
 

SCHOOL OF SCIENCE AND HUMANITIES 

DEPARTMENT OF MATHEMATICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

UNIT – I – Fourier Series – SMTA1401 



I. Introduction 

Contents - Fourier series – Euler’s formula – Dirichlet’s conditions – Fourier series for a 

periodic function – Parseval’s identity (without proof) – Half range cosine series and sine 

series – simple problems – Harmonic Analysis. 

Periodic Functions 

A function 𝑓(𝑥) is said to be periodic, if and only if 𝑓(𝑥 + 𝐿) = 𝑓(𝑥) is true for some value 

of 𝐿 and for all values of 𝑥. The smallest value of 𝐿 for which this equation is true for every 

value of 𝑥 will be called the period of the function.  

A graph of periodic function 𝑓(𝑥) that has period 𝐿 exhibits the same pattern every 𝐿 units 

along the 𝑥 − axis, so that 𝑓(𝑥 + 𝐿)  = 𝑓(𝑥) for every value of 𝑥. If we know what the 

function looks like over one complete period, we can thus sketch a graph of the function 

over a wider interval of 𝑥 (that may contain many periods). For example, 𝑠𝑖𝑛𝑥 and 𝑐𝑜𝑠𝑥 are 

periodic with period 2𝜋 and 𝑡𝑎𝑛𝑥 has period 𝜋. 

 

Dirichlet’s Conditions 

(i) 𝑓(𝑥) is single valued and finite in (𝑐, 𝑐 + 2𝜋) 

(ii) 𝑓(𝑥) is continuous or piecewise continuous with finite number of finite 

discontinuities in  (𝑐, 𝑐 + 2𝜋) 

(iii) 𝑓(𝑥) has a finite number of maxima and minima in  (𝑐, 𝑐 + 2𝜋) 

Note 1: These conditions are not necessary but only sufficient for the existence of Fourier 

series. 

Note 2: If  𝑓(𝑥) satisfies Dirichlet’s conditions and 𝑓(𝑥) is defined in (−∞, ∞), then 𝑓(𝑥) 

has to be periodic of periodicity 2𝜋 for the existence of Fourier series of period 2𝜋. 

Note 3: If 𝑓(𝑥) satisfies Dirichlet’s conditions and 𝑓(𝑥) is defined in (𝑐, 𝑐 + 2𝜋), then 𝑓(𝑥) 

need not be periodic for the existence of Fourier series of period 2𝜋. 



Note 4: If 𝑥 = 𝑎 is a point of continuity of 𝑓(𝑥), then the value of Fourier series at 𝑥 = 𝑎 is 

𝑓(𝑎). If 𝑥 = 𝑎 is a point of discontinuity of 𝑓(𝑥), then the value of Fourier series at 𝑥 = 𝑎 

is 
1

2
[𝑓(𝑎 +) + 𝑓(𝑎 −)]. In other words, specifying a particular value of 𝑥 = 𝑎 in a Fourier 

series, gives a series of constants that should equal 𝑓(𝑎). However, if 𝑓(𝑥) is discontinuous 

at this value of x, then the series converges to a value that is half-way between the two 

possible function values. 

Fourier Series 

Periodic functions occur frequently in engineering problems. Such periodic functions are 

often complicated. Therefore, it is desirable to represent these in terms of the simple 

periodic functions of sine and cosine. A development of a given periodic function into a 

series of sines and cosines was studied by the French physicist and mathematician Joseph 

Fourier (1768-1830). The series of sines and cosines was named after him. 

If 𝑓(𝑥) is a periodic function with period 2𝜋 defined in  (𝑐, 𝑐 + 2𝜋) and the Dirichlet’s 

conditions are satisfied, then 𝑓(𝑥) can be expanded as a Fourier series of the form 

𝒇(𝒙) =
𝒂𝟎

𝟐
+ ∑(𝒂𝒏 𝒄𝒐𝒔𝒏𝒙 + 𝒃𝒏 𝒔𝒊𝒏𝒏𝒙)

∞

𝒏=𝟏

 

where the Fourier coefficients 𝒂𝟎, 𝒂𝒏 𝒂𝒏𝒅 𝒃𝒏 are calculate using Euler’s formula. 

Euler’s Formula 

(1) 𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝑐+2𝜋

𝑐
 

 

(2) 𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝑐+2𝜋

𝑐
 

 

(3) 𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 𝑐+2𝜋

𝑐
 

 

Standard Integrals 

1. ∫ 𝑒𝑎𝑥𝑠𝑖𝑛𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
[𝑎𝑠𝑖𝑛𝑏𝑥 − 𝑏𝑐𝑜𝑠𝑏𝑥] 

2. ∫ 𝑒𝑎𝑥𝑐𝑜𝑠𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
[𝑎𝑐𝑜𝑠𝑏𝑥 + 𝑏𝑠𝑖𝑛𝑏𝑥] 

3. Bernoulli’s generalized formula of integration by parts 

∫ 𝑢𝑣𝑑𝑥 = 𝑢𝑣1 − 𝑢′𝑣2+𝑢′′𝑣3 − 𝑢′′′𝑣4 + ⋯ 

Trigonometric results 

1. 𝑠𝑖𝑛𝑛𝜋 = 0,  if n is an integer 

2. 𝑐𝑜𝑠𝑛𝜋 = (−1)𝑛,  if n is an integer 



 

 

Example 1 

Obtain the Fourier series of the following function defined in (0, 2𝜋). 

 

Solution. 

 

 

                       



            

                      

 

 

                         

 

Example 2 

Expand in Fourier series of periodicity 2𝜋 𝑓(𝑥) = 𝑥𝑠𝑖𝑛𝑥, for 0 < 𝑥 < 2𝜋  

Solution. 

STEP ONE 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝑐+2𝜋

𝑐

 



𝑎0 =
1

𝜋
∫ 𝑥𝑠𝑖𝑛𝑥 𝑑𝑥

 2𝜋

0

 

     =
1

𝜋
[𝑥(−𝑐𝑜𝑠𝑥) − 1. (−𝑠𝑖𝑛𝑥)]0

2𝜋 

    

 =
1

𝜋
[−2𝜋𝑐𝑜𝑠2𝜋 + 𝑠𝑖𝑛2𝜋] 

 =
1

𝜋
[−2𝜋. 1 + 0] 

 =
1

𝜋
[−2𝜋] 

 𝑎0 = −2 

STEP TWO 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝑐+2𝜋

𝑐

 

𝑎𝑛 =
1

𝜋
∫ 𝑥𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

 2𝜋

0

 

      

     =
1

2𝜋
∫ 𝑥[𝑠𝑖𝑛(𝑛 + 1)𝑥 − sin(𝑛 − 1) 𝑥] 𝑑𝑥

 2𝜋

0
 

     =
1

2𝜋
[𝑥 (

−cos (𝑛+1)𝑥

𝑛+1
) − 1. (

− sin(𝑛+1)𝑥

(𝑛+1)2 ) − [𝑥 (
− cos(𝑛−1)𝑥

𝑛−1
) − 1. (

− sin(𝑛−1)𝑥

(𝑛−1)2 )]]
0

2𝜋

 

    =
1

2𝜋
[2𝜋 (

−cos (𝑛+1)2𝜋

𝑛+1
) − 1. (

− sin(𝑛+1)2𝜋

(𝑛+1)2 ) − [2𝜋 (
− cos(𝑛−1)2𝜋

𝑛−1
) − 1. (

− sin(𝑛−1)2𝜋

(𝑛−1)2 )]]    

    =
1

2𝜋
[(

−2𝜋

𝑛+1
) − 1. (0) − [(

−2𝜋

𝑛−1
) − 1. (0)]] 

    = (
−1

𝑛+1
) + (

1

𝑛−1
) 

𝑎𝑛 =
1

𝑛2−1
  provided 𝑛 ≠ 1. 

𝑎1 =
1

𝜋
∫ 𝑥𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 𝑑𝑥

 2𝜋

0

 

     =
1

2𝜋
∫ 𝑥𝑠𝑖𝑛2𝑥 𝑑𝑥

 2𝜋

0

 

     =
1

2𝜋
[𝑥 (

−cos2𝑥

2
) − 1. (

− sin 2 𝑥

4
)]

0

2𝜋

 

     =
1

2𝜋
[2𝜋 (

−cos2(2𝜋)

2
) − 1. (

− sin 2( 2𝜋)

4
)]

0

2𝜋

 



     =
1

2𝜋
[2𝜋 (

−1

2
) − 1. (0)] 

𝑎1 =
−1

2
 

 

STEP THREE 

 

𝑏𝑛 =
1

𝜋
∫ 𝑥𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

 2𝜋

0

 

      

     =
1

2𝜋
∫ 𝑥[𝑐𝑜𝑠(𝑛 − 1)𝑥 − cos(𝑛 + 1) 𝑥] 𝑑𝑥

 2𝜋

0
 

     =
1

2𝜋
[𝑥 (

sin (𝑛−1)𝑥

𝑛−1
) − 1. (

−cos(𝑛−1)𝑥

(𝑛−1)2
) − [𝑥 (

s 𝑖𝑛(𝑛+1)𝑥

𝑛+1
) − 1. (

− cos(𝑛+1)𝑥

(𝑛+1)2
)]]

0

2𝜋

 

    =
1

2𝜋
[2𝜋 (

sin (𝑛−1)2𝜋

𝑛−1
) − 1. (

−cos(𝑛−1)2𝜋

(𝑛−1)2 ) − [2𝜋 (
sin(𝑛+1)2𝜋

𝑛+1
) − 1. (

− cos(𝑛+1)2𝜋

(𝑛+1)2 )]]    

    =
1

2𝜋
[(

1

(𝑛−1)2) − [(
−1

(𝑛+1)2)] − (
1

(𝑛−1)2) + [(
−1

(𝑛+1)2)]] 

    𝑏𝑛 = 0  provided 𝑛 ≠ 1. 

𝑏1 =
1

𝜋
∫ 𝑥𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑥 𝑑𝑥

 2𝜋

0

 

    =
1

𝜋
∫ 𝑥𝑠𝑖𝑛2𝑥 𝑑𝑥

 2𝜋

0
 

=
1

𝜋
∫ 𝑥 (

1 − 𝑐𝑜𝑠2𝑥

2
)  𝑑𝑥

 2𝜋

0

 

=
1

2𝜋
[𝑥 (𝑥 −

𝑠𝑖𝑛2𝑥

2
) − 1. (

𝑥2

2
+

𝑐𝑜𝑠2𝑥

4
)]

0

2𝜋

 

    

=
1

𝜋
[2𝜋 (2𝜋 −

𝑠𝑖𝑛2(2𝜋)

2
) − 1. (

(2𝜋)2

2
+

𝑐𝑜𝑠2(2𝜋)

4
)]

0

2𝜋

 

=
1

𝜋
[4𝜋2 − 2𝜋2 +

1

4
−

1

4
] 

=
1

𝜋
[2𝜋2] 

𝑏1 = 𝜋 

Therefore, the Fourier series expansion of the function 𝑥𝑠𝑖𝑛𝑥 is given by 



𝑓(𝑥) =
𝑎0

2
+ ∑(𝑎𝑛 𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛 𝑠𝑖𝑛𝑛𝑥)

∞

𝑛=1

 

𝑥𝑠𝑖𝑛𝑥 = 1 −
1

2
𝑐𝑜𝑠𝑥 + 2 ∑

𝑐𝑜𝑠𝑛𝑥

𝑛2 − 1
+ 𝜋𝑠𝑖𝑛𝑥

∞

2

 

Example 3  

Obtain all the Fourier coefficients of 𝑓(𝑥)  =  𝑘 where 𝑘 is a constant, the periodicity being 

2𝜋. 

Solution. 

STEP ONE  

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝑐+2𝜋

𝑐

 

𝑎0 =
1

𝜋
∫ 𝑘 𝑑𝑥

 2𝜋

0

 

     =
𝑘

𝜋
∫  𝑑𝑥

 2𝜋

0
 

     =
𝑘

𝜋
 [𝑥]0

2𝜋 

     =
𝑘

𝜋
 [2𝜋] 

𝑎0 =  2𝑘 

 

STEP TWO 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝑐+2𝜋

𝑐

 

𝑎𝑛 =
1

𝜋
∫ 𝑘 𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 2𝜋

0

 

      =
𝑘

𝜋
∫  𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 2𝜋

0
 

      =
𝑘

𝜋
 [

𝑠𝑖𝑛𝑛𝑥

𝑛
]

0

2𝜋

 

      =
𝑘

𝜋
 [

𝑠𝑖𝑛2𝑛𝜋−𝑠𝑖𝑛0

𝑛
] 

𝑎𝑛  =  0 

 

STEP THREE 



𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 𝑐+2𝜋

𝑐

 

𝑏𝑛 =
1

𝜋
∫ 𝑘 𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 2𝜋

0

 

      =
𝑘

𝜋
∫ 𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 2𝜋

0
 

=
𝑘

𝜋
 [

−𝑐𝑜𝑠𝑛𝑥

𝑛
]

0

2𝜋

 

      =
𝑘

𝜋
 [

𝑐𝑜𝑠2𝑛𝜋−𝑐𝑜𝑠0

𝑛
] 

      =
𝑘

𝜋
 [

1−1

𝑛
] 

𝑏𝑛  =  0 

Even and Odd Functions 

The function f(x) is said to be even, if f(-x) = f(x). 

The function f(x) is said to be odd, if f(-x) = -f(x).  

If 𝑓(𝑥) is an even function with period 2𝜋 defined in  (−𝜋, 𝜋), then 𝑓(𝑥) can be expanded 

as a Fourier cosine series: 

𝒇(𝒙) =
𝒂𝟎

𝟐
+ ∑ 𝒂𝒏 𝒄𝒐𝒔𝒏𝒙

∞

𝒏=𝟏

 

where the Fourier coefficients 𝒂𝟎 and 𝒂𝒏 are calculated by 

(1) 𝑎0 =
2

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝜋

0
 

 

(2) 𝑎𝑛 =
2

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝜋

0
 

 

If 𝑓(𝑥) is an odd function with period 2𝜋 defined in  (−𝜋, 𝜋), then 𝑓(𝑥) can be expanded as 

a Fourier sine series: 

𝒇(𝒙) = ∑ 𝒃𝒏 𝒔𝒊𝒏𝒏𝒙

∞

𝒏=𝟏

 

where the Fourier coefficient 𝒃𝒏  is calculated by 𝑏𝑛 =
2

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 𝜋

0
 

Example 4 

Find the Fourier series for 𝑓(𝑥) = |𝑐𝑜𝑠𝑥| in (−𝜋, 𝜋) of periodicity 2𝜋. 

Solution. 



Since 𝑓(𝑥) = |𝑐𝑜𝑠𝑥| is an even function, 𝑓(𝑥) will contain only cosine terms. 

Therefore, 𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑛 𝑐𝑜𝑠𝑛𝑥∞

𝑛=1   

STEP ONE 

𝑎0 =
2

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝜋

0

 

=
2

𝜋
∫ |𝑐𝑜𝑠𝑥|𝑑𝑥

 𝜋

0

 

=
2

𝜋
[∫ 𝑐𝑜𝑠𝑥 𝑑𝑥

𝜋
2

 

0

+ ∫ (−𝑐𝑜𝑠𝑥)𝑑𝑥
𝜋 

𝜋
2

] 

(Since in (0, 
𝜋

2
 ), 𝑐𝑜𝑠𝑥 is positive and in (

𝜋

2
, 𝜋)  𝑐𝑜𝑠𝑥 is negative) 

=
2

𝜋
[(𝑠𝑖𝑛𝑥)

0

𝜋
2 − (𝑠𝑖𝑛𝑥)𝜋

2

𝜋] 

=
2

𝜋
[𝑠𝑖𝑛

𝜋

2
− 𝑠𝑖𝑛0 − 𝑠𝑖𝑛𝜋 + 𝑠𝑖𝑛

𝜋

2
] 

=
2

𝜋
[1 − 0 − 0 + 1] 

𝑎0 =
4

𝜋
 

 

STEP TWO  

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝜋

−𝜋

 

=
2

𝜋
∫ |𝑐𝑜𝑠𝑥|𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝜋

0

 

=
2

𝜋
[∫ 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋
2

 

0

+ ∫ (−𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑛𝑥)𝑑𝑥
𝜋 

𝜋
2

] 

=
1

𝜋
[∫ cos(𝑛 + 1) 𝑥 + cos(𝑛 − 1)𝑥 𝑑𝑥

𝜋
2

 

0

− ∫ cos(𝑛 + 1) 𝑥 + cos (𝑛 − 1)𝑥𝑑𝑥
𝜋 

𝜋
2

] 



 

 

 



 

 

 

Example 5.  

Find the Fourier series of 𝑓(𝑥) = 𝑒𝑥 in (−𝜋, 𝜋) of periodicity 2𝜋. 

 



                               

                                   

 

 

Example 6 

Derive the Fourier series of 𝑓(𝑥) = 𝑥 + 𝑥2 in (−𝜋, 𝜋) of periodicity 2𝜋 and hence deduce 

∑
1

𝑛2 =
𝜋2

6
. 

Solution. 

STEP ONE  

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥

 𝜋

−𝜋

 

𝑎0 =
1

𝜋
∫ (𝑥 + 𝑥2) 𝑑𝑥

𝜋

−𝜋

 

       =
1

𝜋
 [

  𝑥2

2
+

  𝑥3

3
]−𝜋

𝜋  



     =
1

𝜋
 [

  𝜋2

2
+

  𝜋3

3
− (

  (−𝜋)2

2
+

 (− 𝜋)3

3
)] 

=
1

𝜋
 [

  𝜋2

2
+

  𝜋3

3
−

  𝜋2

2
+

  𝜋3

3
] 

𝑎0 =  
 2 𝜋2

3
 

 

STEP TWO 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)𝑐𝑜𝑠𝑛𝑥𝑑𝑥

 𝜋

−𝜋

 

𝑎𝑛 =
1

𝜋
∫ (𝑥 + 𝑥2)𝑐𝑜𝑠𝑛𝑥 𝑑𝑥

𝜋

−𝜋

 

=
1

𝜋
[(𝑥 + 𝑥2) (

𝑠𝑖𝑛𝑛𝑥

𝑛
) − (1 + 2𝑥) (

−𝑐𝑜𝑠𝑛𝑥

𝑛2
) + (2) (

−𝑠𝑖𝑛𝑛𝑥

𝑛3
)]

−𝜋

𝜋

 

=
1

𝜋
[(1 + 2𝜋) (

𝑐𝑜𝑠𝑛𝜋

𝑛2
) − (1 − 2𝜋) (

𝑐𝑜𝑠𝑛𝜋

𝑛2
)] 

=
1

𝜋
[2𝜋 (

(−1)𝑛

𝑛2
) + 2𝜋 (

(−1)𝑛

𝑛2
)] 

=
4

𝑛2
(−1)𝑛 

 

STEP THREE 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥)𝑠𝑖𝑛𝑛𝑥𝑑𝑥

 𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ (𝑥 + 𝑥2)𝑠𝑖𝑛𝑛𝑥 𝑑𝑥

𝜋

−𝜋

 

     =
1

𝜋
[(𝑥 + 𝑥2) (

−𝑐𝑜𝑠𝑛𝑥

𝑛
) − (1 + 2𝑥) (

−𝑠𝑖𝑛𝑛𝑥

𝑛2
) + (2) (

𝑐𝑜𝑠𝑛𝑥

𝑛3
)]

−𝜋

𝜋

 

     =
1

𝜋
[(𝜋 + 𝜋2) (

−𝑐𝑜𝑠𝑛𝜋

𝑛
) + 2 (

𝑐𝑜𝑠𝑛𝜋

𝑛3 ) − (−𝜋 + 𝜋2) (
−𝑐𝑜𝑠𝑛𝜋

𝑛
) − 2 (

𝑐𝑜𝑠𝑛𝜋

𝑛3 )] 

      =
1

𝜋
[2𝜋 (

−(−1)𝑛

𝑛
)] 

𝑏𝑛 =
2

𝑛
(−1)𝑛+1 

Therefore, the Fourier series is of 𝑓(𝑥) is given by 



𝑓(𝑥) =
𝑎0

2
+ ∑(𝑎𝑛 𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛 𝑠𝑖𝑛𝑛𝑥)

∞

𝑛=1

 

𝑓(𝑥) =
  𝜋3

3
+ ∑ (

4

𝑛2
(−1)𝑛 𝑐𝑜𝑠𝑛𝑥 +

2

𝑛
(−1)𝑛+1 𝑠𝑖𝑛𝑛𝑥)∞

𝑛=1  _______________ (1) 

 

STEP FOUR 

Deduction: 

The end points of the range are 𝑥 = 𝜋 and 𝑥 = −𝜋. Therefore, the value of Fourier series at 

𝑥 = 𝜋 is the average value of 𝑓(𝑥) at the points 𝑥 = 𝜋 and 𝑥 = −𝜋. Hence put 𝑥 = 𝜋 in (1), 

⟹
𝑓(−𝜋)

2
=

  𝜋2

3
+ 4 ∑

1

𝑛2
(−1)𝑛 𝑐𝑜𝑠𝑛𝜋

∞

𝑛=1

 

⟹
(𝜋 + 𝜋2) + (−𝜋 + 𝜋2)

2
=

  𝜋2

3
+ 4 ∑

1

𝑛2
(−1)2𝑛 

∞

𝑛=1

 

⟹
  2𝜋2

3
= 4 ∑

1

𝑛2
 

∞

𝑛=1

 

⟹ ∑
1

𝑛2
=

  𝜋2

6

∞

𝑛=1

 

Example 7.  

Expand f(x)=x2, when −𝝅 < 𝒙 < 𝝅 in a Fourier series of periodicity 2𝝅. Hence deduce 

that 

 

 



 

 



      

              

                   



      



 

 

 

Root Mean Square (RMS)Value 

 



 

 

 



  

 

 

 

 

 

 

 

 

 

 



Change of Interval 

 

 

 



 

 

 

Half-Range Fourier Series 

Example 11 

Express 𝑓(𝑥) = 𝑥(𝜋 − 𝑥), 0 < 𝑥 < 𝜋 as a Fourier series of periodicity 2𝜋 containing (i) 

sine terms only and (ii) cosine terms only. Hence deduce, 1 −
1

33 +
1

53 −
1

73 + ⋯ =
𝜋3

32
 and                                             

1

12 −
1

22 +
1

32 −
1

42 + ⋯ =
𝜋2

12
. 

Solution. 

(i) sine series: 

 



 

 

 

(ii) cosine series: 

 

 



 

Harmonic Analysis 

Example 12 

Compute the first three harmonics of the Fourier series of f(x) given by the following table. 

       x        0     π/3      2π/3       π      4π/3      5π/3       2π 

     f(x)       1.0     1.4       1.9      1.7       1.5      1.2      1.0 

 

Solution. 

We will form the table for the convenience of work. 

We exclude the last point x = 2π. 

       x      f(x)     cos x     sin x    cos 2x  sin 2x   cos 3x   sin 3x 

       0 

 

       π/3  

 

     2π/3 

 

       π 

   

     4π/3 

 

     5π/3         

     1.0 

 

     1.4 

 

     1.9 

 

     1.7 

 

     1.5 

 

     1.2 

      1 

 

     0.5 

 

    -0.5 

 

    -1 

 

    -0.5 

 

     0.5 

    

       0 

 

   0.866 

 

   0.866 

 

       0 

 

  -0.866 

 

  -0.866 

 

       1 

 

     -0.5 

 

     -0.5 

 

        1 

 

     -0.5 

 

     -0.5 

      0 

 

    0.866 

 

   -0.866 

 

      0 

 

     0.866  

 

    -0.866                   

       1 

 

      -1 

 

        1 

 

       -1 

 

        1 

 

       -1          

      0 

 

      0 

 

      0 

 

      0 

 

      0 

 

      0 

 



a0 = 2/6 ∑f(x) = 1/3(1.0 + 1.4 + 1.9 + 1.7 + 1.5 + 1.2) = 2.9 

a1 = 2/6 ∑f(x) cos x = 1/6(1 + 0.7 – 0.95 – 1.7 – 0.75 + 0.6)  = -0.37 

a2 = 2/6 ∑f(x) cos 2x = -0.1 

a3 = 2/6 ∑f(x) cos 3x = 0.03 

b1 = 2/6 ∑f(x) sin x = 0.17 

b2 = 2/6 ∑f(x) sin 2x = -0.06 

b3 = 2/6 ∑f(x) sin 3x = 0 

f(x) = 1.45 – 0.33 cos x – 0.1 cos 2x + 0.03 cos 3x + 0.17 sin x – 0.06 sin 2x  

 

Example 13 

The values of x and the corresponding values of f(x) over a period T are given below. Show 

that f(x) = 0.75 + 0.37 cos θ + 1.004 sin θ where θ = 2πx/T. 

        x        0                    T/6       T/3     T/2       2T/3      5T/6         T 

      f(x)       1.98      1.30      1.05     1.30               -0.88      -0.25        1.98 

 

Solution. 

We omit the last values since f(x) at x = 0 is known. θ = 2πx/T. 

When x varies from 0 to T, θ varies from 0 to 2π with an increase of 2π/6. 

Let f(x) = F(θ) =  a0/2 + a1 cos θ + b1 sin θ 

         

         θ           y       cos θ         sin θ      y cos θ         y sin θ 

         0 

       π/3 

      2π/3 

       π  

      4π/3 

      5π/3  

       1.98 

       1.30 

       1.05 

       1.30 

      -0.88 

      -0.25 

       1.0 

        0.5 

       -0.5 

       -1 

       -0.5 

        0.5 

           0 

        0.866 

        0.866 

        0 

       -0.866 

       -.866 

       1.98 

       0.65 

     -0.525 

      -1.3 

       0.44 

      -0.125 

          0 

       1.1258 

       0.9093 

       0 

       0.762 

       0.2165 

       ∑         4.6           1.12        3.013 

         

             a0 = 2/6 ∑f(x) = 4.6/3 = 1.5 



             a1 = 2(1.12)/6 = 0.37 

             b1 = 2/6(3.013) = 1.004 

            Therefore, f(x) = 0.75 + 0.37 cos θ + 1.004 sin θ 

 

 Example 14 

Find the first three harmonics of Fourier series of y = f(x) from the following data. 

  x       0°     30°   60°   90° 120° 150° 180° 210° 240°  270° 300° 330° 

  y    298   356   373   337   254   155     80   51     60    93 147 221 

 

Solution. 

The table can be formulated in the usual way. 

Let y = a0/2 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)∞
𝑛=1   

Here a0 = 2/12 ∑y = 1/6(2425) ≈ 404 

a1 = 2/12 ∑y cos x = 107.048 ≈ 107 

a2= 2/12 ∑y cos 2x ≈ -13 

a3 = 2/12 ∑y cos 3x ≈ 2.0 

b1 = 2/12 ∑y sin x ≈ 121 

b2 = 2/12 ∑y sin 2x ≈ 9 

b3 = 2/12 ∑y sin 3x ≈ -1 

Therefore, y ≈ 202 + 107 cos x – 13 cos 2x + 2 cos 3x + 121 sin x + 9 sin 2x – sin 3x. 
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UNIT – II – APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION – 

SMTA1401 



I. Introduction 

Contents - One dimensional wave equation – Transverse vibrating of finite elastic string 

with fixed ends – Boundary and initial value problems – One dimensional heat equation – 

Steady state problems with zero boundary conditions – Two dimensional heat equation – 

Steady state heat flow in two dimensions- Laplace equation in Cartesian form (No 

derivations required). 

Recall that a partial differential equation or PDE is an equation containing the partial 

derivatives with respect to several independent variables. Solving PDEs will be our main 

application of Fourier series. 

II. One-dimensional wave equation 

     Let us start with the wave equation. Imagine we have a tensioned guitar string of length L. 

Let us only consider vibrations in one direction. Let x denote the position along the string, let 

t denote time, and let y denote the displacement of the string from the rest position. See Fig. 

1.  

 

Figure 1: Vibrating string of length L, x is the position, y is displacement 

Let 𝑦(𝑥, 𝑡) denote the displacement at point x at time t. The equation governing this setup is 

the so-called one-dimensional wave equation: 

∂2𝑦

∂𝑡2 = 𝑎2 ∂2y

∂𝑥2                                                   ……. (1) 

We generally use a more convenient notation for partial derivatives. We write 𝑦𝑡 instead of 
∂y

∂t
, and we write 𝑦𝑥𝑥 instead of 

∂2𝑦

∂𝑥2
. 

With this notation the equation that governs this setup is the so-called one-dimensional wave 

equation, becomes 𝑦𝑡𝑡 = 𝑎2𝑦𝑥𝑥   

for some constant 𝑎 > 0. The intuition is similar to the heat equation, replacing velocity with 

acceleration: the acceleration at a specific point is proportional to the second derivative of the 

shape of the string. The wave equation is an example of a hyperbolic PDE. 

The following assumptions are made while deriving the 1-D wave equation: 

1. The motion takes place entirely in one plane. This plane is chosen as the xy-plane. 

2. In this plane, each particle of the string moves in a direction perpendicular to the 

equilibrium position of the string. 

3. The tension T caused by the string before fixing it at the end points is constant at all 

times and at all points of the deflected string. 



4. The tension T is very large compared with the weight of the string and hence the 

gravitational force may be neglected. 

5. The effect of friction is negligible. 

6. The string is perfectly flexible. It can transmit only tension but not bending or shearing 

forces. 

7. The slope of the deflection curve is small at all points and at all times. 

Solution of the Wave Equation (by the method of separation of variables) 

Let  𝒚 = 𝑿(𝒙). 𝑻(𝒕) be a solution of (1), where X(x) is a function of x only 𝑻(𝒕) is a 

function t only.  

  

 

 



 

 

Example 1 

A tightly stretched string with fixed end points 𝒙 = 𝟎 and 𝒙 = 𝒍 is initially in the 

position 𝒚 = 𝒇(𝒙). It is set vibrating by giving to each of its points a velocity 
𝝏𝒚

𝝏𝒕
=

𝒈(𝒙) at 𝒕 = 𝟎. Find 𝒚(𝒙, 𝒕) in the form of Fourier series. 

Solution. 

 



 

 

The left-hand sides of (5) and (6) are Fourier series of the right-hand side functions. 

 

 



Example 2 

A tightly stretched string with fixed end points 𝒙 = 𝟎 and 𝒙 = 𝒍 is initially in the 

position 𝒚(𝒙, 𝟎) = 𝒚𝟎𝒔𝒊𝒏𝟑(
𝝅𝒙

𝒍
) = 𝒇(𝒙). If it released from rest from this position, find 

the displacement 𝒚(𝒙, 𝒕) at any time t and at any distance from the end 𝒙 = 𝟎. 

Solution. 

The displacement y of the particle at a distance x from the end x=0 and time t is 

governed by 
𝛛𝟐𝒚

𝛛𝒕𝟐 = 𝒂𝟐 𝛛𝟐𝐲

𝛛𝒙𝟐. 

The boundary conditions are: 

 

 



 

 

Example 3 

The points of trisection of a tightly stretched string of length l with fixed ends are 

pulled aside through a distance d on opposite sides of the position of equilibrium and 

the string is released from rest. Obtain an expression for the displacement of the 

string at any subsequent time and show that the midpoint of the string is always 

remains at rest.  

Solution. 

 

 



 

 

 

 

Solving (1) and selecting the suitable solution and using the boundary conditions (i), 

(ii) and (iii) as in example 2, we get 

 

Using the initial condition (iv) we get, 



 

 

 



                                                  

 

 

 

Example 4 

A string is stretched between two fixed points at a distance 2l apart and the points of 

the string are given initial velocities v, where 𝒗 = {

𝒄𝒙

𝒍
, 𝒊𝒏 𝟎 < 𝒙 < 𝒍

𝒄(𝟐𝒍−𝒙)

𝒍
, 𝒊𝒏 𝒍 < 𝒙 < 𝟐𝒍

 , x being the 

distance from an end point. Find the displacement of any point at a distance x from 

the origin. 

Solution. 



 

 



 

 

 

 

Example 5 

If a string of length 𝒍 is initially at rest in equilibrium position and each point of it is 

given the velocity 
𝝏𝒚

𝝏𝒕
= 𝒗𝟎𝒔𝒊𝒏𝟑 (

𝝅𝒙

𝒍
) , 𝟎 < 𝒙 < 𝒍. Determine the transverse 

displacement 𝒚(𝒙, 𝒕).  

Solution. 



 

 

 

Example 6 

A string is stretched and fastened to two points 𝒍 apart. Motion is started by 

displacing the string in to the form 𝒚 = 𝒌(𝒍𝒙 − 𝒙𝟐) from which it is released at time 

t=0. Find the displacement of any point of the string at a distance x from one end at 

any time 𝒕.  

Solution. 

The boundary conditions are: 

𝒚(𝟎, 𝒕) = 𝟎, 𝒕 > 𝟎 

𝒚(𝒍, 𝒕) = 𝟎, 𝒕 > 𝟎 



𝝏𝒚

𝝏𝒕
= 𝟎,           𝟎 < 𝒙 < 𝒍 

𝒚(𝒙, 𝟎) = 𝒌(𝒍𝒙 − 𝒙𝟐), 𝟎 < 𝒙 < 𝒍 

 

Using boundary condition (iv), 

 

 

 

Example 7  

A taut string of length 2l is fastened at both ends. The midpoint of the string is taken 

to a height b and then released from rest in that position. Derive an expression for 

the displacement of the string.  



 

Solution. 

 

The boundary conditions are: 

 

 

 



 

                   

             

             



    

Exercise 

A tightly stretched string with fixed end points x=0 and x=l is initially at rest in its 

equilibrium position. If it is set vibrating giving each point a velocity 𝟑𝒙(𝒍 − 𝒙), find 

the displacement. 

 

Heat on an insulated wire 

Now let us consider with the heat equation. Consider a wire (or a thin metal rod) of length L 

that is insulated except at the endpoints. Let x denote the position along the wire and let t 

denote time. See Figure 2. 

 

Figure 2: Insulated wire 

Let 𝑢(𝑥, 𝑡) denote the temperature at point x at time t. The equation governing this setup is 

the so-called one-dimensional heat equation: 

                                                              

where 𝑘 > 0 is a constant (the thermal conductivity of the material). That is, the change in 

heat at a specific point is proportional to the second derivative of the heat along the wire. This 

makes sense; if at a fixed t the graph of the heat distribution has a maximum (the graph is 

concave down), then heat flows away from the maximum and vice-versa. 

Therefore, the heat equation is 𝑢𝑡 = 𝑘𝑢𝑥𝑥 



For the heat equation, we must also have some boundary conditions. We assume that the ends 

of the wire are either exposed and touching some body of constant heat, or the ends are 

insulated. If the ends of the wire are kept at temperature 0, then the conditions are: 

(i) 𝑢(0, 𝑡) = 0 and 𝑢(𝐿, 𝑡) = 0. 

If, on the other hand, the ends are also insulated, the conditions are: 

(ii) 𝑢𝑥(0, 𝑡) = 0 and 𝑢𝑥(𝐿, 𝑡) = 0. 

Let us see why that is so. If 𝑢𝑥 is positive at some point x0, then at a particular time, u is 

smaller to the left of x0, and higher to the right of x0. Heat is flowing from high heat to low 

heat, that is to the left. On the other hand if ux is negative then heat is again flowing from 

high heat to low heat, that is to the right. So when ux is zero, that is a point through which 

heat is not flowing. In other words, ux(0,t)=0 means no heat is flowing in or out of the wire 

at the point x=0.  

We have two conditions along the x-axis as there are two derivatives in the x direction. These 

side conditions are said to be homogeneous (i.e., u or a derivative of u is set to zero). We also 

need an initial condition—the temperature distribution at time t=0. That is, u(x,0)=f(x), for 

some known function f(x). 

 

Solution of heat equation by method of separation of variables  

We have to solve the equation 

 ---------(1)  

where 𝑘 = 𝛼2 is called the diffusivity of the substance.  

Assume a solution of the form 𝑢(𝑥, 𝑡) = 𝑋(𝑥). 𝑇(𝑡) where 𝑋 is a function of 𝑥 and 𝑇 is a 

function of 𝑡.  

Then (1) becomes, 

 

The LHS is a function of x alone and the RHS is the function of t alone when x and t are 

independent variables. Equation (2) can be true only if each expression is equal to a constant. 



 

 

       u(x, t)=(A3x+B3)C3 

 

Example 8 

A rod 𝑙 cm with insulated lateral surface is initially at temperature 𝑓(𝑥) at an inner point 

distant 𝑥 cm from one end. If both the ends are kept at zero temperature, find the temperature 

at any point of the rod at any subsequent time. 

Solution. 

 



 

 

          

 

Since the equation (1) is linear, its most general solution is obtained by a linear combination 

of solutions given by (3). 

Hence the most general solution is 



 

              

 

Two-Dimensional Heat Flow 

          When the heat flow is along curves instead of along straight lines, all the curves lying 

in parallel planes, then the flow is called two-dimensional. Let us consider now the flow of 

heat in a metal plate in the XOY plane. Let the plate be of uniform thickness h, density 𝜌, 

thermal conductivity k and the specific heat c. Since the flow is two dimensional, the 

temperature at any point of the plate is independent of the z-co-ordinate. The heat flow lies in 

the XOY plane and is zero along the direction normal to the XOY plane.  



 

 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

Example 10.  The vertices of a thin square plate are (𝟎, 𝟎), (𝒍, 𝟎), (𝟎, 𝒍), (𝒍, 𝒍). The upper 

edge of the square is maintained at an arbitrary temperature given by 𝒖(𝒙, 𝒍) = 𝒇(𝒙). 

The other three edges are kept at zero temperature. Find the steady state temperature 

at any point on the plate. 

Solution. 
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UNIT – III – NUMERICAL METHODS FOR SOLVING EQUATIONS – 

SMTA1401 



I. Introduction 

Contents - Solution of algebraic equation and transcendental equation: Regula Falsi Method, 

Newton Raphson Method Solution of simultaneous linear algebraic equations: Gauss 

Elimination Method, Gauss Jacobi & Gauss Seidel Method. 

 In the field of Science and Engineering, the solution of equations of the form 𝑓(𝑥) = 0 occurs 

in many applications. If 𝑓(𝑥) is a polynomial of degree two or three or four, exact formulae 

are available. But, if 𝑓(𝑥) is transcendental function like 𝑎 + 𝑏𝑒𝑥 + 𝑐𝑠𝑖𝑛𝑥 + 𝑑𝑙𝑜𝑔𝑥 etc., the 

solution is not exact and we do not have formulae to get the solution. When the coefficients 

are numerical values, we adopt various numerical approximate methods to solve such 

algebraic and transcendental equations. We will see below methods of solving such numerical 

equations. From the theory of equations, we have the following theorem: 

      If 𝑓(𝑥) is continuous in the interval in the interval (𝑎, 𝑏) and if 𝑓(𝑎) and 𝑓(𝑏) are of 

opposite signs, then the equation 𝑓(𝑥) = 0 will have at least one real root between 𝑎 and 𝑏. 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

                                          



 

 

 

 

 

 

 



 

 

 

 

Newton-Raphson Method 

 

 

The iterative formula in Newton’s method is: 

 

 

 



 

 

Therefore, the condition for convergence is: 

. 

Order of convergence of Newton’s method: 

The convergence is quadratic and is of order 2. 

 

 

Solution of Simultaneous Linear Equations 



 

 

 

 

 

 

 

 



 

 



 

 

 



 

 

 

 

 



 

 

 



 

 

 



 

Answers:  

1. ( 3.017, 1.986, 0.912 ) 

2. ( 0.994, 1.507, 1.849 ) 

3. ( -1.0, 0.999, 3 ) 

4. ( 0.83, 0.32, 1.07 ) 

 

 

 

 



 

 

 

 



 

 

 

 



Practise Problems 

Solve the following system of linear equations using Gauss -Seidel Method. 

 

Answers 
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UNIT – IV – INTERPOLATION, NUMERICAL DIFFERENTIATION AND 

INTEGRATION – SMTA1401 



I. Introduction 

Contents - Interpolation: Newton forward and backward interpolation formula, Lagrange’s 

formula for unequal intervals – Numerical differentiation: Newton’s forward and backward 

differences to compute first and second derivatives – Numerical integration: Trapezoidal rule, 

Simpson’s 1/3rd rule and Simpson’s 3/8th rule. 

1. Interpolation 

 

 











 
 

 

 

 

 

 

 

 

 

 

 

 



2. Numerical Differentiation and Integration 

        

 Engineers and scientists are frequently faced with the problem of differentiation or 

Integration of some functions. If the functions have a closed form representation and are 

amenable for standard calculus methods, then differentiation and integration can be carried 

out. However, in many situations, we may not know the exact functions. We will be knowing 

only, the values of the functions at a discrete set of points. In some instances, the functions 

are known but they are so complicated that analytic differentiation, integration is difficult. In 

both these situations, we seek the help of numerical techniques to obtain the estimates of 

derivatives or integrals. The method of obtaining the derivative of a function using a 

numerical technique is known as numerical differentiation. 

 The method of finding the value of an integral of the form ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 using numerical 

techniques is called “Numerical Integration”. In this unit, we discuss various numerical 

differentiation and numerical integration methods. We have to understand that while 

analytical methods give exact answers, the numerical techniques provide only approximate 

answers. 

 

Definition (Numerical differentiation): 

 Numerical differentiation is the process by which we can find the derivative or 

derivatives of a function at some values of the independent variable when we are given a set 

of values of that function.  

Uses of Numerical differentiation:  

The numerical differentiation techniques can be used in the following situations:  

1. The function values corresponding to distinct values of the argument are known but the 

function is unknown. For example, we may knowing the values of 𝑓(𝑥) at various values of 

𝑥, say 𝑥𝑖, 𝑖 =  1,2,3, . .. 𝑛 in a tabulated form.  

2. The function to be differentiated is complicated, and so, it is difficult to differentiate by 

usual procedures. 



 

 

 



 



 

 

 



 

 

 

 

 



 

 

 

 



 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

3. Numerical Integration 

 



 

 



 

 

 



 

 

 



 

 



 

 



 

 

 

 



 

The error in Simpson’s rule is of the order ℎ4 and the error in Trapezoidal’s rule is of the 

order ℎ2 .  

 



 

 

  



                                                                                                                            



 

 

 



 

 

   

 

 



 

 

 



 

  

 

 

Practice Problems 
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UNIT – V – NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL 

EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS – SMTA1401 



I. Introduction 

Contents - Ordinary differential equations: Taylor series method, Runge Kutta method for 

fourth order – Partial differential equations – Finite differences – Laplace equation and its 

solutions by Liebmann’s process – Solution of Poisson equation – Solutions of parabolic 

equations by Bender Schmidt Method – Solution of hyperbolic equations.  

1. Numerical Methods for Solving Ordinary Differential Equations 

 

 



     

                                                 

 

 

 



 

 



 

 



 

  

Problems 

 

 

 

 

 

 

 

 

 



2. Numerical Methods for Solving Partial Differential Equations 

 





 

 

 



 

 



 

 

 



 

 



 



 



 

 



 



  

 



 

 



 

 



 

 

 

 

 

 



Problems 

  

 

Parabolic Equations 

 





















 

 

Problems 

 


