorff), T3 (regular), T4 (normal), and 75 (com-
pletely normal), respectively. The letter “T” comes from the German “Trennungsax-
iom,” which means “separation axiom.” Later, when the notion of complete regular-
ity was introduced, someone suggested facetiously that it should be called the “T—3%
axiom,” since it lies between regularity and normality. This terminology is in fact
sometimes used in the literature!

Unlike normality, this new separation axiom is nicely behaved with regard to sub-
spaces and products:

Theorem 33.2. A subspace of a completely regular space is completely regular. A
product of completely regular spaces is completely regular.
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Proof. Let X be completely regular; let Y be a subspace of X. Let xg be a point of Y,
and let A be a closed set of Y disjoint from xo. Now A = ANY, where A denotes the
closure of A in X. Therefore, xo ¢ A. Since X is completely regular, we can choose
a continuous function f : X — [0, 1] such that f(xo) = 1 and f(A) = {0}. The
restriction of f to Y is the desired continuous function on Y.

Let X = [] X, be a product of completely regular spaces. Let b = (b,) be a point
of X and let A be a closed set of X disjoint from b. Choose a basis element [ U,
containing b that does not intersect A; then Uy, = X, except for finitely many «, say
a=aqay,...,an. Giveni =1, ..., n, choose a continuous function

fi: Xq; = [0, 1]

such that f;(be,) = 1 and f;(X — Uy,) = {0}. Let ¢; (x) = fi (g, (x)); then ¢; maps X
continuously into R and vanishes outside ' (Us,). The product

fX)=¢1(x) $2(X)- -~ Palx)
is the desired continuous function on X, for it equals 1 at b and vanishes outside [] U,,.

EXAMPLE 1.  The spaces R? and Sq x Sq are completely regular but not normal For
they are products oOf spaces that are completely regular (in fact, normal).

A space that is regular but not completely regular is much harder to find. Most of
the examples that have been constructed for this purpose are difficult, and require consid-
erable famuliarity with cardinal numbers. Fairly recently, however, John Thomas [T] has
constructed a much more elementary example, which we outline in Exercise 11.

Exercises

1. Examune the proof of the Urysohn lemma, and show that for given r,

(r) nU "UUq,

p>r q<r
p, q rational.
2. (a) Show that a connected normal space having more than one point is uncount-
able.

(b) Show that a connected regular space having more than one point is uncount-
able.! [Hint: Any countable space is Lindelf ]

3. Give a direct proof of the Urysohn lemma for a metric space (X, d) by setting
d(x, A)
d(x, A) +d(x, B)

f(x)=

tSurpnisingly enough, there does exist a connected Hausdorff space that is countably infinite See
Example 75 of [S-S]
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Recall that A is a “G; set” in X if A is the intersection of a countable collection
of open sets of X.
Theorem. Let X be normal. There exists a continuous function f : X — [0, 1]
such that f(x) =0 forx € A, and f(x) > O forx ¢ A, ifand only if A is a
closed G5 setin X.

A function satisfying the requirements of this theorem is said to vanish pre-
ciselyon A.

. Prove:

Theorem (Strong form of the Urysohn lemma). Let X be a normal space. There
is a continuous function f : X — [0, 1] such that f(x) = 0 forx € A, and
f(x)=1forx € B,and0 < f(x) < | otherwise, if and only if A and B are
disjoint closed G sets in X.

A space X is said to be perfectly normal if X is normal and if every closed set

inXisaGssetinX.

(a) Show that every metrizable space is perfectly normal.

(b) Show that a perfectly normal space is completely normal. For this reason the
condition of perfect normality 1s sometimes called the “7g axiom.” [Hint:
Let A and B be separated sets in X. Choose continuous functions f, g :
X — [0, 1] that vanish precisely on A and B, respectively. Consider the
function f — g.]

(c) There is a familiar space that is completely normal but not perfectly normal.
What is it?

Show that every locally compact Hausdorff space is completely regular.

Let X be completely regular; let A and B be disjoint closed subsets of X. Show
that if A is compact, there is a continuous function f : X — [0, 1] such that

f(A) = {0} and f(B) = {1}.

Show that R” in the box topology is completely regular. [Hint: Show that it
suffices to consider the case where the box neighborhood (-1, 1)7 is disjoint
from A and the point is the origin. Then use the fact that a function continuous
in the uniform topology is also continuous in the box topology.]

Prove the following:

Theorem. Every topological group is completely regular.

Proof. Let Vj be a neighborhood of the identity element e, in the topological
group G. In general, choose V, to be a neighborhood of e such that V,, - V, C
V,.-1. Consider the set of all dyadic rationals p, that is, all rational numbers of
the form k/2", with k and n integers. For each dyadic rational p in (0, 1], define
an open set U (p) inductively as follows: U(l) = Vp and U(%) = Vi Given n,
if U(k/2") is defined for 0 < k/2" < 1, define

U(l/2n+l) = Vn+l,
Uk + 12"y = Vo - Uk/2")
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forO <k <2". Forp <0,letU(p) =9, and for p > 1, let U(p) = G. Show
that

Vo Uk/2") C Uk +1)/2%)

for all k and n. Proceed as in the Urysohn lemma.
This exercise is adapted from [M-Z], to which the reader is referred for further

results on topological groups.

Define a set X as follows: For each even integer m, let L,, denote the line seg-
ment m x [—1, 0] in the plane. For each odd integer n and each integer k > 2,
let C, x denote the union of the line segments (n + 1 — 1/k) x [—1, 0] and
(n — 1 4+ 1/k) x [—1, 0] and the semicircle

(xxyl(x=m?+y*=(1-1/k?andy > 0}

in the plane. Let p, x denote the topmost point n x (1 — 1/k) of this semicircle.
Let X be the union of all the sets L, and C, x, along with two extra points a
and b. Topologize X by taking sets of the following four types as basis elements:
(i) The intersection of X with a horizontal open line segment that contains

none of the points pp k.
(it) A set formed from one of the sets C, x by deleting finitely many points

(1ii) For each even integer m, the union of {a} and the set of points x x y of
X for whichx < m.

(iv) For each even integer m, the union of {b} and the set of points x x y of
X for which x > m.

(a) Sketch X; show that these sets form a basis for a topology on X.

(b) Let f be a continuous real-valued function on X. Show that for any c, the
set f~1(c) is a G5 set in X. (This is true for any space X.) Conclude that
the set S, x consisting of those points p of C, x for which f(p) # f(pnk)
is countable. Choose d € [~1, 0] so that the line y = d intersects none of
the sets S, ;. Show that for n odd,

fln=1) xd)y= lim f(pai) = f((n+1) xd).

Conclude that f(a) = f(b).
(c) Show that X is regular but not completely regular.

§34 The Urysohn Metrization Theorem

Now we come to the major goal of this chapter, a theorem that gives us conditions
under which a topological space is metrizable. The proof weaves together a number
of strands from previous parts of the book; it uses results on metric topologies from
Chapter 2 as well as facts concerning the countability and separation axioms proved in
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the present chapter. The basic construction used in the proof is a simple one, but very
useful. You will see it several times more in this book, in vanous guises.

There are two versions of the proof, and since each has useful generalizations that
will appear subsequently, we present both of them here. The first version generalizes
to give an imbedding theorem for completely regular spaces. The second version will
be generalized in Chapter 6 when we prove the Nagata-Smirnov metnzation theorem.

Theorem 34.1 (Urysohn metrization theorem). Every regular space X with a
countable basis is metrnizable.

Proof. We shall prove that X is metrizable by imbedding X in a metrizable space Y,
that is, by showing X homeomorphic with a subspace of Y. The two versions of
the proof differ in the choice of the metrizable space Y. In the first version, Y is
the space R“ in the product topology, a space that we have previously proved to be
metrizable (Theorem 20.5) In the second version, the space Y is also R, but this
time in the topology given by the uniform metric p (see §20). In each case, it tums out
that our construction actually imbeds X in the subspace [0, 1] of R¥

Step 1 We prove the following: There exists a countable collection of continuous
functions f, : X — [0, 1] having the property that given any point xo of X and
any neighborhood U of xg, there exists an index n such that f, is positive at xy and
vanishes outside U .

It is a consequence of the Urysohn lemma that, given xo and U, there exists such a
function. However, if we choose one such function for each pair (xg, U), the resulting
collection will not in general be countable. Our task is to cut the collection down to
size. Here is one way to proceed:

Let (B,) be a countable basis for X. For each pair n, m of indices for which
B, C B, apply the Urysohn lemma to choose a continuous function gy m . X —
{0, 1] such that gn'm(é,,) = {1} and g m (X — B;n) = {0}. Then the collection (g, m}
satisfies our requirement: Given xo and given a neighborhood U of x¢, one can choose
a basis element B,, containing x¢ that is contained in U. Using regulanty, one can then
choose B, so that xo € B, and B, C B,,. Thenn, misa pair of indices for which the
function g,  is defined; and it is positive at xo and vanishes outside U. Because the
collection {g, ,»} is indexed with a subset of Z,. x Z,., it is countable; therefore it can
be reindexed with the positive integers, giving us the desired collection { f,}.

Step 2 (First version of the proof) Given the functions f, of Step 1, take R in the
product topology and define amap F . X — R“ by the rule

F(x) = (fix), fa(x),. .).

We assert that F is an imbedding.

First, F is continuous because R“ has the product topology and each f, is contin-
uous. Second, F is injective because given x # y, we know there is an index n such
that f,(x) > 0 and f,(y) = O; therefore, F(x) # F(y)

Finally, we must prove that F is a homeomorphism of X onto its image, the sub-
space Z = F(X) of R®. We know that F defines a continuous bijection of X with Z,
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so we need only show that for each open set U in X, the set F(U) isopenin Z. Let 2¢
be a point of F(U). We shall find an open set W of Z such that

o€ W C FWU).

Let xo be the point of U such that F(xyp) = zp. Choose an index N for which
fn(xo) > 0and fy(X — U) = (0). Take the open ray (0, +00) in R, and let V be the
open set

vV =50, +00))

of R”. Let W = V N Z; then W is open in Z, by definition of the subspace topology.
See Figure 34.1. We assert that zo € W C F(U). First, zo € W because

nn(20) = Ty (F(x9)) = fn(xo) > 0.

Second, W C F(U). Forif z € W, then z = F(x) for some x € X, and my(2) €
(0, 4+00). Since my (2) = my(F(x)) = fn(x),and fy vanishes outside U, the point x
must be in U. Then z = F(x) is in F(U), as desired.

Thus F is an imbedding of X in R“.

Figure 34.1

Step 3 (Second version of the proof). In this version, we imbed X in the metnc
space (R®, p) Actually, we imbed X in the subspace [0, 1], on which p equals the
metric

p(x, y) = sup{lx; — yil}.
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We use the countable collection of functions f, : X — [0, 1] constructed in Step 1.
But now we impose the additional condition that f,(x) < l/n for all x (This condi-
tion is easy to satisfy; we can just divide each function f, by n.)

Define F : X — (0, 1]“ by the equation

F(x) = (filx), fa(x), ..)

as before. We assert that F is now an imbedding relative to the metric p on [0, 1]*. We
know from Step 2 that F is injective. Furthermore, we know that if we use the product
topology on [0, 1]“, the map F cammes open sets of X onto open sets of the subspace
Z = F(X). This statement remains true if one passes to the finer (larger) topology on
[0, 1]* induced by the metric p

The one thing left to do is to prove that F is continuous. This does not follow from
the fact that each component function is continuous, for we are not using the product
topology on R“ now. Here is where the assumption f,(x) < 1/n comes in.

Let xo be a point of X, and let ¢ > 0. To prove continuity, we need to find a
neighborhood U of xq such that

x €U = p(F(x), F(xg)) < €.

First choose N large enough that 1/N < €/2. Then foreachn = 1,. ., N use the
continuity of f, to choose a neighborhood U, of xg such that

| fn(x) — fa(x0)| < €/2

forx € U,. Let U = Uy N -NUy; we show that U is the desired neighborhood
of xo. Letx e U. If n < N,

| fa(x) = fa(x0)] < €/2
by choice of U. And if n > N, then
| fa(x) — falxo)l < 1/N < €/2
because f, maps X into [0, 1/n]. Therefore forall x € U,
p(F(x), F(x0)) <€/2 <k,

as desired. a

In Step 2 of the preceding proof, we actually proved something stronger than the
result stated there. For later use, we state it here.

Theorem 34.2 (Imbedding theorem). Let X be a space in which one-point sets are
closed. Suppose that { fo}aecy Is an indexed family of continuous functions fo - X —
R satisfying the requirement that for each point xo of X and each neighborhood U
of xq, there is an index a such that fy is positive at xo and vanishes outside U. Then
the function F : X — R’ defined by

F(x) = (fa(x))aes

is an imbedding of X in R’ If f, maps X into [0, 1] for each a, then F imbeds X in
(o, 1)7.
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The proof is almost a copy of Step 2 of the preceding proof; one merely replaces n
by «, and R by R’, throughout. One needs one-point sets in X to be closed in order
to be sure that, given x # y, there is an index « such that fy(x) # fo(y).

A family of continuous functions that satisfies the hypotheses of this theorem is
said to separate points from closed sets in X. The existence of such a famly is readily
seen to be equivalent, for a space X in which one-point sets are closed, to the re-
quirement that X be completely regular. Therefore one has the following immediate
corollary:

Theorem 34.3. A space X is completely regular if and only if it is homeomorphic to
a subspace of [0, 1)’ for some J.

Exercises

1. Give an example showing that a Hausdorff space with a countable basis need not
be metrizable.

2. Give an example showing that a space can be completely normal, and satisfy
the first countability axiom, the Lindelof condition, and have a countable dense
subset, and still not be metrizable.

3. Let X be a compact Hausdorff space. Show that X is metrizable if and only if X
has a countable basis.

4. Let X be a locally compact Hausdorff space. Is it true that if X has a countable
basis, then X is metrizable? Is it true that if X is metrizable, then X has a
countable basis?

S. Let X be a locally compact Hausdorff space. Let Y be the one-point compactifi-
cation of X. Is it true that if X has a countable basis, then Y is metrizable? Is it
true that if Y is metrizable, then X has a countable basis?

6. Check the details of the proof of Theorem 34.2.

7. A space X is locally metrizable if each point x of X has a neighborhood that is
metrizable in the subspace topology. Show that a compact Hausdorff space X is
metnzable if it is locally metnzable. [Hint. Show that X is a finite union of open
subspaces, each of which has a countable basis.]

8. Show that a regular Lindelof space is metrizable if it is locally metrizable. {Hint:
A closed subspace of a Lindelof space is Lindelof.] Regularity is essential; where
do you use it in the proof?

9. Let X be a compact Hausdorff space that is the union of the closed subspaces X
and X». If X; and X are metrizable, show that X is metrizable. [Hint' Construct
a countable collection A of open sets of X whose intersections with X; form a
basis for X;, fori = 1, 2. Assume X| — X, and X, — X belong to A. Let B
consist of finite intersections of elements of A ]
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basis elements for X that covers the space

Zg=()Ya=1Ix|m(x)= pifori < B},
a<p

then A actually covers Y, for some ¢ < B. [Hint. If B has an immediate
predecessor in J, let  be that immediate predecessor Otherwise, for each
A € A, let J4 denote the set of those indices i < g8 for which 7, (A) # X;;
the union of the sets J,, for A € A, is finite; let « be the largest element of
this union.]

(b) Assume A is a collection of basis elements for X such that no finite subcol-
lection of A covers X. Show that one can choose points p, € X, for all i,
such that for each «, the space Y, defined in (a) cannot be finitely covered
by A. When « is the largest element of /, one has a contradiction. [Hin:: If
a is the smallest element of J, use the preceding lemma to choose p,. If p;
is defined for all i < B, note that (a) implies that the space Zg cannot be
finitely covered by A and use the lemma to find pg ]

§38 The Stone-Cech Compactification

We have already studied one way of compactifying a topological space X, the one-
point compactification (§29); it is in some sense the minimal compactification of X.
The Stone-Cech compactification of X, which we study now, is in some sense the
maximal compactification of X. It was constructed by M. Stone and E. Cech, inde-
pendently, in 1937. It has a number of applications in modern analysis, but these lie
outside the scope of this book

We recall the following definition:

Definition. A compactification of a space X is a compact Hausdorff space Y con-
taining X as a subspace such that X = Y. Two compactifications Y| and Y of X are
said to be equivalent if there is a homeomorphism 4 : ¥, — Y, such that A(x) = x
for every x € X.

If X has a compactification Y, then X must be completely regular, being a sub-
space of the completely regular space Y. Conversely, if X is completely regular, then
X has a compactification. For X can be imbedded in the compact Hausdorff space
[0, 1}/ for some J, and any such imbedding gives rise to a compactification of X, as
the following lemma shows:

Lemma 38.1. Let X be a space; suppose thath . X — Z is an imbedding of X in
the compact Hausdorff space Z. Then there exists a corresponding compactification Y
of X; it has the property that there is an imbedding H : Y — Z that equals h on X.
The compactification Y is uniquely determined up to equivalence.



238 The Tychonoff Theorem Ch.5

We call Y the compactification induced by the imbedding h.

Proof. Given h, let X denote the subspace A(X) of Z, and let Yy denote its clo-
sure in Z. Then Yy is a compact Hausdorff space and )-(o = Yp; therefore, Yy is a
compactification of Xp.

We now construct a space Y containing X such that the pair (X, Y) is homeomor-
phic to the pair (Xg, Yp). Let us choose a set A disjoint from X that is in bijective
correspondence with the set Yo — X under some map k : A — Yy — Xo. Define
Y = X U A, and define a bijective correspondence H : Y — Yj by the rule

H(x)=h(x) forxe X,
H(a) =k(a) fora € A.

Then topologize Y by declaring U to be open in Y if and only if H(U) is open in Y.
The map H is automatically a homeomorphism; and the space X is a subspace of Y
because H equals the homeomorphism & when restricted to the subspace X of Y. By
expanding the range of H, we obtain the required imbedding of Y into Z.

Now suppose Y; is a compactification of X and that H; : ¥; — Z is an imbedding
that is an extenston of h, fori = 1, 2. Now H; maps X onto h(X) = Xo Because
H; is continuous, it must map Y, into Xo; because H;(Y;) contams X and 1s closed
(being compact), it contains Xg. Hence H;(Y,) = Xo, and H, " o H, defines a home-
omorphism of Y; with Y, that equals the identity on X. [

In general, there are many different ways of compactifying a given space X. Con-
sider for instance the following compactifications of the open interval X = (0, 1):

EXAMPLE |  Take the unit circle S! in R% and let 4 . (0, 1) - S! be the map
h(t) = (cos2mt) x (sin2nt).

The compactification induced by the imbedding A is equivalent to the one-point compacti-
fication of X

EXAMPLE2  LetY be the space [0, 1] Then Y is a compactification of X, it is obtained
by “adding one point at each end of (0, 1) "

EXAMPLE 3.  Consider the square [—1, [}? inRZandleth (0, 1) — [—1, 1)? be the
map

h(x) = x x sin(l/x).

The space Yy = h(X) is the topologist’s sine curve (see Example 7 of §24). The imbed-
ding h gives rise to a compactification of (0, |) quite different from the other two. It is
obtained by adding one point at the right-hand end of (0, 1), and an entire line segment of
points at the left-hand end!

A basic problem that occurs in studying compactifications is the following:

If Y is a compactification of X, under what conditions can a continuous
real-valued function f defined on X be extended continuously to Y ?
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The function f will have to be bounded if it is to be extendable, since its extension
will carry the compact space Y into R and will thus be bounded. But boundedness is
not enough, in general. Consider the following example-

EXAMPLE 4 Let X = (0, 1) Consider the one-point compactification of X given
in Example 1 A bounded continuous function f : (0, 1) — R is extendable to this
compactification if and only f the limiis

lim f(x) and lim f(x)
x—0+ x—l—

exist and are equal.

For the “the two-point compactification” of X considered in Example 2, the function f
is extendable if and only if both these limuts simply exist

For the compactification of Example 3, extensions exist for a still broader class of
functions Itis easy to see that f is extendable if both the above limits exist But the func-
tion f(x) = sin(l/x) is also extendable to this compactification* Let H be the imbedding
of ¥ in R? that equals h on the subspace X Then the composite map

y o RxR >R

is the desired extension of f. For if x € X, then H(x) = h(x) = x x sin(1/x), so that

ny(H(x)) = sin(1l/x), as desired

There is something especially interesting about this last compactification. We con-
structed it by choosing an imbedding

h.(0,1) — R?

whose component functions were the functions x and sin(1/x) Then we found that
both the functions x and sin(1/x) could be extended to the compactification This
suggests that if we have a whole collection of bounded continuous functions defined
on (0, 1), we might use them as component functions of an imbedding of (0, 1) into R/
for some J, and thereby obtain a compactification for which every function in the
collection is extendable.

This idea is the basic idea behind the Stone-Cech compactification. It is defined as
follows:

Theorem 38.2. Let X be a completely regular space. There exists a compactifica-
tion Y of X having the property that every bounded continuous map f : X —» R
extends uniquely to a continuous map of Y into R.

Proof. Let { fy}acs be the collection of all bounded continuous real-valued functions
on X, indexed by some index set / For each a € J, choose a closed interval /5 in R
containing fy(X). To be definite, choose

Iy = [inf fo(X), sup fo(X)].
Then define h . X — [],c, u by the rule
h(x) = (fa(x))aey-
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By the Tychonoff theorem, [] I, is compact Because X is completely regular, the
collection { f,} separates points from closed sets in X. Therefore, by Theorem 34.2,
the map A is an imbedding.

Let Y be the compactification of X induced by the imbedding hA. Then there is
an imbedding H : Y — [] I, that equals h when restncted to the subspace X of Y.
Given a bounded continuous real-valued function f on X, we show it extends to Y.
The function f belongs to the collection { fy}ecs, SO it equals fg for some index 8.
Let ng . [] 1o — Ip be the projection mapping Then the continuous map g o H :
Y — Ig is the desired extension of f. For if x € X, we have

ng(H(x)) = ng(h(x)) = mg((fe(x))aes) = fp(x).

Uniqueness of the extension is a consequence of the following lemma. [

Lemma 383. Let A C X;let f : A > Z be a continuous map of A into the
Hausdortf space Z. There is at most one extension of f to a continuous function
g:A—>Z

Proof. This lemma was given as an exercise in §18; we give a proof here. Suppose
that g, g’ - A — X are two different extensions of f, choose x so that g(x) # g’(x).
Let U and U’ be disjoint neighborhoods of g(x) and g’(x), respectively. Choose a
neighborhood V of x so that g(V) C U and g’'(V) C U’ Now V intersects A in some
point y; then g(y) € U and g'(y) € U’. Butsince y € A, we have g(y) = f(y) and
g'(y) = f(y). This contradicts the fact that U and U’ are disjoint. n

Theorem 38.4. Let X be a completely regular space; let Y be a compactification
of X satisfying the extension property of Theorem 38.2 Given any continuous map
f . X = C of X into a compact Hausdorff space C, the map f extends uniquely to a
continuousmapg ' Y — C.

Proof. Note that C is completely regular, so that it can be imbedded in [0, 1]/ for
some J So we may as well assume that C C [0, 1]”. Then each component function
fa of the map f is a bounded continuous real-valued function on X, by hypothesis, f,
can be extended to a continuous map gq of ¥ into R. Define g : ¥ — R’ by setting
g(y) = (ga(¥))aes; then g is continuous because R has the product topology. Now
in fact g maps Y into the subspace C of R’. For continuity of g implies that

g()=g(X)CcgX)=fX)cC=C.
Thus g is the desired extension of f ]
Theorem 38.5. Let X be a completely regular space. If Y| and Y, are two compact-

ifications of X satisfying the extension property of Theorem 38.2, then Y| and Y, are
equivalent.
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Proof. Consider the inclusion mapping j2 : X — Y. It is a continuous map of X
into the compact Hausdorff space Y,. Because Y, has the extension property, we may,
by the preceding theorem, extend j, to a continuous map f; : Y| — Y,. Similarly,
we may extend the inclusion map j, : X — Y to a continuous map f| : Y, — Y,
(because Y has the extension property and Y; is compact Hausdorff).

X C Y X c 1
le}/h jll‘/fl
Y, Y,

The composite f) o f2 : Y1 — Y| has the property that for every x € X, one has
fi(f2(x)) = x Therefore, f; o f2 is a continuous extension of the identity map
ix : X — X. But the identity map of Y is also a continuous extension of {x. By
uniqueness of extensions (Lemma 38.3), f| o f> must equal the identity map of Y.
Similarly, f2 o fi must equal the identity map of Y> Thus f; and f; are homeomor-
phisms. [

Definition. For each completely regular space X, let us choose, once and for all,
a compactification of X satisfying the extension condition of Theorem 38.2. We will
denote this compactification of X by 8(X) and call it the Stone-Cech compactification
of X. It is charactenzed by the fact that any continuous map f . X — C of X into a
compact Hausdorff space C extends uniquely to a continuous map g B(X) — C.

Exercises

1. Venfy the statements made in Example 4.

2. Show that the bounded continuous function g (0, 1) — R defined by g(x) =
cos(1/x) cannot be extended to the compactification of Example 3. Define an
imbedding A : (0, 1) — [0, 1]? such that the functions x, sin(1/x), and cos(1/x)
are all extendable to the compactification induced by A.

3. Under what conditions does a metnzable space have a metrizable compactifica-
tion?

4. Let Y be an arbitrary compactification of X; let 8(X) be the Stone-Cech com-
pactification. Show there is a continuous surjective closed map g : 8(X) —» Y
that equals the identity on X

[This exercise makes precise what we mean by saying that (X) is the “‘maxi-
mal” compactification of X. It shows that every compactification of X is equiv-
alent to a quotient space of 8(X).]

5. (a) Show that every continuous real-valued function defined on Sq is “‘eventu-
ally constant.”” [Hint: First prove that for each ¢, there is an element « of Sq
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§43 Complete Metric Spaces

In this section we define the notion of completeness and show that if Y is a complete
metric space, then the function space C(X, Y) is complete in the uniform metnc. We
also show that every metric space can be imbedded isometrnically in a complete metnic
space.

Definition. Let (X, d) be a metric space A sequence (x,) of points of X is said to
be a Cauchy sequence in (X, d) if it has the property that given ¢ > 0, there is an
integer N such that

d(xy,Xm) <€ whenevern,m > N

The metric space (X, d) is said to be complete if every Cauchy sequence in X con-
verges.

Any convergent sequence in X is necessarily a Cauchy sequence, of course; com-
pleteness requires that the converse hold

Note that a closed subset A of a complete metric space (X, d) is necessarily com-
plete in the restricted metric. For a Cauchy sequence in A is also a Cauchy sequence
in X, hence it converges in X. Because A is a closed subset of X, the limit must lie in
A.

Note also that if X is complete under the metric d, then X is complete under the
standard bounded metric

d(x, y) = min{d(x, y). 1)

corresponding to d, and conversely. For a sequence (x,) is a Cauchy sequence under d
if and only if it is a Cauchy sequence under d And a sequence converges under d if
and only if it converges under d.

A useful criterion for a metnc space to be complete is the following:

Lemma 43.1. A metnc space X is complete if every Cauchy sequence in X has a
convergent subsequence.

Proof Let (x,) be a Cauchy sequence in (X,d) We show that if (x,) has a sub-
sequence (x, ) that converges to a point x, then the sequence (x,) itself converges
to x.

Given € > 0, first choose N large enough that

d(xp,Xm) < €/2

for all n,m > N [using the fact that (x,) is a Cauchy sequence]. Then choose an
integer i large enough that n; > N and

d(xp,,x) <€/2
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[using the fact that ny < ny < is an increasing sequence of integers and xp,
converges to x]. Putting these facts together, we have the desired result that forn > N,

d{(xp, x) Sd(xmxn,)+d(xn,,x) < €. ]

Theorem 43.2. Euclidean space R* is complete in either of its usual metncs, the
euclidean metnc d or the square metric p.

Proof. To show the metric space (R*, p) is complete, let (x,) be a Cauchy sequence
in (RX, p). Then the set {x,} is a bounded subset of (RX, p). For if we choose N so
that

P(Xn, xm) <1
for all n, m > N, then the number
M = max{p(x], 0,..., p(xN—l.o), p(xn,0) + 1}

is an upper bound for p(x,, 0). Thus the points of the sequence (x,) all lie inn the cube
(M, M ]*. Since this cube is compact, the sequence (x,) has a convergent subse-
quence, by Theorem 28.2. Then (IR", p) 1s complete.

To show that (R*, 4) is complete, note that a sequence is a Cauchy sequence rela-
tive to d if and only if it is a Cauchy sequence relative to p, and a sequence converges
relative to d if and only if it converges relative to p. ]

Now we deal with the product space R“. We need a lemma about sequences in a
product space.

Lemma 43.3. Let X be the product space X = [] X4, letx, be a sequence of points
of X. Thenx, — x if and only if my(Xp) — mo(X) for eacha.

Proof. This result was given as an exercise in §19; we give a proof here. Because the
projection mapping 7, . X — Xq is continuous, it preserves convergent sequences;
the “only if” part of the lemma follows. To prove the converse, suppose Ty (Xn) —
mo(X) foreacha € J. Let U = [[ U, be a basis element for X that contains x. For
each a for which U, does not equal the entire space X, choose Ny so that my(x,) €
U, forn > Ng. Let N be the largest of the numbers N,, then for all n > N, we have
X, €U [ |

Theorem 43.4. There is a metric for the product space R“ relative to which R® is
complete.

Proof Letd(a,b) = mun{|a— b|, 1} be the standard bounded metric on R. Let D be
the metric on R defined by

D(x,y) = sup{d(xi, yi)/i}.
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Then D induces the product topology on R“; we verify that R is complete under D.
Let x,, be a Cauchy sequence in (R“, D). Because

d(m;(x), mi(y)) < iD(x,y),

we see that for fixed i the sequence 7;(X,) is a Cauchy sequence in R, so it converges,
say to a;. Then the sequence X, converges to the point a = (¢y, a2, ...) of R . [

EXAMPLE |.  An example of a noncomplete metric space is the space QQ of rational
numbers in the usual metric d(x, y) = |x — y|. For instance, the sequence

1.4,1.41,1.414,1.4142,141421,...

of finite decimals converging (in R) to V2isa Cauchy sequence in QQ that does not converge

(inQ).

EXAMPLE 2.  Another noncomplete space is the open interval (—1, 1) in R, in the metric
d(x, y) = |x — y|. In this space the sequence (x,) defined by

Xpn=1-1/n

is a Cauchy sequence that does not converge. This example shows that completeness is
not a topological property, that is, it is not preserved by homeomorphisms For (—1, 1) is
homeomorphic to the real line R, and R is complete in its usual metric.

Although both the product spaces R” and R“ have metncs relative to which they
are complete, one cannot hope to prove the same result for the product space R’ in
general, because R’ is not even metrizable if J is uncountable (see §21). There is,
however, another topology on the set R/, the one given by the uniform metnc. Relative
to this metric, R’ is complete, as we shall see.

We define the uniform metnc in general as follows:

Definition. Let (Y, d) be a metnic space; let J(a, b) = min{d(a, b), 1} be the stan-
dard bounded metnc on Y denved from d. If X = (xq)aes and y = (ya)aes are points
of the cartesian product Y7, let

A(X,y) = sup{d(xs, ye) | @ € J).

It is easy to check that p is a metric; it is called the uniform metric on Y’ correspond-
ing to the metncd on Y.

Here we have used the standard “tuple” notation for the elements of the cartesian
product Y. Since the elements of ¥/ are simply functions from J to ¥, we could
also use functional notation for them. In this chapter, functional notation will be more
convenient than tuple notation, so we shall use it throughout. In this notation, the
definition of the uniform metnc takes the following form: If f,g: J — Y, then

p(f. 8 = supld(f(a), g(@)) |a € J).
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Theorem 43.5. If the space Y is complete in the metric d, then the space Y T is
complete in the uniform metric p corresponding to d.

Proof. Recall that if (Y, d) is complete, so is (Y, d), where d is the bounded metric
corresponding to d. Now suppose that f|, f2, ... is a sequence of points of Y/ that is
a Cauchy sequence relative to p. Given « in J, the fact that

‘i(fn(a) fm(@)) < o(fn, fm)

for all n, m means that the sequence fi(a), f2(@), ... is a Cauchy sequence n (Y, d).
Hence this sequence converges, say to a point y,. Let f : J — Y be the function
defined by f(a) = yo. We assert that the sequence ( f,) converges to f in the metnc 5.

Given € > 0, first choose N large enough that 5( f,, fm) < €/2 whenevern, m >
N. Then, in particular,

d(fa(@), fm(@)) < €/2

forn,m > N and a € J. Letting n and a be fixed, and letting m become arbitrarily
large, we see that

d(fa(@), f(@)) < €/2.
This inequality holds for all & in J, provided merely that n > N. Therefore,

Plfn ) <€/2 <€

forn > N, as desired. ]

Now let us specialize somewhat, and consider the set Y* where X is a topological
space rather than merely a set. Of course, this has no effect on what has gone before;
the topology of X is irrelevant when considenng the set of all functions f : X — Y.
But suppose that we consider the subset C(X, Y) of Y X consisting of all continuous
functions f : X — Y. It tumns out that if Y is complete, this subset is also complete
in the uniform metnc. The same holds for the set B(X, Y) of all bounded functions
f : X = Y. (A function f is said to be bounded if its image f(X) is a bounded
subset of the metnc space (Y, d).)

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The
set C(X,Y) of continuous functions is closed in Y X under the uniform metric. So is
the set B(X, Y) of bounded functions. Therefore, if Y is complete, these spaces are
complete in the uniform metric.

Proof. The first part of this theorem is just the uniform limit theorem (Theorem 21.6)
in a new guise. First, we show that if a sequence of elements f, of ¥YX converges to
the element f of Y X relative to the metric 5 on YX, then it converges to f uniformly
in the sense defined in §21, relative to the metnc d on Y. Given € > 0, choose an
integer N such that

p(f. fn) <€



268 Complete Metric Spaces and Function Spaces Ch.7

foralln > N. Thenforallx € Xandalln > N,

d(fa(x), f(X)) < pfn, ) <€

Thus (f,) converges uniformly to f.

Now we show that C(X, Y) is closed in YX relative to the metric 5. Let f be
an element of YX that is a limit point of C(X, Y). Then there is a sequence (f,) of
elements of C(X, Y) converging to f in the metric . By the uniform limit theorem,
f 1s continuous, so that f € C(X,Y).

Finally, we show that B(X, Y) is closed in YX. If f is a limit point of B(X, Y),
there is a sequence of elements f, of B(X, Y) converging to f. Choose N so large
that o( fy, f) < 1/2. Then forx € X, we have d(fn(x), f(x)) < 1/2, which implies
that d(fn(x). f(x)) < 1/2. It follows that if M is the diameter of the set fy (X), then
f(X) has diameter at most M + 1. Hence f € B(X,Y).

We conclude that C(X, Y) and B(X, Y) are complete in the metric p if Y is com-
plete ind. ]

Definition. If (Y, d) is a metnc space, one can define another metnic on the set
B(X, Y) of bounded functions from X to Y by the equation

p(f, 8 =sup{d(f(x), g(x)) | x € X].

It is easy to see that p is well-defined, for the set f(X)Ug(X) is bounded if both f(X)
and g (X) are. The metnc p is called the sup metric.

There is a simple relation between the sup metric and the uniform metnc. Indeed,
if f,g € B(X,Y), then

p(f,g) = min{p(f, g), 1}.

For if p(f,g) > 1, then d(f(xo), g(x0)) > | for at least one xo € X, so that
d(f(x0), g(x0)) = | and 5(f, g) = 1 by definition. On the other hand, if p(f, g) < 1,
then J(f(x), g(x)) =d(f(x), g(x)) < 1forall x,sothat o(f, g) = p(f, g). Thuson
B(X,Y), the metric p is just the standard bounded metnc derived from the metnc p.
That is the reason we introduced the notation o for the uniform metric, back in §20!

If X is a compact space, then every continuous function f : X — Y is bounded;
hence the sup metnc is defined on C(X, Y). If Y is complete under d, then C(X, Y)
is complete under the corresponding uniform metric p, so it is also complete under
the sup metric p. We often use the sup metric rather than the uniform metric in this
situation.

We now prove a classical theorem, to the effect that every metnc space can be
imbedded isometncally in a complete metric space. (A different proof, somewhat
more direct, is outlined in Exercise 9.) Although we shall not need this theorem, it is
useful in other parts of mathematics.
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*Theorem 43.7. Let (X, d) be a metric space. There is an isometric imbedding of X
into a complete metric space.

Proof. Let B(X, R) be the set of all bounded functions mapping X into R. Let xq be
a fixed point of X. Given a € X, define ¢, : X — R by the equation

¢a(x) = d(x,a) — d(x, x0).
We assert that ¢, is bounded. For it follows, from the inequalities

dx,a) <d(x,b) +d(a,b),
d(x,b) <d(x,a)+d(a,b),

that
|d(x, a) —d(x, b)| <d(a,b).

Setting b = xo, we conclude that |¢,(x)| < d(a, xq) for all x.
Define ¢ : X —» B(X, R) by setting

®(a) = ¢q.

We show that @ is an isometnc imbedding of (X, d) into the complete metric space
(B(X, R), p). That is, we show that for every pair of points ¢, b € X,

p(¢a- ¢b) = d(ao b)
By definition,

p(@a, Pb) = sup{|@a(x) — Pp(x)|; x € X}
= sup{|d(x,a) —d(x, b)|; x € X]}.

We conclude that
p(¢ao ¢b) S d(a) b)
On the other hand, this inequality cannot be strict, for when x = a,

|d(x, a) —d(x, b)| =d(a,b). [

Definition. Let X be a metnc space. If h : X — Y is an isometnc imbedding of X
into a complete metnc space Y, then the subspace hA(X) of Y is a complete metric
space. It is called the completion of X .

The completion of X is uniquely determined up to an isometry. See Exercise 10.
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3. (a) If R“ is given the product topology, show there is no continuous surjective
map f : R — R®. [Hint: Show that R“ is not a countable union of compact
subspaces.]

(b) If R is given the product topology, determine whether or not there is a
continuous surjective map of R onto the subspace R*.

(c) What happens to the statements in (a) and (b) if R“ is given the uniform
topology or the box topology?

4. (a) Let X be a Hausdorff space. Show that if there is a continuous surjective
map f : I — X, then X is compact, connected, weakly locally connected,
and metnzable. [Hint: Show f is a perfect map.]

(b) The converse of the result in (a) is a famous theorem of point-set topology
called the Hahn-Mazurkiewicz theorem (see [H-Y], p. 129). Assuming this
theorem, show there is a continuous surjective map f : [ — 1.

A Hausdorff space that is the continuous image of the closed unit interval is
often called a Peano space.

§45 Compactness in Metric Spaces

We have already shown that compactness, limit point compactness, and sequential
compactness are equivalent for metnc spaces. There is still another formulation of
compactness for metric spaces, one that involves the notion of completeness. We
study it in this section. As an application, we shall prove a theorem charactenzing
those subspaces of C(X, R”") that are compact in the uniform topology.

How is compactness of a metnic space X related to completeness of X? It follows
from Lemma 43.1 that every compact metric space is complete. The converse does not
hold—a complete metric space need not be compact. It is reasonable to ask what extra
condition one needs to impose on a complete space to be assured of its compactness.
Such a condition is the one called total boundedness.

Definition. A metnc space (X, d) is said to be totally bounded if for every € > 0,
there is a finite covering of X by e-balls.

EXAMPLE L.  Total boundedness clearly implies boundedness. For if B(x, 1/2), ...,
B(x,, 1/2) is a finite covering of X by open balls of radius 1/2, then X has diameter at
most | + max{d(x;, x;)}. The converse does not hold, however. For example. in the metnic

d(a, b) = min(1, |a — b}, the real line R is bounded but not totally bounded.

EXAMPLE 2. Under the metnic d(a, b) = |a — b|, the real line R is complete but
not totally bounded, while the subspace (—1, 1) is totally bounded but not complete. The
subspace [—1, 1] is both complete and totally bounded.
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Theorem 45.1. A metric space (X, d) is compact if and only if it is complete and
totally bounded.

Proof. If X is a compact metric space, then X is complete, as noted above. The fact
that X is totally bounded is a consequence of the fact that the covering of X by all
open €-balls must contain a finite subcovering.

Conversely, let X be complete and totally bounded. We shall prove that X is
sequentially compact. This will suffice.

Let (x,) be a sequence of points of X. We shall construct a subsequence of (x,)
that is a Cauchy sequence, so that it necessarly converges. First cover X by finitely
many balls of radius 1. At least one of these balls, say B,, contains x, for infinitely
many values of n. Let J; be the subset of Z, consisting of those indices n for which
Xn € B).

Next, cover X by finitely many balls of radius 1/2. Because J; is infinite, at
least one of these balls, say B, must contain x, for infinitely many values of n in J;.
Choose J; to be the set of those indices n for which n € J, and x, € B;. In general,
given an infinite set J; of positive integers, choose Ji4 to be an infinite subset of Ji
such that there is a ball Bg,. of radius 1/(k + 1) that contains x, for all n € Ji4 .

Choose ny € J|. Given ng, choose ngy| € Ji4+) such that ng, | > ny; this we
can do because Jx4| is an infinite set. Now for i, j > k, the indices n; and n, both
belong to J; (because J, D J2 D --- is a nested sequence of sets). Therefore, for all
i, j > k, the points x,; and x,, are contained in a ball By of radius 1/k. It follows that
the sequence (x,, ) is a Cauchy sequence, as desired. =

We now apply this result to find the compact subspaces of the space C(X, R"), in
the uniform topology. We know that a subspace of R" is compact if and only if it is
closed and bounded. One might hope that an analogous result holds for C (X, R"). But
it does not, even if X is compact. One needs to assume that the subspace of C(X, R")
satisfies an additional condition, called equicontinuity. We consider that notion now.

Definition. Let (Y, d) be a metric space. Let F be a subset of the function space
C(X,Y). If xg € X, the set F of functions is said to be equicontinuous at x if given
e > 0, there is a neighborhood U of xp such that forall x € U and all f € F,

d(f(x), f(x0)) < e.

If the set F is equicontinuous at xg for each xp € X, it is said simply to be equicon-
tinuous.

Continuity of the function f at xo means that given f and given € > 0, there exists
a neighborhood U of xg such that d( f(x), f(x9)) < € for x € U. Equicontinuity
of ¥ means that a single neighborhood U can be chosen that will work for all the
functions f in the collection ¥ .

Note that equicontinuity depends on the specific metric d rather than merely on
the topology of Y.
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Lemma 45.2. Let X be a space; let (Y,d) be a metric space. If the subset F
of C(X,Y) is totally bounded under the uniform metric corresponding to d, then ¥ is
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