@)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

UNIT — | — Fourier Series — SMTA1401




l. Introduction

Contents - Fourier series — Euler’s formula — Dirichlet’s conditions — Fourier series for a
periodic function — Parseval’s identity (without proof) — Half range cosine series and sine
series — simple problems — Harmonic Analysis.

Periodic Functions

A function f(x) is said to be periodic, if and only if f(x + L) = f(x) is true for some value
of L and for all values of x. The smallest value of L for which this equation is true for every
value of x will be called the period of the function.

A graph of periodic function f(x) that has period L exhibits the same pattern every L units
along the x — axis, so that f(x + L) = f(x) for every value of x. If we know what the
function looks like over one complete period, we can thus sketch a graph of the function
over a wider interval of x (that may contain many periods). For example, sinx and cosx are
periodic with period 2w and tanx has period 7.

PERIOD =L

Dirichlet’s Conditions
Q) f (x) is single valued and finite in (c, ¢ + 2m)

(i) f(x) is continuous or piecewise continuous with finite number of finite
discontinuities in (c,c + 2m)

(ili)  f(x) has a finite number of maxima and minima in (c,c + 2m)

Note 1: These conditions are not necessary but only sufficient for the existence of Fourier
series.

Note 2: If f(x) satisfies Dirichlet’s conditions and f(x) is defined in (—oo, 00), then f(x)
has to be periodic of periodicity 27 for the existence of Fourier series of period 2.

Note 3: If f(x) satisfies Dirichlet’s conditions and f(x) is defined in (¢, c + 2m), then f(x)
need not be periodic for the existence of Fourier series of period 2.



Note 4: If x = a is a point of continuity of f(x), then the value of Fourier series at x = a is
f(a). If x = a is a point of discontinuity of f(x), then the value of Fourier seriesat x = a

is % [f(a+) + f(a—)]. In other words, specifying a particular value of x = a in a Fourier

series, gives a series of constants that should equal f(a). However, if f(x) is discontinuous
at this value of x, then the series converges to a value that is half-way between the two
possible function values.

Fourier Series

Periodic functions occur frequently in engineering problems. Such periodic functions are
often complicated. Therefore, it is desirable to represent these in terms of the simple
periodic functions of sine and cosine. A development of a given periodic function into a
series of sines and cosines was studied by the French physicist and mathematician Joseph
Fourier (1768-1830). The series of sines and cosines was named after him.

If f(x) is a periodic function with period 2 defined in (c, ¢ + 2m) and the Dirichlet’s
conditions are satisfied, then f(x) can be expanded as a Fourier series of the form

a
flx) = 70 + Z (a, cosnx + b,, sinnx)

n=1
where the Fourier coefficients ag, a,, and b,, are calculate using Euler’s formula.

Euler’s Formula

(1) ao =~ [ f()dx
(2 a, = % fCHZn f(x) cosnxdx

(3) b, = % LT F(x) sinnxdx

Standard Integrals

1. [e*sinbx dx = [asinbx — bcosbx]

a?+b?

ax
i [acosbx + bsinbx]

2. [e™cosbx dx =
3. Bernoulli’s generalized formula of integration by parts
[uvdx = uv; — w'vy+u'' vy —u'""v, + -
Trigonometric results
1. sinnm =0, if nisan integer

2. cosnmt = (—=1)", if nis an integer



Example 1

Obtain the Fourier series of the following function defined in (0, 2m).

f(z) = z, 0<z<Tm
| 7, m<z<2m, and has period 27

Solution.
STEP ONE
1 2 1 T 27!'
=1 [ fate = - [ f@perl [ s
™ Jo ™ Jo ™
1 T 1 27r
= —/ [L'd.CL'—|——/ 7 -dx
™ Jo ™ Jr
5]+ 2F]
= —_ | — +— 9 B
T 2 0o T -
1 2
= —(W——O)+(27r—7r)
m\ 2
— 4.
= —4
2
. 3T
1.e. apg = 7
STEP TWO
1 27!'
Uy = — f(x) cosnzdz
T™Jo
1 T 1 271'
= —/ :I:cosna:dx—l-—/ 7 - cosnxdx
™ Jo T Jr
il 1 —cosnz|"
= —[—(ﬂ'SiﬂTLﬂ'—O-SiHTLO) — [w] ]
T ln n 0

1
+ —(sinn27 — sinn)
n



= l l 0—0) + cosmr_cos() +l 0—0
T|n n? n2 n

o (cosnm 1)
= ——(cosnm —
n2m ’
—# , n odd
Gy, =
0 , I even.
STEP THREE
1 27
b, = -— f(x)sinnzdx

™ Jo

v

1 i 1 271'
= —/ a:sinna:d:z:—}——/ 7 -sinnx dzx
0 T Jr

1 [ —7T COS NTT sinnz|” 1
= —||————+0 ]+ . —(cos 2nm — cosnm)
T n n o n
1 ——w(—l)” sinnm — smO 1 .
L = - ( } e ~1) )
T n n
i 1
— e _1 n Gy n
n< )" + n -1 )
We now have
a oo
_. Y9 - x
Flz) = 5 + E [an, cos nz + by, sin nz|
n=1
where ag = 3F T 9 s THEVER b, = —=
() == 2 ;¢ _ngﬂ- 7n0dd 9 T n

Example 2

Expand in Fourier series of periodicity 2w f(x) = xsinx, for 0 < x < 2m

Solution.

STEP ONE

1 c+2m
=t rwax
c



1 21
ap = —J. xsinx dx
Ty

= %[x(—cosx) — 1. (=sinx)]§"

[—2mcos2m + sin2m]

[—27.1+ 0]

I
N
S|

el

Q- Al AR

ao = _2
STEP TWO

1 c+21
a, = - f f(x)cosnxdx
C

21
a, =— f xsinxcosnx dx
TJo

1 2@ . .
= Efo x[sin(n + 1)x —sin(n — 1) x] dx

= o (oo n) g () (sl g (=)

_ i 2 (—cos (Tl+1)21‘[> 1 (— sin(n+1)2n’) . [27_[ (— cos(n—l)ZTr) 1 (— sin(n—l)Zn)]]

n+1 (n+1)2 n-1 (n-1)2
=5l () 1@~ 1) - 1)

= (=) + (=)

1

ap = —— provided n # 1.
1 2
a, =— f xsinxcosx dx
TJo
1 21 .
= — xsin2x dx
2m ),

1 [ (—cost) . (— sian)]Z"
o\ 2 T,
2T

1 [Zn (—cosZ(Zn)) 1 (— sin 2( 2n)>]0

2 2 4



STEP THREE

1 21
b, =— f xsinxsinnx dx
T Jo

= —nfoznx[cos(n —1)x —cos(n+ 1) x] dx
= [ () - 1 (T - e () - (T
_ %T [27_[ (sin (:—1)211') _1 (—co(sr,l(itl—)lz)ZH) _ [ZTT (sin(:+1)2n) _1 (— cczil(f;-;ﬂn)]]

-1 +1

= %T [((n—ll)z) - [((n:)z)] B (01—11)2) " [(ﬁ)]l

b, = 0 provided n # 1.

21
b; =— ] xsinxsinx dx
TJo

1 021 .2
==, xsin’x dx

1[2" 1 — cos2x
=z x<—) dx
T )y 2

_1 [211 <2n _ sin2 (Zﬂ)) . <(27‘[)2 N cos2 (27r)>rn
0

T 2 2 4
1 1 1

__42_22 -

n[” I

= —[2n7]

blzﬂ

Therefore, the Fourier series expansion of the function xsinx is given by



a
f(x) = ?0 + Z(an cosnx + b, sinnx)

n=1

cosnx
n—1

1 [o.0]
xsinx =1 — Ecosx + 2 z + msinx
2

Example 3

Obtain all the Fourier coefficients of f(x) = k where k is a constant, the periodicity being
21.

Solution.

STEP ONE
1 c+21
a, = E,fc f(x)dx
1 2T
ap = —f k dx
TJo
k 2w
= ;fo dx
[x]5"
_k
=% [2n]

a0: Zk

STEP TWO

1 ct+2m
an = — j f(x) cosnxdx
c

1 21
a, =— k cosnxdx
TJo
k r2m
=—J,  cosnxdx

_k [sinnx] 2m
0

T n

_k [sinZnn—sinO]

s n

a, =0

STEP THREE



1 c+2m
b, =— f f(x) sinnxdx
T C

1 21
b, =— f k sinnxdx
TJo

k p2m .
=—J,  sinnxdx

k [—cosnx]2”
T n 0

_k [cosZnn:—cosO]

V[ n

Even and Odd Functions
The function f(x) is said to be even, if f(-x) = f(x).
The function f(x) is said to be odd, if f(-x) = -f(x).

If f(x) is an even function with period 2 defined in (—m, ), then f(x) can be expanded
as a Fourier cosine series:

a
f(x) = 70 + z a, cosnx

n=1

where the Fourier coefficients ay and a,, are calculated by

(1) ao = f," f@)dx
(2 a, = % fon f(x) cosnxdx

If f(x) is an odd function with period 27 defined in (—m, ), then f(x) can be expanded as
a Fourier sine series:

f(x) = Z b,, sinnx
n=1

where the Fourier coefficient b,, is calculated by b,, = % fO" f(x) sinnxdx
Example 4
Find the Fourier series for f(x) = |cosx| in (—m, ) of periodicity 2.

Solution.



Since f(x) = |cosx| is an even function, f(x) will contain only cosine terms.
Therefore, f(x) = % + Yoo ay, cosnx

STEP ONE

2 Vs
ag = Efo f(x)dx

2 Vs
=—f |cosx|dx
TJo

2 (z ™
=— Uz cosx dx + f (—cosx)dx]

(Since in (0, 2), cosx is positive and in (5,7) cosx is negative)
2 n

=— [(sinx)g — (sinx)gl
s 2

2 [ i sind — sinar + si ﬂ]

= - Slnz sin sinm sin )

2
—Z[1-0-0+1]
A
4
a0=_

STEP TWO

1 Vs
a, = - f f(x)cosnxdx
-

Vs
=— f |cosx|cosnxdx
TJo

r 7T
5 Vs

2
f cosxcosnx dx + f
0

2
T n

(—cosxcosnx)dx]

2

P .

J cos(n+1)x + cos(n — 1)x dx — 'L cos(n+ 1)x + cos (n — 1)xdx
0 2

Nle



/2

n+1 n-1

=1“sin (n+ 1)x _ sin(n~ l)x}
n

0

_ {sin (n+1)x & sin (n — l)x}

n+1 n-1

2

_1|sin(n+ l)1t/2+ sin (n— 1)r/2 o sin (n+ 1)n/2
n n+1 n-1 n+1

n-1

+smgn—lg1t/2:, ifnel

ot sinﬂcos£+cosﬂsin£+l
n 2 2 2 AT

L e
x{sm 2 cos2 cos 2 smz}] ifnzl

.
“nln+1 n-1 2
nm .
=~ cos—if n#1l
n(n’-1) 2

n
1
a,=;jlcosx|cosxdx
-

=2

n
: Ilcosxl-cosx

0



- jcoszxdx—Jcoszxdx
WL 0 n/2
2—1 n ]t'1+ 2x T
cos
| dx
nL2 2 Sy 2
— n T
2|l 1 sin 2x
“x| 4 2(” 2 ]
! il
_2[x_=
w4 4
=0.
: Ict::sxl-—2 i R ==
are -Tl ﬂ o _1 S 2 COSHI
n=2
Example 5.

Find the Fourier series of f(x) = e* in (—m, ) of periodicity 2.

Solution. Let f(x)= %o + z (a, cos nx + b, sin nx)

=
where a°=-’l; Ie‘dx

AN Al-

R
L}
E R L
|
£



n

[ 2 5 (cos nx+ n sin nx)]

l1+n

Al=-

=" 1)+ " (-1)"]
1:(1+n)

n
=-—2—(—_--l-L sinh

n(l+n’)

Ie‘smnxdx

-R

?-il'—-

n
1 e ;
=— 3 (sin nx — n cos nx)
| 1l+n

=—L— [ (=m (-1 +e T n (= 1))

n(1+n%)
e 1)"-

u(l+n)

sinh n

sinh 7t 2(-1)
e'= l+2 [+ (cosnx—nsinn)

Example 6

Derive the Fourier series of f(x) = x + x? in (—m, ) of periodicity 2w and hence deduce

2

1 T
257
Solution.

STEP ONE

1 Vi
a == feods

a =lfn(x+x2)dx
T
-1



_1m 7 (m? Cm
_n[2+3 ( + )]

2 3
_1[n2+ 773_ 7T2+ 7'[3]
T 2 3 2 3
2 m?
o= —
STEP TWO

1 Vs
a, = - f f(x)cosnxdx
—TT

1 A
a, =—| (x+x*)cosnxdx
n -1

o ()t (5 o (22
= % (1+ 2m) (w;? %) - (1-2m) (CO;? ]
Ir, (=" D"
=;_2n( n? )+2n( n? )]
4
=5 D"
STEP THREE

1 s
b, =— ] f(x)sinnxdx
n -1

1 s
b, = —] (x + x?)sinnx dx
n -1

n n2 n3

= o e () 2 (2) o) (252) o (2

-5

2
by = = (=)™

_ %[(x n xz) (—cosnx) _ (1 n Zx) (—sinnx) + (2) (cosnx)]:T

Therefore, the Fourier series is of f(x) is given by



a
f(x) = ?0 + Z(an cosnx + b, sinnx)

n=1

FG) =2+ B9, (o (=) cosnx + 2 (=11 sinnx) o)

STEP FOUR

Deduction:

The end points of the range are x = w and x = —m. Therefore, the value of Fourier series at
x = m is the average value of f(x) at the points x = w and x = —m. Hence put x = m in (1),

_ftm_ =
2 3

o 1
+ 4 Z 3 (=1)" cosnr
n=1

T+ m?) + (-7 + m? m? o 1
n
n=1

2 3
2m? A i 1
= = —
3 n2
n=1
i 1 m?
= —_ =
n2 6
n=1
Example 7.

Expand f(x)=x?, when —mr < x < 7 in a Fourier series of periodicity 2. Hence deduce
that

1.1 e
(0—5*22.‘.32 6
2

o B, e oo o
(i) 2 22"32- =0
l r

e l _l. - —_ [N o0 = -
(iit) 2 + 7 + 52'l» o 8

f(x) is an even function of x in — X <x<T, Hence bn = 0 and
only cosine terms will be present. Therefore,



fx)= ? + z a, cos nx wer(i)

i =2
3

IN
N o *—.a
Il

Substituting these values in (i),

f(x)-l‘—z+425—)—cosnx ,
n=1 ()

2
. L cosx cos2x cos3x ’
= ‘3:?-4[ 12~ 92 + 32 ’""]-"“R<x<u.

The function f (x)=1r2 is continuous at x=0. Hence the sum of the

Fourier series equals the value of the function at x =0, Puttip
x =0, in (i), 8
®_J|i-1.1_
R W B .
. _.‘-2- - ;‘2"" 32 12 ....(m')

c=niganend point. Hence the sum of the Fourier series at x = &t equals

1 {f(-n+0)+f(ﬂ 0)}

Puttingx =% in the series of (if),

_+4Z‘—'—"—M Lf(-R+0)+f(x-0))
n=1

L e
a g,
3

U

- 1
2'3



. Liprartee o

Adding (iii) and (),

. A L4t =
ie., Sradgtnnl 8

Example 8 Find the Fourier series of periodicity 2r
x when —n<x<0

for f(x) =10 when 0<x<§

x-5 whcn§<x<x
t 2 2

Solution. Let f(x)= % + Y, (a,cos nx+ b, sin nx) A1)

=
where  ao= | s
Taking ¢ = —n in the Euler formulas we have

x 0 n
=1 [r@ac=t[re) e+ [ it
u—s n T 0

Now using the hypothesis for the value of f(x), we get

-1 u(-k) 4 ;[m} -1 (‘ *‘j)" (kxj

=1 (0 km) + (k- 0))

=-'l

Thus d = 0. Againforn=1,2,3,....

f /) cos nx dx

=I|—-

ERE

(0 x

=—{ If(x)cosnxdx+ If(x)cosnxdx].
- 0

L

Substituting the values supplied for f(x), we have

1
x -5

K
a,=—1 I(—k)cosnxdx+ Ikcosnxdx]

\



o))

Since sin 0, sin (-»n) and sin »n are all zero, we get @, = 0.

x

,,=-1I;If(x)sinnxdx

[

0 x
-3;« If(x)sinnxab:+]f(x)sinma&]
-x 0

0 x
=%« I(—-k)sinmctwfksinnxdx]
0

-x
.

0 x

i [,,cosm],,[_,,c_os_m_r]
® n n

-x 0

=l[{£cos0-£coo(-m)}+{-£cosmt+£cos0}]
n||n n n n

But cos (—a) = cos o, giving cos (—nm) = cos rm; further, cos 0 = 1.
Hm“b.s;kx-{{l -cosnu}+{-coomt+l}]=-:;(2- 2cos nm)

_I. fDl' ‘xld.ﬂ‘
+1, for even »,

b= gl(l - cos nm). Now cos nm =
T (= 1)', for any integer n



4k 4k Sk
Hence b, = by =0; b;=§£,b4=0, bﬁ_ﬁf;bﬁ:ﬂ:
4k
b,__,?ﬂ .....

Using the values of a, and b, in (/) we obtain
f) =% {sinx+%sin 3x +$lsin Sx+;'sin Tx + v to )

In the above equation putting x = 1/2, we get

) 4k
e

But, by hypothesis, /{g) =k

_ 4k, 111
Hence k= =  =Gep=gdoe to o}

Multiplying both the sides by % » we have

E_,_

4

Note. Functions of the type given in this example occur as external force
acting on mechanical systems, electromotive forces in electric circuits etc,

+

+ - t0 00,

W | e
(VY
-

Root Mean Square (RMS)Value

The root-mean-square value of a function y =£(x) over a giye,

(a, b) is defined as

b
[ dx
a

y= b-a

If the interval is taken as (¢, ¢ + 2n), then



Suppose that y =f(x) is expressed as a Fourier-series of periodicity 2x j
(c, ¢ + 2m). then,

y=j(x)='02—°+ z (a, cos nx + b, sin nx) i)

3

2x
f(x) cos nx dx i y

Multiply (ii) by f (x) and integrate term by term with respect to.x over the gived |
range. Thus,

c+2n aoc+2x o c+2n
! W) dv== !f(x)dx+ }}l[a,, !f(x)cosnxdx
c+2x
+b, If(x)sinnxdx
c

= fz—o (mag) + 2 la, (ra,) + b, (=b,)] using (iii)



Ex 9. Find the Fourier series of periodicity 2r for fix) =2,
in — ® < x < %. Hence show that

-—'—+'+l+ 4 10oo=
3¢

ol
In example 7 , we have proved

gin,

- "
fix)= ’—t;- +4 Z -(—9- cos nx, which is the first part of this problem. The

coefficients ay, a,, b, were seen to be

%,T"z.afﬂ—)- +b,=0.

Hence using the root-mean-square value in series,

2![—+-Z(a +b’)] =[ R dx= jx‘dx



Change of Interval

Example 10 Find the Fourier series of periodicity 3 for f (x )= 2.
in0<x<3

Here the range and the period are same (equal to 3)
It is a full range series.

3
so2=3; l=2'

Let f(X)=%+Z(a,cw'—32"E+b.sin%)

3 3
where %'sz Xz)dX""[x —%I:O
=0
2
3
a, %IZx xz)cosz';mdx
50
2 sin T cos 3
] R el e e
2 9
o
3
+(=2) -
8n’r’




cos .
2 3 sin ——
== (x-xH)|- L] s 3
3 ( ) Zm (2-2x) o
2 9
2nmx i
cos =3
+(=2) —
=9 8n’n’
27 5
=3
" nn
9 ¢ 1. (2nmx), 3 ¢ 1_ (21mx
g £ ()2 £ )

Half-Range Fourier Series

Example 11

Express f(x) = x(mr — x),0 < x < m as a Fourier series of periodicity 2 containing (i)
3

sine terms only and (ii) cosine terms only. Hence deduce, 1 — 313 to ot = ’;_2 and

11,1 1. ._=

12 22 32 42 12°

Solution.

Q) sine series:

Let f(x)= Y, b, sin nx
1

where b,= x(T — x) sin nx dx

x

ZP{m_xg}[“ccinx] (x _zx)[smn.xl - 2)[cosm:]]
n n

) 0

r ~Zerr- }]

alw
St—3

Al

I
Al



~&[-e]

nn
=0if nis even

=8 ifnisodd
-

: _8 1
! f(lt')—’t u§' 2n-1y

Setting x = %/2 which is a point of contihuity we get first deduction

sin(r-1) x.

(i) cosine series:

Let f(x)=%+ Y a,cos nx

n
a . I (x — x°) cos nx dx
0

L
. n
____2_F(n_xz)(sinnxJ_(u_h)(_cosznx]+(_2)(_'sm3nx]:|
n n 8 n
= 0
2r n n T |_ _2. n
=;-—;l-2(— 1) —;'_2]-"'"2[1"'(- 1) ]
=( for n odd
=—-4;forneven
n
x(u-x)=-n—2-4 Z -l—zcosnx

puh 6.2



¢ 1
X(N-X)=§" Z ?cos2nx.
1

Setting x = 1t/2 which is a point of continuity,
£ ®m . ® ol m
-z-(ﬂ—-z-)=—6‘—znz(—l)

1 . T 1t2
Y ac0=¢"%

Harmonic Analysis

Example 12

Compute the first three harmonics of the Fourier series of f(x) given by the following table.

X 0 /3 21/3 T 47t/3 5m/3 21
f(x) 1.0 1.4 1.9 1.7 15 1.2 1.0
Solution.
We will form the table for the convenience of work.
We exclude the last point x = 27
X (x) COS X sin X COosS 2x | sin 2x cos 3X sin 3x
0 1.0 1 0 1 0 1 0
/3 1.4 0.5 0.866 -0.5 0.866 -1 0
27/3 1.9 -0.5 0.866 -0.5 -0.866 1 0
T 1.7 -1 0 1 0 -1 0
47t/3 15 -0.5 -0.866 -0.5 0.866 1 0
S5m/3 1.2 0.5 -0.866 -0.5 -0.866 -1 0




a=2/6Yf(x)=1/3(1.0+14+19+1.7+1.5+1.2)=2.9

a1=2/6 Yf(x) cos x = 1/6(1 +0.7—0.95 - 1.7 — 0.75 + 0.6) =-0.37

a2=2/6 > f(x) cos 2x =-0.1

az=2/6 > f(x) cos 3x = 0.03

b1=2/6 Yf(x) sin x = 0.17

b2=2/6 > f(x) sin 2x =-0.06

b3=2/6 > f(x) sin3x =0

f(x) = 1.45-0.33 cos x — 0.1 cos 2x + 0.03 cos 3x + 0.17 sin x — 0.06 sin 2x

Example 13

The values of x and the corresponding values of f(x) over a period T are given below. Show
that f(x) =0.75 + 0.37 cos 6 + 1.004 sin 6 where 0 = 2nx/T.

X 0 T/6 T/3 T/2 2T/3 5T/6 T
f(x) 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98
Solution.
We omit the last values since f(x) at x = 0 is known. 6 = 2zx/T.
When x varies from 0 to T, 0 varies from 0 to 2z with an increase of 27/6.
Let f(x) = F(6) = ao/2 + a1 cos 6 + b1 sin 6
0 y cos 0 sin 0 y cos 0 y sin 0
0 1.98 1.0 0 1.98 0
/3 1.30 0.5 0.866 0.65 1.1258
2n/3 1.05 -0.5 0.866 -0.525 0.9093
T 1.30 -1 0 -1.3 0
47/3 -0.88 -0.5 -0.866 0.44 0.762
5n/3 -0.25 0.5 -.866 -0.125 0.2165
5 4.6 1.12 3.013

a0=2/6 Yf(x) = 4.6/3=15




Example 14

a1 = 2(1.12)/6 = 0.37

by = 2/6(3.013) = 1.004

Therefore, f(x) =0.75 + 0.37 cos 6 + 1.004 sin 0

Find the first three harmonics of Fourier series of y = f(x) from the following data.

X 0° 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330°
y | 298 | 356 | 373 | 337 | 254 | 155 80| 51 60 93 147 | 221
Solution.

The table can be formulated in the usual way.

Lety =ao/2 + ), (a, cosnx + b, sinnx)

Here ao = 2/12 Yy = 1/6(2425) = 404

a1=2/12 Yy cos x = 107.048 = 107

a=2/12 Yy cos 2x = -13

az=2/12 Yy cos 3x=2.0

b1=2/12 Yy sinx = 121
b2=2/12 Yy sin2x~9
bs=2/12 Yy sin 3x = -1

Therefore, y ~ 202 + 107 cos x — 13 cos 2x + 2 cos 3x + 121 sin x + 9 sin 2x — sin 3x.




SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

UNIT - 11 - APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATION —

SMTA1401




l. Introduction

Contents - One dimensional wave equation — Transverse vibrating of finite elastic string
with fixed ends — Boundary and initial value problems — One dimensional heat equation —
Steady state problems with zero boundary conditions — Two dimensional heat equation —
Steady state heat flow in two dimensions- Laplace equation in Cartesian form (No
derivations required).

Recall that a partial differential equation or PDE is an equation containing the partial
derivatives with respect to several independent variables. Solving PDEs will be our main
application of Fourier series.

Il.  One-dimensional wave equation

Let us start with the wave equation. Imagine we have a tensioned guitar string of length L.
Let us only consider vibrations in one direction. Let x denote the position along the string, let
t denote time, and let y denote the displacement of the string from the rest position. See Fig.

E

Figure 1: Vibrating string of length L, x is the position, y is displacement

Let y(x, t) denote the displacement at point x at time t. The equation governing this setup is
the so-called one-dimensional wave equation:

0%y _ 0%
e~ T (1)

We generally use a more convenient notation for partial derivatives. We write y, instead of
dy . . 9%y
pre and we write y,., instead of P

With this notation the equation that governs this setup is the so-called one-dimensional wave
equation, becomes y,; = a?y,,

for some constant a > 0. The intuition is similar to the heat equation, replacing velocity with
acceleration: the acceleration at a specific point is proportional to the second derivative of the
shape of the string. The wave equation is an example of a hyperbolic PDE.

The following assumptions are made while deriving the 1-D wave equation:

1. The motion takes place entirely in one plane. This plane is chosen as the xy-plane.

2. In this plane, each particle of the string moves in a direction perpendicular to the
equilibrium position of the string.

3. The tension T caused by the string before fixing it at the end points is constant at all
times and at all points of the deflected string.



7.

The tension T is very large compared with the weight of the string and hence the
gravitational force may be neglected.

The effect of friction is negligible.

The string is perfectly flexible. It can transmit only tension but not bending or shearing
forces.

The slope of the deflection curve is small at all points and at all times.

Solution of the Wave Equation (by the method of separation of variables)

Let y = X(x).T(t) be a solution of (1), where X(x) is a function of x only T(¢t) is a
function t only.

ar - 2
,_dX . dT
where X:Er—z-and?' -
Hence (l)bccnmes,,\’r" = X'T
. 2
ie. —X—.. azT ( )

The L.H.S. of (2) is 2 function of x only whereas the R.H.S. is a function qf
time r-only. But x and f are independent variables. Hence (2) is true only if

each is equal to a constant.

.l 1;— = k (say) where k is any constant.

—

X aT
Hence X" — kX=0and T" -a’ kT=0
Solutions of these equations depend upon the nature of th
Case 1. Let k= A%, a positive value . 1

* - v _ A\ =0.

Now the equation (3) are X" — AX=0 am{n T a’lt T

Solving the ordinary differential equations we g¢l,

X=A,"+ B

and TuCd®+Die ™"

)]

e value of k.

Case2. Letk=- 2% anegative numzber. s o
Then the equations (3) are X' + A°X=0an

Solving, we get, .
X=A2coskx+stmxx

and T=C, cos A at + Dy Sin A at.



Case 3. Let k=0.
Now the equations (3) are X' =0and

Then integrating, X=A + B,

s T=Cst+ Dy

7" =0.

ave equation e

. W
Thus the various possible solutions :'f)' the (t:;
y=(4,e™ + By M)C, & + Die Aat + Dy I Aal) .:U"’
Y= (A4, cos Ax + B, sin Ax) (Cyc08
Y=(Ayx + B)Cyt + Dy)

Example 1

A tightly stretched string with fixed end points x = 0 and x = L is initially in the
position y = f(x). It is set vibrating by giving to each of its points a velocity % =
g(x)att = 0. Find y(x, t) in the form of Fourier series.

Solution.

The displacement y (x, f) is governed by
% =a g—’; (1)
The boundary conditions under which (1) is to be solved are .
() y(©,7)=0fort=>0
@) y(,)=0fort20
(iif) y(x,0)=f(x), forO<x <!

() (%) = g(),fer0<x<l

t=0
Solving (1) by the method of separation of variables, we get,
Y&, =4, & + B, & P)C, " + D, &) ()
¥ = (A, cos Ax + B, sin Ax)(C, cos Aat + Dy sinhaf)  ...(~II)
Y=(Ayx + By)(C3t + D3) . ..(IIT)

Since the solution should be periodic in ¢, we reject solutions (T) and (111)
and select (II) to suit the boundary conditions (i), (i), (iii) and ().



“ Y%, )= (4 cos Ax + B sin AxXC cos Aat + D sin Aaf) ~(2),
“here 4, B, C, D are arbitrary constants.

Using boundary condition () in (i),

4(Ccos Aat + D sin Aat) =0 for all £ 2 0.

s At

Applying the boundary condition (if) in (2),

Bs‘"”(COOSMHDsth) 0, forall 22 0.

ifB= =0, the solution becomes y =0 which is not true.

'“‘“ =0,Bx0,

€. M= mm, where n is any integer.
LodeMm

S—

nnat
y(x, )= Bsm—ml—tx(Ccos”t +Dsm—l—)

at nmnat

ie, yxi= sm-m—;x-LC cos ml +D, sm—l—) w(3),
where BC =C, and BD =D,

Since the wave equation is linear and homogeneous, the most gener|

solution of it is
o

yx, 0= 2 (C,, cos'mTa‘+D,, sin —m;-@Jsin# «(4).
n=1
This satisfies boundary condition (i) and (i#). To find C, and D, we make
use of the mitial conditions (iif) and (#v).

y(x,0)= Z Cysin T =1(x) .05
n=1
and (%) = Lo D,sin T =g 6
t=0

The left-hand sides of (5) and (6) are Fourier series of the right-hand side functions.

!
2
Henoe Cy='7 gf (=) sin™} di A7)
i
2 . NMx
- .'_"‘7_1) =-,-(];g(x)sm~, dx @



Example 2

A tightly stretched string with fixed end points x = 0 and x = L is initially in the
position y(x,0) = y,sin3 (?) = f(x). If it released from rest from this position, find

the displacement y(x, t) at any time t and at any distance from the end x = 0.
Solution.
The displacement y of the particle at a distance x from the end x=0 and time t is

?y _ 20%
governed by — = a® .

The boundary conditions are:

y(0,0=0. forall 120 ()
y(L.0=0, forall 120, (i)
(% ]20' forO<xs<t (i
t=0

. 3 mx
y(x.0)=)‘os'“3(7)' for0<x</ (iv)

Now solving (1) and selecting the proper solution to suit the physical
nature of the problem and making use of the boundary conditions (1) and (ii)
a5 in the previous problem, we get

. nnx
y (x, r)=BsmnT(Ccos"Tm+Dsin-"%] «(2)

Again using the boundary condition (jii),

(% L:owm%(o-#)-

If B=0, (2) takes the form y (x, 7) = 0. Hence B cannot be zero.
s D=0,

Hence (2) becomes,
. nmat : 2
y(x,)=B, — cos —Ig- » where n is any integer and B, is any constant.

_ The most general solution satisfying (1) and the boundary conditions (i),
W) and (iii) is

Y(x, 0= z B, sin _ruitx__ cos # «(3).



Tofind B, use the boundary condition (iv).

e Z B, sin 7 = y, sin (—";5)

Il-l l

Yo T 3nx
- 3 P ST
4( sin = sin == )

Thi :
lSnstmconIylfB,—-3—4— B’-_TandB =0, forn#1,3.

Using these values in (3), the solution of the equation is

3 w mat Yo . 3nmx  3nat
y(x,t).=—3;23in—l—cos—l——-zsm—rcosT

Example 3

The points of trisection of a tightly stretched string of length | with fixed ends are
pulled aside through a distance d on opposite sides of the position of equilibrium and
the string is released from rest. Obtain an expression for the displacement of the
string at any subsequent time and show that the midpoint of the string is always
remains at rest.

Solution.
Yy
D (43, d)
| C A(1,0)
N
E (2// 3~0)
BD=CE=d.

The displacement y (x, 1) is governed by

31}- _ 2 31y
X )



The boundary conditions here are

y(©0,0)=0 fort20 i)
y(Ln=0 fort20 i)y
ay |
and ( 3 ]- 0, forO0<x<! (i)
t=0

To find the initial position of the string, we require the equation of ODEA

The equation of ODis  y= % x= 3% X

The equation of DEis y—d = - d_
€q 5y=- (1/6) (x=1/3)

ie., y='T(l—2x).

The equation of EA is y=%(x—l).

The fourth initial condition is
(
% forO0sx<!l/3
2!
y(x,0)= 1 —(l 2x) foras 5—3-
-l—(x-l) for%<x$l (iv)

Solving (1) and selecting the suitable solution and using the boundary conditions (i),
(it) and (iii) as in example 2, we get

. mmx nmat
y(x,t) = E =08

Using the initial condition (iv) we get,



Y B,sin" =y(x0)= ﬂforOSxSlB

_3d ., ! 2
s (1 2x),for35x53-

(x=1D, for-3- <x<l

3d 2l
!
Finding Fourier sine series of y (x, 0) in (0, /) we get in the usual

way y(x,0)= Z b, sin-'-'—lnﬁ-

n=1
21
B,=b,=7 [y (x 0)sin" " dx
0
’ ”33dx 21/3
B,,=7 I oy n!'—’;'x— + I —(l 2:)sm—-—dt
0 173
l 3d
+I -T(x—l)sing%dx
/3
- ¢ S ( .m\-m
=§_4_ ) -cos ] i) _sm ]
r n n'n’
/ P
I / \ )40
. \ 220/3
[ cos X [ sin ™
i K] == =(=2)| = '
! P
i \ / \ S




!
[ cosf'[E sin%
v L I I el Ry
! NS
o 273
184 [ . nn_ . 21T
=n2n2[sm3 sin 3J
18d[ . nm_ _nmm
=n—2——2-sm 3 —sm(mt 3 )]
—1—84 'nﬂ-f-cosmt-sinﬂ
_nznzbSI 3 - 3
184 . nm ,.
=——sin—[14+(-1)"]
nn? 3
=0if nis odd.
36d . nm.. .
=-——sin — if n is even.
o ¢ 3
Hence,
6d ¢ L onm. ommx oonmat
y(x’t).—.:‘—z- z ?sm 3 sin ] COS ]

o 1 . 2nm . 2nmx _ 2nmat
ie., )’(Jc,t)=-"—2 Z — sin =3~ sin = $cos = —

By putting x = //2, we get the displacement of the midpoint.

5 9 [é' t)= 0, since sin 2";“ becomes sin nt =0 when x =1/2.

Example 4

A string is stretched between two fixed points at a distance 2| apart and the points of

%jn0<x<l
the string are given initial velocities v, where v = {.,;_,, , X being the

] Jinl<x<2l

distance from an end point. Find the displacement of any point at a distance x from
the origin.

Solution.



The boundary conditions are
y(0,1) =0, for 120

o ()
y2.,0)=0, for 120 (_‘_:
<Al
. 0)=0, for 0
y(x, 0) or 0sx<2 ..(1il)
(%) =%in0<x<l
=0

C .
=-l-(2l-x). inl<x<2l (1)

As in the previous examples, using boundary conditions () and (i), we
get

_ .. nmx nnat nna
y(x, 1) =sin 2 [C cos =, + D, sin —27]
Using (iii), C,=0.

. nRx . nmat
s Yx0=D, sin =5, sin ==

The most general solution of the equation (1) is

nnx . nnat
y(x, 8) = ;lD,, sin 2 S sin i

dy _“ nmta) . nfx nnat
o (x, 1) -n;lD,,( 2l )sm 21 cos 2

Using (iv),

nma) . nnx cxX .
"ZD"(ZI )sm v=T’m0<x<l

21

%(ZI-x), inl<x<2l.
Expanding v in Fourier sine series, we get

| 2
nta 2|c dx
Py it | —-—dx+ 2l - x) sin —;
) | 21 I{xsm 21 ‘[( )

-(2)



)
l- coslz-B Sm"@
2 _ 2l —m|- 2(
) D"=———mcal nn 2
2 4P
| 0
2
[ cosm sin 2
+1@l-x)|- = -=n|-—Z
. M n21t2
2! al
1 4]
I
2¢ |-2P nn AP nn 207 nn
=n1tal[ cos — +n21t2 in~ + 0s
P
+n2_1tzsm )
2 8% . m

}’(X» t) _—

§‘o~

Example 5

If a string of length Lis initially at rest in equilibrium position and each point of it is
given the velocity % = pysin ( ) 0 <x <l Determine the transverse
displacement y(x, t).

Solution.



The boundary conditions are
(0,0 =0, for 120

& & - 1)
y(l, 1) =0, for t (i)
y(x‘ O)=0, for 0<x<I (lll)
a)’ . 3T
(EJ =vo Sin" = forO0<x<i (V)
1=0
Selecting the solution II, and using boundary conditions (i) and (if)
we get y(x, £) = B sin % (C cos "T’“" +D sin #)
using (iif), C=0
Therefore y(x, f) = B, sin % sin nTnat' n any integer
The most general solution is
y(x,0)= 3 B, sin 7% sin - . -(3)
n=1 gz
Iy < .
—a¥ = z A n1lta sin m;x cos m;at -(IV)
n=1
Using in (3),
3l nat Yo . 3mx . 3mat
y(x, 1) = 3;? sin% $in " Tra "™ 1 " |
Example 6

A string is stretched and fastened to two points I apart. Motion is started by
displacing the string in to the form y = k(Ix — x?) from which it is released at time
t=0. Find the displacement of any point of the string at a distance x from one end at
any time t.

Solution.

The boundary conditions are:
y0,)=0, t>0

y(lt) =0, t>0



ay
a

y(x,0) = k(lx — x%),

0<x<l

0<x<l

Using boundary condition (iv),

% B, sin™= =k (I - 23)

s shows that this is the half range Fourier sine
ula for Fourier coefficients,

I

Thi
ysing the o

2 — 22 gin TTX
B.'—'bu"’"l_jk(b‘ x°) sin ; dx
0
E n
== in 28X
x| (x-xH Baiull - (1-2x) Rl
' . n'n’
2
L I
2P
-’f[ (1" -u}
2
4kl [1 (—l)]
=0 if nis even
2
=5 ifnisodd
ntr
Substituting in IV,
Y(X»f)=8k-f2 L ,stn-l)""E (2n - )nat
T =21y !
Example 7

series of k(lx — xl).

A taut string of length 2l is fastened at both ends. The midpoint of the string is taken
to a height b and then released from rest in that position. Derive an expression for

the displacement of the string.



Solution.

7

A(l, b)
|
b!
|
0 / B(21,0) X
The boundary conditions are:
X0.0=0, r20 ()
Y2Ly=0, r20 i)
?'_v. =0,0$X$2’ <o (i)
[a: ],_ o

.-_---bl-(x-ZI).leSZl

[since. equation of OA is y = % x and equation of AB is LZOI = @1\
- ~2

—~

Starting with the solution
y(x, ) = (A cos Ax + B cos Ax)(C cos Aat + D sin Aat)
using the first boundary condition,

y(0,8)=A(Ccos Aat + D sin Aab) =0
A=0,

using W2 ) =0 we get
B sin 2IA. (C cos Aat + D sin Aar) = 0

B#O‘,Zﬂ,: s =—n§
nx ;A 2

Using [ﬂ] D =0.
ot
t=0
in x )= 1 n_ﬂ__ M
Mx, 1) ZB,,SIn 2 5, N



Using boundary condition (v)inlV,

)’(X-0)=zl,8,,sin m:%

21 x,0sx<!

-20),1sxs2

This is half-range Fourier sine series

. B, %—{f(x)sm

ll{i% '—dx—-I(x 20 sin 7, dx]

0

nmx sin X
b €% 2
=—i (X) - nm W n21t2
’L 20 yr
ch
n nmx
3 _COS—ZT sin 21
B R ™ '’
21 41
o
2 4’ . nn
2’2 nmn 4_12. . nn 2L nn + ——sin —
=%[-;ﬂ—cos;+n2n2(sm N 3t Ay
b| 8% . nn
= ?[_Fniﬂl sin 2 ]
8b nm
=——= 5N
et 2

=( forneven



8b

nm
=-——=sin — for odd n.
et 2

Substituting in IV,

8b 1 . (2n - l)m (2n— 1)nat
)‘(x,t)=-1?n=‘a-—l)2sm (2n - l)— sin T
e e (=1 -5l . @n-Drx (@2 - Dnat
n_l(2n— 1)? 2

Exercise

A tightly stretched string with fixed end points x=0 and x=I is initially at rest in its
equilibrium position. If it is set vibrating giving each point a velocity 3x(l — x), find

the displacement.

Heat on an insulated wire

Now let us consider with the heat equation. Consider a wire (or a thin metal rod) of length L
that is insulated except at the endpoints. Let x denote the position along the wire and let t

denote time. See Figure 2.

temperature u

-

Figure 2: Insulated wire

Let u(x, t) denote the temperature at point x at time t. The equation governing this setup is
the so-called one-dimensional heat equation:

insulation

ou

T =

0%u

ox?’

where k > 0 is a constant (the thermal conductivity of the material). That is, the change in
heat at a specific point is proportional to the second derivative of the heat along the wire. This
makes sense; if at a fixed t the graph of the heat distribution has a maximum (the graph is

-

L x

concave down), then heat flows away from the maximum and vice-versa.

Therefore, the heat equation is u; = k.,



For the heat equation, we must also have some boundary conditions. We assume that the ends
of the wire are either exposed and touching some body of constant heat, or the ends are
insulated. If the ends of the wire are kept at temperature 0, then the conditions are:

Q) u(0,t) = 0and u(L,t) = 0.
If, on the other hand, the ends are also insulated, the conditions are:
(i) u,(0,t) = 0and u, (L, t) = 0.

Let us see why that is so. If u, is positive at some point x0, then at a particular time, u is
smaller to the left of x0, and higher to the right of x0. Heat is flowing from high heat to low
heat, that is to the left. On the other hand if ux is negative then heat is again flowing from
high heat to low heat, that is to the right. So when ux is zero, that is a point through which
heat is not flowing. In other words, ux(0,t)=0 means no heat is flowing in or out of the wire
at the point x=0.

We have two conditions along the x-axis as there are two derivatives in the x direction. These
side conditions are said to be homogeneous (i.e., u or a derivative of u is set to zero). We also
need an initial condition—the temperature distribution at time t=0. That is, u(x,0)=f(x), for
some known function f(x).

Solution of heat equation by method of separation of variables

We have to solve the equation

ou_, O
ot  oz?’

where k = a2 is called the diffusivity of the substance.

Assume a solution of the form u(x,t) = X(x).T(t) where X is a function of x and T is a
function of t.

Then (1) becomes,

T/ =’ X"T,

d°X , dr
P  and T/ = —
where X "{hz an dt
.ox_ T
e YT — e

The LHS is a function of x alone and the RHS is the function of t alone when x and t are
independent variables. Equation (2) can be true only if each expression is equal to a constant.



X i
) ~— =—— =k (constant
. Lﬂ x QZT )

o X' =kX=0,and T’ - kT =0
The nature of solutions of (3) depends upon the values of k

Case 1. Letk=22 a positive number,
Then (3) becomes,

X'-A\X=0, and T - o®A2T =0,
Solving, we get

e

2.2
X=Ae™+Be™and T=C,e* ",
’ Czase 2. Let k=-22 a negative number. Then (3) becomes
X'+1X=0,and T + o®A2T = 0.
Solving, we obtain

X=A,cos \x + B, sin Ax, and T = Cze'“lf’.
Case 3, Letk =,
Then X" =0and T’ = 0.
Solving, we arrive at y
X=Ax+Byand T=C,
Hence the possible solutions of (1) are

ll(.t. f) = (Ayﬂh & Ble-h') Cltcllz‘

XS =)
U(x, f) = (A, cos Ax + B, sin Ax) C; €

u(x, t)=(Asx+B3)Cs

Example 8

A rod [ cm with insulated lateral surface is initially at temperature f(x) at an inner point
distant x cm from one end. If both the ends are kept at zero temperature, find the temperature
at any point of the rod at any subsequent time.

Solution.
122 ITTTIRLLLLLLLL LY
o (e}
I u(x 0) =% I
S ' S
—

o 7777777777787 7777777774 X



Let u(x, f) be the temperature at any point distant x from one enduy
time ¢ seconds. Then u satisfies the partial differential equaiy

Pu_1 u
ot ol ot
The boundary conditions, here, are
u(0,1)=0 forallt20
u(l,1)=0 forallt20

and the initial condition is
u(x,0)=f(x),for0<x<! A

Solving the equation (1) by the method of separatioq of variables®!
selecting the suitable solution to suit the physical nature
problem as explained in the method § 3-6, we get

2.2
u(x, )= (A cos Ax + B sin Ax) e~ L
Substituting the boundary condition (i) in (2), we get,
2
u@©,)=Ae*"*"'=0, forall t20
s A=0
Employing the boundary condition (i) in (2). we obtain,

2,2
“(L)=BsinMe®* " =0 forall 120

ic.. Bsin M =0.

(2) will be a trivial solution, Hence

A= 1T where n is any integer,

- 1;5 » where n is any integer,
Then (2) reduces t0

222

. n anx

u(x, ) = B, sin o il ;

«(3),

where By isanY constant.

Since the equation (1) is linear, its most general solution is obtained by a linear combination
of solutions given by (3).

Hence the most general solution is



5 222
. ARx _4nxt
u(x, )=y Bysin =€ 7
k= (4).
(4) should satisfy the initial condition (i),

Using (iii) in (4),

u(x, 0)= 2 B, sin # =f(x), forO<x<] (given)

n=1

«(3).

If u(x, 0), for 0 < x < [, is expressed in a half-

range Fourier sine series ;
i
0 < x <, we know that il

u(x,0)=f(x)=Y b, sin % where

n=|

{
b,,=%]f(x)sin$dx.
0

Comparing this with (5), we get

!
2
By=b,=7 [1( sin "7 dx.
0

Therefore the temperature function u(x, 1), is

oo l 22
“a0=F |3 1100 sim ™ e |sin 5
e ’o ! l

Two-Dimensional Heat Flow

When the heat flow is along curves instead of along straight lines, all the curves lying
in parallel planes, then the flow is called two-dimensional. Let us consider now the flow of
heat in a metal plate in the XOY plane. Let the plate be of uniform thickness h, density p,
thermal conductivity k and the specific heat c. Since the flow is two dimensional, the
temperature at any point of the plate is independent of the z-co-ordinate. The heat flow lies in
the XOY plane and is zero along the direction normal to the XOY plane.



Y4
D (x, y+8y)} _ C(x+8x, y+3dy)
l
. . —_—
!
Ax,y) | B(x+8x,y)
o) X

Now, consider a rectangular element ABCD of the plate with sides
Ox and dy, the edges being parallel to the coordinates axes, as shown in the
figure. Then the quantity of heat entering the element ABCD per sec. through
the surface AB is

[ ou ,
= k(ay lﬁx h.

Similarly the quantity of heat entering the element ABCD per s.
through the surface AD is

=g | O
= k[ax l oy - h.

The amount of heat which flows out through the surfaces BC and CD &

du Sy-hsnd k[ 2 . &. s
—k( % )”& y dy H&& h respectiveiy.

Therefore the total gain of heat by the rectangular element ABCD
r sec. = inflow—outflow

e[{(3) ) ()]
2).c(2) ().

= khx-By o 5 1)

The rate of gain of heat by the element ABCD is also given by
du
p&x.sy-h'C'E -...(2)

Equating the two-expressions for gain of heat per sec. from (1) and (2), we
have,



Equating the two-expressions for gain of heat per sec. from (1) and (2), we

have,
(au) (au
a ox x+8x a‘x)
pdx-dy-h-c- 3t =h k &x dy =
du du
[aylﬁ.\‘_(gl
+ 5 :
2oL (8] ()08
ie., a—l:=;k(,: o x+5x o ‘+ ‘a; y+dy ay y
dx By

Taking the limit as 8x — 0, dy — 0, the above reduces to

ﬂ__k_ du a2
or "

Putting o = Ek— as before, the equation becomes,
du_ of Pu, du )
o Py ay2

The equation (3) gives the temperature distribution of e |
: Pt
transient state. .
u is independent of 1, so that % _

In the steady-state, H"!ce "
3 ou &
temperature distribution of the plate in the steady-state is axz a;zl <

i.e., V2u =0, which is known as Laplace’s Equation in 'wo'd'"‘%io“
Corollary. If the stream lines are parallel to the x-axis, then the P
change % of the temperature in the direction of the y-axis will be zerq T

the heat-flow equation reduces to 5'— = a2 7— ¥ which is the heat-flow equatip

in one-dimension.



du
SolutionoftheEquations;-z”fsy—z'-o-
P
B )

ou
The equationis — +—— =0.
equation i w ay2
Assume the solution u(x,y)=X(x)-Y (),
where X is a function of x alone and Y a function of y alone.

Tk
The Laplace equation V%4 =0 becomes X”Y+ Y’ X=0
’ X . =¥
ie., =7 wdd)

The left hand side of (2) is a function of x alone and the right hand side‘is"
function of y alone. Also x and y are independent variables. Hence, tis ¥
possible only if each quantity is equal to a constant k.

S o )
ut x ___Y _k ....0

Le., X'—kX=0,and Y’ +kY=0. __(4)
Case 1. Let k =A% a positive number.
Then X” ~A’X=0, and ¥ + A2 Y = 0,
Solving, X=A, ™+ Bie Mand Y= C, cos Ay + D, sin Ay.
Case2.Letk=-22% 3 negative number.
Then (4) becomes X” + A2X = 0 and Y -AY=0
Solving these equations, we have,

X=Azcosl¥+32 sinAxand Y=C, e" 4 p, ¢~
3. Let k = 0. Then (4) reduces to
x"=03nd y’=0.

ol ving these equations,
the possible solutions of (1) are

.n‘e;efom.
uxn )= (A, &+ B, e h)(Cl cos Ay + D, sin Ay) ()
u(x ) = (A, cos Ax + B, sin Ax) (G, M+ D, e')") (I
u(x, )= (A3 x+ B)(Cyy + Dy (I

I problems where the boundary conditions are given, we have to select

 suitable solution or a linear combination of solutions to satisfy (1) and the

boundary conditions.



Example 9. An infinitely long plane uniform plate is bo

lel edges x=0and x=1, andanendatn'ghtp e
angles 10 them. The breadth of this edge y = 0 is | and Y T
ismaintained at a temperature fix). All the other three ~ [VYNWM
edges are at temperature zero. Find the steady-state
{emperature at any interior point of the plate.

Let u(x, y) be the temperature at any point (x, y)
of the plate.

Then u satisfies

x=0
x=17

b4

0y=0

Pu du_
o 3y’
The boundary conditions are
u©0,y) =0, for0Sy<ee 0
u(l,yy =0, for0Sy<eo (i)
u(x,¢) = 0, forO0<x<! (1)
u(x,0) = fix), forO<x<lI (V)
Solving (1), we get,
u(x, y) = (A|e’“r +Be” "')(C, cos Ay + D, sin Ay) ()]
...(I)
...(TIT

t a solution to suit the boundary

0 sl )

u(xn }') = (AZ cos Ax + Bz sin h)(C2 el)' o Dz & A’)
u(x, y) = (Ayx + B3)(Cay + D3)
Of these solutions, we have to selec
conditions.
Since u=0 as y = oo, We select the solution (/]) as a POSsible
(rejecting the other two). sohﬁ"«
. u(x, y) = (A cos Ax + B sin Ax) (Ce™ +De™ ™)
Using the boundary condition (1),
u(0,y)=A (Ce"+De"") =0,for0<y<e. 5 A=
Using the boundary condition (i) in (2),
u(l,y)=Bsin M (Cel"+De’A’) =0, for0<y S o,
Since B#0, sin Al=0. Hence Al =nn

le, A= -'1;5» where n is any integer.
Asy = o, u— 0, from (iii). .. C=0.

Hence u(x, y) = B, sin—"!;—xe— "', where BD =B,

Therefore the most general solution of (1) is



N . nRx “E:z
ux,y) =y B,sin== e )

Using the boundary condition (iv) in (3),

nnx

u(x,0) = 3 B, sin =), in0<x<l )

Expressing f(x) as a half-range Fourier sine series in (0, [), we have

fo) =2 b, sin—"?—x- .05
1
5 I
where b, = [ £(x) sin T
0

Comparing (4) and (5), B, = b, = —f— £ sin "% i,

= T

Therefore the solution is

oo
nny

!
2 5%y
ux) =3 | 7 resin™ar |G~
n=] 0 !
Note. If f(x) is given explicitly in any problem, evaluate the value of
8B, from the integral and substitute.

Example 10. The vertices of a thin square plate are (0, 0), (1,0), (0,1), (1,1). The upper
edge of the square is maintained at an arbitrary temperature given by u(x,l) = f(x).
The other three edges are kept at zero temperature. Find the steady state temperature
at any point on the plate.

Solution.
that u(x, y) 1s the temperature at any point '
Supp(s’:;d)"s‘a‘e- (x.y) of the plate in
Fu U _o \
Then ax)"’ayz (l) c Ug'(x) 8
The boundary conditions are
M(o. )-) = 0, for0< y< | ) 2 o.
u(l,y) =0, forOsy<! iy 3 L]
u(x, 0) = 0, forO0sx<! (lli)
u(x, ) = fix), forO<x<| (iv) S oas "




Solving (1), we getthe three possible solutions,
u(x, y) = (Ae™ + Be ")(C cos Ay + D sin Ay)
u(x, ¥) = (A cos Ax + B sin Ax)(C & + D &™) ..
u(x, ¥) = (Ax+ BYCy+ D) ()

where A, B, C, D are different arbitary constants in each solution,

(| |

Now we shall select the solution II.
ie, u(x,y)=(A cos Ax+ B sin Ax)(Ce™ + De ™)
Using the boundary condition (i) in (I]),
A(Ce™ +De™™)=0,for0<y<l - A=0
Using the condition (if) in (I

(1)

u(l,y)=Bsin M (Ce™ + De ™)=0. But B#0;sinM=0
i.e.. u =nn

Le., A= i where nn is any integer.

Using (iii) in 11,

U(x,0) = (C + D)(B sin Ax) =0, for 0 S x <.
B#0Hence C+D=0. ~. D=-C.

Hence (I1) reduces to,

"(xs}’)=BCsiny%x- (e I ~e
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l. Introduction

Contents - Solution of algebraic equation and transcendental equation: Regula Falsi Method,
Newton Raphson Method Solution of simultaneous linear algebraic equations: Gauss
Elimination Method, Gauss Jacobi & Gauss Seidel Method.

In the field of Science and Engineering, the solution of equations of the form f(x) = 0 occurs
in many applications. If f(x) is a polynomial of degree two or three or four, exact formulae
are available. But, if f(x) is transcendental function like a + be* + csinx + dlogx etc., the
solution is not exact and we do not have formulae to get the solution. When the coefficients
are numerical values, we adopt various numerical approximate methods to solve such
algebraic and transcendental equations. We will see below methods of solving such numerical
equations. From the theory of equations, we have the following theorem:

If f(x) is continuous in the interval in the interval (a, b) and if f(a) and f(b) are of
opposite signs, then the equation f(x) = 0 will have at least one real root between a and b.

Regula Falsi method .(or the method of false position)

Consider the equation f(x) =0 and let f(a) and f(b) be of opposite
signs. Also, let a < b. The curve y =f(x) will meet the x-axis at some point
between A (a, f(a)) and B (b, f(b)). The equation of the chord joining the

two points A (a,f(a)) and B(b,f(b)) is y;ff:} =f{ﬂ::fb(b}_ The

x-coordinate of the point of intersection-of this chord with the x-axis gives
an' approximate value for the root of f(x) =0. Setting y=0 in the chord
equation, we get

—f(@) _ f@)—f()
x-a a-b
x[f(a) ~f (b)) - af (a) + af (b) =~ af (a) + bf (a)
x[f(a) - f(b)] = bf (a) - af (b)
_af(b)-bf(a)
- f)-f@

This value of x, gives an approximate value of the root of
f(xX)=0. (a<x<b)
Now f(x,) and f(a) are of opposite signs or f(x,) and f(b) are of
opposite signs.
If f(x,)f(a) <0, then x, lies between x, and a.
_af(x) —xf(a)
2= f ) -f(a)
In the same way, we get x3, x....
This sequence X, Xy, X3,.... Will converge (o the required root. In

Xy

Hence



practice, we get x; and x;,, such that | x,—x;,, | <g, the required
accuracy.

Geometrical interpretation

If A(a,f(a)) and B(b,f(b)) are two points on y=f(x) such that
f(a) and f(b) are opposite in sign, then the chord AB meets x-axis at
x =x,. This x,; is the approximate root of f(x) =0. Now c (x|, f(x,)) is on
the curve.

If f(a). f(x,) <0, join the chord AC which cuts x-axis at x=x,. Then
x, is the second approximate root of f(x)=0. This process is continued
until we get the root to the desired accuracy.

The order of convergence of Regula Falsi method is 1-618. (This
may be assumed.)

Y (a.f(a)

o
xV¥Y

—————————

B(b.1()

Example 1. Solve for a positive root of X ~dx+1=0 by Regula
Falsi method.

Solution. Let f(x)=x"-4x+1=0



f()==2=-ve; f(2)=1=+ve, f(O)=1=+ve
. a root lies between 0 and 1
Another root lies between 1 and 2
We shall find the root that lies between 0 and 1
Here a=0, b=1
_af®)=bf(@) _OxfM-1xfQ@ __-1__
fo—f@ - @ —2-1 0B

f(x) =f(§)=%-—%+ 1=-02963

X

Now f(0) andf(%}an: opposite in sign.
Hence the root lies between 0 and 1/3.

os{1]-1r©
f[L)-fo

_ 3
2= 12963
Now f(x) =f(0-25714) == 0-011558 =—ve

. The root lies between 0 and 0-25714
_ 0x£(0:25714) - 0-25714£(0)
f(0-25714) - f(0)

Hence x;=

=0-25714

_ =025714
~1:011558

£ (%) =f(0-25420) = — 0-0003742

={25420

*. The root lies between 0 and 0-25420
_ 0x£(0-25420) - 0:25420% £ (0)
= £(025420) — £ (0)

_—025420 _ .
=T10003742 = 02410

S (xg) =£(0-25410) = - 0-000012936
The root lies between 0 and 0-25410




0 % £(0-25410) — 025410 % £ (0)
=TT (025410 -1 (0)
__-025410
=27000012936 410
Hence the root 1s 0-25410.

Example 2. Find an approximate root of x log;px— 1-2=0 by False

position method.
Solution. Let f(x) =xlog,gx~1-2

f(D)==12=-ve, f(2)=2x030103 =12 =-0-59794
f(3)=3x047712-12=0231364=+ve
Hence a root lies between 2 and 3.

_2f(3)=3f(2) _2x023136-3x(=0-59794)
METFG)-F@) 023136+0-59794 2 /21014

fx) =f(27210)=- 0017104

The root lies between x, and 3.
_xxf(3)=3%f(x)
F3)=fx)
2721014 x 0231364 -3 x (= 0:017104)
B 0-23136+0-017104

068084
024846

f(x)=f(2:7402) = 2:7402 x log (2:7402) = 1-2
=-0-00038905
. The root lies between 2-740211 and 3
_ 27402 xf(3) -3 x f(2:7402)
- f(3)—£(2-7402)
_ 2:7402 x 0-23136 + 3 x 0-00038905
023136+ 0-00038905

=2.740211

_ 063514
023175

= 2:740627



f(2:7406) = 000011998
. 'The root lies between 2-740211 and 2-740627
= 27402 x £ (2-7406) — 2-7406 x f (2-7402)
4 £(2:7406) - f (2-7402)
_ 2:7402 x 000011998 + 2-7406 x 0-00038905
0-00011998 + 0-00038905

00013950
= 000050903 — 2 7405

Hence the root 1s 2-7405.

Example 3. Find the positive root of X’ =2x+ 5 by False Position
method.

Solution. Let f(x)=x-2x-5=0
There is only one positive root by Descarte’s rule of signs.
f(2)=8=9==1=-ve; f(3)=16=+ve

". the positive root lies between 2 and 3. It is closer to 2 also.
o =3 ®) -bfla) 2xf(3)-3x[(2)
' f)-f@ f3-f@

32+3
T =2-058824

fx) =1 (2-058824) = - 0-390795
. The root lies between 2-058824 and 3

_ 2058824 < f(3) — 3 X f(2058824)
- F(3)—f(2-058824)

34-113569
= 16390795 ~ 2081264

f(x))=f(2-081264)=-0-147200
*. The root lies between 2-081264 and 3
_ 2081264 x 16—3 X (—0-147200)
Xy = 16+ 0-147200 =21R5005
£ () =£(2-089639) = — 0-054679




The root lies between 2-089639 and 3
.= 2-089639 x £ (3) — 3 x £ (2:089639)
' £ (3) - £(2:089639)
fxy) =f(2:09274) = - 0-020198

=2-092740

The root lies between 209274 and 3
_ 2409274 X 16+ 3 x (0-020198)
*5= 16020198

f(xg) =f(2-093884) =— 0-007447

The root lies between 2:093884 and 3 _
_ 2093884 x 16 + 3 x 0-007447
- 16007447
[ (x¢) = £(2-094306) = - 0-002740

=2-093884

= 2:094306

. The root lies between 2-094306 and 3
_ 2094306 16— 3 x (- 0:002740)
= 16002740 =2094461
Similarly, xg =2-0945 correct to 4 decimal places.

Newton-Raphson Method

P, (o, floy)

% e

\-...____\ / A

P (o, f(a,))

The iterative formula in Newton’s method is:

Sf(x)

Xy :v‘e—m

This is really an iteration method where
_ f(x)
X; o =0(x;) and ¢(x)) =x; G0




Hence the equation is

f(ﬂ
x= HI] where @(I} x= f {X}

The sequence X;, X, Xy,... CONVErges o the exact value if | ¢'(x) | <1

| rer-fwre|
ke; ! T
| _|torw|
ie., ! Lf "))

Therefore, the condition for convergence is:

| f 0 | <P

Order of convergence of Newton’s method:

The convergence is quadratic and is of order 2.

Example 1. Find the positive root of f(x}:?f—h—ﬁ:ﬂ by
Newton-Raphson method correct to five decimal places.
~ Solution. Let f(x)=2¢=3x-6; f'(x)=6x"=3
f(1)=2-3-6==T=-=ve and f(2)=16-6-6=4=+ve
- a root lies between 1 and 2

By Descarte’s rule of sign, we can prove that there is only one
positive root.

Take 0g=2
., Jlog) _2u§‘,—3u0—6_4c:3+6
M=% ey ~ % 602-3  602-3
4o +6
“nl:;‘rB
o = m———lﬁﬂ%ﬂ
6{2} -3 21

_ 4(1-809524)’ +6 _ 29-700256 _
5(1 809524)> -3 T 16646263

_ 4(1-784200)° +6 _ 28719072
5{1?3420{]]1_3 16-100218

= 1.784200

= 1-783769

Solution of Simultaneous Linear Equations



Gauss-Elimination Method (Direct method). This is a direct
method based on the elimination of the unknowns by combining equations
such that the n equations in n unknowns are reduced to an equivalent
upper triangular system which could be solved by back substitution.

Consider the n linear equations in n unknowns, viz.

ayXxy +ape + - +a X, =b
GyX%) +ayXy + - + @y %, = by

A1 X +arl212+ +ﬂ.l'lﬂxﬂ =bn

where a; and b; are known constants and x;'s are unknowns.

The system (1) is equivalent to

AX=B ..(2)
f r A
Qg a4y, :1 2
where A= %1%% » X=| Jland B=
Gy Gy Gy, . b
h.xui L")




T ™

=~ Now our aim is to reduce the augmented matrix (A, B) to upper
triangular matrix. :

ay @y .. G, |b )
R e 3)
Ay Q@ = Gy, b"l )
A D i .
Now, multiply the first row of (3) ( if a;; #0) by -~ and add to

a
the ith row of (A, B), where i=2, 3, ..., n. By this, all elements in the first
column of (A, B) except a,, are made to-zero. Now (3) is of the form

I’all LT R bl\
0O &b, -- by |c
N B (4)
0 b, -+ b,|c,

Now take the |:ri1|.|rn:»l;k b,,. Now, considering J!:L‘.2 as the pivot, we will
make all elements below b,, in the second column of (4) as zeros. That
is, multiply second row of (4) by —? and add to the corresponding
22
elements of the ith row (i=3,4,...,n). Now all elements below b,, are
reduced to zero. Now (4) reduces to
r“"11 @y @38 | b )
0 by by.by |
0 0 ., cy.ooey tdy «(3)

0 0 cp...cp, | d,
" 4
Now taking c3, as the pivot, using elementary operations, we make
all elements below c;; as zeros. Continuing the process, all elements
below the leading diagonal elements of A are made to zero.




Hence, we get (A, B) after all these operations as

If*"u a3 @3 - a, | by )

0 by by - by o

0 ] €13 Cag.0n Cia d3 ...{6)
0 O 0 0. o, | K,

\ /
From, (6), the given system of linear equations is equivalent to

@y Xy + A%y + Qpaxy + -+ ayx, = by

byy + byyxy + - + byx, = ¢

................

| | -
Going from the bottom of these equation, we solve for x,=—-

Using this in the penultimate equation, we get x, _, and so. By this back
substitution method, we solve for

X Xy — 12 Xg =25 7 X3y X!

Note. This method of making the matrix A as upper triangular matrix had
been taught in lower classes while finding the rank of the matrix A.

Example 1. Solve the system by Gauss-Elimination method
2x+3y—2=5; 4dx+4y-3z=3 and 2x-3y+27=2.
Solution. The system is equivalent to



2 3 =1 X 5

4 4 -3 |lyl=|3

2 -3 2 |l z 2

A X =B
2 3 -1 5
(A,B)=|4 4 =3 3
2 -3 2 |2

Step 1. Taking a;, =2 as the pivot, reduce all elements below that to

ZEro.
2 3 -1 5
(#LH}-' 0 -2 -1 -7 Rﬂ(_z}mﬂ,‘n(_”
0 -6 3 |[-3 _

Step 2. Taking the element - 2 in the position (2, 2) as pivot, reduce
all elements below that to zero.
2 3 -1 5

AB)~|0 =2 =1 |[=7| Ryp(-3)
0 0 6 18

Hence 2x+3y-z=35

-2y—z=-1
6z=18
z=3,y=2,x=1. by back substitution.

L]
LR

Gauss-Jacobi Method
Let us consider this method in the case of three equations in three unknowns.

Consider the 3 linear equations 1n 3 unknowns,

aix +bjy+crz =dj
ax +byy+ez =d;
a;x +biy+ciz =ds

This method is applied only when diagonal elements are exceeding all orther
elements in the respective equations i.e.,

| ar| =|bi|+|c| =di
| a2 =|b2|+ ez | = d>
az| =|bz|+|cz| =ds3

Let the above condition 1s true we apply this method or we have to rearrange the
equations in the abowve form to fulfill the above condition.



We start with mitial values of X,y and z as zero. Solve x, y .z 1interms of other,

1. Solve the system of equation by Gauss-Jacobi method
27x+ 06y -z =85
6x +IlSy+2z = 72
X +6y + 54z=110
Solution:
To apply this method , first we have to check the diagonal elements are dominant.

1e, 27> 6+1 ; 15=6+2 ;54 > 1+1 . So iteration method can be applied
x=1/27(85-06y +z)
y =1/15(72 -06x -2z)
z =1/54(110-x - y)

First iteration : From the above equations, we start withx =y =z =10

Y =85027  =314815 (D)
vV =72/15 =48 )
2V = 110054 =2.03704 (3

Second iteration :Consider the new values of _}'“U =4.8 andz" =2.03704 in the
first equation

¥ = 1027 85| 6x4.8 +2.03704) = 2.15603
VY= 1/15(72 - 6x3.14815—2x2.03704 ) = 3.26913
2 = 1/54(110| 3.14815 | 4.8) = _0.515

Fourth iteration : Consider the new values of x'” =2.15693, ¥ =3.26913
and z'*) =-0.515 in the first equation
x¥ = 1/27( 85| 6x3.20913 +-0.515) = 2.49167

[
y =

/15(72 - 6x2.15693—2x2.15693 ) = 3.68525

2 = 1540110 2.15693 | 3.26013) = 1.03655



Thus, we continue the iteration and result is noted below

lteration No.  x oy | Z
4 2.40093 3.54513 1.92265
5 | 2.43155 3.58327 102602
6 2.42323 3.57046 1.92565
7 ' 2.42603 3.57305  1.02604
8 2.42527 3.57278 1.92503
0 | 2.42552 3.57310 1.92596
10 | 2.42546 357300  1.02505

From the above table 0 ™ and 10 ™ iterations are equal by considering the four
decimal places. Hence the solution of the equation is

x = 24255 y =3.5730 z=1.9260.

Ilustration 2 . Solve the system of equation by Gauss-Jacobi method
10x-5y -2z =3
4x -10y+3z = -3
X +o0y + 10z=3
Solution:
To apply this method , first we have to check the diagonal elements are dominant.

1e, 10> 5+2 ; 10>4+3 ;10 > 1+6 . So iteration method can be applied
x=1/103+5y +2z)
y =1/10(3 +4x +3z)
z =1/10(-3—-x - 6v)

First iteration : From the above equations, we start withx =y =z =

x = 3/10 =0.3 (D)
=310 = 03 e (2)
A =_3/10 = -03 e (3)

Second iteration :Consider the new values of _}"r‘r”' =0.3 andz"V =_0.3 in the first
equarion

= 1103+ 5x3 +(-0.3) = 0.30
VW= 1/10(3 + 4x0.3 +3x(-03)) = 033
2= p1or3| 03 60.3] = _0.51
Third iteration : Consider the new values of =030, yﬂ’ =0.33 andz"”

=-0.51 in the first equation



= piof 3| 5x0.33 +-0.51)] =0.363

YW= 1/10¢(3 + 4x039 +3x(-051)) =0.303
2= 10 -3 039 | 6x(0.33)] =-0.537

_ Thus, we continue the iteration and result is noted below

_ Iteration No. X oy | Z

4 0.3441 02841 -0.5181

5 | 0.33843 0.2822 -0.50487

6 | 0.340126 | 0.283911 1 0.503163

7 | 0.3413220 0.2851015 -0.5043502

8 0.34167891 0.2852214 _0.50510310
0 | 0.341572062 | 0.285113607 ' -0.505300731

From the above table 8 ™ and 0 ™ iterations are equal by considering the 3
decimal places. Hence the solution of the equation is

x =0.342,y =0.285 z=-0.505.

AnNswers:

1. (3.017,1.986,0.912)
2. (0.994,1.507, 1.849 )
3. (-1.0,0.999, 3)

4. (0.83,0.32,1.07)

Gauss-Seidel Method

This method 1s only an enhancement of Gauss-Jaob1 Method.

Consider the 3 linear equations 1n 3 unknowns,
ajx + byjy+cyz =dj
a»x +f}'_}_:|.-' +cr 2z =d>
azx +b3y+ciz =dz

This method is applied only when diagonal elements are exceeding all other
zlements in the respective equations i.e.,

| ar| =|b1|+|c| =d
| a2] =|b2|+|c2| =db>
| az| =[bs|+|cz| =ds

‘ﬁ;e start with mnitial values of x v and z as zero.



Note : 1. For all systems of equation, this method will not work
2 Iteration method is self correcting method. Any error made in computation is corrected
automatically in subseguent iterations

3. Iteration is stopped when any ftwo successive jteration values are egual

IMustration : 1. Solve the system of equation by Gauss-Seidel method
lox-5y -2z =23
4x -10y+3z = -3
x +6y + 10z=3
Solution:
To apply this method | first we have to check the diagonal elements are domant.

te, 10> 5+2 ; 10>4+3 ;10 > 1+6 . So iteration method can be applied

x=1/10(3+5y +22)
y =1/10(3 +4x +3z)
z =1/10(-3—-x - oy)

First iteration :
From the above equations, we start withx =y =z =

= 3/10 =0.3 ()

New value of x is used for further calculation ie., x = 0.3
Y= 14103 + 4x 0.3+ 3(0)] = 042 (Y

New values of x and y 15 used for further calculation ie, x = 0.3 and y = 0.42
A =11003 203 -6(0.42) = _0.582 (3

Second iteration :

Consider the new values of y'q" =0.42 andz” = -0.582 in the first equation
x? = 1/10( 3+ 5x0.42 +(-0.582)) = 0.3036

y¥= 1/10(3 + 4x0.3936 +3x(-0.582)) = 0.28284

2% = 3| (0.3936) | 6(0. ) = _0.50006.
) I/10[-3 | (0.3936) | 6(0.28284)] 0.500064

2. Solve the system of equation by Gauss-Seidel method
28x +4y -z =32
& +3y +10z = 24
2x +17y + 4z =35



To apply this method , first we have to rewrite the equation in such way that to
fulfill diagonal elements are dominant.

28x +4y -z =32
2x +17y + 4z =35
4x +3y +10z = 24
1e., 28> 4+1 ; 17>2+4 ;10 > 4+3 . So iteration method can be applied
x=1/28(32-4y +z)
y =1/17(35 -2x -4z)
z =1/10(24 —x - 3v)

First iteration .

From the above equations, we start with y =z = 0, we get
1) _ =
x* = 32/28 = 1.14290
New value of x is used for further calculation ie., x = 1.1429
V= 1/17 (35 + 1.1420+ 3(0)] = 1.9244

New values of x and y is used for further calculation ie., x = 1.1429

andy = 1.9244

2V =110 [24 -1.1420 -3(1.9244) ] = 1.50584)

Second iteration :
Consider the new values of v =1.9244 and:" = 1.8084

X = 1/28] 32—4(1.9244) +(1.8084)]

= 0.0325
y¥ = 1/17[35 -2(0.0325) -4(1.8084)] = 1.5236
¥ = 110[24 | (0.0325) | 3(1.5236)] = 1.8497
Third iteration :

Consider the new values of x?) = 0.0325, _}"r"‘"' =1.5236 and 2V = 1.8497

xP = 1728 32-4(1.5236) +(1.8497)] = 0.00]3
y¥'= 1/17[35 -2(0.9913) -4(1.8497)) = 1.5070
2 = 11024 | (0.9913) | 3(1.5070)] = 1.8488

_ Thus, we continue the iteration and result is noted below

_ Iteration No. X ¥ Z

4 0.9036 ' 1.5069 | 1.8486

5 ' 0.9936 | 1.5069 | 1.5486

Therefore x=09936, y=15069, z=1.8486



Practise Problems

Solve the following system of linear equations using Gauss -Seidel Method.

1. 8x-6y+z=13.67;, 3x+y-2z2=17.59; 2x-6y+9z=29129
2. 30x—2y+3z=75; 2x+2y+18z=30; x+17y-2z=48
3. y—x+10z=3561; x+z+10y=2008; y-z+10x=11.19
4. 10x-2y+z=12; =x+9-z=10; 2x-y +11z=20
5. 8x—y+z=1§; 2x+5y-2z=3; X+ty-—3z =-16
6. 2x +y+z=4; X+2y-z =4; x+y+2z=4
Answers

1. 0.83,0.32,1.07

2. 2.5796, 2.7976, 1.0693

3. 1.321, 1522, 3541

4. 1.2624, 1.1591, 1.694

5. 2, 09998, 2.9999

6. 1, 1, 1

7 I
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l. Introduction

Contents - Interpolation: Newton forward and backward interpolation formula, Lagrange’s
formula for unequal intervals — Numerical differentiation: Newton’s forward and backward
differences to compute first and second derivatives — Numerical integration: Trapezoidal rule,
Simpson’s 1/3rd rule and Simpson’s 3/8th rule.

1. Interpolation
Interpolation

The process of computing intermediate values of (xg,x,) for a function y(x) from a given

set of values of a function

Gregory-Newton’s forward interpolation formula

3 4

o A0 1 BP0 10— 2+ 2P0 s 1 — 2t —3) - ——
y(x)=y,+ ; u+ > u(u—1)+ ¢ uu—1)u-2)+ 54 uu—-D)u-2)(wu-3)+ (a)

where u = %(x—xo)

Gregory-Newton’s backward interpolation formula

2 3 4
y(x)=y, +%v+¥v(v+l)+%v(v+l)(v+2)+%v(v+l)(v+ 2)(v+3)+———(b)

where v = % (x—=x.)

Remark:

(1) The process of finding the values of y(x;) outside the interval (x,,x,) is called
extrapolation

(i)  The interpolating polynomial is a function p, (x) through the data points y; =
f(x;) = By(x;) i=0,12,.n

(1)  Gregory-Newton’s forward interpolation formula (a) can be applicable if the
interval difference h is constant and used to interpolate the value of y(x;) nearer
to beginning value X, of the data set

(iv) If y = f(x)is the exact curve and y = p,(x) is the interpolating polynomial then

the Error in polynomial interpolation is y(x) — pn(x) given by

n+l _ (n+l)
Error = %(x—xo)(x—xl)——(x—xn): Xy <X<X,,% <c<x,———(c)
v) Error in Newton'’s Jforward interpolation is
hn+ly(n+l)(c)
Error=—————u(u-1)u-2)—-—(u—n):x,<x<x,x,<c<x,————(d)

(n+1)!



Probleml: Estimate 0 atx = 43 & x = 84 from the following table .also find y(x)

X 40 50 60 70 80 90
e 184 204 226 250 276 304

Solution: Here all the intervals are equal with h=x;-x¢=10 we apply Newton interpolation

Solution: Here all the intervals are equal with h=x;-xo=10 we apply Newton interpolation

Difference Table:

% | B=p Ay A%y A3y Aty Ay
A0 184=y, | »—13,=20=Ay,

PO | 204=y, | y,—y =22=4y, 2=A%, | 0=A%,
60 | 226=y, | »,-y,=24=4y, 2=NA%, | 0=A%, 0=A%y, 0=V,
70 | 250=y, | y,-y,=26=Ay, 2=A%, | 0=V’y, | 0=V'y,

80 276'—')/'4 yn_.yn—l=20'18=Vyn 2=V2yn

2| 34=y,

Case (1): to find the value of 6 at x = 43

Since x = 43 is nearer to x, we apply Newton’s forward Interpolation

2 3
y(x)=y0+%u+%u(u~l)+A Yo

1

uu—1)u-2)+ Azf; u(u—1)(u—2)(u—3)+-—~(1)

where u=%(x—xo)=%(43—40)=%=0.3:>u—1=—0.7,u—2=—l.7,u—3=—2.7———(2)

Substituting (2) in (1), we get p(x=43) =184+ Q (i) 4 %(%)(_7) +0= M

— =189.79
1 10 10 10



Case (i1): to find the value of 8 at x = 84

Since x = 84 is nearer to x, we apply Newton’s backward Interpolation

2 3 4
y(x)=y, +zi—)iv+%V(v+l)+%v(v+l)(v+2)+%v(v+l)(v+2)(v+3)+———(3)

1 1 -6 4 14 24
WG = — (= = (800 = S P T = - D= GGt
Wigere¥= P 7 -%) =44t Tt T T T
o . 28 6. 2.-6..4 7174
Substitut 4) in (3), we get =84 =304+ —(—)+—=—(—)(—)+0=——=286.96
stituting (4) in (3) get y(x ) 7 (10) 2(10)(10) 25

To find polynomial y(x), from (1) we get

y(x)=yo+%u+%u(u—l)+%uw—1)(u—2)+%u(u—1)(u—2)(u—3)+———(1)

1 1 | 1 1
h =—(x—%)=—(F-0)=>u-1=—(x%-50);u—2 = —(x—60),u—3 =—(x-60) ———(2)
where u h(x Xy) lO(Jc ) =>u 10(x ), u 1O(x ), U 1O(x ) (2)

Substituting 4) in (3), we get
() =184+ 20 L (x—40) + 2 L (x—40) L (x—50)+ 0 = 184+ 2x— 80+ —— (x* —90x + 2000)

2 110 210 10 100

ey =ﬁ(x2 +110x+12400) —————————— )

To Estimate @ atx =43 &x =84 ,put x =43 &x =84 in(5), we get

1 1
43)=——(18979) =189.79and y(84) = —(28696) = 286.96
FEY = 1 8910) and PP =l )

Problem2: Estimate the number of students whose weight is between 60 Ibs and 70 Ibs from
the following data

Weight(lbs) | 0-40 40-60 60-80 80-100 100-120

No.Students | 250 120 100 70 50




Solution: let x-Weight less than 40 lbs, y-Number of Students, = x, = 40,x, = 60,x, =
80,x; = 100, x,, = 120, Here all the intervals are equal with h=x;-xo=20 we apply Newton

interpolation

Difference Table:

% y Ay A%y A3y Aty
0| 250=y, | »—¥,=120=Ay,

60 | 370=y, | »,-y,=100=Ay, | 20=A%, | -10=A’y,

B0 | 470=y, | ,-1,=70=4Ay, | -30=A%y |10=V’y, |20=A"y,=V'y,

100 | 540=y, | y,-»,,=50=Vy, | 20=V’y,

120 590 = A

Case (1): to find the number of students y whose weight less than 60 Ibs (x = 60)

From the difference table the number of students y whose weight less than 60 lbs (x =
60) = 370

Case (ii): to find the number of students y whose weight less than 70 lbs (x = 70)

Since x = 70 is nearer to x, we apply Newton’s forward Interpolation

2 3 4
)= +%u+%u(u—l)+%u(u—l)(u—2)+%u(u—1)(u—2)(u——3)+——-—(l)
where u =l(x—x(,)=L(7O—40)=§:>u—l=§,u—2=g,u—2=_—1,u—3=_—3 ————— 2
I 20 2 2 2 2 2
Substituting 2) in (1), we get

203 -203.1. -103_1 -1_203 .1 -1 -3
y(x=70)=250+ T (5) + BN (5)(5) + T(E)(E)(7) ¥ >4 (5)(5)(7)(7) =423.59

The number of students y whose weight less than 70 lbs (x = 70) =424

Number of students whose weight is between 60 lbs and 70 lbs =

{ The number of students y } { The number of students y } — 424-370 = 54
whose weight less than 70 1bsj ~ (whose weight less than 60 lbs



Lagrange’s interpolation formula Unequal intervals

oy~ G )=l ) ) )= =)
(%% —x)(xp —X%,) ——(x, —X,,) (x5 — %) (% —%,) ——(x, —x,)

(—x)x —x)Ar =) ) ) oA —xy )
2 n
('xZ —-xO )(x2 —xl)—._(x2 —-xn) (xn —.xO )(xn —xl)—~(xr1 -_xn-l)
Problem 3: Determine the value of y(1) from the following data using Lagrange’s
Interpolation
: 5 -1 0 2 3
y -8 3 1 12

Solution: given

x x,=-1 x =0 x,=3 x,=3

4 Yo=-8 »=3 ¥, =1 y, =12

Since the intervals ere not uniform we cannot apply Newton’s interpolation.



Hence by Lagrange’s interpolation for unequal intervals

(r —x)(x —x)(x —x,) o (F —x)x —x)x —x,)
(% =X, )(xp — %,)(X%p — X,,) ! (% — %) (% — X, XX, — x,) 1
(xr —x)x —x)(x —x,) (=) —x)x —x,,)
(6 = X%)0 =X )% —=%,) 7 (%, =% )%, =X )X, =%, )"

y(x)=

_ (3 —=0F —2% —~3) ; o (F HDF ~2Y5—3)
%)= -1-0)(-1-2)(-1-3) =8) (0+1)(0-2)(0-3) )
n (x +D)(x —0)x —-3) )+ (x +D(x —0)(x -2) )
2+D(2-0)2-3) B+1)(3-0)3-2)

To compute y(1) put x = 1in (1), we get

L A-0a-2)(-3) |, . . A+D1-2)1 -3)
YE=D= o c—2c1=3) TV 0sn0-2)0-3)

L (+D(1-0)1-2)

" (1+DH(1-0)(1-3) ) (12)
2+1)(2-0)2-3) B+D3B-0)3-2)
=S y(x=1)=2
To find polynomial y(x), from (1) we

y(x)=§(x3 =5x° +6x)+%(x3 —4x* +x+6)

—%(x3 =92 —3x)+%(x3 < Dy ——(f)

o | ,—10 4 2 12 1 3 6

=x(=+=—=+D)+x (—+—+=-D+x (—+=+=-2)+(=

y(x)x(326)x(326)x(326)(2)
SIE) =28 ¥ 3K F3———rr )

To compute y(1) putx = 1in (2), we get y(x=1)=2-6+3+3=2

get



2. Numerical Differentiation and Integration

Engineers and scientists are frequently faced with the problem of differentiation or
Integration of some functions. If the functions have a closed form representation and are
amenable for standard calculus methods, then differentiation and integration can be carried
out. However, in many situations, we may not know the exact functions. We will be knowing
only, the values of the functions at a discrete set of points. In some instances, the functions
are known but they are so complicated that analytic differentiation, integration is difficult. In
both these situations, we seek the help of numerical techniques to obtain the estimates of
derivatives or integrals. The method of obtaining the derivative of a function using a
numerical technique is known as numerical differentiation.

The method of finding the value of an integral of the form f; f (x)dx using numerical

techniques is called “Numerical Integration”. In this unit, we discuss various numerical
differentiation and numerical integration methods. We have to understand that while
analytical methods give exact answers, the numerical techniques provide only approximate
answers.

Definition (Numerical differentiation):

Numerical differentiation is the process by which we can find the derivative or
derivatives of a function at some values of the independent variable when we are given a set
of values of that function.

Uses of Numerical differentiation:
The numerical differentiation techniques can be used in the following situations:

1. The function values corresponding to distinct values of the argument are known but the
function is unknown. For example, we may knowing the values of f(x) at various values of
x,say x;, i = 1,2,3,...nin atabulated form.

2. The function to be differentiated is complicated, and so, it is difficult to differentiate by
usual procedures.



Numerical differentiation is the process of calculating the value of the
derivative of a function at some assigned value of x from the given set of
data points (x;, yi = f( xi )), 1 = 0,1,2,..., n which correspond to the values of
an unknown function y = f( x ). To find Z—y , we first replace the exact relation
x
y = f( x ) by the best interpolating polynomial y = ¢( X ) as we know earlier
and then differentiate the latter as many times as we desire. The choice of
the interpolation formula to be used, will depend on the assigned value of x

at which ﬂ is desired.
dx

If the points are equally spaced and ? is required near the beginning of the
X

table, we use Newton-Gregory’s Forward Interpolation Formula.

If we require the derivative at the end of the table, we employ Newton-
Gregory’s Backward Interpolation Formula.

If the value of the derivative is required near the middle of the table, we use
one of the Central Difference Interpolation Formula.

If the values of x are not Equi-spaced, we use Newton’s Divided difference

dy T
Interpolation Formula or d—) to get the derivative value.
i3

Formulae for Derivatives:

Consider the function y = f (x) which is tabulated for the values
% (=xo+ih ), 1=0; 1; 2500, 1.

Derivatives using Newton’s Forward Difference Formula:
Suppose that we are given a set of values (xi, yi), i =0,1,2,...., n.

We want to find the derivative of y = f ( X ) passing through the ( n + 1)points,
at a point nearer to the starting value at x = xo.

Newton’s Forward Difference Interpolation Formula is

% p(p—1)(p—2)

y=y0+pAyO0+ T

(p—1) ;
%Azyo N T (1)

X~ %

Where p = -




On differentiation (1) w.r.t., p we have

On differentiation (2) w.r.t. x we have, cdi—p zl
x h

2p—1 3p>—6p +2
Ay0+—p A2y0+—p P Ay
dy dy dp _ 2 6

1
dx dp dx hi 4p'-18p® +22p -6
24

Ay, +...

Equation (3) gives the value of ? at any point x which may be anywhere in
%

the interval.

At x = X0 and p = 0, hence putting p = O, equation (3) gives

AyO+ %Azyo + é Ay,

dx)... \dp)"™ h L4p’—18p° +22p -6

P S
24 Zo

Again on differentiation (3) we get

dx’ dx dp

dy]

d[~

2 _ 2 _

oy lod s@e aiopn ife ooy, oty ]

dx dx_dp dx a:h—z 12

From which we obtain

dzy 1 2 3 1, 5 s
2 xzx0=h—2 AyO—A‘y0+EAy0—gA‘yO+.. atx=xpand p=0 ....... (5)

. d’y 3
Similarly, {EJ X Xg=— [A3 Yo-3 7ot T S } ....... (6)



Derivatives using Newton’s Backward Difference Formula:

Newton’s Backward Difference Interpolation Formula is

D s, (HOYDOET e e (7)

yxX)=y, +pAy, + 5 e TR LRt

=% ®)

Where p =

On differentiation (7) w.r.t., p we have

3p° +6p +2 4p* +18p* +22p +6
Q=Ayn+ﬂA2yn+uA3y”+ s ! it i Ay, +..| .
dp 2 6 24
Now

~
~

On differentiation (8) w.r.t. X we have,

&
S

: 3p> +6p +2 4p° +18p% +22p +6
—d—yz.‘iy.@_ =.}_ VvV n+_2p—+lA2yn+ p t+op + A3yn+ p t+lsp™ + p+ A4y"+..
dx dp dc h 6 24

Equation (9) gives the value of ? at any point x which may be anywhere in
X

the interval.

At X = X, and p = 0, hence putting p = 0, equation (9) gives

dy dy) 1 L, 1 5 1 .

— x=x, =|—|x,=—|Ayn+—A"y, + Ay, + =AY, +.. e, 10
[ ) ’ll ( n h y 2 yn 3 yn 4 )n ( )

Again on differentiation (09) we obtain

i
d’y _\dx) dp _E[‘h] dp _d [d}‘] dp
dx '

de®  dx drv dp "dx  dpldx ) dx

6p: +18p+11
u+—ﬁ' +|2'”+ &‘_vn+.}

From which we obtain e (11]
'y " 5
g : ,rzxn=L2 Ay, +AN'y, +uﬁ“}'" +=A'y, +.| atx=x,and p=0
dx h 12 6

. d'y | :
Similarly, [ d,r: ] XX = —Jﬁ”y” SZAY, F ] ....... (12)



Maxima and Minima of a tabulated Function:

Given a set of data points (xi, yi) , 1 = 0,1,2,..... , n, we can get the
interpolating polynomial of degree n. Now we wish to estimate the value of x
at which the curve is maximum or minimum.

We know that the maximum and minimum values of a function can be
determined by equating the first derivative to zero and solving for the
variable. The same procedure can be applied to find the maxima and
minima of a tabulated function. Assume that the points are equally spaced
with a step size of h.

Consider Newton’s forward difference interpolation formula

Y&y, + pAy, + y& Yo +—IWA3 Vo Fevererrernnns On differentiation it
- 3p*-6p +2
w.r.t. p, we get 4 =| Ay, +£A2yn +&A3yn ) ORSR— (1)
dp 2 6

For maxima and minima ?zO. hence equating the RHS of (1) to zero and
P

for simplicity only upto 34 differences we obtain

2p-1 Bp*=6p 3
. +PTAzyn+%Asyn+_} 1

n

Re-arranging this as a quadratic in p, we get

1 1 1
5A3y0)p2 +(A2y0— A3y0)p +(Ay0—5A2y0 +§A3y0).= 0 sxmss R KRR RS (2)

Substituting the values of Ay(,,A2 yo,%A3 v, from the difference table, We

solve the equation (2) for p. Then the corresponding values of x are given by
X = Xo + ph at which y is maximum or minimum.

Problem #01: Find the first and second derivatives of the function tabulated
below at the point x = 1.5.

X | 1.5 2.0 2.5 3.0 3.5 4.0

y: | 3.375 7.0 13.625 24.0 38.875 59.0




Solution: the difference diagonal table as below:

x y Ay Ay Ay Aty Ady
1.5 3.375
3.625 [~
2.0 7.0 3 I~
]
6.625 0.75 T
25 13.625 %S 0 0
10.375 0.75 -0
3.0 24.0 4.5 0
14.875 0.75—1
3.5 38.875 5.25 4
20.125 _L—
4.0 59.0 | _—

Here xo0 = 1.5, yo=3.375, h=0.5
By Newton’s Difference Formula, we have
1

dy 1 1 | 1

I:Ej|atxzx0 zZ[AyO —§A2y0 + SA“)’O —ZA4y0 2 gAsyO —cwinae ]

dy 1 1 1 1 1

S = latx=1.5=2—|[3.625——B)+ = (0.75) ——(0)+ = (0
[dx} 0.5[ 2() 3( ) 4() 5( )}
dy 1

— latx=1.5 x—[3.625-1.5 +0.25]

dx 0.5

[Q} atx=15= b ~4.75
dx

B 0.5
And

d’y 1 i .z 5 %

[dx :|atx~x0 z—z[ ~Aly, + EA Yo _EA ¥ nunss
,_dzy 3 L1 3 .3
._F—atx X ~—[ Yo 12A Yo _EA Yo + crenee

_dzy
= |atx=15 = [3 O75+—(0)——(0)}

| dx” | (0.5)°

=

/ 5 ;
A d—g] atx=15 = ok ~ 9 Hence the solution.

| dx” | (0.25)

Problem #02: From the following table Find the value of x for which v is
maximum and find this value of y.

X 1.2 1.3 1.4 1.5 1.6

Y 0.9320 | 0.9636 | 0.9855 | 0.9975 | 0.9996




Solution: The difference table is as below

X ¥y Ay Aly Ay
1.2 0.9320
0.0316
1.3 0.9636 - 0.0097
0.0219 - 0.0002
1.4 0.9855 - 0.0099
0.0120 0
1.5 0.9975 - 0.0099
0.0021
1.6 0.9996
Here h =0.1
Taking xo = 1.2, we have yo =0.9320, Ay, = 0.0316, A2y =-0.0097 and
A3y =- 0.0002.

.. Newton’s Forward Difference Formula, terminated after second

differences, gives as y 0.9320 + p(0.0316) + p(pT_l)(—O.OOW) ...................

o B 00316 + 221 L0.0097)
dp 2
For y to be maximum,
on = ﬂz0.0316 +£(—0.0097) =0 = 2(0.0316) = (2p-1)(0.0097)
dp dp 2
0.0632
= 2p-1= 50057 ~ 6.51546 = p = 3.7577

Hence x=x0'+ ph = 1.2 + (3:.7577)(0:1) = 1.5758.

So, y is maximum when x = 1.5758 = 1.58

Putting p = 3.7577 in (1), the maximum value of y
(3.7577)(3;7577 —1) (~0.0097)
= 0.9320 + 0.11874 - 0.0502586 = 1.00048 = 1.00
Therefore y=1.0)|

Hence the solution.

= 0.9320 + (3.7577)(0.0316) +

Problem #03: Compute the first and second derivatives for the following
table of dataat x=-3 and x=0

X -3 -2 -1 0 1 2 3

Y -33 -12 -3 0 3 12 33




Solution: the difference table is as below:

55 y Ay A2y Ay Ay | Asy ASy ASy
3 93
21
) 13 )
9 6
21 e 6 0
3 6 0 0
0 0 0 0 0
3 6 0 0
1 3 6 0
9 6
2 12 12
21
3 33

Here xo = -3, yo = -33 and h = 1; By Newton’s Forward Difference Formula, we have
dy 1 1 5 1 3 1 s 1 6

— [¥=X5= —|AYy == A" Y+ =AY —— A Yy + =AYy ——A" Y5 Fiivins
[dx) °h[y°2y°3y°4y°5y°6y°

NP ezi = Y- Yansle Loy Loy -1
- (dx)x-xo—l[2l 2( 12)+3(6) 4(0)+5(0) 6(0)]

(@ X=X = 1[21+6+2-0+0—0]=29 = [Q]x=xo=29
dx 1 dx

d2
— (-Ezz)x =X, = -18is solution.

Problem #04: Compute the first and second derivatives for the following
table of dataat =x=1.1

X 1.0 1.2 1.4 1.6 1.8 2.0

i § 0.000 0.128 0.544 1.296 2.432 4.000




= (ij=1.1= 0.128/2 =0.64
dx

Solution: the difference table is as below:

X y Ay A%y A3y Aty Ady
1.0 0.000
0.128
1.2 0.128 0.288
0.416 0.048
1.4 0.544 0.336 0
0.752 0.048 0
1.6 1.296 0.384 0
1.136 0.048
1.8 2.432 0.432
1.568
2.0 4.000

Here x0 = 1, yo = 0 and h = 0.2

By Newton’s Forward Difference Formula, we have

dy 1
[ij—xo h[Ayo—EAzyo+—A‘y0——A4yo+—A5y0— ..... }
dy 1 1 1 1 1
| = |x=x,= —]0.128——(0.288) +— (0.048) —— (0) +— (O
(dx] 0 0_2[ 2( ) 3( ) 4() 5( )]
d
(—y X=Xy= ——[0.128-0.144+0.016 — 0+ 0] =0
dx 0.2
d:_\' l 3 1 I =
[TJ'I:IU = H—JI:.JI. Yo =& ¥+ Eﬂl_ﬁ, = —ﬁﬂi ¥a +......]
d'y | 1 5
s = |x=x,= —|(0.288) - 0.048 + — (0) - =(0)
[a{r‘] : u.z*[ 12 6 }
d’y
Y |x=x,= ——[0240] = 6
dv” 0.



Problem #05: The velocity v of a particle moving in a straight line covers a

distance x in time t. They are related as follows: Find '(15):

X

0

10

20

30

40

¥

45

60

65

54

42

[Ans. f (15)=-0.05416]

Problem #06: A rod is rotating in a plane. The following table gives the

angle © in radians through which the rod has turned for various values of
the time t sec.

T 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 0 0.12 0.49 1.12 2.02 3.20 4.67

Calculate the angular velocity and the angular acceleration of the rod, when
t = 0.6 sec. [Ans. 3.8167, 6.75 rad/sec?]

3. Numerical Integration

Introduction:

b
We know that a definite integral of the form I f(x)dxrepresents

the area under the curve y = {(x), enclosed between the limits x = a and x =
b. This integration is possible only if f(x) is explicitly given and if it is
integrable. The problem of numerical integration can be stated as follows:

Given set of (n + 1) data points ( xi, yi ), 1 = 0,1,2,....... ,n of the
function y = {(x), where f(x) is not known explicitly, it is required to evaluate

x’l

jf(x)dx.

X0

The problem of numerical integration, like that of numerical
differentiation is solved by replacing f(x) with an interpolating polynomial

Pa(x) and obtaining IP" (x)dx which is approximately taken as the value of
j. f(x)dx. Numerical Integration is also known as “Numerical Quadrature”.

0




Newton-Cote’s Quadrature Formula (General Quadrature Formula):

This is the most popular and widely used numerical integration formula. It
forms the basis for a number of numerical integration methods known as
Newton-Cote’s methods.

Derivation of Newton-Cotes formula:

Let the interval [a, b] be divided into n equal sub-intervals such that
A= <N & K CBE casvcsne < Xn = b. Then x, = x0 + nh.

Newton forward difference formula is

-1 -D(p-2
y(x) =y(xo + ph) =P, (x) =y, +pAy, +%z32y0 +%A‘zy0 F e e (1)
Where p = x—lxo .Now, instead of f(x) we will replace it by this interpolating
I
polynomial.

I f(x)dx= an (x)dx , where Py(x) is an interpolating polynomial of degree n

*0 X0

xg+ nh Xg+ nh
= IR,(x)dx = .“ {yo+pAy0+p(g;1)A2yo+%'(p_2)A3yo+ ....... }dx

Since x = X0 + ph, dx = h.dp and hence the above integral becomes

ff(x)dx= h_[[ Yo +PAY, +¥A2yo +W&yo N }dp

X0 0

2 3 2 4 3 2
A 1 |
= h|:);0(p)+_p 2)’0 +5(—l; ——pz ]A2y0+—£—1; —3—1; +2p jA3y0+ ....... }

n’Ay, 1(n’ n? ' 1(n* n* _n’
=h % O p—| —=— [Ny +=| —=3—+2— Ay, +.oecen.
{”y" 2 2.3 2) 3B

A 2 3 2
=nh[yo+"2y°+2i(i_ﬁ oyt B -3 22 e }



A -3 _ 2 4 3 2 A4
= nh| y, +— Iy, mln )A2y0+MA3yO+ LI o PR (] L .
2 12 24 3 2 3 4

This i1s called Newton-Cote’s Quadrature for)mula. ........................... (2)

Definition: The process of finding or evaluating a definite integral

b
[ = If (x)dx| from a set of numerical values of the integrand f(x). If it is

a

applied to the integration of a function of a single variable the process is

known as “Quadrature”.

The problem of numerical integration is solved by first approximating the
integrand by a polynomial with the help of an interpolation formula and

then integrating this expression between the desired limits.
The problem of numerical integration is solved by first approximating the
integrand by a polynomial with the help of an interpolation formula and
then integrating this expression between the desired limits.

b
Thus, to evaluate the definite integral J. f(x)dx first expression the function

a

b b
f(x) by an interpolation formula say p(x) and then J. f(x)dx ~ J.p(x) dx: -

The error E is such type of approximate given by,

b

ff(x)dx = fpoc)dx = [lr@-pdx

a




Definition: Trapezoidal Rule:

Here the function f(x) is approximated by a first- order polynomial Pi(x)
which passes through two points.

Putting n = 1 in the above general formula, all differences higher than the
first will become zero (since other differences do not exist if n = 1) and we get

xo+ h

Jf(x)dx— [ reodr= h[y0+%Ayo}= h[yo+%(yl —yo>}= S0+ )

0

X+ 2h

1 1
and jf(x)dx— [reode= h[y, + sz,} h{yl +5 ) } 21+ 72)
xo+ h
o 1 1 h
J.f(x)dx_ If(x)dx_ h|:y2 +_Ay2:| = h|:)’2 +—(}’3 = yz)}= _(}’2 +_}’3)
sekion 2 2 2
Finally,
Xo+ nh h
[roode= @y, +y,)
xy+ (n=1h 2
Hence,
%5 Xy + nh xp+ h xo+ 2h xy+ 3h Xy + nh
[ fexyax= [ reoax= jf(x)dx+ [fedc+ [fode+ ...+ [ fodx
Xo Xy Xg+ h Xo+ 2h Xy + (n=Dh
h h h
= 5[y0+y,]+ E[y,+y2]+ .......... + E(yn_,+yn)
h
5 [()o +y) =20y + ¥; + Y3+ Y, +eeee. TPy T yn—l]
................... (3)
ff(x)dx*v

X0

g[sum of the first and last ordnates) —2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule.




Geometrical Interpretation:

Consider the points Po(Xo, yo), Pi(x1, y1),Pa(x2, y2), P3(X3, V3),..-.-, Pa(Xn, Vn)-
Suppose the curve y = f{(x) passing through the above points be
approximated by the union of the line segments joining (Po, Pi), (P1, P2),
(P5::Pa)yesecsg{Pin 15 Pl s

A
Y P>
Pl/\
Po / Ql /P h
yo y1 y2 Vn-1 Vn
O X0 X1 X5 Kl X > X

Geometrically, the curve y = f(x) is replaced by n straight line segments
joining the points (Xo, yo) and (X1, y1); (X2, y2) and (X3, y3); ,-.-.., (Xn-1, ¥n-1) and
(Xn, Vn). The area bounded by the curve y = f(x), x- axis and the ordinates
x =xo0 and X = Xn is then approximately equal to the sum of the areas of the
n trapezium as shown in the figure above.

The total area given by

h h h h
5[y0+.v1]+ E[y. +yz]+5[y2 +5 ] Fesesmonans ¥ S0k

N | =

[(y0 +2(y; + Yy + Y3+ Y, Fene +y,)+ yn] = J.f(x) dxapproximately.

0

Note: Throughout this Trapezoidal rule method is very simple for calculation
purposes of numerical integration; the error in this case is significant.

Note: The accuracy of the result can be improved by increasing the number
of intervals or by decreasing the value of h.



This is another popular and important method. Here, the function f(x) is
approximated by a second order polynomial Pz(x) which passes through
three successive points.

Putting n = 2 in Newton-Cotes Quadrature formula i.e., by replacing the
curve y = f(x) by n/2 parabolas, we have

Xz _3
[ FOdx = 20| yo + 2 Ay, + 22D A2y | = 2l y, + Ay, + =A%,
2 12 6
1 1 2 1
= 2h YO+()'1_)’0)+€(Y2_2)’1+)’0) = Zhg)’o"'gﬁ"' g)’2

2h h
= ?[yo +4y, + Y2] = ?[yo +4y, + )’2]

Similarly, If(x)dx = ?h[yz +4y, + v,]

2

_‘. f(x)dx = g[yn_2 +4y. . + y,] Adding all these integrals, we obtain

*n-2

Tf(x)dxz Tf(x)dx+Tf(x)dx+ ........... - jf(x)dx

X X

/ / /
= ?z[)’() +4y, + yz] + ?1[)’2 +4y; + )’4] o + %[yn—2 +4y,, + )’n]



h
g[(y0 +4Y, + V) + (¥, 495 + Vi) F e +(y,, +4y,, + ¥,)]

h
= ;[(yo+ YO+HAP + Yy + Y3 +Ys + Vo) +200, + Yy + Ve Feowt ¥,5)]

h

3

sum of the first and last ordnates) +4(sum of the odd ordinates)

L 2(sumof the remaining even ordinates }

With the convention that yo, y2, y4,....., y2n are even ordinates and yi, yas,

V5,....., Y2n-1 are odd ordinates.

This is known as Simpson’s 1/3 rule or simply Simpson’s rule.

Note: This rule requires the given interval must be divided into even number

of equal sub-intervals of width h.

Simpson’s 1/3 rule was derived using three points that fit a Quadratic

equation. We can extend this approach by incorporating four successive

points so that the rule can be exact for a polynomial f(x) of degree 3. Putting
n = 3 in Newton-Cote’s Quadrature formula, all differences higher than the
third will become zero and we obtain

]! f(x)dx
X0

T f(x)dx

o

T f(x)dx

]‘ f(x)dx
X

Similarly,

3h

3h

3h

Bk o H6=3) o 3E=2) s
y0+5A_\0+TA)O+——24——A}0:|

k 3 2 1 L o
Y()"'EA.VO'*'ZA."O'*'EA."()

3 3 1
L)’o + 5(."‘1 —Yo)+ Z(."z =2y, + o)+ g(.“'z =3y, 43y, - Y ):l

%h[)'() +3y, +3y, + 5]

X 3
If(.l‘}dx = éh[},«3 +3y, +3y5 +v,] and so on.



Adding all these integrals, from xo to x», where n is a multiple of 3, we get

Tf'(x) dx = .]if(x) dx+Tf(x) ax +........... + ]zf(x) dx

X0 X0

Equation (5) is called Simpson’s 3/8 rule which is applicable only when n
is multiple of 3. This rule is not so accurate as Simpson’s 1/3 rule.

Note: while there is no restriction for the number of intervals in Trapezoidal
rule, number of sub-intervals n in the case of Simpson’s 1/3 rule must be
even, for Simpson’s 3/8 rule must be multiple of 3.

The error in Simpson’s rule is of the order h* and the error in Trapezoidal’s rule is of the
order h? .

Example 1. Evaluate f x'dx by using (1) Trapezoidal ryje
(2) Simpson’s rule. Verify you; results by actual integration.

Solution. Here y (x) = x*. Interval length (b —a) =6. So, we divide 6
equal intervals with A =-g—= 1. We form below the table

X . -3 -2 -1 0 1 2 3
(i) By Trapezoidal rule,

h
!: ydx = 2 [(sum of the first and last ordinates
+ 2 (sum of the remaining ordinates))

~%[(8l+81)+2(16+ 1+0+1+16)]
=115



(ii) By Simpson’s one-third rule (since number of ordinates is odd)

Jiydx==%[(8l +81)+2(141)+4 1640+ 16)]
~98.

(iii) Since n=6, (multiple of three), we can also use Simpson’s
three-eighths rule. By this rule,

IZydxa%[(Sl+8|)+3(l6+ 1+1+16)+2(0)] =99

(iv) By actual integration,

3
-
rx‘dx=2x["—] =2X2M3 g9y
0

2 5 5

From the results obtained by various methods, we see that Simpson’s

rule gives hetter result than Trapezoidal rule (It is true in general; but not
always).

I .
Example 2. Evaluate | |d" ;' using Trapezoidal rule with
0l +x

h=02. Hence obtain an approximate value of . Can you use other
formulae in this case.

1
1+x°
Interval is (1-0)=1 ’."nlevalmofymm“nm
taking h=02
x : 0 02 04 e - %

Solution. Let y (x) =

. | 096154 086207 073529 060976  0:50000
142
(i) By trapezoidal rule,
dx h et Yurd
==[(o+Y)+2( + Y2t =+ Va1
01+ 2[00+ '

=22 (1 +05) +2 (0:96154+ 0-86207 + 073529 + 0-60976)]
2

=(0-1)[1-5+ 633732
=0-783732
By actual integration,

_dL.-_- 0k = /4
":t|+.;2 e



In this case, we cannot use Simpson’s rule
(since number of intervals is 5).
Example 3. From the following table, find the area bounded by the

curve and the x-axis from x=747 to x=7-52.
x : 747 7-48 749 7-50 7-51 7-52
y=f(® : 1-93 1-95 198 201 203 206

Solution. Since only 6 ordinates (n=35) are given, we cannot use
Simpson’s rule . So, we will use Trapezoidal rule.

52 001
Arca=] r@ds="g [(1:93 +2:06) +2 (195 + 198 + 201 + 2:03)]
7
= 0-09965.



2
gn-lel.Mua:ezhein:egmll=I: log, x dx using Trapezoidal,

Simpson’s rules . )
mmb—a=5-2—4=l'2 Weslnllcﬁvidetheinmal into

6 equal parts.
Hence, la=-%2-=0-2. We form the table.
42 44 46 48 50 52
l(ﬂ:hyx 1-3:”“ 14350845 14816045 1-5260563 15686159 16094379 16486596

() By Trapezoidal rule,
2
jj log x = &2 [(1:3862944+ 1:6486586 +2 (14350845
+ 1.4816045 + 15260563+ 15686159+ 1.6094379))

= 182765512
(ii) Since n =6, we can use Simpson’s rule -
By Simpson’s one-third rule,

. 93_2_ [(1:3862944 + 1-6486586) + 2 (1-4816045 + 1.5686159)
+4 (1-4350845+ 1.5260563))

= 1-82784724
(iii) By Simpson, three-eighths rule,

L llg—‘zl [(1:3862944 + 1.6486586 + 3 (1-4350845 + 1.4816045

+ 1-:5686159 + 1-6094379 + 2 (1-5260563)]
= 1-82784705

Example 5. Bvaluate =] ——dx using (i) Trapezoidal rule
ol +x

(ii) Simpson's ruté (both) Also, check up by direct

integration.
Solution. Take the number of intervals as 6.
6-0
h=——=ml],
3 1
x - 0 | 2 3 4 S 6
. 1 1 1 1 1
et 93 3 4 5 5 7

(/) By Trapezoidal rule,

g _1(,.1), 1111
o1+x‘2[('*7]*2(0'5*3+4+5+6)]

= 202142857




(ii) By Simpson’s one-third rule,

%[('*1"):(2; (3]

o =1.95873016
) i Tl

(iif) By Simpson’s three-eighth’s rule,
_3x1 1 1.1, 1 d
l--—s—[[l+7)+3(05+3+5 +5 )+2(4
=1-96607143

By actual integration,

1
JZ T3 4x=[log (1 +x)]g = log,7 = 1-94591015.

Example 6. By dividing the range into ten equal parts, evaluate
J:sinxdx by Trapezoidal and Simpson’s rule. Verify your answer with
integration.

Solution. Range =n-0=nxn

T
Hence =10
We tabulate below the values of y at different x’s.
) x 2n 3n in 5n
* @ @ 10 10 10 10 0
y=sinx : 00 03090 05878  0-8090 09511 1-0
6n In 8n n
* 10 10 10 10 5

y=sinx : 09511 08090 05878 03090 0

(Notc that the values are symmetrical about x‘=§]

(i) By Trapezoidal rule,

[(0+0)+2(03090+05878+0~8090+0-9SIl +10

+0-9511+ 0-8090 + 0-5878 + 0-3090)]
= 1-9843 nearly.



(i) By Simpson’s one-third rule (since three are 11 ordinates),

I
l=—(l—’; )[(0+0)+2(osm+095n +09511+0-5878)

3
+ 4 (0-3090 + 0-8090 + 1 + 0-8090 + 0-3090)]
= 2-00091

Nofe: We cannot use Simpson’s three-cighth’s rule
(iii) By actual integration, /= (— cos x)5 = 2
“dence, Simpson's rule is more accurate than the Trapezoidal rule,

Example 7. Evaluate I;J dx by Simpson’s one-third rule correct to

five decimal places, by proper choice of h.
Solution. Here, interval length =b—a=1

Hence we take h=0-1 to have the accuracy required.
rde:oTl[(l+e)+2(e°2+e°‘+e°°+e°')
(i}

+4 (™ +e2+5+ 87+ )
= 1-718283

1

By actual integration, | ¢*dx=(e)=e- 1= 171828183
0

Correct to five decimal places, the answer is 1-71828.

Example 8. Kvaluate j: : ‘f 2 by (i) Trapezoidal rule (ii) Simpsor’s

rule Also check up the results by actual integration
Solution. Here, b-a=6-0=6. Divide into 6 equal pars

= 1. Hence, the table is
x : 0 1 2 3 4 5 6
2=/® : 100 0500 0200 0100 0058824 0038462 0027027

There are 7 ordinates (n=6). We can use all the formula
(i) By Trapezoidal rule, :

dx |
I=)| - =-— 027027 +2(0-5+02+0:-1 +005 :
'E1+12 2[|[1+|Dt)2 N+2( 8824+un334ﬁzn

(=)

h=

|

1
1+

=1-41079950



(if) By Simpson’s one-third rule,
/= % [(1 + 0:027027) + 2 (0-2 + 0-058824)
+4 (0-5+ 0-1 +0-038462))
=3 (1027027 + 0517648 + 2.553848)
= 136617433

(éii) By Simpson’s three-eighths rule,

p=2 ; L1 +0027027) + 3 (0-5 + 0-2 + 0-058824 + 0.038462)
+2(0-D)]
=1-35708188

By actual integration,
I= f 4 _ (tan"'x)§ = tan™' 6 = 140564765
o1l +

X

Practice Problems

Problem #01 Dividing the range into 10 equal parts, find the approximate

value of j sinx dx by (i) Trapezoidal Rule (ii) Simpson’s Rule.
0

[Ans. (1) 1.9843 (ii) 2.0009]
Problem #02 A rocket is launched from the ground. Its acceleration
measured every 5 sec. Is tabulated below. Find the velocity and the position
of the rocket at t = 40 seconds. Use Trapezoidal rule as well as Simpson’s
rule?

T 0 S 10 15 20 25 30 35 40

a(t) 40.0 |42.25 | 48:90 |51:25 | 94.835 | 59:48 [ 61:5 |64.3 |68.7

[Ans. velocity 2194.9;position 87796;velocity 2197.5;position 87900]
Problem #03 Evaluate the following integral using Simpson’s 1/3 rule for

2 x
n=4[f_ax? Ans. 3.0592]
4]
X
1

dx (i) by Trapezoidal Rule and Simpson’s 1/3

1
Problem #04 Evaluate I L
e

rule (ii) Using Simpson’s 3/8 rule? [Ans.0.69485;0.6931;0.6932]



7

Problem # 05 Evaluate je"“” dx taking h = n/6? [Ans.3.0815]
0
1

Problem # 06 Evaluate _|'Jc'1 dx with five sub-intervals by Trapezoidal rule?
0

[Ans.0.26]

Problem # 07 When a train is moving ar 30 m/sec, steam is shut off and
brakes are supplied. The spped of the train per second after t sec. Is given
by using Simpson’s rule, determine the distance moved by the train in 40
seconds?

Time |O 2 10 15 20 25 30 35 40

speed | 30 24 19.5 16 13.6 11.7 10 8.5 7.0

[Ans.573.4367]
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l. Introduction

Contents - Ordinary differential equations: Taylor series method, Runge Kutta method for
fourth order — Partial differential equations — Finite differences — Laplace equation and its
solutions by Liebmann’s process — Solution of Poisson equation — Solutions of parabolic
equations by Bender Schmidt Method — Solution of hyperbolic equations.
1. Numerical Methods for Solving Ordinary Differential Equations
Introduction to Ordinary Differential Equations

An ordinary differential equation of order » in of the form F(x,y,y',y", ... ,y(")) =0,

d")’
dxn’

where y™ =

We will discuss the Numerical solution to first order linear ordinary differential equations

by Taylor series method, and Runge - Kutta method, given the initial condition y(x,) = y,.
Taylor Series method

Consider the first order differential equation of the form % = f(x,¥), y(xo) = Yo

The solution of the above initial value problem is obtained in two types

» Power series solution

» Point wise solution

(i) Power series solution

- - 2 i 3
y() = yr) + Sy () + EE ) 4 EL o 4

(ii) Point wise solution

h 2 3
y(x) = y(xp) + Ey,(xo) + 5)”'(7‘0) + Enl o ) e

Problems:

1. Using Taylor series method find y at x = 0.1 if% =y+1,y(0)=1.

Solution:

Given%=y+ landxy =0,y,=1,h=0.1



Taylor series formula for y(0.1) is

h Z h3
y() = y(xo) + 177" (o) + 37" (x0) + 53" (o) + -

yx)=y+1 y'0)=y0)+1=14+1=2
y'(x) =y y"(0) = y'(0) =2
y'(x) =y" y™"'(0) = y"(0) = 2

Substituting in the Taylor’s series expansion:

h2
y(0.1) = y(0) + hy'(0) + 5}1”(0) Jos

0.01 0.001
=14+01x2+ > X2+ 3 X2+

0.01 0.001
=1+0.1x2+—2—x2+ 3

X2+

y(0.1) = 1.2103

2. Find the Taylor series solution with three terms for the initial

value problem % =x*+y,y1)=1
Solution:

Given%= tym=1y=1

y'(@)=x*+y yMD=1+1=2
y'(x) =2x+y' Yy’ =2+2=4
y') =2+y" y")=2+4=6

ylv(x) — y/// ylv(l) == 6




The Taylor’s series expansion about a point x = x, is given by

i s 3
() = (o) + T2y 4 ETO ey EETD
Henceatx =1
s e 2 i 3
ﬂm—yayﬁx )'u)(x D" ny + “ D71y 4.
= 2 s 2 > o 3
}'(X)=1+2(x 1)+4(x D +6(x D +

1! 2! 3!

Runge-Kutta method
Runge-kutta methods of solving initial value problem do not require the
calculations of higher order derivatives and give greater accuracy. The Runge-Kutta
formula possesses the advantage of requiring only the function values at some selected
points. These methods agree with Taylor series solutions up to the term in h” where r

is called the order of that method.

Fourth-order Runge-Kutta method

Let % = f(x,¥),y(xy) = y, be given.

Working rule to find y(x,)
The value of ¥, = y(x,) where x,, = x,,—; + h where A is the incremental value for x is

obtained as below:

ky = hf (Xo,¥0)

h k
ke = hf (x0 +5.30 +2)



k—h( ok +k2)
3 = hf [ x, 2:}’0 )

k4 == hf(xO + h,yo + k3)
Compute the incremental value for y

kg + 2k + 2k5 + Ky
B 6
The iterative formula to compute successive value of y is V.41 = y, + Ay

Problems

1. Find the value of y at x = 0. 2. Given % = x2 + y,y(0) = 1, using R-K method of
order IV.

Sol:

Here f(x,y) = x> +y,y(0) =1
Choosingh = 0.1,xg =0,y =1
Then by R-K fourth order method,

1
A =y0+g[k1+2k2+2k3+k4]

k, =hf(x,,y,) =0

h k
ky =hf (X, +— ¥+ 1) =0.00525

h k,
Ky =hf (x,+2, ¥, + 1) =0.00525

k,=hf (x,+h,y,+k;)=0.0110050



vy(0.1) = 1.0053

To find y(0.2) given x, = x; + h = 0.2, y; = 1.0053

1
Yy, = y1+g[k1+2k2 +2k; ¥kl

k, = hf (x,,y,) =0.0110

k, = hf(x1+g, Y+ kzl) =0.01727

k
ks = hf (x, +§, Yo+ 23) =0.01728
k, = hf (x,+h, y, + k;) =0.02409

y(0.2)=1.0227

Problems

Evaluate using Runge-Kutta methods. Unless otherwise mentioned, use fourth
order R.K. method.

1. Find y (0-2) give %=y-x,)'(0)=2 taking h=0-1.

2. Evaluate y (1-4) giv %=x+y.y(l-2)=2.
3. Obtain the value of y at x=0-2 if y satisfies

%_,2,=,;y(o)=1 taking h=0-1.
4. Solve %m for x= 14, taking y (1)=2, h =02,

-x
5. Solve: )’=-:—+—; given y (0) =1, to obtain y (0:2).



2. Numerical Methods for Solving Partial Differential Equations

Classification of Partial Differential Equations of the Second
Order

The most general linear partial differential equation of second order
can be writt-:n as

pFu, P, Mo
A E}xﬂy Byz +E P +Fu=0
(R A ug + Buyy+ Cuyy + Dux+ Eu,+ Fu=0 (1)

where A, B, C, D, E, F are in general functions of x and y.
The above equation of second order (linear) (1) is said to
(i) elliptic at a point (x, y) in the plane if B*-4AC<0

(i) parabolic if B> —4AC=0

(iii) hyperbolic if B?-4AC>0.

Note: The same differential equatmn may be elliptic in one region, parabolic
in another and hyperbolic in some other region. For example,
Xtbgy + Uiy, =0 i elliptic if x>0, hyperbolic if x<0 and parabolic if
x=0.



Example 1. Classify the following equations:
2
() S4io 2t +$=o
(i) 2 o+ (1=5)f,,=0
(/) Here A=1,B=2,C=1
B*-4AC=4-4=0, for all x, y.
Hence, the equation is parabolic at all points.
(i) A=x*,B=0,C=1-)
B -4AC=-42(1-))
=42 ("~ 1)
For all x except x = 0, x* is +ve.
If-1<y<l1,y*-1is negative.
o B'-4ACis —ve if -1<y<1,x#0
* For —ee<x<oo(x#0), —~1<y<], the equation is elliptic.
For —eo<x<oo,x#0,y<—=1 or y> 1, the equation is hyperbolic.
For x=0 for all y or for all x, y=+1 the equation is parabolic.




Example 2. Classify the following partial differential equations:
(i) un+4u,,+(xz+4);) Uy, =sin (x +y)
@) x+DNu,-2(x+2) g+ (x+3)u,=0
(i) xf +y/f,=0,x>0,y>0.
Solution. (i) Here, A =1, B=4, C= (¥ +4y?)
B -4AC=16-4 (* +4y)
=4 [4-2 -4y
The equation is elliptic if 4 — x*—4y* <0
ie., ;2+4y2>4 .
2y

ie., a7t

" It is elliptic in the region outside the ellipse
_X: + .y: — l
4 17

It is hyperbolic inside. the ellipse {- %: 1.

It is parabolic on the ell}’pse {--ﬁ-%: i

(i) Here, A=x+1, B=-2(x+2), C=x+3
B - 4AC=4(x+2)" -4 (x+ 1)(x +3)
=4(1]=4>0
- The equation is hyperbolic at all points of the region.
(i) A=x,B=0,C=y

B’ - 4AC = 4xy, (x>0,y>0 given)
==~ve
* Itis elliptic for all x> 0, y > 0.

Classify the following equations as elliptic, parabolic, or hyperbolic.
L fa=2f,=0 2 [+ 2y +4f,,=0
3. fal.‘x-?fxy"'fyy=o 4. fxy-fx'-'o
S. Uy =1



Elliptic Equations
An important and frequently occurring elliptic equation is Laplace’s
equation, i.e.,

-gixz"-.g.%zy%:O ie, Vlu=0 or un+u”=0: ~a(1)

Replacing the derivatives by difference quotients given under Article
12-3, of this chapter, we get,
Uigy,j— 20y 5ty Uy =20t U
2 + 2 =0
Taking k = h, (square mesh) in the above-equation,
Quy =y g gl Uy

1 h
0-.:=z["i;n.:+nr+n.f+m-:+"u+n] “th

That is, the value of u at any interior point is the arithmetic mean

of the values of u at the four lattice points (Two of them are vertically just
above and below and the other two in the horizontal line just after and

before this point).
This is called standard five point formula.

ot -

Schematic diagram.
Central value = average of the other four values.

f




Diagonal five-point formula
Instead of the formula (1), we can also use the formula

1
"‘-i=2("f- Li=1 Moy e i j-1 F ey e 1) -(2)

which is called the diagonal five-point formula since this formula mvolves
the values on the diagonals through u; ;. Since the Laplace equation is

invariant in any coordinate system, the formula remains same when the
coordinate axes are rotated through 45°. But the error in the diagonal
formula is four times the error in the standard formula. Therefore, we

always prefer the standard formula to the diagonal formula.

Ui-1,j+1 Uivl,j+1
Ui1,j+1 h
+ W27 | 1,41

S 2

2,

‘# ul'j
®
Ui-1,j-1 Uis1,j-1

Schematic diagram of diagonal formula.

Ui-1,j-1 Ui+1,j~1

12:6. Solution of Laplace’s Eqation: (By Liebmann’s iteration
process)
AIM: To solve the Laplace’s equation Uye+ Uy, =0 (i) in bounded

square region R with a boundary C when the boundary values of u are
given on the boundary (or at least at the grid points in the boundary).



Let us divide the square region into a network of sub-squares of side
h (refer to the figure).

by b, by by bs

17
big uy 2 u3 B
b ug Ms s by
15
b u7 ug Hg bg
14
' by
b3 b2 by bio

The boundary values of u at the grid points are given and noted by
by, by,.... by The values of u at the interior lattice or grid points are
assumed to be u, u,,... u,. '

To start the iteration process, initially we find rough values at

interior points and then we improve them by iterative process mostly
using standard five point formula.

Find us first: usg =% (by+b,+ by, +b,5) (by standard five point
formula—SFPF)

Knowing us, we find u,, uy, u;, ug, that is the values at the centres of
the four larger inner squares by using diagonal five point formula—DFPF.

Thatis, uy =y (by+ bys+b +ug)
uy = (bs-+ s+ by+by)
“7=%(us+bl3+bll+blﬁ}

ué=-;-{b,+b"+b9+u,)
The remaining 4 values uy, Uy, Ug, Ug can be got by using SFPF.

1
Thatis, wuy=7(b3+usti + )
,u‘:%{ll"l"u,"l'us"'blg}

u6=%[u3+ﬂ9+ﬂs+bﬂ



“8=f:'(“s+bu+“r+“9)

Now we know all the boundary values of ¥ and rough values of u at
every grid point in the interior of the region R. Now, we iterate. the
process and improve the values ot u with accuracy. Start with us and
proceed to get the values of uy, Uy,... Ug always using SFPF, taking into
account the latest available values of u to use in the formula. The iterative

formula is
iy =g\ Mg i-ng

where the superscript of u denotes the iteration number.
Equation I is called LIEBMANN?’S iteration process. The process is
stoppd once, we get the values with desired accuracy.
Note: Tosolvetbcnineunknownsu,.uz....u,ﬁomthenineequations.we
can also use Gauss-Seidel method or other method.

(.u)__l_( ) ("l)'“‘?l) '+“£.]++|')) B



Example 3. Find by the Liebmann 's method the values at the
interior lattice points of a square region of the harmonic function u whose
boundary values are as shown in the following figure.

11-1 170 197 186

0
5 219
o 210
0 170
0 9.0

87 121 12:8

Solution. Since u is harmonic, it satisfies Laplace’s equation
Pu  Pu
™ +§=0 in the square. (1)
Let the interior values of u at the 9 grid points be u,, i, ... 4y We
will find thc values Of. u at the interior mesh points as explained in the
previous article. We will first find the rough values of 4 and then proceed

to refine-them.



11 170 197 186

0

0 ol R 3 219
0 e S, o PO . 210
0 ol us [ 170
0 | 90

87 12:1 128
Finding rough values:

us=7 (0+17042104121)=125  (SFPF)
=7 0+125+17.0)=74 (DFPF)
uy=7 (125+186+170+10)=173  (DFPP)
= (125 +0+0+ 121) =62 (DFPF)

..,:%(12-5+9o+12-|+zn-0)=13-1 (DFPF)

.,2=i-m4)+ 125+74+173)=136  (SFPF)

u‘=%(7-4+62+0+12-5)=65 (SFPF)

ug=7 (125+210+173+13T)=161  (SFPF)
i

l‘8=:‘.(|2.5+12-l+6-2+'_l3-7)=ll-l (SFPF)
Now, we have got the rough values at all interior grid points and

already we possess the boundary values at the lattice points. We will now
improve the values by using always SFPF.

First iteration: (We obtain all values by SFPF)

"(IQ‘:%(O"' 11-1 + Uy + uy) =%(0+ 11'1 +13:6 + 6:5)=7-8
,én=%(|7.o+ 125+78+17-3)=137

#) =4 (13742194197 +161)= 179



uS"=%(o+ 125478 +62)=66

u§"=%(|3-7.+’11-1 +66+161)=119
u&":%(n.w 137+ 119 +21:0) = 16:1
w‘,')=%(6-6+8-,7+0+ 11-1)=66

1

uf) =7 (119+121+66+137) =111

u&"=%(l6l $128+17:0+ 11:1) = 143

Now we go for the second iteration.
Second iteration:

u‘,”=%(o+ 111 +137+66)=79
WP =7 (170+179+79+119) = 137
u?’:%(13-7+ 197 +21.9 4+ 161) = 17:9

u?’=%(7-9+0+11-9+66)=6-6



&g
[}

(13-7+66+161+11-1)=119

)
]

(1194+179+21.0+ 143) = 163

N

S

0+66+11-1+87)=66

%

P TSSO (S [

6-6+119+143+12:1)=112

2)
u9’=;(11-2+ 163+ 170+ 12:8) = 14.3

Third iteration;
u?)=l(0 ;
4O+ 11+137466) =79
=L
40 +1794 1704 11.9)=13.7
o 1
U =g (13742194 199, 163)=179

1

)

(112+66+137+163) =119

&z

(119+210+ 179+ 143)=163

&

%
]

0+66+112+87)=66

[ N T N P L

g
]

2 (66+143+119+121)=112

=1 (124163 +17.0+ 128) = 143

Now, all the 9 values of u of the third iteration are same as the
corresponding values of the second iteration. Hence we stop the procedure
and accept

#1 =79, =137, 43 =179, 4, = 66, ug=11-9

ug=163,u;=66,u3 =112 and uy=143.

Instead of working out so elaborately, we can write the values of u’s

at each grid paint and work out the scheme easily. The values of u’s are
shown below:



o 111 170 197

186
°
g ' < - 219
74 136 173
78 ‘137 179
79 137 179
79 137 179
o -~ N o 210
65 125 161
66 119 161
66 119 163
119 .
° p > e
w |62  ug 111w |13.7
66 11-1 143
66 112 143
0 66 112 143
87 12:1 128 9.0

Poisson’s Equation

An equation of the form Viu=fx, )
32 U 32 u (1)
—+5=fxY)
iLe., 32 Byz
is called as POISSON’S equation where f (x, ) is a function of x and y
only. | -
We will solve the above equation numerically at the points of the

square mesh, replacing the derivatives by difference quotients. Taking
x=ih, y=jk=jh (here) the differential equation reduces to

u,_,u—hu+u‘+;_j I‘.lu_l-'Zuu-I-uUH
| K? * s
' —du, ;=R f(ih, jh) -2
Le., “i—l.;"‘"ln.;"'“y-l"’"-‘njn i J

=f (ih, jh)



Example 9. Solve Vu =~ 10(* + y* + 10) over the square mesh with
sides x=0, y=0, x=3, y=3 with u=0 on the boundary and mesh
length 1 unit. (MS. 1976)

Solution.
y »
u=0 B
D E|“
B u=0
u=0 Flw G| ug
o C
u=0 x
The P.D.E. is VZu=-10(%+y* +10) k1)
using the theory, (here h = 1)
Uiy, jF iy U T ‘.4".-,[='- 10(2 + 72 + 10) .(2)

Applying the formula (2) at D (i=1,i=2)
O0+0+uy+uy—4u; =— 10(15)=- 150
Uy + uy = 4uy =~ 150 w(3)

Applying at E(i=2,j=2)

Uy + g — A1ty = — 180 (4
Applying (2) at F, (i=1,j=1) |

Uy +ug—4uy =~ 120 «(5)
Applying (2) at G, (i=2,j =1)

Uyt ~4uy =~ 102>+ 12+ 10) =~ 150 ..(6)

We can solve the cquation (3), (4), (5 : ;
elimination or by Gauss-Seidel method. PRI () nies by, e

Method 1. (5)-(4) gives, (Eliminate u,)
4 (g~ ) =60
Uy~ Uy =15 «(7)



Eliminate %, from (3) and (4); (3) +4(4) gives,

— 15u, + Uy + 4uy =—870 .(8)
Adding (6) and (8) —7uy+uy=~510 .(9)
From (7), (9) adding, u, =825 _

Using (7), uy=u,— 15=82-5-15=67-5
Put in (3), 4u, =300 .. 4, =75
4uy=150+150; uy=75

oo uy=uy=175, u, =825, uy=67-5

Note: Since Ithe differential equation is unchanged when x, y are
interchanged and boundary conditions are also same after ingerchange
x and y, the result will be symmetrical about the line y=x
.o Ug=uy. g

"If we use this idea the 4 equations would have reduced to 3 equations
namely,

iy + sy~ 4y =~ 150, 2y - 4y =~ 180,
2uy —4u3=-120andu2+u3-4u|=—150.
Solving will be easier now.

Method 2. We can use Gauss-Seidel method to solve.
u, =-:-(150+u2+u3)

1
u2=z(2u| + 180)

ly = (2uy+ 120)
The tabular values are:

1 2 3 4 5 6 7 8 9 10

Ug=wy| - | 375 | 6556|7264 |74-41 | 7485|7496 | 7499 | 75 75

wp 0 |6375|77-79 | 8132|8221 | 8243|8248 | 825 | 825 | 825

us| O |4875|6278| 6632|6721 | 6743|6748 | 675 | 675 | 675

We get the values after 9 iterations as
u;=75=uy w, =825, u,; =675




Problems

1. Sove the boundary value problem V2u = 0 for the square of sides three units.

50 100 100 50
0 0
0 0

0 0 ) 0

2. Sove V2u=0 at the nodal points for the following square region given the
boundary conditions.

0 10 20 30
20 40
40 50

60 60 60 60

Parabolic Equations

Bender-Schmidt Method
The one dimensional heat equation, namely,

-?-l-‘-:uz & where a’:i is an example of parabolic equation.

a o
Setting az=i- the equation becomes, %-ﬂ%ﬂl

Here A=1,B=0,C=0 - B*—4AC=0. Therefore, it is parabolic
at all points.

AIM : Our aim is to solve this by the method of finite differences.

To solve : Uy, = au, (1)

with boundary conditions,

u(0,0=T, -(2)
uL)=T, -(3)
and with initial condition u(x,0)=f(x),0 <x<l ..-(4)

We select a spacing h for the variable x and a spacing k for the time
variable .



gl Uigy,j— 2 0y

Uy = hz
Mijer— W
and u,=———“k !
Hence (1) becomes,
Uiyyj— 2 j* Uy g
20 =‘k'("u+|‘“l,1)
X

o Mg -.‘.1=';:2_(“lfl.l-2uinl+“"Li)
= (g, = 2 0

where -
i

ie., U1 =My (=200 +h E))

Writing the boundary condition as u, ;= T, ..(6)

Uy j =T, A7)
where nh=|.
and initial condition as
ul_o=f(ih). I=1;2 5 ...(8)

u is known-at t = 0,

Equation (5) facilitates to get the value of u at x = ih and time
t
A+ k

Equation (5) is called EXPLICIT FORMULA. It is valid if

1
0 1.
<152
If we take, =—; » the coefficient of u; j vanishes.

Hence Equation (5) becomes,

1
“l.j«tl'_'i['ll-l.j"’"i'&l,j] -(9)
_I_L. c, =82
when l—z—ahz, ie., Ic-2h

i.e., the value of u at x=x; at t=1;,, is equal to the average of the values
of u the surrounding points x;_, and x;,, at the previous time #;.

Equation (9) is called Bender-Schmidt recurrence equation.
This is valid only if k=%h2 (so, select k like this)



Ui j+1

O

Ui-1,j U j Uis1,j
Schematic diagram

Value of u at A=-l- [Value of u at B + value of u at C]

Example 11. Solve ! 2?; = (), given

w0 N=0u(4nN=0 ux0)= x(4 x). Assume h = 1. Find the values of
uuptot =9

Solution. u.=au, .. a= 2
dt’ o b Spe
To use Bender-Schmidt’s equation, k= z.h =1

Step-size in time = k= 1. The values of u; ; are tabulated below.

x-direction —

NSl oo 1 2 3 4
J
8 | o 3,4 3 0 cux0=x@-»
S —
4 il 375N s
t-direction 2 » g ) s 5
3 0\1 1-5\ 1/ 0
4 0 015 0
5 0 s\os/o

Analysis: Range for x : (0, 4); for ¢ : (0, 5)
u (x,0)=x (4 -x). This gives u (0,0) =0, u (1, 0) = 3,
u(2,00=4,u(3,00=3,u(4,0=0.
For all ¢, at x=0, u=0 and for all t at x=4,u=0.

Using these values we fill up column under x=0,x=4 and row
against r=0.



a b
\ / This means c=a;b
C

The values of u at ¢ = 1 are written by seeing the valuesof u at =0
and using the average formula.

Example 12. Solve ai; %‘ given u(0,1)=0, u (4, t) = 0, u (x, 0)

= x (4 - x) assuming h = k = 1.
Find the values of u upto t = 5.

Solution. If we want to use Bender-Schmidt formula, we should
have k=2 p2,
ve k 2 h

Here, k=h=1,a=1. These values do not satisfy the condition.
Hence we cannot employ Bender-Schmidt formula.

Hence we go to the basic equation
"un’*"an.r"(l-2&)u“+;,,,l_,_l 1)
£ L .
ki l-;ﬁ ix1- !

Hence, (1) reduces to,

Ui jar =Wy =Wt Wy

That is, % ; U j Hiv1.j
O O O
A\B C

DO

Bij+1

Value of u at D = value of u at A + value of u at C — value of « at B.



—x direction

i

j 0 I 2 3 4
0 0 3] 4 3 o
v 1 o gk 2 1 0

direction
2 0 1 0 1 0
5 0 -7 10 -1 0

b c
Here,

This figure means

a
o (o) (0]
\'/ d=a¥c—-b
0
d

Note: Since A=11is used in
Explicit formula. So the
problem. Such questions
do not exist.

Example 13. Solve U =¥x subject to u (0, ) =0 u(l t)=0and

u(x.0)=sinnx40_<x<1. o
Solution. Sincé h, and k are not given we will select them properly
use Bender-Schmidt method.

_an_1,2 .- g=1.
k—zh 2," [

and

Since range of x is (0, 1), take h = 0-2.
Hence k=-(0—'22)'2'=0-02
The formula is #; j41 =‘;'(“a—|.1+“t+|.l)
4(0,0)=0, u(02.0)=sin-’55=oss7s
“(04.0)=sin-2—;-=0-9511;sin (06,0)=sin§51‘-=095u
sin (0-8,0) =sini;—=oss7s sin(1,0)=0
We form the table.



x — direction h = 0-2

p il o o2 o4 06 08 1

0 0 05878 09511 09511 05878 0

1 002 0 04756 07695 07695 04756 O
‘m 0-04 0 03848 06225 06225 03848 O
0-06 0 03113 05036 05036 03113 0

008 0 02518 04074 04074 02518 O

01 0 02037 0329 03296 02037 0

4

Example 14. Given g%’ f(0,0=f5.0=0, f(x,0=X(@25- %),
find f in the range taking h = | and upto 3, seconds.
Solution. To use Schmidt method, k=—;— K.

Here, a=1,h=1 = k=1/2

Step-size of time = 1/2

Step-size of x = L

£(0,0)=0,£(1,0)=24,f(2,0)=84,(3,0)=144,£(4,0) = 144,
f(5,0)=0.

1
We have, 4 ;.1 ='§'(“l-l.]+“l+l.l)

— x direction

W

130312 229687 21-0938  14-2031
114843 170625 185859  10-5469
85312 150351 13.8047 92929

45

j 0 1 2 3 4
0 0 24 84 144 144
v | o 42 84 114 72
1 0 42 78 78 57
! 15 | 0 39 60 675 39
t-direction | 2 0 30 5325 495 33.75
25 | 0 26625 3975 435 24.75
3 0 19875 350625 3225 2175
35 | 0 175312 260625 284062 16125
0
0
0

(=3~ T~ T~ — T — I — B — B — B = =




Example 15. Solve u,, = 32u,, taking h = 025 for t > 0,0 <x <1
and u(x,0)=0,u(0,0)=0,u(l, )=t
Solution. The range for x is (0, 1); A = 0-25

_a,2_32(1Y_
k=5 h == (4)2_1

Step-size of time ¢ is 1;
direction of x

p i 0 025 05 075 1
0 0 0 0 0 0
' 1 0 0 0 0 1
i 2 0 0 0 05 2
3 0 0 025 1 3
4 0 0125 05 1.625 4

5 0 025 0.875 225 5

Values of u

Hyperbolic Equations

The wave equation in ope dimension (vibration of strings) is

Fu_

az—;:—yu=0; ie, du,—u,=0.
Here, A=d’,B=0,C=-1 .. B*-4AC=4d"=+ve.
Therefore, the equation is hyperbolic.

Let us solve this equation by recuciug i* to difference equation.

AIM: Solve azulm - u,=0 (1)
together with the boundary conditions
u©0,)=0 -(2)
u(l,)=0 «.(3)
and the initial conditions
u(x,0)=1(x) -(4)
u,(x,00=0 -(5)

Assuming Ax=h, At=k, we have



Uiy, j=2UjF Uy

-

“n‘- hz
TS et YA Y
ll,-'-' kz

Substituting these values in (1),
l -
%(“uu-zll,.,+u,,|,,)—-k;(u“+§—2u,‘l+u“_,)_0

ie., A’a’(u,,,.,-2u,‘,+U,-|,,)-“u+|"’2“!.1""1./-1=°

k.

“h

e =2(1-Nad)uy + 20" 0y + 0 ) 0y -(6)
To make the equation simpler, select A such that

where A

1-A2%?=0 ie., 1.2=-£i=-:—: ie., ='Z‘
under this selection of 12=% s Le, k=£ » the equation (6) reduces to
the simplest form
LAl TN PEN Rl W A7)

Equation (6) is called an Explicit scheme or Explicit formula to
solve the wave equation.

Equation (7) gives a simpler form under the condition k=

N

O Ui j-1 Uiv1,j-1
Bi-1,j-1 D O

Bio1,j

e

"Ml.j

A "l.jol

The value of u at A = valbe of u at B + value of u at C - value of
uatD.

Note 1. The boundary condition u (0, 1) =0 i.e., uy, ;=0 gives the values of
u along the line x=0; that all u=0.
'l‘bcbamdtycondiﬁonu(l.t)-Ootu._,-Ogimﬂnvamof“
along the line x =1 ie., all u=0 along this linc.



Note 2. Initial condition u (x, 0) =f(x) becomes
A

0 G, 0) =T (h),i=123

This gives the value of « along f =0 for various values of i.

u(i,0)=f(@h) = fi ..(8)
Wije1 =W j-1
Note 3. The initial condition , (x,0)=0 gives ™ = 0 when
j=0 (central difference approximation)
U =%,-1 .(9)

Setting j=0 in (7),
Uy ) =Uje1,0% 41,07 % -1
Wi 1= Uis1,0+ Hi-1,0~ Wi, 1> USing (9),

ll|,1=%(“l-l,0+“l+l,0) .(10)

Note 4. If 1-A2a2 <0, ie, ha>1, ie, #‘;5> 1. the solution is unstable. If

—h"‘—’= 1, it is stable and if%< 1. it is stable but the accuracy of the

solution decreases as gf decreases.

That is, for }.=% the solution is stable.

Example 19. Solve numerically, 4 u,=u, with the boundary
conditions u (0, t) = 0, u (4, 1) = 0 and the initial conditions

u,(x,0)=0 and u (x, 0) = x-(4 —x), taking h = 1. (for 4 time steps)

1

Solution. Since @’ =4,h= l,k-.-z-_

N

-, Taking k= 1/2, we use the formula,
Wi jer =Wyt e, " %1
From u (0,£)=0 = u along x=0 are all zero.
From u (4,1)=0 => u along x=4 are all zero.
u (x, 0) = x (4 — x) implies that
u(0,0)=0,u(1,0)=3,u(2,0)=4,u(3,0)=3.
Now, we fill up the row ¢ = 0 using the above values,
u, (x,0) =0, implies u, ;= u‘”";“"'&
Now we draw the table; for that we require

=%0t40 440 _,
SN TR

(1)

..(2)

w(3)



U= 2 =3
_Maotipo _
Uy = 2 =
“"|=0.
Table
N 0 ! 2 3 4
0] o 3 4 3 0
05| 0 2 3 2 0
1| o 0 0 0 0
B3+0-3) (2+2-4) (3+0-3)
151 0 - P_s -2 0
2 | 0 >3 -4 -3 0
25| 0 = -3 i 0
300 0 0 0 0
35| 0 2 3 2 )
4| o 3 4 3 0
Period is4secondsor8(k)=8(-;-)=4 secs.

u(x,0)=x(4-x

Example 20. Solve 25 u, — u,= 0 for u at the pivotal points, given
u(0.0)=u(50=0 u,(x,0)=0 and u(x, 0) = 2x for 0Sx<2:5

for one half period of vibration.
Solution. Here, a°=25 ..

21=g_x_§=2 seconds.

Period of vibration -
half period = 1 second.

=]0-2x
for 225<x<5.

Therefore we want values upto t = 1 second
h 1 ;
-a-—s-lakmghzi

Step-size in t-direction =

The Explicit scheme is

5

Uy jar =WionyFliey )= W j-

Boundary conditions are (0,7 =0 or ug ;=0
u(5,1)=0 or us ;=0

(1)

} for all j



“:(X'o)=0=9u“=_‘_‘_li_'_._°_;_i'_'£ .(2)

u (x,0)=2x for 0SxS25
=10-2x for 25Sx<5

4 (0,0)=0;u(1,0)=2,u4(2,00=4,

u(3,0)=4,u(4,0)=2,u(50=0.

b= 2 2 Here, u (x,0)=u (i, 0)
Uz o+ Uy 0
= ——ete
u:.l 2 3
Ug o+
,,“=_4.o_217=2=3
_UsotUso
1= "_"2“"'=2
; * 0 1 2 3 4 5
0
=0 0 2 4 4 2 0
lt-l'
5 0 2 3 3 2 0
o= \ /
2
SBC 0 1 1 1 1 0
Gi=2)
3
) 0 il =1 -1 -1 0
(]:3) \ /
4
=3 0 -2 -3 -3 -2 0
i=4)
=1 . = -4 -2 0
=5 0 2 4 N
Problems

1. Solve wp=1ly, given u@©,n=u(d =9, !4(3.0)3'!2'1(4-::). and
u, (x,0)=0. Take h = 1. Find the solutions upto 5 steps in r-direction.

2. Solve uy = u, upto t=0-5 with spacing of 0-1, given u@©,0=u(l,n=0,
ux0)= 10x (10 - x), ¥ (x, 0)=0. (Take h = 0-1 = k).
3. Solve numerically, 25uz = Uy given, u (x,0)=0,u(0,0)=u(S5)=0 and
u (x, 0) = 20x for 0sxsl
=5(5-x) for 1£x<5.
4. Show by suitable transformation of variables, the equation u,,-azua"(’c"‘
be transformed into the normalised form of the wave equation tz — Uy =0-



