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l. Introduction

Contents - Definition- Dirichlets conditions- coefficients- Fourier series
for the function defined in [c, ct+2x],[c, ct+21] — odd and even functions
in fourier series-Parseval’s identity (without proof)..

Periodic Functions

A function (x) is said to be periodic, if and only if (x + L) = (x) is true for
some value of L and for all values of x. The smallest value of L for which
this equation is true for every value of x will be called the period of the
function.

A graph of periodic function (x) that has period L exhibits the same pattern
every L units along the x — axis, so that (x + L) = (x) for every value of x.
If we know what the function looks like over one complete period, we can
thus sketch a graph of the function over a wider interval of x (that may
contain many periods). For example, sinx and cosx are periodic with
period 2w and tanx has period 7.

Dirichlet’s Conditions
(i)  f(x) is single valued and finite in (c, ¢ + 2m)

(i)  f(x) is continuous or piecewise continuous with finite
number of finitediscontinuities in (c, ¢ + 2m)

(il)  f(x) has a finite number of maxima and minima in (c, ¢ + 2m)

Note 1: These conditions are not necessary but only sufficient for the
existence of Fourierseries.

Note 2: If (x) satisfies Dirichlet’s conditions and (x) is defined in (-0, o), then (x)
has to be periodic of periodicity 2rr for the existence of Fourier series of period 2.

Note 3: If (x) satisfies Dirichlet’s conditions and (x) is defined in (c, ¢ + 2m), then (x)
need not be periodic for the existence of Fourier series of period 2.
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Example 2

Expand in Fourier series of periodicity 2w f(x) = xsinx, for 0 < x < 2m

Solution.
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STEP THREE
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Therefore, the Fourier series expansion of the function xsinx is given by
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Example 3

Obtain all the Fourier coefficients of f(x) = k where k is a constant, the periodicity being
21.

Solution.

STEP ONE
1 c+21
a, = E,fc f(x)dx
1 2T
ap = —f k dx
TJo
k 2w
= ;fo dx
[x]5"
_k
=% [2n]

a0: Zk

STEP TWO

1 ct+2m
an = — j f(x) cosnxdx
c

1 21
a, =— k cosnxdx
TJo
k r2m
=—J,  cosnxdx

_k [sinnx] 2m
0

T n

_k [sinZnn—sinO]

s n

a, =0

STEP THREE



1 c+2m
b, =— f f(x) sinnxdx
T C

1 21
b, =— f k sinnxdx
TJo

k p2m .
=—J,  sinnxdx

k [—cosnx]2”
T n 0

_k [cosZnn:—cosO]

V[ n

Even and Odd Functions
The function f(x) is said to be even, if f(-x) = f(x).
The function f(x) is said to be odd, if f(-x) = -f(x).

If f(x) is an even function with period 2 defined in (—m, ), then f(x) can be expanded
as a Fourier cosine series:

a
f(x) = 70 + z a, cosnx

n=1

where the Fourier coefficients ay and a,, are calculated by

(1) ao = f," f@)dx
(2 a, = % fon f(x) cosnxdx

If f(x) is an odd function with period 27 defined in (—m, ), then f(x) can be expanded as
a Fourier sine series:

f(x) = Z b,, sinnx
n=1

where the Fourier coefficient b,, is calculated by b,, = % fO" f(x) sinnxdx
Example 4
Find the Fourier series for f(x) = |cosx| in (—m, ) of periodicity 2.

Solution.



Since f(x) = |cosx| is an even function, f(x) will contain only cosine terms.
Therefore, f(x) = % + Yoo ay, cosnx
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Example 5.

Find the Fourier series of f(x) = e* in (—m, ) of periodicity 2.

Solution. Let f(x)= %o + z (a, cos nx + b, sin nx)

=
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Example 6

Derive the Fourier series of f(x) = x + x? in (—m, ) of periodicity 2w and hence deduce
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Therefore, the Fourier series is of f(x) is given by
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STEP FOUR

Deduction:

The end points of the range are x = w and x = —m. Therefore, the value of Fourier series at
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Example 7.

Expand f(x)=x?, when —mr < x < 7 in a Fourier series of periodicity 2. Hence deduce
that
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f(x) is an even function of x in — X <x<T, Hence bn = 0 and
only cosine terms will be present. Therefore,
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Substituting these values in (i),
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Example 8 Find the Fourier series of periodicity 2r
x when —n<x<0

for f(x) =10 when 0<x<§

x-5 whcn§<x<x
t 2 2

Solution. Let f(x)= % + Y, (a,cos nx+ b, sin nx) A1)

=
where  ao= | s
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Substituting the values supplied for f(x), we have
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Since sin 0, sin (-»n) and sin »n are all zero, we get @, = 0.
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Hence b, = by =0; b;=§,b4=0, bﬁ_ﬁf;bﬁ:ﬂ:
4k
b,__,?ﬂ .....

Using the values of a, and b, in (/) we obtain
f) =% {sinx+%sin 3x +$lsin Sx+;'sin Tx + - to )

In the above equation putting x = 1/2, we get

) 4k
e

But, by hypothesis, /(g) =k

_4 11
Hence k = = {1 o gt to o}

Multiplying both the sides by % » we have

E_,_
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Note. Functions of the type given in this example occur as external force
acting on mechanical systems, electromotive forces in electric circuits etc,
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Root Mean Square (RMS)Value

The root-mean-square value of a function y = f(x) over a given

(a, b) is defined as

b
[ dx
a

;= b-a

If the interval is taken as (¢, ¢ + 2n), then

o



Suppose that y =f(x) is expressed as a Fourier-series of periodicity 2x j
(c, ¢ + 2m). then,

y=j(x)='02—°+ z (a, cos nx + b, sin nx) i)

3

2x
f(x) cos nx dx i y

Multiply (ii) by f (x) and integrate term by term with respect to.x over the gived |
range. Thus,

c+2n aoc+2x o c+2n
! W) dv== !f(x)dx+ }}l[a,, !f(x)cosnxdx
c+2x
+b, If(x)sinnxdx
c

= fz—o (mag) + 2 la, (ra,) + b, (=b,)] using (iii)



Ex 9. Find the Fourier series of periodicity 2r for fix) =2,
in — ® < x < %. Hence show that

-—'—+'+l+ 4 10oo=
3¢

ol
In example 7 , we have proved

gin,

- "
fix)= ’—t;- +4 Z -(—9- cos nx, which is the first part of this problem. The

coefficients ay, a,, b, were seen to be

%,T"z.afﬂ—)- +b,=0.

Hence using the root-mean-square value in series,

2![—+-Z(a +b’)] =[ R dx= jx‘dx
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I. Introduction

Contents - Half range cosine series and sine series of f(x) defined in [0,x], [0,1]- Parseval’s
Identity (without proof) - simple problems — Complex form of Fourier series-Harmonic
Analysis.

Can we find a Fourier series expansion of a function defined over a finite interval?
Of course we recognize that such a function could not be periodic (as
periodicity demands an infinite interval). The answer to this question is yes but we must
first convert the given non-periodic function
into a periodic function. There are many ways of doing this. We shall
concentrate on the most useful extension to produce a so-called half-range Fourier series.

Half-range Fourier series

Suppose that instead of specifying a periodic function we begin with a function f(t) defined
on over a limited range of values of t, say 0 < t < m. Suppose further that we wish to
represent this function, over 0 <t < &, by a Fourier series. (This situation may seem a little
artificial at this point,but this is precisely the situation that will arise in solving differential
equations.)

Even: f(—x) = {(x)
0Odd: f(—x)=-1(x)

Properties of even functions

(i) The graph of an even function is always symmetrized about the y-axis.
(i) f(x) contains only even power of x and may contains only cosx,sec X.
(iii)Sum of two even function is even.

(iv) Product of two even function is even.

Odd Function
Q) Sum of two odd function is odd function.
(i) Product of an odd function and even function is an odd function.

(i) Product of two odd function is an even function



0, -1<x<0

b. Find the Fourier seriesfor f (x) Wheref(x):{l 0 x
<X<

Solution:
—i Z{an cos—+b sn@}
f(

1
:I_ )

10 1
= —jO dx+jcosn7rx dx
1—1 0

1
. nmX
sn—=
nzT |,
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o
11
:—J'lsinnnxdx
1
_[_ cos;rn}1 _[_ cosnz +i} 1-(-1)°
T, Nz nz
f () =—+ 2 snnex
2 S

Problem 25 Find the half — range cosine series for f (x) = (x —1)%in (0, 1). Hence show that
1 1 1 n’

4. =
1?22 32 6
Solution:

Here | =1

f (x)=%+§j:an cosnzx

b e o 0]
aO_ZI(x—l) dx_z{ = ]

o

1
a, = 2'|'(x—1)2 cosnz xdx
0

f a2 (- {2 o252




f(x) :%+Zj: n;:TZ cosnzTx
1 4&1
f(x)_§+?gﬁcosnnx -(1)
Put x=0 in(1)
1 4&1
fO)=2+—2% = —(2
O-3+=3% -
Here 0 is o pt of discontinuity

3

Zzi{i+i+ }

3 77 2

1+i+ oo:ﬂ—2

TR TR 5
1, OﬁxﬁE

Problem 26 a. Expressf( )= 2 asacosine series

-1, —<x<a

Solution: f (x)=%+iancos@
1

22 t 2(a a
=S dx+ [(~)axt =248 —0-a+2l=0
a, - .([ x+.£( ) dx {2 a+ 2}
2

a
a
2| =« ¢ &n
a, =— J'cos—dx—.[cos—dx
aly 2
2
. NTX N X
_ a a
a nre 1074
a Jo a Ja
2] a nt a nr 4 nr
=—q—SN—+—sin—;=—/|sin—
a(nr 2 nm 2 nr |
N N 14 n
o f(x)=) —sin—cos—.
T nw a
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b. Express f (x)as aFourier sine serieswhere f (x) = (

Solution:
We know that f ( Zb sn7X

0

1
=2 (}_xj(_cosnnxj_((_l)( smn;rxD .\ (X__j(—cosnzrxj (1)( smnnxj] ~
4 Nz Nz . 4 nr nr \
2
cos™” |sn™
AR
4 2) nr n‘r 4 nr
T .
3)\( cosnr sinnz 1 3 COSnE sin—
-2/ 1 o 2_2 a -
4 nrc Nz 2 4

I Slnnl . N
_ 5 2 _( 1 ] 5 (lj(cosnnj_(o)_ sn-—
n’r? anr 4 nr r?

2 2 1 0

b, =— I(——xjsmnﬂxdxﬂ'(x—— S|nn7rx dx
19\4 1
2

1

2

nr nrz

. N
—-49n— 1
b, =———2+—if n is odd
n°r Nz
=0if even
o 4sinn7ﬂ
f(x)= +— |sinnzX
Y

Problem 27 a. Find the Fourier cosine series for x(n—x) in0<x<r.



Solution:

T

2
= - d
a, n_([x(fr X)cosnx dx

e -2 o )

=§{_”(_1)n _l}
2

= __2{1+(_1)n}

n

4 .
=an=—Flf niseven

a, =0If nisodd.
2 & 4

- f(X) ==+ ——cosnx.
6 %

b. Prove that complex form of the Fourier series of thefunction f (x)=e™,-1<x<1is

= nl-innm . inex
f(x)=>(-1) msnhl.e .

Solution:
Here21=2, =1

f (X) — icneinﬂx
17 .
Cn —— J. e—Xe—InﬂXdX
2—1
1
=1J'e—(1+inzrx)dx
2—1
B 1 e—(1+inﬂx) !
2| [
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cosmr( e1)

> —((11+i: : )2) (1) sinh(1) €~

Problem 28 Find the cosine seriesfor f (x) =xin (0, 7 ) and then using Parseva’s theorem,

4
show that i+i4+ =
1* 3 T 96’

Solution:
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o—y_a N
—h
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X
N—
o
X

2%
=—| xdx
|
_2pel
T|2]),
277.'
a, = —jxcosnxdx
T
2 [ xsinnx cosnx )"
2o )
n "),
zg{cosnn —0——}

B g{cosnn 1}
T

:T{(_l) —1}

nz

-4 .
=——if nisodd
& N’z

a,=0ifniseven
2w
f(x)=%+ ;tcosnx



By Parseva’s theorem

%I[f (x)]zdx:a'szr%Z%z

T 2 0 2
EJ.XZ dX:n__f_lZ(izj
Ty 4 24\ nn

1z _ﬂ_2+£{1+i+ }
7| 3 2|1 3
7T2

4 7z
ot 1.1
12 8 1* 3 77
¢ 1 1
%=1—4+¥+ ..... 0

Problem 29 a. Find the complex form of Fourier seriesof f (x) if
f(x)=sinaxin -z <x<r.

Solution:  f (x)= iCn e™dx

C, = 1 j sinaxe "™dx
T -

-1 me(—insinax—acosax) E
2 (az—nz)
1 - o T (o
=——— | e"™(-insh ar —acosar )—€"™ (insin axr —acosar
1 L .
=———[-insinar2cosnz + acosar2isinn

_-2in(-1)"snar _ (-1)"insinaz
- 2r(a?-n?)  x(a?-n?)

L (x)= Sir;aﬂ i; i(n;z__l)r: ] ™.

b. Find the first two harmonic of the Fourier series of f (x) given by

0|1 ]2 |3 |4 |5
9118|2428 |26| 20

X
f(x)




Solution:

Herethelength of thein level is 21 =6, 1 =3

: 27X . 21X
f(x :ﬁ+ cos”—x+ sn”—xj+( cOS——+ sm—j
(9= 2+( a.cos b in T |+ 3,0082% b, sn
X X 27X y X . X 21X . 27X
- == ycos— | ysin— | ycos—— sn—/—=
3 3 3 3 3 3
0 0 0 9 9 0 9 0
1 T 2_;1 18 9 15.7 -9 15.6
3 3
2 2 47 24 -12 20.9 -12 -20.8
3 3
3 T 2 28 -28 0 28 0
4 4r 8t 26 -13 -22.6 -13 22.6
3 3
5 5_71 :I_O_;r 20 10 17.6 -10 -17.4
3 3
125 -25 -34 -7 0
2(125
a0=2—zy= (12 _ 4166
6 6

6 3
2 2r
=— cos—— »=-2.33
g2y e
2 2w X
=— sn—=0
b, GZy 2

L (X) =&266—8.33cos%x— Z.SSCOSZL;(—l.l%in%X.

Problem 30 a. Find the first two harmonic of the Fourier series of f (x). Given by

X |0z |2z |7 | Ax | 5x | 2n
3 | 3 3 3
f(x)|1]14]19 [17]15 [12 [10

Solution:

+ Thelast value of y isarepetition of the first; only the first six values will be used

Thevaluesof ycosx, ycos2x, ysinx, ysin2xas tabulated




X f(x) COS X sinx | cos2x | sin2x
0 1.0 1 0 1 0
n 14 0.5 0.866 | -0.5 | 0.866
3
2 1.9 -0.5 0.866 | -0.5 | 0.866
3
3 1.7 -1 0 1 0
4 1.5 -0.5 -0.866 | -0.5 | -0.866
3
%4 1.2 0.5 -0.866 | -0.5 | -0.866
3
8 = 2% =29
COSX
a=2 2 ye 0.37
D" ycos2x
= =-0.1
% 6
sinx
b =22 ye 0.17
b, = 222YSM2X_ 06
6
b. Find the first harmonic of Fourier seriesof f (x) given by
X |0 T T 4Ty 2T psT T
6 3 2 3 6
f(x)]1.98]1. 1.05]|1.30|-0.88|-0.35| 1.98

Solution:

First and last valve are same Hence we omit the last valve

X 0 21X y cos6 sing ycoso ysing
T

0 0 1.98 1.0 0 1.98 0

T V1 1.30 0.5 0.866 0.65 1.1258

6 3

T 2n 1.05 -0.5 0.866 -0.525 | 0.9093

3 3

T T 1.30 -1 0 -1.3 0

2




2T 4 088 | -05 | -0.866 | 044 | 0.762
3 | 3
5T 5% 025 | 05 | -0.866 | -0.125 | 0.2165
6 3

4.6 112 | 3013

2 4.6
=— =—2=15
=g Xy="g
2— Z{:OSQ - %(1_12) =0.37

a
2
by =< (3.013) =1.005

- f(x)=0.75+0.37c0s6 +1.005sin g

10
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I. Introduction

Contents - Particle dynamics: Simple Harmonic motion — Projectiles: — horizontal plane -
trajectory — velocity of projection — angle of projection — Range - time of flight — greatest
height - projectiles on inclined plane. Central orbit and Central forces: — differential
equation of a path — pedal equation of a differential equation — velocity at any point of a
central orbit — areal velocity — Kepler’s laws of planetary.

Simple Harmonic Motion (S.H.M) is an interesting special type of motion in nature,
having forward and backward oscillation (or) to and fro oscillation about a fixed point. The fixed
point is known as the mean position or equilibrium position. When the oscillation is very small
we prove the motion is simple harmonic. In this section we study about the resultant of two
S.H.M’S of the same period in the same straight line and in two perpendicular lines. Also we

find the periodic time of oscillation of a simple pendulum.
Examples

Small oscillation of a cradle, simple pendulum, seconds pendulum, simple equivalent

pendulum, transverse vibrations of a plucked violin string etc.

Definition
When a particle moves in a straight line so that its acceleration is always directed
towards a fixed point in the line and proportional to the distance from that point, its

motion is called Simple Harmonic Motion.

Equation (1) is the fundamental differential equation representing a S.H.M.

If v is the velocity of the particle at time t (1) can be written as

v@= — X 1€: VA=l e (2)
dx
2 2
Integrating (2), we have % = _% +C i (3)
Initially let the particle starts from rest at the point A where OA =a
Hence when x=a, v=0= ﬂ
dt
pa’ pa’
Putting these in (3), 0 = — T +corc= 5



o +COorc= /u;

Putting these in (3), 0 = —

S —H x? + ,ua2= H (az—xz)

wv=t fu(@=x*) e, 4)

Equation (4) gives the velocity v corresponding to any displacement x.

) dx . )
Now as t increases, X decreases. So P is negative.
/§

Hence we take the negative sign in (4),

% =y= —,fluiaz _x? ' commemnil )

dx
T Ju dt
a —X

Integrating, cos ™' ~ = Ju t+A
a

Initially when t =0, x = a, cos _11 =0+4=> A=0
cos? Z=[utor x=acos Jut ... (6)
a

To get the time from A to A', putx = —a in (6)

We have cos Jpt=—1=cos 7, t= %
U



The time from A to 4" and back = 2—”

Y

Equation (6) can be written as

X =acos \/; t=acos (\/; t+27r)=acos(\/;t+4 ) ete

=acos\/; t+2—7r =acos\/;t+4—7z efc.

Ju Ju

Differentiating (6),
% = —a\/; . sin \/; t

=—a ,usin(\/; t+2 7r)=—a\/; sin(\/; t+4 ) etc.

= —apu sin Ju (t+ ZT’;)= —ayJp sin \Ju (t+ %)etc.

The values of % are the same if t is increased by 2% or by any multiple of il . Hence

T

27 S . . . . o
—— the particle is again at the same point moving with the same velocity in the

Ju

o . . 2
same direction. Hence the particle has the period ——.

i

after a time

~ - ~

T= 2z . frequency = 22
Ju Ju

The distance through which the particle moves away from the centre of motion on either

R

side of it is called the amplitude of the oscillation.

Amplitude=0A = 04'=a.

The periodic time = 2—”, is independent of the amplitude. It depends only on the

Ja

constant g which is the acceleration at unit distance from the centre.

Deductions : 1) Maximum acceleration = p.a = . (amplitude)
2) Since v = ula® —x*), the greatest value of vis at x =0 and its

Maximum velocity = a /= \/xz . (amplitude) at the centre



General solution of the S.H.M. equation

2
The S.H.M. equation is z = X
. d’x
Le. + wx =0 (1)
'

(1) is a differential equation of the second order with constant coefficients. Its general
solution is of the form

x = A cos ut+Bsin\/; t somsne(2)

where A and B are arbitrary constants.
Other forms of the solution equivalent to (2) are

x=Ccos(\/;t+ s)....(3)andx=Dsin(\/;t+a) ......... 4)
++ If the solution of the S.H.M. equation is X = a cos (\/; t + &), the quantity ¢ is called
the epoch.



R i S

Definition

If two simple harmonic motions of the same period can be represented by
x, =a, cos ( \/; t+ g, )and x, =azcos(\/; t+ &5)

& — &
T

= If g =&, the motions are in the same phase.

= The difference in phase =

= If g =&, = &, they are in opposite phase.
4.2 Geometrical Representation of S.H.M
If a particle describes a circle with constant angular velocity, the foot of the perpendicular

from the particle on a diameter moves with S.H.M.




Let 44" be the diameter of the circle with centre O and P be the position of the particle
at time 7secs. Let N be the foot of the perpendicular drawn from P on the diameter 44". P
moves along the circumference of the circle with uniform speed and describes equal arcs in equal

times. Let @ — be the angular velocity. .. ZAOP = ot

IfON=x,Op=a,then,x=acos (@t) .................. (1)
% 52 TSI, scamrscknsnrnd )
d*x 2 2
— =—ao“cod(@)=—0"%  ...ccoviiiiiiiiins (3)
dr?

(3) shows that the motion of N is simple harmonic. When P moves along the circumference of
the circle starting from A. N oscillates from A to 4" and 4’ to 4.
1 1vvIem 1
A particle is moving with S.H.M. and while making an oscillation from one extreme
position to the other, its distances from the centre of oscillation at 3 consecutive seconds are

. - 2r
X1 X5 X3 Prove that the period of oscillation is
&R COS_I(X1+X3J

2.7C2
Solution:

If a is the amplitude, # the constant of the S.H.M. and x is the displacement at time t, we

know thatx =acos \Ju t.....(1)

Let x1,X, X3 _be the displacements at three consecutive seconds 7}, #; +1, #; +2.

Then x;=acos \/; ty 000 s )
X) = acos \/;(tl +1) =acos (\/;’1 +ﬁ) ....... 3)
X3= acos \/;(tl +2)=acos (\/;tl +2\/;) ....... 4)



S Xy +x3 =a[cos (\/y_tl +2\/;) + cos ( 7 tl)]
Jun + 2+ Jpn cos Jat + 2= un
2 ' 2

=a.2 cos

=2acos (\/; f, +\/;) cos\/; =2x, . COS \/;

X1 +X 1 x3 +x
AT —os G A 1 = cos o 21733
2xy 2x5
) 27 27
Period = \/_ =
1 x4+ x
H coe] AL 43
2x2
Problem 2

If the displacement of a moving point at any time be given by an equation of the form

Xx=acos ® t+bsin @ t, show that the motion is a simple harmonic motion.

If a = 3, b=4, ®= 2 determine the period, amplitude, maximum velocity and maximum

acceleration of the motion.

Solution:



Givenx=acos ot+bsmaot ... (1)
Differentiating (1) with respect to t,
dx )
i —awsin @t+b@COSOF ........cooviiiiin.n. (2)
d*x :
— = —w?’cos wt—b w’sin ot
dt
= _@*@cos @t+bsin®t)=—@ >x...(3)

.. The motion is simple harmonic.

The constant # of the SHM. = @”.
o Period= — = — = Ly secs.

Amplitude is the greatest value of x.

When X i1s maximum, % =0
1

—awsm ot +bwcosax =01.e.asin @f =bcos wtortan o t= é:
a
When tan ot = %,sin ot= s and cos ot = %
Greatest value of x =a x§+bx%: 30;% — 3'3;4'4 =95

Hence amplitude = 5.
Max. acceleration = g . Amplitude =4 x 5 =20

Max. velocity = \/; . Amplitude =2 x 5 =10

W |



Problem 3

Show that the energy of a system executing S.H.M. is proportional to the square of the
amplitude and of the frequency.

Solution:

The acceleration at a distance x from O = x.
Force = mass xacceleration =m g

If the particle is given displacement dx from P,

work done against the force =m y x.dx

Total work done in displacing the particle to a distance x
X
X
= Im pdx=m puy— .. (1)
0 2

Work done = potential energy at P.

If v is the velocity at P. we know that v>= ,u(a2 —x? )
. 1 , 1 2 2
.. Kinetic energy at P = 2 mv°= Em,u(a =ix ) ........... (2)

The total energy at P = Potential energy + Kinetic energy

_ m,wc2 +%(a2 N xz): m,ua2 3)
5 = ; B

Total energy at P o a*

If n is the frequency, we know that

1 _ 1 _u
Period [27[) 27

Ju
.\/;:2}7,'11 or y:47r2n2

n=

1
Total energy = Em. Artn*a® =27°ma*n® a n®



Problem 4

A mass of 1 gm. Vibrates through a millimeter on each side of the midpoint of its path

256 times per sec; if the motion be simple harmonic, find the maximum velocity,

Solution:

Maximum velocity v=/u.a
= 1
Given, frequency =? =256=

Ju =2x256x .
Given, amplitude = ¢ = 1 millimeter =1 x 10~ c.m.

.. Maximum velocity, V=2 x 256 x 7 x %= 25? il cm/ sec

Problem 5

In a S.H.M. if f be the acceleration and v the velocity at any time and T is the periodic

time. Prove that f°7T° +47”v” is constant.

Solution:
Velocity at any time, v = 4/ a® —x*
ST 27 d*x
Periodic time T=—, = e f.
N
d’x
For, S.H.M, s T THX
dt
w b ==

2
f2T2 +A4r%? :yzxz.i +4r ,u?‘(a2 —x2)
Y7,

= 47r2,wc2 +47r2,ua2 —47[2,ux2

= 472 ,U(12 (constant)

10
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Introduction

Contents — One dimensional wave equation — Transverse vibration of finite elastic string
with fixed ends — boundary and initial value problems — Fourier series solution — one
dimension heat equation — steady and unsteady state — boundary and initial value
problems — Fourier series solution.

Recall that a partial differential equation or PDE is an equation containing the partial
derivatives with respect to several independent variables. Solving PDEs will be our main
application of Fourier series.

I. One-dimensional wave equation

Let us start with the wave equation. Imagine we have a tensioned guitar string of length L.
Let us only consider vibrations in one direction. Let x denote the position along the string, let
t denote time, and let y denote the displacement of the string from the rest position. See Fig.

1.
E

Figure 1: Vibrating string of length L, x is the position, y is displacement

Let (x, t) denote the displacement at point x at time t. The equation governing this setup is
the so-called one-dimensional wave equation:

We generally use a more convenjent notation for partial derivatives. We write y: instead of

dy, and we write y  instead of 2 7.
ot x dx2



With this notation the equation that governs this setup is the so-called one-
dimensional waveequation, becomes y:: = a%yx

for some constant a > 0. The intuition is similar to the heat equation,
replacing velocity with acceleration: the acceleration at a specific point is
proportional to the second derivative of the shape of the string. The wave
equation is an example of a hyperbolic PDE.

The following assumptions are made while deriving the 1-D wave equation:

1. The motion takes place entirely in one plane. This plane is chosen as the xy-
plane.
2. In this plane, each particle of the string moves in a
direction perpendicular to theequilibrium position of the
string.
3. The tension T caused by the string before fixing it at the end
points is constant at alltimes and at all points of the deflected
string.



7.

The tension T is very large compared with the weight of the string and hence the
gravitational force may be neglected.

The effect of friction is negligible.

The string is perfectly flexible. It can transmit only tension but not bending or shearing
forces.

The slope of the deflection curve is small at all points and at all times.

Solution of the Wave Equation (by the method of separation of variables)

Let y = X(x).T(t) be a solution of (1), where X(x) is a function of x only T(¢t) is a
function t only.

ar - 2
,_dX . dT
where X:Er—z-and?' -
Hence (l)bccnmes,,\’r" = X'T
. 2
ie. —X—.. azT ( )

The L.H.S. of (2) is 2 function of x only whereas the R.H.S. is a function qf
time r-only. But x and f are independent variables. Hence (2) is true only if

each is equal to a constant.

.l 1;— = k (say) where k is any constant.

—

X aT
Hence X" — kX=0and T" -a’ kT=0
Solutions of these equations depend upon the nature of th
Case 1. Let k= A%, a positive value . 1

* - v _ A\ =0.

Now the equation (3) are X" — AX=0 am{n T a’lt T

Solving the ordinary differential equations we g¢l,

X=A,"+ B

and TuCd®+Die ™"

)]

e value of k.

Case2. Letk=- 2% anegative numzber. s o
Then the equations (3) are X' + A°X=0an

Solving, we get, .
X=A2coskx+stmxx

and T=C, cos A at + Dy Sin A at.



Case 3. Let k=0.
Now the equations (3) are X' =0and

Then integrating, X=A + B,

s T=Cst+ Dy

7" =0.

ave equation e

. W
Thus the various possible solutions :'f)' the (t:;
y=(4,e™ + By M)C, & + Die Aat + Dy I Aal) .:U"’
Y= (A4, cos Ax + B, sin Ax) (Cyc08
Y=(Ayx + B)Cyt + Dy)

Example 1

A tightly stretched string with fixed end points x = 0 and x = L is initially in the
position y = f(x). It is set vibrating by giving to each of its points a velocity % =
g(x)att = 0. Find y(x, t) in the form of Fourier series.

Solution.

The displacement y (x, f) is governed by
% =a g—’; (1)
The boundary conditions under which (1) is to be solved are .
() y(©,7)=0fort=>0
@) y(,)=0fort20
(iif) y(x,0)=f(x), forO<x <!

() (%) = g(),fer0<x<l

t=0
Solving (1) by the method of separation of variables, we get,
Y&, =4, & + B, & P)C, " + D, &) ()
¥ = (A, cos Ax + B, sin Ax)(C, cos Aat + Dy sinhaf)  ...(~II)
Y=(Ayx + By)(C3t + D3) . ..(IIT)

Since the solution should be periodic in ¢, we reject solutions (T) and (111)
and select (II) to suit the boundary conditions (i), (i), (iii) and ().



“ Y%, )= (4 cos Ax + B sin AxXC cos Aat + D sin Aaf) ~(2),
“here 4, B, C, D are arbitrary constants.

Using boundary condition () in (i),

4(Ccos Aat + D sin Aat) =0 for all £ 2 0.

s At

Applying the boundary condition (if) in (2),

Bs‘"”(COOSMHDsth) 0, forall 22 0.

ifB= =0, the solution becomes y =0 which is not true.

'“‘“ =0,Bx0,

€. M= mm, where n is any integer.
LodeMm

S—

nnat
y(x, )= Bsm—ml—tx(Ccos”t +Dsm—l—)

at nmnat

ie, yxi= sm-m—;x-LC cos ml +D, sm—l—) w(3),
where BC =C, and BD =D,

Since the wave equation is linear and homogeneous, the most gener|

solution of it is
o

yx, 0= 2 (C,, cos'mTa‘+D,, sin —m;-@Jsin# «(4).
n=1
This satisfies boundary condition (i) and (i#). To find C, and D, we make
use of the mitial conditions (iif) and (#v).

y(x,0)= Z Cysin T =1(x) .05
n=1
and (%) = Lo D,sin T =g 6
t=0

The left-hand sides of (5) and (6) are Fourier series of the right-hand side functions.

!
2
Henoe Cy='7 gf (=) sin™} di A7)
i
2 . NMx
- .'_"‘7_1) =-,-(];g(x)sm~, dx @



Example 2

A tightly stretched string with fixed end points x = 0 and x = L is initially in the
position y(x,0) = y,sin3 (?) = f(x). If it released from rest from this position, find

the displacement y(x, t) at any time t and at any distance from the end x = 0.
Solution.
The displacement y of the particle at a distance x from the end x=0 and time t is

?y _ 20%
governed by — = a® .

The boundary conditions are:

y(0,0=0. forall 120 ()
y(L.0=0, forall 120, (i)
(% ]20' forO<xs<t (i
t=0

. 3 mx
y(x.0)=)‘os'“3(7)' for0<x</ (iv)

Now solving (1) and selecting the proper solution to suit the physical
nature of the problem and making use of the boundary conditions (1) and (ii)
a5 in the previous problem, we get

. nnx
y (x, r)=BsmnT(Ccos"Tm+Dsin-"%] «(2)

Again using the boundary condition (jii),

(% L:owm%(o-#)-

If B=0, (2) takes the form y (x, 7) = 0. Hence B cannot be zero.
s D=0,

Hence (2) becomes,
. nmat : 2
y(x,)=B, — cos —Ig- » where n is any integer and B, is any constant.

_ The most general solution satisfying (1) and the boundary conditions (i),
W) and (iii) is

Y(x, 0= z B, sin _ruitx__ cos # «(3).



Tofind B, use the boundary condition (iv).

e Z B, sin 7 = y, sin (—";5)

Il-l l

Yo T 3nx
- 3 P ST
4( sin = sin == )

Thi :
lSnstmconIylfB,—-3—4— B’-_TandB =0, forn#1,3.

Using these values in (3), the solution of the equation is

3 w mat Yo . 3nmx  3nat
y(x,t).=—3;23in—l—cos—l——-zsm—rcosT

Example 3

The points of trisection of a tightly stretched string of length | with fixed ends are
pulled aside through a distance d on opposite sides of the position of equilibrium and
the string is released from rest. Obtain an expression for the displacement of the
string at any subsequent time and show that the midpoint of the string is always
remains at rest.

Solution.
Yy
D (43, d)
| C A(1,0)
N
E (2// 3~0)
BD=CE=d.

The displacement y (x, 1) is governed by

31}- _ 2 31y
X )



The boundary conditions here are

y(©0,0)=0 fort20 i)
y(Ln=0 fort20 i)y
ay |
and ( 3 ]- 0, forO0<x<! (i)
t=0

To find the initial position of the string, we require the equation of ODEA

The equation of ODis  y= % x= 3% X

The equation of DEis y—d = - d_
€q 5y=- (1/6) (x=1/3)

ie., y='T(l—2x).

The equation of EA is y=%(x—l).

The fourth initial condition is
(
% forO0sx<!l/3
2!
y(x,0)= 1 —(l 2x) foras 5—3-
-l—(x-l) for%<x$l (iv)

Solving (1) and selecting the suitable solution and using the boundary conditions (i),
(it) and (iii) as in example 2, we get

. mmx nmat
y(x,t) = E =08

Using the initial condition (iv) we get,



Y B,sin" =y(x0)= ﬂforosmm

3 T 2
== (-2 for3<Sx<T

(x=1D, for? <x<l

23 2
!
Finding Fourier sine series of y (x, 0) in (0, /) we get in the usual

way y(x,0)= Z b, sin-'-'—ln-E-

n=1
)
B,=b,=7 [y (x 0)sin" " dx
0
2 ”33dx nx 2,/3
B,,=7 I e n—l— + I —(l 2x)sm——dx
0 /73
l 3d
+ [ L-psin " dx
/3
I i nmx ) (e \1Y
I Nl PP .
r n n'n’
! 2
| X J \ ! )40
r : \ 2 20/3
nmx
cosg—?x- ( sin =~
+— = (=D =—32
i (I-2x) - (-2) i
! P
! \ / \ S




!
[ cosf'[E sin%
v L I I el Ry
! NS
o 273
184 [ . nn_ . 21T
=n2n2[sm3 sin 3J
18d[ . nm_ _nmm
=n—2——2-sm 3 —sm(mt 3 )]
—1—84 'nﬂ-f-cosmt-sinﬂ
_nznzbSI 3 - 3
184 . nm ,.
=——sin—[14+(-1)"]
nn? 3
=0if nis odd.
36d . nm.. .
=-——sin — if n is even.
o ¢ 3
Hence,
6d ¢ L onm. ommx oonmat
y(x’t).—.:‘—z- z ?sm 3 sin ] COS ]

o 1 . 2nm . 2nmx _ 2nmat
ie., )’(Jc,t)=-"—2 Z — sin =3~ sin = $cos = —

By putting x = //2, we get the displacement of the midpoint.

5 9 [é' t)= 0, since sin 2";“ becomes sin nt =0 when x =1/2.

Example 4

A string is stretched between two fixed points at a distance 2| apart and the points of

%jn0<x<l
the string are given initial velocities v, where v = {.,;_,, , X being the

] Jinl<x<2l

distance from an end point. Find the displacement of any point at a distance x from
the origin.

Solution.

{0



The boundary conditions are
y(0,1) =0, for 120 i)
y2.,0)=0, for 120 i)

y(x,0)=0, for 0Sx<2!

.(1ih)
(%) =% in0<x<l!
=0

C .
=-l-(2l-x). inl<x<2l (1)

As in the previous examples, using boundary conditions () and (i), we
get

_ .. nmx nnat nna
y(x, 1) =sin 2 [C cos =, + D, sin —27]
Using (iii), C,=0.

. nRx . nmat
s Yx0=D, sin =5, sin ==

The most general solution of the equation (1) is

nnx . nnat
y(x, 8) = ;lD,, sin 2 S sin i

dy _“ nmta) . nfx nnat
o (x, 1) -n;lD,,( 2l )sm 21 cos 2

Using (iv),

nma) . nnx cxX .
"ZD"(ZI )sm v=T’m0<x<l

21

%(ZI-x), inl<x<2l.
Expanding v in Fourier sine series, we get

| 2
nta 2|c dx
Py it | —-—dx+ 2l - x) sin —;
) | 21 I{xsm 21 ‘[( )

-(2)

n



)
l- coslz-B Sm"@
2 _ 2l —m|- 2(
) D"=———mcal nn 2
2 4P
| 0
2
[ cosm sin 2
+1@l-x)|- = -=n|-—Z
. M n21t2
2! al
1 4]
I
2¢ |-2P nn AP nn 207 nn
=n1tal[ cos — +n21t2 in~ + 0s
P
+n2_1tzsm )
2 8% . m

}’(X» t) _—

§‘o~

Example 5

If a string of length Lis initially at rest in equilibrium position and each point of it is
given the velocity % = pysin ( ) 0 <x <l Determine the transverse
displacement y(x, t).

Solution.

2



The boundary conditions are
(0,0 =0, for 120

& & - 1)
y(l, 1) =0, for t (i)
y(x‘ O)=0, for 0<x<I (lll)
a)’ . 3T
(EJ =vo Sin" = forO0<x<i (V)
1=0
Selecting the solution II, and using boundary conditions (i) and (if)
we get y(x, £) = B sin % (C cos "T’“" +D sin #)
using (iif), C=0
Therefore y(x, f) = B, sin % sin nTnat' n any integer
The most general solution is
y(x,0)= 3 B, sin 7% sin - . -(3)
n=1 gz
Iy < .
—a¥ = z A n1lta sin m;x cos m;at -(IV)
n=1
Using in (3),
3l nat Yo . 3mx . 3mat
y(x, 1) = 3;? sin% $in " Tra "™ 1 " |
Example 6

A string is stretched and fastened to two points I apart. Motion is started by
displacing the string in to the form y = k(Ix — x?) from which it is released at time
t=0. Find the displacement of any point of the string at a distance x from one end at
any time t.

Solution.

The boundary conditions are:
y0,)=0, t>0

y(lt) =0, t>0

13



ay
a

y(x,0) = k(lx — x%),

0<x<l

0<x<l

Using boundary condition (iv),

;B,,sin*-ﬂT—E=k[£x—x’]

y(x,0) =

Thi

ng the formula for Fourier coefficients,
Usin

I

s shows that this is the half range Fourier sine

series of k(lx — xl).

2 — 22 gin TTX
B.'—'bu"’"l_jk(b‘ x°) sin ; dx
0
i cog =X, . nMx 1
% L] e2g|-2 L oy
TNEN " [V )| 5=
' T 33 ne
L ! A
Jo
2P
-’f[ {(—)-n}
2
4kl [1 (—l)]
=0 if nis even
2
=5 ifnisodd
ntr
Substituting in IV,
Y(X»f)=8k-f2 L ,stn-l)""E (2n - )nat
Nn-l(zn‘l) !
Example 7

A taut string of length 2l is fastened at both ends. The midpoint of the string is taken
to a height b and then released from rest in that position. Derive an expression for

the displacement of the string.



Solution.

7

A(l, b)
|
b!
|
0 / B(21,0) X
The boundary conditions are:
X0.0=0, r20 ()
Y2Ly=0, r20 i)
?'_v. =0,0$X$2’ <o (i)
[a: ],_ o

.-_---bl-(x-ZI).leSZl

[since. equation of OA is y = % x and equation of AB is LZOI = @1\
- ~2

—~

Starting with the solution
y(x, ) = (A cos Ax + B cos Ax)(C cos Aat + D sin Aat)
using the first boundary condition,

y(0,8)=A(Ccos Aat + D sin Aab) =0
A=0,

using W2 ) =0 we get
B sin 2IA. (C cos Aat + D sin Aar) = 0

B#O‘,Zﬂ,: s =—n§
nx ;A 2

Using [ﬂ] D =0.
ot
t=0
in x )= 1 n_ﬂ__ M
Mx, 1) ZB,,SIn 2 5, N



Using boundary condition (v)inlV,

¥x,0)=Y B, sin m:%
!

21 x,0<x<!
= -2D),Isxs2
This is half-range Fourier sine series
2
. B,= E-If(x)sm
0
l
H% '—dx--Iu 20 siny;” s
0
nmx nmx
cos - sma—
=-l—)- 69 e .
I L nn
L 2l 4P
¥
cos ==X sin X
| -2 |-—2 -
nn nn
21 41
g A
2 2
p| 28 nm 4P (. onm) 28 - onm 4P . nm
e g F e g v aen
=P- %Ein%]
2\ n’n
--—3""1-::.mﬂ
't 2
=0 forneven

b



8b

nm
=-——=sin — for odd n.
et 2

Substituting in IV,

8b 1 . (2n - l)m (2n— 1)nat
)‘(x,t)=-1?n=‘a-—l)2sm (2n - l)— sin T
e e (=1 -5l . @n-Drx (@2 - Dnat
n_l(2n— 1)? 2

Exercise

A tightly stretched string with fixed end points x=0 and x=I is initially at rest in its
equilibrium position. If it is set vibrating giving each point a velocity 3x(l — x), find

the displacement.

Heat on an insulated wire

Now let us consider with the heat equation. Consider a wire (or a thin metal rod) of length L
that is insulated except at the endpoints. Let x denote the position along the wire and let t

denote time. See Figure 2.

temperature u

-

Figure 2: Insulated wire

insulation

-

L x

Let u(x, t) denote the temperature at point x at time t. The equation governing this setup is

the so-called one-dimensional heat equation:

ou

T =

0%u

ox?’

where k > 0 is a constant (the thermal conductivity of the material). That is, the change in
heat at a specific point is proportional to the second derivative of the heat along the wire. This
makes sense; if at a fixed t the graph of the heat distribution has a maximum (the graph is
concave down), then heat flows away from the maximum and vice-versa.

Therefore, the heat equation is u; = k.,

V7



For the heat equation, we must also have some boundary conditions. We assume that the ends
of the wire are either exposed and touching some body of constant heat, or the ends are
insulated. If the ends of the wire are kept at temperature 0, then the conditions are:

Q) u(0,t) = 0and u(L,t) = 0.
If, on the other hand, the ends are also insulated, the conditions are:
(i) u,(0,t) = 0and u, (L, t) = 0.

Let us see why that is so. If u, is positive at some point x0, then at a particular time, u is
smaller to the left of x0, and higher to the right of x0. Heat is flowing from high heat to low
heat, that is to the left. On the other hand if ux is negative then heat is again flowing from
high heat to low heat, that is to the right. So when ux is zero, that is a point through which
heat is not flowing. In other words, ux(0,t)=0 means no heat is flowing in or out of the wire
at the point x=0.

We have two conditions along the x-axis as there are two derivatives in the x direction. These
side conditions are said to be homogeneous (i.e., u or a derivative of u is set to zero). We also
need an initial condition—the temperature distribution at time t=0. That is, u(x,0)=f(x), for
some known function f(x).

Solution of heat equation by method of separation of variables

We have to solve the equation

ou_, O
ot  oz?’

where k = a2 is called the diffusivity of the substance.

Assume a solution of the form u(x,t) = X(x).T(t) where X is a function of x and T is a
function of t.

Then (1) becomes,

T/ =’ X"T,

d°X , dr
P  and T/ = —
where X "{hz an dt
.ox_ T
e YT — e

The LHS is a function of x alone and the RHS is the function of t alone when x and t are
independent variables. Equation (2) can be true only if each expression is equal to a constant.

15



X i
) ~— =—— =k (constant
. Lﬂ x QZT )

o X' =kX=0,and T’ - kT =0
The nature of solutions of (3) depends upon the values of k

Case 1. Letk=22 a positive number,
Then (3) becomes,

X'-A\X=0, and T - o®A2T =0,
Solving, we get

e

2.2
X=Ae™+Be™and T=C,e* ",
’ Czase 2. Let k=-22 a negative number. Then (3) becomes
X'+1X=0,and T + o®A2T = 0.
Solving, we obtain

X=A,c0s Ax + B, sin Ax, and T=Cpe ® .
Case 3, Letk =0
Then X” =0 and T’ = 0.
Solving, we arrive at,
X=Ax+B,and T=C,
Hence the possible solutions of (1) are ®
:
u(x, f)= (A€M + Be™)C lfuh ‘ (I
.
Ux, 1) = (A, cos Ax + B, sin Ax) Cr € |

u(x, t)=(Asx+B3)Cs

Example 8

A rod [ cm with insulated lateral surface is initially at temperature f(x) at an inner point
distant x cm from one end. If both the ends are kept at zero temperature, find the temperature
at any point of the rod at any subsequent time.

Solution.

////mrrhI/lﬂ/I//////

i u(x, 0)=f(x [

b | ' S
5 7777777777707 7777777774 X

\7



Let u(x, f) be the temperature at any point distant x from one enduy
time ¢ seconds. Then u satisfies the partial differential equaiy

Pu_1 u
o ol ot
The boundary conditions, here, are
u(0,1)=0 forallt20
u(l,1)=0 forallt20

and the initial condition is
u(x,0)=f(x),for0<x<! A

Solving the equation (1) by the method of separatioq of ariables®!
selecting the suitable solution to suit the physical nature
problem as explained in the method § 3-6, we get

2.2
u(x, )= (A cos Ax + B sin Ax) e~ L
Substituting the boundary condition (i) in (2), we get,
2
u0,)=Ae*"*"=0,forall 20
s A=0
Employing the boundary condition (i) in (2). we obtain,

2,2
“(L)=BsinMe®* " =0 forall 120

ic.. Bsin M =0.

(2) will be a trivial solution, Hence

A= 1T where n is any integer,

A= EIE » where n is any integer,
Then (2) reduces t0

222

. n anx

u(x, ) = B, sin o il ;

«(3),

where By isanY constant.

Since the equation (1) is linear, its most general solution is obtained by a linear combination
of solutions given by (3).

Hence the most general solution is



5 222
. ARx _4nxt
u(x, )=y Bysin =€ 7
k= (4).
(4) should satisfy the initial condition (i),

Using (iii) in (4),

u(x, 0)= 2 B, sin # =f(x), forO<x<] (given)

n=1

«(3).

If u(x, 0), for 0 < x < [, is expressed in a half-

range Fourier sine series ;
i
0 < x <, we know that il

u(x,0)=f(x)=Y b, sin % where

n=|

{
b,,=%]f(x)sin$dx.
0

Comparing this with (5), we get

!
2
By=b,=7 [1( sin "7 dx.
0

Therefore the temperature function u(x, 1), is

oo l 22
“a0=F |3 1100 sim ™ e |sin 5
e ’o ! l

Two-Dimensional Heat Flow

When the heat flow is along curves instead of along straight lines, all the curves lying
in parallel planes, then the flow is called two-dimensional. Let us consider now the flow of
heat in a metal plate in the XOY plane. Let the plate be of uniform thickness h, density p,
thermal conductivity k and the specific heat c. Since the flow is two dimensional, the
temperature at any point of the plate is independent of the z-co-ordinate. The heat flow lies in
the XOY plane and is zero along the direction normal to the XOY plane.
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Introduction

Contents — Two dimensional heat equation - steady state heat flow in two dimensions-
Laplace equation in Cartesian and polar co-ordinates (excluding annulus) — Fourier series

solution.

Recall that a partial differential equation or PDE is an equation containing the partial
derivatives with respect to several independent variables. Solving PDEs will be our main

application of Fourier series.

Two-Dimensional Heat Flow

When the heat flow is along curves instead of along straight lines, all the curves lying
in parallel planes, then the flow is called two-dimensional. Let us consider now the flow of
heat in a metal plate in the XOY plane. Let the plate be of uniform thickness h, density p,
thermal conductivity k and the specific heat c. Since the flow is two dimensional, the
temperature at any point of the plate is independent of the z-co-ordinate. The heat flow lies in

the XOY plane and is zero along the direction normal to the XQOY plane.

In mathematics and physics, the heat equation is a certain partial differential equation.
Solutions of the heat equation are sometimes known as caloric functions. The theory of the
heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling

how a quantity such as heat diffuses through a given region.

As the prototypical parabolic partial differential equation, the heat equation is among the
most widely studied topics in pure mathematics, and its analysis is regarded as fundamental
to the broader field of partial differential equations. The heat equation can also be
considered on Riemannian manifolds, leading to many geometric applications. Following
work of Subbaramiah Minakshisundaram and Ake Pleijel, the heat equation is closely
related with spectral geometry. A seminal nonlinear variant of the heat equation was
introduced to differential geometry by James Eells and Joseph Sampson in 1964, inspiring
the introduction of the Ricci flow by Richard Hamilton in 1982 and culminating in the proof

of the Poincaré conjecture by Grigori Perelman in 2003.
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Y4
D (x, y+8y)} _ C(x+8x, y+3dy)
l
. . —_—
!
Ax,y) | B(x+8x,y)
o) X

Now, consider a rectangular element ABCD of the plate with sides
Ox and dy, the edges being parallel to the coordinates axes, as shown in the
figure. Then the quantity of heat entering the element ABCD per sec. through
the surface AB is

[ ou ,
= k(ay lﬁx h.

Similarly the quantity of heat entering the element ABCD per s.
through the surface AD is

=g | O
= k[ax l oy - h.

The amount of heat which flows out through the surfaces BC and CD &

du Sy-hsnd k[ 2 . &. s
—k( % )”& y dy H&& h respectiveiy.

Therefore the total gain of heat by the rectangular element ABCD
r sec. = inflow—outflow

e[{(3) ) ()]
2).c(2) ().

= khx-By o 5 1)

The rate of gain of heat by the element ABCD is also given by
du
p&x.sy-h'C'E -...(2)

Equating the two-expressions for gain of heat per sec. from (1) and (2), we
have,



Equating the two-expressions for gain of heat per sec. from (1) and (2), we

have,
(au) (au
a ox x+8x a‘x)
pdx-dy-h-c- 3t =h k &x dy =
du du
[aylﬁ.\‘_(gl
+ 5 :
2oL (8] ()08
ie., a—l:=;k(,: o x+5x o ‘+ ‘a; y+dy ay y
dx By

Taking the limit as 8x — 0, dy — 0, the above reduces to

ﬂ__k_ du a2
or "

Putting o = Ek— as before, the equation becomes,
du_ of Pu, du )
o Py ay2

The equation (3) gives the temperature distribution of e |
: Pt
transient state. .
u is independent of 1, so that % _

In the steady-state, H"!ce "
3 ou &
temperature distribution of the plate in the steady-state is axz a;zl <

i.e., V2u =0, which is known as Laplace’s Equation in 'wo'd'"‘%io“
Corollary. If the stream lines are parallel to the x-axis, then the P
change % of the temperature in the direction of the y-axis will be zerq T

the heat-flow equation reduces to 5'— = a2 7— ¥ which is the heat-flow equatip

in one-dimension.



du
SolutionoftheEquations;-z”fsy—z'-o-
P
B )

ou
The equationis — +—— =0.
equation i w ay2
Assume the solution u(x,y)=X(x)-Y (),
where X is a function of x alone and Y a function of y alone.

Tk
The Laplace equation V%4 =0 becomes X”Y+ Y’ X=0
’ X . =¥
ie., =7 wdd)

The left hand side of (2) is a function of x alone and the right hand side‘is"
function of y alone. Also x and y are independent variables. Hence, tis ¥
possible only if each quantity is equal to a constant k.

S o )
ut x ___Y _k ....0

Le., X'—kX=0,and Y’ +kY=0. __(4)
Case 1. Let k =A% a positive number.
Then X” ~A’X=0, and ¥ + A2 Y = 0,
Solving, X=A, ™+ Bie Mand Y= C, cos Ay + D, sin Ay.
Case2.Letk=-22% 3 negative number.
Then (4) becomes X” + A2X = 0 and Y -AY=0
Solving these equations, we have,

X=Azcosl¥+32 sinAxand Y=C, e" 4 p, ¢~
3. Let k = 0. Then (4) reduces to
x"=03nd y’=0.

ol ving these equations,
the possible solutions of (1) are

.n‘e;efom.
uxn )= (A, &+ B, e h)(Cl cos Ay + D, sin Ay) ()
u(x ) = (A, cos Ax + B, sin Ax) (G, M+ D, e')") (I
u(x, )= (A3 x+ B)(Cyy + Dy (I

I problems where the boundary conditions are given, we have to select

 suitable solution or a linear combination of solutions to satisfy (1) and the

boundary conditions.



Example 9. An infinitely long plane uniform plate is bounded
rallel edges x=0and x=1, and an end at right Y4 el

angles 10 them. The breadth of this edge y =0 is | and
ismaintained at a temperature fix). All the other three ~ [VYVWM
edges are at temperature zero. Find the steady-state
{emperature at any interior point of the plate.

Let u(x, y) be the temperature at any point (x, y)

of the plate.
Then u satisfies

x=0
x=17

b4

0y=0

du du_
oy
The boundary conditions are

u©0,y) =0, for0Sy<eo )
ull,yy =0, for0<y<eo (1))
u(x,) =0, forO0<x<l! (i)
u(x,0) = fix), forO<x<l (V)

0 sl )

Solving (1), we get,

u(x, y) = (Ale’t“r +Be” "')(C1 cos Ay + D, sin Ay) (D)

...(I)
...(TIN
t a solution to suit the boundary

u(xn }') = (AZ cos Ax + Bz sin h)(C2 el)' o Dz & A’)
u(x, y) = (Ayx + B3)(Cay + D3)
Of these solutions, we have to selec
conditions.
Since u =0 as y = oo, we select the solution (//) as a POssibje
(rejecting the other two). so}%l
-, u(x,y)=(A cos Ax+ B sin Ax) (Cel-" + De” "")
Using the boundary condition (1),
u(0,y)=A (Ce"+De"”) =0,for0Sy<oco. " A=(
Using the boundary condition (i) in (2),
u(l,y)=Bsin M (Cel"+De’A’) =0, for0<y S o,
Since B#0, sin Al=0. Hence Al =nn

le, A= -’1;5» where n is any integer.
Asy = o, u— 0, from (iii). .. C=0.

Hence u(x, y) = B, sin—"!;—xe— "', where BD =B,

Therefore the most general solution of (1) is



N . nRx “E:z
ux,y) =y B,sin== e )

Using the boundary condition (iv) in (3),

nnx

u(x,0) = 3 B, sin =), in0<x<l )

Expressing f(x) as a half-range Fourier sine series in (0, [), we have

fo) =2 b, sin—"?—x- .05
1
5 I
where b, = [ £(x) sin T
0

Comparing (4) and (5), B, = b, = —f— £ sin "% i,

= T

Therefore the solution is

oo
nny

!
2 5%y
ux) =3 | 7 resin™ar |G~
n=] 0 !
Note. If f(x) is given explicitly in any problem, evaluate the value of
8B, from the integral and substitute.

Example 10. The vertices of a thin square plate are (0, 0), (1,0), (0,1), (1,1). The upper
edge of the square is maintained at an arbitrary temperature given by u(x,l) = f(x).
The other three edges are kept at zero temperature. Find the steady state temperature
at any point on the plate.

Solution.
that u(x, y) 1s the temperature at any point '
Supp(s’:;d)"s‘a‘e- (x.y) of the plate in
Fu U _o \
Then ax)"’ayz (l) c Ug'(x) 8
The boundary conditions are
M(o. )-) = 0, for0< y< | ) 2 o.
u(l,y) =0, forOsy<! iy 3 L]
u(x, 0) = 0, forO0sx<! (lli)
u(x, ) = fix), forO<x<| (iv) S oas "




Solving (1), we get the three possible solutions,
ulx, ¥) = (A + Be ™ ™)(C cos Ay + D sin Ay)
u(x, ¥) = (A cos hx + Bsin Ax)(C ¥ + D &' ..(ID)
ulx, y) = (Ax+ B)(Cy + D) i)

where A, B, C, D are different arbitary constants in each solution,

(| |

Now we shall select the solution II.
ie, u(x,y)=(A cos Ax+ B sin Ax)(Ce™ + De ™)
Using the boundary condition (i) in (I]),
A(Ce™ +De™™)=0,for0<y<l - A=0
Using the condition (ii) in (I

(1)

u(l,y)=Bsin M (Ce™ + De ™)=0. But B#0;sinM=0
i.e.. u =nn

: nn : .
Le., A= T where nn is any integer.

Using (iii) in 11,

U(x,0) = (C + D)(B sin Ax) =0, for 0 S x <.
B#0Hence C+D=0. ~. D=-C.

Hence (I1) reduces to,

"(xs}’)=BCsing%x- (e I ~e
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