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Introduction 

Formal Languages 

Automata Theory is an exciting, theoretical branch of computer science. It established its 

roots during the 20th Century, as mathematicians began developing - both theoretically and 

literally - machines which imitated certain features of man, completing calculations more 

quickly and reliably. The word automaton itself, closely related to the word "automation", 

denotes automatic processes carrying out the production of specific processes. Simply stated, 

automata theory deals with the logic of computation with respect to simple machines, referred 

to as automata. Through automata, computer scientists are able to understand how machines 

compute functions and solve problems and more importantly, what it means for a function to 

be defined as computable or for a question to be described as decidable. 

Automatons are abstract models of machines that perform computations on an input by 

moving through a series of states or configurations. At each state of the computation, a 

transition function determines the next configuration on the basis of a finite portion of the 

present configuration. As a result, once the computation reaches an accepting configuration, 

it accepts that input.  

The major objective of automata theory is to develop methods by which computer scientists 

can describe and analyze the dynamic behavior of discrete systems, in which signals are 

sampled periodically. The behavior of these discrete systems is determined by the way that 

the system is constructed from storage and combinational elements. Characteristics of such 

machines include: 

Alphabets 

An alphabet is a finite set of non-empty symbols. It is denoted by Σ. 

1. Σ = {0,1}, the set of binary numbers. 

2. Σ = {a, b, c, d,…,}, the set of all alphabets. 

 Strings 

A string or word is a finite sequence of symbols chosen from some alphabet. 

 For example, the string w =10101 is a string over Σ = {0, 1}. 

If ∑ = {a, b}, various strings that can be generated from Σ are {ab, aa, aaa, bb, bbb, ba, 

aba.....}. 

Empty String 

Empty string is a string with zero occurrences of symbols. It is denoted by ε. 
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Length of a String 

The number of symbols in a string w is called the length of a string. It is denoted by |w|. 

Examples − 

If w = ‘cabcad’, |w|= 6 

If |w|= 0, it is called an empty string (Denoted by λ or ε) 

Powers of an Alphabet  

 
Notations 

The set of all strings over Σ is conveniently denoted Σ* 

 

Example:  

 

Languages 

 

Finite Automata 

1. Finite automata are used to recognize patterns. 

2. It takes the string of symbol as input and changes its state accordingly. When the 

desired symbol is found, then the transition occurs. 

3. At the time of transition, the automata can either move to the next state or stay in the 

same state. 

4. Finite automata have two states, Accept state or Reject state. When the input string 

is processed successfully, and the automata reached its final state, then it will accept. 

Types of Automata: 

There are two types of finite automata: 

1. DFA(deterministic finite automata) 

2. NFA(non-deterministic finite automata) 
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Note: 

1. Every DFA is NFA, but NFA is not DFA. 

2. There can be multiple final states in both NFA and DFA. 

3. DFA is used in Lexical Analysis in Compiler. 

4. NFA is more of a theoretical concept. 

Deterministic Finite Automaton (DFA) 

In DFA, for each input symbol, one can determine the state to which the machine will move. 

Hence, it is called Deterministic Automaton. As it has a finite number of states, the 

machine is called Deterministic Finite Machine or Deterministic Finite Automaton. 

Formal Definition of a DFA 

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• Σ is a finite set of symbols called the alphabet. 

• δ is the transition function where δ: Q × ∑ → Q 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Transition Diagram 
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Example 1: 

DFA with ∑ = {0, 1} accepts all strings starting with 1. 

Solution: 

  

The finite automata can be represented using a transition graph. In the above diagram, the 

machine initially is in start state q0 then on receiving input 1 the machine changes its state to 

q1. From q0 on receiving 0, the machine changes its state to q2, which is the dead state. From 

q1 on receiving input 0, 1 the machine changes its state to q1, which is the final state. The 

possible input strings that can be generated are 10, 11, 110, 101, 111.......  

That means all string starts with 1. 

 

Transition Table 

The transition table is basically a tabular representation of the transition function. It takes two 

arguments (a state and a symbol) and returns a state (the "next state"). 

A transition table is represented by the following things: 

1. Columns correspond to input symbols. 

2. Rows correspond to states. 

3. Entries correspond to the next state. 

4. The start state is denoted by an arrow with no source. 

5. The accept state is denoted by a star. 

Example 2 

Find the transition table for the given automata 

 

The transition table for the above diagram is given below 

• The final state is indicated by double circles. 
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Acceptability by DFA  

A string is accepted by a DFA/ iff the DFA/NDFA starting at the initial state ends in an 

accepting state (any of the final states) after reading the string wholly. 

A string S is accepted by a DFA (Q, ∑, δ, q0, F), iff δ*(q0, S) ∈ F 

The language L accepted by DFA is {S | S ∈ ∑* and δ*(q0, S) ∈ F} 

A string S′ is not accepted by a DFA (Q, ∑, δ, q0, F), iff δ*(q0, S′) ∉ F 

The language L′ not accepted by DFA (Complement of accepted language L) is 

{S | S ∈ ∑* and δ*(q0, S) ∉ F} 

Problems 

Problem: 1 

Find the directed graph to the deterministic finite automaton M = (Q, Σ, q0, δ,  F) where 

• Q = { q0, q1, q2}, 

• Σ = {0, 1}, 

• q0 = { q0}, 

• F = { q2}, and 

Transition function δ as shown by the following table − 
 

0 1 

q0 q0 q1 

q1 q2 q0 

 
q1 q2 

 

Solution: 

Its graphical representation would be as follows − 

 
 

Problem: 2 

Construct the language consists of an even number of 0s from the DFA   

M=(Q, Ʃ, δ, q0,F) where Q={S1,S2} , Ʃ ={0,1},  q0=S1,F={S1} and 

δ is defined by the following state transition table: 
 

0 1 

S1 S2 S1 

S2 S1 S2 

q0 q2 q1 

Inputs 
States 

q2 

Inputs 
States 

S1 

https://en.wikipedia.org/wiki/State_transition_table


 

7 
 

 

Solution: 

 

 
The state S1 represents that there has been an even number of 0s in the input so far, while S2 

signifies an odd number. A 1 in the input does not change the state of the automaton. When 

the input ends, the state will show whether the input contained an even number of 0s or not. If 

the input did contain an even number of 0s, M will finish in state S1, an accepting state, so the 

input string will be accepted. 

 

Problem: 3 

Design a DFA with Σ= {0, 1} accepts those string which starts with 1 and ends with 0. 

 

Solution: 

Consider the DFA M = (Q, Ʃ, δ, q0, ) where Q={q0, q1, q2} , Ʃ ={0,1},  q0=S,F={q2} with the 

transition diagram 

 

The FA will have a start state q0 from which only the edge with input 1 will go to the next 

state. In state q1, if we read 1, we will be in state q1, but if we read 0 at state q1, we will reach 

to state q2 which is the final state. In state q2, if we read either 0 or 1, we will go to q2 state or 

q1 state respectively. Note that if the input ends with 0, it will be in the final state. 

Problem 4: 

Design a FA with ∑ = {0, 1} accepts the only input 101. 

Solution: 

 

Problem 5: 

Design FA with ∑ = {0, 1} accepts even number of 0's and even number of 1's. 

 

Solution: This FA will consider four different stages for input 0 and input 1. The stages 

could be: 

 



 

8 
 

 

Here q0 is a start state and the final state also. Note carefully that symmetry of 0's and 1's is 

maintained. We can associate meanings to each state as: 

q0: state of even number of 0's and even number of 1's. 

q1: state of odd number of 0's and even number of 1's. 

q2: state of odd number of 0's and odd number of 1's. 

q3: state of even number of 0's and odd number of 1's. 

Problem 6: 

Design a DFA L(M) = {w | w ε {0, 1}*} and W is a string that does not contain consecutive 

1's. 

Solution: 

When three consecutive 1's occur the DFA will be: 

 
 

Here two consecutive 1's or single 1 is acceptable, hence 

 
 

The stages q0, q1, q2 are the final states. The DFA will generate the strings that do not 

contain consecutive 1's like 10, 110, 101,..... etc. 

Problem 7: 

Design a FA with ∑ = {0, 1} accepts the strings with an even number of 0's followed by 

single 1. 

 

Solution: 
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The DFA can be shown by a transition diagram as: 

 
 

Problem 8:  

Let us consider the finite automaton h{S, A}, {0, 1}, S, {S, A}, δi, where δ is the following 

partial transition function: δ(S, 0) = S δ(S, 1) = A δ(A, 0) = S. 

 

This automaton is depicted below.   

 

 
In order to get the equivalent finite automaton with a total transition function we consider the 

additional state qs, called the sink state, and we stipulate that δ(A, 1) = qs ; δ(qs, 0) = qs; 

δ(qs, 1) = qs. 

 

 

Problem for practice 

Problem 1: 

 Draw a deterministic and non-deterministic finite automate which accept 00 and 11 at the 

end of a string containing 0, 1 in it, e.g., 01010100 but not 000111010. 

Solution: 
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Problem2: 

Draw a deterministic finite automata which recognize a string containing binary 

representation 0, 1 in the form of multiple 3, e.g., 1001 but not 1000. 

Solution: 

 
Problem 3: 

 

Construct a DFA for the set of string over {a, b} such that length of the string |w| is 

divisible by 3 i.e, |w| mod 3 = 0. 

 

Problem 4: 

Construction of a DFA for the set of string over {a, b} such that length of the string |w| is 

divisible by 2 i.e, |w| mod 2 = 0. 
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Introduction 

 

Non-Deterministic Finite State Automata 

In NDFA, for a particular input symbol, the machine can move to any combination of the 

states in the machine. In other words, the exact state to which the machine moves cannot be 

determined. Hence, it is called Non-deterministic Automaton. As it has finite number of 

states, the machine is called Non-deterministic Finite Machine or Non-deterministic 

Finite Automaton. 

1. NFA stands for non-deterministic finite automata. It is easy to construct an NFA than 

DFA for a given regular language. 

2. The finite automata are called NFA when there exist many paths for specific input 

from the current state to the next state. 

3. Every NFA is not DFA, but each NFA can be translated into DFA. 

4. NFA is defined in the same way as DFA but with the following two exceptions, it 

contains multiple next states, and it contains ε transition. 

In the following image, we can see that from state q0 for input a, there are two next states q1 

and q2, similarly, from q0 for input b, the next states are q0 and q1. Thus it is not fixed or 

determined that with a particular input where to go next. Hence this FA is called non-

deterministic finite automata. 

 

Formal Definition of an NDFA 

An NDFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) where − 

• Q is a finite set of states. 

• ∑ is a finite set of symbols called the alphabets. 

• δ is the transition function where δ: Q × ∑ → 2Q 

(Here the power set of Q (2Q) has been taken because in case of NDFA, from a state, 

transition can occur to any combination of Q states) 

• q0 is the initial state from where any input is processed (q0 ∈ Q). 

• F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of an NDFA: (same as DFA) 

An NDFA is represented by digraphs called state diagram. 
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• The vertices represent the states. 

• The arcs labeled with an input alphabet show the transitions. 

• The initial state is denoted by an empty single incoming arc. 

 

Acceptability by NDFA 

A string is accepted by a NDFA iff the NDFA starting at the initial state ends in an 

accepting state (any of the final states) after reading the string wholly. 

A string S is accepted by a NDFA (Q, ∑, δ, q0, F), iff δ*(q0, S) ∈ F 

The language L accepted by NDFA is {S | S ∈ ∑* and δ*(q0, S) ∈ F} 

A string S′ is not accepted by a NDFA (Q, ∑, δ, q0, F), iff δ*(q0, S′) ∉ F 

The language L′ not accepted by NDFA (Complement of accepted language L) is 

{S | S ∈ ∑* and δ*(q0, S) ∉ F}. 

Problem1: 

Consider the NDFA M = ({q0,q1, q2}, {0,1}, δ, q0, {q0}) with the transition diagram 

 
The transition table of the above NDFA is given below 
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Languages of NDFA 

 
 

Formal Definition of   ε-NFA 

 

1. A state in Q 

  

Elimination of ε-Transition 
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Theorem 1: 

A language L is accepted by some  DFA iff L is accepted by some NFA. 

Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, Q, q0, F, δ). There exists a 

DFA D= (Σ, Q’, q’0, F’, δ’) that also accepts L. (L(N) = L(D)). 

Proof: 

By allowing each state in the DFA D to represent a set of states in the NFA N, we are able to 

prove through induction that D is equivalent to N. Before we begin the proof, let’s define the 

parameters of D: 

1. Q′ is equal to the powerset of Q, Q′ = 2Q 

2. q′0 = {q0} 

3. F’ is the set of states in Q′ that contain any element of F, F′ = {q ∈ Q’|q ∩ F ≠ Ø} 

4. δ′ is the transition function for D.   for q ∈ Q′ and a ∈ Σ. 

Remember that each state in the set of states Q′ in D is a set of states itself from Q in N. For 

each state p and state q in Q′ of D (p is a single state from Q), determine the transition δ(p,a). 

δ(q,a) is the union of all δ(p,a). 

Now we will prove that  for every x. ie, L(D) = L(N) 

Basis Step 

Let x be the empty string ε. 

 

Inductive Hypothesis: Assume that for any y with |y| ≥ 0, .  
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If we let n = |y|, then we need to prove that for a string z with |z| = n + 1,then

 
We can represent the string z as a concatenation of string y (|y| = n) and symbol a from the 

alphabet Σ (a ∈ Σ). So, z = ya. 

 

 

So a string is accepted by DFA D if, and only if, it is accepted by NFA N. 

Steps for Converting NFA to DFA: 

Step 1: Initially Q' = ϕ 

 

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state. 

 

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in 

Q', then add it to Q'. 

 

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA) 

 

Problem 2: 

Convert the given NFA to DFA. 

 

Solution: For the given transition diagram we will first construct the transition table. 

 s input   0 1 

q0 q0 q1 

q1 {q1,q2} Q1 

 q2 {q1,q2} q2 
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Now we will obtain δ' transition for state q0. 

1. δ'([q0], 0) = [q0]   

2. δ'([q0], 1) = [q1]   

The δ' transition for state q1 is obtained as: 

1. δ'([q1], 0) = [q1, q2]       (new state generated)   

2. δ'([q1], 1) = [q1]   

The δ' transition for state q2 is obtained as: 

1. δ'([q2], 0) = [q2]   

2. δ'([q2], 1) = [q1, q2]        

Now we will obtain δ' transition on [q1, q2]. 

1. δ'([q1, q2], 0) = δ(q1, 0) ∪ δ(q2, 0)   

= {q1, q2} ∪ {q2}   

= [q1, q2]   

2. δ'([q1, q2], 1) = δ(q1, 1) ∪ δ(q2, 1)   

= {q1} ∪ {q1, q2}   

= {q1, q2}   

= [q1, q2]   

 

The state [q1, q2]  is the final state as well because it contains a final state q2. The transition 

table for the constructed DFA will be: 

 

s input   0 1 

[q0] [q0] [q1] 

[q1] [q1,q2] [q1,q2] 

*[q2] [q1,q2] [q1,q2] 

The Transition diagram will be: 

 

The state q2 can be eliminated because q2 is an unreachable state. 
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Problem 3: Convert the given NFA to DFA. 

 

Solution: For the given transition diagram we will first construct the transition table. 

s input   0 1 

q0 {q0,q1} q1 

 ϕ {q0,q1} 

 Now we will obtain δ' transition for state q0. 

1. δ'([q0], 0) = {q0, q1}  = [q0, q1]       (new state generated)   

2. δ'([q0], 1) = {q1} = [q1]   

The δ' transition for state q1 is obtained as: 

1. δ'([q1], 0) = ϕ   

2. δ'([q1], 1) = [q0, q1]   

Now we will obtain δ' transition on [q0, q1]. 

1. δ'([q0, q1], 0) = δ(q0, 0) ∪ δ(q1, 0)   

= {q0, q1} ∪ ϕ   

= {q0, q1}   

= [q0, q1]   

Similarly, 

1. δ'([q0, q1], 1) = δ(q0, 1) ∪ δ(q1, 1)   

2. = {q1} ∪ {q0, q1}   

3. = {q0, q1}   

4. = [q0, q1]   

As in the given NFA, q1 is a final state, then in DFA wherever, q1 exists that state becomes a 

final state.  

Hence in the DFA, final states are [q1] and [q0, q1].  

Therefore set of final states F = {[q1], [q0, q1]}. 

The transition table for the constructed DFA will be: 

q1 
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s input   0 1 

[q0] [q0,q1] [q1] 

*[q1] ϕ [q0,q1] 

* [q0,q1] [q0,q1] [q0,q1] 

 The Transition diagram will be: 

 

Conversion from NFA with ε to DFA 

Non-deterministic finite automata(NFA) is a finite automata where for some cases when a 

specific input is given to the current state, the machine goes to multiple states or more than 1 

states. It can contain ε move. It can be represented as M = { Q, ∑, δ, q0, F}. 

Where 

1. Q: finite set of states   

2. ∑: finite set of the input symbol   

3. q0: initial state    

4. F: final state   

5. δ: Transition function   

NFA with ε move: If any FA contains ε transaction or move, the finite automata is called 

NFA with ε move.  

Steps for converting NFA with ε to DFA: 

Step 1: We will take the ε-closure for the starting state of NFA as a starting state of DFA. 

Step 2: Find the states for each input symbol that can be traversed from the present. That 

means the union of transition value and their closures for each state of NFA present in the 

current state of DFA. 

Step 3: If we found a new state, take it as current state and repeat step 2. 
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Step 4: Repeat Step 2 and Step 3 until there is no new state present in the transition table of 

DFA. 

Step 5: Mark the states of DFA as a final state which contains the final state of NFA. 

Problem 4: 

Convert the NFA with ε into its equivalent DFA. 

 

Solution: 

Let us obtain ε-closure of each state. 

1. ε-closure {q0} = {q0, q1, q2}   

2. ε-closure {q1} = {q1}   

3. ε-closure {q2} = {q2}   

4. ε-closure {q3} = {q3}   

5. ε-closure {q4} = {q4}   

Now, let ε-closure {q0} = {q0, q1, q2} be named as  A. 

Hence 

δ'(A, 0) = ε-closure {δ((q0, q1, q2), 0) } 

              = ε-closure {δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) } 

              = ε-closure {q3} 

              = {q3}            call it as state B. 

 

δ'(A, 1) = ε-closure {δ((q0, q1, q2), 1) } 

              = ε-closure {δ((q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) } 

              = ε-closure {q3} 

              = {q3} = B. 

The partial DFA will be 
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Now, 

δ'(B, 0) = ε-closure {δ(q3, 0) } 

              = ϕ 

δ'(B, 1) = ε-closure {δ(q3, 1) }  = ε-closure {q4} = {q4}            i.e. state C 

For state C: 

1. δ'(C, 0) = ε-closure {δ(q4, 0) } = ϕ   

2. δ'(C, 1) = ε-closure {δ(q4, 1) }  = ϕ   

The DFA will be, 

 

Problem 5: 

Convert the given NFA into its equivalent DFA. 

 

Solution: Let us obtain the ε-closure of each state. 

1. ε-closure(q0) = {q0, q1, q2}   

2. ε-closure(q1) = {q1, q2}   

3. ε-closure(q2) = {q2}   

Now we will obtain δ' transition. Let ε-closure(q0) = {q0, q1, q2}  call it as state A. 

δ'(A, 0) = ε-closure{δ((q0, q1, q2), 0)} 

              = ε-closure{δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0)} 

              = ε-closure{q0} 

              = {q0, q1, q2}   

 

δ'(A, 1) = ε-closure{δ((q0, q1, q2), 1)} 

              = ε-closure{δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1)} 

              = ε-closure{q1} 
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              = {q1, q2}         call it as state B 

 

δ'(A, 2) = ε-closure{δ((q0, q1, q2), 2)} 

              = ε-closure{δ(q0, 2) ∪ δ(q1, 2) ∪ δ(q2, 2)} 

              = ε-closure{q2}  

              = {q2}         call it state C 

Thus we have obtained 

1. δ'(A, 0) = A   

2. δ'(A, 1) = B   

3. δ'(A, 2) = C   

The partial DFA will be: 

 

Now we will find the transitions on states B and C for each input. 

Hence 

δ'(B, 0) = ε-closure{δ((q1, q2), 0)} 

              = ε-closure{δ(q1, 0) ∪ δ(q2, 0)} 

              = ε-closure{ϕ} 

              = ϕ 

 

δ'(B, 1) = ε-closure{δ((q1, q2), 1)} 

              = ε-closure{δ(q1, 1) ∪ δ(q2, 1)} 

              = ε-closure{q1} 

              = {q1, q2}         i.e. state B itself 

 

δ'(B, 2) = ε-closure{δ((q1, q2), 2)} 

              = ε-closure{δ(q1, 2) ∪ δ(q2, 2)} 

              = ε-closure{q2} 

              = {q2}         i.e. state C itself 

Thus we have obtained 

1. δ'(B, 0) = ϕ   
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2. δ'(B, 1) = B   

3. δ'(B, 2) = C   

The partial transition diagram will be 

 
 

Now we will obtain transitions for C: 

δ'(C, 0) = ε-closure{δ(q2, 0)} 

              = ε-closure{ϕ} 

              = ϕ 

 

δ'(C, 1) = ε-closure{δ(q2, 1)} 

              = ε-closure{ϕ} 

              = ϕ 

 

δ'(C, 2) = ε-closure{δ(q2, 2)} 

              = {q2} 

Hence the DFA is 

 
 

As A = {q0, q1, q2} in which final state q2 lies hence A is final state. B = {q1, q2} in which the 

state q2 lies hence B is also final state. C = {q2}, the state q2 lies hence C is also a final state. 
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Regular Expressions 

• The language accepted by finite automata can be easily described by simple 

expressions called Regular Expressions. It is the most effective way to represent any 

language. 

• The languages accepted by some regular expression are referred to as Regular 

languages. 

• A regular expression can also be described as a sequence of pattern that defines a 

string. 

• Regular expressions are used to match character combinations in strings. String 

searching algorithm used this pattern to find the operations on a string. 

Arden's Theorem 

The Arden's Theorem is useful for checking the equivalence of two regular expressions as 

well as in the conversion of DFA to a regular expression. 

Let us see its use in the conversion of DFA to a regular expression. 

Following algorithm is used to build the regular expression form given DFA. 

Let q1 be the initial state. 

2. There are q2, q3, q4 ....qn number of states. The final state may be some qj where j<= n. 

3. Let αji represents the transition from qj to qi. 

4. Calculate qi such that 

   qi =   αji  *   qj 

If qj is a start state then we have: 

   qi = αji *  qj + ε 

4. Similarly, compute the final state which ultimately gives the regular expression 'r'. 

5.  

Problem 6: 

Write the regular expression for the language accepting all combinations of a's, over the set  

Σ = {a} 

Solution: 

All combinations of a's means a may be zero, single, double and so on. If a is appearing zero 

times, that means a null string. That is we expect the set of {ε, a, aa, aaa, ....}. So we give a 

regular expression for this as: 

R = a*   

That is Kleen closure of a. 

 

Problem 7: 

Write the regular expression for the language accepting all the string containing any number 

of a's and b's. 

Solution: 

The regular expression will be: 

R.E= (a + b)*   

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab, .....}, any combination of a and 

b. 

The (a + b)* shows any combination with a and b even a null string. 

 

Problem 8: 

Write the regular expression for the language accepting all the string which are starting with 

1 and ending with 0, over ∑ = {0, 1}. 
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Solution: 

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The r.e. 

is as follows: 

R = 1 (0+1)* 0   

 

Problem 9: 

Write the regular expression for the language starting and ending with a and having any 

having any combination of b's in between. 

Solution: 

The regular expression will be: R = a b* b   

 

Problem 10: 

Write the regular expression for the language accepting all the string in which any number of 

a's is followed by any number of b's is followed by any number of c's. 

Solution: As we know, any number of a's means a* any number of b's means b*, any number 

of c's means c*. Since as given in problem statement, b's appear after a's and c's appear after 

b's. So the regular expression could be:R = a* b* c*   

 

Conversion of Regular Expression into DFA 

 

Theorem 1 

Every language de fined by a regular expression is also defined by a finite automaton 

 

Steps to follow for the conversion 

To convert the RE to FA, we are going to use a method called the subset method. This 

method is used to obtain FA from the given regular expression. This method is given below: 

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves. 

Step 2: Convert this NFA with ε to NFA without ε. 

Step 3: Convert the obtained NFA to equivalent DFA. 

Properties of Regular Sets 

Property 1. The union of two regular set is regular. 

Property 2. The intersection of two regular set is regular. 

Property 3. The complement of a regular set is regular 

Property 4. The difference of two regular set is regular. 

Property 5. The reversal of a regular set is regular. 

Property 6. The closure of a regular set is regular 

Property 7. The concatenation of two regular sets is regular. 



 

26 
 

Identities Related to Regular Expressions 

Given R, P, L, Q as regular expressions, the following identities hold − 

• ∅* = ε 

• ε* = ε 

• RR* = R*R 

• R*R* = R* 

• (R*)* = R* 

• RR* = R*R 

• (PQ)*P =P(QP)* 

• (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)* 

• R + ∅ = ∅ + R = R (The identity for union) 

• R ε = ε R = R (The identity for concatenation) 

• ∅ L = L ∅ = ∅ (The annihilator for concatenation) 

• R + R = R (Idempotent law) 

• L (M + N) = LM + LN (Left distributive law) 

• (M + N) L = ML + NL (Right distributive law) 

• ε + RR* = ε + R*R = R* 

Pumping Lemma  

Let L be a regular language. Then there exists a constant ‘k’ such that for every 

string w in L − 

|w| ≥ k 

We can break w into three strings, w = xyz, such that − 

• |y| > 0 

• |xy| ≤ k 

• For all i ≥ 0, the string xyiz is also in L. 

Applications of Pumping Lemma 

Pumping Lemma is to be applied to show that certain languages are not regular. It should 

never be used to show a language is regular. 

• If L is regular, it satisfies Pumping Lemma. 

• If L does not satisfy Pumping Lemma, it is non-regular. 

Method to prove that a language L is not regular 

• At first, we have to assume that L is regular. 

• So, the pumping lemma should hold for L. 

• Use the pumping lemma to obtain a contradiction − 

o Select w such that |w| ≥ k 

o Select y such that |y| ≥ 1 
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o Select x such that |xy| ≤ k 

o Assign the remaining string to z. 

o Select i such that the resulting string is not in L. 

Hence L is not regular. 

Problem11: 

Design a FA from given regular expression 10 + (0 + 11)0* 1. 

Solution: First we will construct the transition diagram for a given regular expression. 

Step 1: 

 
 

Step 2: 

 
 

Step 3: 

 
 

Step 4: 

 

Step 5: 
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Now we have got NFA without ε. Now we will convert it into required DFA for that, we will 

first write a transition table for this NFA. 

 

State 0 1 

→q0 q3 {q1, q2} 

q1 qf ϕ 

q2 ϕ q3 

q3 q3 qf 

*qf ϕ ϕ 

The equivalent DFA will be: 

State 0 1 

→[q0] [q3] [q1, q2] 

[q1] [qf] ϕ 

[q2] ϕ [q3] 

[q3] [q3] [qf] 

[q1, q2] [qf] [qf] 

*[qf] ϕ ϕ 

 

Problem 12: Construct the regular expression for the given DFA 

 
 

Solution: 

Let us write down the equations 

q1 = q1 0 + ε  
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Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 hence we 

write   State = source state of input × input coming to it. 

 

Similarly, 

q2 = q1 1 + q2 1 

q3 = q2 0 + q3 (0+1) 

 

Since the final states are q1 and q2, we are interested in solving q1 and q2 only.  

Let us see q1 first 

q1 =  q1 0 + ε 

 

We can re-write it as 

q1 = ε + q1 0 

Which is similar to R = Q + RP, and gets reduced to R = OP*. 

Assuming R = q1, Q = ε, P = 0 

We get 

q1 = ε.(0)* 

q1 = 0*    (ε.R*= R*) 

Substituting the value into q2, we will get 

q2 = 0* 1 + q2 1 

q2 = 0* 1 (1)*   (R = Q + RP  →  Q P*) 

 

The regular expression is given by 

r = q1 + q2 

= 0* + 0* 1.1* 

r = 0* + 0* 1+    (1.1* = 1+) 

 

Problem 12: Prove that L = {aibi | i ≥ 0} is not regular. 

Solution − 

• At first, we assume that L is regular and n is the number of states. 

• Let w = anbn. Thus |w| = 2n ≥ n. 

• By pumping lemma, let w = xyz, where |xy| ≤ n. 

• Let x = ap, y = aq, and z = arbn, where p + q + r = n, p ≠ 0, q ≠ 0, r ≠ 0. Thus |y| ≠ 0. 

• Let k = 2. Then xy2z = apa2qarbn. 

• Powers of a = (p + 2q + r) = (p + q + r) + q = n + q 

• Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn. 

• Thus, xy2z is not in L. Hence L is not regular. 

Problem for Practice:  

1. Convert to a DFA the following NFA 
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2.  Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite 

Automata (DFA)- 

 

 

3. Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite 

Automata (DFA)- 

 

4. Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite 

Automata (DFA)- 

  

5. Problem Consider the following  NFA 

 

a) Compute the ε- closure of each state.  

b) Give all the strings of length three or less accepted by the automaton. 

c) Convert the automaton to a DFA. 
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Introduction 

In the literary sense of the term, grammars denote syntactical rules for conversation in natural 
languages. Linguistics have attempted to define grammars since the inception of natural languages 
like English, Sanskrit, Mandarin, etc. 

The theory of formal languages finds its applicability extensively in the fields of Computer 

Science. Panini gave a grammar for the Sanskrit language. In 1959, Noam Chomsky tried to 

give a mathematical definition for grammar. The motivation was to give a formal definition 

for grammar for English sentences.  According to Noam Chomosky, there are four types of 

grammars called Type 0, Type 1, Type 2, and Type 3.. 

The following table shows how they differ from each other : 

Grammar 

Type 

Grammar 

Accepted 

Language 

Accepted 

Automaton 

Type 0 Unrestricted 

grammar 

Recursively 

enumerable 

language 

Turing Machine 

Type 1 Context-

sensitive 

grammar 

Context-sensitive 

language 

Linear-bounded 

automaton 

Type 2 Context-free 

grammar 

Context-free 

language 

Pushdown 

automaton 

Type 3 Regular 

grammar 

Regular language Finite state 

automaton 

 

Formal Definition of a Grammar  

A grammar G can be formally written as a 4-tuple (N, T, S, P) where − 

• N or VN is a set of variables or non-terminal symbols. 

• T or ∑ is a set of Terminal symbols. 

• S is a special variable called the Start symbol, S ∈ N 

• P is Production rules for Terminals and Non-terminals. A production rule has the form α → β, 
where α and β are strings on VN ∪ ∑ and least one symbol of α belongs to VN. 
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A Grammar is mainly composed of two basic elements- 

1. Terminal symbols 

2. Non-terminal symbols 

 

1. Terminal Symbols- 

• Terminal symbols are those which are the constituents of the sentence generated using 

a grammar. 

• Terminal symbols are denoted by using small case letters such as a, b, c etc. 

2. Non-Terminal Symbols- 

• Non-Terminal symbols are those which take part in the generation of the sentence but 

 are not part of it. 

• Non-Terminal symbols are also called as auxiliary symbols or variables. 

• Non-Terminal symbols are denoted by using capital letters such as A, B, C etc. 

Type - 0 Grammar 

Type-0 grammars generate recursively enumerable languages. The productions have no 

restrictions. They are any phase structure grammar including all formal grammars. 

They generate the languages that are recognized by a Turing machine. 

The productions can be in the form of α → β where α is a string of terminals and non-

terminals with at least one non-terminal and α cannot be null. β is a string of terminals and 

non-terminals. 

Type-0 grammars include all formal grammars. They generate exactly all languages that can 

be recognized by a Turing machine. These languages are also known as the recursively 

enumerable or Turing-recognizable languages. Note that this is different from the recursive 

languages, which can be decided by an always-halting Turing machine. 

Example 

S → ACaB  

Bc → acB  

CB → DB  

aD → Db  

 

Type - 1 Grammar (CSG): Type-1 grammars generate context-sensitive languages. The 

productions must be in the form α A β → α γ β, where A ∈ N (Non-terminal) and 

 α, β, γ ∈ (T ∪ N)* (Strings of terminals and non-terminals). The strings α and β may be 

empty, but γ must be non-empty. The rule S → ε is allowed if S does not appear on the right 

side of any rule. The languages generated by these grammars are recognized by a linear 

bounded automaton. 

Example 

AB → AbBc  

A → bcA  

B → b  

 

Type - 2 Grammar(CFG):Type-2 grammars generate context-free languages. 

The productions must be in the form A → γ,where A ∈ N (Non terminal), 

and γ ∈ (T ∪ N)* (String of terminals and non-terminals). 

Example 
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S → X a  

X → a  

X → aX  

X → abc  

X → ε 

 

Type - 3 Grammar: (RE) Type-3 grammars generate regular languages. Type-3 grammars 

must have a single non-terminal on the left-hand side and a right-hand side consisting of a 

single terminal or single terminal followed by a single non-terminal. 

Type-3 grammars generate the regular languages. Such a grammar restricts its rules to a 

single non terminal on the left-hand side and a right-hand side consisting of a single terminal, 

possibly followed by a single non terminal (right regular).  

Alternatively, the right-hand side of the grammar can consist of a single terminal, possibly 

preceded by a single non terminal (left regular). These generate the same languages. 

However, if left-regular rules and right-regular rules are combined, the language need no 

longer be regular. These languages are exactly all languages that can be decided by a finite 

state automaton.  

Additionally, this family of formal languages can be obtained by regular expressions. Regular 

languages are commonly used to define search patterns and the lexical structure of 

programming languages. 

 

(i.e)The productions must be in the form X → a or X → aY,where X, Y ∈ N (Non terminal) 

and a ∈ T (Terminal). The rule S → ε is allowed if S does not appear on the right side of any 

rule. 

Example 

X → ε  

X → a | aY 

Y → b  

Example 1: 

Grammar G1 =({S, A, B}, {a, b}, S, {S → AB, A → a, B → b}) 

Here, 

• S, A, and B are Non-terminal symbols; 

• a and b are Terminal symbols 

• S is the Start symbol, S ∈ N 

• Productions, P : S → AB, A → a, B → b 

Example 2: 

Grammar G2 =(({S, A}, {a, b}, S,{S → aAb, aA → aaAb, A → ε } ) 

Here, 

• S and A are Non-terminal symbols. 

• a and b are Terminal symbols. 

• ε is an empty string. 
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• S is the Start symbol, S ∈ N 

• Production P : S → aAb, aA → aaAb, A → ε 

Derivations from a Grammar 

Strings may be derived from other strings using the productions in a grammar. If a 

grammar G has a production α → β, we can say that x α y derives x β y in G. This derivation 

is written as:  x α y ⇒G x β y. 

Language generated by a Grammar 

The set of all strings that can be derived from a grammar is said to be the language generated 

from that grammar. A language generated by a grammar G is a subset formally defined by 

L(G)={W|W ∈ ∑*, S ⇒G W} 

Equivalent Grammars- 

Two grammars are said to be equivalent if they generate the same languages. 

Example 3: 

Consider the following two grammars Grammar G1-with the productions S → aSb / ε 
Grammar G2-S → aAb / ε. 
Both these grammars generate the same language L = { anbn , n>=0 }. 

Thus, L(G1) = L(G2). 

 

Problem 1:  

Construct the CFG for the language having any number of a's over the set Σ= {a}. 

 

Solution: 

As we know the regular expression for the above language is r.e. = a*      

Production rule for the Regular expression is as follows: 

1. S → aS    rule 1   

2. S → ε     rule 2   

Now if we want to derive a string "aaaaaa", we can start with start symbols. 

 S⇒  aS⇒ aaS ⇒ aaaS⇒ aaaaS⇒ aaaaaS⇒ aaaaaa 

The R.E = a* can generate a set of string {ε, a, aa, aaa,.....}. We can have a null string 

because S is a start symbol and rule 2 gives S → ε. 

Problem 2: Derive the string aaabbb from the grammar G2 = ({S, A}, {a, b}, S, {S → aAb, 

aA → aaAb, A → ε } ) 

the string that can be derived here :− 

S ⇒ aAb using production S → aAb 

⇒ aaAbb using production aA → aAb 

⇒ aaaAbbb using production aA → aAb 

⇒ aaabbb using production A → ε 
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Problem 3: 

Find the language generated by the grammar G=: ({S, A, B}, {a, b} , {S → AB, A → aA|a, 

B → bB|b}) 

Solution: 

The language generated by this grammar − 

L(G) = {ab, a2b, ab2, a2b2, ………} 

= {am bn | m ≥ 1 and n ≥ 1}. 

Problem 4: Construct the grammar generating the language  

L (G)={am bn | m ≥ 0 and n > 0}.  

Solution: 

Since L(G) = {am bn | m ≥ 0 and n > 0} 

the set of strings accepted can be rewritten as − 

L(G) = {b, ab,bb, aab, abb, …….} 

Here, the start symbol has to take at least one ‘b’ preceded by any number of ‘a’ including 

null. 

To accept the string set {b, ab, bb, aab, abb, …….}, we have taken the productions − 

S → aS , S → B, B → b and B → bB 

S → B → b (Accepted) 

S → B → bB → bb (Accepted) 

S → aS → aB → ab (Accepted) 

S → aS → aaS → aaB → aab(Accepted) 

S → aS → aB → abB → abb (Accepted) 

Thus, we can prove every single string in L(G) is accepted by the language generated by the 

production set. 

Hence the grammar is G: ({S, A, B}, {a, b}, S, { S → aS | B , B → b | bB }) 

Problem 5 Find the grammar generating the language L (G) = {am bn | m > 0 and n ≥ 0}. 

Solution: 

 Since L(G) = {am bn | m > 0 and n ≥ 0}, the set of strings accepted can be rewritten as − 

L(G) = {a, aa, ab, aaa, aab ,abb, …….} 

Here, the start symbol has to take at least one ‘a’ followed by any number of ‘b’ including 

null. 

To accept the string set {a, aa, ab, aaa, aab, abb, …….}, we have taken the productions − 

S → aA, A → aA , A → B, B → bB ,B → λ 

S → aA → aB → aλ → a (Accepted) 

S → aA → aaA → aaB → aaλ → aa (Accepted) 
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S → aA → aB → abB → abλ → ab (Accepted) 

S → aA → aaA → aaaA → aaaB → aaaλ → aaa (Accepted) 

S → aA → aaA → aaB → aabB → aabλ → aab (Accepted) 

S → aA → aB → abB → abbB → abbλ → abb (Accepted) 

Thus, we can prove every single string in L(G) is accepted by the language generated by the 

production set. 

Hence the grammar is G: ({S, A, B}, {a, b}, S, {S → aA, A → aA | B, B → λ | bB }) 

Problem 6: Construct a CFG for the regular expression (0+1)* 

Solution: 

The CFG can be given by, 

1. Production rule (P):   

2. S → 0S | 1S   

3. S → ε   

The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)* indicates 

{ε, 0, 1, 01, 10, 00, 11, ....}. In this set, ε is a string, so in the rule, we can set the rule S → ε. 

Problem 7: 

Construct a CFG for a language L = {wcwR | where w ϵ (a, b)*}. 

Solution: 

The string that can be generated for a given language is 

{aacaa, bcb, abcba, bacab, abbcbba, ....} 

The grammar could be: 

1. S → aSa     rule 1   

2. S → bSb     rule 2   

3. S → c       rule 3   

Now if we want to derive a string "abbcbba", we can start with start symbols. 

1. S → aSa    

2. S → abSba       from rule 2   

3. S → abbSbba     from rule 2   

4. S → abbcbba     from rule 3   

 

Thus any of this kind of string can be derived from the given production rules. 

 

Problem 8: 

Construct a CFG for the language L = anb2n where n≥1. 

Solution: 

The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb....}. 

The grammar could be: 

1. S → aSbb | abb   

2. Now if we want to derive a string "aabbbb", we can start with start symbols. 

3. S → aSbb   

4. S → aabbbb     

Problem 9: Find the context-Free Grammar for the following Languages 
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Solution: 

The production rules are given for the languages generated 

 

 

 

Problem for Practice: 

1. Design context free grammars for the following languages 
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Introduction 

Regular Languages : 

The collection of Regular Languages over an alphabet Σ is defined recursively as follows: 

 

(i) The empty language Ø, and the empty string language {ε} are regular languages.                  

(ii)  For each a ∈ Σ (a belongs to Σ), the singleton language {a} is a regular language. 

(iii) If A and B are regular languages, then  A ∪ B (union),  AB (concatenation), and A* 

(Kleene star) are regular languages.  

(iv) No other languages over Σ are regular. 

Note: It is Type-3 Grammar. 

 

Examples:  

(i) All finite languages are regular. 

(ii) In particular the empty string language {ε} = Ø* is regular.  

(iii) Other typical examples include the language consisting of all strings over the alphabet 

{a, b} which contain an even number of a's. 

Note: 

Regular Languages can be represented by Regular Expressions. 

Example: (i) L = Set of all strings over a, b that ends with bb. 

L = {bb, abb, bbb, aabb, abbb, ababb,....} 

Regular Expression: (a + b)*bb. 

(ii) L = Set of all strings over 0, 1 with three consecutive 1's   

L = {111,0111,1111,01110,01111,1110,11110,....} 

Regular Expression: (0 + 1)*111(0+1)*. 

 

Equivalent Formalism: 

A regular language satisfies the following equivalent properties: 

(i) it can be generated by a regular grammar 

(ii) it is the language of a regular expression 

(iii) it is the language accepted by a nondeterministic finite automaton (NFA) / deterministic 

finite automaton (DFA) 

 

Closure Properties: 

The regular languages are closed under various operations.  

If the languages L and M are regular, then the various operations on regular language are: 

Union: If L and M are two regular languages then their union L U M is also a union. 

L U M = {s | s is in L or s is in M}   

Intersection: If L and M are two regular languages then their intersection is also an 

intersection. 

 L ⋂ M = {st | s is in L and t is in M}   

Kleen closure: If L is a regular language then its Kleen closure L1* will also be a regular 

language. 

 

https://en.wikipedia.org/wiki/Alphabet_(formal_languages)
https://en.wikipedia.org/wiki/Singleton_(mathematics)


 

41 
 

Here Properties are proved by  examples 

Property 1: The union of two regular set is regular. 

Proof:  

Let us take two regular expressions RE1 = a(aa)* and RE2 = (aa)* 

So, L1 = {a, aaa, aaaaa,.....} (Strings of odd length excluding Null) 

and L2 ={ ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null) 

L1 ∪ L2 = { ε, a, aa, aaa, aaaa, aaaaa, aaaaaa,.......} 

(Strings of all possible lengths including Null) 

RE (L1 ∪ L2) = a* (which is a regular expression itself) 

Hence, the union of two regular languages is regular.  

Property 2: The intersection of two regular set is regular. 

Proof : 

Let us take two regular expressions 

RE1 = a(a*) and RE2 = (aa)* 

So, L1 = { a,aa, aaa, aaaa, ....} (Strings of all possible lengths excluding Null) 

L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null) 

L1 ∩ L2 = { aa, aaaa, aaaaaa,.......} (Strings of even length excluding Null) 

RE (L1 ∩ L2) = aa(aa)* which is a regular expression itself. 

Hence, the intersection of two regular languages is regular. 

Property 3. The complement of a regular set is regular. 

Proof : 

Let us take a regular expression  

RE = (aa)* 

So, L = {ε, aa, aaaa, aaaaaa, .......} (Strings of even length including Null) 

Complement of L is all the strings that is not in L. 

So, L’ = {a, aaa, aaaaa, .....} (Strings of odd length excluding Null) 

RE (L’) = a(aa)* which is a regular expression itself. 

Hence, the result is proved. 

Property 4: The difference of two regular set is regular. 

Proof : 

Let us take two regular expressions  

RE1 = a (a*) and RE2 = (aa)* 

So, L1 = {a, aa, aaa, aaaa, ....} (Strings of all possible lengths excluding Null) 
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L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null) 

L1 – L2 = {a, aaa, aaaaa, aaaaaaa, ....} 

(Strings of all odd lengths excluding Null) 

RE (L1 – L2) = a (aa)* which is a regular expression. 

Property 5: The reversal of a regular set is regular. 

Proof: 

We have to prove LR is also regular if L is a regular set. 

Let, L = {01, 10, 11, 10} 

RE (L) = 01 + 10 + 11 + 10 

LR = {10, 01, 11, 01} 

RE (LR) = 01 + 10 + 11 + 10 which is regular 

Property 6: The closure of a regular set is regular. 

Proof: 

If L = {a, aaa, aaaaa, .......} (Strings of odd length excluding Null) 

i.e., RE (L) = a (aa)* 

L* = {a, aa, aaa, aaaa , aaaaa,……………} (Strings of all lengths excluding Null) 

RE (L*) = a (a)* 

Property 7. :The concatenation of two regular sets is regular. 

Proof : 

Let RE1 = (0+1)*0 and RE2 = 01(0+1)* 

Here, L1 = {0, 00, 10, 000, 010, ......} (Set of strings ending in 0) 

and L2 = {01, 010,011,.....} (Set of strings beginning with 01) 

Then, L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,.............} 

Set of strings containing 001 as a substring which can be represented by an RE − (0 + 

1)*001(0 + 1)* 

Hence, it is proved. 

String Homomorphism: (string substitution) 

A string homomorphism (often referred to simply as a homomorphism in formal language 

theory) is a string substitution such that each character is replaced by a single string. That 

is, f(a)=s, where s is a string, for each character a. 

Given a language L, the set f(L) is called the homomorphic image of L. The inverse 

homomorphic image of a string s is defined as f-1(s)= { w / f(w)=s }. 

 

Derivation:  

Derivation is a sequence of production rules. It is used to get the input string through these 

production rules. During parsing, we have to take two decisions. These are as follows: 
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• We have to decide the non-terminal which is to be replaced. 

• We have to decide the production rule by which the non-terminal will be replaced. 

We have two options to decide which non-terminal to be placed with production rule. 

1. Leftmost Derivation: 

In the leftmost derivation, the input is scanned and replaced with the production rule from left 

to right. So in leftmost derivation, we read the input string from left to right. 

2. Rightmost Derivation: 
In rightmost derivation, the input is scanned and replaced with the production rule from right 

to left. So in rightmost derivation, we read the input string from right to left. 

 

Generation of Derivation Tree 

A derivation tree or parse tree is an ordered rooted tree that graphically represents the 

semantic information a string derived from a context-free grammar. 

Representation Technique 

• Root vertex − Must be labeled by the start symbol. 

• Vertex − Labeled by a non-terminal symbol. 

• Leaves − Labeled by a terminal symbol or ε. 

If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation tree will 

be as follows − 

There are two different approaches to draw a derivation tree − 

Bottom-up Approach − 

• Starts from tree leaves 

• Proceeds upward to the root which is the starting symbol S 

Derivation or Yield of a Tree 

The derivation or the yield of a parse tree is the final string obtained by concatenating the 

labels of the leaves of the tree from left to right, ignoring the Nulls. However, if all the 

leaves are Null, derivation is Null. 

Construction of Parse Tree 
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Parse Tree: 

The process of deriving a string is called as derivation. The geometrical representation of a 

derivation is called as a parse tree or derivation tree. 

 

Leftmost Derivation: 

The process of deriving a string by expanding the leftmost non-terminal at each step is called 

as leftmost derivation. The geometrical representation of leftmost derivation is called as 

a leftmost derivation tree. 

 

2. Rightmost Derivation; 

The process of deriving a string by expanding the rightmost non-terminal at each step is 

called as rightmost derivation. The geometrical representation of rightmost derivation is 

called as a rightmost derivation tree. 

Problem: 01 

Find the left most derivation for the string w = aaabbabbba by the grammar G with the 

production B → bS / aBB / b (Unambiguous Grammar) 

Solution: 

Now, let us derive the string w using leftmost derivation. 

 

Leftmost Derivation: 

  S  ⇒aB 

  ⇒  aaBB                   (Using B → aBB) 

  ⇒ aaaBBB                (Using B → aBB) 

  ⇒aaabBB                (Using B → b) 

  ⇒ aaabbB                (Using B → b) 

  ⇒ aaabbaBB            (Using B → aBB) 

  ⇒ aaabbabB            (Using B → b) 

  ⇒ aaabbabbS          (Using B → bS) 

  ⇒ aaabbabbbA        (Using S → bA) 
  ⇒aaabbabbba         (Using A → a) 
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Problem: 02 

Find the right most derivation for the string w = aaabbabbba by the grammar S → aB / bA, 

S → aS / bAA / a, B → bS / aBB / b (Unambiguous Grammar) 

Solution:  

Now, let us derive the string w using rightmost derivation. 

Rightmost Derivation: 

  S    ⇒ aB 

   ⇒  aaBB                    (Using B → aBB) 

   ⇒ aaBaBB                 (Using B → aBB) 

   ⇒ aaBaBbS               (Using B → bS) 

   ⇒ aaBaBbbA             (Using S → bA) 

   ⇒ aaBaBbba              (Using A → a) 

   ⇒ aaBabbba              (Using B → b) 

   ⇒ aaaBBabbba          (Using B → aBB) 

   ⇒aaaBbabbba          (Using B → b) 

   ⇒ aaabbabbba           (Using B → b) 
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Ambiguity in Grammar 

A grammar is said to be ambiguous if there exists more than one leftmost derivation or more 

than one rightmost derivation or more than one parse tree for the given input string. If the 

grammar is not ambiguous, then it is called unambiguous. 

If the grammar has ambiguity, then it is not good for compiler construction. No method can 

automatically detect and remove the ambiguity, but we can remove ambiguity by re-writing 

the whole grammar without ambiguity. 

 

NOTE: 

• For unambiguous grammars, there is a uniqueLeft-most derivation or Rightmost 

derivation.  

• For ambiguous grammars, there is two or more Left-most derivation or Rightmost 

derivations.  

Here, 

• The given grammar was unambiguous. 

• That is why, leftmost derivation and rightmost derivation represents the same parse tree. 

 

Properties of Parse Tree: 

• Root node of a parse tree is the start symbol of the grammar.  

• Each leaf node of a parse tree represents a terminal symbol. 

• Each interior node of a parse tree represents a non-terminal symbol. 

• Parse tree is independent of the order in which the productions are used during 

derivations. 

 

PROBLEMS BASED ON DERIVATIONS AND PARSE TREE- 

 Problem: 3 

 Consider the grammar-S → bB / aA; A → b / bS / aAA; B → a / aS / bBB 

 For the string w = bbaababa, find 

1. Leftmost derivation 

2. Rightmost derivation 

3. Parse Tree 

 Solution: 

 

 1. Leftmost Derivation- 

 S   ⇒ bB 

⇒ bbBB              (Using B → bBB) 

⇒ bbaB              (Using B → a) 

⇒ bbaaS            (Using B → aS) 

⇒ bbaabB          (Using S → bB) 

⇒ bbaabaS        (Using B → aS) 

⇒bbaababB      (Using S → bB) 

⇒ bbaababa       (Using B → a) 

 

 2. Rightmost Derivation- 

 S   ⇒ bB 
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⇒ bbBB                (Using B → bBB) 

⇒bbBaS              (Using B → aS) 

⇒ bbBabB            (Using S → bB) 

⇒bbBabaS          (Using B → aS) 

⇒ bbBababB        (Using S → bB) 

⇒ bbBababa        (Using B → a) 

⇒bbaababa         (Using B → a) 

 

 

 

 

 3. Parse Tree: 

 

 Whether we consider the leftmost derivation or rightmost derivation, we are getting a unique 

parse tree for both cases.  

⇒The given grammar is unambiguous. 

  

Problem: 4 

Consider the grammar- S → A1B; A → 0A / ∈; B → 0B / 1B / ∈ 

 For the string w = 00101, find- 

1. Leftmost derivation 

2. Rightmost derivation 

3. Parse Tree 

 

 Solution: 

 1. Leftmost Derivation: 

 S   ⇒ A1B 

⇒ 0A1B              (Using A → 0A) 

⇒ 00A1B            (Using A → 0A) 

⇒ 001B              (Using A → ∈) 

⇒ 0010B            (Using B → 0B) 

⇒ 00101B          (Using B → 1B) 

⇒00101             (Using B → ∈) 

 2. Rightmost Derivation- 

 S   ⇒ A1B 

⇒ A10B                (Using B → 0B) 

⇒ A101B              (Using B → 1B) 
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⇒ A101                (Using B → ∈) 

⇒0A101              (Using A → 0A) 

⇒00A101            (Using A → 0A) 

⇒ 00101              (Using A → ∈) 

 

 
 

Difference Between Ambiguous and Unambiguous Grammar: 

Some of the important differences between ambiguous grammar and unambiguous grammar 

are- 

Ambiguous Grammar Unambiguous Grammar 

A grammar is said to be ambiguous if for 

at least one string generated by it, it 

produces more than one- 

• parse tree 

• or derivation tree 

• or syntax tree 

• or leftmost derivation 

• or rightmost derivation 

A grammar is said to be unambiguous if for all the 

strings generated by it, it produces exactly one- 

• parse tree 

• or derivation tree 

• or syntax tree 

• or leftmost derivation 

• or rightmost derivation 

For ambiguous grammar, leftmost 

derivation and rightmost derivation 

represents different parse trees. 

For unambiguous grammar, leftmost derivation 

and rightmost derivation represents the same parse 

tree. 

Ambiguous grammar contains less 

number of non-terminals. 

Unambiguous grammar contains more number of 

non-terminals. 

For ambiguous grammar, length of parse 

tree is less. 

For unambiguous grammar, length of parse tree is 

large. 

Ambiguous grammar is faster than 

unambiguous grammar in the derivation 

of a tree. (Reason is above 2 points) 

Unambiguous grammar is slower than ambiguous 

grammar in the derivation of a tree. 
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Example- 

  

E → E + E / E x E / id 

(Ambiguous Grammar) 

  

Example- 

E → E + T / T 

T → T x F / F 

F → id 

(Unambiguous Grammar) 

 

  

General Approach to Check Grammar Ambiguity: 

 To check whether a given grammar is ambiguous or not, we follow the following steps- 

Step-01: 

We try finding a string from the Language of Grammar such that for the string there exists 

more than one- 

• parse tree 

• or derivation tree 

• or syntax tree 

• or leftmost derivation 

• or rightmost derivation 

 Step-02: 

 If there exists at least one such string, then the grammar is ambiguous otherwise 

unambiguous. 

Unambiguous Grammar 

A grammar can be unambiguous if the grammar does not contain ambiguity that means if it 

does not contain more than one leftmost derivation or more than one rightmost derivation or 

more than one parse tree for the given input string. 

To convert ambiguous grammar to unambiguous grammar, we will apply the following rules: 

1. If the left associative operators (+, -, *, /) are used in the production rule, then apply left 

recursion in the production rule. Left recursion means that the leftmost symbol on the 

right side is the same as the non-terminal on the left side. For example, X → Xa. 

2. If the right associative operates(^) is used in the production rule then apply right recursion 

in the production rule. Right recursion means that the rightmost symbol on the left side is 

the same as the non-terminal on the right side. For example, X → aX   

Example: 

 Consider a grammar G is given as follows: 

1. S → AB | aaB   

2. A → a | Aa   

3. B → b   

Determine whether the grammar G is ambiguous or not. If G is ambiguous, construct an 

unambiguous grammar equivalent to G. 

Solution:  

Let us derive the string "aab" 
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As there are two different parse tree for deriving the same string, the given grammar is 

ambiguous. 

Unambiguous grammar will be: 

1. S → AB   

2. A → Aa | a   

3. B → b  . 

 

 

 PROBLEMS BASED ON CHECKING WHETHER GRAMMAR IS AMBIGUOUS- 

 Problem:5 

 Check whether the given grammar is ambiguous or not-S → SS; S → a; S → b 

Solution- 

 Let us consider a string w generated by the given grammar-w = abba 

Now, let us draw parse trees for this string w. 

  

 

 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

Problem 6: 

 Check whether the given grammar is ambiguous or not- 

S → A / B 

A → aAb / ab 

B → abB / ε 
 Solution: 

 Let us consider a string w generated by the given grammar-w = ab 

Now, let us draw parse trees for this string w. 
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 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

  

Problem7: 

 Check whether the given grammar is ambiguous or not- 

S → AB / C 

A → aAb / ab 

B → cBd / cd 

C → aCd / aDd 

D → bDc / bc 

Solution- 

Let us consider a string w generated by the given grammar-w = aabbccdd 

Now, let us draw parse trees for this string w. 

 
 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

  

Problem 8: 

 Check whether the given grammar is ambiguous or not- 

S → AB / aaB 

A → a / Aa 

B → b 

  

Solution: 

Let us consider a string w generated by the given grammar-w = aab 

Now, let us draw parse trees for this string w. 



 

52 
 

 
 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

  

Problem-9: 

 Check whether the given grammar is ambiguous or not- 

S → a / abSb / aAb 

A → bS / aAAb 

Solution: 

Let us consider a string w generated by the given grammar-w = abababb 

Now, let us draw parse trees for this string w. 

  

 
 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

  

Problem 10: 

Check whether the given grammar G is ambiguous or not. 

1. E → E + E   

2. E → E - E   

3. E → id   

Solution: 

From the above grammar String "id + id - id" can be derived in 2 ways: 

First Leftmost derivation 

1. E ⇒ E + E   

2.    ⇒ id + E   

3.    ⇒ id + E - E   

4.    ⇒ id + id - E   

5.    ⇒ id + id- id   

Second Leftmost derivation 
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1. E ⇒ E - E   

2. ⇒ E + E - E   

3. ⇒ id + E - E   

4. ⇒ id + id - E   

5. ⇒ id + id - id   

Since there are two leftmost derivation for a single string "id + id - id", the grammar G is 

ambiguous. 

 Problem11: 

 Check whether the given grammar is ambiguous or not-S → aSbS / bSaS / ε 
Solution: 

 Let us consider a string w generated by the given grammar-w = abab 

Now, let us draw parse trees for this string w. 

  

 
 Since two different parse trees exist for string w, therefore the given grammar is ambiguous. 

  

Problem 12: 

Check whether the given grammar is ambiguous or not-R → R + R / R . R / R* / a / b 

Solution: 

Let us consider a string w generated by the given grammar-w = ab + a 

Now, let us draw parse trees for this string w. 

  

 

 

For Practice:  
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1. Check whether the grammar G with production rules −X → X+X | X*X |X| a is 

ambiguous or not. 

2. Check whether the given grammar G is ambiguous or not. 

S → aSb | SS   

S → ε   

3. Check that the given grammar is ambiguous or not. Also, find an equivalent unambiguous 

grammar. 

1. S → S + S   

2. S → S * S   

3. S → S ^ S   

4. S → a   

4. Show that the given grammar is ambiguous. Also, find an equivalent unambiguous 

grammar. 

• S → ABA   

• A → aA | ε   

• B → bB | ε   

1.  
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Introduction 

Simplification of CFG 

As we have seen, various languages can efficiently be represented by a context-free grammar. 

All the grammar are not always optimized that means the grammar may consist of some extra 

symbols(non-terminal). Extra symbols, unnecessarily increase the length of grammar. 

Simplification of grammar means reduction of grammar by removing useless symbols. The 

properties of reduced grammar are given below: 

1. Each variable (i.e. non-terminal) and each terminal of G appears in the derivation of 

some word in L. 

2. There should not be any production as X → Y where X and Y are non-terminal. 

3. If ε is not in the language L then there need not to be the production X → ε. 

4. Let us study the reduction process in detail. 

 
 

Removal of Useless Symbols: 

A symbol can be useless if it does not appear on the right-hand side of the production rule 

and does not take part in the derivation of any string. That symbol is known as a useless 

symbol. Similarly, a variable can be useless if it does not take part in the derivation of any 

string. That variable is known as a useless variable. 

For Example: 

1. T → aaB | abA | aaT   

2. A → aA   

3. B → ab | b   

4. C → ad   

In the above example, the variable 'C' will never occur in the derivation of any string, so the 

production C → ad is useless. So we will eliminate it, and the other productions are written in 

such a way that variable C can never reach from the starting variable 'T'. 

Production A → aA is also useless because there is no way to terminate it. If it never 

terminates, then it can never produce a string. Hence this production can never take part in 

any derivation. 

To remove this useless production A → aA, we will first find all the variables which will 

never lead to a terminal string such as variable 'A'. Then we will remove all the productions 

in which the variable 'B' occurs. 

 

Elimination of ε Production 

The productions of type S → ε are called ε productions. These type of productions can only 

be removed from those grammars that do not generate ε. 

Step 1: First find out all nullable non-terminal variable which derives ε. 

Step 2: For each production A → a, construct all production A → x, where x is obtained 

from a by removing one or more non-terminal from step 1. 
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Step 3: Now combine the result of step 2 with the original production and remove ε 

productions. 

Example: 

Remove the production from the following CFG by preserving the meaning of it. 

1. S → XYX   

2. X → 0X | ε   

3. Y → 1Y | ε   

Solution: 

Now, while removing ε production, we are deleting the rule X → ε and Y → ε. To preserve 

the meaning of CFG we are actually placing ε at the right-hand side whenever X and Y have 

appeared. 

Let us take 

1. S → XYX   

If the first X at right-hand side is ε. Then 

2. S → YX   

Similarly if the last X in R.H.S. = ε. Then 

3. S → XY   

If Y = ε then 

4. S → XX   

If Y and X are ε then, 

5. S → X   

If both X are replaced by ε 

6. S → Y   

Now, 

7. S → XY | YX | XX | X | Y   

Now let us consider 

X → 0X   

If we place ε at right-hand side for X then, 

8. X → 0   

9. X → 0X | 0   

10. Similarly Y → 1Y | 1 

Collectively we can rewrite the CFG with removed ε production as 

11. S → XY | YX | XX | X | Y   

12. X → 0X | 0   

13. Y → 1Y | 1   

 

Removing Unit Productions: 

The unit productions are the productions in which one non-terminal gives another non-

terminal. Use the following steps to remove unit production: 

Step 1: To remove X → Y, add production X → a to the grammar rule whenever Y → a 

occurs in the grammar. 

Step 2: Now delete X → Y from the grammar. 

Step 3: Repeat step 1 and step 2 until all unit productions are removed. 

For example: 

1. S → 0A | 1B | C   

2. A → 0S | 00   
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3. B → 1 | A   

4. C → 01   

Solution: 

S → C is a unit production. But while removing S → C we have to consider what C gives. 

So, we can add a rule to S. 

1. S → 0A | 1B | 01   

Similarly, B → A is also a unit production so we can modify it as 

1. B → 1 | 0S | 00   

2. Thus finally we can write CFG without unit production as 

3. S → 0A | 1B | 01   

4. A → 0S | 00   

5. B → 1 | 0S | 00   

6. C → 01   

Chomsky Normal Forms: 

CNF stands for Chomsky normal form. A CFG(context free grammar) is in CNF(Chomsky 

normal form) if all production rules satisfy one of the following conditions: 

• Start symbol generating ε. For example, A → ε. 

• A non-terminal generating two non-terminals. For example, S → AB. 

• A non-terminal generating a terminal. For example, S → a. 

For example: 

1. G1 = {S → AB, S → c, A → a, B → b}   

2. G2 = {S → aA, A → a, B → c}   

The production rules of Grammar G1 satisfy the rules specified for CNF, so the grammar G1 

is in CNF. However, the production rule of Grammar G2 does not satisfy the rules specified 

for CNF as S → aZ contains terminal followed by non-terminal. So the grammar G2 is not in 

CNF. 

Steps for converting CFG into CNF 

Step 1: Eliminate start symbol from the RHS. If the start symbol T is at the right-hand side of 

any production, create a new production as: 

1. S1 → S , where S1 is the new start symbol. 

 

Step 2: In the grammar, remove the null, unit and useless productions. You can refer to 

the Simplification of CFG. 

 

Step 3: Eliminate terminals from the RHS of the production if they exist with other non-

terminals or terminals. For example, production S → aA can be decomposed as: 

1. S → RA   

2. R → a   

Step 4: Eliminate RHS with more than two non-terminals. For example, S → ASB can be 

decomposed as: 

1. S → RS   

2. R → AS   

Problem1: 

Convert the given CFG to CNF. Consider the given grammar G1: 

1. S → a | aA | B   

2. A → aBB | ε   
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3. B → Aa | b   

Solution: 

Step 1: We will create a new production S1 → S, as the start symbol S appears on the RHS. 

The grammar will be: 

1. S1 → S   

2. S → a | aA | B   

3. A → aBB | ε   

4. B → Aa | b   

Step 2: As grammar G1 contains A → ε null production, its removal from the grammar 

yields: 

1. S1 → S   

2. S → a | aA | B   

3. A → aBB   

4. B → Aa | b | a   

Now, as grammar G1 contains Unit production S → B, its removal yields: 

1. S1 → S   

2. S → a | aA | Aa | b   

3. A → aBB   

4. B → Aa | b | a   

Also remove the unit production S1 → S, its removal from the grammar yields: 

1. S0 → a | aA | Aa | b   

2. S → a | aA | Aa | b   

3. A → aBB   

4. B → Aa | b | a   

Step 3: In the production rule S0 → aA | Aa, S → aA | Aa, A → aBB and B → Aa, terminal a 

exists on RHS with non-terminals. So we will replace terminal a with X: 

1. S0 → a | XA | AX | b   

2. S → a | XA | AX | b   

3. A → XBB   

4. B → AX | b | a   

5. X → a   

Step 4: In the production rule A → XBB, RHS has more than two symbols, removing it from 

grammar yield: 

1. S0 → a | XA | AX | b   

2. S → a | XA | AX | b   

3. A → RB   

4. B → AX | b | a   

5. X → a   

6. R → XB   

Hence, for the given grammar, this is the required CNF. 
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Problem 2: 

Convert the following CFG into CNF S → ASA | aB, A → B | S, B → b | ε 

Solution: 

(1) Since S appears in R.H.S, we add a new state S0 and S0→S is added to the production set 

and it becomes  

S0→S, S→ ASA | aB, A → B | S, B → b | ε 
 

(2) Now we will remove the null productions: 

B → ε and A → ε 
 

After removing B → ε, the production set becomes  

S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b 

 

After removing A → ∈, the production set becomes  

S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b 

 

(3) Now we will remove the unit productions. 

After removing S → S, the production set becomes  

S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b 

 

After removing S0→ S, the production set becomes  

S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA 

A → B | S, B → b 

 

After removing A→ B, the production set becomes − 

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA 

A → S | b 

B → b 

After removing A→ S, the production set becomes  

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA 

A → b |ASA | aB | a | AS | SA, B → b 

 

(4) Now we will find out more than two variables in the R.H.S 

Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S. 

Hence we will apply step 4 and step 5 to get the following final production set which is in 

CNF. 

S0→ AX | aB | a | AS | SA 

S→ AX | aB | a | AS | SA 

A → b |AX | aB | a | AS | SA 

B → b 

X → SA 

 

(5) We have to change the productions S0→ aB, S→ aB, A→ aB 

And the final production set becomes  

S0→ AX | YB | a | AS | SA 

S→ AX | YB | a | AS | SA 

A → b A → b |AX | YB | a | AS | SA 

B → b 

X → SA 

Y → a 
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Problem 3: 

Convert the given grammar to CNF S → aAD; A → aB / bAB; B → b; D → d 

Solution: 

Step-01: 

 The given grammar is already completely reduced. 

 

Step-02: 

The productions already in Chomsky normal form are- 

B → b        ………..(1) 

D → d        ………..(2) 

These productions will remain as they are. 

 

 The productions not in Chomsky normal form are 

S → aAD                ………..(3) 

A → aB / bAB         ………..(4) 

We will convert these productions in Chomsky normal form. 

 

Step-03: 

 Replace the terminal symbols a and b by new variables Ca and Cb. 

 This is done by introducing the following two new productions in the grammar- 

Ca → a       ………..(5) 

Cb → b       ………..(6) 

 Now, the productions (3) and (4) modifies to- 

S → CaAD                  ………..(7) 

A → CaB / CbAB         ………..(8) 

 

 Step-04: 

Replace AD and AB by new variables CAD and CAB respectively. 

This is done by introducing the following two new productions in the grammar 

CAD → AD       ………..(9) 

CAB → AB       ………..(10) 

 Now, the productions (7) and (8) modifies to- 

S → CaCAD                  ………..(11) 

A → CaB / CbCAB         ………..(12) 

 

Step-05: 

From (1), (2), (5), (6), (9), (10), (11) and (12), the resultant grammar is- 

S → CaCAD 

A → CaB / CbCAB 

B → b 

D → d 

Ca → a 

Cb → b 

CAD → AD 

CAB → AB 

This grammar is in Chomsky normal form. 
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Problem 4: 

Convert the given grammar to CNF-S → 1A / 0B; A → 1AA / 0S / 0; B → 0BB / 1S / 1 

 Solution: 

Step1: 

The given grammar is already completely reduced. 

 

Step2: 

The productions already in chomsky normal form are- 

A → 0        ………..(1) 

B → 1        ………..(2) 

 

These productions will remain as they are. 

The productions not in chomsky normal form are- 

S → 1A / 0B           ………..(3) 

A → 1AA / 0S         ………..(4) 

B → 0BB / 1S         ………..(5) 

We will convert these productions in Chomsky normal form. 

 

 Step3: 

Replace the terminal symbols 0 and 1 by new variables C and D. 

This is done by introducing the following two new productions in the grammar- 

C → 0       ………..(6) 

D → 1       ………..(7) 

Now, the productions (3), (4) and (5) modifies to- 

S → DA / CB           ………..(8) 

A → DAA / CS         ………..(9) 

B → CBB / DS         ………..(10) 

 

 Step4: 

Out of (8), (9) and (10), the productions already in Chomsky Normal Form are- 

S → DA / CB           ………..(11) 

A → CS                   ………..(12) 

B → DS                   ………..(13) 

These productions will remain as they are. 

 The productions not in Chomsky normal form are- 

A → DAA         ………..(14) 

B → CBB         ………..(15) 

We will convert these productions in Chomsky Normal Form. 

 

 Step 5: 

Replace AA and BB by new variables E and F respectively. 

This is done by introducing the following two new productions in the grammar- 

E → AA       ………..(16) 

F → BB       ………..(17) 

 Now, the productions (14) and (15) modifies to- 

A → DE         ………..(18) 

B → CF         ………..(19) 

 Step 6: 

From (1), (2), (6), (7), (11), (12), (13), (16), (17), (18) and (19), the resultant grammar is- 

S → DA / CB 
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A → CS / DE / 0 

B → DS / CF / 1 

C → 0 

D → 1 

E → AA 

F → BB 

This grammar is in Chomsky normal form. 

 

Pumping Lemma: 

If L is a context-free language, there is a pumping length p such that any string w ∈ L of 

length ≥ p can be written as w = uvxyz, where vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz ∈ 

L. 

 

Applications of Pumping Lemma 

Pumping lemma is used to check whether a grammar is context free or not. Let us take an 

example and show how it is checked. 

 

Problem: 5 

Find out whether the language L = {xnynzn | n ≥ 1} is context free or not. 

Solution: 

Let L is context free. Then, L must satisfy pumping lemma. 

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n. 

Break z into uvwxy, where 

|vwx| ≤ n and vx ≠ ε. 

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at least (n+1) 

positions apart. There are two cases − 

Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would have to be 

in L, has n 2s, but fewer than n 0s or 1s. 

Case 2 − vwx has no 0s. 

Here contradiction occurs. 

Hence, L is not a context-free language. 
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