SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS

UNIT - I - Probability Concepts and Random Variable - SMTA1402

Sathyabama Institute of Science and Technology

SMTA1402 - Probability and Statistics

Unit-1 Probability Concepts and Random Variable

Random Experiment

An experiment whose outcome or result can be predicted with certainty is called a Deterministic experiment.

Although all possible outcomes of an experiment may be known in advance the outcome of a particular performance of the experiment cannot be predicted owing to a number of unknown causes. Such an experiment is called a Random experiment.
(e.g.) Whenever a fair dice is thrown, it is known that any of the 6 possible outcomes will occur, but it cannot be predicted what exactly the outcome will be.

Sample Space

The set of all possible outcomes which are assumed equally likely.

Event

A sub-set of S consisting of possible outcomes.

Mathematical definition of Probability

Let S be the sample space and A be an event associated with a random experiment. Let $n(\mathrm{~S})$ and $n(\mathrm{~A})$ be the number of elements of S and A . then the probability of event A occurring is denoted as $\mathrm{P}(\mathrm{A})$, is denoted by

$$
P(A)=\frac{n(A)}{n(S)}
$$

Note: 1 . It is obvious that $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$.
2. If A is an impossible event, $\mathrm{P}(\mathrm{A})=0$.
3. If A is a certain event, $\mathrm{P}(\mathrm{A})=1$.

A set of events is said to be mutually exclusive if the occurrence of any one them excludes the occurrence of the others. That is, set of the events does not occur simultaneously,
$\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3} \cap \ldots \ldots \mathrm{~A}_{n, \ldots \ldots} . ..\right)=0 \quad$ A set of events is said to be mutually exclusive if the occurrence of any one them excludes the occurrence of the others. That is, set of the events does not occur simultaneously,

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3} \cap \ldots . . \cap \mathrm{A}_{n, \ldots \ldots}\right)=0
$$

Axiomatic definition of Probability

Let S be the sample space and A be an event associated with a random experiment. Then the probability of the event $\mathrm{A}, \mathrm{P}(\mathrm{A})$ is defined as a real number satisfying the following axioms.

1. $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
2. $\mathrm{P}(\mathrm{S})=1$
3. If A and B are mutually exclusive events, $P(A \cup B)=P(A)+P(B)$ and
4. If $\mathrm{A}_{1}, \mathrm{~A}_{2} \mathrm{~A}_{3}, \ldots . ., \mathrm{A}_{n, \ldots . .}$ are mutually exclusive events, $\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \ldots . . \cup \mathrm{A}_{n, \ldots . .}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots . .+$ $\mathrm{P}\left(\mathrm{A}_{n}\right) \ldots .$.

Sathyabama Institute of Science and Technology

Important Theorems

Theorem 1: Probability of impossible event is zero.
Proof: Let S be sample space (certain events) and ϕ be the impossible event.

Certain events and impossible events are mutually exclusive.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S} \cup \phi)=\mathrm{P}(\mathrm{~S})+\mathrm{P}(\phi) \quad(\text { Axiom } 3) \\
& \mathrm{S} \cup \phi=\mathrm{S} \\
& \mathrm{P}(\mathrm{~S})=\mathrm{P}(\mathrm{~S})+\mathrm{P}(\phi) \\
& \mathrm{P}(\phi)=0, \text { hence the result. }
\end{aligned}
$$

Theorem 2: If \bar{A} is the complementary event of $A, P(\bar{A})=1-P(A) \leq 1$.
Proof: Let A be the occurrence of the event
\bar{A} be the non-occurrence of the event.
Occurrence and non-occurrence of the event are mutually exclusive.

$$
\begin{aligned}
& P(A \cup \bar{A})=P(A)+P(\bar{A}) \\
& A \cup \bar{A}=S \quad \Rightarrow \quad P(A \cup \bar{A})=P(S)=1 \\
\therefore & 1=P(A)+P(\bar{A}) \\
& P(\bar{A})=1-P(A) \leq 1 .
\end{aligned}
$$

Theorem 3: (Addition theorem)
If A and B are any 2 events,

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \leq \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) .
$$

Proof: We know, $A=A \bar{B} \cup A B$ and $B=\bar{A} B \cup A B$

$$
\begin{aligned}
\therefore \quad & P(A)=P(A \bar{B})+P(A B) \text { and } P(B)=P(\bar{A} B)+P(A B) \quad \text { (Axiom 3) } \\
& P(A)+P(B)=P(A \bar{B})+P(A B)+P(\bar{A} B)+P(A B) \\
& =P(A \cup B)+P(A \cap B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq P(A)+P(B) .
\end{aligned}
$$

Note: The theorem can be extended to any 3 events, A, B and C $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+$ $P(A \cap B \cap C)$

Theorem 4: If $\mathrm{B} \subset \mathrm{A}, \mathrm{P}(\mathrm{B}) \leq \mathrm{P}(\mathrm{A})$.
Proof: A and $A \bar{B}$ are mutually exclusive events such that $B \cup A \bar{B}=A$
$\therefore \quad P(B \cup A \bar{B})=P(A)$

$$
\begin{aligned}
& P(B)+P(A \bar{B})=P(A) \quad \text { (Axiom 3) } \\
& P(B) \leq P(A)
\end{aligned}
$$

Conditional Probability

The conditional probability of an event B, assuming that the event A has happened, is denoted by $\mathrm{P}(\mathrm{B} / \mathrm{A})$ and defined as

$$
P(B / A)=\frac{P(A \cap B)}{P(A)} \text {, provided } \mathrm{P}(\mathrm{~A}) \neq 0
$$

Sathyabama Institute of Science and Technology Product theorem of probability

Rewriting the definition of conditional probability, We get

$$
P(A \cap B)=P(A) P(A / B)
$$

The product theorem can be extended to 3 events, A, B and C as follows:

$$
P(A \cap B \cap C)=P(A) P(B / A) P(C / A \cap B)
$$

Note: 1. If $\mathrm{A} \subset \mathrm{B}, \mathrm{P}(\mathrm{B} / \mathrm{A})=1$, since $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$.
2. If $\mathrm{B} \subset \mathrm{A}, \mathrm{P}(\mathrm{B} / \mathrm{A}) \geq \mathrm{P}(\mathrm{B})$, since $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$, and $\frac{P(B)}{P(A)} \geq P(B)$,

As $\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{S})=1$.
3. If A and B are mutually exclusive events, $P(B / A)=0$, since $P(A$ $\cap B)=0$.
4. If $\mathrm{P}(\mathrm{A})>\mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{A} / \mathrm{B})>\mathrm{P}(\mathrm{B} / \mathrm{A})$.
5. If $\mathrm{A}_{1} \subset \mathrm{~A}_{2}, \mathrm{P}\left(\mathrm{A}_{1} / \mathrm{B}\right) \leq \mathrm{P}\left(\mathrm{A}_{2} / \mathrm{B}\right)$.

Independent Events

A set of events is said to be independent if the occurrence of any one of them does not depend on the occurrence or non-occurrence of the others. If the two events A and B are independent, the product theorem takes the form $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$, Conversely, if $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$, the events are said to be independent (pair wise independent).

The product theorem can be extended to any number of independent events, If $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots . . \mathrm{A}_{n}$ are n independent events, then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3} \cap \ldots . . \cap \mathrm{A}_{n}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \times \mathrm{P}\left(\mathrm{~A}_{2}\right) \times \mathrm{P}\left(\mathrm{~A}_{3}\right) \times \ldots . . \times \mathrm{P}\left(\mathrm{~A}_{n}\right)
$$

Theorem 4:

If the events A and B are independent, the events \bar{A} and B are also independent.

Proof:

The events $\mathrm{A} \cap \mathrm{B}$ and $\bar{A} \cap \mathrm{~B}$ are mutually exclusive such that $(\mathrm{A} \cap \mathrm{B}) \cup$ $(\bar{A} \cap \mathrm{~B})=\mathrm{B}$

$$
\begin{aligned}
& \therefore \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\bar{A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B}) \\
& \mathrm{P}(\bar{A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
&=\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \quad(\therefore \mathrm{A} \text { and } \mathrm{B} \text { are } \\
&\text { independent }) \\
&=\mathrm{P}(\mathrm{~B})[1-\mathrm{P}(\mathrm{~A})] \\
&=\mathrm{P}(\bar{A}) \mathrm{P}(\mathrm{~B}) .
\end{aligned}
$$

Theorem 5:

If the events A and B are independent, the events \bar{A} and \bar{B} are also independent.

Proof:

$$
\begin{aligned}
\mathrm{P}(\bar{A} \cap \bar{B}) & =P(\overline{A \cup B})=1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\
& =1-[P(A)+P(B)-P(A \cap B)] \quad \text { (Addition theorem) } \\
& =[1-P(A)]-P(B)[1-P(A)] \\
& =\mathrm{P}(\bar{A}) \mathrm{P}(\bar{B}) .
\end{aligned}
$$

Sathyabama Institute of Science and Technology Problem 1:

From a bag containing 3 red and 2 balck balls, 2 ball are drawn at random. Find the probability that they are of the same colour.

Solution :

Let A be the event of drawing 2 red balls
B be the event of drawing 2 black balls.
$\therefore \quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

$$
=\frac{3 C_{2}}{5 C_{2}}+\frac{2 C_{2}}{5 C_{2}}=\frac{3}{10}+\frac{1}{10}=\frac{2}{5}
$$

Problem 2:

When 2 card are drawn from a well-shuffled pack of playing cards, what is the probability that they are of the same suit?

Solution :

Let A be the event of drawing 2 spade cards
B be the event of drawing 2 claver cards
C be the event of drawing 2 hearts cards
D be the event of drawing 2 diamond cards.
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C} \cup \mathrm{D})=4 \frac{13 C_{2}}{52 C_{2}}=\frac{4}{17}$.

Problem 3:

When A and B are mutually exclusive events such that $\mathrm{P}(\mathrm{A})=1 / 2$ and $\mathrm{P}(\mathrm{B})$ $=1 / 3$, find $P(A \cup B)$ and $P(A \cap B)$.

Solution :

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})=5 / 6 ; \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0 .
$$

Problem 4:

If $\mathrm{P}(\mathrm{A})=0.29, \mathrm{P}(\mathrm{B})=0.43$, find $\mathrm{P}(\mathrm{A} \cap \bar{B})$, if A and B are mutually exclusive.

Solution :

We know $\mathrm{A} \cap \bar{B}=\mathrm{A}$

$$
\mathrm{P}(\mathrm{~A} \cap \bar{B})=\mathrm{P}(\mathrm{~A})=0.29
$$

Problem 5:

A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace?

Solution :

Let A be the event of drawing a spade
B be the event of drawing a ace
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{4}{13} .
$$

Sathyabama Institute of Science and Technology Problem 6:

If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.7$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.3$, find $\mathrm{P}(\bar{A} \cap \bar{B})$.

Solution :

$$
\begin{aligned}
\mathrm{P}(\bar{A} \cap \bar{B}) & =1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\
& =1-[\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})] \\
& =0.2
\end{aligned}
$$

Problem 7:

If $\mathrm{P}(\mathrm{A})=0.35, \mathrm{P}(\mathrm{B})=0.75$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.95$, find $\mathrm{P}(\bar{A} \cup \bar{B})$.

Solution :

$$
\mathrm{P}(\bar{A} \cup \bar{B})=1-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=1-[\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})]=0.85
$$

Problem 8:

A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. Two articles are chosen from the lot at random(with out replacement). Find the probability that (i) both are good, (ii) both have major defects, (iii) at least 1 is good, (iv) at most 1 is good, (v) exactly 1 is good, (vi) neither has major defects and (vii) neither is good.

Solution :

(i) $\mathrm{P}($ both are good $)=\frac{10 C_{2}}{16 C_{2}}=\frac{3}{8}$
(ii) P (both have major defects) $=\frac{2 C_{2}}{16 C_{2}}=\frac{1}{120}$
(iii) $\mathrm{P}($ at least 1 is good $)=\frac{10 C_{1} 6 C_{1}+10 C_{2}}{16 C_{2}}=\frac{7}{8}$
(iv) $\mathrm{P}($ at most 1 is good $)=\frac{10 C_{0} 6 C_{2}+10 C_{1} 6 C_{1}}{16 C_{2}}=\frac{5}{8}$
(v) $\mathrm{P}($ exactly 1 is good $)=\frac{10 C_{1} 6 C_{1}}{16 C_{2}}=\frac{1}{2}$
(vi) P (neither has major defects) $=\frac{14 C_{2}}{16 C_{2}}=\frac{91}{120}$
(vii) $\mathrm{P}($ neither is good $)=\frac{6 C_{2}}{16 C_{2}}=\frac{1}{8}$.

Problem 9:

If A, B and C are any 3 events such that $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{C})=1 / 4, \mathrm{P}(\mathrm{A} \cap$ $B)=P(B \cap C)=0 ; P(C \cap A)=1 / 8$. Find the probability that at least 1 of the events A, B and C occurs.

Solution :

Since $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B} \cap \mathrm{C})=0 ; \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0$
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+$ $P(A \cap B \cap C)$

$$
=\frac{3}{4}-0-0-\frac{1}{8}=\frac{5}{8} \text {. }
$$

Sathyabama Institute of Science and Technology Problem 10:

A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a time. One of them is tested and found to be good. What is the probability that the other one is also good?

Solution :

Let A be a good tube drawn and B be an other good tube drawn.
$\mathrm{P}($ both tubes drawn are good $)=\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{6 C_{2}}{10 C_{2}}=\frac{1}{3}$
$\mathrm{P}(\mathrm{B} / \mathrm{A})=\frac{P(A \cap B)}{P(A)}=\frac{1 / 3}{6 / 10}=\frac{5}{9} \quad($ By conditional probability $)$

Problem 11:

In shooting test, the probability of hitting the target is $1 / 2$, for $\mathrm{a}, 2 / 3$ for B and $3 / 4$ for C. If all of them fire at the target, find the probability that (i) none of them hits the target and (ii) at least one of them hits the target.

Solution :

Let A, B and C be the event of hitting the target .
$\mathrm{P}(\mathrm{A})=1 / 2, \mathrm{P}(\mathrm{B})=2 / 3, \mathrm{P}(\mathrm{C})=3 / 4$
$\mathrm{P}(\bar{A})=1 / 2, \mathrm{P}(\bar{B})=1 / 3, \mathrm{P}(\bar{C})=1 / 4$
$\mathrm{P}($ none of them hits $)=\mathrm{P}(\bar{A} \cap \bar{B} \cap \bar{C})=\mathrm{P}(\bar{A}) \times \mathrm{P}(\bar{B}) \times \mathrm{P}(\bar{C})=1 / 24$
$\mathrm{P}($ at least one hits $)=1-\mathrm{P}($ none of them hits $)$

$$
=1-(1 / 24)=23 / 24
$$

Problem 12:

A and B alternatively throw a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throws 7 before A throws 6 . If A begins, show that his chance of winning is $30 / 61$.

Solution :

Let A be the event of throwing 6
B be the event of throwing 7 .
$P($ throwing 6 with 2 dice $)=5 / 36$
$P($ not throwing 6$)=31 / 36$
$\mathrm{P}($ throwing 7 with 2 dice $)=1 / 6$
$P($ not throwing 7$)=5 / 6$

A plays in I, III, V,trials.
A wins if he throws 6 before Be throws 7 .

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \text { wins }) & =\mathrm{P}(\mathrm{~A} \cup \bar{A} \bar{B} \mathrm{~A} \cup \bar{A} \bar{B} \bar{A} \bar{B} \mathrm{~A} \cup \ldots \ldots) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\bar{A} \bar{B} \mathrm{~A})+\mathrm{P}(\bar{A} \bar{B} \bar{A} \bar{B} \mathrm{~A})+\ldots . \\
& =\frac{5}{36}+\left(\frac{31}{36} \times \frac{5}{6}\right) \frac{5}{36}+\left(\frac{31}{36} \times \frac{5}{6}\right)^{2} \frac{5}{36}+\ldots \\
& =\frac{30}{61}
\end{aligned}
$$

Problem 13:

A and B toss a fair coin alternatively with the understanding that the first who obtain the head wins. If A starts, what is his chance of winning?

Sathyabama Institute of Science and Technology Solution :

$\mathrm{P}($ getting head $)=1 / 2, \quad \mathrm{P}($ not getting head $)=1 / 2$
A plays in I, III, V,......trials.
A wins if he gets head before B.
$\mathrm{P}(\mathrm{A}$ wins $)=\mathrm{P}(\mathrm{A} \cup \bar{A} \bar{B} \mathrm{~A} \cup \bar{A} \bar{B} \bar{A} \bar{B} \mathrm{~A} \cup \ldots \ldots$.

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\bar{A} \bar{B} \mathrm{~A})+\mathrm{P}(\bar{A} \bar{B} \bar{A} \bar{B} \mathrm{~A})+\ldots \ldots \\
& =\frac{1}{2}+\left(\frac{1}{2} \times \frac{1}{2}\right) \frac{1}{2}+\left(\frac{1}{2} \times \frac{1}{2}\right)^{2} \frac{1}{2}+\cdots \\
& =\frac{2}{3}
\end{aligned}
$$

Problem 14:

A problem is given to 3 students whose chances of solving it are $1 / 2,1 / 3$ and $1 / 4$. What is the probability that (i) only one of them solves the problem and (ii) the problem is solved.

Solution :

$$
\begin{aligned}
& \mathrm{P}(\text { A solves })=1 / 2 \mathrm{P}(\mathrm{~B})=1 / 3 \quad \mathrm{P}(\mathrm{C})=1 / 4 \\
& \mathrm{P}(\bar{A})=1 / 2, \mathrm{P}(\bar{B})=2 / 3, \mathrm{P}(\bar{C})=3 / 4 \\
& \mathrm{P}(\text { none of them solves })=\mathrm{P}(\bar{A} \cap \bar{B} \cap \bar{C})=\mathrm{P}(\bar{A}) \times \mathrm{P}(\bar{B}) \times \mathrm{P}(\bar{C})= \\
& \mathrm{P}(\text { at least one solves })=1-\mathrm{P}(\text { none of them solves }) \\
& \quad=1-(1 / 4)=3 / 4 .
\end{aligned}
$$

1/4

Baye's Theorem

Statement: If $B_{1}, B_{2}, B_{3}, \ldots B_{n}$ be a set of exhaustive and mutually exclusive events associated with a random experiment and A is another event associated with B_{i}, then

$$
P\left(B_{i} / A\right)=\frac{P\left(B_{i}\right) \times P\left(A / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) \times P\left(A / B_{i}\right)}
$$

Proof :

The shaded region represents the event A, A can occur along with B_{1}, $\mathrm{B}_{2}, \mathrm{~B}_{3}, \ldots . \mathrm{B}_{n}$ that are mutually exclusive.
$\therefore \quad \mathrm{AB}_{1}, \mathrm{AB}_{2}, \mathrm{AB}_{3}, \ldots, \mathrm{AB}_{n}$ are also mutually exclusive.
Also $A=A B_{1} \cup A B_{2} \cup A B_{3} \cup \ldots \cup A B_{n}$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}\left(\mathrm{AB}_{1}\right)+\mathrm{P}\left(\mathrm{AB}_{2}\right)+\mathrm{P}\left(\mathrm{AB}_{3}\right)+\ldots+\mathrm{P}\left(\mathrm{AB}_{n}\right) \\
& =\sum_{i=1}^{n} P\left(A B_{i}\right) \\
& \left.=\sum_{i=1}^{n} P\left(B_{i}\right) \times P\left(A / B_{i}\right) \quad \text { (By conditional probability }\right)
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$\mathrm{P}\left(\mathrm{B}_{i} / \mathrm{A}\right)=\frac{P\left(B_{i}\right) \times P\left(A / B_{i}\right)}{P(A)}=\frac{P\left(B_{i}\right) \times P\left(A / B_{i}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) \times P\left(A / B_{i}\right)}$.

Problem 15:

Ina bolt factory machines A, B, C manufacture respectively 25%, 35% and 40% of the total. Of their output $5 \%, 4 \%$ and 2% are defective bolts. A bolt is drawn at random from the produce and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C .

Solution :

Let B_{1} be bolt produced by machine A
B_{2} be bolt produced by machine B
B_{3} be bolt produced by machine C
Let A / B_{1} be the defective bolts drawn from machine A
A / B_{2} be the defective bolts drawn from machine B
$\mathrm{A} / \mathrm{B}_{3}$ be the defective bolts drawn from machine C .

$$
\begin{array}{ll}
\mathrm{P}\left(\mathrm{~B}_{1}\right)=0.25 & \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)=0.05 \\
\mathrm{P}\left(\mathrm{~B}_{2}\right)=0.35 & \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)=0.04 \\
\mathrm{P}\left(\mathrm{~B}_{3}\right)=0.40 & \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{3}\right)=0.02
\end{array}
$$

Let B_{1} / A be defective bolts manufactured by machine A
B_{2} / A be defective bolts manufactured by machine B $\mathrm{B}_{3} / \mathrm{A}$ be defective bolts manufactured by machine C

$$
\begin{equation*}
P(A)=\sum_{i=1}^{3} P\left(B_{i}\right) \times P\left(A / B_{i}\right)=(0.25) \times(0.05)+(0.35) \times(0.04)+(0.4) \times \tag{0.02}
\end{equation*}
$$

$$
\begin{array}{r}
=0.0345 \\
\mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right)=\frac{P\left(B_{1}\right) \times P\left(A / B_{1}\right)}{P(A)}=0.3623 \\
\mathrm{P}\left(\mathrm{~B}_{2} / \mathrm{A}\right)=\frac{P\left(B_{2}\right) \times P\left(A / B_{2}\right)}{P(A)}=0.405 \\
\mathrm{P}\left(\mathrm{~B}_{3} / \mathrm{A}\right)=\frac{P\left(B_{3}\right) \times P\left(A / B_{3}\right)}{P(A)}=0.231 .
\end{array}
$$

Problem 16 :

The first bag contains 3 white balls, 2 red balls and 4 black balls. Second bag contains 2 white, 3 red and 5 black balls and third bag contains 3 white, 4 red and 2 black balls. One bag is chosen at random and from it 3 balls are drawn. Out of three balls two balls are white and one is red. What are the probabilities that they were taken from first bag, second bag and third bag.

Solution :

Let $\mathrm{P}($ selecting the bag $)=\mathrm{P}\left(\mathrm{A}_{i}\right)=1 / 3, i=1,2,3$.

$$
\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)=\frac{3 C_{2} 2 C_{1}}{9 C_{3}}=\frac{6}{84} \quad P(A)=\sum_{i=1}^{3} P\left(B_{i}\right) \times P\left(A / B_{i}\right)=
$$

0.0746

$$
\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)=\frac{2 C_{2} 3 C_{1}}{10 C_{3}}=\frac{3}{120}
$$

Sathyabama Institute of Science and Technology

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{3}\right)=\frac{3 C_{2} 4 C_{1}}{9 C_{3}}=\frac{12}{84} \\
\mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right)=\frac{P\left(B_{1}\right) \times P\left(A / B_{1}\right)}{P(A)}=0.319 \\
\mathrm{P}\left(\mathrm{~B}_{2} / \mathrm{A}\right)=\frac{P\left(B_{2}\right) \times P\left(A / B_{2}\right)}{P(A)}=0.4285 \\
\mathrm{P}\left(\mathrm{~B}_{3} / \mathrm{A}\right)=\frac{P\left(B_{3}\right) \times P\left(A / B_{3}\right)}{P(A)}=0.638
\end{gathered}
$$

Sathyabama Institute of Science and Technology

Random Variable

Random Variable:

A random variable is a real valued function whose domain is the sample space of a random experiment taking values on the real line \mathbb{R}.

Discrete Random Variable:

A discrete random variable is one which can take only finite or countable number of values with definite probabilities associated with each one of them.

Probability mass function:

Let X be discrete random variable which assuming values $x_{1}, x_{2}, \ldots, x_{n}$ with each of the values, we associate a number called the probability $P\left(X=x_{i}\right)=p\left(x_{i}\right),(i=1,2, \ldots, n)$ this is called the probability of x_{i} satisfying the following conditions
i. $\quad p_{i} \geq 0 \forall i$ i.e., $p_{i}{ }^{\prime}$'s are all non-negative
ii. $\quad \sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1$ i.e., the total probability is one.

Continuous random variable:

A continuous random variable is one which can assume every value between two specified values with a definite probability associated with each.

Probability Density Function:

A function f is said to be the probability density function of a continuous random variable X if it satisfies the following properties.
i. $\quad f(x) \geq 0 ;-\infty<x<\infty$
ii. $\int_{-\infty}^{\infty} f(x) d x=1$.

Distribution Function or Cumulative Distribution Function

i. Discrete Variable:

A distribution function of a discrete random variable X is defined as $P(X \leq x)=\sum_{x_{i} \leq x} P\left(x_{i}\right)$.
ii. Continuous Variable:

A distribution function of a continuous random variable X is defined as $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x$.

Mathematical Expectation

The expected value of the random variable X is defined as
i. If X is discrete random variable $E(X)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right)$ where $p(x)$ is the probability function of x.

Sathyabama Institute of Science and Technology

ii. If X is continuous random variable $E(X)=\int_{-\infty}^{\infty} x f(x) d x$ where $f(x)$ is the probability density function of x.

Properties of Expectation:

1. If C is constant then $E(C)=C$

Proof:
Let X be a discrete random variable then $E(x)=\sum x p(x)$
Now $E(C)=\sum C p(x)$

$$
\begin{aligned}
& =C \sum p(x) \quad \text { since } \sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1 \\
& =C
\end{aligned}
$$

2. If a, b are constants then $E(a x+b)=a E(x)+b$

Proof:
Let X be a discrete random variable then $E(x)=\sum x p(x)$
Now $E(a x+b)=\sum(a x+b) p(x)$

$$
\begin{aligned}
& =\sum \operatorname{axp}(x)+\sum b p(x) \\
& =a \sum x p(x)+b \sum p(x) \quad \text { since } \sum_{i=1}^{n} p_{i}=p_{1}+p_{2}+\ldots+p_{n}=1 \\
& =a E(x)+b
\end{aligned}
$$

3. If a and b are constants then $\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)$

Proof:

$$
\begin{aligned}
\operatorname{Var}(a x & +b)=E\left[(a x+b-E(a x+b))^{2}\right] \\
& =E\left[(a x+b-a E(x)-b)^{2}\right] \\
& =E\left[a^{2}(x-E(x))^{2}\right] \\
& =a^{2} E\left[(x-E(x))^{2}\right] \\
& =a^{2} \operatorname{Var}(x)
\end{aligned}
$$

4. If a is constant then $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$

Proof:

$$
\begin{aligned}
\operatorname{Var}(a x) & =E\left[(a x-E(a x))^{2}\right] \\
& =E\left[(a x-a E(x))^{2}\right] \\
& =E\left[a^{2}(x-E(x))^{2}\right] \\
& =a^{2} E\left[(x-E(x))^{2}\right] \\
& =a^{2} \operatorname{Var}(x) .
\end{aligned}
$$

Sathyabama Institute of Science and Technology

5. Prove that $\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$

Proof:

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left[(x-E(x))^{2}\right] \\
& =E\left[x^{2}+(E(x))^{2}-2 x E(x)\right] \\
& =E\left[x^{2}+\mu^{2}-2 x \mu\right] \\
& =E\left(x^{2}\right)+E\left(\mu^{2}\right)-E(2 x \mu) \\
& =E\left(x^{2}\right)+\mu^{2}-2 \mu E(x) \\
& =E\left(x^{2}\right)+\mu^{2}-2 \mu^{2} \\
& =E\left(x^{2}\right)-\mu^{2} \\
\operatorname{Var}(x) & =E\left(x^{2}\right)-[E(x)]^{2}
\end{aligned}
$$

Sathyabama Institute of Science and Technology

Problem. 1

If the probability distribution of X is given as

$$
\begin{array}{cccccc}
X & : & 1 & 2 & 3 & 4 \\
P X & : & 0.4 & 0.3 & 0.2 & 0.1
\end{array}
$$

Find $P(1 / 2<X<7 / 2 / X>1)$

Solution:

$$
\begin{aligned}
P\{1 / 2<X<7 / 2 / X>1\} & =\frac{P\{(1 / 2<X<7 / 2) \cap X>1\}}{P(X>1)} \\
& =\frac{P(X=2 \text { or } 3)}{P(X=2,3 \text { or } 4)} \\
& =\frac{P(X=2)+P(X=3)}{P(X=2)+P(X=3)+P(X=4)} \\
& =\frac{0.3+0.2}{0.3+0.2+0.1}=\frac{0.5}{0.6}=\frac{5}{6} .
\end{aligned}
$$

Problem. 2

A random variable X has the following probability distribution

X	$:$	-2	-1	0	1	2	3
$P X$	$:$	0.1	K	0.2	$2 K$	0.3	$3 K$

a) Find K, b) Evaluate $P(X<2)$ and $P(-2<X<2)$
b) Find the cdf of X and d) Evaluate the mean of X.

Solution:

a) Since $\sum P(X)=1$
$0.1+K+0.2+2 K+0.3+3 K=1$
$6 K+0.6=1$
$6 K=0.4$

$$
K=\frac{0.4}{6}=\frac{1}{15}
$$

b) $P(X<2)=P(X=-2,-1,0$ or 1$)$

$$
\begin{gathered}
=P(X=-2)+P(X=-1)+P(X=0)+P(X=1) \\
=\frac{1}{10}+\frac{1}{15}+\frac{1}{5}+\frac{2}{15} \\
=\frac{3+2+6+4}{30}=\frac{15}{30}=\frac{1}{2} \\
P(-2<X<2)=P(X=-1,0 \text { or } 1) \\
=P(X=-1)+P(X=0)+P(X=1)
\end{gathered}
$$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
& =\frac{1}{15}+\frac{1}{5}+\frac{2}{15} \\
& =\frac{1+3+2}{15}=\frac{6}{15}=\frac{2}{5}
\end{aligned}
$$

c) The distribution function of X is given by $F(x)$ defined by

$X=x$	$P(X=x)$	$F(x)=P(X \leq x)$
-2	$\frac{1}{10}$	$F(x)=P(X \leq-2)=\frac{1}{10}$
-1	$\frac{1}{15}$	$F(x)=P(X \leq-1)=\frac{1}{6}$
0	$\frac{2}{10}$	$F(x)=P(X \leq 0)=\frac{11}{30}$
1	$\frac{2}{15}$	$F(x)=P(X \leq 1)=\frac{1}{2}$
2	$\frac{3}{10}$	$F(x)=P(X \leq 2)=\frac{4}{5}$
3	$\frac{3}{15}$	$F(x)=P(X \leq 3)=1$

d) Mean of X is defined by $E(X)=\sum x P(x)$

$$
\begin{aligned}
E(X) & =\left(-2 \times \frac{1}{10}\right)+\left(-1 \times \frac{1}{15}\right)+\left(0 \times \frac{1}{5}\right)+\left(1 \times \frac{2}{15}\right)+\left(2 \times \frac{3}{10}\right)+\left(3 \times \frac{1}{5}\right) \\
& =-\frac{1}{5}-\frac{1}{15}+\frac{2}{15}+\frac{3}{5}+\frac{3}{5}=\frac{16}{15} .
\end{aligned}
$$

Problem. 3

A random variable X has the following probability function:

X	$:$	0	1	2	3	4	5	6	7
$P X$	$:$	0	K	$2 K$	$2 K$	$3 K$	K^{2}	$2 K^{2}$	$7 K^{2}+K$

Find (i) K, (ii) Evaluate $P(X<6), P(X \geq 6)$ and $P(0<X<5)$
(iii). Determine the distribution function of X.
(iv). $P(1.5<X<4.5 / X>2)$
(v). $E(3 x-4), \operatorname{Var}(3 x-4)$
(vi). The smallest value of n for which $P(X \leq n)>\frac{1}{2}$.

Solution:

(i) Since $\sum_{x=0}^{7} P(X)=1$,
$K+2 K+2 K+3 K+K^{2}+2 K^{2}+7 K^{2}+K=1$
$10 K^{2}+9 K-1=0$

$$
K=\frac{1}{10} \quad \text { or } \quad K=-1
$$

Sathyabama Institute of Science and Technology

As $P(X)$ cannot be negative $K=\frac{1}{10}$
(ii) $P(X<6)=P(X=0)+P(X=1)+\ldots+P(X=5)$

$$
=\frac{1}{10}+\frac{2}{10}+\frac{2}{10}+\frac{3}{10}+\frac{1}{100}+\ldots=\frac{81}{100}
$$

Now $P(X \geq 6)=1-P(X<6)$

$$
=1-\frac{81}{100}=\frac{19}{100}
$$

Now $P(0<X<5)=P(X=1)+P(X=2)+P(X=3)=P(X=4)$

$$
\begin{aligned}
& =K+2 K+2 K+3 K \\
& =8 K=\frac{8}{10}=\frac{4}{5} .
\end{aligned}
$$

(iii) The distribution of X is given by $F(x)=P(X \leq x)$

$X=x$	$P(X=x)$	$F(x)=P(X \leq x)$
0	0	$F(x)=P(X \leq 0)=0$
1	$\frac{1}{10}$	$F(x)=P(X \leq 1)=\frac{1}{10}$
2	$\frac{2}{10}$	$F(x)=P(X \leq 2)=\frac{3}{10}$
3	$\frac{2}{10}$	$F(x)=P(X \leq 3)=\frac{5}{10}$
4	$\frac{3}{10}$	$F(x)=P(X \leq 4)=\frac{8}{10}$
5	$\frac{1}{100}$	$F(x)=P(X \leq 5)=\frac{81}{100}$
6	$\frac{2}{100}$	$F(x)=P(X \leq 6)=\frac{83}{100}$
7	$\frac{17}{100}$	$F(x)=P(X \leq 7)=1$

(iv) $\quad P(1.5<X<4.5 / X>2)=\frac{P(x=3)+P(x=4)}{1-[P(x=0)+P(x=1)+P(x=2)]}$

$$
=\frac{\frac{5}{10}}{1-\left[\frac{3}{10}\right]}=\frac{5}{7}
$$

(v) $E(x)=\sum x p(x)$
$=1 \times \frac{1}{10}+2 \times \frac{2}{10}+3 \times \frac{2}{10}+4 \times \frac{3}{10}+5 \times \frac{1}{100}+6 \times \frac{2}{100}+7 \times \frac{17}{100}$
$E(x)=3.66$
$E\left(x^{2}\right)=\sum x^{2} p(x)$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
= & 1^{2} \times \frac{1}{10}+2^{2} \times \frac{2}{10}+3^{2} \times \frac{2}{10}+4^{2} \times \frac{3}{10}+5^{2} \times \frac{1}{100}+6^{2} \times \frac{2}{100}+7^{2} \times \frac{17}{100} \\
& E\left(x^{2}\right)=16.8 \\
\text { Mean }= & E(x)=3.66 \\
\text { Variance }= & E\left(x^{2}\right)-[E(x)]^{2} \\
= & 16.8-(3.66)^{2} \\
= & 3.404
\end{aligned}
$$

(vi) The smallest value of n for which $P(X \leq n)>\frac{1}{2}$ is 4

Problem. 4

The probability mass function of random variable X is defined as $P(X=0)=3 C^{2}$, $P(X=1)=4 C-10 C^{2}, P(X=2)=5 C-1$, where $C>0$, and $P(X=r)=0$ if $r \neq 0,1,2$. Find (i). The value of C.
(ii). $P(0<X<2 / x>0)$.
(iii). The distribution function of X.
(iv). The largest value of x for which $F(x)<\frac{1}{2}$.

Solution:

(i) Since $\sum_{x=0}^{x=2} p(x)=1$
$p(0)+p(1)+p(2)=1$
$3 C^{2}+4 C-10 C^{2}+5 C-1=1$
$7 C^{2}-9 C+2=0$
$C=1, \frac{2}{7}$
$C=1$ is not applicable
$\therefore C=\frac{2}{7}$
The Probability distribution is

$$
X: \begin{array}{llll}
X & 0 & 1 & 2
\end{array}
$$

$$
P(X): \begin{array}{lll}
\frac{12}{49} & \frac{16}{49} & \frac{21}{49}
\end{array}
$$

(ii) $P[0<x<2 / x>0]=\frac{P[(0<x<2) \cap x>0]}{P[x>0]}$

$$
\begin{aligned}
& =\frac{P[0<x<2]}{P[x>0]}=\frac{P[x=1]}{P[x=1]+P[X=2]} \\
& P[0<x<2 / x>0]=\frac{\frac{16}{49}}{\frac{16}{49}+\frac{21}{49}}=\frac{16}{37}
\end{aligned}
$$

(iii). The distribution function of X is

X	$F(X=x)=P(X \leq x)$
0	$F(0)=P(X \leq 0)=\frac{12}{49}=0.24$
1	$F(1)=P(X \leq 1)=P(X=0)+P(X=1)=\frac{12}{49}+\frac{16}{49}=0.57$
2	$F(2)=P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=\frac{12}{49}+\frac{16}{49}+\frac{21}{49}=1$

(iv) The Largest value of x for which $F(x)=P(X \leq x)<\frac{1}{2}$ is 0 .

Problem. 5

If $P(x)=\left\{\begin{array}{l}\frac{x}{15} ; x=1,2,3,4,5 \\ 0 ; \text { elsewhere }\end{array}\right.$
Find (i) $P\{X=1$ or 2$\}$ and (ii) $P\{1 / 2<X<5 / 2 / x>1\}$

Solution:

i) $P(X=1$ or 2$)=P(X=1)+P(X=2)$

$$
=\frac{1}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}
$$

ii) $P\left(\frac{1}{2}<X<\frac{5}{2} / x>1\right)=\frac{P\left\{\left(\frac{1}{2}<X<\frac{5}{2}\right) \cap(X>1)\right\}}{P(X>1)}$

$$
=\frac{P\{(X=1 \text { or } 2) \cap(X>1)\}}{P(X>1)}
$$

$$
=\frac{P(X=2)}{1-P(X=1)}
$$

$$
=\frac{2 / 15}{1-(1 / 15)}=\frac{2 / 15}{14 / 15}=\frac{2}{14}=\frac{1}{7} .
$$

Problem. 6

A continuous random variable X has a probability density function $f(x)=3 x^{2}$, $0 \leq x \leq 1$. Find ' a ' such that $P(X \leq a)=P(X>a)$.

Solution:

Since $P(X \leq a)=P(X>a)$, each must be equal to $\frac{1}{2}$ because the probability is always 1 .

$$
\begin{aligned}
& \therefore P(X \leq a)=\frac{1}{2} \\
& \Rightarrow \int_{0}^{a} f(x) d x=\frac{1}{2} \\
& \int_{0}^{a} 3 x^{2} d x=\frac{1}{2} \Rightarrow 3\left[\frac{x^{3}}{3}\right]_{0}^{a}=a^{3}=\frac{1}{2} .
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$\therefore a=\left(\frac{1}{2}\right)^{\frac{1}{3}}$

Problem. 7

A random variable X has the p.d.f $f(x)$ given by $f(x)=\left\{\begin{array}{ll}C x e^{-x} ; & \text { if } x>0 \\ 0 & ; \text { if } x \leq 0\end{array}\right.$ Find the value of C and cumulative density function of X.

Solution:

Since $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{\infty} C x e^{-x} d x=1 \\
& C\left[x\left(-e^{-x}\right)-\left(e^{-x}\right)\right]_{0}^{\infty}=1 \\
& C=1 \\
& \therefore f(x)=\left\{\begin{array}{cc}
x e^{-x} ; x>0 \\
0 & ; x \leq 0
\end{array}\right.
\end{aligned}
$$

Cumulative Distribution of x is

$$
\begin{gathered}
F(x)=\int_{0}^{x} f(x) d t=\int_{0}^{x} x e^{-x} d x=\left[-x e^{-x}-e^{-x}\right]_{0}^{x}=-x e^{-x}-e^{-x}+1 \\
=1-(1+x) e^{-x}, x>0
\end{gathered}
$$

Problem. 8

If a random variable X has the p.d.f $f(x)=\left\{\begin{array}{c}\frac{1}{2}(x+1) ;-1<x<1 \\ 0 \quad ; \text { otherwise }\end{array}\right.$. Find the mean and variance of X.

Solution:

$$
\begin{aligned}
& \text { Mean }=\mu_{1}^{\prime}=\int_{-1}^{1} x f(x) d x=\frac{1}{2} \int_{-1}^{1} x(x+1) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{2}+x\right) d x \\
& =\frac{1}{2}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)_{-1}^{1}=\frac{1}{3} \\
& \begin{aligned}
\mu_{2}^{\prime}=\int_{-1}^{1} x^{2} f(x) d x & =\frac{1}{2} \int_{-1}^{1}\left(x^{3}+x^{2}\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{-1}^{1} \\
& =\frac{1}{2}\left[\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{3}\right] \\
& =\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}
\end{aligned} \\
& \text { Variance }=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$$
=\frac{1}{3}-\frac{1}{9}=\frac{3-1}{9}=\frac{2}{9} .
$$

Problem. 9

A continuous random variable X that can assume any value between $X=2$ and $X=5$ has a probability density function given by $f(x)=k(1+x)$. Find $P(X<4)$.

Solution:

Given X is a continuous random variable whose pdf is $f(x)=\left\{\begin{array}{l}k(1+x), 2<x<5 \\ 0, \text { Otherwise }\end{array}\right.$.
Since $\int_{-\infty}^{\infty} f(x) d x=1 \Rightarrow \int_{2}^{5} k(1+x) d x=1$

$$
k\left[\frac{(1+x)^{2}}{2}\right]_{2}^{5}=1
$$

$$
k\left[\frac{(1+5)^{2}}{2}-\frac{(1+2)^{2}}{2}\right]=1
$$

$$
k\left[18-\frac{9}{2}\right]=1
$$

$$
k\left[\frac{27}{2}\right]=1 \Rightarrow k=\frac{2}{27}
$$

$\therefore f(x)=\left\{\begin{array}{l}\frac{2(1+x)}{27}, 2<x<5 \\ 0, \text { Otherwise }\end{array}\right.$
$P(X<4)=\frac{2}{27} \int_{2}^{4}(1+x) d x$

$$
=\frac{2}{27}\left[\frac{(1+x)^{2}}{2}\right]_{2}^{4}=\frac{2}{27}\left[\frac{(1+4)^{2}}{2}-\frac{(1+2)^{2}}{2}\right]=\frac{2}{27}\left[\frac{25}{2}-\frac{9}{2}\right]=\frac{2}{27} \frac{16}{2}=\frac{16}{27} .
$$

Problem. 10

A random variable X has density function given by $f(x)=\left\{\begin{array}{ll}2 e^{-2 x} & ; x \geq 0 \\ 0 & ; x<0\end{array}\right.$. Find m.g.f

Solution:

$$
\begin{aligned}
M_{X}(t)=E\left(e^{t x}\right)=\int_{0}^{\infty} e^{t x} f(x) d x & =\int_{0}^{\infty} e^{t x} 2 e^{-2 x} d x \\
& =2 \int_{0}^{\infty} e^{(t-2) x} d x \\
& =2\left[\frac{e^{(t-2) x}}{t-2}\right]_{0}^{\infty}=\frac{2}{2-t}, t<2 .
\end{aligned}
$$

Problem. 11

The pdf of a random variable X is given by $f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq b \\ 0, \text { otherwise }\end{array}\right.$. For what value of b is $f(x)$ a valid pdf? Also find the cdf of the random variable X with the above pdf.

Sathyabama Institute of Science and Technology

Solution:

Given $f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq b \\ 0, \text { otherwise }\end{array}\right.$
Since $\int_{-\infty}^{\infty} f(x) d x=1 \Rightarrow \int_{0}^{b} 2 x d x=1$

$$
\begin{aligned}
& {\left[2 \frac{x^{2}}{2}\right]_{0}^{b}=1} \\
& {\left[b^{2}-0\right]=1 \Rightarrow \mathrm{~b}=1}
\end{aligned}
$$

$\therefore f(x)=\left\{\begin{array}{l}2 x, 0 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$
$F(x)=P(X \leq x)=\int_{0}^{x} f(x) d x=\int_{0}^{x} 2 x d x=\left[2 \frac{x^{2}}{2}\right]_{0}^{x}=x^{2}, 0 \leq x \leq 1$
$F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{x} 0 d x=0, x<0$
$F(x)=P(X \leq x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{x} f(x) d x$

$$
=\int_{-\infty}^{0} 0 d x+\int_{0}^{1} 2 x d x+\int_{1}^{x} 0 d x=\left[2 \frac{x^{2}}{2}\right]_{0}^{1}=1, x>1
$$

$F(x)=\left\{\begin{array}{lr}0, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ 1, & x>1\end{array}\right.$

Problem. 12

A random variable X has density function $f(x)=\left\{\begin{array}{cc}\frac{K}{1+x^{2}},-\infty<x<\infty \\ 0, \text { Otherwise }\end{array}\right.$. Determine K and the distribution functions. Evaluate the probability $P(x \geq 0)$.

Solution:

$$
\text { Since } \begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=1 \\
& \int_{-\infty}^{\infty} \frac{K}{1+x^{2}} d x=1 \\
& K \int_{\infty}^{\infty} \frac{d x}{1+x^{2}}=1 \\
& K\left(\tan ^{-1} x\right)_{-\infty}^{\infty}=1 \\
& K\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=1 \\
& K \pi=1
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$$
\begin{gathered}
K=\frac{1}{\pi} \\
F(x)=\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{x} \frac{K}{1+x^{2}} d x \\
=\frac{1}{\pi}\left[\tan ^{-1} x-\left(-\frac{\pi}{2}\right)\right] \\
F(x)=\frac{1}{\pi}\left[\frac{\pi}{2}+\tan ^{-1} x\right],-\infty<x<\infty \\
P(X \geq 0)=\frac{1}{\pi} \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{1}{\pi}\left(\tan ^{-1} x\right)_{0}^{\infty} \\
=\frac{1}{\pi}\left(\frac{\pi}{2}-\tan ^{-1} 0\right)=\frac{1}{2} .
\end{gathered}
$$

Problem. 13

If X has the probability density function $f(x)=\left\{\begin{array}{l}K e^{-3 x}, x>0 \\ 0 \\ , \text {,otherwise }\end{array}\right.$ find K, $P[0.5 \leq X \leq 1]$ and the mean of X.

Solution:

$$
\begin{gathered}
\text { Since } \int_{-\infty}^{\infty} f(x) d x=1 \\
\int_{0}^{\infty} K e^{-3 x} d x=1 \\
K\left[\frac{e^{-3 x}}{-3}\right]_{0}^{\infty}=1 \\
\frac{K}{3}=1 \\
K=3 \\
\begin{aligned}
& P(0.5 \leq X \leq 1)=\int_{0.5}^{1} f(x) d x=3 \int_{0.5}^{1} e^{-3 x} d x=\not p\left(\frac{e^{-3}-e^{-1.5}}{-\not p}\right)=\left[e^{-1.5}-e^{-3}\right] \\
& \text { Mean of } X=E(x)=\int_{0}^{\infty} x f(x) d x=3 \int_{0}^{\infty} x e^{-3 x} d x \\
&=3\left[x\left(\frac{-e^{-3 x}}{3}\right)-1\left(\frac{e^{-3 x}}{9}\right)\right]_{0}^{\infty}=\frac{3 \times 1}{9}=\frac{1}{3}
\end{aligned}
\end{gathered}
$$

Hence the mean of $X=E(X)=\frac{1}{3}$.

Problem. 14

If X is a continuous random variable with pdf given by

Sathyabama Institute of Science and Technology

$$
f(x)=\left\{\begin{array}{ll}
K x & \text { in } 0 \leq x \leq 2 \\
2 K & \text { in } 2 \leq x \leq 4 \\
6 K-K x & \text { in } 4 \leq x \leq 6 \\
0 & \text { elsewhere }
\end{array} . \text { Find the value of } K \text { and also the } \operatorname{cdf} F(x)\right.
$$

Solution:

$$
\begin{aligned}
\text { Since } \int_{\infty}^{\infty} F(x) d x & =1 \\
\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{6}(6 k-k x) d x & =1 \\
K\left[\left(\frac{x^{2}}{2}\right)_{0}^{2}+(2 x)_{2}^{4}+\int_{4}^{6}\left(6 x-\frac{x^{2}}{2}\right)_{4}^{6}\right] & =1 \\
K[\not 2+\not Q-4+36-18-24+8] & =1 \\
8 K & =1 \\
K & =\frac{1}{8}
\end{aligned}
$$

We know that $F(x)=\int_{-\infty}^{x} f(x) d x$

$$
\begin{aligned}
& \text { If } x<0 \text {, then } F(x)=\int_{-\infty}^{x} f(x) d x=0 \\
& \text { If } x \in(0,2) \text {, then } F(x)=\int_{-\infty}^{x} f(x) d x \\
& \qquad F(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{x} K x d x=\int_{-\infty}^{0} 0 d x+\frac{1}{8} \int_{0}^{x} x d x \\
& \qquad F(x)=\left(\frac{x^{2}}{16}\right)_{0}^{x}=\frac{x^{2}}{16}, 0 \leq x \leq 2
\end{aligned}
$$

If $x \in(2,4)$, then $F(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{2} f(x) d x+\int_{2}^{x} f(x) d x$

$$
\begin{aligned}
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{x} 2 K d x \\
& =\int_{0}^{2} \frac{x}{8} d x+\int_{2}^{x} \frac{1}{4} d x=\left(\frac{x^{2}}{16}\right)_{0}^{2}+\left(\frac{x}{4}\right)_{2}^{x} \\
& =\frac{1}{4}+\frac{x}{4}-\frac{1}{2}
\end{aligned}
$$

$$
F(x)=\frac{x}{4}-\frac{4}{16}=\frac{x-1}{4}, 2 \leq x<4
$$

Sathyabama Institute of Science and Technology

$$
\text { If } \begin{aligned}
& x \in(4,6) \text {, then } F(x)=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{x} K(6-x) d x \\
&=\int_{0}^{2} \frac{x}{8} d x+\int_{2}^{4} \frac{1}{4} d x+\int_{4}^{x} \frac{1}{8}(6-x) d x \\
&=\left(\frac{x^{2}}{16}\right)_{0}^{2}+\left(\frac{x}{4}\right)_{2}^{4}+\left(\frac{6 x}{8}-\frac{x^{2}}{16}\right)_{4}^{x} \\
&=\frac{1}{4}+1-\frac{1}{2}+\frac{6 x}{8}-\frac{x^{2}}{16}-3+1 \\
&=\frac{4+16-8+12 x-x^{2}-48+16}{16} \\
& F(x)=\frac{-x^{2}+12 x-20}{16}, 4 \leq x \leq 6
\end{aligned}
$$

If $x>6$, then $F(x)=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{4} 2 K d x+\int_{4}^{6} K(6-x) d x+\int_{6}^{\infty} 0 d x$

$$
F(x)=1, x \geq 6
$$

$$
\therefore F(x)= \begin{cases}0 & ; x \leq 0 \\ \frac{x^{2}}{16} & ; 0 \leq x \leq 2 \\ \frac{1}{4}(x-1) & ; 2 \leq x \leq 4 \\ \frac{-1}{16}\left(20-12 x+x^{2}\right) ; 4 \leq x \leq 6 \\ 1 & ; x \geq 6\end{cases}
$$

Problem. 15

A random variable X has the P.d.f $f(x)=\left\{\begin{array}{l}2 x, 0<x<1 \\ 0, \text { Otherwise }\end{array}\right.$
Find (i) $P\left(X<\frac{1}{2}\right)$
(ii) $P\left(\frac{1}{4}<x<\frac{1}{2}\right)$ (iii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)$

Solution:

(i) $P\left(x<\frac{1}{2}\right)=\int_{0}^{1 / 2} f(x) d x=\int_{0}^{1 / 2} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{0}^{1 / 2}=\frac{2 \times 1}{8}=\frac{1}{4}$
(ii) $P\left(\frac{1}{4}<x<\frac{1}{2}\right)=\int_{1 / 4}^{1 / 2} f(x) d x=\int_{1 / 4}^{1 / 2} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{1 / 4}^{1 / 2}$

$$
=2\left(\frac{1}{8}-\frac{1}{32}\right)=\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3}{16} .
$$

(iii) $P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)=\frac{P\left(X>\frac{3}{4} \cap X>\frac{1}{2}\right)}{P\left(X>\frac{1}{2}\right)}=\frac{P\left(X>\frac{3}{4}\right)}{P\left(X>\frac{1}{2}\right)}$

$$
\begin{aligned}
& P\left(X>\frac{3}{4}\right)=\int_{3 / 4}^{1} f(x) d x=\int_{3 / 4}^{1} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{3 / 4}^{1}=1-\frac{9}{16}=\frac{7}{16} \\
& P\left(X>\frac{1}{2}\right)=\int_{1 / 2}^{1} f(x) d x=\int_{1 / 2}^{1} 2 x d x=2\left(\frac{x^{2}}{2}\right)_{1 / 2}^{1}=1-\frac{1}{4}=\frac{3}{4} \\
& P\left(X>\frac{3}{4} / X>\frac{1}{2}\right)=\frac{\frac{7}{3}}{\frac{3}{4}}=\frac{7}{16} \times \frac{4}{3}=\frac{7}{12} .
\end{aligned}
$$

Problem. 16

Let the random variable X have the p.d.f $f(x)=\left\{\begin{array}{ll}\frac{1}{2} e^{-\frac{x}{2}} & , x>0 \\ 0 & , \text { otherwise. }\end{array}\right.$.Find the moment generating function, mean \& variance of X.

Solution:

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} e^{t x} \frac{1}{2} e^{-x / 2} d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-\left(\frac{1}{2}-t\right) x} d x=\frac{1}{2}\left[\frac{e^{-\left(\frac{1}{2}-t\right) x}}{-\left(\frac{1}{2}-t\right)}\right]_{0}^{\infty}=\frac{1}{1-2 t}, \text { if } t<\frac{1}{2} . \\
& E(X)=\left[\frac{d}{d t} M_{X}(t)\right]_{t=0}=\left[\frac{2}{(1-2 t)^{2}}\right]_{t=0}=2 \\
& E\left(X^{2}\right)=\left[\frac{d^{2}}{d t^{2}} M_{X}(t)\right]_{t=0}=\left[\frac{8}{(1-2 t)^{3}}\right]_{t=0}=8 \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=8-4=4
\end{aligned}
$$

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY Accredited " A " Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS

Sathyabama Institute of Science and Technology

SMTA1402 - Probability and Statistics

Unit-2 Probability Distribution

Discrete type

Binomial distribution:

A random variable X is said to follow binomial distribution if it assumes only non negative values and its probability mass function is given by $P(X=x)=p(x)=\left\{\begin{array}{l}n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n ; q=1-p \\ 0, \text { otherwise }\end{array}\right.$
Notation: $X \sim B(n, p)$ read as X is following binomial distribution with parameter n and p.

Problem. 1

Find m.g.f. of Binomial distribution and find its mean and variance.

Solution:

M.G.F.of Binomial distribution:-

$$
\begin{aligned}
M_{X}(t)=E\left[e^{t x}\right]= & \sum_{x=0}^{n} e^{t x} P(X=x) \\
& =\sum_{x=0}^{n} n C_{x} x P^{x} q^{n-x} e^{t x} \\
& =\sum_{x=0}^{n} n C_{x}\left(p e^{t}\right)^{x} q^{n-x} \\
M_{X}(t)= & \left(q+p e^{t}\right)^{n}
\end{aligned}
$$

Mean of Binomial distribution

$$
\begin{aligned}
& \text { Mean }=E(X)=M_{X}^{\prime}(0) \\
& \quad=\left[n\left(q+p e^{t}\right)^{n-1} p e^{t}\right]_{t=0}=n p \text { Since } q+p=1 \\
& E\left(X^{2}\right)=M_{X}^{\prime \prime}(0) \\
& =\left[n(n-1)\left(q+p e^{t}\right)^{n-2}\left(p e^{t}\right)^{2}+n p e^{t}\left(q+p e^{t}\right)^{n-1}\right]_{t=0} \\
& E\left(X^{2}\right)=n(n-1) p^{2}+n p \\
& \quad=n^{2} p^{2}+n p(1-p)=n^{2} p^{2}+n p q
\end{aligned}
$$

$$
\text { Variance }=E\left(X^{2}\right)-[E[X]]^{2}=n p q
$$

$$
\text { Mean }=n p ; \text { Variance }=n p q
$$

Problem. 2

Comment the following: "The mean of a binomial distribution is 3 and variance is 4

Solution:

In binomial distribution, mean > variance but Variance < Mean

Sathyabama Institute of Science and Technology

Since Variance $=4$ \&Mean $=3$, the given statement is wrong.

Problem. 3

If X and Y are independent binomial variates $B\left(5, \frac{1}{2}\right)$ and $B\left(7, \frac{1}{2}\right)$ find $P[X+Y=3]$

Solution:

$X+Y$ is also a binomial variate with parameters $n_{1}+n_{2}=12 \& p=\frac{1}{2}$

$$
\therefore P[X+Y=3]=12 C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{9}=\frac{55}{2^{10}}
$$

Problem. 4

(i). Six dice are thrown 729 times. How many times do you expect atleast 3 dice show 5 or 6 ?
(ii) Six coins are tossed 6400 times. Using the Poisson distribution, what is the approximate probability of getting six heads 10 times?

Solution:

(i). Let X be the number of times the dice shown 5 or 6
$P[5$ or 6$]=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$
$\therefore P=\frac{1}{3}$ and $q=\frac{2}{3}$
Here $n=6$
By Binomial theorem,

$$
\begin{aligned}
& P[X=x]=6 C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x} \text { where } x=0,1,2 \ldots 6 . \\
& \begin{aligned}
P[X \geq 3] & =P(3)+P(4)+P(5)+P(6) \\
& =6 C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3}+6 C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+6 C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)+6 C_{6}\left(\frac{1}{3}\right)^{6} \\
& =0.3196
\end{aligned}
\end{aligned}
$$

\therefore Expected number of times atleast 3 dies to show 5 or $6=N \times P[X \geq 3]$

$$
=729 \times 0.3196=233 .
$$

(ii). Probability of getting six heads in one toss of six coins is $p=\left(\frac{1}{2}\right)^{6}$, $\lambda=n p=6400 \times\left(\frac{1}{2}\right)^{6}=100$
Let X be the number of times getting 6 heads $P(X=10)=\frac{e^{-100}(100)^{10}}{10!}=1.025 \times 10^{-30}$

Poisson distribution:

A random variable X is said to follow Poisson distribution if it assumes only non negative values and its probability mass function is given by
$P(X=x)=\left\{\begin{array}{l}\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots ; \lambda>0 \\ 0, \text { otherwise }\end{array}\right.$

Sathyabama Institute of Science and Technology

Notation: $X \sim P(\lambda)$ read as X is following Poisson distribution with parameter λ.

Poisson distribution as limiting form of binomial distribution:

Poisson distribution is a limiting case of Binomial distribution under the following conditions:
(i). n the number of trials is indefinitely large, (i.e.) $n \rightarrow \infty$
(ii). p the constant probability of success in each trial is very small (i.e.) $p \rightarrow 0$
(iii). $n p=\lambda$ is finite.

Proof:

$$
P(X=x)=p(x)=n c_{x} p^{x} q^{n-x}
$$

Let $n p=\lambda$

$$
\begin{aligned}
\therefore \quad & p=\frac{\lambda}{n}, q=1-\frac{\lambda}{n} \\
\therefore \quad p(x) & =n c_{x}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& =\frac{n!}{x!(n-x)!}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& =\frac{n(n-1) \cdots(n-(x-1))(n-x)!}{x!(n-x)!}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
& =\frac{1 .\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)}{x!} \not x^{x} \frac{\lambda^{x}}{x^{\not x}}\left(1-\frac{\lambda}{n}\right)^{n-x} \\
p(x) & =1 .\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right) \frac{\lambda^{x}}{x!}\left(1-\frac{\lambda}{n}\right)^{n-x}
\end{aligned}
$$

Taking limit $n \rightarrow \infty$ on both sides

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p(x)=\frac{\lambda^{x}}{x!} \lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)\left(1-\frac{\lambda}{n}\right)^{n-x}\right] \\
& \quad=\frac{\lambda^{x}}{x!} \lim _{n \rightarrow \infty}\left[\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{x-1}{n}\right)\right] \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{-x} \lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n} \\
& P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots
\end{aligned}
$$

Problem. 1

Criticise the following statement: "The mean of a Poisson distribution is 5 while the standard deviation is 4 ".

Solution:

For a Poisson distribution mean and variance are same. Hence this statement is not true.

Sathyabama Institute of Science and Technology

Geometric distribution:

A random variable X is said to have a Geometric distribution if it assumes only non negative values and its probability mass function is given by
$P(X=x)=\left\{\begin{array}{l}q^{x-1} p ; x=1,2, \ldots ; 0<p \leq 1 \\ 0, \text { otherwise }\end{array}\right.$

Problem. 1

Find the Moment generating function of geometric distribution and find its Mean and Variance

Solution:

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t X}\right) \\
& =\sum_{x=1}^{\infty} e^{t x} q^{x-1} p \\
& =\sum_{x=1}^{\infty} p e^{t}\left(q e^{t}\right)^{x-1} \\
& =p e^{t}\left(1+q e^{t}+\left(q e^{t}\right)^{2}+\cdots\right) \\
& =p e^{t}\left(1-q e^{t}\right)^{-1} \\
& M_{X}(t)=\frac{p e^{t}}{1-q e^{t}} \\
& \mu_{1}^{\prime}=M_{x}^{\prime}(0)=\left[\frac{d}{d t}\left(\frac{p e^{t}}{\left(1-q e^{t}\right)}\right)\right]_{t=0}=\left[\left(\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}}\right)\right]_{t=0}=\frac{1}{p} \\
& \mu_{2}^{\prime}=M_{x}^{\prime \prime}(0)=\left[\frac{d^{2}}{d t^{2}}\left(\frac{p e^{t}}{\left(1-q e^{t}\right)}\right)\right]_{t=0}=\left[\frac{d}{d t}\left(\frac{p e^{t}}{\left(1-q e^{t}\right)^{2}}\right)\right]_{t=0}=\frac{1+q}{p^{2}} \\
& \text { Mean }=\mu_{1}^{\prime}=\frac{1}{p} \\
& \text { Variance }=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=\frac{1+q}{p^{2}}-\left(\frac{1}{p}\right)^{2}=\frac{q}{p^{2}}
\end{aligned}
$$

Problem. 2

State and prove Memoryless property of geometric distribution.

Solution:

If X has a geometric distribution, then for any two positive integer' s 'and ' t ' $P[X>s+t / X>s]=P[X>t]$.
The p.m.f of the geometric random variable X is $P(X=x)=q^{x-1} p, \quad x=1,2,3, \ldots$

$$
\begin{equation*}
P[X>s+t / X>s]=\frac{P[X>s+t \cap X>s]}{P[X>s]}=\frac{P[X>s+t]}{P[X>s]} \tag{1}
\end{equation*}
$$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
\therefore P[X>t] & =\sum_{x=t+1}^{\infty} q^{x-1} p=q^{t} p+q^{t+1} p+q^{t+2} p+\ldots .=q^{t} p\left[1+q+q^{2}+q^{3}+\ldots .\right] \\
& =q^{t} p(1-q)^{-1}=q^{t} p(p)^{-1}=q^{t}
\end{aligned}
$$

Hence $P[X>s+t]=q^{s+t}$ and $P[X>s]=q^{s}$
(1) $\Rightarrow P[X>s+t / X>s]=\frac{P[X>s+t \cap X>s]}{P[X>s]}=\frac{q^{s+t}}{q^{s}}=q^{t}=P[X>t]$
$\Rightarrow P[X>s+t / X>s]=P(X>t)$

Problem. 3

If the probability is $\frac{1}{4}$ that a man will hit a target what is the chance that he will hit the target for the first time in the $7^{\text {th }}$ trial?

Solution:

The required probability is

$$
\begin{aligned}
P[\text { FFFFFFS }] & =P(F) P(F) P(F) P(F) P(F) P(F) P(S) \\
& =q^{6} p=\left(\frac{3}{4}\right)^{6} \cdot\left(\frac{1}{4}\right)=0.0445 .
\end{aligned}
$$

Problem. 4

A die is cast until 6 appears what is the probability that it must cast more then five times?

Solution:

Probability of getting $\operatorname{six}=\frac{1}{6}$
$\therefore p=\frac{1}{6} \& q=1-\frac{1}{6}$
Let x : No of throws for getting the number 6. By geometric distribution $P[X=x]=q^{x-1} p, x=1,2,3 \ldots$.

Since 6 can be got either in first, second......throws.
To find $P[X \geq 6]=1-P[X<6]$

$$
\begin{aligned}
& =1-\sum_{x=1}^{5}\left(\frac{5}{6}\right)^{x-1} \cdot \frac{1}{6} \\
= & 1-\left[\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)\right] \\
= & 1-\frac{\frac{1}{6}\left[1-\left(\frac{5}{6}\right)^{5}\right]}{1-\frac{5}{6}}=\left(\frac{5}{6}\right)^{5}=0.4019
\end{aligned}
$$

Problem. 5

Suppose that a trainee soldier shoots a target an independent fashion. If the probability that the target is shot on any one shot is 0.8 .
(i) What is the probability that the target would be hit on $6^{\text {th }}$ attempt?
(ii) What is the probability that it takes him less than 5 shots?

Sathyabama Institute of Science and Technology

Solution:

Here $p=0.8, q=1-p=0.2$

$$
P[X=x]=q^{x-1} p, x=1,2 \ldots
$$

(i) The probability that the target would be hit on the $6^{\text {th }}$ attempt $=P[X=6]$

$$
=(0.2)^{5}(0.8)=0.00026
$$

(ii) The probability that it takes him less than 5 shots $=P[X<5]$

$$
\begin{gathered}
=\sum_{x=1}^{4} q^{x-1} p=0.8 \sum_{x=1}^{4}(0.2)^{x-1} \\
=0.8[1+0.2+0.04+0.008]=0.9984
\end{gathered}
$$

Continuous type

Uniform (or) Rectangular distribution:
A continuous random variable X is said to have a uniform distribution over an interval (a, b) if its probability density function is given by
$f(x)=\left\{\begin{array}{l}\frac{1}{b-a}, a<x<b \\ 0, \text { otherwise }\end{array}\right.$

Problem. 1

If X is uniformly distributed with Mean 1 and Variance $\frac{4}{3}$, find $P[X>0]$

Solution:

If X is uniformly distributed over (a, b), then

$$
\begin{aligned}
E(X)= & \frac{b+a}{2} \text { and } V(X)=\frac{(b-a)^{2}}{12} \\
& \therefore \frac{b+a}{2}=1 \Rightarrow a+b=2 \\
& \Rightarrow \frac{(b-a)^{2}}{12}=\frac{4}{3} \Rightarrow(b-a)^{2}=16 \\
& \Rightarrow a+b=2 \& b-a=4 \text { We get } b=3, a=-1
\end{aligned}
$$

$\therefore a=-1 \& b=3$ and probability density function of x is

$$
\begin{aligned}
f(x)= & \left\{\begin{array}{l}
\frac{1}{4} ;-1<x<3 \\
0 ; \text { Otherwise }
\end{array}\right. \\
& P[x<0]=\int_{-1}^{0} \frac{1}{4} d x=\frac{1}{4}[x]_{-1}^{0}=\frac{1}{4} .
\end{aligned}
$$

Exponential distribution:

A continuous random variable X assuming non negative values is said to have an exponential distribution with parameter $\theta>0$, if its probability density function is given by
$f(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, x \geq 0 \\ 0, \text { otherwise }\end{array}\right.$

Problem. 1

Sathyabama Institute of Science and Technology

Find the moment generating function of Exponential distribution and find its mean and variance.
Solution:
We know that $f(x)=\left\{\begin{array}{l}\lambda e^{-\lambda x}, x \geq 0 \\ 0, \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& M_{X}(t)=E\left(e^{t x}\right)=\int_{0}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{t x} d x \\
&=\lambda \int_{0}^{\infty} e^{-x(\lambda-t)} d x \\
&=\lambda\left[\frac{e^{-x(\lambda-t)}}{-(\lambda-t)}\right]_{0}^{\infty}=\frac{\lambda}{\lambda-t}
\end{aligned}
$$

$$
\text { Mean }=\mu_{1}^{\prime}=\left[\frac{d}{d t} M_{X}(t)\right]_{t=0}=\left[\frac{\lambda}{(\lambda-t)^{2}}\right]_{t=0}=\frac{1}{\lambda}
$$

$$
\mu_{2}^{\prime}=\left[\frac{d^{2}}{d t^{2}} M_{X}(t)\right]_{t=0}=\left[\frac{\lambda(2)}{(\lambda-t)^{3}}\right]_{t=0}=\frac{2}{\lambda^{2}}
$$

Variance $=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}$.

Problem. 2

State and prove the memoryless property of exponential distribution.

Solution:

Statement:
If X is exponentially distributed with parameters λ, then for any two positive integers's' and't', $P[x>s+t / x>s]=P[x>t]$
Proof:
The p.d.f of X is $f(x)= \begin{cases}\lambda e^{-\lambda x} & , x \geq 0 \\ 0 & , \text { Otherwise }\end{cases}$

$$
\begin{aligned}
& \therefore P[X>k]=\int_{k}^{\infty} \lambda e^{-\lambda x} d x=\left[-e^{-\lambda x}\right]_{k}^{\infty}=e^{-\lambda k} \\
& \begin{aligned}
\therefore P[X>s+t / x>s]= & \frac{P[x>s+t \cap x>s]}{P[x>s]} \\
& =\frac{P[X>s+t]}{P[X>s]}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t} \\
& =P[x>t]
\end{aligned}
\end{aligned}
$$

Problem. 3

A component has an exponential time to failure distribution with mean of 10,000 hours.
(i). The component has already been in operation for its mean life. What is the probability that it will fail by 15,000 hours?
(ii). At 15,000 hours the component is still in operation. What is the probability that it will operate for another 5000 hours.

Solution:

Sathyabama Institute of Science and Technology

Let X denote the time to failure of the component then X has exponential distribution with Mean $=1000$ hours.

$$
\therefore \frac{1}{\lambda}=10,000 \Rightarrow \lambda=\frac{1}{10,000}
$$

The p.d.f. of X is $f(x)=\left\{\begin{array}{cl}\frac{1}{10,000} e^{-\frac{x}{10,000}}, x \geq 0 \\ 0 & , \text { otherwise }\end{array}\right.$
(i) Probability that the component will fail by 15,000 hours given it has already been in operation for its mean life $=P[x<15,000 / x>10,000]$

$$
\begin{aligned}
& =\frac{P[10,000<X<15,000]}{P[X>10,000]} \\
& =\frac{\int_{10,000}^{15,000} f(x) d x}{\int_{10,000}^{\infty} f(x) d x}=\frac{e^{-1}-e^{-1.5}}{e^{-1}} \\
& =\frac{0.3679-0.2231}{0.3679}=0.3936 .
\end{aligned}
$$

(ii) Probability that the component will operate for another 5000 hours given that it is in operational 15,000 hours $=P[X>20,000 / X>15,000]$

$$
\begin{aligned}
& =P[x>5000] \text { [By memoryless prop] } \\
= & \int_{5000}^{\infty} f(x) d x=e^{-0.5}=0.6065
\end{aligned}
$$

Sathyabama Institute of Science and Technology

Normal distribution:

A random variable X is said to have a Normal distribution with parameters μ (mean) and σ^{2} (variance) if its probability density function is given by the probability law

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}},-\infty<x<\infty,-\infty<\mu<\infty, \sigma>0
$$

Notation: $X \sim N\left(\mu, \sigma^{2}\right)$ read as X is following normal distribution with mean μ and variance σ^{2} are called parameter.

Problem. 1

Prove that "For standard normal distribution $N(0,1), M_{X}(t)=e^{\frac{t^{2}}{2}}$.

Solution:

Moment generating function of Normal distribution

$$
\begin{aligned}
& =M_{X}(t)=E\left[e^{t x}\right] \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
\end{aligned}
$$

Put $z=\frac{x-\mu}{\sigma}$ then $\sigma d z=d x,-\infty<Z<\infty$

$$
\begin{aligned}
\therefore M_{X}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t(\sigma z+\mu)-\frac{z^{2}}{2}} d z \\
& =\frac{e^{\mu t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\left(\frac{z^{2}}{2}-t \sigma z\right)} d z \\
& =\frac{e^{\mu t}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}+\left(\frac{\sigma^{2} t^{2}}{2}\right)} d z \\
& =\frac{e^{\mu t} e^{\frac{\sigma^{2} t^{2}}{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}} d z
\end{aligned}
$$

\because the total area under normal curve is unity, we have $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z-t \sigma)^{2}} d z=1$
Hence $M_{X}(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}} \therefore$ For standard normal variable $N(0,1)$

$$
M_{X}(t)=e^{\frac{t^{2}}{2}}
$$

Problem. 2

State and prove the additive property of normal distribution.

Solution:

Statement:

Sathyabama Institute of Science and Technology

If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent normal random variates with mean $\left(\mu_{1}, \sigma_{1}^{2}\right)$, $\left(\mu_{2}, \sigma_{2}^{2}\right), \ldots\left(\mu_{n}, \sigma_{n}^{2}\right)$ then $X_{1}+X_{2}+\ldots+X_{n}$ also a normal random variable with mean $\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$.
Proof:
We know that. $M_{X_{1}+X_{2}+\ldots+X_{n}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \ldots M_{X_{n}}(t)$
But $M_{X_{i}}(t)=e^{\mu_{i} t+\frac{t^{2} \sigma_{i}^{2}}{2}}, i=1,2 \ldots n$

$$
\begin{aligned}
M_{X_{1}+X_{2}+\ldots+X_{n}}(t) & =e^{\mu_{l} t+\frac{t^{2} \sigma_{1}^{2}}{2}} e^{\mu_{2} t+\frac{t^{2} \sigma_{2}^{2}}{2}} \ldots e^{\mu_{n} t+\frac{t^{2} \sigma_{n}^{2}}{2}} \\
& =e^{\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right) t+\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{n}^{2}\right) t^{2}}{2}} \\
& =e^{\sum_{i=1}^{n} \mu_{l+1} \sum_{i=1}^{n} \sigma_{i}^{2} t^{2}} 2
\end{aligned}
$$

By uniqueness MGF, $X_{1}+X_{2}+\ldots+X_{n}$ follows normal random variable with parameter $\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$.

This proves the property.

Problem. 3

X is a normal variate with mean $=30$ and $S . D=5$ Find the following $P[26 \leq X \leq 40]$

Solution:

$$
\begin{aligned}
& X \sim N\left(30,5^{2}\right) \\
& \therefore \mu=30 \& \sigma=5
\end{aligned}
$$

Let $Z=\frac{X-\mu}{\sigma}$ be the standard normal variate

$$
\begin{aligned}
P[26 \leq X \leq 40] & =P\left[\frac{26-30}{5} \leq Z \leq \frac{40-30}{5}\right] \\
& =P[-0.8 \leq Z \leq 2]=P[-0.8 \leq Z \leq 0]+P[0 \leq Z \leq 2] \\
& =P[0 \leq Z 0.8]+[0 \leq z \leq 2] \\
& =0.2881+0.4772=0.7653 .
\end{aligned}
$$

Problem. 4

The average percentage of marks of candidates in an examination is 45 will a standard deviation of 10 the minimum for a pass is 50%.If 1000 candidates appear for the examination, how many can be expected marks. If it is required, that double that number should pass, what should be the average percentage of marks?

Solution:

Let X be marks of the candidates

$$
\begin{aligned}
& \text { Then } X \sim N\left(42,10^{2}\right) \\
& \text { Let } z=\frac{X-42}{10} \\
& P[X>50]=P[Z>0.8]
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
& =0.5-P[0<z<0.8] \\
& =0.5-0.2881=0.2119
\end{aligned}
$$

Since 1000 students write the test, nearly 212 students would pass the examination.

If double that number should pass, then the no of passes should be 424.
We have to find z_{1}, such that $P\left[Z>z_{1}\right]=0.424$

$$
\therefore P\left[0<z<z_{1}\right]=0.5-0.424=0.076
$$

From tables, $z=0.19$

$$
\begin{aligned}
\therefore z_{1}=\frac{50-x_{1}}{10} \Rightarrow x_{1} & =50-10 z_{1} \\
& =50-1.9=48.1
\end{aligned}
$$

The average mark should be 48 nearly.

Problem. 5

Given that X is normally distribution with mean 10 and probability $P[X>12]=0.1587$. What is the probability that X will fall in the interval $(9,11)$.

Solution:

Given X is normally distributed with mean $\mu=10$.
Let $z=\frac{x-\mu}{\sigma}$ be the standard normal variate.

$$
\begin{aligned}
& \text { For } X=12, z=\frac{12-10}{\sigma} \Rightarrow z=\frac{2}{\sigma} \\
& \text { Put } z_{1}=\frac{2}{\sigma} \\
& \text { Then } P[X>12]=0.1587 \\
& \qquad P\left[Z>Z_{1}\right]=0.1587 \\
& \therefore 0.5-p\left[0<z<z_{1}\right]=0.1587 \\
& \Rightarrow P\left[0<z<z_{1}\right]=0.3413
\end{aligned}
$$

From area table $P[0<z<1]=0.3413$

$$
\therefore Z_{1}=1 \Rightarrow \frac{2}{\sigma}=1
$$

To find $P[9<x<11]$
For $X=9, z=-\frac{1}{2}$ and $X=11, z=\frac{1}{2}$

$$
\begin{aligned}
\therefore P[9<X<11] & =P[-0.5<z<0.5] \\
& =2 P[0<z<0.5] \\
& =2 \times 0.1915=0.3830
\end{aligned}
$$

31. In a normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation of the distribution.
Solution:
Let μ be the mean and σ be the standard deviation.
Then $P[X \leq 45]=0.31$ and $P[X \geq 64]=0.08$

Sathyabama Institute of Science and Technology

When $X=45, Z=\frac{45-\mu}{\sigma}=-z_{1}$
$\therefore z_{1}$ is the value of z corresponding to the area $\int_{0}^{z_{1}} \phi(z) d z=0.19$
$\therefore z_{1}=0.495$
$45-\mu=-0.495 \sigma--(1)$
When $X=64, Z=\frac{64-\mu}{\sigma}=z_{2}$
$\therefore z_{2}$ is the value of z corresponding to the area $\int_{0}^{z_{2}} \phi(z) d z=0.42$
$\therefore z_{2}=1.405$
$64-\mu=1.405 \sigma--(2)$
Solving (1) \& (2) We get $\mu=10$ (approx) \& $\sigma=50$ (approx)

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY Accredited " A " Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS

UNIT - III - Two Dimensional Random Variable - SMTA1402

Sathyabama Institute of Science and Technology

 SMTA1402 - Probability and Statistics
UNIT-3 TWO DIMENSIONAL RANDOM VARIABLE

1. Let X and Y have joint density function $f(x, y)=2,0<x<y<1$. Find the marginal density function. Find the conditional density function Y given $X=x$.
Solution:
Marginal density function of X is given by

$$
\begin{aligned}
f_{X}(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{x}^{1} f(x, y) d y=\int_{x}^{1} 2 d y=2(y)_{x}^{1} \\
& =2(1-x), 0<x<1 .
\end{aligned}
$$

Marginal density function of Y is given by

$$
\begin{aligned}
f_{Y}(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{y} 2 d x=2 y, 0<y<1 .
\end{aligned}
$$

Conditional distribution function of Y given $X=x$ is $f(y / x)=\frac{f(x, y)}{f(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}$.
2. Verify that the following is a distribution function. $F(x)=\left\{\begin{array}{ll}0 & , x<-a \\ \frac{1}{2}\left(\frac{x}{a}+1\right), & , a<x<a . \\ 1 & , x>a\end{array}\right.$.

Solution:
$F(x)$ is a distribution function only if $f(x)$ is a density function.

$$
f(x)=\frac{d}{d x}[F(x)]=\frac{1}{2 a},-a<x<a
$$

$$
\int_{-\infty}^{\infty} f(x)=1
$$

$\therefore \int_{-a}^{a} \frac{1}{2 a} d x=\frac{1}{2 a}[x]_{-a}^{a}=\frac{1}{2 a}[a-(-a)]$ $=\frac{1}{2 a} \cdot 2 a=1$.
Therefore, it is a distribution function.
3. Prove that $\int_{x_{1}}^{x_{2}} f_{X}(x) d x=p\left(x_{1}<x<x_{2}\right)$

Solution:

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} f_{X}(x) d x & =\left[F_{X}(x)\right]_{x_{1}}^{x_{2}} \\
& =F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \\
& =P\left[X \leq x_{2}\right]-P\left[X \leq x_{1}\right] \\
& =P\left[x_{1} \leq X \leq x_{2}\right]
\end{aligned}
$$

4. A continuous random variable X has a probability density function $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find ' a ' such that $P(X \leq a)=P(X>a)$.
Solution:
Since $P(X \leq a)=P(X>a)$, each must be equal to $\frac{1}{2}$ because the probability is always 1.
$\therefore P(X \leq a)=\frac{1}{2}$
$\Rightarrow \int_{0}^{a} f(x) d x=\frac{1}{2}$
$\int_{0}^{a} 3 x^{2} d x=\frac{1}{2} \Rightarrow 3\left[\frac{x^{3}}{3}\right]_{0}^{a}=a^{3}=\frac{1}{2}$.
$\therefore a=\left(\frac{1}{2}\right)^{\frac{1}{3}}$
5. Suppose that the joint density function $f(x, y)=\left\{\begin{array}{ll}A e^{-x-y}, 0 \leq x \leq y, 0 \leq y \leq \infty \\ 0 & , \text { otherwise }\end{array}\right.$ Determine A.

Solution:
Since $f(x, y)$ is a joint density function

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1 . \\
\Rightarrow & \int_{0}^{\infty} \int_{0}^{\infty} A e^{-x} e^{-y} d x d y=1 \\
\Rightarrow & A \int_{0}^{\infty} e^{-y}\left(\frac{e^{-x}}{-1}\right)_{0}^{y} d y=1 \\
\Rightarrow & A \int_{0}^{\infty}\left[e^{-y}-e^{-2 y}\right] d y=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A\left[\frac{e^{-y}}{-1}-\frac{e^{-2 y}}{-2}\right]_{0}^{\infty}=1 \\
& \Rightarrow A\left[\frac{1}{2}\right]=1 \Rightarrow A=2
\end{aligned}
$$

6. Examine whether the variables X and Y are independent, whose joint density function is $f(x, y)=x e^{-x(y+1)}, 0<x, y<\infty$.
Solution:
The marginal probability function of X is

$$
\begin{aligned}
f_{X}(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{\infty} x e^{-x(y+1)} d y \\
& =x\left[\frac{e^{-x(y+1)}}{-x}\right]_{0}^{\infty}=-\left[0-e^{-x}\right]=e^{-x},
\end{aligned}
$$

The marginal probability function of Y is

$$
\begin{aligned}
f_{Y}(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{\infty} x e^{-x(y+1)} d x \\
& =x\left\{\left[\frac{e^{-x(y+1)}}{-(y+1)}\right]_{0}^{\infty}-\left[\frac{e^{-x(y+1)}}{(y+1)^{2}}\right]\right\}_{0}^{\infty} \\
& =\frac{1}{(y+1)^{2}}
\end{aligned}
$$

Here $f(x) \cdot f(y)=e^{-x} \times \frac{1}{(1+y)^{2}} \neq f(x, y)$
$\therefore X$ and Y are not independent.
7. If X has an exponential distribution with parameter 1 . Find the pdf of $y=\sqrt{x}$ Solution:

$$
\text { Since } y=\sqrt{x}, x=y^{2}
$$

Since X has an exponential distribution with parameter 1, the pdf of X is given by

$$
\begin{aligned}
f_{X}(x) & =e^{-x}, x>0 \\
\therefore f_{Y}(y) & =f_{X}(x)\left|\frac{d x}{d y}\right| \\
& =e^{-x} 2 y=2 y e^{-y^{2}} \\
f_{Y}(y) & =2 y e^{-y^{2}}, y>0
\end{aligned}
$$

8. If X is uniformly distributed random variable in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, Find the probability density function of $Y=\tan X$.

Solution:
Given $Y=\tan X \Rightarrow x=\tan ^{-1} y$
$\therefore \frac{d x}{d y}=\frac{1}{1+y^{2}}$
Since X is uniformly distribution in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{b-a}=\frac{1}{\frac{\pi}{2}+\frac{\pi}{2}} \\
& f_{X}(x)=\frac{1}{\pi},-\frac{\pi}{2}<x<\frac{\pi}{2}
\end{aligned}
$$

Now $f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|=\frac{1}{\pi}\left(\frac{1}{1+y^{2}}\right),-\infty<y<\infty$

$$
\therefore f_{Y}(y)=\frac{1}{\pi\left(1+y^{2}\right)},-\infty<y<\infty
$$

9. If the Joint probability density function of (x, y) is given by $f(x, y)=24 y(1-x)$, $0 \leq y \leq x \leq 1$ Find $E(X Y)$.
Solution:

$$
\begin{aligned}
E(x y) & =\int_{0}^{1} \int_{y}^{1} x y f(x, y) d x d y \\
& =24 \int_{0}^{1} \int_{y}^{1} x y^{2}(1-x) d x d y \\
& =24 \int_{0}^{1} y^{2}\left[\frac{1}{6}-\frac{y^{2}}{2}+\frac{y^{3}}{3}\right] d y=\frac{4}{15}
\end{aligned}
$$

10. If X and Y are random Variables, Prove that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$

Solution:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E(X Y-\bar{X} Y-\bar{Y} X+\bar{X} \bar{Y}) \\
& =E(X Y)-\bar{X} E(Y)-\bar{Y} E(X)+\bar{X} \bar{Y} \\
= & E(X Y)-\bar{X} \bar{Y}-\bar{X} \bar{Y}+\bar{X} \bar{Y} \\
= & E(X Y)-E(X) E(Y) \quad[E(X)=\bar{X}, E(Y)=\bar{Y}]
\end{aligned}
$$

11. If X and Y are independent random variables prove that $\operatorname{cov}(x, y)=0$

Proof:
$\operatorname{cov}(x, y)=E(x y)-E(x) E(y)$
But if X and Y are independent then $E(x y)=E(x) E(y)$
$\operatorname{cov}(x, y)=E(x) E(y)-E(x) E(y)$
$\operatorname{cov}(x, y)=0$.
12. Write any two properties of regression coefficients.

Solution:

1. Correction coefficients is the geometric mean of regression coefficients
2. If one of the regression coefficients is greater than unity then the other should be less than 1.

$$
\begin{aligned}
& b_{x y}=r \frac{\sigma_{y}}{\sigma_{x}} \text { and } b_{y x}=r \frac{\sigma_{x}}{\sigma_{y}} \\
& \text { If } b_{x y}>1 \text { then } b_{y x}<1 .
\end{aligned}
$$

13. Write the angle between the regression lines.

The slopes of the regression lines are

$$
m_{1}=r \frac{\sigma_{y}}{\sigma_{x}}, m_{2}=\frac{1}{r} \frac{\sigma_{y}}{\sigma_{x}}
$$

If θ is the angle between the lines, Then

$$
\tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\left[\frac{1-r^{2}}{r}\right]
$$

When $r=0$, that is when there is no correlation between x and $\mathrm{y}, \tan \theta=\infty$ (or) $\theta=\frac{\pi}{2}$ and so the regression lines are perpendicular When $r=1$ or $r=-1$, that is when there is a perfect correlation $+v e$ or $-v e, \theta=0$ and so the lines coincide.
15. i). Two random variables are said to be orthogonal if correction is zero.
ii). If $X=Y$ then correlation coefficients between them is $\underline{1}$.
16.a). The joint probability density function of a bivariate random variable X, Y is $f_{X Y}(x, y)=\left\{\begin{array}{ll}k(x+y), & 0<x<2,0<y<2 \\ 0 \quad, & \text { otherwise }\end{array}\right.$ where ' k ' is a constant.
i. Find k.
ii. Find the marginal density function of X and Y.
iii. Are X and Y independent?
iv. Find $f_{Y / X}(y / x)$ and $f_{X / Y}(x / y)$.

Solution:
(i). Given the joint probability density function of a brivate random variable (X, Y) is

$$
\begin{aligned}
& f_{X Y}(x, y)=\left\{\begin{array}{l}
K(x+y), 0<x<2,0<y<2 \\
0 \quad, \text { otherwise }
\end{array}\right. \\
& \text { Here } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X Y}(x, y) d x d y=1
\end{aligned} \Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K(x+y) d x d y=1 .
$$

(ii). The marginal p.d.f of X is given by

$$
\begin{aligned}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & =\frac{1}{8} \int_{0}^{2}(x+y) d y \\
& =\frac{1}{8}\left[x y+\frac{y^{2}}{2}\right]_{0}^{2}=\frac{1+x}{4}
\end{aligned}
$$

\therefore The marginal p.d.f of X is

$$
f_{X}(x)= \begin{cases}\frac{x+1}{4}, & 0<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

The marginal p.d.f of Y is

$$
\begin{aligned}
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x & =\frac{1}{8} \int_{0}^{2}(x+y) d x \\
& =\frac{1}{8}\left[\frac{x^{2}}{2}+y x\right]_{0}^{2}
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$$
=\frac{1}{8}[2+2 y]=\frac{y+1}{4}
$$

\therefore The marginal p.d.f of Y is

$$
f_{Y}(y)= \begin{cases}\frac{y+1}{4}, & 0<y<2 \\ 0 & , \text { otherwise }\end{cases}
$$

(iii). To check whether X and Y are independent or not.

$$
f_{X}(x) f_{Y}(y)=\frac{(x+1)}{4} \frac{(y+1)}{4} \neq f_{X Y}(x, y)
$$

Hence X and Y are not independent.
(iv). Conditional p.d.f $f_{Y / X}(y / x)$ is given by

$$
\begin{aligned}
& f_{Y / X}(y / x)=\frac{f(x, y)}{f_{X}(x)}=\frac{\frac{1}{8}(x+y)}{\frac{1}{4}(x+1)}=\frac{1}{2} \frac{(x+y)}{(x+1)} \\
& f_{Y / X}(y / x)=\frac{1}{2}\left(\frac{x+y}{x+1}\right), 0<x<2,0<y<2
\end{aligned}
$$

(v) $P\left(0<y<\frac{1}{2} / x=1\right)=\int_{0}^{2} f_{Y / X}(y / x=1) d y$

$$
=\frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{1+y}{2} d y=\frac{5}{32} .
$$

17.a). If X and Y are two random variables having joint probability density function $f(x, y)=\left\{\begin{array}{ll}\frac{1}{8}(6-x-y), 0<x<2,2<y<4 \\ 0 & , \text { otherwise }\end{array}\right.$ Find (i) $P(X<1 \cap Y<3)$
(ii) $P(X+Y<3)$ (iii) $P(X<1 / Y<3)$.
b). Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn find the joint probability distribution of X, Y.
Solution:
a).

$$
\begin{aligned}
P(X<1 \cap Y<3)= & \int_{y=-\infty}^{y=3}
\end{aligned} \begin{aligned}
& x=-\infty \\
&
\end{aligned} \int_{y=2}^{x=1} f(x, y) d x d y \int_{x=0}^{y=3} \frac{x=1}{x}(6-x-y) d x d y
$$

$$
\begin{aligned}
& =\frac{1}{8} \int_{2}^{3} \int_{0}^{1}(6-x-y) d x d y \\
& =\frac{1}{8} \int_{2}^{3}\left[6 x-\frac{x^{2}}{2}-x y\right]_{0}^{1} d y \\
& =\frac{1}{8} \int_{2}^{3}\left[\frac{11}{2}-y\right] d y=\frac{1}{8}\left[\frac{11 y}{2}-\frac{y^{2}}{2}\right]_{2}^{3} \\
P(X<1 \cap Y<3) & =\frac{3}{8}
\end{aligned}
$$

(ii). $P(X+Y<3)=\int_{0}^{1} \int_{2}^{3-x} \frac{1}{8}(6-x-y) d y d x$

$$
=\frac{1}{8} \int_{0}^{1}\left[6 y-x y-\frac{y^{2}}{2}\right]_{2}^{3-x} d x
$$

$$
=\frac{1}{8} \int_{0}^{1}\left[6(3-x)-x(3-x)-\frac{(3-x)^{2}}{2}-[12-2 x-2]\right] d x
$$

$$
=\frac{1}{8} \int_{0}^{1}\left[18-6 x-3 x+x^{2}-\frac{\left(9+x^{2}-6 x\right)}{2}-(10-2 x)\right] d x
$$

$$
=\frac{1}{8} \int_{0}^{1}\left[18-9 x+x^{2}-\frac{9}{2}-\frac{x^{2}}{2}+\frac{6 x}{2}-10+2 x\right] d x
$$

$$
=\frac{1}{8} \int_{0}^{1}\left[\frac{7}{2}-4 x+\frac{x^{2}}{2}\right] d x
$$

$$
=\frac{1}{8}\left[\frac{7 x}{2}-\frac{4 x^{2}}{2}+\frac{x^{3}}{6}\right]_{0}^{1}=\frac{1}{8}\left[\frac{7}{2}-2+\frac{1}{6}\right]
$$

$$
=\frac{1}{8}\left[\frac{21-12+1}{6}\right]=\frac{1}{8}\left(\frac{10}{6}\right)=\frac{5}{24} .
$$

(iii). $P(X<1 / Y<3)=\frac{P(x<1 \cap y<3)}{P(y<3)}$

The Marginal density function of Y is $f_{Y}(y)=\int_{0}^{2} f(x, y) d x$

$$
\begin{aligned}
& =\int_{0}^{2} \frac{1}{8}(6-x-y) d x \\
& =\frac{1}{8}\left[6 x-\frac{x^{2}}{2}-y x\right]_{0}^{2} \\
& =\frac{1}{8}[12-2-2 y]
\end{aligned}
$$

$$
\begin{gathered}
P(X<1 / Y<3)=\frac{\int_{x=0}^{x=1} \int_{y=2}^{y=3} \frac{5-y}{4}, 2<y<4 .}{\int_{y=2}^{y=3}(6-x-y) d x d y} \\
=\frac{\frac{3}{8} f_{Y}(y) d y}{\int_{2}^{3}\left(\frac{5-y}{4}\right) d y}=\frac{\frac{3}{8}}{\frac{1}{4}\left[5 y-\frac{y^{2}}{2}\right]_{2}^{3}} \\
\\
=\frac{3}{8} \times \frac{8}{5}=\frac{3}{5} .
\end{gathered}
$$

b). Let X takes $0,1,2$ and Y takes $0,1,2$ and 3 .
$P(X=0, Y=0)=P($ drawing 3 balls none of which is white or red $)$
$P($ all the 3 balls drawn are black)

$$
=\frac{4 C_{3}}{9 C_{3}}=\frac{4 \times 3 \times 2 \times 1}{9 \times 8 \times 7}=\frac{1}{21} .
$$

$P(X=0, Y=1)=P($ drawing 1 red ball and 2 black balls $)$

$$
=\frac{3 \mathrm{C}_{1} \times 4 C_{2}}{9 C_{3}}=\frac{3}{14}
$$

$P(X=0, Y=2)=P($ drawing 2 red balls and 1 black ball $)$

$$
=\frac{3 C_{2} \times 4 C_{1}}{9 C_{3}}=\frac{3 \times 2 \times 4 \times 3}{9 \times 8 \times 7}=\frac{1}{7} .
$$

$P(X=0, Y=3)=P($ all the three balls drawn are red and no white ball $)$

$$
=\frac{3 \mathrm{C}_{3}}{9 C_{3}}=\frac{1}{84}
$$

$P(X=1, Y=0)=P($ drawing 1 White and no red ball $)$

$$
\begin{aligned}
& =\frac{2 \mathrm{C}_{1} \times 4 C_{2}}{9 C_{3}}=\frac{\frac{2 \times 4 \times 3}{1 \times 2}}{\frac{9 \times 8 \times 7}{1 \times 2 \times 3}} \\
& =\frac{12 \times 1 \times 2 \times 3}{9 \times 8 \times 7}=\frac{1}{7} .
\end{aligned}
$$

$P(X=1, Y=1)=P($ drawing 1 White and 1 red ball $)$

$$
=\frac{2 C_{1} \times 3 C_{1}}{9 C_{3}}=\frac{\frac{2 \times 3}{9 \times 8 \times 7}}{1 \times 2 \times 3}=\frac{2}{7}
$$

$P(X=1, Y=2)=P($ drawing 1 White and 2 red ball $)$

$$
=\frac{2 C_{1} \times 3 C_{2}}{9 C_{3}}=\frac{2 \times 3 \times 2}{\frac{9 \times 8 \times 7}{1 \times 2 \times 3}}=\frac{1}{14}
$$

$P(X=1, Y=3)=0$ (Since only three balls are drawn)
$P(X=2, Y=0)=P($ drawing 2 white balls and no red balls)

$$
=\frac{2 C_{2} \times 4 C_{1}}{9 C_{3}}=\frac{1}{21}
$$

$P(X=2, Y=1)=P($ drawing 2 white balls and no red balls)

$$
=\frac{2 C_{2} \times 3 C_{1}}{9 C_{3}}=\frac{1}{28}
$$

$P(X=2, Y=2)=0$
$P(X=2, Y=3)=0$
The joint probability distribution of X, Y may be represented as

Y	0	1	2	3
0	$\frac{1}{21}$	$\frac{3}{14}$	$\frac{1}{7}$	$\frac{1}{84}$
1	$\frac{1}{7}$	$\frac{2}{7}$	$\frac{1}{14}$	0
2	$\frac{1}{21}$	$\frac{1}{28}$	0	0

18.a). Two fair dice are tossed simultaneously. Let X denotes the number on the first die and Y denotes the number on the second die. Find the following probabilities.
(i) $P(X+Y)=8$, (ii) $P(X+Y \geq 8)$, (iii) $P(X=Y)$ and (iv) $P(X+Y=6 / Y=4)$.
b) The joint probability mass function of a bivariate discrete random variable (X, Y) in given by the table.

Y	X		
Y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find
i. The marginal probability mass function of X and Y.
ii. The conditional distribution of X given $Y=1$.
iii. $\quad P(X+Y<4)$

Solution:
a). Two fair dice are thrown simultaneously

$$
S=\left\{\begin{array}{c}
(1,1)(1,2) \ldots(1,6) \\
(2,1)(2,2) \ldots(2,6) \\
\cdot \\
\cdot \\
(6,1)(6,2) \ldots(6,6)
\end{array}\right\}, n(S)=36
$$

Let X denotes the number on the first die and Y denotes the number on the second die.
Joint probability density function of (X, Y) is $P(X=x, Y=y)=\frac{1}{36}$ for

$$
x=1,2,3,4,5,6 \text { and } y=1,2,3,4,5,6
$$

(i) $X+Y=\{$ the events that the no is equal to 8$\}$

$$
=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}
$$

$$
P(X+Y=8)=P(X=2, Y=6)+P(X=3, Y=5)+P(X=4, Y=4)
$$

$$
+P(X=5, Y=3)+P(X=6, Y=2)
$$

$$
=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{5}{36}
$$

(ii) $P(X+Y \geq 8)$

$$
X+Y=\left\{\begin{array}{l}
(2,6) \\
(3,5),(3,6) \\
(4,4),(4,5),(4,6) \\
(5,3),(5,4)(5,5),(5,6) \\
(6,2),(6,3),(6,4),(6,5)(6,6)
\end{array}\right\}
$$

$$
\therefore P(X+Y \geq 8)=P(X+Y=8)+P(X+Y=9)+P(X+Y=10)
$$

$$
+P(X+Y=11)+P(X+Y=12)
$$

$$
=\frac{5}{36}+\frac{4}{36}+\frac{3}{36}+\frac{2}{36}+\frac{1}{36}=\frac{15}{36}=\frac{5}{12}
$$

(iii) $P(X=Y)$

$$
\begin{aligned}
& P(X=Y)=P(X=1, Y=1)+P(X=2, Y=2)+\ldots \ldots+P(X=6, Y=6) \\
& \quad=\frac{1}{36}+\frac{1}{36}+\ldots \ldots \ldots .+\frac{1}{36}=\frac{6}{36}=\frac{1}{6} \\
& \text { (iv) } P(X+Y=6 / Y=4)=\frac{P(X+Y=6 \cap Y=4)}{P(Y=4)}
\end{aligned}
$$

Now $P(X+Y=6 \cap Y=4)=\frac{1}{36}$
$P(Y=4)=\frac{6}{36}$
$\therefore P(X+Y=6 / Y=4)=\frac{\frac{1}{36}}{\frac{6}{36}}=\frac{1}{6}$.
b). The joint probability mass function of (X, Y) is

$Y X$	1	2	3	Total
1	0.1	0.1	0.2	0.4
2	0.2	0.3	0.1	0.6
Total	0.3	0.4	0.3	1

From the definition of marginal probability function

$$
P_{X}\left(x_{i}\right)=\sum_{y_{j}} P_{X Y}\left(x_{i}, y_{j}\right)
$$

When $X=1$,

$$
\begin{aligned}
P_{X}\left(x_{i}\right) & =P_{X Y}(1,1)+P_{X Y}(1,2) \\
& =0.1+0.2=0.3
\end{aligned}
$$

When $X=2$,

$$
\begin{aligned}
P_{X}(x=2) & =P_{X Y}(2,1)+P_{X Y}(2,2) \\
& =0.2+0.3=0.4
\end{aligned}
$$

When $X=3$,

$$
\begin{aligned}
P_{X}(x=3) & =P_{X Y}(3,1)+P_{X Y}(3,2) \\
& =0.2+0.1=0.3
\end{aligned}
$$

\therefore The marginal probability mass function of X is

$$
P_{X}(x)= \begin{cases}0.3 & \text { when } x=1 \\ 0.4 & \text { when } x=2 \\ 0.3 & \text { when } x=3\end{cases}
$$

The marginal probability mass function of Y is given by $P_{Y}\left(y_{j}\right)=\sum_{x_{i}} P_{X Y}\left(x_{i}, y_{j}\right)$
When $Y \quad 1, P_{Y}(y=1)=\sum_{x_{i}=1}^{3} P_{X Y}\left(x_{i}, 1\right)$

$$
\begin{aligned}
& =P_{X Y}(1,1)+P_{X Y}(2,1)+P_{X Y}(3,1) \\
& =0.1+0.1+0.2=0.4
\end{aligned}
$$

When $Y \quad 2, P_{Y}(y=2)=\sum_{x_{i}=1}^{3} P_{X Y}\left(x_{i}, 2\right)$

$$
\begin{aligned}
& =P_{X Y}(1,2)+P_{X Y}(2,2)+P_{X Y}(3,2) \\
& =0.2+0.3+0.1=0.6
\end{aligned}
$$

\therefore Marginal probability mass function of Y is

$$
P_{Y}(y)= \begin{cases}0.4 & \text { when } y=1 \\ 0.6 & \text { when } y=2\end{cases}
$$

(ii) The conditional distribution of X given $Y \quad 1$ is given by

$$
P(X=x / Y=1)=\frac{P(X=x \cap Y=1)}{P(Y=1)}
$$

From the probability mass function of $Y, \begin{array}{lllllll}P & y & 1 & P_{y} & 1 & 0.4\end{array}$
When $X \quad 1, P(X=1 / Y=1)=\frac{P(X=1 \cap Y=1)}{P(Y=1)}$

$$
=\frac{P_{X Y}(1,1)}{P_{Y}(1)}=\frac{0.1}{0.4}=0.25
$$

When $X \quad 2, P(X=2 / Y=1)=\frac{P_{X Y}(2,1)}{P_{Y}(1)}=\frac{0.1}{0.4}=0.25$
When $X \quad 3, P(X=3 / Y=1)=\frac{P_{X Y}(3,1)}{P_{Y}(1)}=\frac{0.2}{0.4}=0.5$
(iii). $P(X+Y<4)=P\{(x, y) / x+y<4$ Where $x=1,2,3 ; y=1,2\}$

$$
\begin{aligned}
& =P\{(1,1),(1,2),(2,1)\} \\
& =P_{X Y}(1,1)+P_{X Y}(1,2)+P_{X Y}(2,1) \\
& =0.1+0.1+0.2=0.4
\end{aligned}
$$

19.a). If X and Y are two random variables having the joint density function $f(x, y)=\frac{1}{27}(x+2 y)$ where x and y can assume only integer values 0,1 and 2 , find the conditional distribution of Y for $X \quad x$.
b). The joint probability density function of X, Y is given by $f_{X Y}(x, y)=\left\{\begin{array}{llllllllll}x y^{2}+\frac{x^{2}}{8}, & 0 \leq x \leq 2, & 0 \leq y \leq 1 \\ 0 \quad & \text {, otherwise }\end{array}\right.$. Find (i) $P X \quad 1, \quad$ (ii) $P X \quad Y \quad$ and
(iii) $P \quad X \quad Y \quad 1$

Solution:
a). Given X and Y are two random variables having the joint density function

$$
f(x, y)=\frac{1}{27}(x+2 y)----(1)
$$

Where $x \quad 0,1,2$ and $y \quad 0,1,2$
Then the joint probability distribution X and Y becomes as follows

X	Y	0	1	2	$f_{1}(x)$
0	0	$\frac{1}{27}$	$\frac{2}{27}$	$\frac{3}{27}$	

1	$\frac{2}{27}$	$\frac{3}{27}$	$\frac{4}{27}$	$\frac{9}{27}$
2	$\frac{4}{27}$	$\frac{5}{27}$	$\frac{6}{27}$	$\frac{15}{27}$

The marginal probability distribution of X is given by $f_{1}(X)=\sum_{j} P(x, y)$ and is calculated in the above column of above table.
The conditional distribution of Y for X is given by $f_{1}(Y=y / X=x)=\frac{f(x, y)}{f_{1}(x)}$ and is obtained in the following table.

Y	0	1	2
0	0	$\frac{1}{3}$	$\frac{2}{3}$
1	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{5}{9}$
2	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

$$
P(Y=0 / X=0)=\frac{P(X=0, Y=0)}{P(X=0)}=\frac{0}{\frac{6}{27}}=0
$$

$$
P(Y=1 / X=0)=\frac{P(X=0, Y=1)}{P(X=0)}=\frac{\frac{2}{27}}{\frac{6}{27}}=\frac{1}{3}
$$

$$
P(Y=2 / X=0)=\frac{P(X=0, Y=2)}{P(X=0)}=\frac{\frac{4}{27}}{\frac{6}{27}}=\frac{2}{3}
$$

$$
P(Y=0 / X=1)=\frac{P(X=1, Y=0)}{P(X=1)}=\frac{\frac{1}{27}}{\frac{9}{27}}=\frac{1}{9}
$$

$$
P(Y=1 / X=1)=\frac{P(X=1, Y=1)}{P(X=1)}=\frac{\frac{3}{27}}{\frac{9}{27}}=\frac{3}{9}=\frac{1}{3}
$$

$$
P(Y=2 / X=1)=\frac{P(X=1, Y=2)}{P(X=1)}=\frac{\frac{5}{27}}{\frac{9}{27}}=\frac{5}{9}
$$

$$
\begin{aligned}
& P(Y=0 / X=2)=\frac{P(X=2, Y=0)}{P(X=2)}=\frac{\frac{2}{27}}{\frac{12}{27}}=\frac{1}{6} \\
& P(Y=1 / X=2)=\frac{P(X=2, Y=1)}{P(X=2)}=\frac{\frac{4}{27}}{\frac{12}{27}}=\frac{1}{3} \\
& P(Y=2 / X=2)=\frac{P(X=2, Y=2)}{P(X=2)}=\frac{\frac{6}{27}}{\frac{12}{27}}=\frac{1}{2}
\end{aligned}
$$

b). Given the joint probability density function of X, Y is $f_{X Y}(x+y)=x y^{2}+\frac{x^{2}}{8}$, $0 \leq x \leq 2,0 \leq y \leq 1$
(i). $P(X>1)=\int_{1}^{\infty} f_{X}(x) d x$

The Marginal density function of X is $f_{X}(x)=\int_{0}^{1} f(x, y) d y$

$$
\begin{aligned}
& \begin{aligned}
f_{X}(x) & =\int_{0}^{1}\left(x y^{2}+\frac{x^{2}}{8}\right) d y \\
& =\left[\frac{x y^{2}}{3}+\frac{x^{2} y}{8}\right]_{0}^{1}=\frac{x}{3}+\frac{x^{2}}{8}, 1<x<2
\end{aligned} \\
& \begin{aligned}
& P(X>1)=\int_{1}^{2}\left(\frac{x}{3}+\frac{x^{2}}{8}\right) d x \\
&=\left[\frac{x^{2}}{6}\right.\left.+\frac{x^{3}}{24}\right]_{1}^{2}=\frac{19}{24} . \\
& \text { (ii) } \begin{aligned}
P(X<Y & =
\end{aligned} \\
&\left.\left.\begin{array}{rl}
P(X<Y) & =\int_{R_{2}}^{1} f_{X Y}^{y}(x, y) d x d y \\
& =\int_{0}^{1}\left(\frac{x^{2}}{y^{2}}\right. \\
2
\end{array}+\frac{x^{3}}{24}\right]_{0}^{y}+\frac{x^{2}}{8}\right) d x d y \\
&=\int_{0}^{1}\left(\frac{y^{4}}{2}+\frac{y^{3}}{24}\right)^{y} d y=\left[\frac{y^{5}}{10}+\frac{y^{4}}{96}\right]_{0}^{1} \\
&=\frac{1}{10}+\frac{1}{96}=\frac{96+10}{960}=\frac{53}{480}
\end{aligned}
\end{aligned}
$$

(iii) $P(X+Y \leq 1)=\iint_{R_{3}} f_{X Y}(x, y) d x d y$

Where R_{3} is the region

$$
\begin{aligned}
P(X+Y \leq 1) & =\int_{y=0}^{1} \int_{x=0}^{1-y}\left(x y^{2}+\frac{x^{2}}{8}\right) d x d y \\
& =\int_{y=0}^{1}\left[\left(\frac{x^{2} y^{2}}{2}+\frac{x^{3}}{24}\right)\right]_{0}^{1-y} d y \\
& =\int_{y=0}^{1}\left(\frac{(1-y)^{2} y^{2}}{2}+\frac{(1-y)^{3}}{24}\right) d y \\
& =\int_{0}^{1}\left(\frac{\left(1+y^{2}-2 y\right) y^{2}}{2}+\frac{(1-y)^{3}}{24}\right) d y \\
& =\left[\left[\frac{y^{3}}{3}+\frac{y^{5}}{5}-\frac{2 y^{2}}{4}\right] \frac{1}{2}+\frac{(1-y)^{4}}{96}\right]_{0}^{1} \\
& =\frac{1}{6}+\frac{1}{10}-\frac{1}{4}+\frac{1}{96}=\frac{13}{480} .
\end{aligned}
$$

20).a). If the joint distribution functions of X and Y is given by $F(x, y)= \begin{cases}\left(1-e^{x}\right)\left(1-e^{-y}\right) & , x>0, y>0 \\ 0 & , \text { otherwise }\end{cases}$
i. Find the marginal density of X and Y.
ii. Are X and Y independent.
iii. $\quad P 1 \quad X \quad 3,1 \quad Y \quad 2$.
b). The joint probability distribution of X and Y is given by $f(x, y)=\left\{\begin{array}{lllll}\frac{6-x-y}{8} & , 0<x<2,2<y<4 \\ 0 & , \text { otherwise }\end{array}\right.$. Find $P^{1} \quad Y^{3} \quad 3 / X \quad 2$.
Solution:
a). Given $F(x, y)=\left(1-e^{-x}\right)\left(1-e^{-y}\right)$

$$
=1-e^{-x}-e^{-y}+e^{-(x+y)}
$$

The joint probability density function is given by

$$
\begin{aligned}
f(x, y) & =\frac{\partial^{2} F(x, y)}{\partial x \partial y} \\
& =\frac{\partial^{2}}{\partial x \partial y}\left[1-e^{-x}-e^{-y}+e^{-(x+y)}\right]
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\partial}{\partial x}\left[e^{-y}-e^{-(x+y)}\right] \\
\therefore f(x, y)= \begin{cases}e^{-(x+y)}, & x \geq 0, y \geq 0 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

(ii) The marginal probability function of X is given by

$$
\begin{aligned}
f(x) & =f_{X}(x) \\
& =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{\infty} e^{-(x+y)} d y \\
& =\left[\frac{e^{-(x+y)}}{-1}\right]_{0}^{\infty} \\
& =\left[-e^{-(x+y)}\right]_{0}^{\infty} \\
& =e^{-x}, x>0
\end{aligned}
$$

The marginal probability function of Y is

$$
\begin{aligned}
f(y) & =f_{Y}(y) \\
& =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{\infty} e^{-(x+y)} d x=\left[-e^{-(x+y)}\right]_{0}^{\infty} \\
& =e^{-y}, y>0 \\
\therefore f(x) f(y) & =e^{-x} e^{-y}=e^{-(x+y)}=f(x, y)
\end{aligned}
$$

$\therefore X$ and Y are independent.
(iii) $P(1<X<3,1<Y<2)=P(1<X<3) \times P(1<Y<2)$ [Since X and Y are independent]

$$
\begin{aligned}
& =\int_{1}^{3} f(x) d x \times \int_{1}^{2} f(y) d y \\
& =\int_{1}^{3} e^{-x} d x \times \int_{1}^{2} e^{-y} d y \\
& =\left[\frac{e^{-x}}{-1}\right]_{1}^{3} \times\left[\frac{e^{-y}}{-1}\right]_{1}^{2} \\
& =\left(-e^{-3}+e^{-1}\right)\left(-e^{-2}+e^{-1}\right) \\
& =e^{-5}-e^{-4}-e^{-3}+e^{-2}
\end{aligned}
$$

b). $\begin{array}{lllllll}1 & Y & 3 / X & 2 & f & y / x & 2 d y\end{array}$

$$
f_{X}(x)=\int_{2}^{4} f(x, y) d y
$$

$$
\begin{aligned}
& =\int_{2}^{4}\left(\frac{6-x-y}{8}\right) d y \\
& =\frac{1}{8}\left(6 y-x y-\frac{y^{2}}{2}\right)_{2}^{4} \\
& =\frac{1}{8}(16-4 x-10+2 x) \\
& f(y / x)=\frac{f(x, y)}{f(x)}=\frac{\frac{6-x-y}{8}}{\frac{6-2 x}{8}}=\frac{6-x-y}{6-2 x} \\
& \left.\begin{array}{llllll}
P & 1 & Y & 3 / X & 2 & { }_{1}^{3}
\end{array}\right] / x \quad 2 d y \\
& =\int_{2}^{3}\left(\frac{4-y}{2}\right) d y \\
& =\frac{1}{2}\left[4 y-\frac{y^{2}}{2}\right]_{2}^{3} \\
& =\frac{1}{2}\left[4 y-\frac{y^{2}}{2}\right]_{2}^{3}=\frac{1}{2}\left[14-\frac{17}{2}\right]=\frac{11}{4} \text {. }
\end{aligned}
$$

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS

SMTA1402 - Probability and Statistics

Unit-4 Correlation and Regression

21).a). Two random variables X and Y have the following joint probability density function $f(x, y)=\left\{\begin{array}{ll}2-x-y, 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & , \text { otherwise }\end{array}\right.$. Find the marginal probability density function of X and Y. Also find the covariance between X and Y.
b). If $f(x, y)=\frac{6-x-y}{8}, 0 \leq x \leq 2,2 \leq y \leq 4$ for a bivariate X, Y, find the correlation coefficient
Solution:
a) Given the joint probability density function $f(x, y)= \begin{cases}2-x-y, & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text {, otherwise }\end{cases}$

Marginal density function of X is $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$

$$
\begin{aligned}
& =\int_{0}^{1}(2-x-y) d y \\
& =\left[2 y-x y-\frac{y^{2}}{2}\right]_{0}^{1} \\
& =2-x-\frac{1}{2}
\end{aligned}
$$

$$
f_{X}(x)= \begin{cases}\frac{3}{2}-x, & 0<x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Marginal density function of Y is $f_{Y}(y)=\int_{0}^{1}(2-x-y) d x$

$$
\begin{aligned}
& =\left[2 x-\frac{x^{2}}{2}-x y\right]_{0}^{1} \\
& =\frac{3}{2}-y \\
f_{Y}(y) & = \begin{cases}\frac{3}{2}-y, & 0 \leq y \leq 1 \\
0 \quad, & \text { otherwise }\end{cases}
\end{aligned}
$$

Covariance of $(X, Y)=\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$

$$
\begin{aligned}
& E(X)=\int_{0}^{1} x f_{X}(x) d x=\int_{0}^{1} x\left(\frac{3}{2}-x\right) d x=\left[\frac{3}{2} \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{5}{12} \\
& E(Y)=\int_{0}^{1} y f_{Y}(y) d y=\int_{0}^{1} y\left(\frac{3}{2}-y\right) d y=\frac{5}{12}
\end{aligned}
$$

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

$$
E(X Y)=\int_{0}^{1} \int_{0}^{1} x y f(x, y) d x d y
$$

$$
=\int_{0}^{1} \int_{0}^{1} x y(2-x-y) d x d y
$$

$$
=\int_{0}^{1} \int_{0}^{1}\left(2 x y-x^{2} y-x y^{2}\right) d x d y
$$

$$
=\int_{0}^{1}\left[\frac{2 x^{2} y}{2}-\frac{x^{3}}{3} y-\frac{x^{2}}{2} y^{2}\right]_{0}^{1} d y
$$

$$
=\int_{0}^{1}\left(y-\frac{1}{3}-\frac{y^{2}}{2}\right) d y
$$

$$
=\left[\frac{y^{2}}{2}-\frac{y}{3}-\frac{y^{3}}{6}\right]_{0}^{1}=\frac{1}{6}
$$

$$
\operatorname{Cov}(X, Y)=\frac{1}{6}-\frac{5}{12} \times \frac{5}{12}
$$

$$
=\frac{1}{6}-\frac{25}{144}=-\frac{1}{144} .
$$

b). Correlation coefficient $\rho_{X Y}=\frac{E(X Y)-E(X) E(Y)}{\sigma_{X} \sigma_{Y}}$

Marginal density function of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{2}^{4}\left(\frac{6-x-y}{8}\right) d y=\frac{6-2 x}{8}
$$

Marginal density function of Y is
$f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{2}\left(\frac{6-x-y}{8}\right) d x=\frac{10-2 y}{8}$
Then $E(X)=\int_{0}^{2} x f_{X}(x) d x=\int_{0}^{2} x\left(\frac{6-2 x}{8}\right) d x$

$$
\begin{aligned}
& =\frac{1}{8}\left[\frac{6 x^{2}}{2}-\frac{2 x^{3}}{3}\right]_{0}^{2} \\
& =\frac{1}{8}\left[12-\frac{16}{13}\right]=\frac{1}{8} \times \frac{20}{3}=\frac{5}{6}
\end{aligned}
$$

$$
E(Y)=\int_{2}^{4} y\left(\frac{10-2 y}{8}\right) d y=\frac{1}{8}\left[\frac{10 y^{2}}{2}-\frac{2 y^{3}}{3}\right]_{2}^{4}=\frac{17}{6}
$$

$$
E\left(X^{2}\right)=\int_{0}^{2} x^{2} f_{x}(x) d x=\int_{0}^{2} x^{2}\left(\frac{6-2 x}{8}\right) d x=\frac{1}{8}\left[\frac{6 x^{3}}{3}-\frac{2 x^{4}}{4}\right]_{0}^{2}=1
$$

$$
E\left(Y^{2}\right)=\int_{2}^{4} y^{2}\left(\frac{10-2 y}{8}\right) d y=\frac{1}{8}\left[\frac{10 y^{3}}{3}-\frac{2 y^{4}}{4}\right]_{2}^{4}=\frac{25}{3}
$$

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-[E(X)]^{2}=1-\left(\frac{5}{6}\right)^{2}=\frac{11}{36}
$$

$$
\operatorname{Var}(Y)=\sigma_{Y}^{2}=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{25}{3}-\left(\frac{17}{6}\right)^{2}=\frac{11}{36}
$$

$$
E(X Y)=\int_{2}^{4} \int_{0}^{2} x y\left(\frac{6-x-y}{8}\right) d x d y
$$

$$
=\frac{1}{8} \int_{2}^{4}\left[\frac{6 x^{2} y}{2}-\frac{x^{3} y}{3}-\frac{x^{2} y^{2}}{2}\right]_{0}^{2} d y
$$

$$
=\frac{1}{8} \int_{2}^{4}\left(12 y-\frac{8}{3} y-2 y^{2}\right) d y=\frac{1}{8}\left[\frac{12 y^{2}}{2}-\frac{8}{3} \frac{y^{2}}{2}-\frac{2 y^{3}}{3}\right]_{2}^{4}
$$

$$
=\frac{1}{8}\left[96-\frac{64}{3}-\frac{128}{3}-24+\frac{16}{3}+\frac{16}{3}\right]=\frac{1}{8}\left[\frac{56}{3}\right]
$$

$E(X Y)=\frac{7}{3}$
$\rho_{X Y}=\frac{E(X Y)-E(X) E(Y)}{\sigma_{X} \sigma_{Y}}=\frac{\frac{7}{3}-\left(\frac{5}{6}\right)\left(\frac{17}{6}\right)}{\frac{\sqrt{11}}{6} \frac{\sqrt{11}}{6}}$
$\rho_{X Y}=-\frac{1}{11}$.
22.a). Let the random variables X and Y have pdf $f(x, y)=\frac{1}{3},(x, y)=(0,0),(1,1),(2,0)$. Compute the correlation coefficient.
b) Let X_{1} and X_{2} be two independent random variables with means 5 and 10 and standard devotions 2 and 3 respectively. Obtain the correlation coefficient of $U V$ where $U=3 X_{1}+4 X_{2}$ and $V=3 X_{1}-X_{2}$.
Solution:
a). The probability distribution is

Y	0	1	2	$P(Y)$	
0	$\frac{1}{3}$	0	0	$\frac{1}{3}$	
1	0	$\frac{1}{3}$	0	$\frac{1}{3}$	
0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	
$P(X)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		

$E(X)=\sum_{i} x_{i} p_{i}\left(x_{i}\right)=\left(0 \times \frac{1}{3}\right)+\left(1 \times \frac{1}{3}\right)+\left(2 \times \frac{1}{3}\right)=1$
$E(Y)=\sum_{j} y_{i} p_{j}\left(y_{j}\right)=\left(0 \times \frac{1}{3}\right)+\left(1 \times \frac{1}{3}\right)+\left(0 \times \frac{1}{3}\right)=\frac{1}{3}$
$E\left(X^{2}\right)=\sum_{i} x_{i}^{2} p\left(x_{i}\right)=\left(0 \times \frac{1}{3}\right)+\left(1 \times \frac{1}{3}\right)+\left(4 \times \frac{1}{3}\right)=\frac{5}{3}$
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{5}{3}-1=\frac{2}{3}$
$E\left(Y^{2}\right)=\sum_{j} y_{j}^{2} p\left(y_{j}\right)=\left(0 \times \frac{1}{3}\right)+\left(1 \times \frac{1}{3}\right)+\left(0 \times \frac{1}{3}\right)=\frac{1}{3}$
$\therefore V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}$

Correlation coefficient $\rho_{X Y}=\frac{E(X Y)-E(X) E(Y)}{\sqrt{V(X) V(Y)}}$

$$
\begin{aligned}
E(X Y) & =\sum_{i} \sum_{j} x_{i} y_{j} p\left(x_{i}, y_{j}\right) \\
& =0.0 \cdot \frac{1}{3}+0.1 .0+1.0 .0+1.1 \cdot \frac{1}{3}+1.2 .0+0.0 .0+0.1 .0+0.2 \cdot \frac{1}{3}=\frac{1}{3} \\
\rho_{X Y}= & \frac{\frac{1}{3}-(1)\left(\frac{1}{3}\right)}{\sqrt{\frac{2}{3} \times \frac{2}{9}}}=0
\end{aligned}
$$

Correlation coefficient $=0$.
b). Given $E\left(X_{1}\right)=5, E\left(X_{2}\right)=10$

$$
V\left(X_{1}\right)=4, \quad V\left(X_{2}\right)=9
$$

Since X and Y are independent $E(X Y)=E(X) E(Y)$
Correlation coefficient $=\frac{E(U V)-E(U) E(V)}{\sqrt{\operatorname{Var}(U) \operatorname{Var}(V)}}$
$E(U)=E\left(3 X_{1}+4 X_{2}\right)=3 E\left(X_{1}\right)+4 E\left(X_{2}\right)$
$=(3 \times 5)+(4 \times 10)=15+40=55$.
$E(V)=E\left(3 X_{1}-X_{2}\right)=3 E\left(X_{1}\right)-E\left(X_{2}\right)$
$=(3 \times 5)-10=15-10=5$
$E(U V)=E\left[\left(3 X_{1}+4 X_{2}\right)\left(3 X_{1}-X_{2}\right)\right]$
$=E\left[9 X_{1}^{2}-3 X_{1} X_{2}+12 X_{1} X_{2}-4 X_{2}^{2}\right]$
$=9 E\left(X_{1}^{2}\right)-3 E\left(X_{1} X_{2}\right)+12 E\left(X_{1} X_{2}\right)-4 E\left(X_{2}^{2}\right)$
$=9 E\left(X_{1}^{2}\right)+9 E\left(X_{1} X_{2}\right)-4 E\left(X_{2}^{2}\right)$
$=9 E\left(X_{1}^{2}\right)+9 E\left(X_{1}\right) E\left(X_{2}\right)-4 E\left(X_{2}{ }^{2}\right)$
$=9 E\left(X_{1}^{2}\right)+450-4 E\left(X_{2}^{2}\right)$
$V\left(X_{1}\right)=E\left(X_{1}^{2}\right)-\left[E\left(X_{1}\right)\right]^{2}$
$E\left(X_{1}^{2}\right)=V\left(X_{1}\right)+\left[E\left(X_{1}\right)\right]^{2}=4+25=29$
$E\left(X_{2}{ }^{2}\right)=V\left(X_{2}\right)+\left[E\left(X_{2}\right)\right]^{2}=9+100=109$
$\therefore E(U V)=(9 \times 29)+450-(4 \times 109)$

$$
=261+450-436=275
$$

$\operatorname{Cov}(U, V)=E(U V)-E(U) E(V)$

$$
=275-(5 \times 55)=0
$$

Since $\operatorname{Cov}(U, V)=0$, Correlation coefficient $=0$.
23.a). Let the random variable X has the marginal density function $f(x)=1,-\frac{1}{2}<x<\frac{1}{2}$ and let the conditional density of Y be $f(y / x)=\left\{\begin{array}{l}1, x<y<x+1,-\frac{1}{2}<x<0 \\ 1,-x<y<1-x, 0<x<\frac{1}{2}\end{array}\right.$. Prove that the variables X and Y are uncorrelated.
b). Given $f(x, y)=x e^{-x(y+1)}, x \geq 0, y \geq 0$. Find the regression curve of Y on X.

Solution:
a). We have $E(X)=\int_{-\frac{1}{2}}^{\frac{1}{2}} x f(x) d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} x d x=\left[\frac{x^{2}}{2}\right]_{-\frac{1}{2}}^{\frac{1}{2}}=0$ $E(X Y)=\int_{-\frac{1}{2}}^{0} \int_{x}^{x+1} x y d x d y+\int_{0}^{\frac{1}{2}} \int_{-x}^{1-x} x y d x d y$

$$
=\int_{-\frac{1}{2}}^{0} x\left[\int_{x}^{x+1} y d y\right] d x+\int_{0}^{\frac{1}{2}} x\left[\int_{-x}^{1-x} y d y\right] d x
$$

$$
=\frac{1}{2} \int_{-\frac{1}{2}}^{0} x(2 x+1) d x+\frac{1}{2} \int_{0}^{\frac{1}{2}} x(1-2 x) d x
$$

$$
=\frac{1}{2}\left[\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right]_{-\frac{1}{2}}^{0}+\frac{1}{2}\left[\frac{x^{2}}{2}-\frac{2 x^{3}}{3}\right]_{0}^{\frac{1}{2}}=0
$$

Since $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0$, the variables X and Y are uncorrelated.
b). Regression curve of Y on X is $E\left(\frac{y}{x}\right)$

$$
\begin{aligned}
& E(y / x)=\int_{-\infty}^{\infty} y f(y / x) d y \\
& f(y / x)=\frac{f(x, y)}{f_{X}(X)}
\end{aligned}
$$

Marginal density function $f_{X}(x)=\int_{0}^{\infty} f(x, y) d y$

$$
\begin{aligned}
&=x \int_{0}^{\infty} e^{-x(y+1)} d y \\
&=x\left[\frac{e^{-x(y+1)}}{-x}\right]_{0}^{\infty}=e^{-x}, x \geq 0
\end{aligned}
$$

Conditional pdf of Y on X is $f(y / x)=\frac{f(x, y)}{f_{X}(x)}=\frac{x e^{-x y-x}}{e^{-x}}=x e^{-x y}$
The regression curve of Y on X is given by
$E(y / x)=\int_{0}^{\infty} y x e^{-x y} d y$

$$
\begin{aligned}
&=x\left[y \frac{e^{-x y}}{-x}-\frac{e^{-x y}}{x^{2}}\right]_{0}^{\infty} \\
& E(y / x)=\frac{1}{x} \Rightarrow y=\frac{1}{x} \text { and hence } x y=1 .
\end{aligned}
$$

24.a). Given $f(x, y)=\left\{\begin{array}{ll}\frac{x+y}{3} & , 0<x<1,0<y<2 \\ 0 & , \text { otherwise }\end{array}\right.$, obtain the regression of Y on X and X on Y.
b). Distinguish between correlation and regression Analysis Solution:
a). Regression of Y on X is $E(Y / X)$

$$
\begin{aligned}
& E(Y / X)=\int_{-\alpha}^{\alpha} y f(y / x) d y \\
& \begin{aligned}
f(Y / X) & =\frac{f(x, y)}{f_{X}(x)} \\
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{2}\left(\frac{x+y}{3}\right) d y=\frac{1}{3}\left[x y+\frac{y^{2}}{2}\right]_{0}^{2} \\
& =\frac{2(x+1)}{3} \\
f(Y / X) & =\frac{f(x, y)}{f_{X}(x)}=\frac{x+y}{2(x+1)}
\end{aligned}
\end{aligned}
$$

Regression of Y on $X=E(Y / X)=\int_{0}^{2} \frac{y(x+y)}{2(x+1)} d y$

$$
\begin{aligned}
& =\frac{1}{2(x+1)}\left[\frac{x y^{2}}{2}+\frac{y^{3}}{3}\right]_{0}^{2} \\
& =\frac{1}{2(x+1)}\left[2 x+\frac{8}{3}\right]=\frac{3 x+4}{3(x+1)} \\
& \begin{aligned}
E(X / Y)=\int_{-\infty}^{\infty} x f(x / y) d x
\end{aligned} \\
& \begin{aligned}
& f(x / y)=\frac{f(x, y)}{f_{Y}(y)} \\
& \begin{aligned}
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned} \\
&=\int_{0}^{1}\left(\frac{x+y}{3}\right) d x=\frac{1}{3}\left[\frac{x^{2}}{2}+x y\right]_{0}^{1} \\
&=\frac{1}{3}\left[\frac{1}{2}+y\right] \\
& f(x / y)=\frac{2(x+y)}{2 y+1} \\
& \text { Regression of } X \text { on } Y=E(X / Y)=\int_{0}^{1} \frac{x+y}{2 y+1} d x
\end{aligned} \\
& =\frac{1}{2 y+1}\left[\frac{x^{2}}{2}+x y\right]_{0}^{1} \\
& \\
& =\frac{1}{2}+y \\
& 2 y+1
\end{aligned} r^{2} .
$$

b).

1. Correlation means relationship between two variables and Regression is a Mathematical Measure of expressing the average relationship between the two variables.
2. Correlation need not imply cause and effect relationship between the variables. Regression analysis clearly indicates the cause and effect relationship between Variables.
3. Correlation coefficient is symmetric i.e. $r_{x y}=r_{y x}$ where regression coefficient is not symmetric 4. Correlation coefficient is the measure of the direction and degree of linear relationship between two variables. In regression using the relationship between two variables we can predict the dependent variable value for any given independent variable value.
25.a). X any Y are two random variables with variances σ_{x}^{2} and σ_{y}^{2} respectively and r is the coefficient of correlation between them. If $U=X+K Y$ and $V=X+\frac{y \sigma_{x}}{\sigma_{y}}$, find the value of k so that U and V are uncorrelated.
b). Find the regression lines:

X	6	8	10	18	20	23
Y	40	36	20	14	10	2

Solution:

$$
\begin{aligned}
& \text { Given } U=X+K Y \\
& \begin{array}{c}
E(U)=E(X)+K E(Y) \\
V=X+\frac{\sigma_{X}}{\sigma_{Y}} Y \\
E(V)=E(X)+\frac{\sigma_{X}}{\sigma_{Y}} E(Y)
\end{array}
\end{aligned}
$$

If U and V are uncorrelated, $\operatorname{Cov}(U, V)=0$

$$
\begin{aligned}
& E[(U-E(U))(V-E(V))]=0 \\
& \Rightarrow E\left[(X+K Y-E(X)-K E(Y)) \times\left(X+\frac{\sigma_{X}}{\sigma_{Y}} Y-E(X)-\frac{\sigma_{X}}{\sigma_{Y}} E(Y)\right)\right]=0 \\
& \Rightarrow E\left\{[(X-E(X))+K(Y-E(Y))] \times\left[(X-E(X))+\frac{\sigma_{X}}{\sigma_{Y}}(Y-E(Y))\right]\right\}=0 \\
& \Rightarrow E\left\{(X-E(X))^{2}+\frac{\sigma_{X}}{\sigma_{Y}}(X-E(X))(Y-E(Y))+K(Y-E(Y))(X-E(X))+K \frac{\sigma_{X}}{\sigma_{Y}}(Y-E(Y))^{2}\right\}=0 \\
& \Rightarrow V(X)+\frac{\sigma_{X}}{\sigma_{Y}} \operatorname{Cov}(X, Y)+K \operatorname{Cov}(X, Y)+K \frac{\sigma_{X}}{\sigma_{Y}} V(Y)=0 \\
& K\left[\operatorname{Cov}(X, Y)+\frac{\sigma_{X}}{\sigma_{Y}} V(Y)\right]=-V(X)-\frac{\sigma_{X}}{\sigma_{Y}} \operatorname{Cov}(x, y) \\
& K=\frac{-V(X)-\frac{\sigma_{X}}{\sigma_{Y}} r \sigma_{X} \sigma_{Y}}{r \sigma_{X} \sigma_{Y}+\frac{\sigma_{X}}{\sigma_{Y}} V(Y)}=\frac{-\sigma_{X}^{2}-r \sigma_{X}^{2}}{r \sigma_{X} \sigma_{Y}+\sigma_{X} \sigma_{Y}} \\
& =\frac{-\sigma_{X}^{2}(1+r)}{\sigma_{X} \sigma_{Y}(1+r)}=-\frac{\sigma_{X}}{\sigma_{Y}} .
\end{aligned}
$$

b).

X	Y	X^{2}	Y^{2}	$X Y$
6	40	36	1600	240

8	36	64	1296	288
10	20	100	400	200
18	14	324	196	252
20	10	400	100	200
23	2	529	4	46
$\sum X=85$	$\sum Y=122$	$\sum X^{2}=1453$	$\sum Y^{2}=3596$	$\sum X Y=1226$

$\bar{X}=\frac{\sum x}{n}=\frac{85}{6}=14.17, \bar{Y}=\frac{\sum y}{n}=\frac{122}{6}=20.33$
$\sigma_{x}=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}=\sqrt{\frac{1453}{6}-\left(\frac{85}{6}\right)^{2}}=6.44$
$\sigma_{y}=\sqrt{\frac{\sum y^{2}}{n}-\left(\frac{\sum y}{n}\right)^{2}}=\sqrt{\frac{3596}{6}-\left(\frac{122}{6}\right)^{2}}=13.63$
$r=\frac{\frac{\sum x y}{n}-\bar{x} \bar{y}}{\sigma_{x} \sigma_{y}}=\frac{\frac{1226}{6}-(14.17)(20.33)}{(6.44)(13.63)}=-0.95$
$b_{x y}=r \frac{\sigma_{x}}{\sigma_{y}}=-0.95 \times \frac{6.44}{13.63}=-0.45$
$b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}=-0.95 \times \frac{13.63}{6.44}=-2.01$
The regression line X on Y is

$$
x-\bar{x}=b_{x y}(y-\bar{y}) \Rightarrow x-14.17=-0.45(y-\bar{y})
$$

$\Rightarrow x=-0.45 y+23.32$
The regression line Y on X is

$$
y-\bar{y}=b_{y x}(x-\bar{x}) \Rightarrow y-20.33=-2.01(x-14.17)
$$

$$
\Rightarrow y=-2.01 x+48.81
$$

26. a) Using the given information given below compute \bar{x}, \bar{y} and r. Also compute σ_{y} when $\sigma_{x}=2,2 x+3 y=8$ and $4 x+y=10$.
b) The joint pdf of X and Y is

0	$\frac{1}{8}$	$\frac{3}{8}$
1	$\frac{2}{8}$	$\frac{2}{8}$

Find the correlation coefficient of X and Y.
Solution:
a). When the regression equation are Known the arithmetic means are computed by solving the equation.

$$
\begin{align*}
& 2 x+3 y=8 \tag{1}\\
& 4 x+y=10 \tag{2}
\end{align*}
$$

$(1) \times 2 \Rightarrow 4 x+6 y=16$
$(2)-(3) \Rightarrow-5 y=-6$
$\Rightarrow y=\frac{6}{5}$
Equation $(1) \Rightarrow 2 x+3\left(\frac{6}{5}\right)=8$

$$
\begin{aligned}
& \Rightarrow 2 x=8-\frac{18}{5} \\
& \Rightarrow x=\frac{11}{5}
\end{aligned}
$$

i.e. $\bar{x}=\frac{11}{5} \& \bar{y}=\frac{6}{5}$

To find r, Let $2 x+3 y=8$ be the regression equation of X on Y.
$2 x=8-3 y \Rightarrow x=4-\frac{3}{2} y$
$\Rightarrow b_{x y}=$ Coefficient of Y in the equation of X on $Y=-\frac{3}{2}$
Let $4 x+y=10$ be the regression equation of Y on X
$\Rightarrow y=10-4 x$
$\Rightarrow b_{y x}=$ coefficient of X in the equation of Y on $X=-4$.

$$
\begin{aligned}
r & = \pm \sqrt{b_{x y} b_{y x}} \\
& =-\sqrt{\left(-\frac{3}{2}\right)(-4)} \quad\left(\because b_{x y} \& b_{y x} \text { are negative }\right) \\
& =-2.45
\end{aligned}
$$

Since r is not in the range of $(-1 \leq r \leq 1)$ the assumption is wrong.
Now let equation (1) be the equation of Y on X
$\Rightarrow y=\frac{8}{3}-\frac{2 x}{3}$
$\Rightarrow b_{y x}=$ Coefficient of X in the equation of Y on X
$b_{y x}=-\frac{2}{3}$
from equation (2) be the equation of X on Y
$b_{x y}=-\frac{1}{4}$
$r= \pm \sqrt{b_{x y} b_{y x}} \quad=\sqrt{-\frac{2}{3} \times-\frac{1}{4}}=0.4081$
To compute σ_{y} from equation (4) $b_{y x}=-\frac{2}{3}$
But we know that $b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}$

$$
\begin{aligned}
& \Rightarrow-\frac{2}{3}=0.4081 \times \frac{\sigma_{y}}{2} \\
& \Rightarrow \sigma_{y}=-3.26
\end{aligned}
$$

b). Marginal probability mass function of X is

When $X=0, \quad P(X)=\frac{1}{8}+\frac{3}{8}=\frac{4}{8}$

$$
X=1, \quad P(X)=\frac{2}{8}+\frac{2}{8}=\frac{4}{8}
$$

Marginal probability mass function of Y is

$$
\begin{aligned}
& \text { When } Y=-1, \quad P(Y)=\frac{1}{8}+\frac{2}{8}=\frac{3}{8} \\
& Y=1, \quad P(Y)=\frac{3}{8}+\frac{2}{8}=\frac{5}{8} \\
& E(X)=\sum_{x} x p(x)=0 \times \frac{4}{8}+1 \times \frac{4}{8}=\frac{4}{8} \\
& E(Y)=\sum_{y} y p(y)=-1 \times \frac{3}{8}+1 \times \frac{5}{8}=-\frac{3}{8}+\frac{5}{8}=\frac{2}{8} \\
& E\left(X^{2}\right)=\sum_{x} x^{2} p(x)=0^{2} \times \frac{4}{8}+1^{2} \times \frac{4}{8}=\frac{4}{8} \\
& E\left(Y^{2}\right)=\sum_{y} y^{2} p(y)=(-1)^{2} \times \frac{3}{8}+1^{2} \times \frac{5}{8}=\frac{3}{8}+\frac{5}{8}=1 \\
& V(X)=E\left(X^{2}\right)-(E(X))^{2} \\
& =\frac{4}{8}-\left(\frac{4}{8}\right)^{2}=\frac{1}{4} \\
& V(Y)=E\left(Y^{2}\right)-(E(Y))^{2} \\
& =
\end{aligned}
$$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
E(X Y) & =\sum_{x} \sum_{y} x y p(x, y) \\
& =0 \times \frac{1}{8}+0 \times \frac{3}{8}+(-1) \frac{2}{8}+1 \times\left(\frac{2}{8}\right)=0
\end{aligned}
$$

$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0-\frac{1}{2} \times \frac{1}{4}=-\frac{1}{8}$

$$
r=\frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X)} \sqrt{V(Y)}}=\frac{-\frac{1}{8}}{\sqrt{\frac{1}{4}} \sqrt{\frac{15}{16}}}=-0.26
$$

27. a) Calculate the correlation coefficient for the following heights (in inches) of fathers X and their sons Y.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

b) If X and Y are independent exponential variates with parameters 1, find the pdf of $U=X-Y$. Solution:

X	Y	$X Y$	X^{2}	Y^{2}
65	67	4355	4225	4489
66	68	4488	4359	4624
67	65	4355	4489	4285
68	72	4896	4624	5184
69	72	4968	4761	5184
70	69	4830	4900	4761
72	71	5112	5184	5041
$\sum X=544$	$\sum Y=552$	$\sum X Y=37560$	$\sum X^{2}=37028$	$\sum Y^{2}=38132$

$\bar{X}=\frac{\sum x}{n}=\frac{544}{8}=68$
$\bar{Y}=\frac{\sum y}{n}=\frac{552}{8}=69$
$\bar{X} \bar{Y}=68 \times 69=4692$
$\sigma_{X}=\sqrt{\frac{1}{n} \sum x^{2}-\bar{X}^{2}}=\sqrt{\frac{1}{8}(37028)-68^{2}}=\sqrt{4628.5-4624}=2.121$
$\sigma_{Y}=\sqrt{\frac{1}{n} \sum y^{2}-y^{2}}=\sqrt{\frac{1}{8}(38132)-69^{2}}=\sqrt{4766.5-4761}=2.345$

$$
\operatorname{Cov}(X, Y)=\frac{1}{n} \sum X Y-\bar{X} \bar{Y}=\frac{1}{8}(37650)-68 \times 69
$$

$$
=4695-4692=3
$$

The correlation coefficient of X and Y is given by

$$
\begin{aligned}
r(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} & =\frac{3}{(2.121)(2.345)} \\
& =\frac{3}{4.973}=0.6032
\end{aligned}
$$

b). Given that X and Y are exponential variates with parameters 1

$$
f_{X}(x)=e^{-x}, x \geq 0, f_{Y}(y)=e^{-y}, y \geq 0
$$

Also $f_{X Y}(x, y)=f_{X}(x) f_{y}(y)$ since X and Y are independent

$$
\begin{aligned}
& =e^{-x} e^{-y} \\
& =e^{-(x+y)} ; x \geq 0, y \geq 0
\end{aligned}
$$

Consider the transformations $u=x-y$ and $v=y$
$\Rightarrow x=u+v, y=v$
$J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|=\left|\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right|=1$
$f_{U V}(u, v)=f_{X Y}(x, y)|J|=e^{-x} e^{-y}=e^{-(u+v)} e^{-v}$ $=e^{-(u+2 v)}, u+v \geq 0, v \geq 0$
In Region I when $u<0$

$$
\begin{aligned}
f(u) & =\int_{-u}^{\infty} f(u, v) d v=\int_{-u}^{\infty} e^{-u} \cdot e^{-2 v} d v \\
& =e^{-u}\left[\frac{e^{-2 v}}{-2}\right]_{-u}^{\infty} \\
& =\frac{e^{-u}}{-2}\left[0-e^{2 u}\right]=\frac{e^{u}}{2}
\end{aligned}
$$

In Region II when $u>0$
$f(u)=\int_{0}^{\infty} f(u, v) d v$

$$
=\int_{0}^{\infty} e^{-(u+2 v)} d v=\frac{e^{-u}}{2}
$$

$\therefore f(u)= \begin{cases}\frac{e^{u}}{2}, & u<0 \\ \frac{e^{-u}}{2}, & u>0\end{cases}$
28. a) The joint pdf of X and Y is given by $f(x, y)=e^{-(x+y)}, x>0, y>0$. Find the pdf of $U=\frac{X+Y}{2}$.
b) If X and Y are independent random variables each following $N(0,2)$, find the pdf of $Z=2 X+3 Y$. If X and Y are independent rectangular variates on $(0,1)$ find the distribution of $\frac{X}{Y}$.

Solution:

a). Consider the transformation $u=\frac{x+y}{2} \& v=y$

$$
\Rightarrow x=2 u-v \text { and } y=v
$$

$$
\left.\begin{array}{l}
J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right|=2
\end{array} \begin{array}{rl}
f_{U V}(u, v) & =f_{X Y}(x, y) \mid J
\end{array}\right] \begin{aligned}
-(x+y) & 2=2 e^{-(x+y)}=2 e^{-(2 u-v+v)} \\
& =2 e^{-2 u}, 2 u-v \geq 0, v \geq 0
\end{aligned} \quad \begin{aligned}
f_{U V}(u, v) & =2 e^{-2 u}, u \geq 0,0 \leq v \leq \frac{u}{2}
\end{aligned}
$$

$$
f(u)=\int_{0}^{\frac{u}{2}} f_{U V}(u, v) d v=\int_{0}^{\frac{u}{2}} 2 e^{-2 u} d v
$$

$$
=\left[2 e^{-2 u} v\right]_{0}^{\frac{u}{2}}
$$

$$
f(u)= \begin{cases}2 \frac{u}{2} e^{-2 u}, & u \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

b).(i) Consider the transformations $w=y$,
i.e. $z=2 x+3 y$ and $w=y$
i.e. $x=\frac{1}{2}(z-3 w), y=w$
$|J|=\frac{\partial(x, y)}{\partial(z, w)}=\left|\begin{array}{ll}\frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}\end{array}\right|=\left|\begin{array}{cc}\frac{1}{2} & -\frac{3}{2} \\ 0 & 1\end{array}\right|=\frac{1}{2}$.
Given that X and Y are independent random variables following $N(0,2)$
$\therefore f_{X Y}(x, y)=\frac{1}{8 \pi} e^{\frac{-\left(x^{2}+y^{2}\right)}{8}},-\infty<x, y<\infty$
The joint pdf of (z, w) is given by

$$
\begin{aligned}
f_{Z W}(z, w) & =|J| f_{X Y}(x, y) \\
& =\frac{1}{2} \cdot \frac{1}{8 \pi} e^{\frac{-\left[\frac{1}{4}(z-3 w)^{2}+w^{2}\right]}{8}} \\
& =\frac{1}{16 \pi} e^{-\frac{1}{32}\left[(z-3 w)^{2}+4 w^{2}\right]},-\infty<z, w<\infty .
\end{aligned}
$$

The pdf of z is the marginal pdf obtained by interchanging $f_{Z W}(z, w)$ w.r.to w over the range of w.

$$
\begin{aligned}
& \therefore f_{Z}(z)=\frac{1}{16 \pi} \int_{-\infty}^{\infty}\left(e^{-\frac{1}{32}\left(z^{2}-6 w z+13 w^{2}\right)}\right) d w \\
& =\frac{1}{16 \pi} e^{-\frac{z^{2}}{32}} \int_{-\infty}^{\infty}\left(e^{-\frac{13}{32}\left(w^{2}-\frac{6 w z}{13}+\left(\frac{3 z}{13}\right)^{2}-\left(\frac{3 z}{13}\right)^{2}\right)}\right) d w \\
& =\frac{1}{16 \pi} e^{-\frac{z^{2}}{32}+\frac{9 z^{2}}{13 \times 32}} \int_{-\infty}^{\infty}\left(e^{-\frac{13}{32}\left(w-\frac{3 z}{13}\right)^{2}}\right) d w \\
& =\frac{1}{16 \pi} e^{-\frac{z^{2}}{8 \times 13}} \int_{-\infty}^{\infty} e^{-\frac{13}{32} t^{2}} d t \\
& r=\frac{13}{32} t^{2} \Rightarrow d r=\frac{13}{16} t d t \Rightarrow \frac{16}{13 t} d r=d t \Rightarrow \sqrt{\frac{r 32}{13}} d r=d t \\
& \frac{16}{13} \sqrt{\frac{13}{r 32}} d r=d t \Rightarrow \frac{4}{\sqrt{13} \times \sqrt{2}} r^{-\frac{1}{2}} d r=d t \\
& =\frac{2}{16 \pi} \frac{4}{\sqrt{13} \times \sqrt{2}} e^{-\frac{z^{2}}{8 \times 13}} \int_{0}^{\infty} e^{-r} r^{-\frac{1}{2}} d r \\
& =\frac{1}{2 \pi \sqrt{13} \times \sqrt{2}} e^{-\frac{z^{2}}{8 \times 13}} \int_{0}^{\infty} e^{-r} r^{-\frac{1}{2}} d r \\
& =\frac{1}{2 \pi \sqrt{13} \times \sqrt{2}} e^{-\frac{z^{2}}{8 \times 13}} \sqrt{\pi}=\frac{1}{2 \sqrt{13} \sqrt{2 \pi}} e^{-\frac{z^{2}}{2(2 \sqrt{13})^{2}}}
\end{aligned}
$$

i.e. $Z \sim N(0,2 \sqrt{13})$
b).(ii) Given that X and Y are uniform Variants over $(0,1)$

$$
\therefore f_{X}(x)=\left\{\begin{array}{l}
1,0<x<1 \\
0, \text { otherwise }
\end{array} \text { and } f_{Y}(y)=\left\{\begin{array}{l}
1,0<y<1 \\
0, \text { otherwise }
\end{array}\right.\right.
$$

Since X and Y are independent,

$$
f_{X Y}(x, y)=f_{X}(x) f_{y}(y) \begin{cases}1, & 0<x, y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Consider the transformation $u=\frac{x}{y}$ and $v=y$
i.e. $x=u v$ and $y=v$
$J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|=\left|\begin{array}{cc}v & 0 \\ u & 1\end{array}\right|=v$
$\therefore f_{U V}(u, v)=f_{X Y}(x, y)|J|$

$$
=v, 0<u<\infty, 0<v<\infty
$$

The range for u and v are identified as follows.
$0<x<1$ and $0<y<1$.
$\Rightarrow 0<u v<1$ and $0<v<1$
$\Rightarrow u v>0, u v<1, v>0$ and $v<1$
$\Rightarrow u v>0$ and $v>0 \Rightarrow u>0$
Now $f(u)=\int f_{U V}(u, v) d v$
The range for v differs in two regions
$f(u)=\int_{0}^{1} f_{U V}(u, v) d v$

$$
=\int_{0}^{1} v d v=\left[\frac{v^{2}}{2}\right]_{0}^{1}=\frac{1}{2}, 0<u<1
$$

$f(u)=\int_{0}^{\frac{1}{u}} f_{U V}(u, v) d v$
$=\int_{0}^{\frac{1}{u}} v d v=\left[\frac{v^{2}}{2}\right]_{0}^{\frac{1}{u}}=\frac{1}{2 u^{2}}, 1 \leq u \leq \infty$
$\therefore f(u)= \begin{cases}\frac{1}{2}, & 0 \leq u \leq 1 \\ \frac{1}{2 u^{2}}, & u>1\end{cases}$

SATHYABAMA
INSTITUTE OF SCIENCE AND TECHNOLOGY Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS

UNIT - V - Analysis of Variance and Statistical Quality Control SMTA1402

Sathyabama Institute of Science and Technology

SMTA1402-Probability and Statistics
 Unit - V Analysis of Variance and Statistical Quality Control

ANOVA (Analysis of Variance) :
Analysis of Variance is a technique that will enable us to test for the significance of the difference among more than two sample means.

Assumptions of analysis of variance:
(i) The sample observations are independent
(ii) The environmental effects are additive in nature
(iii) The samples have been randomly selected from the population.
(iv) Parent population from which observations are taken in normal.

One Way Classification (or) Completely randomized Design (C.R.D)

The C.R.D is the simplest of all the designs, based on principles of randomization and replication. In this design, treatments are allocated at random to the experimental units over the entire experimental materials.

Advantages of completely randomized block design:
The advantages of completely randomized experimental design as follows:
(i) Easy to lay out. (ii) Allow flexibility (iii) Simple statistical analysis
(iv) lots of information due to missing data is smaller than with any other design

Two Way Classification (or) Randomized Block Design (R.B.D):

The entire experiment influences on only two factors is two way Classification.

The basic principles of design of experiments:

(i) Randomization
(ii) Replication
(iii) Local Control

Working Procedure (One - Way classification)

Null Hypothesis H_{0} : There is no significance difference between the treatments.
Alternate Hypothesis H_{1} : There is a significance difference between the treatments.

Analysis:

Step 1: Find $N=$ number of observations
Setp 2: Find $=$ The total value of observations
Step 3: Find the correction Factor $=C . F=\frac{T^{2}}{N}$
Step 4: Calculate the total sum of squares $=\mathrm{TSS}=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-$ C.F
Step 4: Find Total Sum of Square TSS $=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$

Sathyabama Institute of Science and Technology
Step 5: Column Sum of Square $\mathrm{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C.F
Where $N_{i}=$ Total number of observation in each column $(i=1,2,3, \ldots)$
Step 6: Prepare the ANOVA TABLE to calculate F-ratio.

Source of Variation	Sum of Degrees	Degree of freedom	Mean Square	F- Ratio
Between Columns	SSC	$\mathrm{c}-1$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$	$\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$ if MSC $>\mathrm{MSE}$ (or)
Error	SSE	$\mathrm{N}-\mathrm{c}$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{c}}$	$\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$ if MSE $>\mathrm{MSC}$
Total				

Step 7: Find the table value (use χ^{2} table)
Step 8: Conclusion:
Calculated value < Table Value, the we accept Null Hypothesis H_{0} (or)
Calculated value > Table Value, the we rejectNull Hypothesis H_{0}

Working Procedure (Two - Way classification)

Null Hypothesis H_{0} : There is no significance difference between the treatments.
Alternate Hypothesis H_{1} : There is a significance difference between the treatments.

Analysis:

Step 1: Find $N=$ number of observations
Setp 2: Find $=$ The total value of observations
Step 3: Find the correction Factor $=C . F=\frac{T^{2}}{N}$
Step 4: Calculate the total sum of squares $=\mathrm{TSS}=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-$ C.F
Step 4: Find Total Sum of Square TSS $=\left(\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\ldots\right)-C . F$
Step 5: Find column sum of Square $\mathrm{SSC}=\left(\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{3}}+\ldots\right)-C . \mathrm{F}$
Where $N_{i}=$ Total number of observation in each column $(i=1,2,3, \ldots)$

Sathyabama Institute of Science and Technology

Step 6: Find Row sum of square $=\mathrm{SSR}=\left(\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{3}}+\ldots\right)-$ C.F
Where $N_{j}=$ Total number of observation in each Row ($j=1,2,3, \ldots$)
Step 7:Prepare the ANOVA TABLE to calculate F-ratio.

Source of Variation	Sum of Degrees	Degree of freedom	Mean Square	F- Ratio
Between Columns	SSC	c-1	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{c}-1}$	$\begin{gathered} \mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}} \text { if MSC }>\mathrm{MSE} \\ \text { (or) } \\ \mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}} \text { if MSE }>\mathrm{MSC} \end{gathered}$
Between Rows	SSR	r-1	$\mathrm{MSC}=\frac{\mathrm{SSR}}{\mathrm{r}-1}$	$\begin{gathered} \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSR}}{\mathrm{MSE}} \text { if } \mathrm{MSR}>\mathrm{MSE} \\ \text { (or) } \\ \mathrm{F}_{\mathrm{R}}=\frac{\mathrm{MSE}}{\mathrm{MSR}} \text { if } \mathrm{MSE}>\mathrm{MSR} \end{gathered}$
Error	SSE	N-c-r+1	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{c}-\mathrm{r}+1}$	
Total	TSS	rc-1		

Step 8: Find the table value for both $F_{C} \& F_{R}$ (use χ^{2} table)

Step 9:Conclusion:

Calculated value < Table Value, the we accept Null Hypothesis H_{0} (or)
Calculated value > Table Value, the we reject Null Hypothesis H_{0}
1 The following are the numbers of mistakes made in 5 successive days of 4 technicians - working for a photographic laboratory :

Tech I $\left(X_{1}\right)$	Tech II $\left(X_{2}\right.$		
	Tech III $\left(X_{3}\right)$	Tech IV $\left(X_{4}\right.$	
6	$\mathbf{1 4}$	10	9
$\mathbf{1 4}$	9	12	12
10	12	7	$\mathbf{8}$
$\mathbf{8}$	10	15	10
11	14	11	11

Test at the level of significance $\alpha=0.01$ whether the differences among the 4 samples means can be attributed to chance.
Solution:
H_{0} : There is no significant difference between the technicians

H_{1} : Significant difference between the technicians We shift the origin									
	X_{1}	\mathbf{X}_{2}	X_{3}	X4	TOTAL	$\mathrm{X}_{1}{ }^{2}$	$\mathbf{X 2}^{2}$	$\mathrm{X}_{3}{ }^{\mathbf{2}}$	$\mathrm{X}_{4}{ }^{2}$
	-4	4	0	-1	-1	16	16	0	1
	4	-1	2	2	7	16	1	4	4
	0	2	-3	-2	-3	0	4	9	4
	-2	0	5	0	3	4	0	25	0
	1	4	1	1	7	1	16	1	1
Total	-1	9	5	0	13	37	37	39	10

$\mathrm{N}=$ Total No of Observations $=20$
$\mathrm{T}=$ Grand Total $=13$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=8.45$
$\mathrm{TSS}=\sum \mathrm{X}_{1}{ }^{2}+\sum \mathrm{X}_{2}{ }^{2}+\sum \mathrm{X}_{3}{ }^{2}+\sum \mathrm{X}_{4}{ }^{2}-\mathrm{C} . \mathrm{F}=37+37+39+10-8.45=114.55$
$\operatorname{SSC}=\frac{\left(\sum \mathrm{X}_{1}\right)^{2}}{\mathrm{~N}_{1}}+\frac{\left(\sum \mathrm{X}_{2}\right)^{2}}{\mathrm{~N}_{1}}+\frac{\left(\sum \mathrm{X}_{3}\right)^{2}}{\mathrm{~N}_{1}}-\mathrm{C} . \mathrm{F}=\frac{(-1)^{2}}{5}+\frac{(9)^{2}}{5}+\frac{(5)^{2}}{5}+0-8.45=12.95$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}=114.55-12.95=101.6$

ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
Between Samples	$\mathrm{SSC}=12.95$	$\mathrm{C}-1=4-1=3$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{K}-1}=4.317$	$\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}$
$=1.471$				
Within Samples	$\mathrm{SSE}=101.6$	$\mathrm{~N}-\mathrm{C}=20-4=16$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{N}-\mathrm{K}}=6.35$	

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}=1.471 \& \operatorname{Tab}_{\mathrm{C}}(16,3)=5.29$
Conclusion : Cal $\mathrm{F}_{\mathrm{C}}<\mathrm{Tab}_{\mathrm{C}} \Rightarrow$ There is no significance difference between the technicians
2
A completely randomized design exprement with 10 plots and 3 treatments gave the following results.

Plot No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Treatment	A	B	C	A	C	C	A	B	A	B
Yield	$\mathbf{5}$	$\mathbf{4}$	3	7	5	1	3	$\mathbf{4}$	$\mathbf{1}$	7

Analyse the results for treatment effects.

Solution:

Sathyabama Institute of Science and Technology

A	B	C
5	4	3
7	4	5
3	7	1
1		

Null Hypothesis \mathbf{H}_{0} : There is no significant difference in treatments
Alternate Hypothesis $\mathbf{H}_{\mathbf{1}}$: Significant difference in treatments

Total	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{T O T A L}$	$\mathbf{X 1}_{\mathbf{1}}{ }^{\mathbf{4}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{4}}$	$\mathbf{X 3}^{\mathbf{2}}$
	5	4	3	$\mathbf{1 2}$	25	16	9
	7	4	5	$\mathbf{1 6}$	49	16	25
	3	7	1	$\mathbf{1 1}$	9	49	1
	1			$\mathbf{1}$	1		
	16	15	9	$\mathbf{4 0}$	84	81	35

Step 1: $\mathrm{N}=$ Total No of Observations $=10$
Step 2: T=Grand Total $=40$
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{T^{2}}{N}=\frac{40^{2}}{10}=160$
Step 4: $\mathrm{TSS}=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}-C . \mathrm{F}=84+81+35-160=40$
Step 5: $\mathrm{SSC}=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C . \mathrm{F}=\frac{(16)^{2}}{4}+\frac{15^{2}}{3}+3-160$
$S S C=64+75+27-160=6$
Where $N_{1}=$ Number of elements in each column
Step 7: SSE=TSS-SSC $=40-6=34$
Step 8: ANOVA TABLE:

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F-Ratio
Between Columns	SSC=6	$\mathrm{C}-1=3-1=2$	$\begin{aligned} \mathrm{MSC} & =\frac{\mathrm{SSC}}{\mathrm{C}-1} \\ & =\frac{6}{2}=3 \end{aligned}$	$\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{MSE}}{\mathrm{MSC}}$
Error	SSE=34	$\mathrm{N}-\mathrm{C}=10-3=7$	$\begin{gathered} \mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{~N}-\mathrm{C}} \\ =\frac{34}{87}=4.86 \end{gathered}$	$\begin{aligned} & =\frac{100}{3} \\ & =1.62 \end{aligned}$

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}=1.62$

Sathyabama Institute of Science and Technology

Table value : $\mathrm{F}_{\mathrm{C}}(7,2)=19.35$
Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{TabF}_{\mathrm{C}}$
We accept Null Hypothesis \Rightarrow There is no significance difference in tretments
3 The following table gives the number of articles of a product produced by five different workers using four types of machines.

Workers	Machines			
	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
A	$\mathbf{4 4}$	$\mathbf{3 8}$	$\mathbf{4 7}$	$\mathbf{3 6}$
B	$\mathbf{4 6}$	$\mathbf{4 0}$	$\mathbf{5 2}$	$\mathbf{4 3}$
C	$\mathbf{3 4}$	$\mathbf{3 6}$	$\mathbf{4 4}$	$\mathbf{3 2}$
D	$\mathbf{4 3}$	$\mathbf{3 8}$	$\mathbf{4 6}$	$\mathbf{3 3}$
E	$\mathbf{3 8}$	$\mathbf{4 2}$	$\mathbf{4 9}$	$\mathbf{3 9}$

Test (i) Whether the five workers differ with respect to mean productivity and
(ii) Whether the four machines differ with respect to mean productivity.

Solution: H_{0} : There is no significant difference between the Machine types and no significant difference between the Workers
H_{1} :Significant difference between the Machine types and no significant difference between the Workers

We shift the origin $X_{i j}=x_{i j}-46 ; h=5 ; k=4 ; N=20$

	A	B	C	D	Total $=\mathrm{T}_{\text {i* }}$	$\left[\mathrm{T}_{\left.\mathrm{i}{ }^{2}{ }^{2}\right] / \mathrm{k}}\right.$	$\Sigma \mathbf{X}_{*} \mathrm{ij}^{2}$
1	-2	-8	1	-10	-19	90.25	169
2	0	-6	6	-3	-3	2.25	81
3	-12	-10	-2	-14	-38	361	444
4	-3	-8	0	-13	-24	144	242
5	-8	-4	3	-7	-16	64	138
Total=T ${ }^{\text {j }}$	-25	-36	8	-47	-100	661.5	1074
$\left[\mathrm{T}_{\text {j }}{ }^{2}\right] / \mathrm{h}$	125	259.2	12.8	441.8	838.8		

$\mathrm{T}=$ Grand Total $=-100$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(-100)^{2}}{20}=500$
$T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=1074-500=574$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{k}-C . F=661.5-500=161.5$

Sathyabama Institute of Science and Technology
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{h}-C . F=838.8-500=338.8$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}=574-161.5-338.8=73.7$
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F-Ratio	F TabRatio
Between Rows (Workers)	$\mathrm{SSR}=161.5$	$h-1=4$	$\begin{aligned} & \mathrm{MSR}= \\ & 40.375 \end{aligned}$	$\mathrm{F}_{\mathrm{R}}=6.574$	$\begin{aligned} & \mathrm{F}_{5 \%}(4,12)= \\ & 3.26 \end{aligned}$
Between Columns (Machine)	SSC=338.8	$\mathrm{k}-1=3$	$\begin{aligned} & \mathrm{MSC}= \\ & 112.933 \end{aligned}$		
Residual	$\mathrm{SSE}=73.7$	$\begin{aligned} & (\mathrm{h}-1)(\mathrm{k}- \\ & 1)=12 \end{aligned}$	$\begin{aligned} & \text { MSE } \\ & =6.1417 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{C}}= \\ & 18.388 \end{aligned}$	$\begin{aligned} & \mathrm{F}_{5 \%}(3,12)= \\ & 3.59 \end{aligned}$
Total	1074				

Conclusion : $\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}<\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ There is no significant difference between the Machine types and no significant difference between the Workers

4 A Company appointments four salesmen A, B, C and D and observes their sales in 3 seasons: summer, winter and monsoon. The figures (in lakhs of Rs.) are given in the following table:

Season	Salesman			
	A	B	C	D
Summer	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{2 1}$	$\mathbf{3 5}$
Winter	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 1}$	$\mathbf{3 2}$
Monsoon	$\mathbf{2 6}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{2 9}$

i) Do the salesmen significantly differ in performance?
ii) Is there significant difference between the seasons?

Solution:

Null Hypothesis H_{0} : There is no significant difference between the sales in the 3 seasons and also between the sales of the 4 salesmen.
Alternate Hypothesis H_{1} : There is a significant difference between the sales in the 3 seasons and also between the sales of the 4 salesmen.
Test statistic:
To simplify calculations we deduct 30 from each value

Sathyabama Institute of Science and Technology

Seasons		\mathbf{A} $\mathbf{X}_{\mathbf{1}}$	\mathbf{B} $\mathbf{X}_{\mathbf{2}}$	\mathbf{C} $\mathbf{X}_{\mathbf{3}}$	\mathbf{D} $\mathbf{X}_{\mathbf{4}}$	Seasons $\mathbf{T o t a l}$	$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}} \mathbf{2}^{2}$	$\mathbf{X 4}_{\mathbf{2}}$
Y_{1}	Summer	6	6	-9	5	$\mathbf{8}$	36	36	81	25
Y_{2}	Winter	-2	-1	1	2	$\mathbf{0}$	4	1	1	4
Y_{3}	Monson	-4	-2	-1	-1	$\mathbf{- 8}$	16	4	1	1
Total		0	3	-9	6	$\mathbf{0}$	56	41	83	30

Step1: $\mathrm{N}=$ Total No of Observations $=12$
Step 2: T=Grand Total $=0$
Step 3: Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{T^{2}}{N}=\frac{0^{2}}{12}=0$
Step 4: $\mathrm{TSS}=\sum X_{1}^{2}+\sum X_{2}^{2}+\sum X_{3}^{2}+\sum X_{4}^{2}-C . F=56+41+83+30-0=210$
Step 5:
$\mathrm{SSC}=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{4}\right)^{2}}{N_{1}}-C . \mathrm{F}=\frac{0^{2}}{3}+\frac{3^{2}}{3}+\frac{(-9)^{2}}{3}+\frac{6^{2}}{3}-0$
$\mathrm{SSC}=0+3+27+12-0=42$
Where $N_{1}=$ Number of elements in each column
Step 6:
$\mathrm{SSR}=\frac{\left(\sum Y_{1}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}-C . \mathrm{F}=\frac{8^{2}}{4}+\frac{0^{2}}{4}+\frac{(-8)^{2}}{4}+\frac{6^{2}}{4}-0=16+0+16-0=32$
Where $N_{2}=$ Number of elements in each row
Step 7: SSE=TSS-SSC-SSR $=210-42-32$
Step 8: ANOVA TABLE:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Sum of Squares	varience	F-ratio
Between Columns (Salesmen)	SSC=42	$\mathrm{c}-1=4-1=3$	$\begin{aligned} M S C & =\frac{S S C}{c-1} \\ & =\frac{42}{3}=14 \end{aligned}$	$\begin{aligned} M S C & =\frac{M S E}{M S C} \\ & =\frac{22.67}{14} \\ & =1.619 \end{aligned}$	$F_{C}(6,3)=8.94$
Between rows (Seasons)	SSR $=32$	$\mathrm{r}-1=3-1=2$	$\begin{aligned} M S R & =\frac{S S R}{r-1} \\ & =\frac{32}{2}=16 \end{aligned}$	$\begin{aligned} M S R & =\frac{M S E}{M S R} \\ & =\frac{22.67}{16} \\ & =1.417 \end{aligned}$	$F_{R}(6,2)=8.94$

Sathyabama Institute of Science and Technology

| Error | SSE $=136$ | $\mathrm{~N}-\mathrm{c}-\mathrm{r}+\mathrm{l}=6$ | $M S E=\frac{S S E}{N-c-r+1}$
 $=\frac{136}{6}=22.67$ | | |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- |

Table Value of $\mathrm{F}=F_{C}($ Error, d.f $)=F_{C}(6,3)=8.94, F_{R}($ Error, d.f $)=8.94$ with 5% level of significance
Conclusion:

1) Cal $F_{R}<$ Table $F_{R, 0.05}(6,3)$

Hence we accept the H_{0} and we conclude that there is no significant difference between sales in the three seasons.
2) Cal $F_{R}<$ Table $F_{R, 0.05}(6,2)$.

Hence we accept the H_{0} and we conclude that there is no significant difference between in the sales of 4 salesmen.
5 Analyze $\mathbf{2}^{\mathbf{2}}$ factorial experiments for the following table.

Treatment	Replications			
	I	II	III	IV
(1)	$\mathbf{1 2}$	$\mathbf{1 2 . 3}$	$\mathbf{1 1 . 8}$	$\mathbf{1 1 . 6}$
a	$\mathbf{1 2 . 8}$	$\mathbf{1 2 . 6}$	$\mathbf{1 3 . 7}$	$\mathbf{1 4}$
b	$\mathbf{1 1 . 5}$	$\mathbf{1 1 . 9}$	$\mathbf{1 2 . 6}$	$\mathbf{1 1 . 8}$
ab	$\mathbf{1 4 . 2}$	$\mathbf{1 4 . 5}$	$\mathbf{1 4 . 4}$	$\mathbf{1 5}$

SOLUTION:

Null hypothesis: All the mean effects are equal.

Let A and B be the two factors.

Let $n=$ number of replications $=4$
Subtract 12 from each

Treatment	Replications			
	I	II	III	IV
(1)	0	0.3	-0.2	-0.4
a	0.8	0.6	1.7	2
b	-0.5	-0.1	0.6	-0.2
ab	2.2	2.5	2.4	3

Let us find SS for the table

Treatment	Replications					Row
	I	II	III	IV	Total R_{i}	
(1)	0	0.3	-0.2	-0.4	-0.3	0.09
a	0.8	0.6	1.7	2	5.1	26.01
b	-0.5	-0.1	0.6	-0.2	-0.2	0.04
ab	2.2	2.5	2.4	3	10.1	102.01
Column Total C_{j}	2.5	3.3	4.5	4.4	T=14.7	
$C_{j}{ }^{2}$	6.25	10.89	20.25	19.36		

$\mathbf{T}=\mathbf{1 4 . 7}$
Correction factor $=\frac{T^{2}}{N}=\mathbf{1 3 . 5}$
TSS $=21.19$
SSC=0.688
SSR=18.54
SSE=1.962

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio	$\mathbf{F}_{\text {Tab }}$ Ratio
b	$S_{B}=1.63$	1	MSB=1.63	$F_{B}=7.409$	10.56
a	$S_{A}=15.41$	1	MSA=15.41	$F_{A}=70.04$	10.56

Sathyabama Institute of Science and Technology

	ab	$S_{A B}=1.50$	1	$\mathrm{MSAB}=1.50$	$F_{A B}=6.81$	10.56
	Error	$\mathrm{SSE}=1.962$	$\mathrm{~N}-\mathrm{C}-\mathrm{r}+1=9$	$\mathrm{SSE}=1.962$		

$\operatorname{Cal}\left(F_{A}\right)=\mathbf{7 0 . 0 4} \Rightarrow H_{0}$ is rejected at $\mathbf{1 \%}$ level
$\operatorname{Cal}\left(F_{B}\right)=7.409 \Rightarrow H_{0}$ is accepted at $\mathbf{1 \%}$ level
$\operatorname{Cal}\left(F_{A B}\right)=\mathbf{1 0 . 5 6} \Rightarrow H_{0}$ is accepted at $\mathbf{1 \%}$ level
6 Analyse the variance in the following latin square of yields (in kgs) of paddy where A, B, C, D denote the different methods of cultivation.
D 122
A 121
C 123
B 122
B 124
C 123
A 122
D 125
A 120
B 119
D $120 \quad$ C 121
C 122
D 123
B 121 A 122

Examine whether the different methods of cultivation have given significantly different yields.

Solution:

We shift the origin $\mathrm{X}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{ij}}-100 ; \mathrm{n}=4 ; \mathrm{N}=16$

	I	II	III	IV	Total=T ${ }^{\text {* }}$	$\left[\mathrm{T}_{\left.\mathrm{i}{ }^{2}{ }^{2}\right] / \mathrm{n}}\right.$	$\Sigma X_{* i j}{ }^{2}$
A	2	1	3	2	8	16	18
B	4	3	2	5	14	49	54
C	0	-1	0	1	0	0	2
D	2	3	1	2	8	16	18
Total $=$ T ${ }^{\text {j }}$	8	6	6	10	30	81	92
$\left[\mathrm{T}_{\mathbf{j}}{ }^{2}\right] / \mathrm{n}$	16	9	9	25	59		
$\Sigma \mathbf{X}_{\mathbf{i *}}{ }^{\mathbf{2}}$	24	20	14	34	92		

Sathyabama Institute of Science and Technology

	Letters				Total $=\mathrm{T}^{\text {* }}$ *	[$\left.\mathrm{T}_{\mathrm{i}^{*}}{ }^{2}\right] / \mathrm{n}$
P	1	2	0	2	5	6.25
Q	2	4	-1	1	6	9
R	3	3	1	2	9	20.25
S	2	5	0	3	10	25
Total					30	60.5

$\mathrm{T}=$ Grand Total $=30 ;$ Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=\frac{(30)^{2}}{16}$ $T S S=\sum_{i} \sum_{j} X_{i j}^{2}-C . F=92-\frac{(30)^{2}}{16}=35.75$
$S S R=\frac{\sum T_{i^{*}}{ }^{2}}{n}-C . F=81-\frac{(30)^{2}}{16}=24.75$
$S S C=\frac{\sum T_{*_{j}}{ }^{2}}{n}-C . F=59-\frac{(30)^{2}}{16}=2.75$
$S S L=\underline{\sum T_{i^{*}}{ }^{2}}-C . F=60.5-\frac{(30)^{2}}{16}=4.25$
SSE $=$ TSS - SSC - SSR-SSL ${ }^{16}=35.75-24.75-2.75-4.25=4$
ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F-Ratio	F TabRatio (5\% level)
Between Rows	$\mathrm{SSR}=24.75$	$\mathrm{n}-1=3$	MSR=8.25	$\begin{aligned} & \mathrm{F}_{\mathrm{R}}= \\ & 12.31 \end{aligned}$	F_{R} (3,$6)=4.76$
Between Columns	SSC=2.75	$\mathrm{n}-1=3$	$\mathrm{MSC}=0.92$		
Between Letters	$\mathrm{SSL}=4.25$	$\mathrm{n}-1=3$	$\mathrm{MSL}=1.42$	$\mathrm{F}_{\mathrm{C}}=1.37$	$\operatorname{Fc}(3,6)=4$
Residual	SSE= 4	$\begin{gathered} (\mathrm{n}-1)(\mathrm{n}-2) \\ =6 \end{gathered}$	$\mathrm{MSE}=0.67$	$\mathrm{F}_{\mathrm{L}}=2.12$	76

Sathyabama Institute of Science and Technology

					$F_{\mathrm{L}(3,6)=4}$	
						.76

Conclusion :

$\mathrm{Cal} \mathrm{F}_{\mathrm{C}}<\mathrm{Tab} \mathrm{F}_{\mathrm{C}}, \mathrm{Cal} \mathrm{F}_{\mathrm{L}}<\mathrm{Tab} \mathrm{F}_{\mathrm{L}}$ and $\mathrm{Cal} \mathrm{F}_{\mathrm{R}}>\mathrm{Tab} \mathrm{F}_{\mathrm{R}} \Rightarrow$ There is significant difference between the rows, no significant difference between the letters and no significant difference between the columns

7 A variable trial was conducted on wheat with 4 varieties in a Latin Square Design.
The plan of the experiment and the per plot yield are given below :

C	$\mathbf{2 5}$	B	$\mathbf{2 3}$	A	$\mathbf{2 0}$	D	$\mathbf{2 0}$
A	$\mathbf{1 9}$	D	$\mathbf{1 9}$	C	$\mathbf{2 1}$	B	$\mathbf{1 8}$
B	$\mathbf{1 9}$	A	$\mathbf{1 4}$	D	$\mathbf{1 7}$	C	$\mathbf{2 0}$
D	$\mathbf{1 7}$	C	$\mathbf{2 0}$	B	$\mathbf{2 1}$	A	$\mathbf{1 5}$

Analyse data and interpret the result.
H_{0} : Four varieties are similar
H_{1} : Four varieties are not similar
Let us take 20 as origin for simplifying the calculation

Variety	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{T O T A L}$	$\mathbf{X}_{\mathbf{1}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{2}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}{ }^{\mathbf{2}}$	$\mathbf{X}_{\mathbf{4}}{ }^{\mathbf{2}}$
$\mathbf{Y}_{\mathbf{1}}$	5	3	0	0	$\mathbf{8}$	25	9	0	0
$\mathbf{Y}_{\mathbf{2}}$	-1	-1	1	-2	$\mathbf{- 3}$	1	1	1	4
$\mathbf{Y}_{\mathbf{3}}$	-1	-6	-3	0	$\mathbf{- 1 0}$	1	36	9	0
$\mathbf{Y}_{\mathbf{4}}$	-3	0	1	-5	$\mathbf{- 7}$	1	0	1	25
	$\mathbf{0}$	$\mathbf{- 4}$	$\mathbf{- 1}$	$\mathbf{- 7}$	$\mathbf{- 1 2}$	$\mathbf{9}$	$\mathbf{4 6}$	$\mathbf{1 1}$	$\mathbf{2 9}$

$\mathrm{N}=$ Total No of Observations $=16$
$\mathrm{T}=$ Grand Total $=-12$
Correction Factor $=\frac{(\text { Grand total })^{2}}{\text { Total No of Observations }}=9$

Sathyabama Institute of Science and Technology

$$
\begin{aligned}
& T S S=\sum X_{1}^{2}+\sum X_{2}{ }^{2}+\sum X_{3}{ }^{2}+\sum X_{4}{ }^{2}-C . F=36+46+11+29-9=113 \\
& S S C=\frac{\left(\sum X_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{2}\right)^{2}}{N_{1}}+\frac{\left(\sum X_{3}\right)^{2}}{N_{1}}-C . F=\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}+\frac{(6)^{2}}{4}+\frac{(10)^{2}}{4}-9=4 \\
& S S R=\frac{\left(\sum Y_{1}\right)^{2}}{N_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{N_{2}}+\frac{\left(\sum Y_{4}\right)^{2}}{N_{2}}-C . F=\frac{(8)^{2}}{4}+\frac{(-3)^{2}}{4}+\frac{(-10)^{2}}{4}+\frac{(-7)^{2}}{4}-9=46.5
\end{aligned}
$$

To find SSK

Treatment	1	2	3	4	Total
A	0	-1	-6	-5	-12
B	3	-2	-1	1	1
C	5	1	0	0	6
D	0	-1	-3	-3	-7

$\mathrm{SSK}=\frac{\left(\sum Y_{1}\right)^{2}}{K_{1}}+\frac{\left(\sum Y_{2}\right)^{2}}{K_{2}}+\frac{\left(\sum Y_{3}\right)^{2}}{K_{3}}+\frac{\left(\sum Y_{4}\right)^{2}}{K_{4}}-C . F$
$=48.5$
$\mathrm{SSE}=\mathrm{TSS}-\mathrm{SSC}-\mathrm{SSR}-\mathrm{SSK}=113-7.5-46.5-48.5=10.5$

ANOVA Table

Source of Variation	Sum of Squares	Degree of freedom	Mean Square	F- Ratio
Column Treatment	$\mathrm{SSC}=7.5$	$\mathrm{n}-1=3$	$\mathrm{MSC}=\frac{\mathrm{SSC}}{\mathrm{n}-1}$ $=2.5$	$\mathrm{~F}_{\mathrm{C}}=\frac{\mathrm{MSC}}{\mathrm{MSE}}=1.43$
Row Treatments	$\mathrm{SSR}=46.5$	$\mathrm{n}-1=3$	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{n}-1}$ $=15.5$	$F_{R}=\frac{M S E}{M S R}=8.86$
Between Treatments	$\mathrm{SST}=48.5$	$\mathrm{n}-1=3$	$\mathrm{MSK}=\frac{\mathrm{SSK}}{\mathrm{n}-1}$ $=16.17$	$\mathrm{~F}_{\mathrm{K}}=\frac{\mathrm{MSK}}{\mathrm{MSE}}=9.24$
Error (or) Residual	$\mathrm{SSE}=10.5$	$\mathrm{n}-1)(\mathrm{n}-$ $2)=6$	MSE $=\frac{S S E}{(n-1)(n-2)}$ $=1.75$	

Table value $\mathrm{F}(3,6)$ degrees of freedom 8.94
There is significant difference between treatments

Sathyabama Institute of Science and Technology

Sathyabama Institute of Science and Technology

STATISTICAL QUALITY CONTROL

Statistical quality control:

statistical quality control is a statistical method for finding whether the variation in the quality of the product is due to random causes or assignable causes.

Objectives of statistical quality control:
To achieve better utilization of raw materials, to control waste and scrap and to optimize the quality of the product without any defects.

Control chart:

It is a useful graphical method to find whether a process is in statistical quality control.

Uses of Quality control chart:

It helps in determining whether the goal set is being achieved by finding out whether the Process is in control or not.

Different types of control chart:
Control chart for variables - Range and mean chart, Control chart for attributes- p-chart,
C-chart, np-chart.
control limits for mean chart:

$$
\begin{aligned}
& \text { Central limit }=\bar{X} \quad \text {, upper control limit }=\bar{X}+A_{2} \bar{R} \text {, lower control limit }=\bar{X}-A_{2} \bar{R} \\
& \text { Where } \bar{x} \text { is the mean of the sample and } R \text { is the range. }
\end{aligned}
$$

The control limits for range chart:
$\mathbf{C L}=\overline{\mathbf{R}}, \mathbf{U C L}=\mathbf{D}_{4} \overline{\mathbf{R}}, \mathrm{LCL}=\mathrm{D}_{3} \overline{\mathbf{R}}$.

Procedure to draw the x-chart \& R-chart:

1. The sample values in each of the \mathbf{N} samples each of size ' \mathbf{n} ' will be given. Let $\overline{X_{1}}, \overline{X_{2}}, \ldots \overline{X_{N}}$ be the means of the \mathbf{N} samples \& $\mathbf{R}_{1}, \mathbf{R}_{2} \ldots \mathbf{R}_{\mathbf{N}}$ be the ranges of the \mathbf{N} samples.
2. Compute $\overline{\bar{X}}=\frac{1}{N}\left(\overline{X_{1}}+\overline{X_{2}}+\ldots+\overline{X_{N}}\right) ; \bar{R}=\frac{1}{N}\left(R_{1}+R_{2}+\ldots+R_{N}\right)$
3. The values of A_{2}, D_{3}, D_{4} for the given sample size n are taken from the table of control chart constants.
4. Find the values of the control limits $\stackrel{=}{\mathbf{x}} \pm \mathrm{A}_{2} \overline{\mathbf{R}}$ (for the mean chart) and the control limits $D_{3} \bar{R}$ and $D_{4} \bar{R}$ (for the range chart) are computed.
5. On the ordinary graph sheet, the sample numbers are represented on the x-axis and the sample means on the

Sathyabama Institute of Science and Technology

\mathbf{y}-axis (for the mean chart) and the sample ranges on the \mathbf{y}-axis(for the range chart).
6.For drawing the mean chart, we draw the three lines $y=\overline{\bar{X}}, y=\overline{\bar{X}}-A_{2} \bar{R}$ and $y=\overline{\bar{X}}+A_{2} \bar{R}$ which represent respectively the central line, the L.C.L line and U.C.L line, Also we plot the points whose coordinates are $\left(1, \overline{X_{1}}\right),\left(2, \overline{X_{2}}\right), . .\left(N, \overline{X_{N}}\right)$ and join adjacent points by line segments. The graph thus obtained is the \bar{X} chart.
7. For drawing the mean chart, we draw the three lines $y=\bar{R}, y=D_{3} \bar{R}$ and $y=D_{4} \bar{R}$ which represent respectively the central line, the L.C.L line and U.C.L line, Also we plot the points whose coordinates are $\left(1, R_{1}\right),\left(2, R_{2}\right), \ldots\left(N, R_{N}\right)$ and join adjacent points by line segments. The graph thus obtained is the R chart.

Mean And Range Chart Problems

1. Given below are the values of sample mean \bar{X} and sample range \mathbf{R} for 10 samples, each of size 5 .

Draw the appropriate mean and range charts and comment on the state of control on the state of control of the process.

Sample No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10
Mean \bar{X}_{i}	$\mathbf{4 3}$	$\mathbf{4 9}$	$\mathbf{3 7}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{3 7}$	$\mathbf{5 1}$	$\mathbf{4 6}$	$\mathbf{4 3}$	$\mathbf{4 7}$
Range R_{i}	5	6	5	7	7	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{6}$

Solution:

$$
\begin{aligned}
\overline{\bar{X}} & =\frac{1}{N} \sum \overline{X_{i}} \\
& =\frac{1}{10}[43+49+37+44+45+37+51+46+43+47] \\
& =44.2 \\
\bar{R} & =\frac{1}{N} \sum R_{i} \\
& =\frac{1}{10}[5+6+5+7+7+4+8+6+4+6] \\
& =5.8
\end{aligned}
$$

From the table of control chart for sample size $\mathbf{n}=\mathbf{5}$, we have $A_{2}=0.577, D_{3}=0$ \& $D_{4}=2.115$
i) Control limits for \bar{X} chart:
$\mathbf{C L}($ central line $)=\overline{\bar{X}}=44.2$

Sathyabama Institute of Science and Technology

$$
L C L=\overline{\bar{X}}-A_{2} \bar{R}=44.2-(0.577)(5.8)=40.85
$$

$U C L=\overline{\bar{X}}+A_{2} \bar{R}=44.2+(0.577)(5.8)=47.55$
Conclusion :
Since $2^{\text {nd }}, 3^{\text {rd }}, 6^{\text {th }}$ and $7^{\text {th }}$ sample means fall outside the control limits the statistical process is out of control according to \bar{X} chart

ii) Control limits for \mathbf{R}-Chart:
$\mathrm{CL}=\overline{\mathrm{R}}=5.8 ; \quad \mathrm{LCL}=\mathrm{D}_{3} ; \overline{\mathrm{R}}=0$
$\mathrm{LCL}=\mathrm{D}_{4} \overline{\mathrm{R}}=(2.115)(5.8)=12.267 \approx 12.27$

Conclusion :

Since all the sample means fall within the control limits the statistical process is under control according to Rchart .
2. The following data give the measurements of 10 samples each of size 5 in the production process taken in an interval of $\mathbf{2}$ hours. Calculate the sample means and ranges and draw the control charts for mean and range.

Sample No.	1	2	3	4	5	6	7	8	9	10
Observed measuremen ts X	49	50	50	48	47	52	49	55	53	54
	55	51	53	53	49	55	49	55	50	54
	54	53	48	51	50	47	49	50	54	52
	49	46	52	50	44	56	53	53	47	54
	53	50	47	53	45	50	45	57	51	56

Solution:

$$
\begin{aligned}
\overline{\mathrm{X}} & =\frac{1}{\mathrm{~N}} \sum \overline{\mathrm{X}_{\mathrm{i}}} \\
& =\frac{1}{10}[52+50+50+51+47+52+49+54+51+54] \\
& =51.0
\end{aligned}
$$

$$
\begin{aligned}
\overline{\mathrm{R}} & =\frac{1}{\mathrm{~N}} \sum \mathrm{R}_{\mathrm{i}} \\
& =\frac{1}{10}[6+7+6+5+6+9+8+7+7+4] \\
& =6.5
\end{aligned}
$$

From the table of control chart for sample size $\mathbf{n}=\mathbf{5}$, we have $A_{2}=0.577, D_{3}=0$ \& $D_{4}=2.115$
i) Control limits for \bar{X} chart:
$\mathbf{C L}($ central line $)=\overline{\bar{X}}=44.2$
$\mathrm{LCL}=\overline{\overline{\mathrm{X}}}-\mathrm{A}_{2} \overline{\mathrm{R}}_{2}=51.0-(0.577)(6.5)=47.2495$
$\mathrm{UCL}=\overline{\overline{\mathrm{X}}}+\mathrm{A}_{2} \overline{\mathrm{R}}_{2}=51.0+(0.577)(6.5)=54.7505$
$\mathrm{CL}=\overline{\mathrm{X}}=51.0$

Conclusion :

Since $5^{\text {th }}$ sample mean fall outside the control limits the statistical process is out of control according to \bar{X} chart
ii) Control limits for R-Chart:
$\mathrm{CL}=\overline{\mathrm{R}}=6.5 ; \quad \mathrm{LCL}=\mathrm{D}_{3} \overline{\mathrm{R}}=0$
$\mathrm{UCL}=\mathrm{D}_{4} \overline{\mathrm{R}}=(2.115)(6.5)=13.7475$

Conclusion :

Since all the sample means fall within the control limits the statistical process is under control according to Rchart.

C-chart:

Control chart for number of defects is called c-chart.
The control limits for c-chart.
$\mathrm{CL}=\overline{\mathrm{c}} \quad \mathrm{UCL}=\overline{\mathrm{c}}+3 \sqrt{\overline{\mathrm{c}}}$
LCL $=\bar{c}-3 \sqrt{\bar{c}}$

C-Chart problems

1. 15 tape recorders were examined for quality control test. The number of defects in each tape recorder is recorded below. Draw the appropriate control chart and comment on the state of control.

Unit No.(i)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of defects (c)	2	4	3	1	1	2	5	3	6	7	3	1	4	2	1

Solution:

The number of defects per sample containing only one item is given,
$\bar{c}=\frac{\sum c_{i}}{N}=\frac{(2+4+3+\cdots+2+1)}{15}=\frac{45}{15}=3$
$\mathrm{CL}=\overline{\mathrm{c}}=3 ; \quad \mathrm{LCL}=\overline{\mathrm{c}}-3 \sqrt{\mathrm{c}}=3-3 \sqrt{3}=-2.20$

We take $\mathrm{LCL}=0($ since LCL cannot be -ve$)$

$$
\mathrm{UCL}=\overline{\mathrm{c}}+3 \sqrt{\mathrm{c}}=3+3 \sqrt{3}=8.20
$$

Since all the sample points lie within the LCL and UCL lines, the process is under control.
2. 20 pieces of cloth out of different rolls contained respectively $1,4,3,2,4,5,6,7,2,3,2,5,7,6,4,5,2,1,3$ and 8

Sathyabama Institute of Science and Technology

imperfections.

Ascertain whether the process is in a state of statistical control.

Solution:

Let C denote the number of imperfections per unit.
$\bar{c}=\frac{\text { Total no of defects }}{\text { Total sample inspected }}=\frac{\sum c}{n}$
$\bar{c}=\frac{1+4+3+2+4+5+\ldots+1+3+8}{20}=4$
$\mathbf{U C L}=\bar{C}+3 \sqrt{\bar{C}}=10$
$\mathbf{L C L}=\bar{C}-3 \sqrt{\bar{C}}=-2$
We take $\mathrm{LCL}=0($ since LCL cannot be -ve$)$

Since all the sample points lie within the LCL and UCL lines, the process is under control.

p-chart:

Control chart for fraction defectives is called p-chart.

control limits for p-chart.
$\mathbf{U C L}=\mathbf{n} \overline{\mathrm{p}}+3 \sqrt{\mathrm{npq}}, \quad \mathrm{LCL}=\mathbf{n} \overline{\mathrm{p}}-3 \sqrt{\mathrm{npq}} \mathbf{C L}=\overline{\mathrm{np}}$
np -chart.
Control chart for number of defectives is called np chart.

P-Chart \& nP-Chart Problems

1. Construct a control chart for defectives for the following data:

Sample No:	1	2	3	4	5	6	7	8	9	10
No. inspected :	90	65	85	70	80	80	70	95	90	75
No. of defective s:	9	7	3	2	9	5	3	9	6	7

Solution:

We note that the size of the simple varies from sample to sample. We can construct P-chart, provided $0.75 \bar{n}<n_{i}$ $<1.25^{-}$, for all i.

Here

$$
\begin{aligned}
\bar{n}=\frac{1}{N} \sum n_{i} & =\frac{1}{10}(90+65+\ldots . .+90+75) \\
& =\frac{1}{10}(800)=80
\end{aligned}
$$

Hence The values of n_{i} be between 60 and 100. Hence p-chart can be drawn by the method given below. Now $\bar{p}=$ Total n o. of defectives

Total no.of items inspected

$$
=\frac{60}{800}=0.075
$$

Hence for the p-chart to be constructed,
$\mathrm{CL}=\bar{p}=0.075$

$$
\begin{aligned}
\mathrm{LCL} & =\bar{p}-3 \sqrt{\frac{\bar{p}(1-\bar{p})}{\bar{n}}} \\
& =0.075-3 \sqrt{\frac{0.075 \times 0.925}{80}}=-0.013
\end{aligned}
$$

Since LCL cannot be negative, it is taken 0 .
$\mathrm{UCL}=\bar{p}+3 \sqrt{\frac{\bar{p}(1-\bar{p})}{\bar{n}}}$

$$
=0.075+3 \sqrt{\frac{0.075 X 0.925}{80}}=0.163
$$

The values of p_{i} for the various samples are $0.100,0.108,0.035,0.029,0.113,0.063,0.043,0.095,0.067,0.093$

Since all the sample points lie within the control lines, the process is under control.
2. The following are the figures for the number of defectives of $\mathbf{1 0}$ samples each containing 100 items $8,10,9,8,10,11,7,9,6,12$. Draw control chart for fraction defective and comment on the state of control of the process.
\mathbf{P} for sample $=\frac{\text { No.of defectivesin the sample }}{\text { No.of items in the sample }}$
\mathbf{P} for sample $=\frac{8}{100}=0.08$
Similarly calculate p for each sample and tabulate.Divide the number of defectives by 100 to get the fraction defective.

Sample No:	1	2	3	4	5	6	7	8	9	10
No. of defective s:	8	10	9	8	10	11	7	9	6	12
$\mathbf{P}=\text { fractio }$ n defective s	0.08	0.10	0.09	0.08	0.10	0.11	0.07	0.09	0.06	0.12
$\bar{p}=\frac{\sum p}{n}$										
$=\frac{0.08+0.10+0.09+0.08+0.10+0.11+0.07+0.09+0.06+0.12}{10}=0.09$										
$\mathbf{U C L}=\bar{P}+3 \sqrt{\frac{\bar{P}(1-\bar{P})}{n}}$										
$=0.09+3 \sqrt{\frac{0.09(0.91)}{100}}=0.177$										
$\mathbf{U C L}=\bar{P}-3 \sqrt{\frac{\bar{P}(1-\bar{P})}{n}}$										
$=0.09-3 \sqrt{\frac{0.09(0.91)}{100}}=0.003$										

Sathyabama Institute of Science and Technology

Since all the sample points lie within the control lines, the process is under control.
3. The data given below are the number of defectives in $\mathbf{1 0}$ samples of $\mathbf{1 0 0}$ items each. Construct a p-chart and an np-chart and comment on the results.

Sample No.	1	2	3	4	5	6	7	8	9	10
No. of defectives	6	16	7	3	8	12	7	11	11	4

Solution:

Sample size is constant for all samples, $\mathrm{n}=100$.
Total no. of defectives $=6+16+7+3+8+12+7+11+11+4=85$
Total no. Inspected $=10 \times 100=1000$
Average fraction defective $=\overline{\mathrm{p}}=\frac{\text { Total no.of defectives }}{\text { Total no.of items inspected }}=\frac{85}{1000}=0.085$
For p-chart:
$L C L=\bar{p}-3 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}=0.085-3 \sqrt{\frac{(0.085)(0.915)}{100}}=0.0013$

Sathyabama Institute of Science and Technology
$U C L=\bar{p}+3 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}=0.085+\left(\sqrt{\frac{(0.085)(0.915)}{3}}\right)=0.1687$

P CHART

Conclusion:

All these values are less than $\mathrm{UCL}=0.1687$ and greater than $\mathrm{LCL}=0.0013$. In the control chart, all sample points lie within the control limits. Hence, the process is under statistical control.

For np-chart:

$$
\begin{aligned}
U C L & =n \bar{p}+3 \sqrt{n \bar{p}(1-\bar{p})} \\
& =n\left[\bar{p}+3 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}\right] \\
& =100(0.1687)=16.87
\end{aligned}
$$

$$
\begin{aligned}
n \bar{p} & =100(0.085)=8.5 \\
L C L & =n \bar{p}-3 \sqrt{n \bar{p}(1-\bar{p})} \\
= & n\left[\bar{p}-3 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}\right] \\
= & 100(0.0013)=0.13
\end{aligned}
$$

Conclusion:

All the values of number of defectives in the table lie between $\mathbf{1 6 . 8 7}$ and $\mathbf{0 . 1 3}$. Hence, the process is under control even in np-chart.

