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LOGIC

Statements - Truth tables - Connectives - Equivalent Propositions - Tautological
Implications - Normal forms -Predicate Calculus, Inference theory for Propositional
Calculus and Predicate Calculus.

Propositional Logic — Definition

A proposition is a collection of declarative statements that has either a truth value "true” or a
truth value "false". A propositional consists of propositional variables and connectives. We
denote the propositional variables by capital letters (A, B, etc). The connectives connect the
propositional variables.

Some examples of Propositions are given below —
e "Man is Mortal", it returns truth value “TRUE”

e "12+9=3-2", itreturns truth value “FALSE” The following is not a Proposition

"A is less than 2". It is because unless we give a specific value of A, we cannot say
whether the statement is true or false.

Connectives

In propositional logic generally we use five connectives which are — OR (V), AND (A),
Negation/ NOT (=), Implication / if-then (—), If and only if («).

OR (V) : The OR operation of two propositions A and B (written as A v B) is true if at least
any of the propositional variable A or B is true.

The truth table is as follows —

A B AVB
True True True
True False True
False True True
False Falsealse FaFgse Félskse




AND (A) : The AND operation of two propositions A and B (written as A A B) is true if both the

propositional variable A and B is true.

The truth table is as follows —

A B AAB
True True False
True False False
False True False
False False True

Negation (=) :The negation of a proposition A (written as —=A) is false when A is true and is true

when A is false.

The truth table is as follows —

A -A
True False
False True

Implication / if-then (—): An implication A— B is False if A is true and B is false. The rest of

the cases are true.

The truth table is as follows —

A B A— B
True True True
True False False
False True True
False False True




If and only if (<) : A<B is bi-conditional logical connective which is true when p and g are
both false or both are true.

The truth table is as follows —

A B A—B
True True True
True False False
False True False
False False True
Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.
Example — Prove [(A — B) A A] — B is a tautology

The truth table is as follows —

A B A—B (A—>B)AA [(A— B)AA] > B
True True True True True
True False False False True
False True True False True
False False True False True

As we can see every value of [(A — B) A A] — B is “True”, it is a tautology.



Contradictions

A Contradiction is a formula which is always false for every value of its propositional variables.

Example — Prove (A V B) A [(=A) A (-B)] is a contradiction

The truth table is as follows —

A B AV B -A -B (=A) A (=B) | (A Vv B) A[(-A) A (=B)]
True True True False False False False
True False True False True False False
False True True True False False False
False False False True True True False

As we can see every value of (A vV B) A [(-A) A (—B)] is “False”, it is a

contradiction

Contingency

A Contingency is a formula which has both some true and some false values for every value of
its propositional variables.

Example — Prove (A V B V) A (=A) a contingency

The truth table is as follows —

A B AVB -A (AVB)A(-A)
True True True False False
True False True False False
False True True True True
False False False True False

As we can see every value of (A vV B) A (—A) has both “True” and “False”, it is a contingency.




Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions —

o The truth tables of each statement have the same truth values.
« The bi-conditional statement X <Y is a tautology.

Example — Prove —(A Vv B) and [(-A) A (-B)] are equivalent

Testing by 1st method (Matching truth table)

A B AVvB| =-(AVB) -A -B [(=A) A (-B)]
True | True | True False False | False False
True | False | True False False | True False
False | True | True False True | False False
False | False | False True True | True True

Here, we can see the truth values of = (A v B) and [(-A) A (-B)] are same, hence the statements
are equivalent.

Testing by 2nd method (Bi-conditionality)

A B “(AVB) |[FA)A(=B)] |[=(AVB)] & [(-A) A (-B)]
True True False False True
True False False False True
False True False False True
False False True True True

As [~ (A V B)] © [(-A) A (-B)] is a tautology, the statements are equivalent.



EQUIVALENT LAWS

Equivalence Name of Identity
pANT =p Identity Laws
pvF =p
pAF =F Domination Laws
pvI' =T
PAP=p Idempotent Laws
pVp=p
—(—-p)=p Double Negation Law

PAG=qg Ap Commutative Laws

pVg=gqVp

(PAGQ) AT =pA (gAT) Associative Laws
(pvg) Vr=pV(gVr)
pA(gvr)=(pAq V(pAT) Ditributive Laws
pVighr)=(pVvgA(pVvr)

—~(pNq)=-pVq
—~(pVq)=-pA—q

De Morgan’s Laws

pA(pV q) =p Absorption Laws
pV(pAg =p
pA—p=F Negation Laws
p\/—rp = T

Logical Equivalences involving Conditional Statements

p—>qg=-pVgq
P—~>q=—q—>—p
pPVg=-p—>q
pAg=—(p——q)

p—=q)=pA—g

(p—=q@A(p—=r)=p—=(gAr)
(p—=rin(g—=r)=(pVvqg)—r
(p—=q)Vip—=r)=p—(gVr)

(p—=r)vVig—=r)=(pAg)—r




Logical Equivalences involving Biconditional Statements

p<g=(p—>q)Alg—p)
Rl Sl S |
Pog=I(pAgq)ViIi—pA—g)

P g)=p e —q

A conditional statement has two parts — Hypothesis and Conclusion.

Example of Conditional Statement — “If you do your homework, you will not be punished.”
Here, "you do your homework™ is the hypothesis and "you will not be punished” is the
conclusion.

Inverse, Converse, andContra-positive

Inverse —An inverse of the conditional statement is the negation of both the hypothesis and
the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. The
inverse of “If you do your homework, you will not be punished” is “If you do not do your

homework, you will be punished.”

Converse —The converse of the conditional statement is computed by interchanging
the

hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be “If
Q,
then p”. The converse of "If you do your homework, you will not be punished" is "If you will

not be punished, you do not do your homework™.

Contra-positive —The contra-positive of the conditional is computed by interchanging the
hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the
inverse will be “If not g, then not p”. The Contra-positive of "If you do your homework, you

will not be punished” is "If you will be punished, you do your homework”.



Example:

Give the converse and the Contra positve of the implication * If it is raining then I get wet™.
Solution :

P :Itisraining Q:1 get wet
Converse : 0 — P : If I get wet, then it 1s raining.

Contrapositive ©: =0 — = : If [ do not get wet, then it is not raining

DUALITY PRINCIPLE

Duality principle set states that for any true statement, the dual statement obtained by
interchanging unions into intersections (and vice versa) and interchanging Universal set into
Null set (and vice versa) is also true. If dual of any statement is the statement itself, itis  said
self-dual statement.

Examples : i) The dual of ANB)UCIiIS(AUB)NC
ii) Thedual of PAQAFiISPVQVT

Example: 1
Construct a truth table for (p— g )— (g — p)
p q P=>q | q=>p | (P>q)>(q—>q)
T T T T T
T F F | |
F T T F F
F F T I I




Example 2: Show that —(pv q) and —p A—q are logically equivalent

Solution : The truth tables for these compound proposition s as follows.

1 2 3 B 5 6 1 8
P Q| =P | -Q |PvQ -(PvQ) -PA=Q | 67
T T F F ) F F T
T F F T T F F T
F iy 1 F T F F T
F F T T F T T T

We can observe that the truth values of —(pV q) and — p A —q agree for all possible
combinations of the truth values of p and q.

Example 3: Show that p— q and —pwvq are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q | -p [-pPva[p—q
T T F T T
T = F F F
F T T T T
F F T T T

As the truth values of p - q and —p v q are logically equivalent.

10



Example 4 : Determine whether each of the following form is a

tautology or a contradiction or neither :
) (PAQ)—(PvQ)

) (PvQ)a(—=PA—-Q)

i) (-PA—-Q)—>(P—>Q)

i) (P>Q)A(PA-Q)

v) [P:\[P—}—.Q}—}Q]

Solution:
1) The truth table for (pAg)—(pva)

P q pAag pvq {pnq]—}{_qu_’}
T T T T T
T F F T T
F T F T T
F F F F T

Here all the entries in the last column are ‘T".
s (paq)—(pvq) is a tautology.

11



i1) The truth table for (pvq)a(—pa—q) is

1 2 3 4 5 6

P q pvgq | P =4 | =PA—-q | 30
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T F

The entries in the last column are *F°. Hence (pvg)a{—pAr—q) 1sa

contradiction.

111) The truth table 1s as follows.

p q —-p | =q | =pA—=q P—q (-pA—q)—(p—>q)

Moo o
Mo o
H o=
3o
e s
H o= om
G

Here zall entries in last column are “T

o (—=pAa—q)—(p—>q) is a tautology.




1v) The truth table 15 as follows.

P q | 4 pA—=q p—=q (p—}q]n[pﬂ—.q}
T T F F T F
T F T T F F
F T F F T F
F F T F T F

All the entries 1n the last column are “F°. Hence 1t 15 contradiction.

v) The truth table for[pr(p— —q)—q]

Pl a| =9 P9 |palpa—=q)]| lpalp=—=q)—q]|
T T F F F T
T F T T T F
F T F T F T
F F T T F T

The last entries are neither all “T" nor all “F".

" [p Alp—>—q)— q] 15 a neither tautology nor contradiction. It 15

Contingency.

13



Example 5: Symbolize the following statement

Let p, q, r be the following statements:

p: I will study discrete mathematics

q: Iwill watch T.V.

r: Iamin a good mood.

Write the following statements in terms of p, q, r and logical connectives.
(1) If I do not study and I watch T.V., then I am in good mood.

(2) If I am in good mood, then I will study or I will watch T.V.

(3) If I am not in good mood, then I will not watch T.V. or I will study.

(4) Iwill watch T.V. and I will not study if and only if I am in good mood.

Solution:
(1) (=prq)—r
(2)r=(pva)
(3) =r=(=kvp)
(4)(ar=p)er

14
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UNIT Il - INFERENCE THEORY

Normal Forms, Disjunctive Normal Forms, Conjunctive Normal Forms, Principal Disjunctive Normal Forms,
Principal Conjunctive Normal Forms, Rules of Inference, The Predicate Calculus, Predicates, Variables and
Quantifiers, Predicate Formula, Free and Bound Variables.

Normal Forms

We can convert any proposition in two normal forms —

1. Conjunctive normal form 2. Disjunctive normal form

Elementary Product: A product of the variables and their negations in a formula is
called an elementary product. If P and Q are any two atomic variables, then P, 7P"Q,
TQNPATP are some examples of elementary products.

Elementary Sum: A sum of the variables and their negations in a formula is called an
elementary sum. If P and Q are any two atomic variables, then P, p VV g, 7Q V 7p are some
examples of elementary sums.

Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND
among variables (negation of variables included) connected with ORs.

Examples

« (PUQ)N(QUR)
e (-PUQUSU-T)



Disjunctive Normal Form

A compound statement is in disjunctive normal form if it is obtained by operating OR
among variables (negation of variables included) connected with ANDs.

Examples

« (PNQ)UQNR)
« PNQNSN-T)

Predicate Logic deals with predicates, which are propositions containing variables.

Functionally Complete set

A set of logical operators is called functionally complete if every compound proposition
is logically equivalent to a compound proposition involving only this set of logical
operators. ”, V, and 7 form a functionally complete set of operators.

Minterms: For two variables p and q there are 4 possible formulas which consist of
conjunctions of p, g or its negation given by p”~ q,p”~7q, 7p~qand 7p~7q

Maxterms: For two variables p and q there are 4 possible formulas which consist of
disjunctions of p, g or its negation given by pV q,pV 7q, 7pVqand 7pV 7q

Principal Disjunctive Normal Form: For a given formula an equivalent formula
consisting of disjunctions of minterms only is known as principal disjunctive normal
form (PDNF)

Principal Conjunctive Normal Form: For a given formula an equivalent formula
consisting of conjunctions of maxterms only is known as principal conjunctive normal
form (PCNF)

Predicate Logic —Definition

A predicate is an expression of one or more variables defined on some specific domain. A
predicate with variables can be made a proposition by either assigning a value to the
variable or by quantifying the variable.

The following are some examples of predicates —
e Let E(X,y)denote "x =y"
e LetX(a, b, c)denotea+b+c=0"

o Let M(X, y) denote "'x is married to y**



Well Formed Formula

Well Formed Formula (Wff) is a predicate holding any of the following —

« All propositional constants and propositional variables are wffs
o Ifxisavariableand Y is a wff, ¥x Y and 3x Y are alsowff
e Truth value and false values are wffs

e Each atomic formula is a wff

e All connectives connecting wffs are wffs

Quantifiers

The variable of predicates is quantified by quantifiers. There are two types of quantifier in

predicate logic — Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of
the specific variable. It is denoted by the symbol V.

Vvx P(X) is read as for every value of x, P(x) is true.

Example — "Man is mortal" can be transformed into the propositional form ¥x P(x) where
P(x) is the predicate which denotes x is mortal and the universe of discourse is all men.

Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of
the specific variable. It is denoted by the symbol 3.

3Ax P(x) is read as for some values of x, P(X) is true.

Example — "Some people are dishonest" can be transformed into the propositional form 3x P(x)
where P(X) is the predicate which denotes x is dishonest and the universe of discourse is

some people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called
nested quantifier.



Example

e Va3dbP (x,y)whereP (a, b) denotesa+ b =0
e VaVbVcP(a, b, c)whereP (a, b)denotesa+(b+c)=(a+b)+c
Note—Va3ab P (x,y)#3aVbP (X, y)

To deduce new statements from the statements whose truth that we already know, Rules of
Inference are used.

What are Rules of Inference for?

Mathematical logic is often used for logical proofs. Proofs are valid arguments that
determine the truth values of mathematical statements.

An argument is a sequence of statements. The last statement is the conclusion and all its
preceding statements are called premises (or hypothesis). The symbol “..”, (read therefore)
is placed before the conclusion. A valid argument is one where the conclusion follows from
the truth values of the premises.

Rules of Inference provide the templates or guidelines for constructing valid arguments
from the statements that we already have.

Addition
If P is a premise, we can use Addiction rule to derive P VQ.

Example

Let P be the proposition, “He studies very hard” is true

Therefore — "Either he studies very hard Or he is very bad student." Here Q is the proposition

“he is a very bad student”.



Conjunction
If P and Q are two premises, we can use Conjunction rule to derive P A Q.

Example

Let P — “He studies very hard”
Let Q — “He is the best boy in the class”
Therefore — "He studies very hard and he is the best boy in the class"

Simplification
If P AQ is apremise, we can use Simplification rule to derive P.

Example

""He studies very hard and he is the best boy in the class™
Therefore — "He studies very hard"

Modus Ponens

If P and P—Q are two premises, we can use Modus Ponens to derive Q.

Example

"If you have a password, then you can log on to face
book™ ""You have a password™

Therefore — ""You can log on to face book"



Modus Tollens
If P—Q and —Q are two premises, we can use Modus Tollens to derive -P.

P-Q

Example

"If you have a password, then you can log on to face
book™ ""You cannot log on to face book"*

Therefore — ""You do not have a password”

Disjunctive Syllogism
If -P and P VQ are two premises, we can use Disjunctive Syllogism to derive Q.

-P

____P._V_.Q_____.

Example

"The ice cream is not vanilla flavored™
"The ice cream is either vanilla flavored or chocolate flavored"
Therefore — "The ice cream is chocolate flavored”

Hypothetical Syllogism

If P—Q and Q—R are two premises, we can use Hypothetical Syllogism to derive P—R



Example

"If it rains, I shall not go to school”
"If I don't go to school, I won't need to do homework™*

Therefore — "If it rains, I won't need to do homework

Constructive Dilemma

If P—Q) A(R—S) and P VR are two premises, we can use constructive dilemma to derive Q V
S.

(P-Q) AR-39)
P VR

~Q Vs

Example

“If it rains, I will take a leave”

“If it is hot outside, I will go for a shower”
“Either it will rain or it is hot outside”

Therefore — "I will take a leave or I will go for a shower"

Destructive Dilemma

If P—Q) A (R—S) and —~Q V=S are two premises, we can use destructive dilemma to derive P
VR.



(P-Q) AR-Y9S)

S AL

Example “If it rains, I will take a leave”

“If it is hot outside, I will go for a

shower”

“Either I will not take a leave or I will not go for a shower”

Therefore — "It rains or it is hot outside"'



Solved Problems

Write the truth table for the formula (P Mi‘] U(ﬂP f ﬂi‘]

Ans:
P @ | ~F | 9 | P TEATE Dy agiv(apnag)
T T F F T F T
T F F T F F F
F T T F F F F
F F T T F T T

Check whether [(p — ¢) > r) v -p isa tautology.

Ans:

[p=glerivape(-pvgl=rivape (-lapvglvrivap e (pa-givirvap)
Slrvapuplafrvapvagle Talrvapvagle Fvapvag)

The given staternent 15 not & tautology

What is meant by T autology? Without using truth table, show that
(Pv@) A-(~PA(~Q vaRN)v(~PAa-0) v(~Pa-R) i5atautology.

Solution: A Staternent formula which 15 true always irrespective of the truth values of the individual
variables 15 called a tautology.

Consider +(=F (=0 vaR) 2 a(«P A~(@ AR) 2 Pv@aR) 2 (Py@a(PvR) ()
Consider (P A -0)v(=PA=R)= =(Py)va(PuvR) s <(PyDa(PvR)) (1)
Using (1) and (2)

(Pu@)n(Pu@)n(PvR)va((Fv)a(FvR)

S [P APVR VAP v AP vR) 2T



Prove the following equivalences by proving the equivalences of the dual
(=P A@Iv (P A=@NV(P Q)= P

Solution: It's dual 15

= FPulinl(-FPuv-0Onn(Pvild)=sF

Consider,
~(=Pv@)IA(=Py-ONA(PuD)= P Reasons
= (Pra=Q)v(Pa@)n(Pvi) (Demorgan’s law)
(Commmutative law)
F - F F
= amvicRe Ba (Fve) (Distributive law)
= ((Qv-0Q)AP)a(PvO) PP o
= (TanPin(Fwvi) (PAT = P
= Pa(Pvi) (Abscrption law)
= F
Obtain DNF of @ v (P 4 R) A ~((Pv R) 7 Q).
Solution:
OviPaf)nal(PvEingd)
S (0 wiPaRNA(AIFvRI A D) (Demotgan law)
S (D wPAaRNA((AF AR va(]) (Demotgan law)
S0 almFPa=RNvi(la-0Iv((PAR)ASF AR v ((FAR) ASD)

(E xtended distributed law)
S (AP Al AaaRIwFw(FaRAaR)w(FPaalaR) (Negationlaw)
S (AP Al AR v(P a0 aR) (Negationlaw)

Obtain the conjunctive normal form of PLJ Q
POQ O(PILOQ) O(QIOP)

O(OPOQ)O(OQOP)



Obtain Penf and Pdnf of the formula (-2 v-@)= (P& Q)

Solution;

Lt 8= (<Pyap)= (P& -0)

PIQ|-P|-Q| -Pv-Q [Pe 0|8 | Mntem | Maxterm
T[T] F | F F F[T| Pap
TIF| F | T T T |T|raap
FIT| T | F T T |T]-rap
FIF| T T T F F Pyl

PCNF: Py Q and FDNF: (Pa D) v (P a0 Jv (P a ()

Obtain the PDNF and PCNF of P v (=P = (@ v(~0 = R))).

S olution:

FPw(mF=(0v(=0—= R0

= Pw(Fw(Ql vl vRDN

= (Fw{lwh)

S=(PvwR)
8= (nPv O vRIA(AP va0 v R A(aP vl vaR)

AP v=DvaR APyl vaR APy vaR)A(Pva(vR)
amS=a((mPv@ VR A(=Pvad v R A(aP v vaR)

AP YAl VAR A(RPYO VAR APV vaR)A(PvalvR))
=(PAaaD AR v(PAlA-R)v(PAlAR)

V(AP A AR W(Paad AR v(=PAaa@ AR w(=P Al AR



Showthat R — § canbe derived fromthe premises P - (¢ - §), -RvP & @
Solution:

R Assumed prermises
Ry P RuleP

R=rF RuleT

) RuleT
Poi(D=5 RuleP

0= 5 RuleP

’ EuleP

g EuleT

R § Rule CP

Show that the following statements constitute a valid argqument.
If there was rain, then traveling was difficult. If they had umbrella, then traveling was not difficul
They had umbrella. Therefore there was no rain.
Solution:
Let P :Therewasram O Travelingwas difficull R : They had urnbrella
Then, the given statements are symbolized as
WP-Q @DR-~Q OGR

Conclusion | ~F

DE Eule P
DR = ~0Q Eule P
O Rule T12
HP = Q Eule P
5y~ P Rule T 34

Therefore, 1z avalid conclusion



Symbolize the following statements:

(@) All men are mortal
(b) All the world loves a lover

(c) X is the father of mother of Y
(d)No cats has a tail

(e) Some people who trust others are rewarded
Solution:

(@) Let M(x): x isa man H(x): x is

Mortal ( O x) (M(x) O H(x))

(b) Let P(x): x is a person L(x): x is a lover R(X,y): x
loves y (x) (P(x) O (y) (P(y) O L(y) O R(x.y)))

(c) Let P(x): x is a person F(x,y): x is the father of y
M(x,y): x is the mother of y ( U z) (P(z) O F(x,z) O M(z,y))

(d) Let C(x): x is a cat T(x): x has atail
(0x) (Cx) 00 T(x))
(e) Let P(x): x is a person T(x): X trust others R(x): X is

rewarded ( O x) (P(x) O T(x) O R(x))

Show that the following premises are inconsistent.
(1) If Nirmala misses many classes through illness then he fails high school
(2) If Nirmala fails high school, then he is uneducated.
(3) If Nirmala reads a lot of books then he is not uneducated.

(4) Nirmala misses many classes through illness and reads a lot of books.



Solution:

E : MNirmala misses many classes

5. Nirmala fails high school
A Mirtmala reads lot of bools
H: Nirtrala 15 uneducated

Statement:
(DE =&
(2) 5 = H
(3 4 -~ H
4y En 4

Premmizesare: & — 5, 5 = H,

A—=~H, En A

DE =5 RuleP
DE = H RuleP
NE H RuleT, 1,2
44 -~ H RuleP

T Ho ~A Rule T 4
) E— ~A RuleT, 3,5
Ty~ Ev~ A FuleT,s
Gy (Fon &) RuleT,7
PE~ A RuleP

10) (En &) o ~(En &) RuleT,8,9
Which 15 nething but false

Therefore given set of premuses are inconsistent




Let p, q, 1 be the following statements:

p: I will study discrete mathematics

q: I will watch T.V.

r: I am in a good mood.

Write the following statements in terms of p, q, r and logical connectives.
(1) If I do not study and I watch T.V., then I am in good mood.

(2) If I am in good mood, then I will study or I will watch T.V.

(3) If I am not in good mood, then I will not watch T.V. or I will study.

(4) I will watch T.V. and I will not study if and only if I am in good mood.
Solution:

O(OpOqgOr
@Qro(e0aq)
@) Ord(0qlp)

(4)@O0p)0r

Use the indirect method to prove that the conclusion 30 z) follows from the premises
Ye(Plx)— @(x))and IpP(y)

Solution:

1 ~3z0(z) Pasaumed)
2 Yz-0(z2) T, (1)

3 Ap Py F

4 Pia) E3, (3)

> | -0 Us, @)

6 Plajn -~ Q(a) T,4),05)

T | -(P@)= D)) T, (6)

§ | x(P(x)= Q(x) P

9 Pla) = O(a) 73, (8)

10 Pla)— O(a)n -(Pla) = 2(a) T (7,9 contradiction




Showthat (3 x) PEIAQE)N = EXPEA (3x)QX)
5 olution:

1 (3 P AQE) RuleP

2) Pla)n Q) Es, 1

3 Pla) RuleT, 2
4y Q) EuleT, 2
N (35 Px EG, 3

6) (38 QX EG, 4
TEADPE A (32 QF) RuleT, 5, 6
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UNIT-111-SEMIGROUPS AND MONOIDS

Semigroups, Monoids, Homomorphism of Semigroups and Monoids, Subsemigroups and
Submonoid.

Semigroup: Let S be a non- empty set with a binary operation * defined on it. The algebraic
system (S, *) is called a semigroup if * is associative.

(ie)ax(b*c)=(a*b)xc Vab,ceS

Examples:

1. (2Z, +) and (2Z, .) are semigroups.

2.

If Sis the set of all nxn matrices with real entries, then (S, +) and (S, .) are semigroups,

where + is matrix addition and . is matrix multiplication.

3. (Z,-) is not a semigroup because ‘ — * is not associative, since 2 — (3 — 4) #* (2 — 3)— 4

Monoid: A semigroup (M, *) with identity element e is called a monoid. Sometimes a
monoid is denoted as (M, *, e) indicating the fact that e is the identity element.

Examples:

1.

(N ,x)ia a monoid with identity elementl. But (N, +) is not a monoid, since identity for

+is 0, which is not in N.

The set of non-negative integers S =N u{O} is the monoid under + and x. (i.e) (S, +)
and (S, x) are monoids with identity 0 and 1.

Let S be the non-empty set and let S° denote the set of all mappings from Sto S. Let .
denote the composition of functions operation.

If f,geS®, then f and g are functions from S —S. Their composite

(fog)x)= f(g(x))¥xeS.Then fog isafunctionfrom S —S and f o g eS°*. We
know composition function is associative.

The identity function 1 :S — S defined by I(x): X VX e Sis the identity element of
SS. For (1o f)Xx)=1(f(x))= f(x)vxeSand (fo1)x)= f(I(x))= f(x)¥vxeS

S lof=fol=fVfeS®. - (S%0)isamonoid with identity I.

Sub semigroups: Let (S, *) be a semigroup and let T < S be a non-empty subset. If T is
closed under *, then (T, *) is called a sub semigroup.

Submonoid: Let (M, *) be monoid and e be the identity. If T be a non-empty subset of M
and if T is closed under * withe € T , then (T, *) is called a submonoid of (M, *).

Examples:



L (NxX)isq semigroup. Let T = 3N then T =S if X,y €T then x =3r, y = 3s for some
positive integers r and s. Now x+y = 3rx3s =3(3rs) e3N =T. .. T is closed underx.

Hence (T, x) is a sub semigroup of (N, x). More generally, if S = mN, where m is a
fixed positive integer, then (S, x) is a sub semigroup.

2. For the semigroup (N, +), (2N, +) is a sub semigroup.
3. (Z, +) is monoid with identity 0. If T = the set of all non-negative integers = {0, 1, 2, 3,
...}, then (T, +) is a submonoid with identity 0.

Cyclic Monoid: A monoid (M, *) having identity is said to be cyclic if there exists an
element a€ M such that every element x € M can be written as a" = e for somene N .
Then ‘a’ is called a generator of M. Any cyclic monoid is commutative.

Problems:

1. For any commutative monoid (M, *), prove that the set of all idempotent elements of
M forms a submonoid.

Solution: Given (M, *) be a commutative monoid.
Let e be its identity element.
Let S be the set of all idempotent elements of M. (i.e) S ={xeM/x*x = x}
Since e*e = e, e is an idempotent element of M.
.. e e Sand hence S is non-empty.
Let a,b € S be any two elements. They are idempotent elements.
s.a*a=aand b*b =bh.
We have to prove a*b is idempotent.
Now (a*b)*(a*b) = a*(b*a)*b [Since * is associative
= a*(a*b)*b [Since * is commutative
= (a*a)*(b*b) [Since * is associative
=a*b
Hence a*b is idempotent and so S is closed under *and e S .
So (S, *) is a submonoid of (M, *).
2. Show that every finite semigroup has an idempotent element.
Solution: Let (S, *) be a finite semigroup.
Let ae S, then by closure a,a®,a*,a*,...are all elements of S.
Since S is finite, these elements are not all different. So we have repetitions.

Let a" =a", wherer > m. Letr = m+n.



m+n

a"=a"=a
Then am *an — a‘m+n *an — a‘m+n — am+2n

And a™" xa" =a™?" xa" = a™?" =a™" and so on.

m+n __ 4 m+2n m-+3n __ AMm+mn

=a™" =a =a =.=a
Since a™ =a™™

We have a™ =a™"™ [ Replacing m by nm]

nm mn

=a"=*a
This proves that a™ is an idempotent element of S.
.. Every finite semigroup has an idempotent element.

3. Show that the set of all invertible elements of a monoid form a group under the same
operation as that of the monoid.

Solution: Let (M, *) be a monoid having the identity e.
Let G be the set of all invertible elements of M.
Since et =e, we havee € G. So G is non- empty. Further inverse is unique.

Leta,b e G, then aand b have inverse. Let a*, b be their inverses.

We have to prove thata*b e G.
S we have to prove that it is invertible.
Now consider (a *b)*(b**a?!) = a*(b*b1)*a?
=a*(e)*a?
= a*a’!
=e
And (b*at)* (a *b) = b*(a'*a)*b
= bl*@e)*b
=bMb=¢e
-. b**alis the inverse of a*b.
(i.e) a*b is invertible.
Hence a*beG. So G is closed under *.
Associativity: Since G is a subset of M, associativity is inherited in G.
Identity: e € Gis the identity. Since a*e =e*a=a, VacG.

Inverse: Let a e G be any element. So ‘a’ is invertible.
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-.a*al=al*a=e = (@Yt *alt=al*@h?=e[Since @) t=a
Since atis invertibleandso a™* eG.

Hence inverse exists for every ae S . So (G,*) is a group.

4. If Zs is the set of equivalence classes generated by the equivalence relation
“Congruence modulo 6”, prove that (Z,x, ) is a monoid where the operation x, on Zs

is defined as [j]x¢[k] = [(j xk) mod 6] for any [j], [K] € Ze.

Solution: We know Zs = {[0], [1], [2], [3]. [4], [5]}. We shall form the composition table.

%, [0] [l [2] [8] [4] [5]

|—||—|,—||—|,—|
w N PO

] ] [o] ]
] [o] [] [2] [3] [4] [s]
2] [o] [2] [4] [o] [2] [4]
8] [o] [3] [o] [3] [o] [3]
[4] [o] [4] [2] [o] [4] [2]
5] [o] [s] [4] [8] [2] I
.. Zs is closed under x;.

Associativity: Since [a] x, [b] x,[c] = [a] %, [bc]
= [a(bc) mod 6]
x, depends on associativity of usual multiplication. .-. x; is associative.
Identity: From the table we find, [1] x,[a] = [a] for all [a] € Ze.
-. [1] is the identity element. Hence (Z,,x, ) is a monoid.

Homomorphism: Homomorphism is a structure preserving map between two algebraic
systems of same type. Homomorphisms of semigroups and monoids are useful in the
economical design of sequential machines and in formal languages.

Homomorphism of semigroups: Let (S, *) and (T, .) be two semigroups. A mapping
f : S —Tis called homomorphism if f(a*b)=f(a)f(b) VabeS.

The homomorphism of semigroups £ is called a monomorphism if f is one-one.
f is called epimorphism if f is onto.

f s called an isomorphism if f is one-one and onto.
If f isanisomorphism of S onto T, we say S is isomorphic to T as semigroups.

Example: Consider the semigroups (N, +) amd (Zm, +m). Define f :N — Z by f(a)=[a]
then f(a+b)=[a+b]=[a]+,[o]= f(a)+, f(b).



-. f is a semigroup homomorphism.

Monoid Homomorphism: Let (M,*) be a monoid with identity e and (T, .) be a monoid with
identity e'. Amapping f :M — T is called a homomorphism of monoids if

f(axb)= f(a)f(b) VabeMand f(e)=
The homomorphism of monoids ¥ is called

Q) a monomorphism if f is one-one
(i) anepimorphism if f isonto
(i) anisomorphismif f is one-one and onto.

Theorem 1: Let (S,*) be a semigroup and (T, .) be an algebraic system. If f :S —>Tisan
onto homomorphism, then (T, .) is also a semigroup.

Proof: Given (S,*) is a semigroup and f :S — T is an onto homomorphism.
(i.e) f(axb)=f(a)f(b)
To prove (T, .) is a semigroup, we have to prove (. ) is associative.

Let x,y,z €T be any three elements. Since f is onto, we can find pre images a,b,ceS
such that f(a)=x, f(b)=y, f(c)=z

Now flax(b+c)]=f(a)f(b+c)=f(a)(f(b) f(c))=x(y.z)and
fllaxb)xc]=f(axb)f(c)=(f(a)f (o)) f(c)=(xy)z

Since a*(b*c)=(axb)*c, fla*(b*c)|= f[(axb)xc].

x(y.z)=(xy)z,V x,y,zeT.
Hence (T, .) is a semigroup.

Theorem 2: Let (S, *) and (T, .) be semigroups and g : S — T be a homomorphism. If ae S
is an idempotent element. Prove that g(a)is an idempotent element of T.

Proof: Given g:S — T is a homomorphism of semigroups and a S is an idempotent
element.

-.a*a=a = g(a*a)=g(a)=g(a).g(a) = g(a) [Since g is a homomorphism
-. g(a) is an idempotent element of T.

Theorem 3: If (M, *) is a monoid having identity e and g is an epimorphism from (M, *) to
an algebraic system (T, .), then (T, .) is a monoid.

Proof: Given (M, *) is a monoid with identity e.
. (M, *) isasemigroup and g: M — T is an epimorphism.

(i.e) an onto homomorphism.



-. (T, .) isalso a semigroup. [By theorem 1
We have to only prove (T, .) has identity.
Let a € M be any element and e € M is the identity.

.axe=a=exa

Now axe=a= g(a+e)=g(a)= g(a)g(e)=g(a)and
exa=a=g(era)=g(a)=g(e)g(a)=g(a)

g(a)g(e)=g(e)g(a)= g(a)= gl(e)is the identity of (T, .) and hence (T, .) is a monoid.

Theorem 4: Let (S, *), (T, .) and (V,®) be semigroupsand g:S —T,h:T —V be
semigroup homomorphism such that their composite ho g : S —V is defined. Prove that
hog is a semigroup homomorphism of (S, *) to (V,®).

Proof: Given g:S — T, h:T —V are semigroup homomorphisms.
We have to prove hog:S —V is a homomorphism.
Let a,b e S be any two elements.
. (hog)a*b)=h(g(axb))=h(g(a)g(b))=h(g(a))®h(g(b))
= (hg)a)®(hg)b)
-. ho g is a homomorphism of semigroups.

Theorem 5: The set of all semigroup endomorphisms of a semigroup is a semigroup under
the operation of composition.

Proof: Let G be the set of all endomorphisms of the semigroup (S,*).

An endomorphism is a homomorph ism of S — S and so G is the set of all homomorphisms
from S to S.

We have to prove (G, .) is a semigroup where . is composition of functions.

Let g,,09, €G be any two elements. (i.€) g,,9,are endomorphisms of S.

. (9:°9, Na*b)=0,(g.(a*b))=g,(9,(a)* 9,(b) = 9,(9.(a)) * 9, (g, (b))
= (9:°9,)a)*(9,°9,)b)
-. (9,2 g, )is a homomorphism of S — S and hence an endomorphism,
-. (9,°0,)eG. Hence G is closed under the operation (o).
Next we shall prove that (o) is associative.

Let 9,,0,,9, € G be any three endomorphisms of s.



To prove g, »(g, ©9,)=(9,°9,)° g,

Now fora e S, we have,

(9, (9. °9:)N@)=09,(@)*(9; > 9, Xa) = 9,(a) [g, (a) * 9, (a)] and
((9:°9.)°9:Xa)= (9, > 9, Xa) 9;(a) = 9,(a) *[9.(a) * 9; ()]

Since g,(a), g,(a), g,(a)are elements of S and * is associative, we have
9,()*[g,(a)* 9;(a)]= 9,(a) *[g.(a) = g, (a)]

- (9:°(9,°9:))@)=((9: 2 9,)°g: )a), forany aesS.
=9,°(9,°09;)=(9,°9,)°g,. Hence (o) is associative and so (G,e)is a semigroup.

Theorem 6: Let (S. *) be a semigroup and S® be the set of all functions from S to S. Then
(S5, .) is a semigroup under composition of functions. Prove that there is a homomorphism

g:S—>S°.
Proof: Foreachae S, we shall identify a function f, : S — S, defined by
f.(x)=a*xvxeS$

- f, es®
Define g:S —S%hy g(a)=f, vae$S
Let a,b € S be any two elements, then a*b e S
. glaxb)=f.,
Butforany xeS, f, (x)=(axb)xx=ax(b*x)=f (b*x)= f, (f,(x))=(f,.f, Xx)

- fa*b = f fb

a*

.f, =9(a)g(b)

.-. g is a homomorphism of (S, *) into (S5, .).

Hence g(axb)=f,, = f

Theorem 7: Show that monoid homomorphism preserves the property of invertibility.

Proof: Let (M, *) and (M, .) be two monoids with identity e and e’ respectively.
Let g: M — M be a homomorphism.
Let a € M be an element with inverse a™.

We have to prove g(a™)=[g(a)]*. Since ais the inverse of a, we have
a*a‘=a‘'*a=e.

Now a*a™=e=gla*a?)=gle)=¢ =g(a)glat)=e

8



Similarly, a**a=e= g(a‘l * a)z gle)=¢ = g(a‘l)g(a)z e
Hence g(a™) is the inverse of g(a)

(ie) gla*)=[g(a)]".
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UNIT — IV- LATTICES

Lattices as Partially Ordered Set, Properties of Lattices, Lattices as Algebraic Systems,
Sublattices, Direct Product and Homomorphism.

Definition: The relation f defined on a nonempty set X is called an anti-symmetric relation if and
only if, v X, y € X, the property (x, y) € fand (y, xX) € f implies that x = y.

It is possible to interpret an anti-symmetric relation using the arrow diagrams of relations.

In this context, a relation is called anti-symmetric if, whenever there is an arrow going from one
element to an element different from it, there does not exist an arrow going back from the second
element to the first.

Example: LetR1 = {(x,y) € Z+ x Z + | x divides y} and R2 = {(x, y) € Z\ {0} x Z | x divides y}.
(a) Show that R1 is an anti-symmetric relation on the set of positive integers. (b) Show that R2 is not
an anti-symmetric relation on the set of integers by giving a counter example.

There are two relations which play a prominent role in mathematics. One of them is the equivalence
relation, which we have already seen is a relation which is reflexive, symmetric and transitive.

We now introduce the other relation called a partial order.

Definition: A relation f on a nonempty set X is called a partial order if f is reflexive, transitive and
anti-symmetric. Here (X, f) is a partially ordered set and is colloquially referred to as a poset.

The relation less than or equal to on the set of real numbers and the relation subset on the set of sets
are two fundamental partial orders. These can be thought of as models for the general partial order.
It is common practice to use the symbol to denote a partial order.

Further, if (X, ) is a poset and x y, then we read this as x is less than or equal to y.

Definition: Let (X, ) be a poset. It there exist elements x and y in X, such that either (X, y) € or (y,
X) € holds, then x and y are said to be comparable. In neither (x, y) nor (y, x) belongs to , then x and
y are said to be incomparable.

Examplel: Let X ={1, 2, 3, 4, 5}.

() The identity relation Id on X is reflexive, transitive and anti-symmetric and is therefore a partial
order. However, no two elements of X are comparable.

(b) The relation Id U {(1, 2)} is also a partial order on X. Here 1 and 2 are comparable.

(c) The relation = Idu{(1, 2),(2, 1)} is both reflexive and transitive, but not anti-symmetric. Observe
that (1, 2), (2, 1) €and 1 6= 2.

(d) The relation I1d U {(1, 2),(3, 4)} is a partial order on X. Here, 1 and 2 are comparable and so are
3and 4.

Example: Let X = N. The relation = {(a, b) : a divides b} is a partial order on X.

Example: Let X be a nonempty collection of sets. Here, = {(A, B) : A, B € X, A € B} is a partial
order on X. 4. On R the set = {(a, b) : a < b} is a partial order. It is called the usual partial order on
R.



Definition: Let (X, ) be a poset. 1. If any two elements in the poset (X, ) are comparable, then is
called a linear order and (X, ) is called a linearly ordered set.

Often a linear order is also referred to as a total order or a complete order.

A subset, C of X, is called a chain if and only if induces a linear order on C. If C is a finite set, then
the length of C is equal to the number of elements if C. If C is not a finite set, then the length of C is
said to be infinite.

A subset, A of X, is called an antichain if and only if no two elements of A are comparable. The
length of an antichain is defined in precisely the same manner as that of the chain.

The maximum of the lengths of the chains of X is called the height of X and the maximum of the
lengths of the antichains of X is called the width of X.

Let X be a nonempty set and let f be a relation on X. Then, recall from Definition, that f is reflexive
if (x, x) € fforall x € X; fis transitive if (X, y) € fand (y, z) € fimply (x, z) € fforall x, y, z € X;
and f is anti-symmetric if (x, y) € fand x 6=y implies (y, xX) €/ f, i.e., for all distinct elements x, y of
X both (x, y) and (y, x) cannot be in f. Relations which are simultaneously reflexive, transitive and
anti-symmetric play an important role in mathematics; and we give a name to such relations.
Definition: Let X be a nonempty set. A relation f on X is called a partial order if f is reflexive,
transitive and anti-symmetric. Let f be a partial order on X and let a, b € X. Then, a and b are said to
be comparable (with respect to the partial order f) if either (a, b) € f or (b, a) € f. When a partial order
satisfies some other desirable properties, they are given different names. We fix some of these in the
following definition.

Definition: Let X be a nonempty set.
1. The pair (X, f) is called a partially ordered set (in short, poset) if f is a partial order on X.

2. A partial order f on X is called a linear order if either (x,y) € for (y, x) € fforall x,y € X, i.e.,
when any two elements of X are comparable. A linear order is also called a total order, or a complete
order.

3. The poset (X, f) is said to be a linearly ordered set if f is a linear order on X.

4. A linearly ordered subset of a poset is called a chain in the poset. The maximum size of a chain in
a poset is called the height of a poset.

5. Let (X, f) be a poset and let A < X. A is called an anti-chain in the poset if no two elements of A
are comparable.

The maximum size of an anti-chain in a poset is called the width of the poset. You may imagine the
elements of a linearly ordered set as points on a line. The height of a poset is the maximum of the
cardinalities of all chains in the poset. The width of a poset is the maximum of the cardinalities of all
anti-chains in the poset.

Examples:

1. The poset in Examplel has height 1 (size of the chain {1}) and width 5 (size of the anti-chain {1,
2,3,4,5}).



2. The poset in Examplel has height 2 (respective chain is {1, 2}) and width 4 (respective anti-chains
are {2, 3, 4,5} and {1, 3, 4, 5}).

3. The poset in Examplel has height 2 (respective chains are {1, 2} and {3, 4}) and width 3 (a
respective anti-chain is {1, 3, 5}).

4. The usual order (usual <) in N is a linear/complete/total order. The same holds for the usual order
inZ, QandR.

5. If (X, f) is a finite linearly ordered set then the singleton subsets of X are the only anti-chains.
In this case, the height of X is the number of elements in X and the width of X is 1.

6. The set N with the partial order f defined by “(a, b) € f if a divides b” is not linearly ordered.
However, the set {1, 2, 4, 8, 16} is a chain. This is just a linearly ordered subset of the poset.

There are larger chains, for example, {2 k : k=0, 1, 2, .. .}. The set of all primes is an anti-chain
here. The poset (N, f) has infinite height and infinite width.

7. The poset (P({1, 2, 3, 4, 5}), <) is not linearly ordered. However, {@, {1, 2}, {1, 2, 3,4, 5}} isa
chainin it. Also, {@, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}} is a chain. The height of this
poset is 6.

That is, if f is a partial order on a nonempty set X we write x <y to mean that (x, y) € f. Accordingly,
the poset (X, f) is written as (X, <). Also, instead of writing ‘(X, f) is a poset’ we will often write ‘X
is a poset with the partial order f*. Following custom, by x >y we mean y < X; by x <y we mean that
x <yand x 6=y; by x >y we mean y < X. Also, we read x <y as X is less than or equal to y; x <y as
x is less than y; x >y as x is greater than or equal to y; and x >y as x is larger than y.

Definition: Let (X, <) be a finite linearly ordered set (like the English alphabet witha<b<c<- - -

< z) and let Xx be the collection of all words formed using the elements of X. Fora=ala2 - - - an, b
=blb2---bmeX «form,neN, definea<bif(a)al <bl,or(b)ai=bifori=1,...,k for some
k <min{m, n} and ak+1 < bk+1, or (c) ai = bi fori=1,2,...,n=min{m, n}. Then (Z*,<)is a

linearly ordered set. This ordering is called the lexicographic or dictionary ordering. Sometimes X is
called the alphabet and the linearly ordered set + is called the dictionary.

A directed graph representation of the poset (A, <) with A = {1, 2, 3, 9, 18} Given a set, X, we can
order the subsets of X by the subset relation: A € B, where A, B are any subsets of X.

For example, if X = {a, b, c}, we have {a} < {a, b}.

However, note that neither {a} is a subset of {b, c} nor {b, c} is a subset of {a}.
We say that {a} and {b, c} are incomparable.

Definition:

A binary relation, <, on a set, X, is a partial order (or partial ordering) iff it is reflexive, transitive and
antisymmetric,

that is: (1) (Reflexivity): a < a, for all a € X
(2) (Transitivity): Ifa<band b<c,thena<c, forall a,b, c € X.
(3) (Antisymmetry): [fa<band b <a,thena=b, forall a, b € X.
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A partial order is a total order (ordering) (or linear order (ordering)) iff for all a, b € X, eithera<b
or b <a. When neither a <b nor b < a, we say that a and b are incomparable.

A subset, C € X, is a chain iff < induces a total order on C (so, for all a, b € C, either a <b or
b <a).

The strict order (ordering), < is the strict order associated with a partial order, <, then < is transitive
and antireflexive, which means that (4) a &< a, for all a € X.

Conversely, let < be a relation on X and assume that < is transitive and anti-reflexive.

If confusion may arise, for example when we are dealing with several posets, we denote the partial
order on X by <X.

The trick is to draw a picture consisting of nodes and oriented edges, where the nodes are all the
elements of X and where we draw an oriented edge from a to b iff a is an immediate predecessor of
b. Such a diagram is called a Hasse diagram for (X,<).

The Hasse diagram of a finite poset (X, <) is a picture drawn in the following way:
1. Each element of X is represented by a point and is labeled with the element.

2. If a < b then the point labeled a must appear at a lower height than the point labeled b and further
the two points are joined by a line.

3. Ifa<band b < c then the line between a and c is removed.
Example: Hasse diagram for the poset (A, <) with A = {1, 2, 3,9, 18} and < as the ‘divides’ relation

is given below.

1

Definition:
Let (X, <) be a poset and let A € X.

1. We say that an element x € X is an upper bound of A if for each z € A, z < x; or equivalently,
when each element of A is less than or equal to x. An element y € X is called a lower bound of A if
for each z € A, y < z; or equivalently, when y is less than or equal to each element of A.

2. An element x € A is called the maximum of A, if x is an upper bound of A. Thus, maximum of A
is an upper bound of A which is contained in A. Such an element is unique provided it exists. In this
case, we denote x = max{z : z € A}. Similarly, minimum of A is an element y € A which is a lower
bound of A. If minimum of A exists, then it is unique; and we writey = min{z : z € A}.



3. An element x € X is called the least upper bound (lub) of A in X if x is an upper bound of A and
for each upper bound y of A, we have x <vy; i.e., when x is the minimum (least) element of the set of
all upper bounds of A. Similarly, the greatest lower bound (glb) of A is a lower bound of A which is
greater than or equal to all upper bounds of A, it is the maximum (largest) of the set of all lower
bounds of A.

4. Anelement x € A is a maximal element of A if x <z for some z € A implies X = z; or equivalently,
when no element in A is larger than x. An elementy € A is called a minimal element of A if z<y
forsome z € A implies y = z; or equivalently, when no element in A is less than y. Example: Consider
the two posets X = {a, b, c} and Y = {a, b, ¢, d} described by the following Hasse diagrams:

f
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Let A = X. Then,

(a) the maximal elements of A are b and c,

(b) the only minimal element of A is a,

(c) a is the lower bound of A in X,

(d) A has no upper bound in X,

(e) A has no maximum element,

(f) a is the minimum element of A,

(9) no element of X is the lub of A, and

(h) ais the glb of Ain X.

Example:



The following table illustrates the definitions by taking different subsets 4 of X, and also con-

sidering the same 4 as a subset of ¥,

A={bec}C X | A={a,c} CX | A={b e} CY
Maximal element(s) of 4 b C b, o
Minimal element(s) of A b e i b, e
Lower bound(s) of 4 in X | a i v
Lower bound{s) of AinY | a a a
Upper bound(s) of 4 in X | does not exist | ¢ d
Upper bound(s) of 4 in ¥ | does not exist | e d

Maximum element of A

does not exist

does not exist

Minimum element of 4

does not exist

does not exist

lub of 4 in X

does not exist

i

lbof AinY

does not exist

i

glbhof Ain X

(F

L

il

glhof Ain ¥

ik

i

L

Definition: A linear order < on a nonempty set X is said to be a well order if each nonempty subset
of X has minimum. We call (X, <) a well ordered set to mean that <is a well order on X.

Often we use the phrase ‘X is a well ordered set with the ordering as <’ to mean ‘(X, <) is a well
ordered set’.

Lattice: A poset (L, <) is called a lattice if each pair x, y € L has an lub and also a glb. A lub of x, y
is also written as X V y (read as ‘x or y’ / ‘join of x and y’) and a glb of x, y as x Ay (read as ‘x and
y’ / ‘meet of x and y”). A lattice is a poset in which any two elements have a meet and a join.

A complete lattice is a poset in which any subset has a greatest lower bound and a least upper bound.

It is easy to show that any finite lattice is a complete lattice and that a finite poset is a lattice iff it has
a least element and a greatest element.

The poset N+ under the divisibility ordering is a lattice!

A lattice is called a distributive lattice if for all pairs of elements x, y the following conditions, called
distributive laws, are satisfied: X V(YyAZ) =(XVY)A XV Z),XA(YVZ)=(XAY)V (XAZ).

Indeed, it turns out that the meet operation corresponds to greatest common divisor and the join
operation corresponds to least common multiple.

However, it is not a complete lattice. The power set of any set, X, is a complete lattice under the
subset ordering.



Fix a positive integer n and let IMn) denote the set of all divisors of n. For elements x, y € DN{n),
define & < y if @ divides y. Then (Di{n), <) is a distributive lattice, where v = lem and A = ged.

For n = 12,30 and 36, the corresponding lattices are shown below.

12 30
1 i 6 > I 15
2 3 2 D
1 1

To check the first distributive law, let a,b.e € D(n). p a prime, and let & € M. Further, let
p*|lem{a, ged{b, ¢}}. Then, either p*|a or p*|b,e. In that ease, p*|lem{a,b} and p*|lem{a,c}.
So, p*|ged{lem{a, b}, lem{a,c}}.

Now, let us assume that p""|gt:tl{lcm{u.f)}.lcm{u.r.'}}. Then, p“"||cm{u.b} and p""'||cm{ﬂ_f.'}.
Then, either p¥la or (p*|b and p*|e). So, p*|lem{a, ged{b, e}}.

Thus, any power of a prime divides av (b A e) if and only if it divides (av b) A (aV ¢). Therefore,

aV(bAe)=laVb)AlaVe). Similarly, the second distributive law can be verified.

Proposition: If X is a lattice, then the following identities hold for all a, b, ¢ € X:
Llavb=bvaaAb=bAa
L2(avb)vc=av(bvc),(@arnb)ac=an(bAac)

L3ava=a,ana=a

L4(avb)ana=a (aAb)va=a.

Properties (L1) correspond to commutativity,

properties (L2) to associativity,

properties (L3) to idempotence and

properties (L4) to absorption.

Furthermore, forall a, b € X, we have a<biffav b =Db iffa A b =a, called consistency.
Properties (L1)-(L4) are algebraic properties.

Properties: In a lattice (L, <), the following are true:

1. [ldempotence] :ava=a,ana=a

2. [Commutativity] ;tavb=bvaaAnb=bAa

3. [Associativity] :av (bvc)=(avb)vc,an(bAac)=(@Ab)Ac



4, a<bo aVvb=b.Similarly,a<b< aAb=a
5. [Absorption] :av (aAb)=a=aA(avb)
6. [Isotonicity] :b<c=avb<avec,b<c=aAb<aAc
7.a<b,c<d=>aVvc<bvd,as<b,c<d=aAc<bAd
8. [Distributive Inequality] :av (bAc)<(avb)A(avc),an(bvc)>(@aAb)v(anc)
9. [Modularity] :a<ce aV(bAc)<(avb)Ac
Proof. We prove only the first parts of all assertions; the second parts can be proved similarly.
(1) a Vv ais an upper bound of {a, a}.
Hence a vV a > a. On the other hand, a is an upper bound of {a, a}.
So, a V a being the least of all upper bounds of {a, a}, is less than or equal to a.
Henceava=a.
(2) a<bva, b<bva.
So, bva is an upper bound of a, b.
Since avb is the least of all upper bounds of a, b, we haveavb<bV a.
Exchanging aand b, we getbva<avhb.
Henceavb=bva.
(3) Letd=av (b Vvc).
Then,d>a,d>bVcsothatd>a,d>bandd>c.So,d>aVvbandd>c.
That is, d > (a v b) v c. Similarly,e=(aVv b) vV cimpliese>a V (b v c).
Thus, the first part of the result follows.

(4) Let a <b. As b is an upper bound of {a, b}, and a v b is the least of all upper bounds of {a,
b}, we haveaVv b <b.

Also, a v b is an upper bound of {a, b} and hence av b >b.
So,wegetavb=h.

Conversely, letav b =Dh.

As a V b is an upper bound of {a, b}, we havea<aVv b=h.
Therefore,a<b & aVvb=h.

(5) By definitionaAb<a.So,aV (aAb)<aVva=ausing (1).
Also, by definitiona Vv (a A b) > a.

Hence,aVv (aAb) =a.



(6) Letb<c.NotethataVc>aandaVc>c>b.

So, a Vv cis an upper bound of {a, b}.

Thus,aV c>1Ilub{a,b} =aVvh.

(7) Using (6), we haveaVvVc<bVvc<bvd.

Again, using (6), wegetaAc<bAc<bAd.

(8) Notethata<avbanda<avVc.
Thus,a=aAa<(avb)A(avec).
Asb<aVbandc<avecby(7),wegetbAac<(avb)Aa(avec).
So, by definitionav (b Ac)<(avb)A(aVc).

(9) Leta<c. Then, a VvV ¢ =c and hence by (8), we haveaVv (b Ac)<(avb)A(avc)=(aVvh)
A c. Conversely, letav (b Ac)<(avb)Ac.

Thena<av(bAc)<(avb)Ac<c.
Theorem:

The direct product of two distributive lattices is a distributive lattice. Proof. Let (al, bl), (a2, b2),
(a3, b3) be elements in the direct product of two distributive lattices. Then [(al, bl) v (a2, b2)] A
(@3, b3) =(al v a2, blvb2)A (a3, b3)=(alva2)Aa3,(blvb2)Ab3 =(al Aal)V (a2 A al),
(b1 Ab3) v (b2 Ab3) =(al Aa3),(b1 Ab3) Vv (a2 Aa3),(b2 A b3) == (al, bl) A (a3, b3) Vv (a2,
b2) A (a3, b3).

This verifies one of the distributive laws. Similarly, the other one can be verified.

Definition: Let (L1, <1) and (L2, <2) be lattices. A function f: L1 — L2 satisfying f(av1b) =
f(a)v2f(b) and f(anlb) = f(a)A2f(b) is called a lattice homomorphism.

Further, if f is a bijection, then it is called a lattice isomorphism.
Definition:

Let (L, <) be a lattice. It is called a bounded lattice if there exist elements o, § € L such that for

each x € L, we have x < o and < x. Such an element a is called the largest element of L, and is
denoted by 1. The element § € L satisfying  <x for all x € L is called the smallest element of L, and
is denoted by 0.

Notice that if a lattice is bounded, then 1 is the lub of the lattice and 0 is the glb of the lattice.

Definition: A lattice (L, <) is said to be complete if each nonempty subset of L has lub and glb

in L. For A € L, we write lub of A as VA, and glb of A, as AA. It follows that each complete lattice
is a bounded lattice.

Examples:

1. The set [0, 5] with the usual order is a lattice which is both bounded and complete. So, is the
set [0, 1) U [2, 3].
2. The set (0, 5] with the usual order is a lattice which is neither bounded nor complete.

10



3. Theset [0, 1) U (2, 3] with the usual order is a lattice which is bounded but not complete.

4. Every finite lattice is complete, and hence, bounded.

5. The set R with the usual order is a lattice. It is not a complete lattice. Observe that the
completeness property of R, i.e., “for every bounded nonempty subset a glb and an lub exist”

is different from the completeness in the lattice sense.

(1.1.1) 30
|
(1,1,0) } ‘ (0,1,1) 6 10 15
(1,0,0) ' (0,0,1) 2 3 5
(0.0,0) 1

{a.b,c}
{a,b} } ‘ b, c}
{a} I {c}
i

Definition:Let (L, <) be a bounded lattice. We say that (L, <) is a complemented lattice if for
each x € L, there exists y € L such that xvy = 1 and xAy = 0. Such an element y corresponding
to the element x is called a complement of x, and is denoted by -x.

Theorem: Let (L, <) be a lattice and let a, b, ¢ € L. The following table lists the properties that

hold (make sense) in the specified type of lattices.

Properties

Lattice type

V. A are idempotent

Any lattice

W, A are communtalive

Any lattice

W, N are associalive

Any lattice

a<hesatrtb=a=2avh=5

Any lattice

[Absorption] aA{aVd)=a=aV (aAb)

Any lattice

sotonicity] b<e={avb<avVearb<ahe
¥

Any lattice

avibare) <(avb)alave)

an(bvel =(anb)Vviahe)

[Distributive inequalities]

Any lattice

[Modular inequality] a < c¢<aV(bie) <{aVb) e

Any lattice

0 is unigue; 1 is unigue

Bounded lattice

If @ 13 a complement of b, then b is also a complement of o

Bounded lattice

=0 is wnigue and it i5 1, =1 s unique and i s 0

Bounded latlice

An element o has o unigue complemend

Distributive complemented laftice

. aVe=bVe aV-oec=0Y —'E'.’} =a=2"
[Cancellation]

Distributive complemented laftice

{
{ﬂﬂr.'zl'iﬂf:. i e = f;f’\—-f:} = a=2"b
=

(De-M | a’ b} = -ah =b
e-Morgan
& —(a Ab)=—-aVv b

Distributive complemented laftice

aVv=b=1=aVh=a

af-b=0=arb=a

Distributive complemented laftice

11




Proof. We will only prove the properties that appear in the last three rows; others are left as
exercises.

Cancellation property:b=bvO0O=bv(cA-c)=(bvc)aA(bv-c)=(@avc)a(av-c)=aVv(c
A-c)=av0=a.b=bAl=bA(cv-c)=(bAac)v(ba-c)=(aAc)v(@an-c)=aAn(cV-C)
=aAnl=a

De-Morgan’s property: (aVb)V (-aA-b)=(@vbv-a)A(@avbv-b)=1A1l=1(avb)A
(ran-b)=(@A-an-b)v(bAa-an-b)=0v0=0.

(@Anb)v(-rav-b)=(av-av-b)A(bv-av-b)=1A1=1
(@nb)a(-av-b)=(aAbAa-a)v(@aAnba-b)=0A0=0.

Using Definition, on the first two equalities, we get =(a v b) = -a A =b; and using it again on the
last two equalities, we obtain =(a A b) = (=a v =b).

To prove the next assertion, note thatifav -b=1,thena=av(bA-b)=(avb)A(av-b)=(a
vb)aAl=avh.

Conversely, ifa=avb,thenav-b=(avb)v-b=1.

Similarly, the second part is proved.

12
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UNIT -V - BOOLEAN ALGEBRA
Boolean Algebra, Basic properties, Sub algebra, Direct Product, and Homomorphism,

Boolean Functions.

Definition:

A Boolean algebra is a nonempty set S which is closed under the binary operations Vv (called join),
A (called meet), and the unary operation — (called inverse or complement) satisfying the following
properties for all x,y, z € S:

1. [Commutativity] : XxVy=yVvXxand XAy =y AX.

2. [Distributivity] : XxV(yAZ)=(XVY)A(XVZ)andXA(YyVZ)=(XAY)V (XA2Z).
3. [Identity elements] : There exist elements 0, 1 € Ssuchthatx vO=xand x A 1 = X.
4. [Inverse] : xv-x=21and X A -x =0.

When required, we write the Boolean algebra S as (S, Vv, A, =) showing the operations explicitly.
Notice that the fourth property in the definition above uses the two special elements 0 and 1, whose
existence has been asserted in the third property.

This is meaningful when these two elements are uniquely determined by the third property.
Theorem:

Let S be a Boolean algebra. Then the following statements are true:

1. Elements 0 and 1 are unique.

2. Corresponding to each s € S, —s is the unique element in S that satisfies the property: sv-s = 1 and
SA-s=0.

3.Foreachs €S, -—s=s.

Proof. (1) Let 01, 02 € S be such that for each x € S, xv01 = x and xv02 = x.

Then, in particular, 02 v 01 =02 and 01 v 02 = 01.

By Commutativity, 02 v 01 = 01 v 02.

So, 02 =01. That is, 0 is the unique element satisfying the property that for each x € S, Ovx = x.

A similar argument shows that 1 is the unique element that satisfies the property that for each x € S,
XAL=X.

(2) Let s € S. By definition, —s satisfies the required properties.
For the converse, suppose t,r € Saresuchthatsvt=1,sAt=0,svr=1andsAr=0.

Thent=tA1=tA(SVIN=@(AS)VEAN=0VEAN=GSANV(EADN)=(SVI)Ar=1Ar=r.(3)
It directly follows from the definition of inverse, due to commutativity.



Examples:

1. Let S be a nonempty set. Then P(S) is a Boolean algebrawithv =uU, A=N,~A=Ac, 0= 0 and
1 =S. This is called the power set Boolean algebra. So, we have Boolean algebras of finite size as
well as of uncountable size.

2. Take D(30) ={n € N:n| 30} withav b=1Icm(a, b),aAb=gcd(a b)and -a=30a.ltisa
Boolean algebra with 0 = 1 and 1 = 30.

3. Let B ={T, F}, where v, A and - are the usual connectives. It is a Boolean algebra with 0 = F and
1=T.

4. Let B be the set of all truth functions involving the variables p1, . . ., pn, with usual operations v,
A and —. Then B is a Boolean algebra with 0 = 1L and 1 = >. This is called the free Boolean algebra
on the generators p1, . .., pn.

5. The set of all formulas (of finite length) involving variables p1, p2, . . . is a Boolean algebra with
usual operations. This is also called the free Boolean algebra on the generators p1, p2, . . .. Here also
0=_1and1=>.So, we have a Boolean algebra of denumerable size.

Remark: The rules of Boolean algebra treat (v, 0) and (A, 1) equally. Notice that the second parts
in the defining conditions of Definition 8.3.1 can be obtained from the corresponding first parts by
replacing v with A, A with v, 0 with 1, and 1 with 0 simultaneously. Thus, any statement that one can
derive from these assumptions has a dual version which is derivable from the same assumptions. This
is called the principle of duality.

Theorem: [Laws]

Let S be a Boolean algebra. Then the following laws hold for all s, t € S:

1. [Constants] : =0=1,-1=0,sv1=1sAl=ssv0=ssA0=0.

2. [ldempotence] :sVs=s,SAS=S.

3. [Absorption] : sV (sAt)=s,sA(SVL)=s.

4. [Cancellation] :svt=rvtsv-at=rv-at=s=r.

5. [Cancellation] :sSAt=rAt,SA-t=rA-t=s=r.

6. [Associativity] : (svt)vr=sv (tVvr),SAY)ATr=sA(tAT).

Proof. We give the proof of the first part of each item and that of its dual is left for the reader.
(1) 1=0V (-0) = 0.
sv1i=(sv1)Al=(sVI)A(sV-s)=sV(LA-S)=sV-s=1.
SVO=sV(SA-S)=(SVS)A(SV-S)=sAl=s.
(2)s=sv0=sV(SA-S)=(SVS)A(SV-S)=(SVS)AL1l=(sV5S).
B)sv(isAat)y=(sAl)v(sant)=sA(lvt)=sAl=s.

(4) Supposethatsvt=rvtandsv-t=rv-t. Thens=svO0=sV({tA-t)=(SV)A(SVt)=(r
VOA@FVAt)y=rv(tAa-t)=rv0=r.



(5) This is the dual of (4) and left as an exercise.

(6) Using distributivity and absorption, we have sV (tvr) A=s=(SA-S)V(tVr)A-s =0V (tV
NA=S =(tVI)A=S =(tA=S)V(rA-s).

sv)Vr A=s=(SVH)A-sS V(A=) =(SA-S)V(tA-S) V(rA-S)=(0V (tA-S) V(rA-s)=
(tA-S)V (rA-S).

Hence,sVv (tvr) A=s=(svt)vr A-s.
Also, (svVt)Vr As=(SVI)AS V(rAS)=sV(rAs)=s=sV (tVr) As.
Now, apply Cancellation law to obtain the required result.

Isomorphisms between two similar algebraic structures help us in understanding an unfamiliar entity
through a familiar one. Boolean algebras are no exceptions.

Definition: Let (B1, v1, Al, =1) and (B2, V2, A2, =2) be two Boolean algebras.

A function f: Bl — B2 is a Boolean homomorphism if it preserves 0, 1, V, A, and =. In such a case,
f(01) = 02, f(11) = 12, f(a v1 b) = f(a) v2 f(b), f(a AL b) = f(a) A2 f(b), f(-1a) = -2f(a).

A Boolean isomorphism is a Boolean homomorphism which is a bijection.

Unless we expect an ambiguity in reading and interpreting the symbols, we will not write the
subscripts with the operations explicitly as is done in Definition.

Examples: Recall the notation [n] = {1, 2, ..., n}. The function f: P([4]) — P([3]) defined by f(S)
=S\ {4} is a Boolean homomorphism.

We check two of the properties and leave others as exercises. f(A v B) =f(A U B) = (A U B) \ {4}
= (A\{4}) u (B\{4}) =f(A) v f(B). f(1) = f([4]) = [4]\ {4} = [3] = 1.

Theorem: Let (B, Vv, A, ) be a Boolean algebra. Define the relation < on B by a <b if and only if a
Ab=aforall a b €B. Then (B, <) is a distributive complemented lattice in which lub{a, b} =a Vv
b and glb{a, b} =aAbforall a, b € B.

Proof: We first verify that (B, <) is a partial order.
Reflexive: s <s if and only if s A s = s, which is true.
Antisymmetry: Let s <tand t <s. Then we haves =s At =t.
Transitive: Let s <tandt<r. Thens At=sandtAr=t.
Using associativity, SATr=(SAt) Ar=sA(tAr)=sAt=s;
consequently, s <r. Now, we show that a vV b = lub{a, b}.

Since B is a Boolean algebra, using absorption, we get (a vV b) A a=a and hence a<a V b. Similarly,
b<aVvh.

So, a Vv b is an upper bound for {a, b}. Now, let x be any upper bound for {a, b}.
Then, by distributive property, (@vb)Ax=(@AXx)Vv (bAx)=aVh.
So,aV b <x. Thus, aV bisthe lub of {a, b}.



Analogous arguments show that a A b = glb{a, b}.

Since for all a, b € B, avb and aAb are in B, we see that lub{a, b} and glb{a, b} exist.
Thus (B, <) is a lattice.

Further, if a € B, then —a € B. This provides the complement of a in the lattice (B, <).
Further, both the distributive properties are already satisfied in B.

Hence (B, <) is a distributive complemented lattice.

Definition: Let (B, v, A, ) be a Boolean algebra. The relation < on B given by a <b if and only if
aAb=aforall a b €Bis called the induced partial order.

A minimal element of B with respect to the partial order <, which is different from 0 is called an
atom in B.

Examples:

1. In the power set Boolean algebra, singleton sets are the only atoms.
2. In Example atoms of D(30) are 2, 3 and 5.

3. The {F, T} Boolean algebra has only one atom, namely T.
Proposition: Each finite Boolean algebra has at least one atom.
Proof:

Let B be a finite Boolean algebra.

Assume that no element of B is an atom.

Now, 0 <1 and 1 is not an atom.

Then there exists bl € B such that 0 < bl < 1.

Since bl is not an atom, there exists b2 € B such that 0 < b2 <bl < 1.

By induction it follows that we have a sequence of elements (bi) such that 0 <- - - <bi<bi—1 <- -
-<bl<1l

As B is finite, there exist k > j such that bk = bj .

We then have bk <bk—1 < - - - <bj = Dbk.

This is impossible. Hence B has at least one atom.

Proposition: Let p and q be atoms in a Boolean algebra B. If p 6=q, thenp A g = 0.
Proof:

Suppose thatp A q 6= 0.

We know thatp A q <p.

IfpAQ6=p,thenpAq<p.



But this is not possible since p is an atom.
So, pAQ = p. Similarly, gAp = g.
By commutativity, p = pAq = gAp = Q.

Theorem: [Representation] Let B be a finite Boolean algebra. Then there exists a set X such that B
Is isomorphic to P(X).

Proof: Let X be the set of all atoms of B.

By Proposition, X 6= @.

Define f: B — P(X) by f(b) ={X € B : x is an atom and x <b} for b € B.
We show that f is the required Boolean isomorphism.

Injection: Suppose bl 6= b2.

Then, either b1 b2 or b2 b1.

Without loss of generality, let b1 b2.

Note that bl = b1 A(b2 v =b2) = (b1 Ab2)Vv(b1 A =b2).

Also, the assumption b1 b2 implies bl Ab2 6=Db1 and hence bl A =b2 6= 0.
So, there exists an atom x < (bl A =b2) and hence x = X A b1 A =b2.
Thenx Abl=(XADblA=b2) Abl=xAblA=b2=x.

Thus, x <bl.

Similarly, x <—b2. Asx 6=0,

we cannot have x < b2 (for, x <—b2 and x <b2 imply x <b2 A =b2 = 0).
Thus there is an atom in f(b1) which is not in f(b2).

Therefore, f(b1) 6= f(b2).

Surjection: Let A= {x1, ..., xk} € X.

Writea=x1V - - -V xk (if A= 0@, take a=0).

Clearly, A c f(a). We show that A = f(a). So, lety € f(a).
ThenyisanatominBandy=yAa=yA(X1lV:--VXK)=(yAxL) V-V (yAxk).
Since y 6= 0, by Proposition, y A xi 6= 0 forsomei € {1, 2,. .., k}.

As xi and y are atoms, we have y =y A xi = xi and hence y € A.

That is, f(a) € A so that f(a) = A.

Thus, fis a surjection. Preserving 0, 1 : Clearly f(0) = @ and f(1) = X. Preserving Vv, A : By definition,
X€Ef(blAD2) ©x<bl Ab2 e x<bl andx <b2 & x € f(bl) and x € f(b2) & x € f(b1) N {(b2).

For the other one, let x € f(b1 v b2). Then, x =x A (b1 Vv b2) = (X A bl) vV (X A b2).
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So,x Abl16=0o0rxAb26=0.

Without loss of generality, suppose x A b1 6= 0.

As x is an atom, x <bl and hence x € f(b1) < f(b1) U f(b2).

Conversely, let x € f(b1) U f(b2). Without loss of generality, let x € f(bl).
Thus, x <bl and hence x <bl Vv b2 which in turn implies that x € f(b1 v b2).
Therefore, x € f(bl v b2) & x € f(bl) U f(b2).

Preserving - : Let x € B. Then f(x)Uf(-x) = f(xv—x) = f(1) = X and f(x)Nf(—x) = f(xA-x) = f(0) =
@.

Thus f(=x) = f(x) c.
As immediate consequences of the representation theorem, we obtain the following results.

Corollary: Let B be a finite Boolean algebra.

1. If B has exactly k atoms then B is isomorphic to P({1, 2, . . ., k}). Hence, B has exactly 2 ¥
elements.
2.FixbeB. Ifpy, ..., pnare the only atoms less than or equal to b, thenb=p1 Vv - - - V pn.



